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polar moment of inertia of the area A

length

—

elongation of bar
bending moment, couple
normal or axial force

first moment of area with respect to the z or y axis

Q

radius of gyration of area A with respect to the z axis
radius

reaction at point i

length of centreline

torque

H,_IHJU;UN\@ZZUWO'\NND‘Q

thickness

>
—

change of temperature
strain energy density
strain energy

volume

transversal force

i < < Q®

uniform load

deflection

—~
>
~

area bounded by the centerline of wall cross-section area
coefhicient of thermal expansion (in chapter 2)
parameter of rectangular cross-section in torsion

shearing strain

m = Q2 Q »

strain

Download free eBooks at bookboon.com



aa0a00Qq, 2@

Z

=3

3
]

Mises

angle of twist

slope at point i
shearing stress
allowable shearing stress
stress or normal stress
allowable normal stress
maximum normal stress
von Misses stress

normal or axial stress

Download free eBooks at bookboon.com



PREFACE

This book presents a basic introductory course to the mechanics of materials for students of
mechanical engineering. It gives students a good background for developing their ability to
analyse given problems using fundamental approaches. The necessary prerequisites are the
knowledge of mathematical analysis, physics of materials and statics since the subject is the

synthesis of the above mentioned courses.

The book consists of six chapters and an appendix. Each chapter contains the fundamental
theory and illustrative examples. At the end of each chapter the reader can find unsolved
problems to practice their understanding of the discussed subject. The results of these problems

are presented behind the unsolved problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept
of stress. This concept is derived from the physics of materials. The nature and the properties

of basic stresses, i.e. normal, shearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are

generalised into Hooke’s law. Saint-Venant’s principle explains the limits of applying this theory.

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the

torsion of circular members and subsequently, the torsion of non-circular members is analysed.
In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a
member with at least one plane of symmetry and the applied loads are acting in this plane.

We analyse stresses and strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are

two principal methods presented in this chapter: the integration method and Castigliano’s theorem.
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Chapter 6 deals with the buckling of columns. In this chapter we introduce students to Euler’s

theory in order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof.
Pavel Eleszt8s, Dr. Michal Cekan. And also we would like to thank our reviewers' comments

and suggestions.

Roland Jan¢o

Branislav Hucko

Download free eBooks at bookboon.com



1 INTRODUCTION - CONCEPT
OF STRESS

1.1 INTRODUCTION

The main objective of the mechanics of materials is to provide engineers with the tools,

methods and technologies for

* analysing existing load-bearing structures;

. desz'gning new structures.

Both of the above mentioned tasks require the analyses of stresses and deformations. In this

chapter we will firstly discuss the stress.

1.2 A SHORT REVIEW OF THE METHODS OF STATICS

722
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3m

7222

80 mm

Y
| 20 mm

4m

Fig. 1.1
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Let us consider a simple truss structure, see Fig. 1.1. This structure was originally designed
to carry a load of 15kN. It consists of two rods; BC and CD. The rod CD has a circular
cross-section with a 30-mm diameter and the rod BC has a rectangular cross-section with the
dimensions 20x80 mm. Both rods are connected by a pin at point C and are supported by
pins and brackets at points B and D. Our task is to analyse the rod CD to obtain the answer
to the question: is rod CD sufficient to carry the load? To find the answer we are going to
apply the methods of statics. Firstly, we determine the corresponding load acting on the rod
CD. For this purpose we apply the joint method for calculating axial forces n each rod at

joint C, see Fig. 1.2. Thus we have the following equilibrium equations

Fig. 1.2
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XE =0 Fpc —Fep; =0

SE =0 Fpz—15kN=0 (1.1)

Solving the equations (1.1) we obtain the forces in each member: F,. = 20 kN ,F_ = 25 kN.
The force F,. is compressive and the force F, is tensile. At this moment we are not able to

make the decision about the safety design of rod CD.

Secondly, the safety of the rod BC depends mainly on the material used and its geometry.

Therefore we need to make observations of processes inside of the material during loading.
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Let us consider a crystalline mesh of rod material. By detaching two neighbour atoms from the
crystalline mesh, we can make the following observation. The atoms are in an equilibrium state,
see Fig. 1.3(a). Now we can pull out the right atom from its equilibrium position by applying
external force, see Fig. 1.3(b). The applied force is the action force. Due to Newton’s first law
a reaction force is pulling back on the atom to the original equilibrium. During loading, the
atoms find a new equilibrium state. The action and the reaction are in equilibrium too. If we
remove the applied force, the atom will go back to its initial position, see Fig. 1.3(a). If we
push the right atom towards the left atom, we will observe a similar situation; see Fig. 1.3(c).
Now we can build the well-known diagram from the physics of materials: internal force versus
interatomic distance, see Fig. 1.4. From this diagram we can find the magnitudes of forces in
corresponding cases. Now we can extend our observation to our rod CD. For simplicity let us
draw two parallel layers of atoms inside the rod considered, see Fig. 1.5. After applying the
force of the external load on CD we will observe the elongation of the rod. In other words,
the interatomic distance between two neighbouring atoms will increase. Then due to Newton’s
first law the internal reaction forces will result between two neighbouring atoms. Subsequently

the rod will reach a new equilibrium. Thus we can write:
N F,=F;,p or Yinternal forces = external applied force (1.2)

The next task is to determine the internal forces. Considering the continuum approach we

can replace equation (1.2) with the following one:

Resultant of internal forces = external applied force (1.3)
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The resultant can be determined by applying #he method of section. Passing the section at some
arbitrary point Q we get two portions of the rod: CQ and DQ, see Fig. 1.6. Since force F,,
= 25 kN must be applied at point Q for both portions to keep them in equilibrium, we can
conclude that the resultant of internal forces of 100 kN is produced in the rod CD, when a
load of 15kN is applied at C.
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Fig. 1.7

The above mentioned method of section is a very helpful tool for determining all internal
forces. Let us now consider the arbitrary body subjected to a load. Dividing the body into
two portions at an arbitrary point Q, see Fig. 1.7, we can define the positive outgoing normal
nt.the normal forceNyis the force component in the direction of positive normal. The force
component derived by turning the positive normal clockwise about  at Q is known as #he
shear force Vixy the moment M(y) about the z-axis defines zhe bendz'nzg moment (the positive
orientation will be explain in Chapter 4). The moment T,y defines the torque with a positive

orientation according to the right-hand rule.
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For assessing the safety of rod CD we need to ask material scientists for the experimental
data about the materials response. When our rod is subjected to tension, we can obtain the
experimental data from a simple tensile test. Let us arrange the following experiments for the
rod made of the same material. The output variables are the applied force and the elongation
of the rod, i.e. the force vs. elongation diagram. The first test is done for the rod of length
L, and cross-sectional area A, see Fig 1.8 (a). The output can be plotted in Fig 1.8 (d), seen
as curve number 1. For the second test we now define the rod to have a length of 2L while
all other parameters remain, see Fig. 1.8 (b). The result is represented by curve number 2,
see Fig. 1.8 (d). It is only natural that the total elongation is doubled for the same load level.
For the third test we keep the length parameter L but increase the cross-sectional area to
2A. The result are represented by curve number 3, see Fig. 1.8 (d). The conclusion of these
three experiments is that the load vs. elongation diagram is not as useful for designers as one
would initially expect. The results are very sensitive to geometrical parameters of the samples.

Therefore we need to exclude the geometrical sensitivity from experimental data.

1.3 DEFINITION OF THE STRESSES IN THE MEMBER OF A STRUCTURE

The results of the proceeding section represent the first necessary step in the design or analysing
of structures. They do not tell us whether the structure can support the load safely or not. We
can determine the distribution functions of internal forces along each member. Applying the
method of section we can determine the resultant of all elementary internal forces acting on
this section, see Fig. 1.9. The average intensity of the elementary force AN over the elementary
area AA is defined as AN/AA. This ratio represents the internal force per unit area. Thus the

intensity of internal force at any arbitrary point can be derived as

Fig. 1.9

intensity = lim av _ v
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Whether or not the rod will break under the given load clearly depends upon the ability of
the material to withstand the corresponding value, see the above mentioned definition, of the
distributed internal forces. It is clear that this depends on the applied load F¢p, the cross-

section area A and on the material of the rod considered.

The internal force per unit area, or the intensity of internal forces distributed over a given
cross-sectional area, is called szress. The stress is denoted by the Greek letter sigma 0. The unit of

stress is called the Pascal which has the value N/m?. Then we can rewrite equation (1.4) into

— 1 AN _ dN
0 =1IMpg50 37 = 77 (1.5)

The positive sign indicates tensile stress in a member or that the member is in tension. The
negative sign of stress indicates compressive stress in a member or that the member is subjected

to compression.

The equation (1.5) is not so convenient to use in engineering design so solving for this

equation we get

N = [odA (1.6)
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If we apply Saint Venants principle, see Section 2.6 for more details, we can assume the
uniform stress distribution function over the cross-section, except in the immediate vicinity

of the loads points of application, thus we have

N=o0[dA=0A or a=% (1.7)

Fig. 1.10

A graphical representation is presented in Fig. 1.10. If an internal force N was obtained by
the section passed perpendicular to the member axis, and the direction of the internal force
N coincides with the member axis, then we are talking about axially loaded members. The
direction of the internal force N also determines the direction of stress 0. Therefore we define
this stress 0 as the normal stress. Thus formula (1.7) determines the normal stress in the axially

loaded member.

From elementary statics we get the resultant N of the internal forces, which then must
be applied to the centre of the cross-section under the condition of uniformly distributed
stress. 'This means that a uniform distribution of stress is possible only if the action line of the
applied loads passes through the centre of the section considered, see Fig. 1.11. Sometimes we
this type of loading is known as centric loading. In the case of an eccentrically loaded member,
see Fig. 1.12, this condition is not satisfied, therefore the stress distribution function is not
uniform. The explanation will be done in Chapter 4. The normal force N, = F and the
moment My = Fd are the internal forces obtained through the method of section.
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1.4 BASIC STRESSES (AXIAL, NORMAL, SHEARING AND
BEARING STRESS)
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In the previous Section we discussed the case when the resultant of internal forces and the
resulting stress normal to the cross-section are considered. Now let us consider the cutting
process of material using scissors, see Fig. 1.13. The applied load F is transversal to the axis
of the member. Therefore the load F is called the transversal load. Thus we have a physically
different stress. Let us pass a section through point C between the application points of two
forces, see Fig. 1.14 (a). Detaching portion DC form the member we will get the diagram
of the portion DC shown in Fig. 1.14(b). The zero valued internal forces are excluded. The
resultant of internal forces is only the shear force. It is placed perpendicular to the member
axis in the section and is equal to the applied force. The corresponding stress is called #be
shearing stress denoted by the Greek letter tau T. Now we can define the shearing stress as In
comparison to the normal stress, we cannot assume that the shearing stress is uniform over
the cross-section. The proof of this statement is explained in Chapter 4. Therefore we can

only calculate the average value of shearing stress:
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F
.
D aF———— N D a
F ﬂ) b) F
Fig. 1.14
. AV dv
T=limpgso o, = o7 or V=/[1dA (1.8)
_Vv
Tave - A (1-9)

The presented case of cutting is known as the shear.

The cutaway effect can be commonly found in bolts, screws, pins and rivets used to connect
various structural components, see Fig. 1.15(a). Two plates are subjected to the tensile force F.
The corresponding cutting stress will develop in plane CD. Considering the method of section
in plane CD, for the top portion of the rivet, see Fig. 1.15(b), we obtain the shearing stress

according to formula (1.9)

B
i |
| i
F T T
e \ON ll >D P | D
C : C —
b)
T a)
Fig. 1.15
74 F
Tave ZZZZ (1.10)
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Until now we have discussed the application of section in a perpendicular direction to the
member axis. Let us now consider the axially loaded member CD, see Fig. 1.16. If we pass the
section at any arbitrary point Q over an angle 6 between the perpendicular section and this
arbitrary section, we will get the free body diagram shown in Fig. 1.17. From the free body
diagram we see that the applied force F is in equilibrium with #he axial force B i.e. P = F.
This axial force P represents the resultant of internal forces acting in this section. The

components of axial force are

Fig. 1.16

N = Pcos@ and V =Psinf (1.11)

The normal force N and the shear force V represent the resultant of normal forces and shear
forces respectively distributed over the cross-section and we can write the corresponding stresses

over the cross-section A, = A /cos0 as follows

_ N _ P cos 0 _F 2
U—E— 75 —Aocos 6 (1.12)
cos 6
74 P sin 6 F .
T =—= = —sinfcos@
ave " 4, AOG Ao (1.13)
cos

. . F
For the perpendicular section,when § = 0, we get 0 = 04, = — and Tqp = 0. These results
correspond to the ones we found earlier. In the point of view of mathematics, the magnitudes

of stresses depend upon the orientation of the section.
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sectiona — a

Fig. 1.18

The resultant stress from the normal and shearing stress components is called the axial stress (the
stress in the direction of the axis) and it is denoted as p; see Fig. 1.18. Then using elementary

mathematics we get

P =+0%+ Ty (1.14)
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The exact mathematical definition of the axial stress is the same as previously defined stress
types, i.e.

i AP _ dP
p = liMpy0 7 =77 (1.15)

F m

LATERAL '
CONTACT ]

Fig. 1.19

Fig. 1.20

Fittings, bolts, or screws have a lateral contact within the connected member, see Fig. 1.19.
They create the stress in the connected member along the bearing surface or the contact surface.
For example let us consider the bolt /K connecting two plates B and C, which are subjected
to shear, see Fig. 1.19. The bolt shank exerts a force P on the plate B which is equal to the
applied force F. The force P represents the resultant of all elementary forces distributed over
the half of the cylindrical hole in plate B, see Fig. 1.20. The diameter of the cylindrical hole
is D and the height is # The distribution function of the aforementioned stresses is very
complicated and therefore we usually use the average value of contact or bearing stress. In this

case the average engineering bearing stress is defined as

P F F
o=t=t=L (1.16)
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1.5 APPLICATION TO THE ANALYSIS AND DESIGN OF
SIMPLE STRUCTURES

Let us recall the simple truss structure that we discussed in Section 1.2, see Fig. 1.1. Let us
now detach rod CD for a more detailed analysis, see Fig. 1.21. The detailed pin connection at

point D is presented in Fig 1.22. The following stresses acting in the rod CD can be calculated

sectiona —a  sectionc — ¢

\ D a
. /

N

sectionb — b
\\ Yo
30
Fig. 1.21

TOP VIEW
OFENDD

Fig. 1.22

e The normal stress in the shank of the rod CD:

The normal force acting in the circular shank is Frp = 25 kN, the corresponding cross-

2
: : 30
sectional area is A g = T (7) = 706,9 mm?. Then we have

F 25000 N
Oshank = D — 7 = 35,4 MPa
Ashank 706,9mm
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¢ The normal stresses in the flat end of D:

The normal force acting in the flat end is Fop = 25 kN again, the corresponding cross-
sectional areas are at the section z-2 A, = (50 — 20).30 = 900mm? and at the section
b-b Ay, = 50.30 = 1500mm?. Thus we get

Fcp 25000 N Fep . 25000N
= = =278MPa and o0, =-—=
Aaa  900mm 2 ’ bb = 4,y ~ 1500mm 2

O-(l(l

=16,7 MPa

* The shearing stress in the pin connection D:

The shear force acting in the pin is Fgp = 25 kN, the corresponding cross-sectional

. 20\? 2
area is Ay, =1 (7) = 314,2 mm?. Then we have
Ty =72 =220 = 79,6 MPa

spin  314,2mm?2

* The bearing stress at D:

The contact force acting in the cylindrical hole is Fyep,1,, = 25 kN,, the corresponding cross-
sectional area is Apeqring = 30.30 = 900mm?. Using formula (1.16) we get

_ Frearing __ 25000N

Jbearing B Abearing B 900mm 2 - 27’8 MPa
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1.6 METHOD OF PROBLEM SOLUTION AND NUMERICAL ACCURACY

Every formula previously mentioned and derived has its own validity. This validity predicts the
application area, i.e. the limitations on the applicability. Our solution must be based on the
fundamental principles of statics and mechanics of materials. Every step, which we apply in
our approach, must be justified on this basis. After obtaining the results, they must be checked.
If there is any doubt in the results obtained, we should check the problem formulation, the
validity of applied methods, input data (material parameters, boundary conditions) and the

accuracy Of computations.

The method of problem solution is the step-by-step solution. This approach consists of the

following steps:

i. Clear and precise problem formulation. This formulation should contain the given
data and indicate what information is required.

ii. Simplified drawing of a given problem, which indicates all essential quantities, which
should be included.

iii. Free body diagram to obtaining reactions at the supports.

iv. Applying method of section in order to obtain the internal forces and moments.

v. Solution of problem oriented equations in order to determine stresses, strains, and

deformations.

Subsequently we have to check the results obtained with respect to some simplifications, for

example boundary conditions, the neglect of some structural details, etc.
The numerical accuracy depends upon the following items:

* the accuracy of input data;

* the accuracy of the computation performed.

For example it is possible that we can get inaccurate material parameters. Let us consider an
error of 5% in Young’s modulus. Then the calculation of stress contains at least the same
error, the explanation can be found in Section 2.5. The accuracy of computation is tightly
connected with the computational method applied. We can apply either the analytical solution

or the iterative solution.
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1.7 COMPONENTS OF STRESS UNDER GENERAL
LOADING CONDITIONS

S

Fig. 1.23

Until now we have limited the discussion to axially loaded members. Let us generalise the
results obtained in the previous sections. Thus we can consider a body subjected to several
forces, see Fig. 1.23. To analyse the stress conditions created by the loads inside the body,
we must apply the method of sections. Let us analyse stresses at an arbitrary point Q. The
Euclidian space is defined by three perpendicular planes, therefore we will pass three parallel

sections to the Euclidian ones through point Q.
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Firstly we pass a section parallel to the principal plane yz, see Fig. 1.24 and take into account
the left portion of the body. This portion is subjected to the applied forces and the resultants
of all internal forces (these forces replace the effect of the removed part). In our case we
have the normal force N, and the shear force V. The lower subscript means the direction
of the positive outgoing normal. The general shear force V, has two components in the
directions of y and z, i.e. V' and V. The superscript indicates the direction of the shear
component. For determining the stress distributions over the section we need to define a
small area AA surrounding point Q, see Fig. 1.24. Then the corresponding internal forces are
AN, , AV, AVZ. Recalling the mathematical definition of stress in equations (1.5) and (1.8),
we get

— 1 ANy — 1 Avy — 1 ¥ (1.17)
Ox = IMag-0 37 Tey = 1Mago0 77 Taz = HMag0 .

These results are presented in Fig.1.25 Remember that the first subscript in gy, Tyy and Ty,
is used to indicate that the stresses under consideration are exerted on a surface perpendicular

to the x axis. The second subscript in the shearing stresses identifies the direction of the

component. The same results will be obtained if we apply the same approach for the right
side of the body considered, see Fig. 1.26.
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Ox

Fig.1.26

Secondly we now pass a section parallel to the principal plane of xz, where we will get the

stress components: O'y, Tyx

principal plane of xy, we can also get the stress components: 0;, Tz and 7,, by the same

and 7, in a similar way. Thirdly, passing a section parallel to the

way. Thus the stress state at point Q is defined by nine stress components. With respect to
y. p y p p

statics, it is astatically indeterminate problem, since we only have six equilibrium equations.

Oy

w

\X

Fig. 1.27
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To visualise the stress conditions at point Q, we can represent point Q as a small cube, see
Fig. 1.27. There are only three faces of the cube visible in Fig. 1.27. The stresses on the
hidden parallel faces are equal and opposite of the visible ones. Such a cube must satisfy the
condition of equilibrium. Therefore we can multiply the stresses by the face area A4 to obtain
the forces acting on the cube faces. Focusing on the moment equation about the local axis,

see Fig. 1.28 and assuming the positive moment in the counter-clockwise direction, we have

>M, =0 rxyAA%—TyxAA%+TxyAA§—TyxAA%=0 (1.18)
we then conclude
Txy = Tyx (1.19)

The relation obtained shows that the y component of the shearing stress exerted on a face
perpendicular to the x axis is equal to the x component of the shearing exerted on a face
perpendicular to the y axis. Similar results will be obtained for the rest of the moment

equilibrium equations, i.e.

Ty = Tyy and T, =T, (1.20)

yz

The equations (1.19) and (1.20) represent the shear law. The explanation of the shear law
is: if the shearing stress exerts on any plane, then the shearing stress will also exert on the
perpendicular plane to that one. Thus the stress state at any arbitrary point is determined by

six stress components: Oy, Oy, 0y, Tyy, Tyz, Ty;.
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1.8 DESIGN CONSIDERATIONS AND FACTOR OF SAFETY

In the previous sections we discussed the stress analysis of existing structures. In engineering
applications we must design with safety as well as economical acceptability in mind. To reach
this compromise stress analyses assists us in fulfilling this task. The design procedure consists

of the following steps:

o T
oy f----
U Y {---
U
£ Y
Fig. 1.29

* Determination of the ultimate stress of a material. A certified laboratory will make
material tests in respect to the defined load. For example they can determine the

ultimate tensile stress, the ultimate compressive stress and the ultimate shearing stress for

a given material, see Fig. 1.29.
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o Allowable load and allowable stress, Factor of Safety. Due to any unforeseen loading
during the structures operation, the maximum stress in the designed structure can not
be equal to the ultimate stress. Usually the maximum stress is less than this ultimate
stress. Low stress corresponds to the smaller loads. This smaller loading we call the
allowable load or design load. The ratio of the ultimate load to the allowable load is
used to define the Factor of Safery which is:

Ultimate load (1.21)

Factor Of Safety =F.5.= Allowable load

An alternative of this definition can be applied to stresses:

Factor of Safety =F.S.= Ultimate stress (1.22)

Allowabl e stress

o Selecting the appropriate Factor of Safety. The appropriate Factor of Safety (ES.) for
a given design application requires good engineering judgment based on many

considerations, such as the following:

- Type of loading, i.e. static or dynamic or random loading.

- Variation of material properties, i.e. composite structure of different materials.

- Type of failure that is expected, i.e. brittle or ductile failure, etc.

- Importance of a given member, i.e. less important members can be designed
with allowed ES.

- Uncertainty due to the analysis method. Usually we use some simplifications
in our analysis.

- 'The nature of operation, i.e. taking into account the properties of our surrounding,

for example: corrosion properties.

For the majority of structures, the recommended ES. is specified by structural Standards and

other documents written by engineering authorities.
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2 STRESS AND STRAIN -
AXIAL LOADING

2.1 INTRODUCTION

In the previous chapter we discussed the stresses produced in the structures under various
conditions, i.e. loading, boundary conditions. We have analyzed the stresses in simply loaded
members and we learned how to design some characteristic dimensions of these members
due to allowable stress. Another important aspect in the design and analysis of structures are
their deformations, and the reasons are very simple. For example, large deformations in the
structure as a result of the stress conditions under the applied load should be avoided. The
design of a bridge can fulfil the condition for allowable stress but the deformation (in our
case deflection) at mid-span may not be acceptable. The deformation analysis is very helpful
in the stress determination too, mainly for statically indeterminated problems. Statically it is
assumed that the structure is a composition of rigid bodies. But now we would like to analyse

the structure as a deformable body.

2.2 NORMAL STRESS AND STRAIN UNDER AXIAL LOADING

M NN

E, A

1B
T

Fig. 2.1

LOAD

| ELONGATION

Fig. 2.2
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Let us assume that the rod BC, of length L with constant cross-sectional area A, is hanging
on a fixed point B, see Fig. 2.1 . If we apply the load F we can observe an elongation of the
rod BC. Both the applied force and elongation can be measured. And we can plot the load

vs. elongation, see Fig. 2.2.

As we mentioned in the previous chapter, we would like to avoid plotting geometrical
characteristics, i.e. cross-sectional area and length. We cannot use such a graph directly to
predict the rod elongation of the same material with different dimensions. Let us consider

the following examples:
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The applied load F causes the elongation AL. The corresponding normal stress can be found
by passing a section perpendicular to the axis of the rod (method of sections) applying this
method we obtain ¢, = % = F /A, see Fig. 2.1. If we apply the same load to the rod of length
2L and the same cross-sectional area A4, we will observe an elongation of 2AL with the same
normal stress o, = F/A, see Fig. 2.3. This means the deformation is twice as large as the
previous case. But the ratio of deformation over the rod length is the same, i.e. is equal to

AL/L. This result brings us to the concept of strain.

We can now define the normal strain € caused by axial loading as the deformation per unit
length of the rod. Since length and elongation have the same units, the normal strain is a
dimensionless quantity. Mathematical, we can express the normal strain by:

e = AL

ol 2.1)
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This equation is valid only for a rod with constant cross-sectional area. In the case of variable
cross sectional area, the normal stress varies over the axis of the rod by 0, = F/A(y). Then
we must define the normal strain at an arbitrary point Q by considering a small element of
undeformed length Dx. The corresponding elongation of this element is D(DL), see Fig 2.4.

Thus we can define the normal strain at point Q as:

A(AL) _ dAL

& = hmAx_)O TAx dx

(2.2)

which again, results in a dimensionless quantity.
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2.3 STRESS-STRAIN DIAGRAM, HOOKE'S LAW, AND MODULUS
OF ELASTICITY
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Fig. 2.5 Test specimen
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Fig. 2.6 MTS testing machine, see [www.mts.com]

As we discussed before, plotting load vs. elongation is not useful for engineers and designers
due to their strong sensitivity on the sample geometry. Therefore we explained the concepts
of stress and strain in Sec. 1.3 and Sec. 2.2 in detail. The result is a stress-strain diagram that
represents the relationship between stress and strain. This diagram is an important characteristic
of material and can be obtained by conducting a tensile test. The typical specimen can be
shown in Fig. 2.5. The cross-sectional area of the cylindrical central portion of the specimen
has been accurately determined and two gage marks have been made in this portion at a
distance L, from each other. The distance L, is known as the gage length (or referential length)
of the specimen. The specimen is then placed into the test machine seen in Fig. 2.6, which is
used for centric load application. As the load F increases, the distance L between gage marks
also increases. The distance can be measured by several mechanical gages and both quantities
(load and distance) are recorded continuously as the load increases. As a result we obtain the
total elongation of the cylindrical portion DL=L-L for each corresponding load step. From
the measured quantities we can recalculate the values of stress and strain using equations (1.5)
and (2.1). For different materials we obtain different stress-strain diagrams. In Fig. 2.7 one

can see the typical diagrams for ductile and brittle materials.
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For a more detailed discussion about the diagrams we recommend any book which is concerned

with material sciences for engineers.

Many engineering applications undergo small deformations and small strains. Thus the response
of material can be expected in an elastic region. For many engineering materials the elastic

response is linear, i.e. the straight line portion in a stress-strain diagram. Therefore we can write:
o, = Ee¢, (2.3)

This equation is the well-known Hooke’s law, found by Robert Hooke (1635-1703), the English
pioneer of applied mechanics. The coefhicient £ is called the modulus of elasticity for a given
material, or Youngs modulus, named after the English scientist Thomas Young (1773-1829).
Since the strain € is a dimensionless quantity, then the modulus of elasticity £ has the same
units as the stress o, in Pascals. The physical meaning of the modulus of elasticity is the
stress occurring in a material undergoing a strain equal to one, i.e. the measured specimen is

elongated from its initial length L,
If the response of the material is independent from the direction of loading, it is known as

isotropic. Materials whose properties depend upon the direction of loading are anisotropic.

Typical example of anisotropic materials are laminates, composites etc.
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2.4 POISSON'’S RATIO
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Fig. 2.8
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As we can see in the previous sections (2.2 and 2.3) the normal stress and strain have the same

direction as the applied load. Let us assume that the homogenous and isotropic rod is axially
- : . N

loaded by a force F as in Fig. 2.8. Then the corresponding normal stress is o, = %= F/A

and applying Hooke’s law we obtain:

&y =2 =— (2.3)

Fig. 2.9

It is natural to assume that normal stresses on the faces of a unit cube which represents
the arbitrary point Q are zero. o,=0,=0. This could convince one to assume that the
corresponding strains €, €, are zero too. But this is not our case. In many engineering materials
the elongation in the direction of applied load is accompanied with a contraction in any
transversal direction, see Fig. 2.9. We are assuming homogeneous and isotropic materials,
i.e. mechanical properties are independent of position and direction. Therefore we have
g, = €, This common value is called the /lateral strain. Now we can define the important

y
material constant: Poissons ratio, named after Simeon Dennis Poisson (1781—1840), as:

lateral strain (2 4)
- axial strain
or
& &
A (2.5)
Ex Ex

Note that the contraction in the lateral direction means that the reduction of lateral dimension
return a negative value of strain and a positive value of Poisson’s ratio. Usually Poisson’s ratio
has a value within the interval of (0, %) for common engineering materials like steel, iron, brass,
aluminium, etc. If we apply Hooke’s law and eq. (2.5) we will obtain the following strains:

vox__i
=g =—"E=-2 (2.6)

g, ===— and ¢
x EA y
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Fig. 2.10 Open foam

Naturally, there exist some materials with a negative value of Poisson’s ratio. These materials
are known as cellular, i.e. foams and honeycombs. Instead of contraction, they elongate in
the lateral direction. The structure of these materials is presented in Fig. 2.10. For more

information see any book written by L.J. Gibson and M.E. Ashby.

2.5 GENERALISED HOOKE'S LAW FOR MULTIAXIAL LOADING

Fig. 2.11

Until now we have discussed slender members (rods, bars) under axial loading alone. This
. . . F .
resulted in a stress state at any arbitrary point of Q: 0, = —,0, = g, = 0. Now let us consider
A’y
multiaxial loading acting in the direction of all three coordinate axes and producing non-zero

normal stresses: o, # 0, # g, # 0, see Fig. 2.11.
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Let us consider that our material is isotropic and homogeneous. Our arbitrary point Q is
represented by a unit cube (where the dimensions of each side are a unit of the length), see
Fig. 2.12. Under the given multiaxial loading the unit cube is deformed into a rectangular
parallelepiped with the following sides: (1 +¢,),(1+¢,), (1+¢,), where €, €, €, are strains
in the directions of the coordinate axes seen in Fig. 2.12(b). It is necessary to emphasis that
the unit cube is undergoing the deformation motion only with no rigid motion (translation).
Then we can express the strain components €, £, €, in terms of the stress components
o, 0, 0,. For this purpose, we will first consider the effect of each stress component separately.
Secondly we will combine the effects of all contributing stress components by applying the
principle of superposition. This principle states that the final effect of combined loading can
be obtained by determining the effects for individual loads separately and subsequently these

separate effects are combined into the final result.

In our case the strain components are caused by the stress component G_: in the x direction
& = 0,/E and in the y and z directions ¢}, = &, = —vo, /E recalling eq. (2.6). Similarly,
the stress component s causes the strain components: in the y direction &) = 0, /E and in
x and z directions &; = &, = —vo,/E. And finally the stress component s causes the strain
components: in z direction & = 0,/E and in x and y directions &} = gy = —vo,/E. These
are separate effects of individual stress components. The final strain components are then the

sums of individual contributions, i.e.

€x=€x+€x+€x=F—T—T 2.7)
— o ” wo_ _Yox |, Oy VO,
& =&t tey=——+—-——
va, VOy oy
&E =&ttt =——7F7——+—
z z z z E E E
y
Iy Ty Tyx
Tz = Tx
Ty, = Ty
0Z

Fig. 2.13
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The equation (2.7) are known as a part of the generalised Hooke’s law or a part of the elasticity

equations for homogeneous and isotropic materials.

z

Fig. 2.14

Until now, shearing stresses have not been involved in our discussion. Therefore consider the

more generalized stress state defines with six stress components Oy, Oy, Xy

Fig. 2.13. The shearing stresses Txy,Txz, Ty; have no direct effect on normal strains, as long

Oz Tay s Txzs Tyzs S€€

as the deformations remain small. In this case there is no effect on validity of equation (2.7).

The occurrence of shearing stresses is clearly observable. Since the shearing stresses tend to

deform the unit cube into a oblique parallelepiped.

%_ny\\

Fig. 2.15
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For simplicity, let us consider a unit cube of material which undergoes a simple shear in the
xy plane, see Fig.2.14. The unit cube is deformed into the rhomboid with sides equal to one,
see Fig. 2.15. In other words, shearing stresses cause the shape changes while normal stresses
cause the volume changes. Let us focus on the angular changes. The four angles undergo
a change in their values. Two of them reduced their values from % to %— Yxy while the
other two increase from g to %—yxy. This angular change Yxy (measured in radians)
defines the shearing strain in both directions x and y. The shearing strain is positive if the
reduced angle is formed by two faces with the same direction as the positive x and y axes, see

Fig. 2.15. Otherwise it is negative.

In a similar way as the normal stress-strain diagram for tensile test we can obtain the shear
stress-strain plot for simple shear or simple torsion, discussed in Chapter 3. From a mathematical

point of view we can write Hooke’s law for the straight part of the diagram by:

Tyy = GVxy (2.8)

The material constant G is the shear modulus for any given material and has the similar physical

meaning as Young’s modulus.
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If we consider shear in the xz and yz planes we will get similar solutions to Eq. (2.8) for

stresses in those planes, i.e.

Tyz = GVys Ty, = nyz (2.9)

Finally we can conclude that the generalised Hooke’s law or elasticity equations for the

generalised stress state are written by:

ESETT

g, =4 (2.10)
Viy =L

Vaz =

Vyr = 2

The validity of these equations is limited to isotropic materials, the proportionality limit stress
that can not be exceeded by none of the stresses, and the superposition principle. Equation
(2.10) contains three material constants E, G, v that must be determined experimentally. In

reality we need only two of them, because the following relationship can be derived

E
G= 2(1+v) (2.11)
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2.6 SAINT VENANT'S PRINCIPLE

| — — ——— — — — — —
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Fig. 2.17
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Until now we have discussed axially loaded members (bars, rods) with uniformly distributed
stress over the cross-section perpendicular to the axis of the member. This assumption can cause
errors in the vicinity of load application. For simplicity let us consider a homogeneous rubber-
like member that is axially loaded by a compressive force F, see Fig. 2.16. Let us make the
following two experiments. Firstly, we draw a squared mesh over the member; see Fig. 2.17(a).
Then we apply the compressive load through two rigid plates; see Fig. 2.17(b). The member
is deformed in such a manner that it remains straight but the original square element change
into a rectangular elements, see Fig. 2.17(b). The deformed mesh is uniform; therefore the
strain distribution over a perpendicular cross-section is also uniform. If the strain is uniform,
then we can conclude that the stress distribution is also similarly uniform described by Hooke’s
law. Secondly we apply the compressive force to the same meshed member throughout the
sharp points, see Fig. 2.18. This is the effect of a concentrated load. We can observe strong
deformations in the vicinity of the load application point. At certain distances from the end
of a member the mesh is again uniform and rectangular. Therefore we can say that there are
large deformations and stresses around the load application point while uniform deformations
and stresses occur farther from this point. In other words, except for the vicinity of load
application point, the stress distribution function may be assumed independently to the load
application mode. This statement which can be applicable to any type of loading is known
as Saint-Venants principle, after Adhémar Barré de Saint-Venant (1797-18806).
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Fig. 2.18

While Saint-Venant’s principle makes it possible to replace actual loading with a simpler one

for computational purposes, we need to keep in mind the following:

* The actual loading and loading used to compute stresses must be statically equivalent.
* Stresses cannot be computed in the vicinity of load application point. In these cases

advanced theoretical and experimental method must be applied for stress determination.

2.7 DEFORMATIONS OF AXIALLY LOADED MEMBERS
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Fig. 2.18

Let us consider a homogeneous isotropic member BC of length L, cross-sectional area A,
and Young’s modulus £ subjected to the centric axial force F, see Fig. 2.18. If the resulting
normal stress 0, = N)/A = F/A does not exceed the proportional limit stress and applying

Saint-Venant’s principle we can then apply Hooke’s law

O, = ESx or &y = % (212)

Download free eBooks at bookboon.com



And substituting for the normal stress 0, = N(y)/A = F/A we have

_Neo _ F
& T %A " Ea (2.13)

Recalling the definition of normal strain, equation (2.1) we get

AL = ¢, L (2.14)
and substituting equation(2.13) into equation (2.14) we have
_ Neb _ FL
AL =—"—=— (2.15)

Now we can conclude that the application of this equation: Equation (2.15) may be used only
if the rod is homogeneous (constant E), has a uniform cross-sectional area A, and is loaded at
both ends. 1If the member is loaded at any other point or is composed from several different
homogeneous parts having different cross-sectional areas we must apply the division into
parts satisfying the previous conclusion. Denoted Ny, Ei, A;, L; the internal normal force,
Young’s modulus, cross-sectional area and length corresponding to the part i respectively. Then
the total elongation is the sum of individual elongations (principle of superposition):

Nix) L
AL =Y, AL; = ?=1ﬁ (2.16)

In the case of variable cross-sectional area, as in Fig. 2.4, the strain depends on the position
of the arbitrary point Q, therefore we must apply equation (2.2) for the strain computation.

After some mathematical manipulation we have the total elongation of the member

N
EA dx (2.17)

AL=f(L)

Until now we could solve problems starting with the free body diagram, and subsequently
determine the reactions from equilibrium equations. Recalling the method of sections in
(chapter 2.2) we can compute internal forces at any arbitrary section, allowing us to then
proceed with computing stresses, strains and deformations. But many engineering problems

can not be solved by the approach of statics alone.
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For simplicity, let us consider a simple problem, see Fig. 2.19. Using statics we cannot solve
the problem through equilibrium equations. The main difficulty in this problem is that the
number of unknown reactions is greater than the number of equilibrium equations. From
a mathematical point of view the problem is ill-conditioning. For our case we obtain one
equilibrium equation as

2F,=0: Re—F+Rz=0 (2.18)
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Fig. 2.20

There are two unknown reactions in equation (2.18). Problems of this type are called szatically

indeterminate problems.

: A4 :
B : 2.
. AL,
i E A
|
| ool | —%
F 1
AL,
|
\J C _l Y
I Rc l U = 0

Fig. 2.21
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To overcome the static indeterminacy we need to complete the system of equilibrium equations
with relations involving deformations by considering the geometry of the problem. These
additional relations are called deformation conditions. For practical solution let us consider
the following transformation in Fig. 2.20. The problem presented is exactly the same as the
problem in Fig. 2.19. This problem is statically indeterminate to the first degree. Removing
the redundant support at point C and replacing it with the unknown reaction R_we obtain
the so-called statically indeterminate problem with unknown reaction, see Fig. 2.20(b). Now
our task is to receive the same response for the statically indeterminate problem as in the
original statically indeterminate problem. To get the same response of the structure we need
to impose the deformation condition for point C, that the displacement for this point is equal

to zero, see Fig. 2.21, or mathematically
uc =0 (2.19)

This condition (2.19) coincides with the total elongation of the member also equal to zero.

We then have:

The member presented in Fig. 2.21 can be divided into two homogeneous parts. Therefore
the total elongation is a sum of individual elongation, equation (2.16), i.e. AL = AL; + AL,.
Then we have

_ Nigolt | Nagola _
AL = - + - =0 (2.21)

Both normal forces N,y = =R, , Ny(,) = F — R are functions of unknown reaction R_.. Solving
equation (2.21) we obtain the value of reaction R_.. We can then continue by solving in the

usual way for statically determinate problems.
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2.8 PROBLEMS INVOLVING TEMPERATURE CHANGES
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Fig. 2.22
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In the previous discussions we assumed constant temperature as the member was being loaded.
Let us now consider a homogeneous rod BC with the constant cross-sectional area A and
the initial length Z, see Fig. 2.22. If the temperature of the rod grows by AT then we will
observe the elongation of the rod by AL, see Fig. 2.22. 'This elongation is proportional to

the temperature increase AT and the initial length L. Using basic physics we have
ALy = a(AT)L (2.22)

where o is the coefficient of thermal expansion. The thermal strain & is associated with the

aforementioned elongation AL . i.e. &7 = ALy /L. Then we have

er = a(AT) (2.23)
RIGID PLATES
/ m
-
-l L -
Fig. 2.23

In this case there is no stress in a rod. We can prove this very easily by applying the method

of sections and writing equilibrium equations.

— (a)

e ()

T e
|

Fig. 2.24
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By modify the previous rod by placing it between two rigid plates and subjecting it to a
temperature change of AT we will observe no elongation because of the fixed supports at its
ends. We know that this problem is statically indeterminate due to the supports at each end.
Let us then transform the problem into the so-called statically determinate problem. Removing
the support at point C and replace it by unknown reaction R.. Now we can apply the
principle of superposition in the following way. Firstly, we heat the rod by AT, see Fig. 2.24(a),
then we can observe the elongation ALy = « (AT)L, see Fig. 2.24(b). Secondly, we push the
rod by the reaction R_ back to its initial length, see Fig. 2.24(c). The effect of pushing is the
opposite of elongation ALg,.. Applying the formulas (2.22) and (2.15) we have

ALy = a(AT)L  and  ALg =5 (2.24)

Expressing the condition that the total elongation must be zero, we get

RcL

AL = ALy + ALg, = a(AT)L + =5

0 (2.25)

This equation represents the deformation condition. And we can compute the reaction as

Rc = —EAa(AT) (2.26)

and corresponding stress

0, =2 =5 = _pa(ar)

(2.27)

2.9 TRUSSES

Fig. 2.25
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The truss is a structure consisting of several slender members (rods, bars) that are subjected to
axial loading only. The simple truss structure is presented in Fig. 2.25. This truss consists of two
bars of the same cross-sectional area A and Young’s modulus £. The truss is loaded by a vertical
force F. Our task is to compute the vertical and horizontal displacements of joint C. Applying
the methods of statics we can determine axial forces in each bar: N; = F/sin8 ,N, = F/tan 8

. Consequently, we can determine elongations for individual bars using equation (2.15)

NiL FL Ny L FL
AL, = 2 =—"L and AL, =-22=_—2_ (2.28)
EA EAsin© EA EAtan 6
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The deformed configuration can be founded by drawing two circles with centres at joints B

and D with the following radii, see Fig. 2.26

)

Fig. 2.26

F
r{ = L1 +AL1 = L1 (1 +EASin9)

The deformations are relatively small, therefore we can replace the circles with tangents

perpendicular to the undeformed bars, see Fig. 2.27. One can then compute the horizontal

and vertical displacements as follows:

FL,
uc = AL, =
C 2 EAtan 6
. AL2+AL1 cos 6 F L1 F LZ
ve = AL, sin @ =
c 1 + tan 0 EAsin20 ' EA tan26
D
UC = A L2
AL,
C
A
0
0
Ve
Y
CI

Fig. 2.27 Vertical and horizontal displacements
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2.10 EXAMPLES, SOLVED AND UNSOLVED PROBLEMS
Problem 2.1

Fig. 2.28

A steel bar has the following dimensions: a = 100 mm, b = 50 mm, L = 1500 mm, shown
in Fig. 2.28. If an axial force of F = 80 kN is applied to the bar, determine the change in its
length and the change in the dimensions of its cross-section after the load is applied. Assume
that the material behaves elastically, where the Young’s modulus for steel is E = 200 GPa and

Poisson’s ratio v = 0.32.

Solution

The normal stress in the bar is

3
c, = F_E__80OON 4 0.10°Pa=16.0 MPa.
A ab (0.1 m)(0.05m)

The strain in the x direction is

16x10°P
PRI L T
E  200x10°Pa

The axial elongation of the bar then becomes

AL, =g 1~Z=TL
E abE

=(80x10°)x1.5m = 120pm.

Using Eq. (2.6) for the determination of Poisson’s ratio, where v = 0.32 as given for steel, the

contraction strain in the y and z direction are

g, =&, =-ve, =-032(80x10°)=-25.6 pm/m.
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Thus the changes in the dimensions of cross-section are given by

F
AL =¢ L =-vea=-va —= —Vaﬁ
Fv
-—=-2.56
= bE a
AL, =¢,L,=—veb=-vb Ix o —vbi
E abE
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Problem 2.2

L 420 |

nn

Fig. 2.29

A composite steel bar shown in Fig. 2.29 is made from two segments, BC and CH, having
circular cross-section with a diameter of D, . = D and D, = 2D. Determine the diameter D,
if we have an allowable stress of G, = 147 MPa and the applied load is F = 20 kN.

Solution

We can divide the bar into three parts (BC, CG and GH) which have constant cross-section

area and constant loading.

Stress and Equilibrium for part BC

X; € <O,L>

oD | %)

Solution of normal (axial) load N,

> F, =0: F-N;=0 = N =F=20kN

ixy

Stress in the part BC

N F 4F  4x20000N 1
Gl = XI = > = 3 = > = 254648_2
, mD° =D nD D
4
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Equilibrium and stress in part CG

X, € <L, 2L>

oD

_..__.__._.__._
=

920
Solution of normal (axial) load N,
D'F,, =0: F—%—%—NH =0 = N,;=0
Stress in part BC
G, = % - n1F32 - ;FZ - 4Xi(]);)200N - 25464.8#
4

Equilibrium of part and stress in part GH

xy €(2L,3L)

4D | |
SN N
ol
|
!
L | 3F I E
Fllem! 20
2 2

Xiii

I

Solution of normal (axial) load N,

DF, =0: F—E—E—EF—EF—Nm:O
2 2 2 2

N, =—3F =-3x20000 N =—-90000 N

= N, =-3F

STRESS AND STRAIN - AXIAL LOADING
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Stress in part CD

. =%= SF_3F _ 3x20000N _ g0 6 1
u  T(2D) 7D D D
4

®» ©
- %j@:

20kN 254648/ D?

n
-
[

' 90kN 190986/D?

AB Volvo (publ)
W e
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For all parts, draw the diagram of normal force and stress. The maximum stress is in the first

part (BC), which we can compare with the allowable stress and obtain the parameter D

4F 4F
=06, =—3<0, = D2
nD TG

px [#¥20000N 132 mm
\fn147MPa

Problem 2.3

GMAX

DIDMNIN
i A
|
[ L
|
],
F
L
| ¥
Bl B

Fig 2.30

Determine the elongation of a conical bar shown in Fig. 2.30 at point B without considering

its weight.

Given by maximum cone diameter of D, length L, modulus of elasticity E and applied force

E Determine the maximum stress in the conical bar.

Solution

The problem is divided into two parts.

Equilibrium of the first part

X, € (O, L/2>
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We determine the normal force N, and normal stress o,

Normal force N

ZFix, =0: Ni(x)=0 = N(x)=0

Calculate angle B from the geometry of the cone given by diameter D, at position x,

Cross-sectional area (function of position) in the first part is

m? n(x, .\ aD*X
Aa) == :Z(ij 4

Normal stress C, is as follows

N, (x,) 0
GI(XI):#: 2.2
(x)  wDx;
417

Equilibrium of the second part

X, € (L/2,L>

P X

We determine the normal force N, and normal stress G,

Normal force N,

ZFix” =0: Ny(x,)-F=0 = Ny(x,)=F
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Calculation of angle b from geometry and diameter D, at position x;,

Dy (xy)

D
2 2 X
tan f === = D,x,)=—D
B L X 1(Xy) L

Cross-section area (function of position) in second part is

D} w(x, ..} aD*X
AH(XH):TH:Z(%DJ = 2 ?

Normal stress c, is then

Ny(xy) F 4F1°

2.2 2.2
Ay(xy) 7Dxy; DXy

ar:

oy (xy) =
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Ny @
/i 2=

LY
IP b 4F/(nD?)

Fig. 2.31

The graphical result of the normal force and stress is shown in the Fig. 2.31.

Elongation is found by summing the elongation of each part using integration, because cross-
section area is a function of position in all parts, which is given by
L2 L
N N
AL, =AL, +AL, = | JGD gy [ nu) g
o EA(x) o Ay (X))

L2

F
= dx, + | ———dx
? J EA,(x,) H I aD’xy "

0 L2 I

417
2 L 2 L 2
T AR
EnD” ;, X} ExD°| L}, EaD"L
4FL
AL, =——
® EaD?
Problem 2.4
\ N
G <
|
1 b Ii
F
C
L
B 92D
Fig. 2.32
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A bar BC and CG of length L is attached to rigid supports at B and G. Part BC have a
square cross-section and between point C and G the cross section is circular. What are the
stresses in portions BC and CG due to the application of load F at point C in Fig. 2.32.
The weight of the bar is neglected. Design the parameter D to accommodate for the given

allowable strss o, . length L, modulus of elasticity E and applied force F are known. Problem
is statically indeterminate.

Solution

N

Fig. 2.33

At first, we detach the bar at point B and define a reaction at its location, which will be solved
from the deformation condition. (See Fig. 2.33).

The solution is divided into two solutions part BC and CG.

Free-body diagram on portion I (part BC):

X, e<0,L>

X

From the equilibrium equation in the first part, we obtain

DE,=0: N(x)-R=0 = N{(x)=R
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Solution of cross-section area is given From Pythagoras theorem where we determine the side

length of the square:

(2D)* =a* +a’
A =2 = 4D’ =2a° = A, =2D’
2D* =a’

Stress in portion BC is

N, (x,) _ R

o1(x;) = A(x,) 2D°
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Free-body diagram an portion Il (part CG):

X, € <L,2L>

X

From the equilibrium equation in the second part, we obtain

ZFiX“:O: N,(x,)+F-R=0 = N,(x,)=R-F

Stress in portion CG is

Ny (xy) _ R-F _ 4R —F)
AII (XH) '/'I:D2 T[D2
4

oy(xy) =

We determine the unknown reaction from the deformation condition, total elongation

(movement of point B) is equal to zero:

AL,=0 = AL,=AL +AL,=0 = AL, +AL,=0

from which we have

PL, PL ;
o, T g RL2+4(RF2L:O
EA, E,A, E2D’  EnD
MR48RF)=0 = R=—F
T+8
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©)

i =

l H

| -
L Q= ==

F H

0.28F = 0.36F/D?
: > :
0.72F 0.36F /D2

Fig. 2.34

We insert the solved reaction into the result of parts BC and CG,

N,(x;)=R = 8—F =0.72F
T+8

N, (x 8F F
o,(x,)= 1) _ -=036—
A (x;) @+8)2D D
8F nF
NH(XH)=R—F=E—F=—m=—o.28}_“

and draw the diagram of normal forces and stresses for both portions, which is shown in the

Fig. 2.34

Design of parameter D

The maximum (absolute value) of stresses is the same for both portions, we compare them

with the allowable stress and we get the designed parameter D:

0.36F

F
Oyvax = 0.36§SGA“ = D> s
All
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Problem 2.5

AN
Fig. 2.35

In Fig. 2.35, a bar of length 2L with uniform circular cross-section area and made of the same
material with a modulus of elasticity E, is subjected to an applied force FE determine the stress

in the bar. Consider the weight of bar (density p and gravity g are known).
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Solution

N
R,=0 M =
R =?
Fig. 2.36

Problem is statically indeterminate and for the solution we use the deformation condition at

point B.

First step of solution is to substitute an unknown reaction at point B (see Fig. 2.36).

Because the problem is in pure tension, the reaction R and moment M are zero, reaction R

is non-zero.

Solution of this problem is divided into two parts.

X, € <0, L>

Equilibrium of first part

>E, =0: Ni(x)+R-G, =0 = N(x,)=G,-R

where G, is gravitational load of first part, defined by

G, =mg =pVg =pgAx,
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Normal force and stress is gathered by
N, (x;) =pgA;x; —R

N, (x A x, —R -R
(X)) _ pgA X, = pgx, —

A(x)) A, A

o,(x,) =

X, € <L,2L>

X

Equilibrium at the second part, is given by

ZFix" =0: Ny(x)+F-R-G, =0 = N, (x;)=F+G,-R

Normal force and stress is as follows

Ny (xy) =F+pgA;x,; —R =F+pgAx, -R

N F Ax,—-R F R
II(XII): +pgAXy = tpgx, ——

0, (X =
uta) Ay (xy) A A A

Deformation condition at point A

Total elongation at point A is equal to zero, which is consisting of the first part of the bar
AL, and second part AL, . For solution of each part we used the integral form because normal

force is a function of position. Unknown reaction R after calculation becomes
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L 2L
I(pgAxI R)L dx, + I(F+pgAxu R)L dx, =0
. EA 3 EA

F
2pgAL+F=2R = R=pgAL+5

. ® ®
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We insert the result of reaction R into the function of normal force and stress for both parts

and the diagram for force and stress is shown in Fig. 2.37.

N, (x;) = pgAx, —[pgAL +§j =pgA(x, —L) —g

N, (x;) _ pgAX; —R = pg(x, —L)—i
A (x;) A, 2A

o,(x,) =

F\ F
N, (x;) =F+pgAx; —R =F+pgAx, — (pgAL + 5) = E +pgA(x,; —L)

Ny (xy) F
o,(xy)=—"==—+pgx, -L
1 (Xyp) k) 2 pe(xy )

Problem 2.6

TUBE A, E;

\ RODA,, E, .

N L

L2

Rigid plate

Fig. 2.38

A rod of length L, cross-sectional area A, and modulus of elasticity E, has been place inside
a tube with the same length L, but of differing cross-section area A, and modulus of elasticity
E, (Fig. 2.38). What is the deformation of the rod and tube when F is applied to the end
of the plate as shown?

Solution

The axial force in the rod and in the tube is denoting by N, | ~and N respectively. we

D TUBE’

draw a free-body diagram for the rigid plate in Fig. 2.39:

Rigid plate

Fig. 2.39
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ZFix =0: NTUBE + NROD -F=0 = NTUBE + NROD =F (a)

The problem is statically indeterminate. However, the geometry of the problem shows that
the deformation DL, and DL .. of the rod and tube must be equal:

AL _AL = NT[)'BELT[J'BE _ NRODLROD
TUBE ROD -
ETUBEATUBE ERODAROD
E s:A
NTUBE = NROD ETUBEATUBE
RODZ}ROD (b)
Equation (a) and (b) can be solved simultaneously for N, and N .. by:
E s:A
Nroo __TUBE” "TUBE Niop =F
ROD* *ROD

E uscA
Neon ( TUBE/AMTUBE l] -F

ERODAROD
F
NROD =
(ETUBEATUBE _,’_1]
ERODAROD
N — ETUBEATUBE F
TUBE
ERODAROD [ETUBEATUBE _,’_IJ
ERODAROD
Problem 2.7
Heating AT
-
\ A, E
s @2

NN L

Fig. 2.40

Determine the value of stress in the steel bar shown on Fig. 2.40 when the temperature change

of the bar is AT = 30 °C. Assume a value of E = 200 GPa and a = 12 x 10° 1/°C for steel.
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Solution

We first determine the reaction at the support. Since the problem is statically indeterminate,

we detach the bar from its support at B.

ALy
Heating AT

'
\ A E

N\ L .

Ncompresswon

AI-compnassicm

Fig. 2.41

The corresponding deformation from temperature exchange (Fig. 2.41) is

AL, =a AT L

360°
thinking

Deloitte
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Applying the unknown force N at the end of the bar at B (Fig. 2.41). We use eq. (2.15)

to express the corresponding deformation AL

compression

compression

AL _ Ncompression

compression E A

Total deformation of the bar must be zero at point B, from which we have the following

deformation condition

AL =AL

compression T>

from this we obtain N

compression

N =a AT EA.

compression

Stress in the bar is then given by

Ncompression _ a AT EA
A

o= = ATE=12x10"° 1/°Cx30 °Cx200x10° Pa= 72 MPa.

Problem 2.8

Heating AT

"
N

N -

Fig. 2.42

Determine the stress of the aluminum bar L = 500 mm shown in Fig. 2.42. when its temperature
changes by AT = 50 °C. Use the value E = 70 GPa and o = 22.2 x 10° 1/°C for aluminum.
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Solution

We determine the elongation of the bar from temperature exchange from the following equation

X e(O,L)

Fig. 2.43

AL=AL, =a AT L=222x10"° 1/°Cx40 °Cx500 mm = 0.444 mm

We divide the bar into one component part shown in Fig. 2.43. From equilibrium equation

in this part we find the unknown normal force:

Y E,=0: Nx=0
Stress in the aluminum bar we describe by

=0Pa

Problem 2.9

B f
L2 =1.5m
Y
B k8
L'| =2m
Y D
F 250 kN
Fig. 2.44

The linkage in Fig. 2.44 is made of three 304 stainless members connected together
by pins, each member has a cross-sectional area of A = 1000 mm? If a vertical force
F = 250 kN is applied to the end of the member at D, Determine the stresses of all members

and the maximum stress Oy ax-
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Solution
N o
C
L, =2m
D
F = 250 kN
Fig. 2.45

First we disconnected the member CD and draw a free-body diagram (shown in Fig. 2.45)
We then solve for the force N, by the following equilibrium equation

DF,=0: Ny -F=0 = N =F=250kN
Other normal forces N, . and N, . we determined from equilibrium at point C (shown in
Fig. 2.46), given by:

na=2 =10 0666 =  0=33.69°
L, 15m
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In the x direction

Y E,=0: —Ngsina+Nysina=0 = —Ng+Ny. =0

ix

Npe =N,¢

In the y direction

ZF. =0: Ngccosa+Ng.coso—Nq, =0

1y

F 250 kN
2N..cosa=N.,=F = N,.= = =150.23 kN
Be o P 2 cosa 2 cos 33.69°
Nge =Ny =150.23 kN
Stresses in the members are
3
_Nee (15023 10N _ (oo

O
A 1000 mm?

3
_Nac _I02310N 505y,

o =
A 1000 mm

N 3
=— — 250 10N =250 MPa

[¢)
° A 1000 mm’

Maximum value of stress is at link CD

Gyax =Ocp =250 MPa
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Problem 2.10

B D
L= 2m
G C
| i
F = 30kN
Fig. 2.47

The assembly consists of two titanium rods and a rigid beam AC in Fig. 2.47. The cross section
area is A, = 60 mm® and A_ = 45 mm”. 'The force is applied at a = 0.5 m. Determine the
stress at rod GB and CD; if a the vertical force is equal to F = 30 kN.

Solution
N GB N cD
G C
| |
F = 30kN
a 2a R
Fig. 2.48

The unknown normal forces in the titanium rod are found from the equilibrium equation of

rigid beam GC in Fig. 2.48, given by

D E,=0: Ng+Ng-F=0

> M; =0: Ng3a-Fa=0 = Ny, =

Ngs = F~ Ny =30 KN —10 kN = 20 kN

Ngs =20 kN
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Stress in rod AB and CD is given by the following

N

ooy = o _ 20000N_ 355 5 \pp,
Ag 60 mm

ooy = oo L 1000ON _ 55 5 Mpa
A, 45mm

Problem 2.11

Fig. 2.49

o™

e-learning
for kids

o The number 1 MOOC for Primary Education
e Free Digital Learning for Children 5-12
®15 Million Children Reached

About e-Learning for Kids Established in 2004, e-Learning for Kids is a global nonprofit foundation dedicated to fun and free learning on the
Internet for children ages 5 - 12 with courses in math, science, language arts, computers, health and environmental skills. Since 2005, more
than 15 million children in over 190 countries have benefitted from eLessons provided by EFK! An all-volunteer staff consists of education and
e-learning experts and business professionals from around the world committed to making difference. eLearning for Kids is actively seeking
funding, volunteers, sponsors and courseware developers; get involved! For more information, please visit www.e-learningforkids.org.

Download free eBooks at bookboon.com

Click on the ad to read more

88



http://s.bookboon.com/elearningforkids

The rigid bar BD is supported by two links AC and CD in Fig. 2.49. Link CH is made of
aluminum (E_, = 68.9 GPa) and has a cross-section area A, = 14 mm?; link DG is made
of aluminum (E__ = 68.9 GPa) and has a cross-section of A . = 2 A, = 280 mm®. For the
uniform load w = 9 kN/m, determine the deflection at point D and stresses in the link CH
and DG.

Solution

Free body diagram of rigid bar BD

| y Ncn Npc
x A
a W

Bl"‘ h HHH\' FYYYYYYYYYYY :)

L |1

y
\

Fig. 2.50

Equilibrium equation of moment at point B in the bar BC (Fig. 2.50), is expressed as

> My =0: NgLsina+Npy;2L-w2LL =0

D

NCH 74‘ 2NDG = 2WL,

(a)

where

tanaz%zl = o=45°

in equation (a) we have two unknowns. We need a second equation for the solution of normal

forces in the links from the deformation condition in Fig. 2.51, from the similar triangles

a
a
/B\,(:>D

m L [Ae

A
‘
A
L
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ABDD' ~ ABCC'

DD'_CC' ALy _ ALy

tanf=—=— =
b BD BC L sina 2L

In these triangles the angle 3 are the same from which we have the following equation:

AL AL
sing=—2L = CC'=—
sin o

_ NCHLCH NCH \/EL

AL, = =
o ECHACH EA
ALDG — NDGLDG — NDGL
EpcAp,  2EA
ALg, _ ALy  _ Ny 212 Ny N <N b)
Lsina 2L EA\2 2EA g

Solving for the system of equations (a) and (b), we get

Nog £+ 2N, =2wL = Ng, = _ 2wk =0.92wL
4 2 2
s

Npg =0.92wL =0.92 300N/m Im =276 N

N oNog _ wL 092wl _ .
CH 4 \/5 4

Ny = 0.23wL = 0.23 300N/m Im = 69 N

Stress in link CH is

_ Naw _ 69N2 —4.93 MPa

()
A, 14mm
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Deflection of point D is given by the following

AL = Noolog _ 0.92wLL _  0.92 300N/m (1m)’
P EpgAps 2EA 268.910°Pa 14 10°m’

AL, =143 10*m = 0.143 mm

Unsolved problems

IG
L, i $Dy = 20mm D \ 5 lF
i Ly =0.4m L, = 300mm | 2a
|B L, =0.5m L, = 150mm ! : h
L i al $0; = 60mm » :
AN =
Fig. 2.52 Fig. 2.54

‘mtgia IrAX?A Graduate
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i
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Problem 2.12

Both portions of rod GBC in Fig. 2.52 are made of aluminum for which E = 70 GPa. Knowing
that the magnitude of F is 4 kN, determine (a) the value of F, so that the deflection at point

A is zero, (b) the corresponding deflection of point B, (c) the value of stress for each portion.
[F, = 32.8 kN; AL, = 0.073 mm; o, = 12.73 MPa; o, = 10.19 MPa]

Problem 2.13

Link DB in Fig. 2.53 is made of aluminum (E = 72 GPa) and has a cross-sectional area of 300 mm?.
Link CG is made of brass (E = 105 GPa) and has a cross-sectional area of 240 mm?.
Knowing that they support rigid member HBC, determine the maximum force F that can be

applied vertically at point H, if the deflection of H cannot exceed 0.35 mm.
[F = 16.4 kN]

Problem 2.14

In Fig 2.54 a vertical load F is applied at the center B of the upper section of a homogeneous
conical frustum with height h, minimum radius a, and maximum radius 2a. Young’s modulus
for the material is denoted by E and we can neglect the weight of the structure. determine

the deflection of point B.
Fh
AL, =
{ s 2Ema’ }

? 300mm 200mm
L \‘
F L o< 2 L
= <0mm BRASS
Apc = 250mmy’ M g O =30mm G B STEEL c
c Aca = 400mm? ALUMINUM SHELL
L P—
L= 200mm STEEL CORE F
F = 400kN F... - F
|2F A=4.5mm 9D |¢Ds F = 200 kN
5t A\
B d n
et D =40mm D =30
§\ Rigid plate Rigid plate BRASS STEEL mm
Fig. 2.55 Fig. 2.56 Fig. 2.57

Problem 2.15

Determine the reaction at D and B for a steel bar loaded according to Fig. 2.55, assume that
a 4.50 mm clearance exists between the bar and the ground before the load is applied. The
bar is steel (E = 200 GPa),

[R, = 430.8 kN, R, = 769.2 kN]
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Problem 2.16

Compressive centric force of N = 1000 N is applied at both ends of the assembly shown in
Fig 2.56 by means of rigid end plates. Knowing that E =200 GPaand E =70 GPa,

STEEL ALUMINUM
determine (a) normal stresses in the steel core and the aluminum shell, (b) the deflection of

the assembly.
=3.32 MPa; &

[ =9.55 MPa; AL = 4.74x10 mm)]

ALUMINUM STEEL

Problem 2.17

Two cylindrical rods in Fig. 2.57, one made of steel (E

(Eggass
load, determine (a) the reaction at G and C, (b) the deflection of point B.

e = 200 GPa) and the other of brass
= 105 GPa), are joined at B and restrained by supports at G and C. For the given

[R, = 134 kN; R_ = 266 kN; DL, = - 0.3 mm]

Problem 2.18

Ly =1.5m
NC L=2m
*ﬁb
L, \w = 300 N/m
o
i .

L B

-+ > >

Fig. 2.58

The rigid bar HBC is supported by a pin connection at the end of rod CB which has a cross-
sectional area of 20 mm? and is made of aluminum (E = 68.9 GPa). Determine the vertical
deflection of the bar at point D in Fig. 2.58 when the following distributed load w=300N/m
is applied.

(AL, = 12.1 mm]
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Problem 2.19

Fig. 2.59

The bar has length L and cross-sectional area A. (see Fig. 2.59) Determine its elongation due

to the force F and its own weight. The material has a specific weight y (weight / volume)

and a modulus of elasticity E. ,
[AL b, E}
2E EA
I -Oined MITAS because The Graduate Programme
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] P - - > -

:-.‘ll!uﬂ.; ':I.Ii'i'f
LT e

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

Download free eBooks at bookboon.com

Click on the ad to read more

94


http://s.bookboon.com/mitas

3 TORSION

3.1 INTRODUCTION

T

In the previous chapter we discussed axially loaded members and we analyzed the stresses and

Fig. 3.1 Member in torsion

strains in these members, but we only considered the internal force directed along the axis
of each member without observing any other internal force. Now we are going to analyse
stresses and strains in members subjected to rwisting couples or torques T and T, see Fig. 3.1.
Torques have a common magnitude and opposite sense and can be represented either by

curved arrows or by couple vectors, see Fig. 3.2.

o=

i i %

Fig. 3.2 Alternative representations of torques
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Members in torsion are encountered in many engineering applications and are primarily
used to transmit power from one point to another. These shafts play important roles in the

automotive and power industry. Some applications are presented in Fig. 3.3.

Ve

- > >

Fig. 3.3 Transmitting shafts, [http://www.directindustry.com]

There is a parallelism between an axially loaded member and a member in torsion. Both
vectors of applied force Fand applied torque T act in the direction of the member axes, see
Fig. 3.4. Further on, will see the results of a deformation analysis speak more about

this parallelism.

Fig. 3.4 Parallelism

This chapter contains two different approaches in solving torsion problems. Firstly we will
& y
present the theory for members with circular cross-sectional areas (circular members in short) and

secondly we will extend our knowledge of this theory for application on non-circular members.
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3.2 DEFORMATION IN A CIRCULAR SHAFT

Fig. 3.5
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Let us consider a circular shaft fixed to a support at point B while the other end is free, see
Fig. 3.5. The shaft is of length L with constant circular cross-sectional area A. If the torque
T is applied at point C (free end of shaft), then the shaft will twist, i.e. the free end will
rotate about the shaft axis through the angle of twist ¢ and the shaft axis remains straight after
applying the load.

Before applying the load, we can draw a square mesh over the cylindrical surface of the shaft
as well as varying diameters on the front circular surface of the shaft, see Fig. 3.6(a). After
applying the load and under the assumption of a small angle of twist (less than 5°) we can
observe the distortion in Fig. 3.6(b):

1. All surface lines on the cylindrical part rotate through the same angle 7.

2. The frontal cross-sections remain in the original plane and the shape of every circle
remains undistorted as well.

3. Diameters on the front face remain straight.

4. The distances between concentric circles remain unchanged.

Fig. 3.6
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These experimental observations allow us to conclude the following hypotheses:

1. All cross-sectional areas remain in the original plane after deformation.
2. Diameters in all cross-sections remain straight.

3. The distances between any arbitrary cross-sections remain unchanged.
The acceptability of these hypotheses is proven by experimental results. The aforementioned
hypotheses result in no strain along the member axis. Applying equation (2.5) for isotropic

material, we get

&E=0 = g =¢=0 (3.1)

Fig. 3.7

Using equations of elasticity (2.10) we have o, = 0. Equation (3.1) means that the edge
dimensions of the unit cube are unchanged, but the shape of unit cube is changing. This
can be proven with a small experiment. Let us imagine a circular member composed of
two wooden plates which represent the faces on the front of the member. Now consider
several wooden slats that are nailed to these plates and make up the cylindrical surface of the
member, see Fig. 3.7. Let us make two markers on each neighbouring slat, see Fig. 3.7(a).
These markers represent the top surface of the unit cube. After applying a load, the markers
will slide relative to each other, see Fig. 3.7(b). The square configuration will then be deformed

into a thombus which proves the existence of a shearing strain.
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Fig. 3.8

We can now determine the shearing strain distribution in a circular shaft, see Fig. 3.5, and
which has been twisted through the angle ¢, see Fig. 3.8(a). Let us detach the inner cylinder
of radius p,p € (0,R) from the shaft. Now lets consider a small square element on its surface
formed by two adjacent circles and two adjacent straight lines traced on the surface of the
cylinder before any load is applied, see Fig. 3.8(b). Now subjecting the shaft to the torque
T, the square element becomes deformed into a rhombus, see Fig. 3.8(c). Recalling that, in
section 2.5, the angular change of element represents the shearing strain. This angular change

must be measured in radians.
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From Fig, 3.8(c) one can determine the length of arc EE using basicgeometry: EE = Ly or EE = pg

. Then we can derive

Y= (3.2)

where v, ¢ are both considered to be in radians. From equation (3.2) it is clear for a given

point on the shaft that the shearing strain varies linearly with the distance p from the shaft axis.

Due to the definition of inner radius p the shearing strain reaches its maximum on the outer

surface of the shaft, where p = R. Then we get

_Re (3.3)

Ymax = L

Using equations (3.2) and (3.3) we can eliminate the angle of twist. Then we can express the

shearing strain y at an arbitrary distance form the shaft axis by the following:

y = %Ymax

(3.4)
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3.3 STRESS IN THE ELASTIC REGION

T.’

Fig. 3.10
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Let us consider a section BC of the circular shaft with constant diameter D along its
length Z, subjected to torques 7" and 7" at its ends, see Fig. 3.9. Applying the method of
sections, we can divide the shaft into two arbitrary portions BQ and QC at any arbitrary
point Q. In order to satisfy conditions of equilibrium for each part separately, we need to
represent the removed part with internal forces. In our case, from the equilibrium equations,
we get non-zero values only for the torque 7(x), see Fig. 3.10(a). This torque represents
the resultant of all elementary shearing forces dF exerted on a section at point Q, see

Fig. 3.10 (b). If the portion BQ is twisted, we can write
J pdF =T, (3.5)

where p is the perpendicular distance from the force dF to the shaft axis. The shearing force
dF can be expressed as follows dF = tdA, then substituting into equation (3.5) we get

J prdA = Te, (3.6)
Recalling Hooke’s law from Section 2.5 we can write

T =Gy (3.7)
and applying equation (3.4) we get

GY =% GV¥max 3.5

or

T =~ Tmax (39)

Tmax

Fig. 3.11
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This equation shows that the shearing stress also varies linearly with the distance p from the
shaft axis, as long as the yield stress is not exceeded. The distribution functions of shearing
stress are presented in Fig. 3.11(a), for a solid circle, and in Fig. 3.11(b) for a hollow circle
(p €(R1, R,)). For the latter case we can write

R
Tmin = é Tmax (3.10)

The integral equation (3.6) determines the relationship between the resultant of internal forces

T(x) and the shearing stress 7. Substituting 7 from equation (3.9) into (3.6) we get
Tey =2 [ p*dA (3.12)

The integral in the last member represents the polar moment of inertia / with respect to its

centre O, for more detail see Appendix A. Then we have

max TX
Ty = 2 ] or Tax = ;)R (3.13)

Substituting equation (3.9) into (3.13) we get

TX
TZ%p (3.14)
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3.4 ANGLE OF TWIST IN THE ELASTIC REGION

Fig. 3.12

When observing the deformation of a circular shaft subjected to a torque 7, see Fig. 3.12,
we can see the rotation of the free end C, about the shafts axis or angle of twist ¢. The entire
shaft remains in the elastic region after applying the load. The considered shaft has a constant,
circular cross-section with a maximum radius R, and a length of Z. Now we can recall equation

(3.3) where the maximum shearing strain Ymax and the angle of twist are related by the

following

R
Vmax = (3.3)

We are assuming that there is elastic response, therefore we can apply Hooke’s law for simple
shear Vimax = Timax /G . After substituting equation (3.13) into Hooke’s law, and knowing that
T(x) =TT(x) =T along the whole axis of the shaft, we get

T (x T
Vimax = G(])R =R (3.15)

Equating the right-hand members of equations (3.3) and (3.15), and solving for ¢ we have

Il _TL (3.16)

GJ GJ
The obtained formula shows that the angle of twist is proportional to the applied torque
within the elastic region. If we compare the results of equation (2.15) from chapter 2, one
can conclude the following parallelism: AL £ @, Ny £ Ty E 2 G, A2 ]. This equation is
valid only if the shaft is made of homogenous material (constant G), has a uniform cross-sectional

area (constant |), and is loaded at its ends.
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If the shaft is composed from several different parts, each individually satisfying the validity of
equation (3.16), we can extend formula (3.16) using the principles of superposition as follows:

Tix) Li
@ =210 =X % (3.17)

where Ty, Gi, Ji, Li is the internal torque, shear modulus, polar moment of inertia and

length corresponding to the part 7 respectively.

In the case of variable cross-sectional area along the shaft, as in Fig.3.12, the strain depends
on the position of the arbitrary point Q, therefore we must apply a similar equation to (2.2)
for the computation of the shearing strain. After some mathematical manipulation the total

angle of twist of the member is

TX
¢ =[5 dx (3.18)

3.5 STATICALLY INDETERMINATE SHAFTS

Fig. 3.13
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Until now, we have discussed statically determinate problems. But there are some situations,
where the internal torques can not be determinated using statics alone. For simplicity, let us
consider a simple problem, see Fig. 3.13. In this case we cannot solve the problem through
equilibrium equations from statics alone. The main difficulty in this problem is that the
number of unknown reactions is greater than the number of equilibrium equations. From
a mathematical point of view, the problem is ill-conditioned. For our case we obtain one

equilibrium equation to be
YT, =0: To—T+Tg =0 (3.18)

This problem is statically indeterminate. To overcome this difficulty we must use the same
approach as in Chapter 2, Section 2.7 , i.e. to add deformation conditions. In our case the

angle of twist at point C is equal to zero, and corresponds to the total angle of twist

P=@c=%190,=0 (3.19)

Using equation (3.17) we obtain

Tixy L1 | Tax) L2
GJ1 GJ2

¢ =X10i =91+ = =0 (3.20)
Both internal torques Ty () = T — T¢, Ty = T¢ are functions of unknown reaction T .. Solving

J2l1
U2l1=J1L2)
solving in the usual way (for statically determinate problems).

equation (3.20) we obtain the value of reaction T, = T. We can then continue by

3.6 DESIGN OF TRANSMISSION SHAFTS

In designing transmission shafts the principal specifications that must be satisfied are the power
to be transmitted and the velocity of rotation. Our task now is to select the material and the
type and the size of cross-section to satisfy the strength condition, i.e. the maximum shearing
stress will not exceed the allowable shearing stress 7,4, < T4y, when the shaft is transmitting

the required power at the specified velocity. Recalling elementary physics we have

P =Tw = 2nfT (3.21)
Where P is the transmitted power, @ is the angular velocity, and fis the frequency of rotation.
Solving equation (3.21) for 7 obtains the torque exerted on our shaft which is transmitting

the required power P at a frequency of rotation f

T=2"_ (3.22)
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Now we can apply the strength condition using equation (3.13) as follows
T
Tmax = ]_R < Tau (3.23)

Substituting equation (3.22) into (3.23) we get

P
2nf Ty

P
R <1y or ]E > (3.24)

2nf]

The value J/R represents the allowable minimum. This variable is known as the section modulus

and can be found in any common section standards.
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3.7 TORSION OF NON-CIRCULAR MEMBERS

Fig. 3.14

Fig. 3.15

All previous formulas have been derived upon the axisymmetry of deformed members. Let us
now consider the shaft with square cross-section, see Fig. 3.14. Experimental results show that
the cross-section of this type warped out of their original plane. Therefore we cannot apply
relations which are otherwise valid for circular members. For example, for a circular shaft the
shearing stress varies linearly along the distance from the axis. Therefore, one could expect
that the maximum stresses are at the corners of the square cross-sections but they are actually
equal to zero. For this reason, we can consider a torsionally loaded bar, with an arbitrary
non-circular cross-section, see Fig. 3.15. The shearing stress acts in an arbitrary direction on
the contour of the cross-section. This stress T has two components: a normal component
t_and the tangential component t. Due to the shear law, component T must exist. But
there is no load in that direction and therefore this stress is equal to zero and subsequently
1 =T = 0. The result means that in the vicinity of contour, the shearing stress is in the

direction of tangent to the contour.
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Fig. 3.16

Now let us consider asmall unit cube at the corner of a square cross-section, see Fig. 3.16(a). The corner is

theintersection point of two contourlines. Thereforeat the corner we have two tangential componentst_

and T , see Fig. 3.16(b). According to the shear law; other shearing components, t_andt, , mustexist.

Both are on the free surface, and there is no load in the x-axis direction. We can then write

and it follows that

Ty =0

and 171, =0 (3.25)

and 1, =0 (3.26)

T I

i,

=————

Fig. 3.17
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Let us imagine a small experiment, let’s twist a bar with square cross-section and made of
a rubber-like material. We can verify very easily, that there are no stresses and deformations
along the edges of the bar and the largest deformations and stresses are along the centrelines

of the bars faces.

b

Fig. 3.18
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Applying the methods of mathematical theory of elasticity for the bar with rectangular cross-
section bxh, we will get the stress distribution functions presented in Fig. 3.17. The corner
stresses are equal to zero. We can find the two local stresses which are largest at point I and 11
(Roman numerals). Denoting L as the length of the bar, 4 and /4 as the narrow and wide side

of bar cross-section respectively and 7 as the applied torque, see Fig. 3.18, we have
T
T = Tmax = 32 and 1 =Py (3.27)

The coefhicient o, depend only upon the ratio 4/6. The angle of twist can be expressed as

TL

Q= Ghb3 (3.28)

The coeflicient y also depends only upon the ratio 4/b. All coeflicients @,f3,y are presented in
the following Tab. 3.1.

h/b 1,00 1,50 1,75 2,00 2,50 3,00 4,00 6,00 8,00 10,00 (e'e)
o 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333
ﬁ 1,000 0,859 0,820 0,795 0,776 0,753 0,745 0,743 0,742 0,742 0,742
y 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333
Tab. 3.1
SUPPORT

MEMBRANE b

N
h

THIN MEMBRANE
SUPPORT \\N I N SUPPORT

INTERNAL PRESSURE

Fig. 3.19

The stress distribution function over the non-circular cross-section can be visualised by #be
membrane analogy. Firstly, what does this analogy mean? Two processes are analogous if both
can be describe by the same type of equations. In our case we have the twisting of a non-
circular bar and the deformation of a thin membrane subjected to internal pressures, see Fig.
3.19. Both processes are determined by the same type of differential equations. Secondly, we

need to determine the analogous variables. In our case we have
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T 2 volume bouded by the deformed membrane and horizontal plane
value of shearing strain £ tangent of maximum slope
direction of shearing strain £ horizontal tangent

TANGENT OF

MAX. SLOPE HORIZONTAL
TANGENT

RECTANGULAR 3T
SUPPORT

Fig. 3.20

The graphical representation of these equations is presented in Fig. 3.20.

(3.29)

The membrane analogy can be efficiently applied for members whose cross-section can be

unrolled into the basic rectangle bxh, see Fig. 3.21. Another application of the membrane

analogy is for members with cross-sections composed from several rectangles, see Fig. 3.22.

These cross-sections cannot be unrolled into one simple rectangle bxh. For this case we can

assume that the total volume of deformed membrane is equal to the sum of individually

deformed membranes, see Fig. 3.23. If the torque is analogous to the membrane volume,

and then we can write

77

h

 —

NN

Z A/A%

Fig. 3.21 Fig. 3.22

T:T1+T2++Tn
P=P1 =@ = "= Pn
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After simple mathematical manipulations of these equations we determine that the total

torsional stiffness is equals to the sum of individual torsional stiffness” of each rectangle, i.e.
yhb? = Xy, hib} (3.31)

subsequently the largest stress corresponding to each rectangle can be found by

T;
aihib-z

L

(3.33)

T, =
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Deformed
membranes

rectangles

/
_—_—— Q)

2
/

Fig. 3.23

3.8 THIN-WALLED HOLLOW MEMBERS

Fig. 3.24

In the previous section we discussed members with open non-circular cross-sections subjected
to torsional loading. The results obtained in the previous section required advanced theory
of elasticity. For thin-walled hollow members we can apply some simple computations to

obtain results.

Fg
EX

Fp

tg
D \
tp
Ax X
Fig. 3.25
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Let us consider the thin-walled hollow member of non-circular cross-section, see Fig. 3.24.
The wall thickness varies within the transverse section and remains very small in comparison
to other dimensions. Let us detach a small coloured portion DE. This portion is bounded
by two parallel transverse sections by the distance Ax and two parallel longitudinal planes.
Focusing on the equilibrium of part DE in the longitudinal direction x, the shear law says
that the shear forces Fj, Fg are exerted on faces D and E, see Fig. 3.25. We then get the

corresponding equation
YE =0: Fp—F;=0 (3.34)

The longitudinal shear forces Fp, Fp are acting on the small faces of areas Axt, and Axty.

Thus we can express the force as a product of shearing stress and area, i.c.

Fp = 1pAp = 1plAxty = Fg = 15Ap = 1gAxt; (3.35)
Substituting equation (3.35) into (3.34) we get

TplAxty —tpAxty =0
or (3.36)

Tptp = Tptg

Since the selection of portion DE is arbitrary, and then the product 7# is constant throughout

the member. Denoting this product by g we get

q = Tt = constant (3.37)
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Fig. 3.27
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This new variable describes the shear flow in the member. The direction of shearing stress is
determined by the direction of shear forces and the application of the shear law as one can
see in Fig. 3.26 and Fig. 3.27.

Fig. 3.28
Now let us consider a small element s which is a portion of the wall section, see Fig. 3.28.
The corresponding area is dA = #ds. The resultant of shearing stresses exerted within this area

is denoting by dF or

dF = tdA = ttds = qds (3.38)

The moment dM, of this force about the arbitrary point C is

dM, = pdF = pqds = qpds (3.39)

Fig. 3.29

Where p is the distance of C to the action line of dF. The action line passes through the
centre of this element and the product pds represents the doubled area dA, see Fig. 3.29. We

then have

dM; = q2dA (3.40)
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In a mathematical point of view, the integral of moments around the wall section represents

the resulting moment that is in equilibrium with the applied torque 7. Thus we have

T=¢dM, = §q2dA (3.41)
Since the shear flow is constant, we get

T=q¢$2dA = q2A (3.42)

Fig. 3.30

Where A is the area bounded by the centreline of the section, see Fig. 3.30. From the previous

equation we can easily derive the formula for calculating the shearing stress
T=— (3.43)

The corresponding angle of twist can be derived by using the method of strain energy, see
Appendix A.4.2. We then get

_ TL ds
P =1a267

(3.44)

If the section can be built from several parts of constant thicknesses it is known to be piecewise

constant, equation (3.44) can then be simplified

_TL won As
P = e mi=1T

(3.45)
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3.9 EXAMPLES, SOLVED AND UNSOLVED PROBLEMS
Problem 3.1

Fig. 3.31

For the steel shaft with applied torque T = 2400 Nm shown in Fig. 3.31 (G = 77 GPa),
determine (a) the maximum and minimum shearing stress in the shaft, (b) the angle of twist
at the free end. The shafthas the following dimensions: L = 500 mm, D, = 40 mm, D, =

2
50 mm.

/
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Solution

Pk #
pa

¢Dy
@Dsy

Fig. 3.32

Fig. 3.32

The shaft in Fig. 3.32 consists of one portion, which has uniform cross-section area and
constant internal torque. From the free body diagram in Fig. 3.33 we find that:
Y M, =0: Tx)+T=0

T(x) =-T =-2400 Nm

The polar moment of inertia (see Appendix A.2) is

4 4
_ TEDFULL - nDHOLE

J=1] -J =
FULL HOLE 32 32
4 4
J=7t(50mm) _n(40mm) 362265 mm’*
32 32
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Maximum shearing stress. On the outer surface, we have

2400x10° N.mm y 50 mm

T = — =
ey Pmax J 2 362265 mm* 2

T _IDFULL —

z.. =165.5 MPa.

Minimum shearing stress. The stress is proportional to its distance from the axis of the shaft

Z 4 Tmax.
Tmax X \ 1
j sl &
‘ 2 S
y . v
e A
“ Tmax
— Y
Tmax
Fig. 3.34
D,
Tmin — 2 :& = T. =T &
D2 D2 min max D2

Tmax — =

2
£ —165.6 MPa S0MM _ 35 5 Mpa
50 mm

Another way th determine this is by:

. T _TDyos _ 2400%10° N.mm 40 mm
min =75 Prin =3 362265 mm* 2

z.. =132.5 MPa.
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o

Fig. 3.35

TORSION

Graphically we can show shearing stress in Fig. 3.34 and the diagram of torque along the

length of the shaft is shown in Fig. 3.35.
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Angle of twist.
Using Eq. (3.16) and recalling that G = 77 GPa for the shaft we obtain

_TL  2400x10° N.mm x 500 mm
¢ GJ 77x10° N/mm’x 362265 mm*

@ =0.043 rad = 2.465°

Problem 3.2

The vertical shaft AC is attached to a fixed base at C and subjected to a torque T shown in
Fig. 3.36. Determine the maximum shearing stress for each portion of the shaft and the angle
of twist at A. Portion AB is made of steel for which G = 77 GPa with a diameter ofD
30 mm. Portion BC is made of brass for which G = 37 GPa with a diameter of D

50 mm. Parameter L is equal to 100 mm

STEEL

BRASS

Solution
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The complete shaft consists of two portions, AB and BC (see Fig. 3.37), each with uniform

cross-section and constant internal torque.

X, € <O,L>

Fig. 3.38

Solution of portion AB
Passing a section though the shaft between A and B and using the free body diagram shown

Fig. 3.38, we find

DM, =0: T(x)+T=0T,(x)=-T

N

Tmax]

TmaxI

¢DgTrEL

TmaxI

—
TmaxI

Fig. 3.38

The maximum shearing stress is on the outer surface, we have

— m — m DSTEEL _ |T| DSTEEL
Trax1 — J pmaxl - i 2 - TCD:TEEL 2
32
16T 16T

=1.886x107'T

Tmaxl = 3 - 3
D4, (30 mm)

Diagram of the shearing stress across the cross-section area is shown in Fig. 3.39.
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Solution of portion BC

xy €(L,2L)

i
JA
. |
-7y T~ 3
P | \\\
1 B
{ |
|
T (X /

Fig. 3.40

Now passing a section between B and C (see Fig. 3.40) we obrtain

zMixH =0: Ty(x) + T-2T=0 Ty (x)=T
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Again, the maximum shearing stress is on the outer surface, found by the following

Ml D, [T Dy
max II J max 1T J 2 anRASS 2
32
16T 16T
T = ———— = —=4.074x10°T
TDgrass (50 mm)
TmaxIlt %
—
TmaxII
Y, =
TmaxIT %
—
TmaxI1
Fig. 3.41

Graphically, the shearing stress is shown in Fig. 3.41.

When we compare the results from both portions the maximum shearing stress is in portion
AB, which compares with the allowable stress. From this inequality, we have the unknown

torque T.

Z-max = Z-maxT < z-All

161 7 n D
T - <7, = T < ZAl STEEL
nD 16
STEEL

7™ Dy 150 MPax tx (30 mm)’?

T< =
16 16

=795215,6 Nmm

T <795215,6 Nm
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Choosing the torque T = 795 kNm. We can graphically represent the torque along the length

of shaft in Fig. 3.42.

Angle of twist

Using Eq. (3.17), we have

k-

U

TBC L BC

JBC GBC

TBC L BC

nD?

BRASS G

32 BC

0= T L
— J.G,
T.. L
@, =—AB —AB
Jap Gap
T Lag
¢ =
* anTEEL
32
32T, L
P = S

L, 32T Ly

4
T Digrpp G ap

Z =-948 rad
T DipassGac
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Problem 3.3

Fig 3.43

A torque T is applied as shown in Fig. 3.43 to a solid tapered shaft AB. Determine the

maximum shearing stress and show, by integration, that the angle of twist at A is

7TL

Tl rGet

The radius ¢, length L, modulus of rigidity G and applied torque T, are given.
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Solution

X, € <O,L>

G D

Fig 3.44

Weonly have one part so from free body diagram (see Fig. 3.44), we find

DM, =0: Tx)-T=0 = Tx)=T

A C
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The maximum of shearing is onthe outer surface. The radius c(x) at location x is found from

similarity of triangles, Fig. 3.45.

tanﬂ:%:C(X)_C

X
= cxX)=c (Hfj,

The diameter D(x) at location x is

DX)=2c¢(x) = D(x)=2c (1+%).

Moment of inertia at location x is

\ n{2e(l+xﬂ
 D(x) _ L .

32 32

J(x)=

The maximum shearing stress at position x on the outer surface is

rmax(x):ﬂp _ |T| D(x) _ 16 T

10 ™ I 2 n[2c (”Xﬂ
L

Angle of twist is determined from the definition of the angle of twist Eq. (3.18), and we have

IT(X) j 32T o 2T T l TL
? G I(x) ¥ Grl6c'y(,, x 12Gnct’
‘Gn [2c(1+iﬂ "

In the fig. 3.46 is a graph of the torque along length L.

Problem 3.4

XB% n: Hw
§L hL\

Fig. 3.47
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A circular shaft BH is attached to fixed supports at both ends with a torque T applied at the
midsection (Fig. 3.47). Determine the torque exerted on the shaft by each of the supports
and determine the maximum shearing stress.

The length L, modulus of rigidity G and applied torque T, are given.

Solution

N
l
N/ A"
& I B
Fig. 3.48

The problem is statically indeterminate. The support at point H is replaced by an unknown
support reaction T, (horizontal and vertical reactions are equal to zero, because this is a

problem of pure torsion). The solution is divided into two part (see Fig. 3.48).
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Free-body diagram on portion I (part HC):
X, € <O,L>

From the equilibrium equation of the first part, we obtain

ZMiX[:O: T(x)+T,=0 = T(x,)=-T,

Free-body diagramon portion II (part CB):

x; €(L,2L)

From the equilibrium equation of the second part, we obtain

ZMan :O: Tll(xll)_T+TH :0 f— Tll(xll):_TH_T

The unknown reaction is determined from the deformation condition, that the total angle of
twist of shaft BH must be zero, since both of its ends are restrained.j, and j denote the angle

of twist for portions AC and CB respectively, we write

(91.[:0 = ¢H:¢l+¢11:0 = (pl+¢H:0’

from which we have

TlLl + THLH —
GIJI GIIJH

3
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where G, = G, =G, ], =], =] and L, = L, = L because both parts of shaft are made from
same material, have the same cross-section area, and the same length. Then solving for T,

we have
T
Tx)+Ti(x)=0 = -Ty -Ty+T=0 = TH:E

Substituting the results for each part, we obtain

T T T
TI(XI):_THZE TI[(XII):_TH_T:_E_T :_5

The diagram of torque is shown in Fig. 3.49.

\B =l ACT H§

T/2(|[]|[9)

Sl T/2

Fig. 3.49
I ol nln
B%(Q H
v \'4 W
L L
Fig. 3.50
2} TmaxT
TmaxI
4 a
=
TmaxI
Tmaxl
Fig. 3.51
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TmaxITh %
.
Tmax11
@)
<=

TmaxIT

Reaction at point B.

Drawinga free-body diagram of the shaft and denoting the torques exerted by supports T and T,

(see Fig. 3.50) we obtain the equilibrium equation

DM, =0: T,+T,-T=0 = TB=T—TH=%
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The maximum shearing stress at part HC (outer surface) is

T
i :mp _l2[p_16T _8T
ey Pt g pt 2 2D nD?
32

The maximum shearing stress at part BC (outer surface) is

T
[T 2 D_ 8T
xD* 2 =D’

z-II max pmax m—
JH

32

The diagram of shearing stresses for each part is shown in the Fig. 3.51and Fig. 3.52.

Problem 3.5

G TRe
NES RN

e [l
AS ONERNSS

Fig. 3.53

The bars in Fig. 3.53 have a square and rectangular cross-section area. Knowing that the

magnitude of torque T is 800 Nm determine the maximum shearing stress for each bar.
The dimensions are given by L = 400 mm, a = 50 mm and b = 35 mm

Solution

For a bar with square cross-section area (see Fig. 3.53a) and bar with rectangular cross-section

area (see Fig. 3.53b), the maximum shearing stress is defined by Eq. (3.27)

B T
aab’

max
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where the coefficient ais obtained from tab. 3.1 in section 3.7. We have

a_ >0 mm =1 = «a=0.208 for square cross section
b 50mm

and
a 50mm .
—= =143 = a=0.231 for rectangular cross section.
b 30mm

Maximum shearing stress for square cross-section in Fig. 3.53a is

L 800 Nm ~=30.77 MPa.

“aab’ 0.208x0.050 mx(0.050 m)

max

Maximum shearing stress for rectangular cross-section in Fig. 3.53b is

T 800 Nm
aab’  0.208x0.050 mx(0.035 m)’

=1.98 MPa.

max

Problem 3.6

Fig. 3.54

Two shafts of the same length and made by the same materials is connected by a welded rigid
beam.On the ends of the rigid beam amoment couple given by force F is applied. Cross-
section area of the shaft is in Fig. 3.54. Design parameter D if wearegiven an allowable stress

oftalll = 150 MPa.

Given: F = 1000 N, ¢ = 200 mm, a = 2D, t = 0.1D, L = 400 mm.
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Solution

From the given force, we find the total magnitude of the torque T applied to both shafts

T=Fc=1000N x 0.2 m =200 Nm

This torque will then be dived on both shafts and from the equilibrium of the rigid beam,
we have

T=T +T, @

We have two unknowns torques T, and T, so we need a second equation, which is found
from the deformation condition
TL TL

GJ, GI,’ (b)

P1= P2 =
where angle of twist for the first cross-section area is

_4A’  4(19Dx1.9D)"  52.1284D*
- st_z(mD 1.9Dj_ 76
t

J, =0.686D" ©
— + —
0.ID  0.1D
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and for the second cross-section is

4
J2:TED (d)
32 -

inserting (c) and (d) into (b), we get
T, =6.998 T, €3]
Solving the system of equations (a) and (f), we give

T, =0.875T =0.875 F ¢ = 0.875x200Nm =175 Nm

T, =0.125T =0.125 F ¢ = 0.125x200Nm =25 Nm

Maximum shearing stress in the first cross-section is

T, 0.875F ¢ 175Nm 2424
- = = = Nm

Tmaxl_ - 2 - 3 3
2At,, 2x(19DY0.ID 0722D° D

Maximum shearing stress in the second cross-section is

T, 16 T, 16x25Nm 127.3
Tinax 1l — 3= 3 = 3 = 3 Nm
nD nD nD D

16

To design parameter D, we get the maximum shearing stress (from all parts), which compare

with the allowable stress, we then get

2224 o p 224 Nm i/ 2424 Nm_
Tay 150x10°Nm
D>0.012m
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Problem 3.7

Fig. 3.55

A torque T = 850 Nm is applied to a hollow shaft with uniform wall thickness t = 6 mm
shown in Fig. 3.55. Neglecting the effect of stress concentration, determine the shearing stress
at points a and b. Determine the angle of twist at the end of shaft when L is 200 mm and
the modulus of rigidity is G = 77 GPa.

Given: R = 30 mm, t = 6 mm, L = 60 mm, L = 200 mm.

Solution

-I""s

|
i,
2

Ly
=T
|
|

S~
|
|
Y
=
v ———

Fig. 3.56
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Fig. 3.57
From the definition of maximum shearing stress for thin-walled hollow shafts, we have

T
Tmaxz
2At

min
b

where A is the area bounded by the centerline of wall cross-section area (Fig. 3.56 — hatching area),

we have

2
A=mR?42RL, = n(RJr%) . 2(R+%j L,

This e-book Y o N
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The shearing stress at point a and b is

T 850000 Nmm
2 At 2x6 mmx7381,19 mm"*

=9.6 MPa

T,=T, =

min

The angle of twist of a thin-walled shaft of length L and modulus of rigidity G is defined

L
v GJ
2
where the moment of inertia is J= 4“2
s
U

Integral m% is computed along the centerline of the wall section and we get
t

N

ds:s_1+s_2+s_3+s_4:n33mm+60mm+n33mm+60mm:54.5575

XE t t t t 6 mm 6 mm 6 mm 6 mm

447 4x(738119 mm? )’

J= -
i ds 54.5575
dt

s

=3994460.65 mm*

Angle of twist at the end of the shaft is given by the following

_TL_ 850000 Nmmx 200 mm

p=—"= - —=5.527x10"" rad = 0.032°
GJ 77x10° MPax3994460.65 mm
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Unsolved problems

N SEANNNNNNNNNNNNNY
N
N
N
\
N\
N a
N :
\ - 60°
60
b
L t
d
Fig. 3.58

Problem 3.8
A torque T = 750 Nm is applied to the hollow shaft shown in the Fig. 3.58 that has a

uniform wall thickness of t = 8 mm. Neglecting the effect of stress concentration, determine

the shearing stress at points a and b.
[t =1, = 16.1MPa]

Problem 3.9

The composite shaft in the Fig. 3.59 is twisted by applying a torque T at its end. Knowing
that the maximum shearing stress in steel is 150 MPa, determine the corresponding
maximum shearing stress in the aluminum core. Use G = 77 GPa for steel and G = 27 GPa
for aluminum.

[t =39.44 MPa, T = 10.31kNm]

max aluminum

Problem 3.10

A statically indeterminate circular shaft BH consists of length L and diameter D (portion CH)
and length L with diameter 2D (portion BC). The shaft is attached by fixed supports at both
ends, and a torque T is applied at point C (see Fig. 3.60). Determine the maximum shearing

stress in portion BC and CH, and reaction at the support in point H.

o T 32T 16T
H 177 max BC 177'[D3’ max CH 177ID3
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Fig. 3.60
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Fig. 3.61

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

pookboo
Prof. Dr. Nick H.M. van Dam

21st Century Corporate
Learning & Development

Trends and Best Fractices

Download free eBooks at bookboon.com Click on the ad to read more

144


http://s.bookboon.com/Download_Free

Problem 3.11

Using T = 150 MPa, determine the largest torque T that may by applied to each of the
steel bars and to the steel tube shown in Fig. 3.61.Given is a = 50 mm, b = 24 mm,
t = 8 mm and L = 200 mm.

[(@) T =531.2 Nm, (b) T = 4233.6 Nm]

Problem 3.12

A 1.25 m long angle iron with L cross-section (shown in Fig. 3.62). Knowing that the allowable
shearing stress t , = 60 MPa and modulus of rigidity G = 77 GPa and ignoring the effects of
stress concentration, (a) determine the largest magnitude of torque T that may by applied,
(b) the corresponding angle of twist at the free ends. The dimensions are h = 50 mm, b = 25

mm, t =5 mm and L = 200 mm.

[(@) T = 35kNm, (b) j = 31.2 rad]

\Y o T
N t
yA
- t
- =
Yy —~
b L
te v
L N h
Fig. 3.62
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APPENDIX

A.1 CENTROID AND FIRST MOMENT OF AREAS

-

Fig. A.1

Consider an area A located in the zy plane (Fig. A.1). The first moment of area with respect
to the z axis is defined by the integral

Qz=£ydA A1)

Similarly, the first moment of area A with respect to the y axis is

0,=[zd4 (A.2)

A

If we use SI units are used, the first moment of Q, and Qy are expressed in m® or mm?®.
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The centroid of the area A is defined at point C of coordinates yand z (Fig. A.2), which

satisfies the relation

[y o
y=- y,

IZdA
E:AT (A.3)

\
N
v
N

Fig. A.3

When an area possesses an axis of symmetry, the first moment of the area with respect to

that axis is zero.
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Considering an area A, such as the trapezoidal area shown in Fig. A.3, we may dividethe area
into simple geometric shapes. The solution of the first moment Q_ of the area with respect

to the z axis can be divided into components A, A, and we can write

O.=[ydd=[ydd+[ yda=3 34 (A4)
4 4, A,
Solving the centroid for composite area, we write

ZAi)_/i ZAI.Z.
y= [Z:A. zZ = IZ:A- (A.5)

i i

Example A.01

Fig. A.4

For the triangular area in Fig. A.4, determine (a) the first moment Q of the area with respect

to the z axis, (b) the y ordinate of the centroid of the area.

Solution

(a) First moment Q

h

dy,

Fig. A.5
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We selected an element area in Fig. A.5 with a horizontal length u and thickness dy. From

thesimilarity in triangles, we have

o _hoy u-phz
b h

and

dA:udy:b%dy

using Eq. (A.1) the first moment is

h h_y _bh 5
0. =[yda=[yb=——=dy=[(hy-y")dy
A 0 0

2 3
0. = E hY__Y_ :lth
hf 2 3 6

(b) Ordinate of the centroid

1
Recalling the first Eq. (A.4) and observing that 4 = Ebh , we get

0.=4y = = %bhzzébhzy = y=-h

W | —

A.2 SECOND MOMENT, MOMENT OF AREAS

Consider again an area A located in the zy plane (Fig. A.1) and the element of area dA of
coordinate y and z. The second moment, or moment of inertia, of area Awith respect to the

7 -axis is defined as

I = J.y2 d4 (A.6)
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Example A.02

Locate the centroid C of the area A shown in Fig. A.6

2t
L
6t
A
ot | 4t |2t
Fig. A.6

Solution

Selecting the coordinate system shown in Fig. A.7, we note that centroid C must be located

on the y axis, since this axis is the axis of symmetry than Z=0.

360°
thinking

Deloitte
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y
2t A1 C]
6t = 1
yo =3t
7
2t 4t 2t
e o B Bl
Fig. A.7

Dividing A into its component parts A and A, determine theyordinate of the centroid,

using Eq. (A.5)

2
Ay, Ay,
245 2T 43445

Y= ZZA[ ZZZA A+ 4,

1

i=l1

_ AG+ Ay, (208t)x Tt+(4tx6t)x 3t 184¢° a6t
YTT A4 2oBtedet 40

Similarly, the second moment, or moment of inertia, of area A with respect to the y axis is

I,={zdd4. (A7)

A

We now define the polar moment of inertia of area A with respect to point O (Fig. A.8) as
the integral

Jo = Jpz dA >
4 (A.8)
}f dA
7
- 7
Q/ Z

Fig. A.8
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where p is the distance from O to the element dA. If we use SI units, the moments of inertia

are expressed in m* or mm?*.

An important relation may be established between the polar moment of inertia / of a given

. . . 2 2 2 .
area and the moment of inertia / and I of the same area. Noting that p” = y" +z°, we write

JU:J‘,O2 dA:_|.(yz+zz)dA:J‘y2 dA+j‘ZZ dA4
A A A

A

or
J,=1+1, (A.9)

The radius of gyration of area A with respect to the z axis is defined as the quantity 7, that

satisfies the relation

I.=r’4 = r, =\/§ (A.10)

In a similar way, we defined the radius of gyration with respect to the y axis and origin O.

We then have

/1

2

I, =r/d = r= j (A.11)
J, =1r’d = 1, = ﬁ’ (A.12)

Substituting for /, / and / in terms of its corresponding radi of gyration in Eg. (A.9), we

observe that

2 2 2
(R (A.13)
Example A.03

For the rectangular area in Fig. A.9, determine (a) the moment of inertia / of the area with

respect to the centroidal axis, (b) the corresponding radius of gyration 7.
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b

Fig. A.9

Solution

(@) Moment of inertia 7. We select, as an element area, a horizontal strip with length b and
thickness dy (see Fig. A.10). For the solution we use Eq. (A.6), where d4 = b dy, we have

+h/2 +h/2

[ y’(bdy)=b [y’ dy:%[yﬂ

—h/2 —h/2

[z :J‘yz dd = +h/2
A

~h/2

3 3
12=E L = 12=ibh3
308 8 12

dy

Fig. A.10

(b) Radius of gyration 7. From Eq. (A.10), we have

L
12 -
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Example A.04

For the circular cross-section in Fig. A.11. Determine (a) the polar moment of inertia /., (b)

the moment of inertia A and [y .

Fig. A.11
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Solution

(a) Polar moment of Inertia. We select, as an element of area, a ring of radius p and thickness
dp (Fig. A.12). Using Eq. (A.8), where d4 = 2 np dp, we have

D/2 D/2

J,=[ tda=] 2 d =2 [ *d |
A 0 0
J0:6D4.
32
y

A

D

Fig. A.12

(b) Moment of Inertia. Because of the symmetry of a circular area / = /. Recalling

Eg. (A.9), we can write

= D*
Jo=l+1,=2 = [ =2e-32
: 2 2
4
=1 =2
" 64

A.3 PARALLEL AXIS THEOREM

dA
y / /_?ﬂ
€ 7

Fig. A.13
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Considering the moment of inertia / of an area A with respect to an arbitrary z axis

& . p y

Fig. A.13). Let us now draw the centroidal 2’ axis, i.e., the axis parallel to the z axis which
g p

passes though the area’s centroid C. Denoting the distance between the element dA and axis

passes though the centroid Cby y, we write y = y' + d. Substituting for y in Eq. (A.6), we write

L=[y da=[(y+d) d4,
A

A

L=[y?dd+2d[y' dd+d*| dd,
A A A
I.=1.+0.+Ad’ (A.14)

where I, is the area’s moment of inertia with respect to the centroidal 2’ axis and Q, is the
first moment of the area with respect to the 2’ axis, which is equal to zero since the centroid

C of the area is located on that axis. Finally, from Eq. (A.14)we have
7 2
[Z—[Z.+Ad (AIS)
A similar formula may be derived, which relates the polar moment of inertia J  of an area

to an arbitrary point O and polar moment of inertia J. of the same area with respect to its

centroid C. Denoting the distance between O and Cby d, we write
J,=J.+Ad’ (A.106)

Example A.05

Determine the moment of inertia I of the area shown in Fig. A.14 with respect to the

centroidal z axis.

}f'
2r
C .,
Gt
| A
ot | 4t |9t
Fig. A.14
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Solution

The first step of the solution is to locate the centroid C of the area. However, this has already

been done in Example A.02 for a given area A.

We divide the area A into two rectangular areas A, and A, (Fig. A.15) and compute the

moment of inertia of each area with respect to the z axis. Moment of inertia of the areas are

[z = Izl +IZ2

where I is the moment of inertia of A, with respect to the z axis. For the solution, we use

the parallel-axis theorem (Eq. A.15), and write

L =T.+Ad = %blhf +b,h,d?

z

I, =%x8t x (2t)° +8tx 2t x (7t — 4.6t)°

1,=975t"

o™
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y
2t A G 7!
(11
l Z
. Az n Tt
Gt 7
4.6t
3t
2t 4t 2t
Fig. A.15

In a similarly way, we find the moment of inertia I, of A, with respect to the z axis and write

- 1
I,=1.+Ad}= Eb2h; +b,h,d?

1

z2

= %x 4t x (6t)° +4tx 6t x (4.6t —3t)*

I, =1334t*

The moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis is

I =1,+1_,=97.5t"+133.4t" =230.9t".

Example A.06
.
2t
6t C o
2t
2t A
Gt
Fig. A.16

Determine the moment of inertia / of the area shown in Fig. A.14 with respect to the

centroidal z axis and the moment of inertia / of the area with respect to the centroidal y axis.
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2t A C z

ot

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis

of symmetry, the location of the centroid C is in the intersection of the axes of symmetry.

2t A1
y”
d
6t 2
Z
Cy
C - Cl
Ag
2t
6t
Fig. A.18

We divide the area A into three rectangular areas A, A, and A,. The first way we can divide
area A can be seen in Fig. A.17, a second way can be seen in Fig. A.18.

Solution the division of area A by Fig. A.17 (the first way) themoment of inertia I is

[z =Izl +IzZ +[z3’

where

I,=1.+Ad :éblhf +bh,d’ =...=196t",
I,=1+A,d} :ébzhi +b,h,d; =... =36t",
Lo=T.+Ad = éb3h§ +byh,d? = = 196t",
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Resulting in

I =1,+1,+1,=196t"+36t" +196t* = 428t".

For the moment of inertia Iy we have

I,=1,+1,+1;,
where

- 1 3 1 3 4
1,=1, :Ehlbl =Ex2tx(6t) =36t",

1,=1, _ Ll =éx6tx(2t)3 = 4t*,

Y12
I.=T =L np = wotx(6t) =36
y3_y_§33_ax X( )_ .
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Resulting in

4 4 4 4
I =1,+1,+1,=36t"+4t" +36t* =76t".

The solution for the division of area A according to Fig. A.18 (by the second way) the moment
of inertia I_is

Iz =Izl _122 _123’
where

L =T =1bni= LN 6tx(10t)" =500t
12 12

— 1 1 3
I,=1 =—Db,h} =—x2tx(6t) =36t",
z2 z 12 2772 12 ( )

- 1 1 3
I.=1 =—b.h’ =—x2tx(6t) =36t"
z3 z 12 3773 12 ( )
Resulting in
I =1,-1,-1,= 500t* —36t* —36t* = 428t*.

For the moment of inertia Iy we have

I,=1,-1,-1;,

where
I, =1 = ! hb’ = ! 10tx(6t)’ =180t*
M T II_EX x( )_ ’
I, = ———1 h,b} +h,b,d; ———1 x6tx(2t) +6tx 2t x (2t 2:52‘[4,
»2 Y 12 22 20, 12

I,=1,= %h3b§ +h,b,d? = %x6tx(2t)3 +6tx2tx(2t)" =52t".
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Resulting in

4 4 4 4
I=1,-1,-1,=180t"-52t"—52t" = 76t".

Example A.07

Fig. A.19

In order to solve the torsion of a rectangular cross-section in Fig. A.19, we defined

(See S.P. Thimoshenko and J.N. Goodier, Theory of Elasticity, 3d ed. McGraw-Hill, New

York, 1969, sec. 109) the following parameters for b>h:

J=vyb’h,
S, =ab’h,
S,=pbh%

where parameters o, 3 and y are in Tab.A.1.

The shearing stresses at point 1 and 2 are defined as

’Z'lzz' :—’ TZ:S Iy

where T is the applied torque.
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Tab.A.1

h/b |1 1.2 1.5 2 3 5 10 >10
o [0.208 ]0.219]0.231|0.246 | 0.267 | 0.291 | 0.313 | 1/3

0.208 [0.196 | 0.180 | 0.155 | 0.118 | 0.078 | 0.042 | O
y 10.1404 | 0.166 | 0.196 | 0.229 | 0.263 | 0.291 | 0.313 | 1/3

A.4 PRODUCT OF INERTIA, PRINCIPAL AXES

Definition of product of inertia is

I.=[yzd4 (A.20a)
A
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in which each element of area dA4 is multiplied by the product of its coordinates and integration
is extended over the entire area A of a plane figure. If a cross-section area has an axis of symmetry
which is taken for the y or z axis (Fig. A.19), the product of inertia is equal to zero. In the
general case, for any point of any cross-section area, we can always find two perpendicular
axes such that the product of inertia for these vanishes. If this quantity becomes zero, the axes
in these directions are called the principal axes. Usually the centroid is taken as the origin of

coordinates and the corresponding principal axes are then called the centroidal principal axes.

m dA

Fig. A.19a

If the product of inertia of a cross-section area is known for axes y and z (Fig. A.19a) thought

the centroid, the product of inertia for parallel axes y’ and Z can be found from the equation

I,.=1_+Amn. (A.20b)

y

The coordinates of an element dA for the new axes are

y'=y+n; z'=z+m.
Hence,

I,. :Iy'z'dA:j(y+n)(z+m)dA=J.yzdA+ImndA+IymdA+Inz d4.
A A A A A

A

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).
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A.5 STRAIN ENERGY FOR SIMPLE LOADS

N1

N

Fig. A.20

Consider a rod BC of length L and uniform cross-section area A, attached at B to a fixed
support. The rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work
done by the load F as it is slowly applied to the rod must result in the increase of some energy

associated with the deformation of the rod. This energy is referred to as the strain energy of
the rod. Which is defined by

Strain energy =U = jox F dx (A.21)

Dividing the strain energy U by the volume V'= A L of the rod (Fig. A.20) and using Eq. (A.21),

we have
U ¢ F
= L N3 dx (A.22)

Recalling that F/A represents the normal stress ¢_in the rod, and x/L represents the normal

strain €, we write

v_ jog o, de,
4 (A.23)

The strain energy per unit volume, U/V, is referred to as the strain-energy density and will

be denoted by the letter #. We therefore have

u= r o, deg,
0 (A.24)
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A.5.1 ELASTIC STRAIN ENERGY FOR NORMAL STRESSES

In a machine part with non-uniform stress distribution, the strain energy density u can be
defined by considering the strain energy of a small element of the material with the volume
AV. writing

AU  dU

u=lim — or u=——r. A.25
Wy Ty (A23)

for the value of ¢_within the proportional limit, we may set 6 = E ¢ _in Eq. (A.24) and write

u=—Ee =—0c¢ =—2 (A.26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by
substituting Eq. (A.26) into Eq. (A.25), to get

éX
U=[2Edr. (A27)
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ELASTIC STRAIN ENERGY UNDER AXIAL LOADING

When a rod is acted on by centric axial loading, the normal stresses are 6_= /N/A from Sec. 2.2.

Substituting for 6_into Eq. (A.27), we have

N2
2EA

NZ L
U :J- dV or, setting dV =4 dV, U Zj dv (A.28)
0

2EA*
If the rod hasa uniform cross-section and is acted on by a constant axial force F, we then have

_NL
2EA

(A.29)
4. Elastic strain energy in Bending

The normal stresses for pure bending (neglecting the effects of shear) is 6 = My / I from Sec.
4. Substituting for ¢_into Eq. (A.27), we have

M2y2
dv
2EI? (A.30)

U=I§EdV=

Setting dV = dA dx, where dA represents an element of cross-sectional area, we have

L MZ LM2
U=£2E12 (J.ysz)dx=!2E] dx (A.31)

Example A.08

N L

Fig. A.21

Determine the strain energy of the prismatic cantilever beam in Fig. A.21, taking into account

the effects of normal stressesonly.

Solution

The bending moment at a distance x from the free end is M = —F x . Substituting this expression

into Eq. (A.31), we can write

L 2 L 2 213
ZIM’dX:ﬁFX)dX:FL
2E] ) 2EI 6El

0
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A.5.2 ELASTIC STRAIN ENERGY FOR SHEARING STRESSES

When a material is acted on by plane shearing stresses T, the strain-energy density at a given

point can be expressed as

Y
u= .[Txy d}/xy ,
0 (A.32)

where y_ is the shearing strain corresponding to T_. For the value of T_ within the proportional
Xy Xy Xy

limit, we have T, =G, and write
1., 1 7’
u:_G}/xy:_Txyj/xy: y'
2 2 2G (A33)
Substituting Eq. (A.33) into Eq. (A.25), we have
2
T
U=[2dr.
2G
(A.34)

FElastic strain energy in Torsion

The shearing stresses for pure torsion aret, = Tp / J from Sec. 3. Substituting for T,, into
Eq. (A.27), we have

T2 2~2
U:j xy dV:j LR
2G 2GEJ?

(A.35)

Setting dV = dA dx, where dA represents an element of the cross-sectional area, we have

L T2 L T2
U:IZGﬂ (IpzM)dx=£2GJ dx (A.36)

0

In the case of a shaft of uniform cross-sectionacted on by a constant torque 7, we have

_TL
2GJ

(A.37)
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Elastic strain energy in transversal loading

If the internal shear at section x is V, then the shear stress acting on the volume element,
having a length of dx and an area of d4, is T = V' Q /I ¢ from Sec. 4. Substituting for T into
Eq. (A.27), we have

2 2 L 2
U= [Z—dy= L(Qj dAdx:j v .
)2G Y26 \ 11+ ) 2GI

j% dA] dx (A.38)

A

The integral in parentheses is evaluated over the beam’s cross-sectional area. To simplify this

expression we define the form factor for shear
40
s :[_2It_2 d4 (A.39)
A

Substituting Eq. (A.39) into Eq. (A.38), we have
VZ
2GA

dx (A.40)

U= jfs
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h/2 :
G
N.A.

h/2

Fig. A.22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each
specific cross-section area. For example, if the beam has a rectangular cross-section with a

width b and height h, as in Fig. A.22, then

t=b, A=bh, JELEE
12
E—y
o > h b(h*
=7A =| y+ bl ——y |==| ——
0=y y 5 (2 yj 2(4 y

Substituting these terms into Eq. (A.39), we get
bh ¢ b? [hz

6
——vy* |bdy=—
(lb}pjz 407 4 yj Y 5 (A-41)
12

fS:

Example A.09

N L

Fig. A.23

Determine the strain energy in the cantilever beam due to shear if the beam has a rectangular

cross-section and is subject to a load E Fig. A.23. assume that EI and G are constant.
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Solution

From the free body diagram of the arbitrary section, we have

V(x)=F.

Since the cross-section is rectangular, the form factor f =§ from Eq. (A.41) and therefore

Eq. (A.40) becomes

F’L
G4

“6 F?

shear ) g 2GA

3
5

Using the results of Example A.08, with A = b h, I =L2b h®, the ratio of the shear to the

. . . 1
bending strain energy is

3F’L
Ushear _ g@ _ih_2E
Ubending F2L3 10 L2 G
6E/

Since G = E / 2(1+n) and n = 0.5, then E = 3G, so

Upew _ 3 073G _9 h°
Upping 1012 G 101

It can be seen that the result of this ratio will increasing as L decreases. However, even for
short beams, where, say L = 5 h, the contribution due to shear strain energy is only 3.6% of
the bending strain energy. For this reason, the shear strain energy stored in beams is usually

neglected in engineering analysis.
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