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Introduction
The second law of thermodynamics is a universal law. The galactic 

spiral structures, for example [1], arise in response to the interaction 
of that law and the law of gravitation. The second law states that some 
forms of transformation of one kind of energy to another do not occur 
in natural processes. The allowed transformations in a closed system 
are always characterized by a non-decreasing entropy (introduction 
of macroscopic disorder). In open systems where the entropy is kept 
constant [1], the allowed transformations are always characterized by a 
decrease in the amount of free energy available to do useful work.

Another profound principle of nature is worth mentioning here. 
The Heisenberg’s uncertainty principle asserts that nature forbids 
knowledge beyond a certain limit [2]. This is not the result of the 
restricted abilities of the available tools or the contemporary theorizing 
methods.

I will now attempt to apply both the second law of thermodynamics 
and Heisenberg’s uncertainty principle to electronic computations. 
I will conclude by giving a quantum mechanical description of these 
computations.

Floating - Point Numbers
      0.1<m<1

By a normalized floating-decimal representation of a number a, we 
imply representation of the form:

a = mx  a = m x 10q

where q is an integer. Such a representation is possible for all numbers, 
and unique if a ≠ 0 [3]. The variable m is the fractional part or mantissa 
and q is the exponent.

In a computer, the number of digits for q and m is limited. The 
number of digits characterizes a given computer. This means that only 
a finite set of numbers can be represented in the machine. The numbers 
in this set (for a given q and m) are called floating-point numbers. The 
limited number of digits in the exponent implies that a is limited to 
an interval which is called the machine’s floating-point variable range.

In a computer, a is represented by the floating number a = m 10× q

Where m  is the mantissa m, rounded off to t decimals. The 
precision of the machine is said then to be t decimal digits. Now 
suppose that the floating numbers in a machine have base B (ten for the 
decimal number system) and a mantissa with t digits. (The binary digit 
which gives the sign of the number is not counted) Then, every real 

number in the floating-point range in the machine can be represented 
by a relative error which does not exceed the machine unit (round-off 
unit) u which [3] is defined by:

0.5× if rounding is used
=

if truncation is used







1-tB
u 1-tB

The floating-point set of numbers is not a field. It is also not a 
ring. Besides, it is neither a group, nor a semi-group. The elementary 
operations in the real number system, are not well defined in this set. If 
we denote the result of addition in this set by fl(x + y), then associativity 
does not, in general, hold for floating addition. Consider floating 
addition using seven decimals in the mantissa,

a = 0.1234567 × 100, b =0.4711325 × 104, c = −b 

                      fl (b + c) = 0

fl (a + fl (b + c) = 0.1234567 × 100 	

         fl (a + b) = 0.4711448 × 104

fl(fl (a + b) + c) = 0.0000123 × 104 =0.123 × 100

Hence: fl(fl (a + b) + c) ≠ fl(a + fl (b + c))

In general, the usual laws and operations of the real number 
system are not applicable to the floating-point set of numbers. Strictly 
speaking, we have to define special new laws and operations for each 
computer and each problem. Moving the problem to a new computer 
forces a redefinition of these laws and operations. Such a definition 
necessitates a premature prediction of the results obtained after solving 
the problem. This situation constrains us to a vicious circle; defining 
the aforementioned laws and operations is conditional, we must know 
beforehand the results based on using them. These results represent 
what we expect upon employing a given computer in solving a definite 
problem. Here we face a sort of a contradiction; it is the problem of 
formulating a definition and then reformulating a new one and then 
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part of the system). In other words, some energy must be dissipated. 
The minimum energy consumption per one bit of information obtained 
is K T. In 2, where T is the absolute temperature. Suppose that we are 
running a moderate program, the output of which consists of 10000 
decimal numbers. Assume also that to each one of these numbers there 
corresponds a set of configurations of the internal memory equivalent 
to 10 decimal numbers.

We would then have a total of 110 000 decimal numbers. An increase 
in accuracy of one decimal digit per number will entail a corresponding 
increase in global entropy given by:

-16 4 -810 × 16 ×11×10 ×300×4 10 erg

assuming an absolute temperature of 300 K and four bits of information 
for the additional decimal digit. This is still a very small amount of 
entropy. In the next section, we will formulate a conclusion about the 
temperature of the memory and its role in the energy consumption for 
a computation.

I consider as a microstate, a set of real numbers representing a 
theoretical solution to a given problem. It is assumed that such a solution 
exists but is not necessarily attained. Any computerized solution of 
the problem is only an approximation of this set of real numbers. The 
microstate is the sequence of configurations of the internal memory 
of the computer leading to the approximate solution which can be 
included within the microstate. A program is executed by triggering 
a series of pulses [7]. Each pulse gives rise to a new configuration of 
the memory. The set of all these configurations constitute a microstate 
of the sought for theoretical solution. Trying to solve the same 
problem using another computer and a different algorithm provides 
a new microstate. Each pulse, in a sense, assigns the memory. Each 
assignment, in turn, can be translated into some set of floating-point 
numbers. In some programming languages (such as APL/360) [8], one 
can write a program using assignments only.

An increase in accuracy forces an extension of the mantissa. I can 
now introduce the notion of a dynamic computer. This is a computer 
whose set of floating-point numbers can be extended in response to 
any demand for more accuracy, and it must be ever developing. This is 
equivalent to the continuous employment of successive generations of 
computers.

In what follows, ‘computer’ will define a dynamic computer which is 
necessary to attain an increase in accuracy. A dynamic computer allows 
new microstates to develop and produce corresponding increases in 
global entropy. This is easily verified using Equation 2 which tells us 
that the continuous search for more accuracy entails a gradual increase 
in global entropy. Moreover, an indefinite search for accuracy will lead 
to infinite global entropy. If we refer to the formula [9]:

-S / K
0I = I e                                                                    

Here I and I0 are the information content at ordinary temperatures, 
and at absolute zero respectively, of a closed local system. More accuracy 
means an increase of local informa-tion content and a corresponding 
decrease in local entropy. This is balanced by a parallel increase in 
global entropy.

Thermodynamic Equation
The second law of thermodynamics can be written in the form:

≥Tds du+ pdv+ ydx                                                                    (3)

or by using equation (2)

another one and so on ad infinitum. The task looks impossible, and 
the impossibility appears to be fundamental. It is not the result of a 
lack of abilities of a given machine, and it has nothing to do with the 
insufficiencies inherent in the chosen algorithm.

In real life, we seek a separate fundamental [4] algorithm and apply 
a suitable algorithm to each problem. The applied algorithm depends 
on the machine and the operating system used. An amalgamation of 
these two types of algorithms leads to a resultant program. I call this the 
resultant algorithm. The whole process is based on supplying concrete 
proofs assuring that the algorithms (fundamental, applied, and 
resultant) that are looked for will solve the problem during an acceptable 
period of time, using a given machine and a definite operating system.

The various sources of errors are important in formulating my 
results [5]. Among these are:

•	 errors due to rounding; 

•	 errors due to the truncation of series; unjustified simplification 
of formulae; 

•	 a complex of correct logical propositions resulting in a machine 
default; mathematical instability; 

•	 catastrophic cancellation; and 

•	 Exaggerated sensitivity of an algorithm. 

It is a good programming practice, however, to seek a limit [3] for 
the relative error in the output data. Such a limit is given by:

= C r  ( + C up A )                                                                                   (1)

where: r is a bound for the relative error in the input data; u is the 
machine unit; Cp is the condition number for the problem p. With given 
input data, it is the largest relative change, measured with u as a unit, 
that the exact output data of the problem can have, if there is a relative 
disturbance in the input data of size u; CA is the condition number for 
the algorithm A. By means of backward error analysis, the output data 
which the algorithm produces (under the influence of round-off error) 
is the exact output data of a problem of the same type in which the input 
data has been changed relatively by a few u. That change measured with 
u as a unit, is called the condition number of the algorithm. Hence, the 
condition number has a small value for a good algorithm and a large 
value for a poor algorithm.

Entropy
The equivalence of information and entropy [6] is no more 

surprising than the equivalence of mass and energy implied by Einstein’s 
formula: E = m c2, where c = 3 × 1010 cm s-1 is the velocity of light; 1 
erg is equivalent to a mass of 10-21 g. Likewise, 1 bit of information is 
equivalent to Kln 2 = 10-16 erg/degree kelvin of entropy (where K = 1.38 
× 10-16 erg/ degree Kelvin, is Boltzmann’s constant).

In general, let W represent the number of different micro-states 
which correspond to the same macrostate. The entropy S of a macrostate 
is equal to [6]:

Boltzmann’s constant K times the natural logarithm of W:	

S = K In W	                                                                                     (2)

Since the natural logarithm is a monotonic function, S attains its 
maximum value when W does.

The equivalence of entropy and information means that new 
information is obtained at the price of increased entropy (in a different 
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∂ ∂   =   ∂ ∂   

j SH,P T,P
T H

                                                            (15)

From Equation 2 by taking differentials:

dWdS= K
W

                                               	                              (16)

substituting in Equation 10 from Equation 16 we get

( )TKdW = du+ pdV - Hdj                                                        (17)

By combining Equations 17 and 11 with Equations 12-15 it is easy 
to find the relation between the entropic properties of the memory (i.e. 
its macroscopic disorder properties), its internal energy and enthalpy, 
and j and H. Equation 17 is the fundamental thermo-dynamic equation 
of electronic computations.

In the case of the dynamic computer, we should rewrite Equation 17 
in the form of an inequality:

( )≥TKdW du+ pdV - Hdj W                	                              (18)

At absolute zero where T = 0, d W = 0, Equation 17 gives us:

Hdj=du+ pdv                                                                                    (19)

substituting in Equation 11, we deduce that the enthalpy of the memory 
remains constant at absolute zero. Equation 10 yields:

∂ ∂   =   ∂ ∂   

u ST,V T,V +H
j j                           	                             (20)

Using Equation 14 we find that:

∂ ∂   =   ∂ ∂   

u HT,V H -T j,V
j T

      	                                               (21)

The physical meaning of the derivative shows how much H must 
be increased with increasing temperature of the memory so that the 
assignment j remains the same, regardless of the increase in temperature 
(which will affect the assignment).

Note that the memory’s macroscopic disorder is not meant to be 
realistic in that it would be practically possible for such disorder to 
be attained. The entropy of the memory is merely a yardstick beyond 
which macroscopic disorder surely takes place. It is comparable to 
saying that astronauts cannot travel at speeds exceeding the velocity of 
light, though in practice their speeds are much more limited.

If a result is to be formulated, then it will be a sort of summary asserting 
that electronic computations are not out of the grasp of the second law 
of thermodynamics. A computer is only a limited ordering machine. 
Increasing its ordering tasks without bounds is impossible, for such an 
increase will end sooner or later in macroscopic disorder and chaos.

Heisenberg’s Uncertainty Principle
According to quantum mechanics, the existence of a physical 

system is related to measurement. A measurement by definition, is 
any physical interaction, and physical interactions obey Heisenberg’s 
uncertainty principle. The so-called energy [10] version of the principle 
states that if a limited time T is available for making the measurement, 
then the energy of the system cannot be determined better than to 
within an amount of order h / T.

≥TKdw / w du+ pdv+ ydx        	                                                 (4)

where T, is the absolute temperature; S, the entropy of the system; 
U, the internal energy of the system; P, the pressure within the system; 
V, the volume of the system; y, a generalized external force; and x, a 
generalized coordinate

The inequality corresponds to a nonequilibrium state of the system; 
when the system is still on the way to equilibrium, and the equality 
corresponds to a system already in equilibrium.

Tds =du+ pdv+ ydx                                                                              (5)

or again by using equation (2)

TKdw / w = du+ pdv+ ydx                                                                         (6)

The different components of a computer communicate with each 
other by signals. The reception and interpretation of a signal constitutes 
a physical measurement, which is assigned to a given location of the 
memory. The degree of assignment is characterized by the total sum 
per unit volume of the number of different assigned locations of the 
memory:

ν
∑
n

i =1

1j = ji                                                                    	               (7)

where ji refers to a distinct location of the memory, and V (the volume) 
is the total number of accessible locations of the memory.

If M is the mass of the memory, then:	

jí = A M                                                                   	             (8)

A is the mass specific degree of assignment, or the mass specific 
number of distinguishable messages. If the assignment is the outcome 
of a physical measurement, then the faster the measurement the larger is 
the energy that is required to make the signal readable with sufficiently 
small error probability. If the total signalling energy is limited, then 
there is a trade-off between the number of distinguishable signals that 
can be sent and the time required to identify them.

Let H denote the total signalling energy. It is expressed in units of 
energy. But H affects an assignment which is interpreted as information. 
Hence we can refer also to H in bits of information.

Now H changes j to j + dj. The work done in such a change is:

dL =  −Hdj                                                                                             (9)

The minus sign shows that when the number of assigned locations 
increases, work is expended on the memory.	

Replacing y dx in equation (5) by −H dj, and get:	

Tds = du+ pdv −Hdj                                                                          (10)

The enthalpy of the computer in this case is:	

I =u+ pV - Hj                                                                     	           (11)

Maxwell’s thermodynamic equations give us:
∂ ∂   =   ∂ ∂   

j SS,V j,v
T H

                                	                               (12)

∂ ∂   =   ∂ ∂   

j SH,P S,P
S H

                                           	             (13)

∂ ∂   =   ∂ ∂   

j TT,V J,V
S H                                  	             (14)
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Equality 25 says that assignments occurring at later times are 
prone to higher uncertainties. Since x refers to a general location of 
the memory, we conclude that no closed computer system, however 
constructed, can run programs of infinite lengths (practically very 
long programs). Compare with the very long program that governs 
the lifetime of a human individual, perhaps it violates the principles of 
quantum mechanics?

Consider now the case in which the probability density at each 
location x of the memory is independent of time. It is called a stationary 
state, and is characterized by a definite energy.

If we substitute zero for t in Equation 25, we obtain:

∆
ax =
2

                             	                                                                 (26)

Using Inequality 24 we arrive at:

2
∆ ≥

p
a

                      	                                                                 (27)

Since uncertainty in momentum induces a corresponding 
uncertainty in assignment, a similar conclusion to the previous one can 
be drawn from Inequality 27.

As in the case of entropy in electronic computations, uncertainty 
limitations may not emerge in practical situations, yet they form 
another yardstick beyond which improvement cannot be made: 
improvements mean extending tlie memory, as well as increasing the 
lengths of programs.

Quantum Mechanical Description
This section is not strictly devoted to a quantum mechanical 

description of electronic computations, rather it looks at what such a 
description can provide in terms of the many-worlds interpretation of 
quantum mechanics [14].

The interpretations of quantum mechanics are, in brief:

1.	 The popular interpretation: here the wave function is regarded 
as objectively characterizing the single system, obeying a 
deterministic wave equation when the system is isolated but 
changing probabilistically and discontinuously under observation. 

2.	 The Copenhagen interpretation. 

3.	 The ‘hidden variables’ interpretation. 

4.	 The stochastic process interpretation: this point of view holds that 
the fundamental processes of nature are stochastic. 

5.	 The wave interpretation: this is the interpretation we are interested 
in. A correlation is established between the observer and the 
observed. In this situation, any borderline between the two 
disappears. 

In our case the observer is the mind, and the observed is the 
computer.

A computer that is operated for a finite period of time, and a 
future computer will be equivalent in the sense that the fundamental 
characteristics of the floating-point set of numbers will be the same in 
both. This is because any computer has a limited space for the mantissa. 
This quantity is the precision of the machine t.

Suppose now that one of the following two scenarios occurs. In the 
first case, we partition a given problem and all the operations included 
therein, so that the available space for the mantissa is used iteratively 
so that all the input, intermediate, and output digits are accommodated 

This is equivalent to:

≥ET                                                                                                 (22)

where: E is the energy of the system; T, the period or measurement; and 
  planck’s constant divided by 2 .

In particular, if a system is unstable having a finite lifetime t, its 
energy cannot be measured to within an accuracy better than about 
 /t.

Let the measurement in our case be a signalling process producing 
a bit of information. Denote by F the rate of signal flow in a computer 
(in bits per second). Then F and T would be reciprocals. We can deduce 
that no closed computer system, however constructed, can have F 
exceeding E/  .

Let m be the total mass of the system: which includes the mass 
equivalent of the energy of signals employed in the computer, as well 
as the mass of the materials of which the computer and its power 
supply are made. In computers the structural mass outweighs the mass 
equivalent of the signal energy, However, the mass equivalent of the 
energy of signals can be computed by applying Einstein’s formula: 
Energy = (mass) × (square of velocity of light).

In other words, the total mass equivalent of the energy that is 
invested in signals cannot exceed m, the total mass of the system.

We would have:

≥


2mcF 	                                                                                    (23)

I now consider the electro weak theory which unifies 
electromagnetism and weak forces. It indicates that, during infinitesimal 
periods of time, huge amounts of energy can be created from nothing 
and even transformed into particles [11]. But before such periods end, 
everything created from nothing must vanish, and the situation must 
return to normal.

Imagine a hypothetical computer which accomplishes all of its tasks 
during an infinitesimal period. The result will not be transferred to the 
usual output devices, but they will be transmitted by telepathy to the 
mind of the operator. Such a hypothetical computer is called a quantum 
computer, and should be developed during the coming centuries. 
Remember, any concrete scientific model is based on stirring of the 
imagination!

Consider the momentum version of Heisenberg’s uncertainty 
principle. It says that one cannot know both where something is and 
how fast it is moving. The uncertainty of the momentum and the 
uncertainty of the position are complementary and the product of the 
two is constant [12]. We can write the law as:

∆ ∆ ≥x p                                  	                                               (24)

where:  x is the uncertainty in the position;  p, the uncertainty in 
momentum.

Let (x, t) be the wave function of an electron contributing to an 
assignment at a location of the memory given by the coordinate x. 
(We assume here a linear memory). This assignment takes place at the 
moment t.

If we assume a gaussian wave packet, then it is easy to verify that 
[13]:

( )∆ 2 2 2 2 2 21x = a +h t / m a
4

                                                              (25)

where a is a constant.
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without truncation. From a theoretical point of view, we will need an 
infinite period of time to process the whole problem. In the second case, 
we wait for an infinite period of time and use the computer that will be 
available afterwards to solve the same problem.

In both cases, the floating-point set of numbers will converge and 
coincide in the limit with the real number system. Besides, all of the 
aforementioned sources of errors will be eliminated. Specifically, we do 
not need simplification of formulae without justification. Also we can 
avoid use of algorithms with exaggerated sensitivity. Lastly, we will be in 
a position to choose the simplest possible logical propositions.

Under our assumptions, the bound for the relative error in the 
output data, given by Equation 1, should become independent of the 
machine unit.

Differentiating with respect to u, we get:

( ) ( )A
′′ ′∆ = + + +p p AC r C u C r C u   (28)

( )
( )A

′′′ +∆
= +

∆ +
p A

p

C r C u
C r C u

           (29)

putting  ∆’ = 0 in Equation 29 gives: 

( )
( )A

0
′′ +

+ =
+

p A

p

C r C u
C r C u

          (30)

Integrating this differential equation, we obtain:

( )A constant=∆=+pC r C u            (31)

Since r is arbitrary, Equation 31 cannot hold unless u = 0, and hence 
Cp = CA = 0.

Since u is proportional to B1-t, in both cases t will equal infinity. 
Hence, either of our proposed cases is equivalent to operating a 
computer built so that the space designed to hold the mantissa is of 
infinite size, i.e. the precision of the machine equals infinity. Such a 
computer will coincide exactly with the real number system.

Since the real number system is what the mind tries to test on 
observing the computer, we conclude that the borderline vanishes 
completely between the mind and the computer in the aforementioned 

situation. One of the main characteristics of the wave interpretation 
of quantum mechanics is its specific viewpoint of measurement. 
According to this interpretation, any interaction between two entities 
is a measurement. We might reasonably assert from this that either 
the first quantity measures the second, or vice-versa. For finite times 
of interaction the measurement is only approximate, approaching 
exactness as the time of interaction increases indefinitely. But through 
our mental experiment we have shown that this amounts to the same 
thing. Thus we have succeeded in providing a reasonable argument in 
favor of the wave interpretation of quantum mechanics. 

References

1. Shu FH (1982) The Physical Universe, An Introduction to Astronomy. University 
Science Books. 

2. d’Espagnat B (1976) Conceptual Foundations of Quantum Mechanics.
Massachusetts: Benjamin, Inc. 

3.	 Dahlquist G, Bjorck A (1974) Numerical Methods. New York: Prentice-Hall 43-59. 

4. Rader R (1979) Advanced Software Design Techniques. New York: McGraw-
Hill 105-110. 

5.	 Rifai G (1977) Supreme Council of Sciences- SYRIA 17th Science Week
Publications, pp: 324-54. 

6.	 Makarov IM (1987) Cybernetics of Living Matter. Moscow: Mir Publishers 83-86.

7.	 Nashelsky L (1988) Introduction to Digital Computer Technology. New York:
Wiley pp: 389-420. 

8.	 Hellerman H, Smith IA (1976) APL/360 Programming and Applications. New
York: McGraw-Hill pp: 35-122.. 

9.	 Stonier T (1990) Information and the Internal Structure of the Universe. Berlin:
Sprin ger-Verlag pp: 37-41.

10.	Tarasov L (1980) Basic Concepts of Quantum Mechanics. Moscow: Mir
Publishers pp: 25-48.

11.	Davies P (1984) Superforce. New York: Simon and Schuster pp: 117-124. 

12.	Landshoff P, Metherell A (1979) Simple Quantum Physics. Cambridge
University Press pp: 1-40.

13.	Feynman R, Leighton R, Sands M (1963) The Feynman Lectures on Physics.
New York: Addison -Wesley pp: 6-7. 

14.	Dewitt BS, Graham N (1973) The Many-World Interpretation of Quantum
Mechanics. Princeton University Press pp: 167-218.

https://books.google.co.in/books/about/The_Physical_Universe.html?id=v_6PbAfapSAC
https://books.google.co.in/books/about/The_Physical_Universe.html?id=v_6PbAfapSAC
http://digital.library.pitt.edu/u/ulsmanuscripts/pdf/31735033466305.pdf
http://digital.library.pitt.edu/u/ulsmanuscripts/pdf/31735033466305.pdf
http://dl.acm.org/citation.cfm?id=601081
http://dl.acm.org/citation.cfm?id=601081
http://www.bestbookcentre.com/index.php?page=search&catid=25&id=3677
http://dl.acm.org/citation.cfm?id=60938
http://dl.acm.org/citation.cfm?id=60938
http://www.springer.com/in/book/9783540198789
http://www.springer.com/in/book/9783540198789
http://simons.hec.utah.edu/NewUndergradBook/Chapter1.pdf
http://simons.hec.utah.edu/NewUndergradBook/Chapter1.pdf
http://www.feynmanlectures.caltech.edu/
http://www.feynmanlectures.caltech.edu/

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Floating - Point Numbers
	Entropy
	Thermodynamic Equation
	Heisenberg’s Uncertainty Principle
	Quantum Mechanical Description
	References

