
www.manaraa.com

Research Article Open Access

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

Open AccessResearch Article

Journal of
Electrical & Electronic SystemsJo

ur
na

l o
f E

lec
trical & Electronic System

s

ISSN: 2332-0796

Lakshmi et al., J Electr Electron Syst 2019, 8:1
DOI: 10.4172/2332-0796.1000300

*Corresponding author: Robert Theivadas J, Associate Professor, Anand Institute
of Higher Technology, Chennai, Tamil Nadu, India, Tel: 9840487566; E-mail:
roberttheivadas@gmail.com

Received February 28, 2019; Accepted March 27, 2019; Published April 05, 2019

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable
Run Length Encoding Technique for Testing Low Power VLSI Circuits. J Electr Electron
Syst 8: 300. doi: 10.4172/2332-0796.1000300

Copyright: © 2019 Lakshmi K, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Variable-to-Variable Run Length Encoding Technique for Testing Low
Power VLSI Circuits
Lakshmi K, Robert Theivadas J* and Markkandan S
M.E VLSI Design, Anand Institute of Higher Technology, Chennai, Tamil Nadu, India

Abstract
The enhancement of integration capability in semiconductor technology requires a large amount of test data,

resulting increase in memory, transition time and test time. In this paper, a novel lossless data compression technique
is proposed to reduce test data, time and memory, based on variable to variable run length encoding scheme. In this
scheme, a test data is partitioned into variable length test patterns and by applying compression algorithm, the bits are
compressed into variable length codes. The encoding technique enhances the test data reduction with a limited number
of code words. The compression technique is effective, especially when the runs of 0s and 1s in the test set are high
and efficiently compress the data streams which is composed of runs of 0’s and 1’s. The variable to variable run length
code algorithm is used to make changes in test vectors and adaptable for compressing precomputed test sets to test
the embedded cores of System-on-chip (SOC). The decompression architecture for proposed technique was presented
in this paper. Experimental results of ISCAS 85 and ISCAS 89 benchmark circuit’s results in the significant reduction of
test data with better compression ratio.

Keywords: Pre-computed test sets; Compression codes; Decompression;
Embedded core testing; SOC testing

Introduction
Over the last two decades, the electronics industry had a

phenomenal growth due to the advent of integration in semiconductor
technology. Integrated circuits consist of different types of active and
passive components, which is fabricated on a single chip to form
systems. The different modules and intellectual property (IP) cores
present in a system-on-chip (SOC) wraps different functions such as
a processor, memory and different technologies such as CMOS logic
to analog circuits. With the increase of technology, the large integrated
devices are composed of millions of transistors and different hardware
modules. With today’s technology, the system-on-chip complexity is
increased because the numerous components are implemented on a
single chip.

However, the SOC presents many challenges such as increased test
data, memory storage in automatic test equipment (ATE), transition
time, test time, test power and test application time (TAT). Usually, the
test data is generated and stored on workstations. Individual types of
application-specific integrated circuit (ASIC) requires a more frequent
download of test data from workstations to ATE. The Test sets for ASIC
will be as large as gigabytes and the time taken to download the test data
is more significant because the download takes from several minutes
to hours. The Throughput of ATE is affected by download time of test
data. To enhance the throughput of ATE, it is very important to reduce
the download time of test data. A High volume of test data is directly
proportional to higher transition time and memory. The Transfer of
large test data between the ATE and chip is a bottleneck because of
limited bandwidth, memory, and I/O channels [1].

The Limited bandwidth increases the test time and test cost during
data transfer from ATE to the device under test (DUT). The Techniques
widely used to reduce SOCs test data volume and test application time
are Built-in self-test (BIST) and test-data compression.

When the test data increases, some of the challenges are as follows:
Limited memory on ATE, Long upload time, Limited I/O bandwidth.
Test data compression is a promising solution to store and transmits

the compressed data from ATE to chip also it is used to speed up the
interaction between ATE and SOC during the test. Data compression
is a procedure of reducing the size of data file. The Use of test data
compression is to compress the pre-computed test set (TD) provided by
the core vendor to a smaller test set (TE) and then stored in automatic
test equipment memory. Reduction of test data reduces the size of
memory requirements in ATE, testing time, and test power [2]. A
Novel test data compression is required to test the cores of SOC without
exceeding limits of memory, bandwidth and power. Additional on-chip
hardware is added before and after scan chains. An on-chip decoder
decompresses the compressed test data from memory and delivers the
original data to the device under test. The lossless test data compression
reproduces all the bits, after decompression [3].

The Test vector compression consists of three categories as follows
[4,5]: Code-based schemes use a data compression technique to encode
the test cubes, Linear-decompression-based schemes decompress
the data by using only linear operations [6], Broadcast-scan-based
schemes broadcasts the same value to multiple scan chain. The Code-
based scheme approach partitions the pre-computed test sets (TD)
into symbols and then replaces a symbol with codeword by applying
a compression algorithm to form encoded data. The decompression is
performed using a decoder, which simply converts each codeword into
the original data. The structural information about circuit under tests
(CUT) is not required in these methods but they are well suitable for
IP core based SOCs. Based on this scheme, the different categories are
described as follows [7,8]: Run-Length based codes, Dictionary based
codes, Statistical codes [9].

www.manaraa.com

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable Run Length Encoding Technique for Testing Low Power VLSI
Circuits. J Electr Electron Syst 8: 300. doi: 10.4172/2332-0796.1000300

Page 2 of 6

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

Main contribution

In this paper, a new test data compression and decompression
method has been presented based on variable to variable run length
code for testing embedded processor core using pre-computed test sets.
This method provides effective way to reduce the test data and memory
required for automatic test equipment (ATE). The compression
technique efficiently compresses the runs of 0’s and 1’s by applying
an algorithm to each variable test pattern in order to enhance the
compression ratio. Here, a different code word pattern is applied to
runs of 0’s which is followed 1 and also for runs of 1’s which is followed
by 0, in order to identify whether the run length pattern is either runs
of 0’s or runs of 1’s. If the test pattern is runs of 0’s followed by 1, then
the compressed code starts with a bit ‘0’. If the test pattern is runs of 1’s
followed by 0, then the compressed code starts with a bit ‘1’.

This paper is organized as follows. Section 2 explains the detailed
concept of variable to variable run length compression technique and
describes the data compression procedure using an algorithm, flowchart
and decompression. Section 3 describes the experimental results
obtained for ISCAS benchmark circuits. Section 4 concludes the paper.

Variable to Variable Run Length Code
In this section, the detailed concept of variable to variable run

length compression technique is presented and also describes the data
compression procedure using algorithm, flowchart and decompression
architecture.

Variable to variable run length code

The Proposed code scheme is a method of mapping an input
variable length test pattern (TD) to variable length code words. The
block diagram of variable to variable run length method is shown in
Figure 1. Let TD be the pre-computed test sets which are provided by
core vendors.

Consider TD = {t1, t2, t3… tn}, where n is the number of bits present
in pre-computed test sets (TD). Partition the test sets into variable run-
length pattern and compress the test sets by applying code word. The
code word will be different for both runs of 0’s and runs of 1’s.

Table 1 illustrates the encoding example of variable to variable run
length coding scheme. This method consists of two types of run length
pattern (i.e.) runs of 0’s followed by 1 and runs of 1’s followed by 0. For
each type of runs, a code word is allocated separately. In each group,
the code word for runs of 0’s is the inverted data of the code word
for runs of 1’s. The code word present in each group determines a 2n

pattern, where n is 0, 1, 2, 3… In this method, as per test data, the
runs of 0’s were considered as strings of 0’s followed by a bit ‘1’ and
the runs of 1’s were considered as strings of 1’s followed by a bit ‘0’.
For example, 000001 and 00001 is a pattern of runs of 0’s and its run
length is 5, 4. 11111110 and 11110 is a pattern of runs of 1’s and its run
length is 7, 4. The start bit of code word identifies which type of runs
has been processed and length of the code word is used to identify the
group. The difference between the proposed method and other variable
run length codes illustrates that, no prefix and tail is considered here,
separate code words are assigned for both runs of 0’s and 1’s

In the current generation, the Run-Length coded scheme is a very
effective method for data compression for testing SOCs with a large
number of IP cores. The Simple run length code scheme is used in
[10], to encode runs of 0s into fixed length code words. The cyclical
scan chain architecture is used to increase the frequency of 0s by
allowing application of different vectors and reordering of test cubes.
The difference vectors between test cubes are equal to XOR of two test
cubes and encoded with a run-length code. The compression technique
based on Golomb codes is proposed [11-13] to encode runs of 0s
with variable-length code words. Here, each group consists of unique
symbols for identification. The variable length code words are used
for efficient encoding of longer runs of data. The Frequency-Directed
Run-Length codes are similar to Golomb codes which are proposed
in [14,15] and the difference in both methods is variable group size.
FDR is a variable to variable length coded scheme and it is a method
of mapping variable-length runs of 0s to variable length code words
after the compression algorithm is applied. If runs of 1s are high on
test sets, the FDR codes are not much effective. This coding scheme
is efficient for few 1s and long runs of 0s for compressing data, but it
is inefficient for data streams which consist of both runs of 0s and 1s.
The on-chip decoder has to identify the prefix and tail to decompress
FDR code. FDR requires a complex decoder with high area overhead.
To overcome the complexity of the decoder in FDR, Huffman method
and FDR is combined to use the variable length pattern as input to the
Huffman algorithm instead of using fixed length pattern [16,17]. So,
this retains the compression ratio due to FDR method and reduces the
area overhead using selective Huffman. The 0s and 1s are filled in the
place of X-bits to improve occurrence of frequencies of the blocks [18].
In the zero-fill algorithm is used to maximize the runs of 0s and it fills
the 0s in the place of unspecified bits to reduce the scan-in test power
[19]. The Extended Frequency Directed Run-Length Coding [EFDR]
and Alternating Run-Length code shown in [7,20] describes that EFDR
is suitable for test data streams consists of both runs of 0s followed by
runs of 1s and vice versa. In EFDR method, the runs of 0s followed by
1 is encoded as in FDR, but the difference here is an extra bit is added
at the beginning of FDR code word. The Alternating Run-Length code
is a variable to variable length code and here, the test set consists of
alternating runs of 0s and runs of 1s. By adding variable ‘a’ to the core,
the runs of data can be identified. If a=0, the run-length is considered
as runs of 0s, if a=1, the run-length is considered as runs of 1s. In [21]
only nine code words are used to encode the test data and it is flexible
coding technique. For each pattern, variable nine coded compression
uses a variable length block to get a higher compression ratio. The
Multistage encoding technique, namely alternating frequency-directed
equal run-length (AFDER) and run-length based Huffman coding
(RLHC) is proposed in [22,23] to reduce test data and test application
time. The multistage encoding along with nine-coded compression
technique improves the reduction of test data. The test data, scan power
consumption, test application time (TAT) is reduced using a method
named as alternating variable run-length codes (AVR) in [24]. A proper
mapping of don’t cares in test sets to 0s and 1s results in saving average
and peak power consumption without slower scan-clocks. A Test data
compression scheme based on the fixed to variable length coding with
a limited number of code words is proposed using extended variable
length codes [25] to reduce data, time, and memory.

The main objective in many of the code-based compression
techniques is to reduce the test data volume without giving any
importance to test power reductions, for example, the test compression
techniques which is detailed in [19,20,22,26] has mainly focused on
reduction of test data. The Test power as well as test data is reduced
in some of the test independent compression techniques, for example,
techniques detailed in [22,27]. Figure 1: Block Diagram of Variable to Variable Run Length Coding.

www.manaraa.com

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable Run Length Encoding Technique for Testing Low Power VLSI
Circuits. J Electr Electron Syst 8: 300. doi: 10.4172/2332-0796.1000300

Page 3 of 6

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

From observation of Table 1, the test pattern is partitioned into
runs of 0’s followed by 1 and runs of 1’s followed by 0. The test patterns
are mapped to corresponding code word based on the type of run
and number of repeated bits or run length. The size of the group is
determined by the group number and the members of each group are
equal to 2m, where m is the group number, m = 0, 1, 2, 3... The bit size of
the code word for both runs of 0’s and 1’s is equal to n.

A group B0 consists of 1 (20) member. Note that, the output of B0
will be 21(2n) pattern (i.e.) 0 and 1. In B0, the test pattern of run length
is 1 (viz) 01(runs of 0’s) and 10 (runs of 1’s). For 10, run length is 1 and
the code word is 1. For 01, the run length is 1 and the code word is 0
which is inverted data of code word 1.

A group B1 consists of 2 (21) members. Note that, the output of B1
will be 22 patterns (i.e.) 00, 01, 10 and 11. In B1, the test pattern of run
length is 2 (viz) 001 (runs of 0’s) and 110 (runs of 1’s). For 110, the run
length is 2 and the code word is 10. For 001, the run length is 2 and the
code word is 01 which is inverted data of code word 10. So for 110 and
001 pattern, the output is 10 and 01. If the test pattern of run length is 3
(viz) 0001 (runs of 0’s) and 1110 (runs of 1’s). For 1110, the run length
is 3 and the code word is 11. For 0001, the run length is 3 and the code
word is 00 which is inverted data of code word 11. So, for 1110 and
0001 pattern, the output is 11 and 00. The bit size for run length of 2
and 3 is same.

A group B2 consists of 4 (22) members. Note that, the output of B2
will be 23 patterns (i.e.) 000, 001, 010… 110, 111. In B2, the test pattern
of run length is 4 (viz) 00001 (runs of 0’s) and 11110 (runs of 1’s). For
11110, the run length is 4 and the code word is 100.

For 00001, the run length is 4 and the code word is 011 which is
inverted data of code word 100. So for 11110 and 00001 pattern, the
output is 100 and 011.

If the test pattern of run length is 5 (viz) 000001 (runs of 0’s) and
111110 (runs of 1’s). For 111110, the run length is 5 and the code word
is 101. For 000001, the run length is 5 and the code word is 010 which
is inverted data of code word 101. So, for 111110 and 000001 pattern,
the output is 101 and 010. For 1111110, the run length is 6 and the code

word is 110. For 0000001, the run length is 6 and the code word is 001
which is inverted data of code word 110. So for 1111110 and 0000001
pattern, the output is 110 and 001. For 11111110, the run length is 7 and
the code word is 111. For 00000001, the run length is 7 and the code
word is 000 which is inverted data of code word 111. So for 11111110
and 00000001 pattern, the output is 111 and 000. The bit size for run
length of 4, 5, 6 and 7 is same. This process is continued upto m group
numbers. Here, a run of 0’s and 1’s is mapped to shorter code words in
order to reduce test data.

Figure 2 shows the illustration of encoding example for variable
to variable run length coding scheme. The test vector is considered
as example from benchmark circuit. An algorithm is applied to each
pattern (refer Table 1). From the example of encoding procedure, note
that, the start bit of code word for runs of 1’s is 1 and the start bit of
code word for runs of 0’s is 0. The original number of bits is 55 whereas
the compressed bits is 28.

Data compression procedure using algorithm and flow chart

The Algorithm 1 and Figure 3 describe the process of compression
algorithm using proposed coding scheme. If the test pattern is runs of
1’s, then the run length of 1’s is encoded as 2n code word. If the test
pattern is runs of 0’s, then the run length of 0’s is encoded as inverted
data of 2n code word. For 2m run length pattern, 2n code word is assigned
as shown in case, where m = 0, 1, 2, 3... n = 1, 2, 3… For 20 run length
pattern (01 or 10), 21 bit pattern is assigned as output. For 21 run length
patterns (001 or 110, 0001 or 1110), 22 bit pattern is assigned as output.
For 22 run length patterns (00001 or 11110, 000001 or 111110, 0000001
or 1111110, 00000001 or 11111110), 23 bit pattern is assigned as output.
This is continued upto m patterns and n code word.

Algorithm 1: Variable to Variable Run Length Coding Algorithm

1. Generate pre-computed test vectors (TD).

2. Let x be the input test vector, i be the start position and i+1 be
the successive position.

3. Find the length of TD.

4. Assign count = 0.

5. If x[i] == x[i+1], count the number of repeated bits (count =
count + 1).

6. If test pattern is runs of 1’s, assign count value.

7. If test pattern is runs of 0’s, assign transition (0 as 1, 1 as 0) of
count value.

8. Case:

i. If 1 ≤ count < 2, assign count as 21 code word.

ii. If 2 ≤ count < 4, assign count as 22 code word.

iii. If 4 ≤ count < 8, assign count as 23 code word.

iv. If 8 ≤ count < 16, assign count as 24 code word.

Group Run Code Word
Runs of 0’s

Code Word
Runs of 1’s

Code Word
Length

B0 1 0 1 1

B1 2
3

01
00

10
11

2

B2

4
5
6
7

011
010
001
000

100
101
110
111

3

B3

8
9
10
11
12
13
14
15

0111
0110
0101
0100
0011
0010
0001
0000

1000
1001
1010
1011
1100
1101
1110
1111

4

B4
16
…
31

01111
…

00000

10000
…

11111

5

B5
32
…
63

011111
…

000000

100000
…

111111

6

 ….. ….. ….. ….. …..

Table 1: Example of Proposed Coding Scheme.

Figure 2: Example of encoding procedure of variable to variable run length
code.

www.manaraa.com

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable Run Length Encoding Technique for Testing Low Power VLSI
Circuits. J Electr Electron Syst 8: 300. doi: 10.4172/2332-0796.1000300

Page 4 of 6

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

v. If 16 ≤ count < 32, assign count as 25 code word.

vi. If 32 ≤ count < 64, assign count as 26 code word.

9. Repeat the algorithm till end of data stream.

10. Calculate TC = Total compressed bits.

Decompression architecture

Figure 4 shows the decompression architecture, which is used to
decompress the encoded data. The decoder is simple and scalable. The
architecture consists of finite state machine, counters and exclusive OR
gates. The bit-in is the input to the FSM. When the decoder was ready,
the enable signal is used to control the encoded data. The signal shift
is used to control the codeword to shift in to the m-bit counter via ex-
or gate. Signal dec is used to decrement the counter and rs is used to
indicate reset state of the counter.

The counter of log2 m-bits was used to count the length of the code
word in order to decode the code word into run length pattern. The
inc and dec1 is used to increment and decrement the counter and rs1
is used to indicate counting has finished. The FSM output signal out
controls the ex-or gate and indicates if it finishes the decoding of runs
of 1’s. The signal v indicates the valid output. The sequence is detected
using FSM and output of FSM will be code word. For run type 0’s, the
code word starts with a bit ‘0’ and for run type 1’s, the code word starts
with a bit ‘1’. If bit-in is ‘0’, the code word is a compressed code of run
type 0’s and if bit-in is ‘1’, the code word is a compressed code of run
type 1’s.

The operation of the decoder is explained as follows:

Initially, signal en will be high and ready to receive data from bit-in.
When bit-in input is 1, a will be 0 and if bit-in input is 0, a will be equal
to 1. When the signal shift is high, the data fed to the counter, after the
process of ex-or operation. If bit-in is 1, and a = 0, the code word of run
type 1’s does not get changed.

It remains as the original compressed code. For example, if
compressed code is 1011 ex-or with 0. So, the output will be 1011. If
bit-in is 0, and a = 1, the code word of run type 0’s get changed. This is
because to achieve the corresponding run length pattern.

For example, if compressed code is 0100, by using reference of
compression algorithm, the output should be 11 zeros followed by 1.
But, the length of 0100 is 4 and this is the inverted data of code word
runs of 1’s. So, the 0100 should be inverted again to reach correct
output. For example, if compressed code is 0100 ex-or with 1, the
output will be 1011. The correct run length pattern can be decoded. The
shift, inc, en signal will be high, while the data fed to ex-or gate until
the sequence detected code word is received. Then, the m-bit counter
is decremented and allows signal dec goes high until rs was high. The
signal v indicates a valid output.

The data from output of ex-or gate was shifted to m-bit counter
until log2m-bit counter value was 0. The log2m-bit counter controls

Figure 3: Flow Chart of Variable to Variable Run Length Coding.

Figure 4: Conceptual architecture of Decompression.

www.manaraa.com

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable Run Length Encoding Technique for Testing Low Power VLSI
Circuits. J Electr Electron Syst 8: 300. doi: 10.4172/2332-0796.1000300

Page 5 of 6

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

the length of code word. Then, dec1 goes high and the counter was
decremented. The signal rs1 went high, when the log2m-bit counter
reaches the state 0. This indicates that the code word has been
transferred to m-bit counter. The FSM outputs the 1’s corresponding
to code word and signal v indicates valid output. The signal out will be
high when the m-bit counter value was 0.

When bit-in = 1 and a = 0, the data from the FSM output such as
11110 is ex-or with 0. So that, the output will be 11110. This indicates
that the data decoded is run type 1’s. When bit-in = 0 and a = 1, the data
from the FSM output such as 11110 is ex-or with 1. So that, the output
will be 00001. This indicates that the data decoded is run type 0’s.

Figure 5: Finite State Machine for Decompression Architecture.

Circuit Compression ratio Size of TD
(bits)

Size of TE
(bits) No. of bits for Mintest

c2670 83.84 20271 3276 10252
c7552 81.12 25254 4767 15111
s5378 78.25 23754 5167 20758
s9234 82.68 39273 6804 25935

s13207 75.25 165200 40885 163100
s15850 80.68 76986 14870 57434
s38417 76.93 164736 38010 113152
s38584 79.80 199104 40224 161040

Table 2: Compression ratio for proposed technique.

Circuit Compression
ratio (Proposed)

Multistage
Encoding
technique

Golomb FDR EFDR 9C VIHC EVRL

c2670 83.84 - 56.08 - 55.53 - - -
c7552 81.12 - 15.50 - 43.02 - - -
s5378 78.25 73.2 54.7 48.4 44.2 45.6 25.29 59.9
s9234 82.68 64.4 37.1 36.8 34.2 27.4 28.29 58.8

s13207 75.25 86 44.3 24.9 22.7 30.5 56.16 59.37
s15850 80.68 74.7 52.1 25 20.9 24.7 52.35 58.84
s38417 76.93 69.4 45.2 46.1 22.4 22.3 60.92 68.34
s38584 79.80 70.3 43.3 24.1 20 13.9 46.76 59.3
Average 79.82 74.2 43.53 34.3 32.86 22.9 44.96 60.76

Table 3: Comparison of compression ratio with other compression techniques.

The State diagram for the FSM used for sequence pattern detection
is shown in Figure 5. In Figure 5, the FSM consists of 6 states. The
State S0 process is a 1-bit decoding code word (i.e.) 1 or 0. The State
S0S1 process is a 2-bit decoding code word (i.e.) 00, 01, 10 and 11.
The State S0S1S2 process is a 3-bit decoding code word (i.e.) 000,
001 …. 111. The State S0S1S2S3 process is a 4-bit decoding code
word (i.e.) 0000, 0001 …. 1111. The State S0S1S2S3S4 process
is a 5-bit decoding code word (i.e.) 00000, 00001 …. 11111. The State
S0S1S2S3S4S5 process is a 6-bit decoding code word (i.e.)
000000, 000001 …. 111111.

Experimental Results
The algorithm was analysed using ISCAS benchmark circuit. The

compression results were obtained using variable to variable length
compression technique. In order to prove the effectiveness of proposed
technique, the result is compared with other compression techniques
such as Multistage encoding technique [24], Golomb [20], FDR[15],
EFDR[24], 9C[22], VIHC[18], EVRL[26]. The compression ratio
is calculated using the formula CR (%) = ((TD - TE) / TE) *100 where
TD is the pre-computed test bits of given benchmark circuits and
TE is the encoded test data. From Table 2, the column 2 shows the
compression ratio of the various benchmark circuits. The encoded
bits are lesser when compared with original test vectors. So, by using
proposed algorithm, the reduction of test data is achieved. Note that,
from Table 2, the encoded bits are smaller for all the benchmark circuit
compared with original test vectors. The c2670 combinational circuit
shows the highest percentage 83.84%. The Average compression
of various benchmark circuit obtained is 79.80%. Table 3 shows the
comparison of compression ratio with other compression techniques.
From the observation of Table 3, the proposed algorithm shows a good
compression ratio by comparing with other compression techniques
[28,29].

www.manaraa.com

Citation: Lakshmi K, Robert Theivadas J, Markkandan S (2019) Variable-to-Variable Run Length Encoding Technique for Testing Low Power VLSI
Circuits. J Electr Electron Syst 8: 300. doi: 10.4172/2332-0796.1000300

Page 6 of 6

Volume 8 • Issue 1 • 1000300J Electr Electron Syst, an open access journal
ISSN: 2332-0796

Conclusion
Test data compression is a best solution to reduce larger test data

volume. A New compression and decompression method is presented
in this paper for testing embedded cores in SOC. The proposed method
is variable to variable length coding technique and this method proves
that it is efficient compression method for test data in order to save
memory and testing time. In this technique, the runs of 0’s and runs
of 1’s will have different code word, so that while decoding the type
of run can be identified. The decompression architecture is presented.
This technique results in reduction test data, saves ATE memory and
channel capacity requirements. Experimental results of ISCAS bench
mark circuit’s shows that the method is very efficient in reducing test
data.

References

1. Rau JC, Wu PH, Li WL (2012) Test Slice Difference Technique for Low-
Transition Test Data Compression. J Inform Sci Eng 15: 157-166.

2. Wu HF, Cheng YS, Zhan WF, Cheng YF, Wu Q, et al. (2014) A Test Data
Compression Scheme Based on Irrational Numbers Stored Coding. Scientific
World Journal.

3. Yeh PS (2002) Implementation of CCSDS lossless data compression for
space and data archive applications. NASA/ Goddard space flight centre.

4. Yamaguchi T, Tilgner M, Ishida M, Ha DS (1997) An Efficient method for
compressing data. Int Test conf.

5. Biswas NS, Das SR, Petriu EM (2014) On System-On-Chip Testing Using
Hybrid Test Vector Compression. IEEE Trans Instrum Meas 63: 2611-2619.

6. Yang JS, Lee J, Touba NA (2014) Utilizing ATE Vector Repeat with Linear
Decompressor for Test Vector Compression. IEEE Trans Comput Aided Des
Integr Circuits Sys 33: 1219-1230.

7. Touba NA (2006) Survey of test vector compression techniques. IEEE Des
Test Comput 23: 294 303.

8. Mehta U, Dasgupta KS, Devashrayee NM (2009) Survey of Test Data
Compression Techniques Emphasizing Code Based Schemes. 12th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools.

9. Jas A, Ghosh-Dastidar J, Touba NA (1999) Scan Vector Compression/
Decompression Using Statistical Coding. VLSI Test Symposium pp: 114-120.

10. Jas A, Touba NA (1998) Test vector compression via cyclical scan chains
and its application to testing core-based designs. Proceedings of the IEEE
International Test Conference (ITC) pp: 458-464.

11. Chandra, Chakrabarty K (2000) Test data compression for system-on-a-chip
using Golomb codes. Proceedings of the 18th IEEE VLSI Test Symposium
(VTS ‘00) pp: 113-120.

12. Robert Theivadas J, Ranganathan V, Perinbam JRP (2016) System-on-Chip
Test Data Compression based on Split-Data Variable Length (SDV) Code.
Circuits and Sys 7: 1213-1223.

13. Chandra A, Chakrabarty K (2001) Efficient test data compression and
decompression for system-on-a-chip using internal scan chains and Golomb
coding. Proceedings of the Conference on Design, Automation and Test in
Europe, Munich.

14. Li L, Chakrabarty K (2004) On using an exponential—Golomb codes and sub
exponential codes for system-on-chip test data compression. J Electro Testing
20: 667-670.

15. Chandra A, Chakrabarty K (2001) Frequency-directed run length (FDR) codes
with application to system-on-a-chip test data compression. Proceedings of the
19th IEEE VLSI Test Symposium pp: 42-47.

16. Chandra A, Chakrabarty K (2003) Test Data Compression and Test Resource
Partitioning for System-on-a-Chip Using Frequency-directed Run-length (FDR)
Codes. IEEE Trans Computer 52: 1076-1088.

17. Li L, Chakrabathy K (2003) Test Data Compression Using Dictionaries with
Fixed-Length Indices. Proceedings of the 21st IEEE VLSI Test Symposium
(VTS’03) pp: 219-224.

18. Gonciari PT, Al- Hashimi BM, Nicolici N (2003) Variable-length input Huffman
coding for system-on- chip test. IEEE Trans Comput Aided Des Integr Circuits
Sys 22: 783-796.

19. Jas A, Ghosh- Dastidar J, Mom-Eng Ng, Touba NA (2003) An efficient test
vector compression scheme using selective Huffman coding. IEEE Trans
Comput Aided Des Integr Circuits Sys 22: 797-806.

20. Chandra A, Chakrabarty K (2001) System-on-a-Chip Data Compression and
Decompression Architecture Based on Golomb Code. IEEE Trans Comput
Aided Des Integr Circuits Sys 20: 355-368.

21. Mehta US, Dasgupta KS, Devashrayee NM (2010) Run-Length-Based Test
Data Compression Techniques: How Far from Entropy and Power Bounds?-A
Survey. Hindawi Publishing Corporation, VLSI Design.

22. Tehranipoor M, Nourani M, Chakrabarty K (2005) Nine-coded compression
technique for testing embedded cores in SoCs. IEEE Trans Very Large Scale
Integrated Syst 13: 719-731.

23. Tsai PC, Wang SJ, Lin CH, Yeh TH (2007) Test data compression for minimum
test application time. J Inf Sci Eng pp: 1901-1909.

24. Sivanantham S, Padmavathy M, Gopakumar G, Mallick PS, Perinbam JRP
(2014) Enhancement of test data compression with multistage encoding.
Integration VLSI J 47: 499-509.

25. Bo Ye, Zhao Q, Zhou D, Wang X, Luo M (2011) Test data compression using
alternating variable run-length code. Integration the VLSI Journal 44: 103-110.

26. Robert Theivadas J, Ranganathan V (2014) Test Data Compression Using a
New Scheme Based on Extended Variable Length Codes. World Appl Sci J
32: 2297-2302.

27. Kavousianos X, Kalligeros E, Nikolos D (2008) Test Data Compression Based
on Variable-to-Variable Huffman Encoding With Codeword Reusability. IEEE
Trans Comput Aided Des Integr Circuits Sys 27: 1333-1338.

28. Kalode P, Khandelwal R (2012) test data compression based on golomb coding
and two-value golomb coding. Signal Image Process: Int J vol: 3.

29. Luo Z, Li X, Li H, Yang S, Min Y (2002) Test Power Optimization Techniques for
CMOS Circuits. Proceedings of the 11th Asian Test Symposium.

https://www.semanticscholar.org/paper/Test-Slice-Difference-Technique-for-Low-Transition-Rau-Wu/9d467d34762f5da903c3eb2d22eabe47c0c34081
https://www.semanticscholar.org/paper/Test-Slice-Difference-Technique-for-Low-Transition-Rau-Wu/9d467d34762f5da903c3eb2d22eabe47c0c34081
http://dx.doi.org/10.1155/2014/982728
http://dx.doi.org/10.1155/2014/982728
http://dx.doi.org/10.1155/2014/982728
http://dx.doi.org/10.2514/6.2002-T5-12
http://dx.doi.org/10.2514/6.2002-T5-12
http://dx.doi.org/10.1109/TEST.1997.639597
http://dx.doi.org/10.1109/TEST.1997.639597
http://dx.doi.org/10.1109/TIM.2014.2313431
http://dx.doi.org/10.1109/TIM.2014.2313431
http://dx.doi.org/2314307
http://dx.doi.org/2314307
http://dx.doi.org/2314307
http://dx.doi.org/10.1109/MDT.2006.105
http://dx.doi.org/10.1109/MDT.2006.105
http://dx.doi.org/10.1109/DSD.2009.134
http://dx.doi.org/10.1109/DSD.2009.134
http://dx.doi.org/10.1109/DSD.2009.134
http://dx.doi.org/10.1109/VTEST.1999.766654
http://dx.doi.org/10.1109/VTEST.1999.766654
http://dx.doi.org/10.1109/TEST.1998.743186
http://dx.doi.org/10.1109/TEST.1998.743186
http://dx.doi.org/10.1109/TEST.1998.743186
http://dx.doi.org/10.1109/VTEST.2000.843834
http://dx.doi.org/10.1109/VTEST.2000.843834
http://dx.doi.org/10.1109/VTEST.2000.843834
http://dx.doi.org/10.4236/cs.2016.78105
http://dx.doi.org/10.4236/cs.2016.78105
http://dx.doi.org/10.4236/cs.2016.78105
http://dx.doi.org/10.1109/DATE.2001.915015
http://dx.doi.org/10.1109/DATE.2001.915015
http://dx.doi.org/10.1109/DATE.2001.915015
http://dx.doi.org/10.1109/DATE.2001.915015
http://dx.doi.org/10.1007/s10677-004-4254-0
http://dx.doi.org/10.1007/s10677-004-4254-0
http://dx.doi.org/10.1007/s10677-004-4254-0
http://dx.doi.org/10.1109/VTS.2001.923416
http://dx.doi.org/10.1109/VTS.2001.923416
http://dx.doi.org/10.1109/VTS.2001.923416
http://dx.doi.org/10.1109/TC.2003.1223641
http://dx.doi.org/10.1109/TC.2003.1223641
http://dx.doi.org/10.1109/TC.2003.1223641
http://dx.doi.org/10.1109/VTEST.2003.1197654
http://dx.doi.org/10.1109/VTEST.2003.1197654
http://dx.doi.org/10.1109/VTEST.2003.1197654
http://dx.doi.org/10.1109/TCAD.2003.811451
http://dx.doi.org/10.1109/TCAD.2003.811451
http://dx.doi.org/10.1109/TCAD.2003.811451
http://dx.doi.org/10.1109/TCAD.2003.811452
http://dx.doi.org/10.1109/TCAD.2003.811452
http://dx.doi.org/10.1109/TCAD.2003.811452
http://dx.doi.org/10.1109/43.913754
http://dx.doi.org/10.1109/43.913754
http://dx.doi.org/10.1109/43.913754
http://dx.doi.org/10.1155/2010/670476
http://dx.doi.org/10.1155/2010/670476
http://dx.doi.org/10.1155/2010/670476
http://dx.doi.org/10.1109/TVLSI.2005.844311
http://dx.doi.org/10.1109/TVLSI.2005.844311
http://dx.doi.org/10.1109/TVLSI.2005.844311
https://www.researchgate.net/publication/220587965_Test_Data_Compression_for_Minimum_Test_Application_Time?_sg=4EesQMXWB_3bKI5SooFoq8GiKPHnPhBG1ohieYx_kZAJIcmGcwvn10gNQD7ukVUDOWp5tXzqpvVHaY4QBbHWSt-Z51ar1g
https://www.researchgate.net/publication/220587965_Test_Data_Compression_for_Minimum_Test_Application_Time?_sg=4EesQMXWB_3bKI5SooFoq8GiKPHnPhBG1ohieYx_kZAJIcmGcwvn10gNQD7ukVUDOWp5tXzqpvVHaY4QBbHWSt-Z51ar1g
http://dx.doi.org/10.1016/j.vlsi.2013.12.001
http://dx.doi.org/10.1016/j.vlsi.2013.12.001
http://dx.doi.org/10.1016/j.vlsi.2013.12.001
http://dx.doi.org/10.1016/j.vlsi.2010.11.004
http://dx.doi.org/10.1016/j.vlsi.2010.11.004
http://dx.doi.org/10.5829/idosi.wasj.2014.32.11.1341
http://dx.doi.org/10.5829/idosi.wasj.2014.32.11.1341
http://dx.doi.org/10.5829/idosi.wasj.2014.32.11.1341
http://dx.doi.org/10.1109/TCAD.2008.923100
http://dx.doi.org/10.1109/TCAD.2008.923100
http://dx.doi.org/10.1109/TCAD.2008.923100
http://dx.doi.org/10.5121/sipij.2012.3212
http://dx.doi.org/10.5121/sipij.2012.3212
http://dx.doi.org/10.1109/ATS.2002.1181733
http://dx.doi.org/10.1109/ATS.2002.1181733

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Main contribution

	Variable to Variable Run Length Code
	Variable to variable run length code
	Data compression procedure using algorithm and flow chart
	Decompression architecture

	Experimental Results
	Conclusion
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	References

