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Introduction 
As a specialized tool for Non-destructive Testing & Evaluation 

(NDT&E), Infrared Thermography (IRT) [1-10] involves as a remote 
mapping of temperature over test sample for finding out its surface 
and subsurface features with the emitted radiation from objects in 
the infrared band of the electromagnetic spectrum. It is a fast, remote, 
and safe non-destructive testing and evaluation (NDT&E) method for 
surface and sub-surface defect detection in various solid materials. 
Since most solids conduct heat, IRT largely owes its emergence and 
potentiality for defect detection in variety of materials such as metals 
[5], composites [6,7,11] and semiconductors [8,12]. IRNDT has 
numerous applications in the area of aeronautics, space, electrical, 
electronic, bio-medical and mechanical industries [5-27]. Of the various 
possibilities of thermal NDT implementations Infrared Thermography 
(IRT) or Infrared Non-destructive Testing (IRNDT) has, gained wide 
acceptance in NDT & E methods due to its merits. Various methods 
and techniques have further been developed by various research 
groups all over the world to improve and widen the use of IRT for 
non-destructive characterization [1,7,10,11,14,15,16,21,23,26]. This 
editorial is to present an overview on existing work and to describe 
the most relevant experiences devoted to the use of IRT methods for 
NDT&E. 

Active Infrared Non-destructive Testing 
Widely used active thermal non-destructive testing methods for 

surface and sub-surface feature extraction are: pulsed thermography 
(PT) [7], stepped thermography or time resolved infrared radiometry 
(TRIR) [10], lock-in thermography (LT) [1] and pulsed phase 
thermography (PPT) [2,15]. 

In PT, the examined material is warmed up (cool perturbations can 
also be used) with a short duration high peak power pulse (optical, eddy 
current, ultrasonic pulse, etc.), and the thermal response is captured by 
an IR camera [9]. The resultant sequence of infrared images recorded 
indicates defects in the material located at various depths. In practice, 
this technique requires high peak power short duration heat sources 
and has the additional drawback of being sensitive to surface emissivity 
variations and non-uniform heating over the test sample [1,3]. 

Stepped thermography is similar to pulse thermography except 
that the duration of the excitation pulse is long. Unlike in PT, in 
stepped thermography the increase in sample surface temperature is 
monitored during the active heating. The temperature variation (rate of 
change of surface temperature) with time gives the information about 
the subsurface features of the test sample. This technique is also named 
as time resoled infrared radiometry (TRIR) [10]. Unlike PT, TRIR can 
be carried out even with low peak power heat sources. 

In contrast to pulsed and stepped thermography, lock-in 
thermography is based on thermal waves generated inside the specimen 
under study. This uses mono-frequency sinusoidal thermal excitation 
at an angular frequency of ω, which introduces highly attenuated, 
dispersive thermal waves [2] of the same frequency (ω/2π) inside the test 
specimen. The excitation frequency in LT is chosen to be dependent on 
the sample thermal properties and its geometrical dimensions. Lower 
the frequency of the thermal waves, deeper the penetration of thermal 
wave into the test specimen. From the recorded image sequence (by an 
IR camera), in the stationary regime of heat cycle, information about 

the phase and magnitude of the reflected thermal wave is derived [1,3]. 
The phase angle images have advantages of being less sensitive to local 
variations of illuminations and variations of surface emissivity over the 
sample [1]. Further phase images are capable of probing deeper depths 
compared to the magnitude images [1,3,11,12]. Since in a single run 
there is limited depth resolution of the lock-in thermography test due 
to fixed driving frequency of the excited heat sources, thus in order to 
get good resolution for various defects at different depths inside the test 
specimen it is necessary to repeat LT at different excitation frequencies 
[13-25]. 

The experimental arrangement of PPT is similar to PT, but 
extraction of various frequency components in the captured infrared 
image sequence is performed by Fourier transform (FT) on each pixel 
of the thermogram sequence [2,15]. The phase images obtained from 
the Fourier transform in PPT shows all the merits of the phase images 
obtained in LT, (i.e. less sensitive to surface in-homogeneous emissivity 
and illumination variations). Theoretically, the short duration excitation 
pulse in PPT does launch a large number of frequency components 
into the test samples, but the higher order frequency components may 
not have sufficient energy to cause a thermal wave to propagate deep 
into the sample. In order to detect deeper subsurface defects in test 
sample, PPT needs high peak power heat source which may damage the 
surface of the test sample. 

In order to overcome these problems of LT and PPT it is necessary 
to send the desired band of frequencies into the test sample. This is 
preferably done in a single run for improving resolution of the test 
without repeating the experiment at different frequencies. The thermal 
excitation should be intense enough to generate thermal waves of 
appreciable magnitude within the desired band of frequencies to be 
launched into the specimen. 

In order to improve resolution for detecting defects lying at 
different depths in lesser time as compared to LT, without increasing 
the peak power of heat source as compared to PPT can be achieved 
by non-stationary thermal wave imaging. In this desired band of 
frequencies (decided by sample’s thermal properties and it’s thickness) 
are launched into the specimen, followed by adapting an appropriate 
signal processing techniques on the captured transient thermal response 
(during active heating) to improve the resolution and sensitivity of the 
test.

In the last one decade many efforts have been made to investigate the 
non-destructive testing applications of novel non-stationary thermal 
wave imaging techniques by various research groups, (Mulaveesala 
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et. al. from India and Mandelis et. al. from Canada) to widen the 
applicability of infrared imaging for industrial inspection [11,21,24]. 
Mulaveesala and co-workers were the first to apply the various high 
resolution non-stationary thermal wave imaging methods for the non-
destructive characterization of fibre reinforced plastic materials [12, 
21,23,27,28]. 

However, frequency modulated thermal wave imaging (FMTWI) 
[13,14,16], quadrature frequency modulated thermal wave imaging 
(QFMTWI), digitized frequency modulated thermal wave imaging 
(DFMTWI) [11,12], and coded excited thermal wave imaging [21,23] 
are some of the non-stationary thermal wave imaging methods. These 
methods, with its predefined excitation schemes play a vital role in 
IRNDT. Further application of specialized post processing methods 
will further strengthen the utilization of these methods. 

Among the various widely used post processing schemes, 
correlation based pulse compression post processing approach has 
its own advantages over the widely used conventional frequency 
domain phase based approaches [18-25]. Pulse compression technique 
allows the usage of a moderate peak power, long duration modulated 
heat sources to improve the defect detection range and resolution 
capabilities comparable to that obtained with a short duration high 
peak power pulsed sources[18,19,21,23,25,26,27,28]. This can be 
achieved with a correlation based pulse compression technique by 
cross correlation of the temporal temperature distribution over the 
chosen reference pixel over the sample, with a time delayed, attenuated 
version of remaining pixels in the field of view. Temporal temperature 
responses from defective and non-defective regions differ in their 
attenuation as well as delay, depending on the local thermal properties 
of the material underneath the surface. Cross correlating the temporal 
thermal responses of the pixels with chosen reference, produces a 
pseudo pulsed response (compressed to a very narrow pulse) about a 
delayed time instant, with respect to the auto correlation of the reference 
thermal profile, corresponding to the variations in thermal properties 
(i.e diffusivity of material, effusivity of subsurface feature etc.). Pseudo 
pulsed response obtained from this correlation approach for captured 
temperature distribution to the imposed modulated incident heat flux 
provides advantages similar to obtained with high peak power short 
duration pulsed excitation. 

Conclusions
It is essential to develop a fast, remote, whole field, quantitative 

and safe non-destructive testing & evaluation methods to provide 
more convenient, feasible and reliable testing capabilities for industrial 
inspection and condition monitoring. It is indeed my pleasure to 
recommend OMICS group of publications to share novel ideas, 
suggestions and constrictive criticisms rapidly on cutting edge image 
and video processing methods for industrial imaging technologies for 
high visibility. 
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