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Abstract
The enhancement of integration capability in semiconductor technology requires a large amount of test data, 

resulting increase in memory, transition time and test time. In this paper, a novel lossless data compression technique 
is proposed to reduce test data, time and memory, based on variable to variable run length encoding scheme. In this 
scheme, a test data is partitioned into variable length test patterns and by applying compression algorithm, the bits are 
compressed into variable length codes. The encoding technique enhances the test data reduction with a limited number 
of code words. The compression technique is effective, especially when the runs of 0s and 1s in the test set are high 
and efficiently compress the data streams which is composed of runs of 0’s and 1’s. The variable to variable run length 
code algorithm is used to make changes in test vectors and adaptable for compressing precomputed test sets to test 
the embedded cores of System-on-chip (SOC). The decompression architecture for proposed technique was presented 
in this paper. Experimental results of ISCAS 85 and ISCAS 89 benchmark circuit’s results in the significant reduction of 
test data with better compression ratio.

Keywords: Pre-computed test sets; Compression codes; Decompression; 
Embedded core testing; SOC testing

Introduction
Over the last two decades, the electronics industry had a 

phenomenal growth due to the advent of integration in semiconductor 
technology. Integrated circuits consist of different types of active and 
passive components, which is fabricated on a single chip to form 
systems. The different modules and intellectual property (IP) cores 
present in a system-on-chip (SOC) wraps different functions such as 
a processor, memory and different technologies such as CMOS logic 
to analog circuits. With the increase of technology, the large integrated 
devices are composed of millions of transistors and different hardware 
modules. With today’s technology, the system-on-chip complexity is 
increased because the numerous components are implemented on a 
single chip.

However, the SOC presents many challenges such as increased test 
data, memory storage in automatic test equipment (ATE), transition 
time, test time, test power and test application time (TAT). Usually, the 
test data is generated and stored on workstations. Individual types of 
application-specific integrated circuit (ASIC) requires a more frequent 
download of test data from workstations to ATE. The Test sets for ASIC 
will be as large as gigabytes and the time taken to download the test data 
is more significant because the download takes from several minutes 
to hours. The Throughput of ATE is affected by download time of test 
data. To enhance the throughput of ATE, it is very important to reduce 
the download time of test data. A High volume of test data is directly 
proportional to higher transition time and memory. The Transfer of 
large test data between the ATE and chip is a bottleneck because of 
limited bandwidth, memory, and I/O channels [1]. 

The Limited bandwidth increases the test time and test cost during 
data transfer from ATE to the device under test (DUT). The Techniques 
widely used to reduce SOCs test data volume and test application time 
are Built-in self-test (BIST) and test-data compression.

When the test data increases, some of the challenges are as follows: 
Limited memory on ATE, Long upload time, Limited I/O bandwidth. 
Test data compression is a promising solution to store and transmits 

the compressed data from ATE to chip also it is used to speed up the 
interaction between ATE and SOC during the test. Data compression 
is a procedure of reducing the size of data file. The Use of test data 
compression is to compress the pre-computed test set (TD) provided by 
the core vendor to a smaller test set (TE) and then stored in automatic 
test equipment memory. Reduction of test data reduces the size of 
memory requirements in ATE, testing time, and test power [2]. A 
Novel test data compression is required to test the cores of SOC without 
exceeding limits of memory, bandwidth and power. Additional on-chip 
hardware is added before and after scan chains. An on-chip decoder 
decompresses the compressed test data from memory and delivers the 
original data to the device under test. The lossless test data compression 
reproduces all the bits, after decompression [3]. 

The Test vector compression consists of three categories as follows 
[4,5]: Code-based schemes use a data compression technique to encode 
the test cubes, Linear-decompression-based schemes decompress 
the data by using only linear operations [6], Broadcast-scan-based 
schemes broadcasts the same value to multiple scan chain. The Code-
based scheme approach partitions the pre-computed test sets (TD) 
into symbols and then replaces a symbol with codeword by applying 
a compression algorithm to form encoded data. The decompression is 
performed using a decoder, which simply converts each codeword into 
the original data. The structural information about circuit under tests 
(CUT) is not required in these methods but they are well suitable for 
IP core based SOCs. Based on this scheme, the different categories are 
described as follows [7,8]: Run-Length based codes, Dictionary based 
codes, Statistical codes [9].
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Main contribution

In this paper, a new test data compression and decompression 
method has been presented based on variable to variable run length 
code for testing embedded processor core using pre-computed test sets. 
This method provides effective way to reduce the test data and memory 
required for automatic test equipment (ATE). The compression 
technique efficiently compresses the runs of 0’s and 1’s by applying 
an algorithm to each variable test pattern in order to enhance the 
compression ratio. Here, a different code word pattern is applied to 
runs of 0’s which is followed 1 and also for runs of 1’s which is followed 
by 0, in order to identify whether the run length pattern is either runs 
of 0’s or runs of 1’s. If the test pattern is runs of 0’s followed by 1, then 
the compressed code starts with a bit ‘0’. If the test pattern is runs of 1’s 
followed by 0, then the compressed code starts with a bit ‘1’.

This paper is organized as follows. Section 2 explains the detailed 
concept of variable to variable run length compression technique and 
describes the data compression procedure using an algorithm, flowchart 
and decompression. Section 3 describes the experimental results 
obtained for ISCAS benchmark circuits. Section 4 concludes the paper.

Variable to Variable Run Length Code
In this section, the detailed concept of variable to variable run 

length compression technique is presented and also describes the data 
compression procedure using algorithm, flowchart and decompression 
architecture.

Variable to variable run length code

The Proposed code scheme is a method of mapping an input 
variable length test pattern (TD) to variable length code words. The 
block diagram of variable to variable run length method is shown in 
Figure 1. Let TD be the pre-computed test sets which are provided by 
core vendors. 

Consider TD = {t1, t2, t3… tn}, where n is the number of bits present 
in pre-computed test sets (TD). Partition the test sets into variable run-
length pattern and compress the test sets by applying code word. The 
code word will be different for both runs of 0’s and runs of 1’s.

Table 1 illustrates the encoding example of variable to variable run 
length coding scheme. This method consists of two types of run length 
pattern (i.e.) runs of 0’s followed by 1 and runs of 1’s followed by 0. For 
each type of runs, a code word is allocated separately. In each group, 
the code word for runs of 0’s is the inverted data of the code word 
for runs of 1’s. The code word present in each group determines a 2n 

pattern, where n is 0, 1, 2, 3… In this method, as per test data, the 
runs of 0’s were considered as strings of 0’s followed by a bit ‘1’ and  
the runs of 1’s were considered as strings of 1’s followed by a bit ‘0’. 
For example, 000001 and 00001 is a pattern of runs of 0’s and its run 
length is 5, 4. 11111110 and 11110 is a pattern of runs of 1’s and its run 
length is 7, 4.  The start bit of code word identifies which type of runs 
has been processed and length of the code word is used to identify the 
group. The difference between the proposed method and other variable 
run length codes illustrates that, no prefix and tail is considered here, 
separate code words are assigned for both runs of 0’s and 1’s

In the current generation, the Run-Length coded scheme is a very 
effective method for data compression for testing SOCs with a large 
number of IP cores. The Simple run length code scheme is used in 
[10], to encode runs of 0s into fixed length code words. The cyclical 
scan chain architecture is used to increase the frequency of 0s by 
allowing application of different vectors and reordering of test cubes. 
The difference vectors between test cubes are equal to XOR of two test 
cubes and encoded with a run-length code. The compression technique 
based on Golomb codes is proposed [11-13] to encode runs of 0s 
with variable-length code words. Here, each group consists of unique 
symbols for identification. The variable length code words are used 
for efficient encoding of longer runs of data. The Frequency-Directed 
Run-Length codes are similar to Golomb codes which are proposed 
in [14,15] and the difference in both methods is variable group size. 
FDR is a variable to variable length coded scheme and it is a method 
of mapping variable-length runs of 0s to variable length code words 
after the compression algorithm is applied. If runs of 1s are high on 
test sets, the FDR codes are not much effective. This coding scheme 
is efficient for few 1s and long runs of 0s for compressing data, but it 
is inefficient for data streams which consist of both runs of 0s and 1s. 
The on-chip decoder has to identify the prefix and tail to decompress 
FDR code. FDR requires a complex decoder with high area overhead. 
To overcome the complexity of the decoder in FDR, Huffman method 
and FDR is combined to use the variable length pattern as input to the 
Huffman algorithm instead of using fixed length pattern [16,17]. So, 
this retains the compression ratio due to FDR method and reduces the 
area overhead using selective Huffman. The 0s and 1s are filled in the 
place of X-bits to improve occurrence of frequencies of the blocks [18]. 
In the zero-fill algorithm is used to maximize the runs of 0s and it fills 
the 0s in the place of unspecified bits to reduce the scan-in test power 
[19]. The Extended Frequency Directed Run-Length Coding [EFDR] 
and Alternating Run-Length code shown in [7,20] describes that EFDR 
is suitable for test data streams consists of both runs of 0s followed by 
runs of 1s and vice versa. In EFDR method, the runs of 0s followed by 
1 is encoded as in FDR, but the difference here is an extra bit is added 
at the beginning of FDR code word. The Alternating Run-Length code 
is a variable to variable length code and here, the test set consists of 
alternating runs of 0s and runs of 1s. By adding variable ‘a’ to the core, 
the runs of data can be identified. If a=0, the run-length is considered 
as runs of 0s, if a=1, the run-length is considered as runs of 1s. In [21] 
only nine code words are used to encode the test data and it is flexible 
coding technique. For each pattern, variable nine coded compression 
uses a variable length block to get a higher compression ratio. The 
Multistage encoding technique, namely alternating frequency-directed 
equal run-length (AFDER) and run-length based Huffman coding 
(RLHC) is proposed in [22,23] to reduce test data and test application 
time. The multistage encoding along with nine-coded compression 
technique improves the reduction of test data. The test data, scan power 
consumption, test application time (TAT) is reduced using a method 
named as alternating variable run-length codes (AVR) in [24]. A proper 
mapping of don’t cares in test sets to 0s and 1s results in saving average 
and peak power consumption without slower scan-clocks. A Test data 
compression scheme based on the fixed to variable length coding with 
a limited number of code words is proposed using extended variable 
length codes [25] to reduce data, time, and memory.

The main objective in many of the code-based compression 
techniques is to reduce the test data volume without giving any 
importance to test power reductions, for example, the test compression 
techniques which is detailed in [19,20,22,26] has mainly focused on 
reduction of test data. The Test power as well as test data is reduced 
in some of the test independent compression techniques, for example, 
techniques detailed in [22,27]. Figure 1: Block Diagram of Variable to Variable Run Length Coding. 
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From observation of Table 1, the test pattern is partitioned into 
runs of 0’s followed by 1 and runs of 1’s followed by 0. The test patterns 
are mapped to corresponding code word based on the type of run 
and number of repeated bits or run length. The size of the group is 
determined by the group number and the members of each group are 
equal to 2m, where m is the group number, m = 0, 1, 2, 3... The bit size of 
the code word for both runs of 0’s and 1’s is equal to n. 

A group B0 consists of 1 (20) member. Note that, the output of B0 
will be 21(2n) pattern (i.e.) 0 and 1. In B0, the test pattern of run length 
is 1 (viz) 01(runs of 0’s) and 10 (runs of 1’s). For 10, run length is 1 and 
the code word is 1. For 01, the run length is 1 and the code word is 0 
which is inverted data of code word 1.

A group B1 consists of 2 (21) members. Note that, the output of B1 
will be 22 patterns (i.e.) 00, 01, 10 and 11. In B1, the test pattern of run 
length is 2 (viz) 001 (runs of 0’s) and 110 (runs of 1’s). For 110, the run 
length is 2 and the code word is 10. For 001, the run length is 2 and the 
code word is 01 which is inverted data of code word 10. So for 110 and 
001 pattern, the output is 10 and 01. If the test pattern of run length is 3 
(viz) 0001 (runs of 0’s) and 1110 (runs of 1’s). For 1110, the run length 
is 3 and the code word is 11. For 0001, the run length is 3 and the code 
word is 00 which is inverted data of code word 11. So, for 1110 and 
0001 pattern, the output is 11 and 00. The bit size for run length of 2 
and 3 is same. 

A group B2 consists of 4 (22) members. Note that, the output of B2 
will be 23 patterns (i.e.) 000, 001, 010… 110, 111. In B2, the test pattern 
of run length is 4 (viz) 00001 (runs of 0’s) and 11110 (runs of 1’s). For 
11110, the run length is 4 and the code word is 100.

For 00001, the run length is 4 and the code word is 011 which is 
inverted data of code word 100. So for 11110 and 00001 pattern, the 
output is 100 and 011. 

If the test pattern of run length is 5 (viz) 000001 (runs of 0’s) and 
111110 (runs of 1’s). For 111110, the run length is 5 and the code word 
is 101. For 000001, the run length is 5 and the code word is 010 which 
is inverted data of code word 101. So, for 111110 and 000001 pattern, 
the output is 101 and 010. For 1111110, the run length is 6 and the code 

word is 110. For 0000001, the run length is 6 and the code word is 001 
which is inverted data of code word 110. So for 1111110 and 0000001 
pattern, the output is 110 and 001. For 11111110, the run length is 7 and 
the code word is 111. For 00000001, the run length is 7 and the code 
word is 000 which is inverted data of code word 111. So for 11111110 
and 00000001 pattern, the output is 111 and 000. The bit size for run 
length of 4, 5, 6 and 7 is same. This process is continued upto m group 
numbers. Here, a run of 0’s and 1’s is mapped to shorter code words in 
order to reduce test data. 

Figure 2 shows the illustration of encoding example for variable 
to variable run length coding scheme. The test vector is considered 
as example from benchmark circuit. An algorithm is applied to each 
pattern (refer Table 1). From the example of encoding procedure, note 
that, the start bit of code word for runs of 1’s is 1 and  the start bit of 
code word for runs of 0’s is 0. The original number of bits is 55 whereas 
the compressed bits is 28.

Data compression procedure using algorithm and flow chart

The Algorithm 1 and Figure 3 describe the process of compression 
algorithm using proposed coding scheme. If the test pattern is runs of 
1’s, then the run length of 1’s is encoded as 2n code word. If the test 
pattern is runs of 0’s, then the run length of 0’s is encoded as inverted 
data of 2n code word. For 2m run length pattern, 2n code word is assigned 
as shown in case, where m = 0, 1, 2, 3... n = 1, 2, 3… For 20 run length 
pattern (01 or 10), 21 bit pattern is assigned as output. For 21 run length 
patterns (001 or 110, 0001 or 1110), 22 bit pattern is assigned as output. 
For 22 run length patterns (00001 or 11110, 000001 or 111110, 0000001 
or 1111110, 00000001 or 11111110), 23 bit pattern is assigned as output. 
This is continued upto m patterns and n code word.  

Algorithm 1: Variable to Variable Run Length Coding Algorithm

1. Generate pre-computed test vectors (TD).

2. Let x be the input test vector, i be the start position and i+1 be 
the successive position. 

3. Find the length of TD.

4. Assign count = 0.

5. If x[i] == x[i+1], count the number of repeated bits (count = 
count + 1).

6. If test pattern is runs of 1’s, assign count value.

7. If test pattern is runs of 0’s, assign transition (0 as 1, 1 as 0) of 
count value.

8. Case:

i. If 1 ≤ count < 2, assign count as 21 code word.

ii. If 2 ≤ count < 4, assign count as 22 code word.

iii. If 4 ≤ count < 8, assign count as 23 code word.

iv. If 8 ≤ count < 16, assign count as 24 code word.

Group Run Code Word
Runs of 0’s

Code Word
Runs of 1’s

Code Word
Length

B0 1 0 1 1

B1 2
3

01
00

10
11

2

B2

4
5
6
7

011
010
001
000

100
101
110
111

3

B3

8
9
10
11
12
13
14
15

0111
0110
0101
0100
0011
0010
0001
0000

1000
1001
1010
1011
1100
1101
1110
1111

4

B4
16
…
31

01111
…

00000

10000
…

11111

5

B5
32
…
63

011111
…

000000

100000
…

111111

6

  ….. ….. ….. ….. …..

Table 1: Example of Proposed Coding Scheme. 

Figure 2: Example of encoding procedure of variable to variable run length 
code. 
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v. If 16 ≤ count < 32, assign count as 25 code word.

vi. If 32 ≤ count < 64, assign count as 26 code word.

9. Repeat the algorithm till end of data stream.

10. Calculate TC = Total compressed bits.

Decompression architecture

Figure 4 shows the decompression architecture, which is used to 
decompress the encoded data. The decoder is simple and scalable. The 
architecture consists of finite state machine, counters and exclusive OR 
gates. The bit-in is the input to the FSM. When the decoder was ready, 
the enable signal is used to control the encoded data. The signal shift 
is used to control the codeword to shift in to the m-bit counter via ex-
or gate. Signal dec is used to decrement the counter and rs is used to 
indicate reset state of the counter.

The counter of log2 m-bits was used to count the length of the code 
word in order to decode the code word into run length pattern. The 
inc and dec1 is used to increment and decrement the counter and rs1 
is used to indicate counting has finished. The FSM output signal out 
controls the ex-or gate and indicates if it finishes the decoding of runs 
of 1’s. The signal v indicates the valid output. The sequence is detected 
using FSM and output of FSM will be code word. For run type 0’s, the 
code word starts with a bit ‘0’ and for run type 1’s, the code word starts 
with a bit ‘1’. If bit-in is ‘0’, the code word is a compressed code of run 
type 0’s and if bit-in is ‘1’, the code word is a compressed code of run 
type 1’s.

The operation of the decoder is explained as follows:

Initially, signal en will be high and ready to receive data from bit-in. 
When bit-in input is 1, a will be 0 and if bit-in input is 0, a will be equal 
to 1. When the signal shift is high, the data fed to the counter, after the 
process of ex-or operation. If bit-in is 1, and a = 0, the code word of run 
type 1’s does not get changed.

It remains as the original compressed code. For example, if 
compressed code is 1011 ex-or with 0. So, the output will be 1011. If 
bit-in is 0, and a = 1, the code word of run type 0’s get changed. This is 
because to achieve the corresponding run length pattern. 

For example, if compressed code is 0100, by using reference of 
compression algorithm, the output should be 11 zeros followed by 1. 
But, the length of 0100 is 4 and this is the inverted data of code word 
runs of 1’s. So, the 0100 should be inverted again to reach correct 
output. For example, if compressed code is 0100 ex-or with 1, the 
output will be 1011. The correct run length pattern can be decoded. The 
shift, inc, en signal will be high, while the data fed to ex-or gate until 
the sequence detected code word is received.  Then, the m-bit counter 
is decremented and allows signal dec goes high until rs was high. The 
signal v indicates a valid output. 

The data from output of ex-or gate was shifted to m-bit counter 
until log2m-bit counter value was 0. The log2m-bit counter controls 

Figure 3: Flow Chart of Variable to Variable Run Length Coding. 

Figure 4: Conceptual architecture of Decompression. 
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the length of code word. Then, dec1 goes high and the counter was 
decremented. The signal rs1 went high, when the log2m-bit counter 
reaches the state 0. This indicates that the code word has been 
transferred to m-bit counter. The FSM outputs the 1’s corresponding 
to code word and signal v indicates valid output. The signal out will be 
high when the m-bit counter value was 0. 

When bit-in = 1 and a = 0, the data from the FSM output such as 
11110 is ex-or with 0. So that, the output will be 11110. This indicates 
that the data decoded is run type 1’s. When bit-in = 0 and a = 1, the data 
from the FSM output such as 11110 is ex-or with 1. So that, the output 
will be 00001. This indicates that the data decoded is run type 0’s.

Figure 5: Finite State Machine for Decompression Architecture.

Circuit Compression ratio Size of TD
(bits)

Size of TE
(bits) No. of bits for Mintest

c2670 83.84 20271 3276 10252
c7552 81.12 25254 4767 15111
s5378 78.25 23754 5167 20758
s9234 82.68 39273 6804 25935

s13207 75.25 165200 40885 163100
s15850 80.68 76986 14870 57434
s38417 76.93 164736 38010 113152
s38584 79.80 199104 40224 161040

Table 2: Compression ratio for proposed technique. 

Circuit Compression 
ratio (Proposed)

Multistage
Encoding 
technique

Golomb FDR EFDR 9C VIHC EVRL

c2670 83.84 - 56.08 - 55.53 - - -
c7552 81.12 - 15.50 - 43.02 - - -
s5378 78.25 73.2 54.7 48.4 44.2 45.6 25.29 59.9
s9234 82.68 64.4 37.1 36.8 34.2 27.4 28.29 58.8

s13207 75.25 86 44.3 24.9 22.7 30.5 56.16 59.37
s15850 80.68 74.7 52.1 25 20.9 24.7 52.35 58.84
s38417 76.93 69.4 45.2 46.1 22.4 22.3 60.92 68.34
s38584 79.80 70.3 43.3 24.1 20 13.9 46.76 59.3
Average 79.82 74.2 43.53 34.3 32.86 22.9 44.96 60.76

Table 3: Comparison of compression ratio with other compression techniques. 

The State diagram for the FSM used for sequence pattern detection 
is shown in Figure 5. In Figure 5, the FSM consists of 6 states. The 
State S0 process is a 1-bit decoding code word (i.e.) 1 or 0. The State 
S0S1 process is a 2-bit decoding code word (i.e.) 00, 01, 10 and 11. 
The State S0S1S2 process is a 3-bit decoding code word (i.e.) 000, 
001 …. 111. The State S0S1S2S3 process is a 4-bit decoding code 
word (i.e.) 0000, 0001 …. 1111. The State S0S1S2S3S4 process 
is a 5-bit decoding code word (i.e.) 00000, 00001 …. 11111. The State 
S0S1S2S3S4S5 process is a 6-bit decoding code word (i.e.) 
000000, 000001 …. 111111.  

Experimental Results
The algorithm was analysed using ISCAS benchmark circuit. The 

compression results were obtained using variable to variable length 
compression technique. In order to prove the effectiveness of proposed 
technique, the result is compared with other compression techniques 
such as Multistage encoding technique [24], Golomb [20], FDR[15], 
EFDR[24], 9C[22], VIHC[18], EVRL[26]. The compression ratio 
is calculated using the formula CR (%) = ((TD - TE) / TE) *100 where 
TD is the pre-computed test bits of given benchmark circuits and 
TE is the encoded test data. From Table 2, the column 2 shows the 
compression ratio of the various benchmark circuits. The encoded 
bits are lesser when compared with original test vectors. So, by using 
proposed algorithm, the reduction of test data is achieved. Note that, 
from Table 2, the encoded bits are smaller for all the benchmark circuit 
compared with original test vectors. The c2670 combinational circuit 
shows the highest percentage 83.84%. The Average compression 
of various benchmark circuit obtained is 79.80%. Table 3 shows the 
comparison of compression ratio with other compression techniques. 
From the observation of Table 3, the proposed algorithm shows a good 
compression ratio by comparing with other compression techniques 
[28,29]. 
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Conclusion
Test data compression is a best solution to reduce larger test data 

volume. A New compression and decompression method is presented 
in this paper for testing embedded cores in SOC. The proposed method 
is variable to variable length coding technique and this method proves 
that it is efficient compression method for test data in order to save 
memory and testing time. In this technique, the runs of 0’s and runs 
of 1’s will have different code word, so that while decoding the type 
of run can be identified. The decompression architecture is presented. 
This technique results in reduction test data, saves ATE memory and 
channel capacity requirements. Experimental results of ISCAS bench 
mark circuit’s shows that the method is very efficient in reducing test 
data.
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