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Introduction 
Detection of abrupt changes, including inflection points, in the 

observed noisy signals is an important and challenging problem in 
engineering and science. Several methods have been proposed to solve 
this problem and proved to be successful for specific applications. Yet, 
there is demand for new and general approaches that are applicable 
to broader range of applications. The change point detection problem 
can be divided into two categories; i) sequential or on-line, and ii) 
batch or off-line. In on-line methods, the observed data are inspected 
sequentially to catch a change as soon as it occurs. These methods are 
mainly used in quality control, real time surveillance & vision systems, 
and real time fault detection in computer networks [1-6]. In off-
line methods the entire data set is observed and can be processed at 
once. The off-line problems are growing fast and have attracted many 
researchers in computational biology and biostatistics as well as off-
line computer vision applications [7-14]. In previous work [15,16], 
often Cross Validation (CV) is used to select the bandwidth to locate 
the discontinuities in the observed signal including inflection points, 
change points, jumps and valleys. Discontinuities in [15], assuming 
an unknown number, are located by detecting the zero crossing of the 
second derivative and the local maxima of the first derivative while CV 
is used to estimate bandwidth parameters. Bootstrap is used in [16] 
for designing a nested CV method for detecting the change points by 
finding the local maxima of the first derivative while considering the 
number of change points is unknown.

For smooth underlying signals, a change point may be defined as 
an inflection point, i.e. a point where the second derivative of the signal 
changes sign. In this work, we focus on the problem of estimating the 
location of an inflection point when it is known that only one such point 
exists in the underlying signal. When considering smoothing methods 
for estimating the underlying signal, standard methods for bandwidth 
selection, such as cross validation, are designed to optimally estimate 
the underlying function, and can thus produce many inflection points; 
creating uncertainty in the location of the true inflection point. Our 
goal is to design a fast and simple, yet effective method to address the 
inflection point detection. The interest here is to detect a single significant 
inflection point in either entire range or a fragment of observed signal. 
A non-parametric inflection point detection method is proposed 
in which we smooth the noisy observations and locate the inflection 
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point using the estimated zero crossing of the second derivative of the 
smoothed curve. Spatial curve fitting in our case is accomplished by 
applying local polynomial regression to smooth the noisy data. We 
propose a constrained method for bandwidth selection intended to 
allow a single inflection point, thereby it increases the accuracy of the 
estimated inflection point location, whereas it permits fitting a flexible 
function and avoids over-smoothing. Using non-parametric regression 
allows estimating the standard error of the located inflection point 
to evaluate the accuracy of the estimation. The performance of the 
method is evaluated through simulations using a sigmoid function that 
is corrupted by adding different levels of Gaussian noise.

The proposed method is discussed in the next section by describing 
local polynomial regression, inflection point detection, and optimal 
bandwidth selection. The results are then demonstrated, compared with 
cross validation and discussed at the end.

Methods 
Nonparametric polynomial regression 

Suppose that n pairs of observations

(s,Yi),,i = 1,2,…,n   (1)

consist of a response variable and a location and are related by the 
signal plus noise model

( ) , : (0, ), [1, ]i i i iY r s N i nεε ε σ= + ∈ (2)

where , [1, ]iY i n∈  are observed noisy samples, iε  is Gaussian noise , 
(0, ),N εσ Rs∈ , and r is an unknown underlying regression function. 

The regression function r can be locally approximated at the point s by 
a polynomial of order p
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2 ( )( ; ) ( ) '( )( ) ''( )( ) / 2! ... ( )( ) / !p pg z A A s a s z s a s z s a s z s p= + − + − + + −  (3)

where z is a point in a neighborhood of s. We use least squares to 
estimate the polynomial coefficient vector ( )( ) ( ( ), '( ), ''( )..., ( ))p TA s a s a s a s a s= . 
The estimated polynomial coefficient vector is

 1ˆ ( ) ( )T T
s s s s sA s X W X X W Y LY−= =                                      (4)

where ( )ˆ ˆ ˆ ˆ ˆ( ) ( ( ), '( ), ''( ),... ( ))p TA s a s a s a s a s= is obtained by minimization 
of the least square problem

2

( )

1 0
( ( )) ( ) ( )( ) / ! ( ) ( )

n P
p p T

i i i s s s
i p

f A s K s s Y a s s s p Y X A W Y X Aγ
= =

 
= − − − = − − 

 
∑ ∑  (5)

where si is a point in a neighborhood of s, 1( )T T
s s s s sL X W X X W−=  is the 

smoothing matrix, sX is a ( 1)n P× +  matrix.
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and Ws is an n n×  diagonal matrix.
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and ( )K sγ is a kernel with bandwidth γ

1( ) , ( ) 1sK s K K s dsγ γ γ
 

= = 
 

∫                        (8)

To estimate r(s)=a(s), the inner product of the first row of with is 
computed by L with Y is computed by

1
,

1

ˆ( ) ([1 0 0 0] ) ( )
n

i ir s L Y e LY l s Yγ= × = =∑

                
 (9)

where 1
,1 ,2 ,( ) ( ( ), ( ), , ( ))T

ne L l x l s l s l sγ γ γ γ= =  . The variance of this 
estimator for independent noise that is of interest here is

22ˆvar( ( )) ( )r s l sεσ=                                                                           (10)

Similarly, the derivatives ( )( ), ( ), , ( )pr s r s r s′ ′′


 can be estimated by the 
inner product of Y with the second row, third row, and ( 1)thP + row of 
L respectively.

Inflection point detection

An inflection point is a point (D) on the estimated curve where the 
curvature changes sign. Here we discuss the positive inflection point 
where the curvature changes from being concave upward to being 
concave downward, i.e., ( )r s′′  crosses the zero line from being positive 
( ( )r s′′ > 0) to being negative ( ( )r s′′ < 0) and the first derivative has a 
local maximum ( ( )r s′ > 0) there. In a similar way to (9), the estimated 
2nd derivative ˆ( ( ))r s′  is

''

1

ˆ ( ) ([0, 0, 1 0] ) ( )′′ = × =∑

n

i ir s L Y l s Y                                                               (11)

and its associated standard error can be computed by
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Figure 1: Sigmoid function corrupted with different noise levels: no noise (first row), low noise (second row), and high noise (third row). True sigmoid (blue), noisy 
observations (purple dots), and estimated sigmoid (black) applying a small bandwidth (left) and applying a large bandwidth (right).
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 22ˆvar( ( )) ( )r s l sεσ′′ ′′=                   (12)

The negative inflection point can be identified in a similar way 
where the second derivative changes sign from negative to positive. As 
illustrated in Fig. 1, the standard error of the estimated inflection point 
location is approximated by

 ( ( ))( )
( )

Se r DSe D
r D
′′

≅
′′′

                              
  (13)

where D is the identified inflection point location, ˆ( ( )) var( ( ))Se r D r s′′ ′′=  
is the standard error of the estimated second derivative at the inflection 
point based on (12), and ( )r D′′′  is the estimated third derivative at the 
inflection point, computed in a similar way as (9) and (11).

Optimal bandwidth selection 

Conventionally, the optimal bandwidth is chosen using the leave-
one-out cross validation score

 2
( )

1

1ˆ ˆ( ) ( ( ))
n

i i i
i

CV R Y r s
n

γ −
=

= = −∑                                     (14)

where ( )ˆ ir − is estimated by excluding ith pair (si, Yi). The optimal 
bandwidth chosen by cross validation may produce many inflection 
points. As an illustration, a sigmoid function is corrupted with different 
noise levels and is estimated by small, large (Figure 1), and optimal 
bandwidth chosen by cross validation (Figure 2). Applying the selected 
optimal bandwidth obtained by cross validation, we may identify zero, 
one, or several inflection points (Figure 3 and 4) and it is difficult to 
identify the main one as the estimation of the true inflection point of 

the original unknown curve (sigmoid function here).

The new proposed method applies a constraint for bandwidth 
selection to ensure that the smoothed curve (by the selected bandwidth) 
has only one inflection point. The bandwidth γ is the smallest bandwidth 
producing the smoothed curve

,
1

ˆ ( ) ( )
n

i ir s l s Yγ γ= ∑                                                         (15)

that satisfies the constraint

1D =                   (16)

where 
''

'

ˆ ( ) 0
:

ˆ ( ) 0
r s

D s
r s
γ

γ

 = =  >  

 
                                   (17)

is the set of zero down-crossings of the second derivative. Equation 17 
ensures that the number of positive inflection points of the smoothed 
curve applying bandwidth γ is one. 

Results and Discussion 
The proposed method is applied to a simulated sigmoid function 

which is corrupted by adding different levels of independent 
Gaussian noise. For comparison, first we show the application of the 
regression-based inflection point detection where the bandwidth 
is selected by cross validation. The results obtained by applying 
the proposed constrained bandwidth selection are then presented. 
Finally the performance is quantified by running several hundreds 
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Figure 2: (Left column) Cross validation curve for different noise levels: no noise (first row), low noise (second row), and high noise (third row). (Right column) True 
sigmoid (blue), noisy observations (purple dots), and estimated sigmoid applying the optimal bandwidth chosen by cross validation (black).
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of simulation instances. 

Bandwidth selection by cross validation 

A sigmoid function was simulated with s = [0,6000]

35005
1000

50( ) 70
1

sr s
e

− −  
 

= +

+

                                   (18)

and corrupted with 2 0εσ =  (no noise), 2 1.85εσ =  (low noise with 
3 8.16%εσ =  of the sigmoid height), and 2 185εσ =  (high noise with 
3 81.6%εσ =  of the sigmoid height). The estimated smooth curves for 
small (γ = 200) and large (γ =1000) bandwidths for different noise levels 
are depicted in Figure 1. The cross validation curve and the smoothed 
curve applying the selected bandwidth identified by minimum cross 
validation score for different noise levels is shown in Figure 2. The 
optimal bandwidth (γopt) is 100 for no noise, 150 for low noise and 
400 for high noise. The number of detected inflection points is 1, 8, 
and 2 for different noise levels respectively (Figure 3). Although the 
inflection point closest to the true one is among the detected inflection 
points, further processing is needed to identify it. The identification of 
the main inflection point is even more challenging and prone to error 
when the detected candidate inflection points have close values of their 
estimated first derivative ( 'r̂γ ). 

Next, the sigmoid 4( 5)

1( )
1 sr s

e− −=
+

 was simulated and independent 
Gaussian noise with 2 0.01εσ =  (medium noise with 3 30%σ =  of the 

sigmoid height) was added. Five hundred independent simulation 
instances were performed, inflection points were located, and the 
number of inflection points was counted for each simulation. The cross 
validation curve and the smoothed curve applying the optimal cross 
validation bandwidth for a typical simulation (γopt) is shown in Figure 4 
(First row). The location of inflection points and the number of detected 
inflection points for the five hundred runs are depicted in Figure 4 
(Middle row). The distribution (histogram) of inflection point location 
and the number of detected inflection points are shown in Figure 4 
(Bottom row). Applying the optimal cross validation bandwidth, up to 
seven inflection points was identified (Figure 4). 

Bandwidth selection by the proposed method 

To avoid detecting multiple false inflection points, the proposed 
method was applied to select the optimal bandwidth while ensuring 
to have only one inflection point in the smoothed curve. Independent 
Gaussian noise with different levels 2 0εσ =  (no noise), 2 1.85εσ =  (low 
noise), 2 185εσ =  (high noise), and 2 1665εσ =  (very high noise) was 
added to corrupt the signal. The noisy sigmoid was then estimated 
using the non-parametric regression where the bandwidth was selected 
by the proposed method (Figure 5). Regardless of the noise level, the 
significant inflection point was closely estimated (Figure 5 (Right 
column)). 
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Figure 6 further illustrates the inflection point detection and the 
estimation error under high noise conditions. The confidence interval 
was computed by ˆ1.96 ( ( ))conf Se r s= ∗  and is superimposed in red 
where the standard error ( ˆ( var( ( )))Se r s=  of the smoothed curve was 
computed using (10). For high level of Gaussian noise with 2 272.25εσ =  
or equivalently 3 50εσ =  that is equal to 100% of sigmoid height (Figure 
6 (Top)), the detected inflection point is located at s = 3441.4 which 
is close to the true inflection point at s = 3550 with 1.67% estimation 
error. Even at very high noise conditions with 2 2500εσ =  so that 3 150εσ =  
is equal to 300% of sigmoid height (Figure 6 (Bottom)), the detected 
inflection point is located at s = 3395 which is only 3% away from the 
true inflection point location. 

Performance of the proposed method 

The performance of the proposed method is assessed by comparing 
the location of the identified inflection point vs. the true inflection 
point location (D = 5; r(D) = 0.5) through several hundred simulations 
where the sigmoid ( 5)

1( )
1 sr s

e α− −=
+

 was corrupted with high level of 

independent Gaussian noise. The simulations were repeated for six 
different sigmoid slopes (α). Two hundred simulations were performed 
for each slope, starting with more challenging case of fairly shallow 
slope α = 0.5 to sharp slope α = 3.

The detected inflection point, standard error, true mean squared 
error, and the coverage of estimated confidence interval for the detected 
inflection points were estimated for different slopes (Figure 7). The 
mean of the detected inflection points closely follows the true inflection 

point location (D = 5) for different slopes (Figure 7 (Top)). As it can be 
observed, while the slope increases from low on the left to high on the 
right, estimation precision increases (Figure 7 (Middle)). In addition, 
the estimated standard errors (box plots) closely match the true mean 
square error computed from the 200 simulations. The 95% coverage 
depicted by the black disks (Figure 7 (Bottom)) was computed for each 
slope by the percentage of the number of simulation instances for which 
the true inflection point (D = 5) satisfies

ˆ{ 1.96 ( )}D D Se D∈ ± ∗                   (19)

The point-wise confidence interval of the coverage was then estimated 
(red disks) for each slope using the Binomial distribution applying the 
number of simulation instances (Figure 7 (Bottom)). 

Insights 

The proposed method selects the optimal bandwidth to ensure a 
single inflection point. This avoids the uncertainty due to detection of 
zero or multiple inflection points when applying standard bandwidth 
selection methods such as cross validation. Therefore the proposed 
method increases the accuracy of the estimated inflection point 
location for such applications where the true function has only one 
inflection point. This method permits a flexible fit to estimate the 
underlying function by taking advantage of non-parametric regression 
while avoiding over-smoothing. 

Figure 8 illustrates the basic mechanism under a low noise with 
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2 25εσ = or equivalently 3 15εσ =  that is equal to 30% of sigmoid height. 
Starting from a small bandwidth, the proposed method gradually 
increases the bandwidth to smooth out false inflection points. The 
bandwidth increases from left to right: left = 100, middle = 300, and 
right = 600. Shallow inflection points disappear by applying larger 
bandwidths. We should point out that there is a wide range of large 
bandwidths for which there is only one inflection point. We propose 
selecting the smallest bandwidth within the range that guarantees 
only one inflection point in order to reduce over-smoothing caused by 
applying the larger bandwidths.

Note from Figure 6 that the confidence bands do not necessarily 
cover the true function. In other words, the estimation of the function is 
biased. However, this is not a concern in our case because our interest is 
in estimating the inflection point location, not the underlying function. 

The gain in accuracy in estimating the inflection point location is worth 
the extra bias in the estimation of the function. 

The estimation of the inflection point location and its standard error, 
however, are nearly unbiased. This can be observed in Figure 7 (Top) 
and Figure 7 (Middle), which show that the estimated inflection point 
locations are close in average to the true value, and that the estimated log 
squared standard errors are close in average to the true log mean square 
errors. Figure 7 (Bottom) further shows for all slopes larger than α = 1.5 
that the coverage of the 95% confidence interval for the inflection point 
location is indeed at least the nominal (95%). For shallow slopes (α = 0.5 
& 1), the region in which the true function transitions from low to high 
is larger, making the detection of the inflection point harder. In this case, 
the estimation of the inflection point is still unbiased but the coverage 
of the confidence intervals drops below 90% for such challenging cases.

 

0                      1000                   2000                   3000                   4000                   5000                   6000
0                       1000                   2000                   3000                   4000                    5000                   6000

0                      1000                   2000                   3000                   4000                   5000                    6000

0                      1000                   2000                   3000                   4000                   5000                    6000

0                       1000                  2000                   3000                    4000                  5000                    6000

0                      1000                   2000                   3000                   4000                   5000                   6000

0                      1000                   2000                    3000                   4000                    5000                   6000

Second Derivative

Second Derivative

Second Derivative

0                      1000                   2000                   3000                    4000                   5000                    6000

1.5

1

0.5

0

-0.5

-1

-1.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-0

-0.5

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-0

-0.5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

140

130

120

110

100

90

80

70

60

150

140

130

120

110

100

90

80

70

60

50

120

115

110

105

100

95

90

85

80

75

70

130

120

110

100

90

80

70

60

x 104

x 104

x 104

x 104

Change Point, True (blue), Nosiy (purple), and Smooth (black) Signals

Change Point, True (blue), Nosiy (purple), and Smooth (black) Signals

Change Point, True (blue), Nosiy (purple), and Smooth (black) Signals

Change Point, True (blue), Nosiy (purple), and Smooth (black) Signals

Figure 5: Located inflection point by the proposed method for different levels of independent Gaussian noise: first row (no noise), second row (low noise), third row 
(high noise), and fourth row (very high noise). (Left column) zero down-crossings of the second derivative of the estimated sigmoid (red) vs. the zero line (yellow). (Right 
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are superimposed as yellow disks.
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Figure 7: (Top) Estimated location of the inflection points for six different slopes with 200 simulations instances per slope. (Middle) Estimated log squared standard 
error associated with the detected inflection point locations and log true mean squared error (green disks) for the same simulation instances. (Bottom) The coverage of 
confidence interval of estimated inflection point locations for the same simulation instances.
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Figure 8: Searching for the smallest bandwidth to satisfy (16). Sigmoid is corrupted by adding Gaussian noise and the estimated curve is shown for different bandwidths, 
starting from small (100) and increasing the bandwidth to meet (16). True sigmoid (blue), noisy observations (purple), estimated function (black), the detected inflection 
points (red disks) and the true inflection point (yellow disk). (Top row) Estimated sigmoid and detected inflection points. (Middle row) First derivative of the estimated 
function. (Bottom row) Second derivative of the estimated function.
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