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LIST OF SYMBOLS

A Area
b width
B.C. buckling coefficient
D diameter
E modulus of elasticity, Young’s modulus
fS shearing factor
F external force
F.S. factor of safety
G modulus of rigidity
h height
Iz, Iy second moment, or moment of inertia, of the area A respect to the z or y axis
Jo polar moment of inertia of the area A
L length
DL elongation of bar
M bending moment, couple
N normal or axial force
Qz, Qy first moment of area with respect to the z or y axis
rz radius of gyration of area A with respect to the z axis
R radius 
Ri reaction at point i
s length of centreline
T torque
t thickness
∆T change of temperature
u strain energy density
U strain energy
V volume
V transversal force
w uniform load
y(x) deflection

A area bounded by the centerline of wall cross-section area
α coefficient of thermal expansion (in chapter 2)
α parameter of rectangular cross-section in torsion
γ shearing strain
ε strain
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ϕ angle of twist
Θi slope at point i
τ shearing stress
τall allowable shearing stress
σ stress or normal stress
σall allowable normal stress
σmax maximum normal stress
σMises von Misses stress
σN normal or axial stress
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PrefaCe

PREFACE

This book presents a basic introductory course to the mechanics of materials for students of 
mechanical engineering. It gives students a good background for developing their ability to 
analyse given problems using fundamental approaches. The necessary prerequisites are the 
knowledge of mathematical analysis, physics of materials and statics since the subject is the 
synthesis of the above mentioned courses. 

The book consists of six chapters and an appendix. Each chapter contains the fundamental 
theory and illustrative examples. At the end of each chapter the reader can find unsolved 
problems to practice their understanding of the discussed subject. The results of these problems 
are presented behind the unsolved problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept 
of stress. This concept is derived from the physics of materials. The nature and the properties 
of basic stresses, i.e. normal, shearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are 
generalised into Hooke’s law. Saint-Venant’s principle explains the limits of applying this theory. 

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the 
torsion of circular members and subsequently, the torsion of non-circular members is analysed.

In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a 
member with at least one plane of symmetry and the applied loads are acting in this plane. 
We analyse stresses and strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are 
two principal methods presented in this chapter: the integration method and Castigliano’s theorem.
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PrefaCe

Chapter 6 deals with the buckling of columns. In this chapter we introduce students to Euler’s 
theory in order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. 
Pavel Élesztős, Dr. Michal Čekan. And also we would like to thank our reviewers’ comments 
and suggestions.

Roland Jančo
Branislav Hučko
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1  INTRODUCTION – CONCEPT 
OF STRESS

1.1 INTRODUCTION

The main objective of the mechanics of materials is to provide engineers with the tools, 
methods and technologies for

• analysing existing load-bearing structures;
• designing new structures.

Both of the above mentioned tasks require the analyses of stresses and deformations. In this 
chapter we will firstly discuss the stress.

1.2 A SHORT REVIEW OF THE METHODS OF STATICS

Fig. 1.1
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Let us consider a simple truss structure, see Fig. 1.1. This structure was originally designed 
to carry a load of 15kN. It consists of two rods; BC and CD. The rod CD has a circular 
cross-section with a 30-mm diameter and the rod BC has a rectangular cross-section with the 
dimensions 20×80 mm. Both rods are connected by a pin at point C and are supported by 
pins and brackets at points B and D. Our task is to analyse the rod CD to obtain the answer 
to the question: is rod CD sufficient to carry the load? To find the answer we are going to 
apply the methods of statics. Firstly, we determine the corresponding load acting on the rod 
CD. For this purpose we apply the joint method for calculating axial forces n each rod at 
joint C, see Fig. 1.2. Thus we have the following equilibrium equations

Fig. 1.2
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∑�� = 0       ��� � ��� 4
5 = 0

∑�� = 0       ��� 3
5 − 15 �� = 0  (1.1)

Solving the equations (1.1) we obtain the forces in each member: FBC = 20 kN ,FCD = 25 kN.  
The force FBC is compressive and the force FCD is tensile. At this moment we are not able to 
make the decision about the safety design of rod CD. 

Secondly, the safety of the rod BC depends mainly on the material used and its geometry. 
Therefore we need to make observations of processes inside of the material during loading. 

Fig. 1.3

Fig. 1.4
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Fig. 1.5

Let us consider a crystalline mesh of rod material. By detaching two neighbour atoms from the 
crystalline mesh, we can make the following observation. The atoms are in an equilibrium state, 
see Fig. 1.3(a). Now we can pull out the right atom from its equilibrium position by applying 
external force, see Fig. 1.3(b).The applied force is the action force. Due to Newton’s first law 
a reaction force is pulling back on the atom to the original equilibrium. During loading, the 
atoms find a new equilibrium state. The action and the reaction are in equilibrium too. If we 
remove the applied force, the atom will go back to its initial position, see Fig. 1.3(a). If we 
push the right atom towards the left atom, we will observe a similar situation; see Fig. 1.3(c). 
Now we can build the well-known diagram from the physics of materials: internal force versus 
interatomic distance, see Fig. 1.4. From this diagram we can find the magnitudes of forces in 
corresponding cases. Now we can extend our observation to our rod CD. For simplicity let us 
draw two parallel layers of atoms inside the rod considered, see Fig. 1.5. After applying the 
force of the external load on CD we will observe the elongation of the rod. In other words, 
the interatomic distance between two neighbouring atoms will increase. Then due to Newton’s 
first law the internal reaction forces will result between two neighbouring atoms. Subsequently 
the rod will reach a new equilibrium. Thus we can write:

∑ ����=1 = ���      or      ∑�������� ������ = �������� ������� �����  (1.2)

The next task is to determine the internal forces. Considering the continuum approach we 
can replace equation (1.2) with the following one:

   =    (1.3)
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Fig. 1.6
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The resultant can be determined by applying the method of section. Passing the section at some 
arbitrary point Q we get two portions of the rod: CQ and DQ, see Fig. 1.6. Since force FCD 

= 25 kN must be applied at point Q for both portions to keep them in equilibrium, we can 
conclude that the resultant of internal forces of 100 kN is produced in the rod CD, when a 
load of 15kN is applied at C. 

Fig. 1.7

The above mentioned method of section is a very helpful tool for determining all internal 
forces. Let us now consider the arbitrary body subjected to a load. Dividing the body into 
two portions at an arbitrary point Q, see Fig. 1.7, we can define the positive outgoing normal 
+.the normal force ( )is the force component in the direction of positive normal. The force 

component derived by turning the positive normal clockwise about 
2

 at Q is known as the 
shear force ( ), the moment ( ) about the z-axis defines the bending moment (the positive 
orientation will be explain in Chapter 4). The moment ( )  defines the torque with a positive 
orientation according to the right-hand rule.

Fig. 1.8
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For assessing the safety of rod CD we need to ask material scientists for the experimental 
data about the materials response. When our rod is subjected to tension, we can obtain the 
experimental data from a simple tensile test. Let us arrange the following experiments for the 
rod made of the same material. The output variables are the applied force and the elongation 
of the rod, i.e. the force vs. elongation diagram. The first test is done for the rod of length 
L, and cross-sectional area A, see Fig 1.8 (a). The output can be plotted in Fig 1.8 (d), seen 
as curve number 1. For the second test we now define the rod to have a length of 2L while 
all other parameters remain, see Fig. 1.8 (b). The result is represented by curve number 2, 
see Fig. 1.8 (d). It is only natural that the total elongation is doubled for the same load level. 
For the third test we keep the length parameter L but increase the cross-sectional area to 
2A. The result are represented by curve number 3, see Fig. 1.8 (d). The conclusion of these 
three experiments is that the load vs. elongation diagram is not as useful for designers as one 
would initially expect. The results are very sensitive to geometrical parameters of the samples. 
Therefore we need to exclude the geometrical sensitivity from experimental data.

1.3  DEFINITION OF THE STRESSES IN THE MEMBER OF A STRUCTURE

The results of the proceeding section represent the first necessary step in the design or analysing 
of structures. They do not tell us whether the structure can support the load safely or not. We 
can determine the distribution functions of internal forces along each member. Applying the 
method of section we can determine the resultant of all elementary internal forces acting on 
this section, see Fig. 1.9. The average intensity of the elementary force ∆N over the elementary 
area ∆A is defined as ∆N/∆A. This ratio represents the internal force per unit area. Thus the 
intensity of internal force at any arbitrary point can be derived as

Fig. 1.9

= lim 0 =
 (1.4)
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Whether or not the rod will break under the given load clearly depends upon the ability of 
the material to withstand the corresponding value, see the above mentioned definition, of the 
distributed internal forces. It is clear that this depends on the applied load , the cross-
section area A and on the material of the rod considered.

The internal force per unit area, or the intensity of internal forces distributed over a given 
cross-sectional area, is called stress. The stress is denoted by the Greek letter sigma . The unit of 
stress is called the Pascal which has the value � �2⁄ . Then we can rewrite equation (1.4) into

= lim 0 =  (1.5)

The positive sign indicates tensile stress in a member or that the member is in tension. The 
negative sign of stress indicates compressive stress in a member or that the member is subjected 
to compression.

The equation (1.5) is not so convenient to use in engineering design so solving for this 
equation we get

� = ∫��� (1.6)
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If we apply Saint Venant’s principle, see Section 2.6 for more details, we can assume the 
uniform stress distribution function over the cross-section, except in the immediate vicinity 
of the loads points of application, thus we have

� = � ∫�� = ��  or � = �
�  (1.7)

Fig. 1.10

A graphical representation is presented in Fig. 1.10. If an internal force N was obtained by 
the section passed perpendicular to the member axis, and the direction of the internal force 
N coincides with the member axis, then we are talking about axially loaded members. The 
direction of the internal force N also determines the direction of stress σ. Therefore we define 
this stress σ as the normal stress. Thus formula (1.7) determines the normal stress in the axially 
loaded member.

From elementary statics we get the resultant N of the internal forces, which then must 
be applied to the centre of the cross-section under the condition of uniformly distributed 
stress. This means that a uniform distribution of stress is possible only if the action line of the 
applied loads passes through the centre of the section considered, see Fig. 1.11. Sometimes we 
this type of loading is known as centric loading. In the case of an eccentrically loaded member,  
see Fig. 1.12, this condition is not satisfied, therefore the stress distribution function is not 
uniform. The explanation will be done in Chapter 4. The normal force =  and the 
moment =  are the internal forces obtained through the method of section.

Download free eBooks at bookboon.com



INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

21

introduCtion – ConCePt of stress

Fig. 1.11   Fig. 1.12 Fig. 1.11 Fig. 1.12

1.4  BASIC STRESSES (AXIAL, NORMAL, SHEARING AND 
BEARING STRESS)

Fig. 1.13
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In the previous Section we discussed the case when the resultant of internal forces and the 
resulting stress normal to the cross-section are considered. Now let us consider the cutting 
process of material using scissors, see Fig. 1.13. The applied load F is transversal to the axis 
of the member. Therefore the load F is called the transversal load. Thus we have a physically 
different stress. Let us pass a section through point C between the application points of two 
forces, see Fig. 1.14 (a). Detaching portion DC form the member we will get the diagram 
of the portion DC shown in Fig. 1.14(b). The zero valued internal forces are excluded. The 
resultant of internal forces is only the shear force. It is placed perpendicular to the member 
axis in the section and is equal to the applied force. The corresponding stress is called the 
shearing stress denoted by the Greek letter tau τ. Now we can define the shearing stress as In 
comparison to the normal stress, we cannot assume that the shearing stress is uniform over 
the cross-section. The proof of this statement is explained in Chapter 4. Therefore we can 
only calculate the average value of shearing stress:
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Fig. 1.14

� = lim���0
��
�� = ��

��  or  � = ∫ ���  (1.8)

=  (1.9)

The presented case of cutting is known as the shear.

The cutaway effect can be commonly found in bolts, screws, pins and rivets used to connect 
various structural components, see Fig. 1.15(a).Two plates are subjected to the tensile force F.  
The corresponding cutting stress will develop in plane CD. Considering the method of section 
in plane CD, for the top portion of the rivet, see Fig. 1.15(b), we obtain the shearing stress 
according to formula (1.9)

Fig. 1.15

= =  (1.10)
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Until now we have discussed the application of section in a perpendicular direction to the 
member axis. Let us now consider the axially loaded member CD, see Fig. 1.16. If we pass the 
section at any arbitrary point Q over an angle θ between the perpendicular section and this 
arbitrary section, we will get the free body diagram shown in Fig. 1.17. From the free body 
diagram we see that the applied force F is in equilibrium with the axial force P, i.e. P = F.  
This axial force P represents the resultant of internal forces acting in this section. The 
components of axial force are

Fig. 1.16

Fig. 1.17

= cos   and   = sin  (1.11)

The normal force N and the shear force V represent the resultant of normal forces and shear 
forces respectively distributed over the cross-section and we can write the corresponding stresses 
over the cross-section Aθ = A0/cosθ as follows

= = cos
0

cos
=

0
cos2  (1.12)

= = sin
0

cos
=

0
sin cos  (1.13)

For the perpendicular section, when = 0, we get =  =  
0
 and = 0. These results 

correspond to the ones we found earlier. In the point of view of mathematics, the magnitudes 
of stresses depend upon the orientation of the section.
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Fig. 1.18

The resultant stress from the normal and shearing stress components is called the axial stress (the 
stress in the direction of the axis) and it is denoted as p; see Fig. 1.18. Then using elementary 
mathematics we get

= 2 + 2  (1.14)
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The exact mathematical definition of the axial stress is the same as previously defined stress 
types, i.e.

= lim 0 =  (1.15)

Fig. 1.19

Fig. 1.20

Fittings, bolts, or screws have a lateral contact within the connected member, see Fig. 1.19. 
They create the stress in the connected member along the bearing surface or the contact surface. 
For example let us consider the bolt JK connecting two plates B and C, which are subjected 
to shear, see Fig. 1.19. The bolt shank exerts a force P on the plate B which is equal to the 
applied force F. The force P represents the resultant of all elementary forces distributed over 
the half of the cylindrical hole in plate B, see Fig. 1.20. The diameter of the cylindrical hole 
is D and the height is t. The distribution function of the aforementioned stresses is very 
complicated and therefore we usually use the average value of contact or bearing stress. In this 
case the average engineering bearing stress is defined as

= = =  (1.16)
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1.5  APPLICATION TO THE ANALYSIS AND DESIGN OF 
SIMPLE STRUCTURES

Let us recall the simple truss structure that we discussed in Section 1.2, see Fig. 1.1. Let us 
now detach rod CD for a more detailed analysis, see Fig. 1.21. The detailed pin connection at 
point D is presented in Fig 1.22. The following stresses acting in the rod CD can be calculated

Fig. 1.21

Fig. 1.22

• The normal stress in the shank of the rod CD:

The normal force acting in the circular shank is = 25 , the corresponding cross-

sectional area is = 30
2

2 = 706,9 2. Then we have 

= = 25000
706 ,9 2 = 35,4 
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• The normal stresses in the flat end of D:

The normal force acting in the flat end is = 25  again, the corresponding cross-
sectional areas are at the section a-a ��� = (50− 20). 30 = 900��2  and at the section 
b-b = 50.30 = 1500 2. Thus we get

= = 25000
900 2 = 27,8  and = = 25000

1500 2 = 16,7 

• The shearing stress in the pin connection D:

The shear force acting in the pin is = 25 , the corresponding cross-sectional 

area is = 20
2

2 = 314,2 2. Then we have

= = 25000
314 ,2 2 = 79,6 

• The bearing stress at D:

The contact force acting in the cylindrical hole is = 25 ,, the corresponding cross-

sectional area is = 30.30 = 900 2. Using formula (1.16) we get

= = 25000
900 2 = 27,8 
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1.6 METHOD OF PROBLEM SOLUTION AND NUMERICAL ACCURACY

Every formula previously mentioned and derived has its own validity. This validity predicts the 
application area, i.e. the limitations on the applicability. Our solution must be based on the 
fundamental principles of statics and mechanics of materials. Every step, which we apply in 
our approach, must be justified on this basis. After obtaining the results, they must be checked. 
If there is any doubt in the results obtained, we should check the problem formulation, the 
validity of applied methods, input data (material parameters, boundary conditions) and the 
accuracy of computations.

The method of problem solution is the step-by-step solution. This approach consists of the 
following steps:

i. Clear and precise problem formulation. This formulation should contain the given 
data and indicate what information is required.

ii. Simplified drawing of a given problem, which indicates all essential quantities, which 
should be included.

iii. Free body diagram to obtaining reactions at the supports.
iv. Applying method of section in order to obtain the internal forces and moments.
v. Solution of problem oriented equations in order to determine stresses, strains, and 

deformations.

Subsequently we have to check the results obtained with respect to some simplifications, for 
example boundary conditions, the neglect of some structural details, etc.

The numerical accuracy depends upon the following items:

• the accuracy of input data;
• the accuracy of the computation performed.

For example it is possible that we can get inaccurate material parameters. Let us consider an 
error of 5% in Young’s modulus. Then the calculation of stress contains at least the same 
error, the explanation can be found in Section 2.5. The accuracy of computation is tightly 
connected with the computational method applied. We can apply either the analytical solution 
or the iterative solution.
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1.7  COMPONENTS OF STRESS UNDER GENERAL 
LOADING CONDITIONS

Fig. 1.23

Until now we have limited the discussion to axially loaded members. Let us generalise the 
results obtained in the previous sections. Thus we can consider a body subjected to several 
forces, see Fig. 1.23. To analyse the stress conditions created by the loads inside the body, 
we must apply the method of sections. Let us analyse stresses at an arbitrary point Q. The 
Euclidian space is defined by three perpendicular planes, therefore we will pass three parallel 
sections to the Euclidian ones through point Q. 

Fig 1.24
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Firstly we pass a section parallel to the principal plane yz, see Fig. 1.24 and take into account 
the left portion of the body. This portion is subjected to the applied forces and the resultants 
of all internal forces (these forces replace the effect of the removed part). In our case we 
have the normal force  and the shear force . The lower subscript means the direction 
of the positive outgoing normal. The general shear force  has two components in the 
directions of y and z, i.e.  and . The superscript indicates the direction of the shear 
component. For determining the stress distributions over the section we need to define a 
small area ∆A surrounding point Q, see Fig. 1.24. Then the corresponding internal forces are 

 , , . Recalling the mathematical definition of stress in equations (1.5) and (1.8),  
we get

= lim 0
x = lim 0 x

y
= lim 0

xz  (1.17)

These results are presented in Fig.1.25 Remember that the first subscript in ,  and  
is used to indicate that the stresses under consideration are exerted on a surface perpendicular 
to the x axis. The second subscript in the shearing stresses identifies the direction of the 
component. The same results will be obtained if we apply the same approach for the right 
side of the body considered, see Fig. 1.26.
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Fig. 1.25

Fig.1.26

Secondly we now pass a section parallel to the principal plane of xz, where we will get the 
stress components: ,  and  in a similar way. Thirdly, passing a section parallel to the 
principal plane of xy, we can also get the stress components: ,  and  by the same 
way. Thus the stress state at point Q is defined by nine stress components. With respect to 
statics, it is astatically indeterminate problem, since we only have six equilibrium equations.

Fig. 1.27
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Fig. 1.28

To visualise the stress conditions at point Q, we can represent point Q as a small cube, see 
Fig. 1.27. There are only three faces of the cube visible in Fig. 1.27. The stresses on the 
hidden parallel faces are equal and opposite of the visible ones. Such a cube must satisfy the 
condition of equilibrium. Therefore we can multiply the stresses by the face area ∆A to obtain 
the forces acting on the cube faces. Focusing on the moment equation about the local  axis, 
see Fig. 1.28 and assuming the positive moment in the counter-clockwise direction, we have

∑�� , = 0          ����� �
2 � ����� �

2 + ����� �
2 � ��� �� �

2 = 0  (1.18)

we then conclude

=  (1.19)

The relation obtained shows that the y component of the shearing stress exerted on a face 
perpendicular to the x axis is equal to the x component of the shearing exerted on a face 
perpendicular to the y axis. Similar results will be obtained for the rest of the moment 
equilibrium equations, i.e.

=        and       =  (1.20)

The equations (1.19) and (1.20) represent the shear law. The explanation of the shear law 
is: if the shearing stress exerts on any plane, then the shearing stress will also exert on the 
perpendicular plane to that one. Thus the stress state at any arbitrary point is determined by 
six stress components: , , , , , .
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1.8 DESIGN CONSIDERATIONS AND FACTOR OF SAFETY

In the previous sections we discussed the stress analysis of existing structures. In engineering 
applications we must design with safety as well as economical acceptability in mind. To reach 
this compromise stress analyses assists us in fulfilling this task. The design procedure consists 
of the following steps:

Fig. 1.29

• Determination of the ultimate stress of a material. A certified laboratory will make 
material tests in respect to the defined load. For example they can determine the 
ultimate tensile stress, the ultimate compressive stress and the ultimate shearing stress for 
a given material, see Fig. 1.29.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

35

introduCtion – ConCePt of stress

• Allowable load and allowable stress, Factor of Safety. Due to any unforeseen loading 
during the structures operation, the maximum stress in the designed structure can not 
be equal to the ultimate stress. Usually the maximum stress is less than this ultimate 
stress. Low stress corresponds to the smaller loads. This smaller loading we call the 
allowable load or design load. The ratio of the ultimate load to the allowable load is 
used to define the Factor of Safety which is:

  = . . =  
 

 (1.21)

An alternative of this definition can be applied to stresses:

  = . . =  
  (1.22)

• Selecting the appropriate Factor of Safety. The appropriate Factor of Safety (F.S.) for 
a given design application requires good engineering judgment based on many 
considerations, such as the following:

 - Type of loading, i.e. static or dynamic or random loading.
 - Variation of material properties, i.e. composite structure of different materials.
 - Type of failure that is expected, i.e. brittle or ductile failure, etc.
 - Importance of a given member, i.e. less important members can be designed 

with allowed F.S.
 - Uncertainty due to the analysis method. Usually we use some simplifications 

in our analysis.
 - The nature of operation, i.e. taking into account the properties of our surrounding, 

for example: corrosion properties.

For the majority of structures, the recommended F.S. is specified by structural Standards and 
other documents written by engineering authorities.

Download free eBooks at bookboon.com



INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

36

stress and strain – axiaL Loading

2  STRESS AND STRAIN – 
AXIAL LOADING

2.1 INTRODUCTION

In the previous chapter we discussed the stresses produced in the structures under various 
conditions, i.e. loading, boundary conditions. We have analyzed the stresses in simply loaded 
members and we learned how to design some characteristic dimensions of these members 
due to allowable stress. Another important aspect in the design and analysis of structures are 
their deformations, and the reasons are very simple. For example, large deformations in the 
structure as a result of the stress conditions under the applied load should be avoided. The 
design of a bridge can fulfil the condition for allowable stress but the deformation (in our 
case deflection) at mid-span may not be acceptable. The deformation analysis is very helpful 
in the stress determination too, mainly for statically indeterminated problems. Statically it is 
assumed that the structure is a composition of rigid bodies. But now we would like to analyse 
the structure as a deformable body.

2.2 NORMAL STRESS AND STRAIN UNDER AXIAL LOADING

Fig. 2.1

Fig. 2.2
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Let us assume that the rod BC, of length L with constant cross-sectional area A, is hanging 
on a fixed point B, see Fig. 2.1 . If we apply the load F we can observe an elongation of the 
rod BC. Both the applied force and elongation can be measured. And we can plot the load 
vs. elongation, see Fig. 2.2. 

As we mentioned in the previous chapter, we would like to avoid plotting geometrical 
characteristics, i.e. cross-sectional area and length. We cannot use such a graph directly to 
predict the rod elongation of the same material with different dimensions. Let us consider 
the following examples:
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Fig. 2.3

The applied load F causes the elongation DL. The corresponding normal stress can be found 
by passing a section perpendicular to the axis of the rod (method of sections) applying this 
method we obtain � = �(�)

� = � �⁄ , see Fig. 2.1. If we apply the same load to the rod of length 
2L and the same cross-sectional area A, we will observe an elongation of 2DL with the same 
normal stress � = � �⁄ , see Fig. 2.3. This means the deformation is twice as large as the 
previous case. But the ratio of deformation over the rod length is the same, i.e. is equal to 
DL/L. This result brings us to the concept of strain. 

We can now define the normal strain ε caused by axial loading as the deformation per unit 
length of the rod. Since length and elongation have the same units, the normal strain is a 
dimensionless quantity. Mathematical, we can express the normal strain by:

=
 (2.1)
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Fig. 2.4

This equation is valid only for a rod with constant cross-sectional area. In the case of variable 
cross sectional area, the normal stress varies over the axis of the rod by �� = � �(�)⁄ . Then 
we must define the normal strain at an arbitrary point Q by considering a small element of 
undeformed length Dx. The corresponding elongation of this element is D(DL), see Fig 2.4. 
Thus we can define the normal strain at point Q as:

�� = limΔ��0
Δ(Δ�)
Δ� = �Δ�

��  (2.2)

which again, results in a dimensionless quantity.
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2.3  STRESS-STRAIN DIAGRAM, HOOKE’S LAW, AND MODULUS 
OF ELASTICITY

Fig. 2.5 Test specimen
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Fig. 2.6 MTS testing machine, see [www.mts.com]

As we discussed before, plotting load vs. elongation is not useful for engineers and designers 
due to their strong sensitivity on the sample geometry. Therefore we explained the concepts 
of stress and strain in Sec. 1.3 and Sec. 2.2 in detail. The result is a stress-strain diagram that 
represents the relationship between stress and strain. This diagram is an important characteristic 
of material and can be obtained by conducting a tensile test. The typical specimen can be 
shown in Fig. 2.5. The cross-sectional area of the cylindrical central portion of the specimen 
has been accurately determined and two gage marks have been made in this portion at a 
distance L0 from each other. The distance L0 is known as the gage length (or referential length) 
of the specimen. The specimen is then placed into the test machine seen in Fig. 2.6, which is 
used for centric load application. As the load F increases, the distance L between gage marks 
also increases. The distance can be measured by several mechanical gages and both quantities 
(load and distance) are recorded continuously as the load increases. As a result we obtain the 
total elongation of the cylindrical portion DL=L-L0 for each corresponding load step. From 
the measured quantities we can recalculate the values of stress and strain using equations (1.5) 
and (2.1). For different materials we obtain different stress-strain diagrams. In Fig. 2.7 one 
can see the typical diagrams for ductile and brittle materials.
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(a) DUCTILE MATERIAL (b) BRITTLE MATERIAL

Fig. 2.7

For a more detailed discussion about the diagrams we recommend any book which is concerned 
with material sciences for engineers.

Many engineering applications undergo small deformations and small strains. Thus the response 
of material can be expected in an elastic region. For many engineering materials the elastic 
response is linear, i.e. the straight line portion in a stress-strain diagram. Therefore we can write:

=  (2.3)

This equation is the well-known Hooke’s law, found by Robert Hooke (1635–1703), the English 
pioneer of applied mechanics. The coefficient E is called the modulus of elasticity for a given 
material, or Young’s modulus, named after the English scientist Thomas Young (1773–1829). 
Since the strain ε is a dimensionless quantity, then the modulus of elasticity E has the same 
units as the stress σ, in Pascals. The physical meaning of the modulus of elasticity is the 
stress occurring in a material undergoing a strain equal to one, i.e. the measured specimen is 
elongated from its initial length L0.

If the response of the material is independent from the direction of loading, it is known as 
isotropic. Materials whose properties depend upon the direction of loading are anisotropic. 
Typical example of anisotropic materials are laminates, composites etc.
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2.4 POISSON’S RATIO

(a) ASSUMED ROD (b) UNIT CUBE 

Fig. 2.8
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As we can see in the previous sections (2.2 and 2.3) the normal stress and strain have the same 
direction as the applied load. Let us assume that the homogenous and isotropic rod is axially 
loaded by a force F as in Fig. 2.8. Then the corresponding normal stress is � = �(�)

� = � �⁄  
and applying Hooke’s law we obtain:

= =  (2.3)

Fig. 2.9

It is natural to assume that normal stresses on the faces of a unit cube which represents 
the arbitrary point Q are zero. σy = σz = 0. This could convince one to assume that the 
corresponding strains εy, εz are zero too. But this is not our case. In many engineering materials 
the elongation in the direction of applied load is accompanied with a contraction in any 
transversal direction, see Fig. 2.9. We are assuming homogeneous and isotropic materials, 
i.e. mechanical properties are independent of position and direction. Therefore we have  
εy = εz. This common value is called the lateral strain. Now we can define the important 
material constant: Poisson’s ratio, named after Simeon Dennis Poisson (1781–1840), as:

� = − �������  ������
�����  ������

 (2.4)

or

� = −��
��

= − ��
��  (2.5)

Note that the contraction in the lateral direction means that the reduction of lateral dimension 
return a negative value of strain and a positive value of Poisson’s ratio. Usually Poisson’s ratio 
has a value within the interval of  〈0, 12〉 for common engineering materials like steel, iron, brass, 
aluminium, etc. If we apply Hooke’s law and eq. (2.5) we will obtain the following strains:

�� = ��
� = �

��    and �� = �� = − ���
� = − ��

��  (2.6)
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Fig. 2.10 Open foam

Naturally, there exist some materials with a negative value of Poisson’s ratio. These materials 
are known as cellular, i.e. foams and honeycombs. Instead of contraction, they elongate in 
the lateral direction. The structure of these materials is presented in Fig. 2.10. For more 
information see any book written by L.J. Gibson and M.F. Ashby.

2.5 GENERALISED HOOKE’S LAW FOR MULTIAXIAL LOADING

Fig. 2.11

Until now we have discussed slender members (rods, bars) under axial loading alone. This 
resulted in a stress state at any arbitrary point of Q: = , = = 0. Now let us consider 
multiaxial loading acting in the direction of all three coordinate axes and producing non-zero 
normal stresses: �� ≠ �� ≠ �� ≠ 0, see Fig. 2.11. 
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Fig. 2.12
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Let us consider that our material is isotropic and homogeneous. Our arbitrary point Q is 
represented by a unit cube (where the dimensions of each side are a unit of the length), see 
Fig. 2.12. Under the given multiaxial loading the unit cube is deformed into a rectangular 
parallelepiped with the following sides: (1 + ��), �1 + ���, (1 + ��), where εx, εy, εz are strains 
in the directions of the coordinate axes seen in Fig. 2.12(b). It is necessary to emphasis that 
the unit cube is undergoing the deformation motion only with no rigid motion (translation). 
Then we can express the strain components εx, εy, εz in terms of the stress components  
σx, σy, σz. For this purpose, we will first consider the effect of each stress component separately. 
Secondly we will combine the effects of all contributing stress components by applying the 
principle of superposition. This principle states that the final effect of combined loading can 
be obtained by determining the effects for individual loads separately and subsequently these 
separate effects are combined into the final result.

In our case the strain components are caused by the stress component σx : in the x direction 
��, = �� �⁄  and in the y and z directions ��, = ��, = ���� �⁄  recalling eq. (2.6). Similarly, 
the stress component sy causes the strain components: in the y direction ��,, = �� �⁄  and in 
x and z directions ��,, = ��,, = ���� �⁄ . And finally the stress component sz causes the strain 
components: in z direction ��,,, = �� �⁄  and in x and y directions ��,,, = ��,,, = ���� �⁄ . These 
are separate effects of individual stress components. The final strain components are then the 
sums of individual contributions, i.e.

�� = ��, + ��,, + ��,,, = ��
� − ���

� − ���
�

�� = ��, + ��,, + ��,,, = − ���
� + ��

� − ���
�

�� = ��, + ��,, + ��,,, = −���
� − ���

� + ��
�

 (2.7)

Fig. 2.13
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The equation (2.7) are known as a part of the generalised Hooke’s law or a part of the elasticity 
equations for homogeneous and isotropic materials. 

Fig. 2.14

Until now, shearing stresses have not been involved in our discussion. Therefore consider the 
more generalized stress state defines with six stress components , , , , , , see 
Fig. 2.13. The shearing stresses , ,  have no direct effect on normal strains, as long 
as the deformations remain small. In this case there is no effect on validity of equation (2.7).  
The occurrence of shearing stresses is clearly observable. Since the shearing stresses tend to 
deform the unit cube into a oblique parallelepiped.

Fig. 2.15
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For simplicity, let us consider a unit cube of material which undergoes a simple shear in the 
xy plane, see Fig.2.14. The unit cube is deformed into the rhomboid with sides equal to one, 
see Fig. 2.15. In other words, shearing stresses cause the shape changes while normal stresses 
cause the volume changes. Let us focus on the angular changes. The four angles undergo 
a change in their values. Two of them reduced their values from Π

2  to Π
2 � ��� while the 

other two increase from Π
2  to Π

2 � ���. This angular change    (measured in radians)  
defines the shearing strain in both directions x and y. The shearing strain is positive if the 
reduced angle is formed by two faces with the same direction as the positive x and y axes, see 
Fig. 2.15. Otherwise it is negative.

In a similar way as the normal stress-strain diagram for tensile test we can obtain the shear 
stress-strain plot for simple shear or simple torsion, discussed in Chapter 3. From a mathematical 
point of view we can write Hooke’s law for the straight part of the diagram by:

=  (2.8)

The material constant G is the shear modulus for any given material and has the similar physical 
meaning as Young’s modulus. 
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If we consider shear in the xz and yz planes we will get similar solutions to Eq. (2.8) for 
stresses in those planes, i.e.

= =  (2.9)

Finally we can conclude that the generalised Hooke’s law or elasticity equations for the 
generalised stress state are written by:

�� = ��
� − ���

� − ���
�

�� = − ���
� + ��

� − ���
�

�� = − ���
� − ���

� + ��
�  (2.10)

=
=

=

The validity of these equations is limited to isotropic materials, the proportionality limit stress 
that can not be exceeded by none of the stresses, and the superposition principle. Equation 
(2.10) contains three material constants E, G, v that must be determined experimentally. In 
reality we need only two of them, because the following relationship can be derived

� = �
2(1+�)  (2.11)
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2.6 SAINT VENANT’S PRINCIPLE

Fig. 2.16

Fig. 2.17
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Until now we have discussed axially loaded members (bars, rods) with uniformly distributed 
stress over the cross-section perpendicular to the axis of the member. This assumption can cause 
errors in the vicinity of load application. For simplicity let us consider a homogeneous rubber-
like member that is axially loaded by a compressive force F, see Fig. 2.16. Let us make the 
following two experiments. Firstly, we draw a squared mesh over the member; see Fig. 2.17(a). 
Then we apply the compressive load through two rigid plates; see Fig. 2.17(b). The member 
is deformed in such a manner that it remains straight but the original square element change 
into a rectangular elements, see Fig. 2.17(b). The deformed mesh is uniform; therefore the 
strain distribution over a perpendicular cross-section is also uniform. If the strain is uniform, 
then we can conclude that the stress distribution is also similarly uniform described by Hooke’s 
law. Secondly we apply the compressive force to the same meshed member throughout the 
sharp points, see Fig. 2.18. This is the effect of a concentrated load. We can observe strong 
deformations in the vicinity of the load application point. At certain distances from the end 
of a member the mesh is again uniform and rectangular. Therefore we can say that there are 
large deformations and stresses around the load application point while uniform deformations 
and stresses occur farther from this point. In other words, except for the vicinity of load 
application point, the stress distribution function may be assumed independently to the load 
application mode. This statement which can be applicable to any type of loading is known 
as Saint-Venant’s principle, after Adhémar Barré de Saint-Venant (1797–1886).

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

53

stress and strain – axiaL Loading

Fig. 2.18

While Saint-Venant’s principle makes it possible to replace actual loading with a simpler one 
for computational purposes, we need to keep in mind the following:

• The actual loading and loading used to compute stresses must be statically equivalent.
• Stresses cannot be computed in the vicinity of load application point. In these cases 

advanced theoretical and experimental method must be applied for stress determination.

2.7 DEFORMATIONS OF AXIALLY LOADED MEMBERS

Fig. 2.18 

Let us consider a homogeneous isotropic member BC of length L, cross-sectional area A, 
and Young’s modulus E subjected to the centric axial force F, see Fig. 2.18. If the resulting 
normal stress �� = N(x) A⁄ = F A⁄  does not exceed the proportional limit stress and applying 
Saint-Venant’s principle we can then apply Hooke’s law

= E   or  = E  (2.12)
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And substituting for the normal stress �� = N(x) A⁄ = F �⁄  we have

�� = N(x)
E A = F

E A  (2.13)

Recalling the definition of normal strain, equation (2.1) we get

ΔL = ��L  (2.14)

and substituting equation(2.13) into equation (2.14) we have

ΔL = N(x)L
E A = F L

E A  (2.15)

Now we can conclude that the application of this equation: Equation (2.15) may be used only 
if the rod is homogeneous (constant E), has a uniform cross-sectional area A, and is loaded at 
both ends. If the member is loaded at any other point or is composed from several different 
homogeneous parts having different cross-sectional areas we must apply the division into 
parts satisfying the previous conclusion. Denoted d Ni(x) ,  Ei  ,  Ai  , Li the internal normal force, 
Young’s modulus, cross-sectional area and length corresponding to the part i respectively. Then 
the total elongation is the sum of individual elongations (principle of superposition):

ΔL = ∑ Δ����=1 = ∑ Ni(x) Li
Ei  Ai

��=1  (2.16)

In the case of variable cross-sectional area, as in Fig. 2.4, the strain depends on the position 
of the arbitrary point Q, therefore we must apply equation (2.2) for the strain computation. 
After some mathematical manipulation we have the total elongation of the member

ΔL = ∫ N(x)
EA (�) �� (2.17)

Until now we could solve problems starting with the free body diagram, and subsequently 
determine the reactions from equilibrium equations. Recalling the method of sections in 
(chapter 2.2) we can compute internal forces at any arbitrary section, allowing us to then 
proceed with computing stresses, strains and deformations. But many engineering problems 
can not be solved by the approach of statics alone. 
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Fig. 2.19

For simplicity, let us consider a simple problem, see Fig. 2.19. Using statics we cannot solve 
the problem through equilibrium equations. The main difficulty in this problem is that the 
number of unknown reactions is greater than the number of equilibrium equations. From 
a mathematical point of view the problem is ill-conditioning. For our case we obtain one 
equilibrium equation as 

∑ Fx = 0 ∶   RC − F + RB = 0  (2.18)
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Fig. 2.20

There are two unknown reactions in equation (2.18). Problems of this type are called statically 
indeterminate problems.

Fig. 2.21
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To overcome the static indeterminacy we need to complete the system of equilibrium equations 
with relations involving deformations by considering the geometry of the problem. These 
additional relations are called deformation conditions. For practical solution let us consider 
the following transformation in Fig. 2.20. The problem presented is exactly the same as the 
problem in Fig. 2.19. This problem is statically indeterminate to the first degree. Removing 
the redundant support at point C and replacing it with the unknown reaction Rc we obtain 
the so-called statically indeterminate problem with unknown reaction, see Fig. 2.20(b). Now 
our task is to receive the same response for the statically indeterminate problem as in the 
original statically indeterminate problem. To get the same response of the structure we need 
to impose the deformation condition for point C, that the displacement for this point is equal 
to zero, see Fig. 2.21, or mathematically

uC = 0 (2.19)

This condition (2.19) coincides with the total elongation of the member also equal to zero. 
We then have:

uC = ΔL = 0  (2.20)

The member presented in Fig. 2.21 can be divided into two homogeneous parts. Therefore 
the total elongation is a sum of individual elongation, equation (2.16), i.e. ΔL = ΔL1 + ΔL2.  
Then we have

ΔL = N1(x)L1
EA + N2(x)L2

EA = 0 (2.21)

Both normal forces �1(�) = ���  ,�2(�) = � � ��  are functions of unknown reaction RC. Solving 
equation (2.21) we obtain the value of reaction RC. We can then continue by solving in the 
usual way for statically determinate problems.
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2.8 PROBLEMS INVOLVING TEMPERATURE CHANGES

Fig. 2.22
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In the previous discussions we assumed constant temperature as the member was being loaded. 
Let us now consider a homogeneous rod BC with the constant cross-sectional area A and 
the initial length L, see Fig. 2.22. If the temperature of the rod grows by ∆T then we will 
observe the elongation of the rod by ∆LT, see Fig. 2.22. This elongation is proportional to 
the temperature increase ∆T and the initial length L. Using basic physics we have

ΔLT = �(ΔT)L  (2.22)

where α is the coefficient of thermal expansion. The thermal strain εT is associated with the 
aforementioned elongation ∆LT. i.e. �� = ΔLT L⁄ .. Then we have

�� = �(��) (2.23)

Fig. 2.23

In this case there is no stress in a rod. We can prove this very easily by applying the method 
of sections and writing equilibrium equations. 

Fig. 2.24
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By modify the previous rod by placing it between two rigid plates and subjecting it to a 
temperature change of ∆T we will observe no elongation because of the fixed supports at its 
ends. We know that this problem is statically indeterminate due to the supports at each end. 
Let us then transform the problem into the so-called statically determinate problem. Removing 
the support at point C and replace it by unknown reaction RC. Now we can apply the 
principle of superposition in the following way. Firstly, we heat the rod by ∆T, see Fig. 2.24(a),  
then we can observe the elongation ΔLT = �(ΔT)L , see Fig. 2.24(b). Secondly, we push the 
rod by the reaction RC back to its initial length, see Fig. 2.24(c). The effect of pushing is the 
opposite of elongation . Applying the formulas (2.22) and (2.15) we have

ΔLT = �(Δ�)L  and  ΔLRC = RCL
E A  (2.24)

Expressing the condition that the total elongation must be zero, we get

ΔL = ΔLT + ΔLRC = �(Δ�)L + RC L
E A = 0 (2.25)

This equation represents the deformation condition. And we can compute the reaction as

RC = −EA�(��) (2.26)

and corresponding stress

�� = N(x)
� = RC

A = ���(��)  (2.27)

2.9 TRUSSES

Fig. 2.25
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The truss is a structure consisting of several slender members (rods, bars) that are subjected to 
axial loading only. The simple truss structure is presented in Fig. 2.25. This truss consists of two 
bars of the same cross-sectional area A and Young’s modulus E. The truss is loaded by a vertical 
force F. Our task is to compute the vertical and horizontal displacements of joint C. Applying 
the methods of statics we can determine axial forces in each bar: N1 = F sin�⁄  , N2 = F tan�⁄ .
. Consequently, we can determine elongations for individual bars using equation (2.15)

ΔL1 = N1L1
EA = F L1

EA sin θ  and  ΔL2 = N2L2
EA = F L2

EA tan �  (2.28)
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The deformed configuration can be founded by drawing two circles with centres at joints B 
and D with the following radii, see Fig. 2.26

Fig. 2.26

r1 = L1 + ΔL1 = L1 �1 + F
EA sin ��

r2 = L2 − ΔL2 = L2 �1 − F
EA tan ��

The deformations are relatively small, therefore we can replace the circles with tangents 
perpendicular to the undeformed bars, see Fig. 2.27. One can then compute the horizontal 
and vertical displacements as follows:

uC = ΔL2 = F L2
�� tan �

vC = ΔL1 sin � + ΔL2+ΔL1 cos �
tan � =  F L1

EA sin2� + F L2
�� tan2�

 (2.29)

Fig. 2.27 Vertical and horizontal displacements
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2.10 EXAMPLES, SOLVED AND UNSOLVED PROBLEMS

Problem 2.1

 
Fig. 2.28

A steel bar has the following dimensions: a = 100 mm, b = 50 mm, L = 1500 mm, shown 
in Fig. 2.28. If an axial force of F = 80 kN is applied to the bar, determine the change in its 
length and the change in the dimensions of its cross-section after the load is applied. Assume 
that the material behaves elastically, where the Young’s modulus for steel is E = 200 GPa and 
Poisson’s ratio n = 0.32.

Solution

The normal stress in the bar is 

3
6

x
F F 80(10 ) Nσ 16.0 10 Pa 16.0 MPa.
A ab (0.1 m)(0.05 m)

The strain in the x direction is 

6
-6x

x 9

σ 16 10 Pa 80 10 .
E 200 10 Pa

The axial elongation of the bar then becomes 

6x
x x

FLL L= L= (80 10 ) 1.5m 120μm.
E abE

Using Eq. (2.6) for the determination of Poisson’s ratio, where n = 0.32 as given for steel, the 
contraction strain in the y and z direction are

6
y z x 0.32(80 10 ) 25.6 μm/m.
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Thus the changes in the dimensions of cross-section are given by

x
y y y x

FL L = a a a
E abE

x
z z z x

FL L = b b b
E abE
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Problem 2.2

Fig. 2.29

A composite steel bar shown in Fig. 2.29 is made from two segments, BC and CH, having 
circular cross-section with a diameter of DBC = D and DCH = 2D. Determine the diameter D,  
if we have an allowable stress of σAll = 147 MPa and the applied load is F = 20 kN.

Solution

We can divide the bar into three parts (BC, CG and GH) which have constant cross-section 
area and constant loading. 

Stress and Equilibrium for part BC

Ix 0,L

 

Solution of normal (axial) load NI

Iix I IF 0 :     F N 0          N F 20 kN= − = ⇒ = =∑

Stress in the part BC

I
I 2 2 2 2

I

N F 4F 4 20000N 1σ 25464.8
A πD πD πD D

4
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Equilibrium and stress in part CG

IIx L,2L∈

 

Solution of normal (axial) load NII

IIix II II
F FF 0 :     F N 0          N 0
2 2

= − − − = ⇒ =∑

Stress in part BC

I
I 2 2 2 2

I

N F 4F 4 20000N 1σ 25464.8
A πD πD πD D

4

Equilibrium of part and stress in part GH

IIIx 2L,3L∈

 

Solution of normal (axial) load NIII

IIIix III III
F F 3 3F 0 :     F F F N 0          N 3F
2 2 2 2

= − − − − − = ⇒ = −∑

III N 3F = -3 20000 N 90000 N= − × = −
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Stress in part CD

III
III 2 2 2 2

III

N 3F 3F 3 20000N 1σ 19098.6
A π(2D) πD πD D

4
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For all parts, draw the diagram of normal force and stress. The maximum stress is in the first 
part (BC), which we can compare with the allowable stress and obtain the parameter D 

MAX I All2
All

4F 4Fσ  σ σ           D
πσπD

4 20000 ND        D 13.2 mm   
π 147 MPa

Problem 2.3

Fig 2.30

Determine the elongation of a conical bar shown in Fig. 2.30 at point B without considering 
its weight.

Given by maximum cone diameter of D, length L, modulus of elasticity E and applied force 
F, Determine the maximum stress in the conical bar.

Solution

The problem is divided into two parts.

Equilibrium of the first part

Ix 0, L/2∈
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We determine the normal force NI and normal stress σI.

Normal force NI:

Iix I I I IF 0 :     N (x ) 0          N (x ) 0= = ⇒ =∑

Calculate angle b from the geometry of the cone given by diameter DI at position xI

I I

I
I I

I

D (x )D
x2 2tan           D (x ) D

L x L

Cross-sectional area (function of position) in the first part is

I

2 22 2
I I

I I 2

xπD xπ πDA (x ) D
4 4 L 4 L

Normal stress σI is as follows

I I
I I 2 2

I I I
2

N (x ) 0σ (x ) 0
A (x ) πD x

4L

Equilibrium of the second part

IIx L/2,L∈

We determine the normal force NII and normal stress σII.

Normal force NII:

IIix II II II IIF 0 :     N (x ) F 0          N (x ) F= − = ⇒ =∑
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Calculation of angle b from geometry and diameter DII at position xII

II II

II
II II

II

D (x )D
x2 2tan           D (x ) D

L x L

Cross-section area (function of position) in second part is

II

2 22 2
II II

II II 2

xπD xπ πDA (x ) D
4 4 L 4 L

Normal stress σII is then

2
II II

II II 2 2 2 2
II II II II

2

N (x ) F 4FLσ (x )
A (x ) πD x πD x

4L

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

71

stress and strain – axiaL Loading

 
Fig. 2.31

The graphical result of the normal force and stress is shown in the Fig. 2.31.

Elongation is found by summing the elongation of each part using integration, because cross-
section area is a function of position in all parts, which is given by

L/2 L
I I II II

B I II I II
I I II II0 L/2

N (x ) N (x )L ΔL ΔL  dx  dx
EA (x ) EA (x )

L/2 L

B I II2 2
I I II0 L/2

2

0 FL  dx  dx
EA (x ) πD xE

4L

LL2 2 2

B II2 2 2 2
L/2IIL/2

4FL 1 4FL 1 4FL 1L  dx -
L LEπD x EπD EπD

B 2

4FLL
EπD

Problem 2.4

Fig. 2.32
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A bar BC and CG of length L is attached to rigid supports at B and G. Part BC have a 
square cross-section and between point C and G the cross section is circular. What are the 
stresses in portions BC and CG due to the application of load F at point C in Fig. 2.32. 
The weight of the bar is neglected. Design the parameter D to accommodate for the given 
allowable strss σAll. length L, modulus of elasticity E and applied force F are known. Problem 
is statically indeterminate.

Solution

Fig. 2.33

At first, we detach the bar at point B and define a reaction at its location, which will be solved 
from the deformation condition. (See Fig. 2.33).

The solution is divided into two solutions part BC and CG.

Free-body diagram on portion I (part BC):

Ix 0, L∈

From the equilibrium equation in the first part, we obtain

Iix I I I IF 0 :     N (x ) R 0          N (x ) R= − = ⇒ =∑
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Solution of cross-section area is given From Pythagoras theorem where we determine the side 
length of the square: 

2
IA a       = ⇒   

2 2 2

2 2

2 2

(2D) a a
4D 2a                  
2D a

= +

= ⇒

=
  2

IA 2D=

Stress in portion BC is

I I
I I 2

I I

N (x ) Rσ (x )
A (x ) 2D
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Free-body diagram an portion II (part CG):

IIx L,2L∈

From the equilibrium equation in the second part, we obtain

IIix II II II IIF 0 :     N (x ) F R 0          N (x ) R F= + − = ⇒ = −∑

Stress in portion CG is

II II
II II 2 2

II II

N (x ) R F 4(R F)σ (x )
A (x ) πD πD

4

We determine the unknown reaction from the deformation condition, total elongation 
(movement of point B) is equal to zero:

B B I II I IIL 0          L ΔL ΔL 0          ΔL ΔL 0 ,

from which we have

I I II II
2 2

I I II II

P L P L RL 4(R-F)L0          0
E A E A E2D EπD

8FπR 8(R-F) 0          R
π 8
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Fig. 2.34

We insert the solved reaction into the result of parts BC and CG, 

I I
8FN (x ) R 0.72F
π+8

I I
I I 2 2

I I

N (x ) 8F Fσ (x ) 0.36
A (x ) (π+8)2D D

II II
8F πFN (x ) R F F 0.28F
π+8 π+8

and draw the diagram of normal forces and stresses for both portions, which is shown in the 
Fig. 2.34 

Design of parameter D 

The maximum (absolute value) of stresses is the same for both portions, we compare them 
with the allowable stress and we get the designed parameter D:

MAX All2
All

F 0.36Fσ  0.36 σ           D
σD
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Problem 2.5

Fig. 2.35

In Fig. 2.35, a bar of length 2L with uniform circular cross-section area and made of the same 
material with a modulus of elasticity E, is subjected to an applied force F. determine the stress 
in the bar. Consider the weight of bar (density ρ and gravity g are known).
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Solution

Fig. 2.36

Problem is statically indeterminate and for the solution we use the deformation condition at 
point B.

First step of solution is to substitute an unknown reaction at point B (see Fig. 2.36).

Because the problem is in pure tension, the reaction Ry and moment M are zero, reaction R 
is non-zero. 

Solution of this problem is divided into two parts.

Ix 0, L∈

Equilibrium of first part

Iix I I I I I IF 0 :     N (x ) R G 0          N (x ) G R= + − = ⇒ = −∑

where GI is gravitational load of first part, defined by

I I IG mg ρVg ρgA x
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Normal force and stress is gathered by

I I I IN (x ) ρgA x R

I I I I
I I I

I I I

N (x ) ρgA x R Rσ (x ) ρgx
A (x ) A A

IIx L,2L∈

Equilibrium at the second part, is given by

IIix II II II II II IIF 0 :     N (x ) F R G 0          N (x ) F G R= + − − = ⇒ = + −∑

Normal force and stress is as follows

II II II II IIN (x ) F ρgA x R F ρgAx R

II II II
II II II

II II

N (x ) F ρgAx R F Rσ (x ) ρgx
A (x ) A A A

Deformation condition at point A

Total elongation at point A is equal to zero, which is consisting of the first part of the bar 
DLI and second part DLII. For solution of each part we used the integral form because normal 
force is a function of position. Unknown reaction R after calculation becomes
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I I II II
A I II

I I II II

P L P LL ΔL ΔL 0          0
E A E A

L 2L
I II

I II
0 L

(ρgAx R)L (F ρgAx R)L dx  dx 0
EA EA

F2 gAL F 2R          R ρgAL
2

 
Fig. 2.37
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We insert the result of reaction R into the function of normal force and stress for both parts 
and the diagram for force and stress is shown in Fig. 2.37.

I I I I
F FN (x ) ρgAx ρgAL ρgA(x L)
2 2

I I I I
I I I

I I I

N (x ) ρgA x R Fσ (x ) ρg(x L)
A (x ) A 2A

II II II II II
F FN (x ) F ρgAx R F ρgAx ρgAL ρgA(x L)
2 2

II II
II II II

II II

N (x ) Fσ (x ) ρg(x L)
A (x ) 2A

Problem 2.6

Fig. 2.38

A rod of length L, cross-sectional area A1, and modulus of elasticity E1 has been place inside 
a tube with the same length L, but of differing cross-section area A2 and modulus of elasticity 
E2 (Fig. 2.38). What is the deformation of the rod and tube when F is applied to the end 
of the plate as shown?

Solution

The axial force in the rod and in the tube is denoting by NROD and NTUBE, respectively. we 
draw a free-body diagram for the rigid plate in Fig. 2.39:

Fig. 2.39
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ix TUBE ROD TUBE RODF 0 :     N N F 0          N N F= + − = ⇒ + =∑  (a)

The problem is statically indeterminate. However, the geometry of the problem shows that 
the deformation DLROD and DLTUBE of the rod and tube must be equal:

TUBE TUBE ROD ROD
TUBE ROD

TUBE TUBE ROD ROD

N L N LL ΔL           
E A E A

TUBE TUBE
TUBE ROD

ROD ROD

E AN N
E A

=
 (b)

Equation (a) and (b) can be solved simultaneously for NROD and NTUBE by:

TUBE TUBE
ROD ROD

ROD ROD

E AN N F
E A

+ =

TUBE TUBE
ROD

ROD ROD

E AN 1 F
E A

 
+ = 

 

ROD
TUBE TUBE

ROD ROD

FN
E A 1
E A

=
 

+ 
 

TUBE TUBE
TUBE

ROD ROD TUBE TUBE

ROD ROD

E A FN
E A E A 1

E A

=
 

+ 
 

Problem 2.7

Fig. 2.40

Determine the value of stress in the steel bar shown on Fig. 2.40 when the temperature change 
of the bar is DT = 30 °C. Assume a value of E = 200 GPa and a = 12 × 10-6 1/°C for steel.
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Solution

We first determine the reaction at the support. Since the problem is statically indeterminate, 
we detach the bar from its support at B.

Fig. 2.41

The corresponding deformation from temperature exchange (Fig. 2.41) is

TL α ΔT L
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Applying the unknown force Ncompression at the end of the bar at B (Fig. 2.41). We use eq. (2.15)  
to express the corresponding deformation DLcompression

compression
compression

N L
L  

EA
D =

Total deformation of the bar must be zero at point B, from which we have the following 
deformation condition 

compression TL L ,D = D

from this we obtain Ncompression

compressionN α ΔT EA.

Stress in the bar is then given by

compression 6 o o 9N α ΔT EAσ α ΔT E 12 10  1/ C 30 C 200 10  Pa = 72 MPa.
A A

Problem 2.8

Fig. 2.42

Determine the stress of the aluminum bar L = 500 mm shown in Fig. 2.42. when its temperature 
changes by DT = 50 °C. Use the value E = 70 GPa and α = 22.2 × 10-6 1/°C for aluminum.
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Solution

We determine the elongation of the bar from temperature exchange from the following equation

x 0,L∈

Fig. 2.43

6 o o
TL L α ΔT L 22.2 10  1/ C 40 C 500 mm 0.444 mm

We divide the bar into one component part shown in Fig. 2.43. From equilibrium equation 
in this part we find the unknown normal force: 

ixF 0 :     N(x) 0= =∑

Stress in the aluminum bar we describe by

N 0σ 0 Pa
A A

Problem 2.9

Fig. 2.44

The linkage in Fig. 2.44 is made of three 304 stainless members connected together 
by pins, each member has a cross-sectional area of A = 1000 mm2. If a vertical force  
F = 250 kN is applied to the end of the member at D, Determine the stresses of all members 
and the maximum stress σMAX.
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Solution

Fig. 2.45

First we disconnected the member CD and draw a free-body diagram (shown in Fig. 2.45) 
We then solve for the force NCD by the following equilibrium equation

iy CD CDF 0 :     N F 0          N F 250 kN= − = ⇒ = =∑

Other normal forces NAC and NBC we determined from equilibrium at point C (shown in 
Fig. 2.46), given by:

o

2

L 1.0 mtan 0.666          α 33.69
L 1.5 m
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In the x direction

ix GC BC GC BCF 0 :     N sinα N sinα 0          N N 0

Fig. 2.46

BC ACN N=

In the y direction

iy GC BC CDF 0 :     N cosα N cosα N 0

BC CD BC o

F 250 kN2N cosα N F          N 150.23 kN
2 cosα 2 cos 33.69

GC BCN N 150.23 kN

Stresses in the members are 

3
GC

GC 2

N 150.23 10 Nσ 150.23 MPa
A 1000 mm

3
BC

BC 2

N 150.23 10 Nσ 150.23 MPa
A 1000 mm

3
CD

CD 2

N 250 10 Nσ 250 MPa
A 1000 mm

Maximum value of stress is at link CD

MAX CDσ σ 250 MPa
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Problem 2.10

Fig. 2.47

The assembly consists of two titanium rods and a rigid beam AC in Fig. 2.47. The cross section 
area is AGB = 60 mm2 and ACD = 45 mm2. The force is applied at a = 0.5 m. Determine the 
stress at rod GB and CD; if a the vertical force is equal to F = 30 kN.

Solution

Fig. 2.48

The unknown normal forces in the titanium rod are found from the equilibrium equation of 
rigid beam GC in Fig. 2.48, given by 

iy GB CDF 0 :     N N F 0= + − =∑

iB CD CD
F 30 kNM 0 :     N 3a Fa 0          N 10 kN
3 3

= − = ⇒ = = =∑

GB CDN F N =30 kN 10 kN 20 kN= − − =

GBN 20 kN=
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Stress in rod AB and CD is given by the following

GB
GB 2

GB

N 20000 Nσ 333.3 MPa
A 60 mm

CD
CD 2

CD

N 10000 Nσ 222.2 MPa
A 45 mm

Problem 2.11

Fig. 2.49
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The rigid bar BD is supported by two links AC and CD in Fig. 2.49. Link CH is made of 
aluminum (ECH = 68.9 GPa) and has a cross-section area ACH = 14 mm2; link DG is made 
of aluminum (EDG = 68.9 GPa) and has a cross-section of ADG = 2 ACH = 280 mm2. For the 
uniform load w = 9 kN/m, determine the deflection at point D and stresses in the link CH 
and DG.

Solution

Free body diagram of rigid bar BD

Fig. 2.50

Equilibrium equation of moment at point B in the bar BC (Fig. 2.50), is expressed as

iB CH DGM 0:     N Lsinα N 2L w2LL 0

CH DG
2     N 2N 2wL,

2
⇒ + =

 (a)

where

oLtan 1          α 45
L

in equation (a) we have two unknowns. We need a second equation for the solution of normal 
forces in the links from the deformation condition in Fig. 2.51, from the similar triangles

Fig. 2.51
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ΔBDD' ΔBCC'

CH DGL ΔLDD' CC'tan β           
BD BC L sinα 2 L

In these triangles the angle b are the same from which we have the following equation:
CH CHL Lsin α          CC'

CC' sin α

CH CH CH
CH

CH CH

N L N 2LL
E A EA

D = =

DG DG DG
DG

DG DG

N L N LL
E A 2EA

D = =

CH DG CH DG DG
CH

L ΔL N 2L2 N L N                   N
L sinα 2 L 2EA 4EA 2

 (b)

Solving for the system of equations (a) and (b), we get

DG
DG DG

N 2 2wL2N 2wL         N 0.92wL
4 2 2 +2

8

+ = ⇒ = =
 
  
 

DGN 0.92wL 0.92 300N/m 1m 276 N= = =

DG
CH

N wL 0.92wLN 0.23wL
4 422 +2

8

= = = =
 
  
 

CHN 0.23wL 0.23 300N/m 1m 69 N= = =

Stress in link CH is

CH
CH 2

CH

N 69 Nσ 4.93 MPa
A 14 mm

Stress in link DG is

DG
DG 2

DG

N 276 Nσ 9.86 MPa
A 28 mm
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Deflection of point D is given by the following

2
DG DG

DG 9 -6 2
DG DG

N L 0.92wL L 0.92 300N/m (1m)L
E A 2EA 2 68.9 10 Pa 14 10 m

D = = =

-4
DGL 1.43 10 m 0.143 mmD = =

Unsolved problems

                        
        Fig. 2.52                                            Fig. 2.53                                           Fig. 2.54            

Fig. 2.52 Fig. 2.53 Fig. 2.54
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Problem 2.12

Both portions of rod GBC in Fig. 2.52 are made of aluminum for which E = 70 GPa. Knowing 
that the magnitude of F is 4 kN, determine (a) the value of F1 so that the deflection at point 
A is zero, (b) the corresponding deflection of point B, (c) the value of stress for each portion.

[F1 = 32.8 kN; DLB = 0.073 mm; σGB = 12.73 MPa; σBC = 10.19 MPa]

Problem 2.13

Link DB in Fig. 2.53 is made of aluminum (E = 72 GPa) and has a cross-sectional area of 300 mm2.  
Link CG is made of brass (E = 105 GPa) and has a cross-sectional area of 240 mm2.  
Knowing that they support rigid member HBC, determine the maximum force F that can be 
applied vertically at point H, if the deflection of H cannot exceed 0.35 mm.

[F = 16.4 kN]

Problem 2.14

In Fig 2.54 a vertical load F is applied at the center B of the upper section of a homogeneous 
conical frustum with height h, minimum radius a, and maximum radius 2a. Young’s modulus 
for the material is denoted by E and we can neglect the weight of the structure. determine 
the deflection of point B.

B 2

F hL
2E π a

       
   Fig. 2.55                                            Fig. 2.56                                           Fig. 2.57          

Fig. 2.55 Fig. 2.56 Fig. 2.57

Problem 2.15

Determine the reaction at D and B for a steel bar loaded according to Fig. 2.55, assume that 
a 4.50 mm clearance exists between the bar and the ground before the load is applied. The 
bar is steel (E = 200 GPa), 

[RD = 430.8 kN, RB = 769.2 kN] 
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Problem 2.16

Compressive centric force of N = 1000 N is applied at both ends of the assembly shown in  
Fig 2.56 by means of rigid end plates. Knowing that ESTEEL = 200 GPa and EALUMINUM = 70 GPa,  
determine (a) normal stresses in the steel core and the aluminum shell, (b) the deflection of 
the assembly. 

[σALUMINUM = 3.32 MPa; σSTEEL = 9.55 MPa; DL = 4.74×10-3 mm]

Problem 2.17

Two cylindrical rods in Fig. 2.57, one made of steel (ESTEEL = 200 GPa) and the other of brass 
(EBRASS = 105 GPa), are joined at B and restrained by supports at G and C. For the given 
load, determine (a) the reaction at G and C, (b) the deflection of point B.

[RG = 134 kN; RC = 266 kN; DLB = - 0.3 mm]

Problem 2.18

Fig. 2.58

The rigid bar HBC is supported by a pin connection at the end of rod CB which has a cross-
sectional area of 20 mm2 and is made of aluminum (E = 68.9 GPa). Determine the vertical 
deflection of the bar at point D in Fig. 2.58 when the following distributed load w=300N/m 
is applied.

[DLB = 12.1 mm]
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Problem 2.19

Fig. 2.59

The bar has length L and cross-sectional area A. (see Fig. 2.59) Determine its elongation due 
to the force F and its own weight. The material has a specific weight γ (weight / volume) 
and a modulus of elasticity E.

2γ L F LL
2 E E A  

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

95

torsion

3 TORSION

3.1 INTRODUCTION

Fig. 3.1 Member in torsion

In the previous chapter we discussed axially loaded members and we analyzed the stresses and 
strains in these members, but we only considered the internal force directed along the axis 
of each member without observing any other internal force. Now we are going to analyse 
stresses and strains in members subjected to twisting couples or torques T and T`, see Fig. 3.1.  
Torques have a common magnitude and opposite sense and can be represented either by 
curved arrows or by couple vectors, see Fig. 3.2. 

Fig. 3.2 Alternative representations of torques
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Members in torsion are encountered in many engineering applications and are primarily 
used to transmit power from one point to another. These shafts play important roles in the 
automotive and power industry. Some applications are presented in Fig. 3.3.

Fig. 3.3 Transmitting shafts, [http://www.directindustry.com]

There is a parallelism between an axially loaded member and a member in torsion. Both 
vectors of applied force and applied torque  act in the direction of the member axes, see 
Fig. 3.4. Further on, will see the results of a deformation analysis speak more about 
this parallelism.

Fig. 3.4 Parallelism

This chapter contains two different approaches in solving torsion problems. Firstly we will 
present the theory for members with circular cross-sectional areas (circular members in short) and 
secondly we will extend our knowledge of this theory for application on non-circular members.
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3.2 DEFORMATION IN A CIRCULAR SHAFT

Fig. 3.5
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Let us consider a circular shaft fixed to a support at point B while the other end is free, see 
Fig. 3.5. The shaft is of length L with constant circular cross-sectional area A. If the torque 
T is applied at point C (free end of shaft), then the shaft will twist, i.e. the free end will 
rotate about the shaft axis through the angle of twist φ and the shaft axis remains straight after 
applying the load. 

Before applying the load, we can draw a square mesh over the cylindrical surface of the shaft 
as well as varying diameters on the front circular surface of the shaft, see Fig. 3.6(a). After 
applying the load and under the assumption of a small angle of twist (less than 5°) we can 
observe the distortion in Fig. 3.6(b):

1. All surface lines on the cylindrical part rotate through the same angle γ.
2. The frontal cross-sections remain in the original plane and the shape of every circle 

remains undistorted as well.
3. Diameters on the front face remain straight.
4. The distances between concentric circles remain unchanged.

Fig. 3.6
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These experimental observations allow us to conclude the following hypotheses:

1. All cross-sectional areas remain in the original plane after deformation.
2. Diameters in all cross-sections remain straight.
3. The distances between any arbitrary cross-sections remain unchanged.

The acceptability of these hypotheses is proven by experimental results. The aforementioned 
hypotheses result in no strain along the member axis. Applying equation (2.5) for isotropic 
material, we get

�� = 0   ⟹    �� = �� = 0  (3.1)

Fig. 3.7

Using equations of elasticity (2.10) we have = 0 . Equation (3.1) means that the edge 
dimensions of the unit cube are unchanged, but the shape of unit cube is changing. This 
can be proven with a small experiment. Let us imagine a circular member composed of 
two wooden plates which represent the faces on the front of the member. Now consider 
several wooden slats that are nailed to these plates and make up the cylindrical surface of the 
member, see Fig. 3.7. Let us make two markers on each neighbouring slat, see Fig. 3.7(a).  
These markers represent the top surface of the unit cube. After applying a load, the markers 
will slide relative to each other, see Fig. 3.7(b). The square configuration will then be deformed 
into a rhombus which proves the existence of a shearing strain.
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Fig. 3.8

We can now determine the shearing strain distribution in a circular shaft, see Fig. 3.5, and 
which has been twisted through the angle φ, see Fig. 3.8(a). Let us detach the inner cylinder 
of radius � ,� � 〈0,�〉  from the shaft. Now lets consider a small square element on its surface 
formed by two adjacent circles and two adjacent straight lines traced on the surface of the 
cylinder before any load is applied, see Fig. 3.8(b). Now subjecting the shaft to the torque 
T, the square element becomes deformed into a rhombus, see Fig. 3.8(c). Recalling that, in 
section 2.5, the angular change of element represents the shearing strain. This angular change 
must be measured in radians.
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From Fig. 3.8(c) one can determine the length of arc  ̀using basic geometry: ` =   or  ` =

. Then we can derive

=  (3.2)

where γ, φ are both considered to be in radians. From equation (3.2) it is clear for a given 
point on the shaft that the shearing strain varies linearly with the distance ρ from the shaft axis. 

Due to the definition of inner radius ρ the shearing strain reaches its maximum on the outer 
surface of the shaft, where ρ = R. Then we get

=  (3.3)

Using equations (3.2) and (3.3) we can eliminate the angle of twist. Then we can express the 
shearing strain γ at an arbitrary distance form the shaft axis by the following:

=
 (3.4)
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3.3 STRESS IN THE ELASTIC REGION

Fig. 3.9

Fig. 3.10
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Let us consider a section BC of the circular shaft with constant diameter D along its 
length L, subjected to torques T and T` at its ends, see Fig. 3.9. Applying the method of 
sections, we can divide the shaft into two arbitrary portions BQ and QC at any arbitrary 
point Q. In order to satisfy conditions of equilibrium for each part separately, we need to 
represent the removed part with internal forces. In our case, from the equilibrium equations, 
we get non-zero values only for the torque T(x), see Fig. 3.10(a). This torque represents 
the resultant of all elementary shearing forces dF exerted on a section at point Q, see  
Fig. 3.10 (b). If the portion BQ is twisted, we can write

∫ ��� = �(�) (3.5)

where ρ is the perpendicular distance from the force dF to the shaft axis. The shearing force 
dF can be expressed as follows = , then substituting into equation (3.5) we get

∫ ���� = �(�) (3.6)

Recalling Hooke’s law from Section 2.5 we can write

=  (3.7)

and applying equation (3.4) we get

=
 (3.8)

or

=  (3.9)

Fig. 3.11
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This equation shows that the shearing stress also varies linearly with the distance ρ from the 
shaft axis, as long as the yield stress is not exceeded. The distribution functions of shearing 
stress are presented in Fig. 3.11(a), for a solid circle, and in Fig. 3.11(b) for a hollow circle 
(ρ ϵ〈�1,�2〉 )). For the latter case we can write

= 1
2

 (3.10)

The integral equation (3.6) determines the relationship between the resultant of internal forces 
T(x) and the shearing stress τ. Substituting τ from equation (3.9) into (3.6) we get

�(�) = ����
� ∫�2��   (3.12)

The integral in the last member represents the polar moment of inertia J with respect to its 
centre O, for more detail see Appendix A. Then we have

�(�) = ����
� �  or   ���� = �(�)

� �   (3.13)

Substituting equation (3.9) into (3.13) we get

� = �(�)
� �  (3.14)
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3.4 ANGLE OF TWIST IN THE ELASTIC REGION

Fig. 3.12

When observing the deformation of a circular shaft subjected to a torque T, see Fig. 3.12, 
we can see the rotation of the free end C, about the shafts axis or angle of twist φ. The entire 
shaft remains in the elastic region after applying the load. The considered shaft has a constant, 
circular cross-section with a maximum radius R, and a length of L. Now we can recall equation 
(3.3) where the maximum shearing strain  and the angle of twist are related by the 

following

=  (3.3)

We are assuming that there is elastic response, therefore we can apply Hooke’s law for simple 
shear ���� = ���� �⁄ . After substituting equation (3.13) into Hooke’s law, and knowing that 

�(�) = � along the whole axis of the shaft, we get

= ( ) =  (3.15)

Equating the right-hand members of equations (3.3) and (3.15), and solving for φ we have

= ( ) =   (3.16)

The obtained formula shows that the angle of twist is proportional to the applied torque 
within the elastic region. If we compare the results of equation (2.15) from chapter 2, one 
can conclude the following parallelism: �� � �,    �(�) � �(�),    � � �,    � � � . This equation is 
valid only if the shaft is made of homogenous material (constant G), has a uniform cross-sectional 
area (constant J), and is loaded at its ends.
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If the shaft is composed from several different parts, each individually satisfying the validity of 
equation (3.16), we can extend formula (3.16) using the principles of superposition as follows:

φ = ∑ ����=1 = ∑ Ti(x) Li
Gi  Ji

��=1  (3.17)

where Ti(x) ,  Gi ,  Ji  , Li  is the internal torque, shear modulus, polar moment of inertia and 
length corresponding to the part i respectively.

In the case of variable cross-sectional area along the shaft, as in Fig.3.12, the strain depends 
on the position of the arbitrary point Q, therefore we must apply a similar equation to (2.2) 
for the computation of the shearing strain. After some mathematical manipulation the total 
angle of twist of the member is

φ = ∫ T(x)
GJ (�) ��   (3.18)

3.5 STATICALLY INDETERMINATE SHAFTS

Fig. 3.13
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Until now, we have discussed statically determinate problems. But there are some situations, 
where the internal torques can not be determinated using statics alone. For simplicity, let us 
consider a simple problem, see Fig. 3.13. In this case we cannot solve the problem through 
equilibrium equations from statics alone. The main difficulty in this problem is that the 
number of unknown reactions is greater than the number of equilibrium equations. From 
a mathematical point of view, the problem is ill-conditioned. For our case we obtain one 
equilibrium equation to be 

∑Tx = 0 ∶   TC − T + TB = 0  (3.18)

This problem is statically indeterminate. To overcome this difficulty we must use the same 
approach as in Chapter 2, Section 2.7 , i.e. to add deformation conditions. In our case the 
angle of twist at point C is equal to zero, and corresponds to the total angle of twist

� = �� = ∑ ��2�=1 = 0  (3.19)

Using equation (3.17) we obtain

φ = ∑ ��2�=1 = �1 + �2 = T1(x) L1
G J1

+ T2(x) L2
G J2

= 0   (3.20)

Both internal torques �1(�) = � � ��  ,   �2(�) = ��  are functions of unknown reaction TC. Solving 

equation (3.20) we obtain the value of reaction �� = �2�1
(�2�1��1�2)

�. We can then continue by 

solving in the usual way (for statically determinate problems).

3.6 DESIGN OF TRANSMISSION SHAFTS

In designing transmission shafts the principal specifications that must be satisfied are the power 
to be transmitted and the velocity of rotation. Our task now is to select the material and the 
type and the size of cross-section to satisfy the strength condition, i.e. the maximum shearing 
stress will not exceed the allowable shearing stress , when the shaft is transmitting 
the required power at the specified velocity. Recalling elementary physics we have

= = 2   (3.21)

Where P is the transmitted power, w is the angular velocity, and f is the frequency of rotation. 
Solving equation (3.21) for T obtains the torque exerted on our shaft which is transmitting 
the required power P at a frequency of rotation f,

= 2
  (3.22)
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Now we can apply the strength condition using equation (3.13) as follows

=   (3.23)

Substituting equation (3.22) into (3.23) we get

�
2��� � � ����     or  �

� ≥
�

2�� ����  (3.24)

The value J/R represents the allowable minimum. This variable is known as the section modulus 
and can be found in any common section standards. 
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3.7 TORSION OF NON-CIRCULAR MEMBERS

Fig. 3.14

Fig. 3.15

All previous formulas have been derived upon the axisymmetry of deformed members. Let us 
now consider the shaft with square cross-section, see Fig. 3.14. Experimental results show that 
the cross-section of this type warped out of their original plane. Therefore we cannot apply 
relations which are otherwise valid for circular members. For example, for a circular shaft the 
shearing stress varies linearly along the distance from the axis. Therefore, one could expect 
that the maximum stresses are at the corners of the square cross-sections but they are actually 
equal to zero. For this reason, we can consider a torsionally loaded bar, with an arbitrary 
non-circular cross-section, see Fig. 3.15. The shearing stress acts in an arbitrary direction on 
the contour of the cross-section. This stress τ has two components: a normal component 
τn and the tangential component τt. Due to the shear law, component τ’n must exist. But 
there is no load in that direction and therefore this stress is equal to zero and subsequently  
τn = τ’n = 0. The result means that in the vicinity of contour, the shearing stress is in the 
direction of tangent to the contour. 
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Fig. 3.16

Now let us consider a small unit cube at the corner of a square cross-section, see Fig. 3.16(a). The corner is 
the intersection point of two contour lines. Therefore at the corner we have two tangential components τxy 
and τxz, see Fig. 3.16(b). According to the shear law, other shearing components, τyx and τzx, must exist .  
Both are on the free surface, and there is no load in the x-axis direction. We can then write

= 0 and  = 0  (3.25)

and it follows that

= 0 and  = 0  (3.26)

Fig. 3.17
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Let us imagine a small experiment, let’s twist a bar with square cross-section and made of 
a rubber-like material. We can verify very easily, that there are no stresses and deformations 
along the edges of the bar and the largest deformations and stresses are along the centrelines 
of the bars faces.

Fig. 3.18
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Applying the methods of mathematical theory of elasticity for the bar with rectangular cross-
section bxh, we will get the stress distribution functions presented in Fig. 3.17. The corner 
stresses are equal to zero. We can find the two local stresses which are largest at point I and II  
(Roman numerals). Denoting L as the length of the bar, b and h as the narrow and wide side 
of bar cross-section respectively and T as the applied torque, see Fig. 3.18, we have

= = 2 and  =  (3.27)

The coefficient α,b depend only upon the ratio h/b. The angle of twist can be expressed as

= 3  (3.28)

The coefficient γ also depends only upon the ratio h/b. All coefficients α,b,γ are presented in 
the following Tab. 3.1.

h/b 1,00 1,50 1,75 2,00 2,50 3,00 4,00 6,00 8,00 10,00 ∞
α 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333

b 1,000 0,859 0,820 0,795 0,776 0,753 0,745 0,743 0,742 0,742 0,742

γ 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333

Tab. 3.1

Fig. 3.19

The stress distribution function over the non-circular cross-section can be visualised by the 
membrane analogy. Firstly, what does this analogy mean? Two processes are analogous if both 
can be describe by the same type of equations. In our case we have the twisting of a non-
circular bar and the deformation of a thin membrane subjected to internal pressures, see Fig. 
3.19. Both processes are determined by the same type of differential equations. Secondly, we 
need to determine the analogous variables. In our case we have
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 (3.29)

Fig. 3.20

The graphical representation of these equations is presented in Fig. 3.20.

The membrane analogy can be efficiently applied for members whose cross-section can be 
unrolled into the basic rectangle bxh, see Fig. 3.21. Another application of the membrane 
analogy is for members with cross-sections composed from several rectangles, see Fig. 3.22. 
These cross-sections cannot be unrolled into one simple rectangle bxh. For this case we can 
assume that the total volume of deformed membrane is equal to the sum of individually 
deformed membranes, see Fig. 3.23. If the torque is analogous to the membrane volume, 
and then we can write

          Fig. 3.21        Fig. 3.22 Fig. 3.21 Fig. 3.22

� � �1 + �2 +⋯+ ��
� = �1 = �2 = ⋯ = ��

 (3.30)
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After simple mathematical manipulations of these equations we determine that the total 
torsional stiffness is equals to the sum of individual torsional stiffness’ of each rectangle, i.e.

�ℎ�3 = ∑ ���=1 � ℎ���3  (3.31)

subsequently the largest stress corresponding to each rectangle can be found by

�� = ��
��ℎ���2  (3.33)
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Fig. 3.23

3.8 THIN-WALLED HOLLOW MEMBERS

Fig. 3.24

In the previous section we discussed members with open non-circular cross-sections subjected 
to torsional loading. The results obtained in the previous section required advanced theory 
of elasticity. For thin-walled hollow members we can apply some simple computations to 
obtain results.

Fig. 3.25
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Let us consider the thin-walled hollow member of non-circular cross-section, see Fig. 3.24. 
The wall thickness varies within the transverse section and remains very small in comparison 
to other dimensions. Let us detach a small coloured portion DE. This portion is bounded 
by two parallel transverse sections by the distance Dx and two parallel longitudinal planes. 
Focusing on the equilibrium of part DE in the longitudinal direction x, the shear law says 
that the shear forces ,  are exerted on faces D and E, see Fig. 3.25. We then get the 
corresponding equation 

∑�� = 0 ∶    �� � �� = 0  (3.34)

The longitudinal shear forces ,  are acting on the small faces of areas  and . 
Thus we can express the force as a product of shearing stress and area, i.e.

= =    ,       = =    (3.35)

Substituting equation (3.35) into (3.34) we get

= 0

or (3.36)

=

Since the selection of portion DE is arbitrary, and then the product τt is constant throughout 
the member. Denoting this product by q we get

= =  (3.37)

Fig. 3.26
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Fig. 3.27
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This new variable describes the shear flow in the member. The direction of shearing stress is 
determined by the direction of shear forces and the application of the shear law as one can 
see in Fig. 3.26 and Fig. 3.27.

Fig. 3.28

Now let us consider a small element ds which is a portion of the wall section, see Fig. 3.28. 
The corresponding area is dA = tds. The resultant of shearing stresses exerted within this area 
is denoting by dF or

= = =  (3.38)

The moment  of this force about the arbitrary point C is

= = =  (3.39)

Fig. 3.29

Where p is the distance of C to the action line of dF. The action line passes through the 
centre of this element and the product pds represents the doubled area dA, see Fig. 3.29. We 
then have

= 2  (3.40)
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In a mathematical point of view, the integral of moments around the wall section represents 
the resulting moment that is in equilibrium with the applied torque T. Thus we have

� = ∮ ��� = ∮�2��  (3.41)

Since the shear flow is constant, we get

� = � ∮ 2�� = �2�   (3.42)

Fig. 3.30

Where  is the area bounded by the centreline of the section, see Fig. 3.30. From the previous 
equation we can easily derive the formula for calculating the shearing stress

= 2  (3.43)

The corresponding angle of twist can be derived by using the method of strain energy, see 
Appendix A.4.2. We then get

� = ��
4�2� ∮

��
�  (3.44)

If the section can be built from several parts of constant thicknesses it is known to be piecewise 
constant, equation (3.44) can then be simplified 

� = ��
4�2� ∑

���
��

��=1  (3.45)
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3.9 EXAMPLES, SOLVED AND UNSOLVED PROBLEMS

Problem 3.1

 

Fig. 3.31

For the steel shaft with applied torque T = 2400 Nm shown in Fig. 3.31 (G = 77 GPa), 
determine (a) the maximum and minimum shearing stress in the shaft, (b) the angle of twist 
at the free end. The shafthas the following dimensions: L = 500 mm, D1 = 40 mm, D2 = 
50 mm.
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Solution

Fig. 3.32

 
Fig. 3.32

The shaft in Fig. 3.32 consists of one portion, which has uniform cross-section area and 
constant internal torque. From the free body diagram in Fig. 3.33 we find that:

ixM 0 :  T(x) + T = 0=∑

T(x) T 2400 Nm= − = −

The polar moment of inertia (see Appendix A.2) is 

4 4
FULL HOLE

FULL HOLE
πD πDJ J J

32 32
4 4

4π (50 mm) π (40 mm)J 362265 mm
32 32
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Maximum shearing stress. On the outer surface, we have

3
FULL

max max 4

DT T 2400 10  N.mm 50 mm
J J 2 362265 mm 2

max 165.5 MPa.

Minimum shearing stress. The stress is proportional to its distance from the axis of the shaft

Fig. 3.34

1

min 1 1
min max

2max 2 2

min

D
D D2       D D D

2
40 mm165.6 MPa 132.5 MPa
50 mm

Another way th determine this is by:

3
HOLE

min min 4

DT T 2400 10  N.mm 40 mm
J J 2 362265 mm 2

min 132.5 MPa.
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Fig. 3.35

Graphically we can show shearing stress in Fig. 3.34 and the diagram of torque along the 
length of the shaft is shown in Fig. 3.35.
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Angle of twist.

Using Eq. (3.16) and recalling that G = 77 GPa for the shaft we obtain

3

3 2 4

T L 2400 10  N.mm  500 mm
G J 77 10  N/mm  362265 mm

o0.043 rad 2.465

Problem 3.2

Fig. 3.36

The vertical shaft AC is attached to a fixed base at C and subjected to a torque T shown in 
Fig. 3.36. Determine the maximum shearing stress for each portion of the shaft and the angle 
of twist at A. Portion AB is made of steel for which G = 77 GPa with a diameter ofDSTEEL = 
30 mm. Portion BC is made of brass for which G = 37 GPa with a diameter of DBRASS = 
50 mm. Parameter L is equal to 100 mm

Solution

Fig. 3.37
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The complete shaft consists of two portions, AB and BC (see Fig. 3.37), each with uniform 
cross-section and constant internal torque.

Ix 0,L∈

Fig. 3.38

Solution of portion AB

Passing a section though the shaft between A and B and using the free body diagram shown 
Fig. 3.38, we find

ixI IM 0 :  T (x) + T = 0=∑ IT (x) T= −

Fig. 3.38

The maximum shearing stress is on the outer surface, we have 

STEEL STEEL
max I max I 4

STEEL

T T TD D
πDJ J 2 2

32

4
max I 3 3

STEEL

16 T 16 T 1.886 10 T
πD π(30 mm)

Diagram of the shearing stress across the cross-section area is shown in Fig. 3.39.
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Solution of portion BC

IIx L,2L∈

Fig. 3.40

Now passing a section between B and C (see Fig. 3.40) we obtain

ixII IIM 0 :  T (x) + T 2T= 0= −∑ IIT (x) T=
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Again, the maximum shearing stress is on the outer surface, found by the following

II BRASSII
max II max II 4

BRASS

T T T DD
πDJ J 2 2

32

5
max II 3 3

BRASS

16 T 16 T 4.074 10 T
πD π(50 mm)

Fig. 3.41

Graphically, the shearing stress is shown in Fig. 3.41. 

When we compare the results from both portions the maximum shearing stress is in portion 
AB, which compares with the allowable stress. From this inequality, we have the unknown 
torque T.

max max I All

3
All STEEL

max I All3
STEEL

π D16 T     T
πD 16

3 2
All STEELπ D 150 MPa π (30 mm)T 795215,6 Nmm

16 16

T 795215,6 Nm≤
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Fig. 3.42

Choosing the torque T = 795 kNm. We can graphically represent the torque along the length 
of shaft in Fig. 3.42. 

Angle of twist

Using Eq. (3.17), we have

i i

i i

T  L
J Gi

BC BCAB AB
A

AB AB BC BC

T  LT  L
J  G J  G
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Problem 3.3

Fig 3.43

A torque T is applied as shown in Fig. 3.43 to a solid tapered shaft AB. Determine the 
maximum shearing stress and show, by integration, that the angle of twist at A is 

A 4

7 T L .
12 π G c

The radius c, length L, modulus of rigidity G and applied torque T, are given.
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Solution

Ix 0,L∈

Fig 3.44

Weonly have one part so from free body diagram (see Fig. 3.44), we find

ixM 0 :     T(x) T 0          T(x) T= − = ⇒ =∑

Fig 3.45

Fig 3.46
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The maximum of shearing is onthe outer surface. The radius c(x) at location x is found from 
similarity of triangles, Fig. 3.45.

c c(x) c xtan           c(x) c 1+ ,
L x L

The diameter D(x) at location x is

xD(x) 2 c(x)         D(x) 2 c 1+ .
L

 = ⇒ =  
 

Moment of inertia at location x is

4

4
xπ 2c 1+
Lπ D(x)J(x) .

32 32

The maximum shearing stress at position x on the outer surface is 

max max 3

T T D(x) 16 T(x)
J(x) J(x) 2 xπ 2c 1+

L

Angle of twist is determined from the definition of the angle of twist Eq. (3.18), and we have

L L L

4 4
0 0 0

T(x) 32 T 32 T 1 dx =  dx =  
xG J(x) G π 16 cx 1G π 2c 1+ LL

4

7 T L .
12 G π c

In the fig. 3.46 is a graph of the torque along length L.

Problem 3.4

Fig. 3.47
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A circular shaft BH is attached to fixed supports at both ends with a torque T applied at the 
midsection (Fig. 3.47). Determine the torque exerted on the shaft by each of the supports 
and determine the maximum shearing stress.

The length L, modulus of rigidity G and applied torque T, are given.

Solution

Fig. 3.48

The problem is statically indeterminate. The support at point H is replaced by an unknown 
support reaction TH (horizontal and vertical reactions are equal to zero, because this is a 
problem of pure torsion). The solution is divided into two part (see Fig. 3.48).
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Free-body diagram on portion I (part HC):

Ix 0, L∈

From the equilibrium equation of the first part, we obtain

Iix I I H I I HM 0 :     T (x ) T 0          T (x ) T= + = ⇒ = −∑

Free-body diagramon portion II (part CB):

IIx L,2L∈

From the equilibrium equation of the second part, we obtain

IIix II II H II II HM 0:     T (x ) T T 0          T (x ) T T

The unknown reaction is determined from the deformation condition, that the total angle of 
twist of shaft BH must be zero, since both of its ends are restrained.j1 and j2denote the angle 
of twist for portions AC and CB respectively, we write

H H I II I II0          0          0,

from which we have

I I II II

I I II II

T L T L 0,
G J G J

+ =
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where GI = GII = G, JI = JII = J and LI = LII = L because both parts of shaft are made from 
same material, have the same cross-section area, and the same length. Then solving for TH, 
we have

I I II II H H H
TT (x ) T (x ) 0          T T +T 0    T
2

+ = ⇒ − − = ⇒ =

Substituting the results for each part, we obtain

I I H
TT (x ) T
2

= − =
 

II II H
T TT (x ) T T T 
2 2

= − − = − − = −

The diagram of torque is shown in Fig. 3.49.

Fig. 3.49

Fig. 3.50

Fig. 3.51
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Fig. 3.52

Reaction at point B.

Drawing a free-body diagram of the shaft and denoting the torques exerted by supports TB and TH,  
(see Fig. 3.50) we obtain the equilibrium equation 

Iix B H B H
TM 0 :     T T T 0          T T T
2

= + − = ⇒ = − =∑

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

136

torsion

The maximum shearing stress at part HC (outer surface) is

I
I max max I 4 3 3

I

T
T D 16 T 8 T2

π DJ 2 2 π D π D
32

The maximum shearing stress at part BC (outer surface) is

II
II max max II 4 3

II

T
T D 8 T2

π DJ 2 π D
32

The diagram of shearing stresses for each part is shown in the Fig. 3.51and Fig. 3.52.

Problem 3.5

Fig. 3.53

The bars in Fig. 3.53 have a square and rectangular cross-section area. Knowing that the 
magnitude of torque T is 800 Nm determine the maximum shearing stress for each bar. 

The dimensions are given by L = 400 mm, a = 50 mm and b = 35 mm

Solution

For a bar with square cross-section area (see Fig. 3.53a) and bar with rectangular cross-section 
area (see Fig. 3.53b), the maximum shearing stress is defined by Eq. (3.27)

max 2

T
 a b ,
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where the coefficient ais obtained from tab. 3.1 in section 3.7. We have

a 50 mm 1    0.208
b 50 mm

 for square cross section 

and 

a 50 mm 1.43    0.231
b 30 mm

  for rectangular cross section.

Maximum shearing stress for square cross-section in Fig. 3.53a is

max 22

T 800 Nm 30.77 MPa.
 a b 0.208 0.050 m 0.050 m

Maximum shearing stress for rectangular cross-section in Fig. 3.53b is

max 22

T 800 Nm 1.98 MPa.
 a b 0.208 0.050 m 0.035 m

Problem 3.6

Fig. 3.54

Two shafts of the same length and made by the same materials is connected by a welded rigid 
beam.On the ends of the rigid beam amoment couple given by force F is applied. Cross-
section area of the shaft is in Fig. 3.54. Design parameter D if wearegiven an allowable stress 
oftall = 150 MPa. 

Given: F = 1000 N, c = 200 mm, a = 2D, t = 0.1D, L = 400 mm.
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Solution

From the given force, we find the total magnitude of the torque T applied to both shafts

T F c 1000N  0.2 m = 200 Nm= = ×

This torque will then be dived on both shafts and from the equilibrium of the rigid beam, 
we have

1 2T T T= +
 (a)

We have two unknowns torques T1 and T2, so we need a second equation, which is found 
from the deformation condition

1 = 2   
1 2

1 2

T L T L
G J G J

,  (b)

where angle of twist for the first cross-section area is

�  
 (c)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

139

torsion

and for the second cross-section is

4

2
π DJ
32 .

 (d)

inserting (c) and (d) into (b), we get

1 2T 6.998 T=  (f )

Solving the system of equations (a) and (f ), we give

1T 0.875T 0.875 F c = 0.875 200Nm =175 Nm= = ×

2T 0.125T 0.125 F c = 0.125 200Nm =25 Nm= = ×

Maximum shearing stress in the first cross-section is

1
max I 2 3 3

min

T 0.875 F c 175Nm 242.4 =  =  Nm
2  t 0.722D D2 1.9D 0.1D

Maximum shearing stress in the second cross-section is

2 2
max II 3 3 3 3

T 16 T 16 25Nm 127.3 =  =  Nm
πD πD πD D
16

 

To design parameter D, we get the maximum shearing stress (from all parts), which compare 
with the allowable stress, we then get

33max I All3 6 2
All

242.4 242.4 Nm 242.4 Nm =  Nm     D
D 150 10 Nm

D 0.012 m≥
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Problem 3.7

Fig. 3.55

A torque T = 850 Nm is applied to a hollow shaft with uniform wall thickness t = 6 mm 
shown in Fig. 3.55. Neglecting the effect of stress concentration, determine the shearing stress 
at points a and b. Determine the angle of twist at the end of shaft when L is 200 mm and 
the modulus of rigidity is G = 77 GPa.

Given: R = 30 mm, t = 6 mm, L1 = 60 mm, L = 200 mm.

Solution

Fig. 3.56
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Fig. 3.57

From the definition of maximum shearing stress for thin-walled hollow shafts, we have

max
min

T
2  t ,

where A is the area bounded by the centerline of wall cross-section area (Fig. 3.56 – hatching area),  
we have

2
2
1 1 1 1

t tπR 2R L π R+ 2 R+ L
2 2

A
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The shearing stress at point a and b is 

4
min

T 850000 Nmm 9.6 MPa
2  t 2 6 mm 7381,19 mma b

The angle of twist of a thin-walled shaft of length L and modulus of rigidity G is defined

T L
G J

where the moment of inertia is  
24

s

J ds
dt�

Integral 
s

ds
dt�  is computed along the centerline of the wall section and we get

�

222
4

4 7381.19 mm4 3994460.65 mm
54.5575

s

J ds
dt�

Angle of twist at the end of the shaft is given by the following

4 o
3 4

T L 850000 Nmm 200 mm 5.527 10  rad = 0.032
G J 77 10  MPa 3994460.65 mm
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Unsolved problems

   
                          Fig. 3.58                                                      Fig. 3.59 

 

Fig. 3.58 Fig. 3.59

Problem 3.8

A torque T = 750 Nm is applied to the hollow shaft shown in the Fig. 3.58 that has a 
uniform wall thickness of t = 8 mm. Neglecting the effect of stress concentration, determine 
the shearing stress at points a and b.

[τa = τb = 16.1MPa]

Problem 3.9

The composite shaft in the Fig. 3.59 is twisted by applying a torque T at its end. Knowing 
that the maximum shearing stress in steel is 150 MPa, determine the corresponding 
maximum shearing stress in the aluminum core. Use G = 77 GPa for steel and G = 27 GPa  
for aluminum. 

[τmax aluminum = 39.44 MPa, T = 10.31kNm]

Problem 3.10

A statically indeterminate circular shaft BH consists of length L and diameter D (portion CH)  
and length L with diameter 2D (portion BC). The shaft is attached by fixed supports at both 
ends, and a torque T is applied at point C (see Fig. 3.60). Determine the maximum shearing 
stress in portion BC and CH, and reaction at the support in point H.

H max BC max CH3 3

T 32 T 16 TT ,  ,  
17 17 π D 17 π D
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Fig. 3.60

Fig. 3.61
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Problem 3.11

Using τall = 150 MPa, determine the largest torque T that may by applied to each of the 
steel bars and to the steel tube shown in Fig. 3.61.Given is a = 50 mm, b = 24 mm,  
t = 8 mm and L = 200 mm.

[(a) T = 531.2 Nm, (b) T = 4233.6 Nm] 

Problem 3.12

A 1.25 m long angle iron with L cross-section (shown in Fig. 3.62). Knowing that the allowable 
shearing stress tall = 60 MPa and modulus of rigidity G = 77 GPa and ignoring the effects of 
stress concentration, (a) determine the largest magnitude of torque T that may by applied, 
(b) the corresponding angle of twist at the free ends. The dimensions are h = 50 mm, b = 25 
mm, t = 5 mm and L = 200 mm.

[(a) T = 35kNm, (b) j = 31.2 rad]

Fig. 3.62 
Fig. 3.62
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APPENDIX

A.1 CENTROID AND FIRST MOMENT OF AREAS

Fig. A.1

Consider an area A located in the zy plane (Fig. A.1). The first moment of area with respect 
to the z axis is defined by the integral

 dz
A

Q y A= ∫   (A.1)

Similarly, the first moment of area A with respect to the y axis is

 dy
A

Q z A= ∫  (A.2)

If we use SI units are used, the first moment of Qz and Qy are expressed in m3 or mm3.

Fig. A.2
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The centroid of the area A is defined at point C of coordinates y and z (Fig. A.2), which 
satisfies the relation

 d
A

y A
y

A
=

∫

 d
A

z A
z

A
=

∫
  (A.3)

Fig. A.3

When an area possesses an axis of symmetry, the first moment of the area with respect to 
that axis is zero.
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Considering an area A, such as the trapezoidal area shown in Fig. A.3, we may dividethe area 
into simple geometric shapes. The solution of the first moment Qz of the area with respect 
to the z axis can be divided into components A1, A2, and we can write

 1  2

 d d dz i i
A A A

Q y A y A y A y A= = + = ∑∫ ∫ ∫  (A.4)

Solving the centroid for composite area, we write

i i
i

i
i

A y
y

A
=

∑
∑   

i i
i

i
i

A z
z

A
=

∑
∑  (A.5)

Example A.01

Fig. A.4

For the triangular area in Fig. A.4, determine (a) the first moment Qz of the area with respect 
to the z axis, (b) the y ordinate of the centroid of the area.

Solution

(a) First moment Qz

Fig. A.5
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We selected an element area in Fig. A.5 with a horizontal length u and thickness dy. From 
thesimilarity in triangles, we have

u h y
b h

−
=

  

h yu b
h
−

=

and
h yd u dy b dy

h
A −

= =

using Eq. (A.1) the first moment is

2

0 0

h y b d b  dy = hy y  dy
h h

h h

z
A

Q y A y

2 3
2b y y 1 h bh

h 2 3 6zQ

(b) Ordinate of the centroid

Recalling the first Eq. (A.4) and observing that 
1 bh
2

A = , we get

2 21 1 1y     bh bh y    y = h
6 2 3zQ A= ⇒ = = ⇒

A.2 SECOND MOMENT, MOMENT OF AREAS

Consider again an area A located in the zy plane (Fig. A.1) and the element of area dA of 
coordinate y and z. The second moment, or moment of inertia, of area Awith respect to the 
z -axis is defined as

2  dz
A

I y A= ∫  (A.6)
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Example A.02

Locate the centroid C of the area A shown in Fig. A.6

Fig. A.6

Solution

Selecting the coordinate system shown in Fig. A.7, we note that centroid C must be located 
on the y axis, since this axis is the axis of symmetry than z 0= .
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Fig. A.7

Dividing A into its component parts A1 and A2, determine the y ordinate of the centroid, 

using Eq. (A.5)

2

1 1 1 2 2
2

1 2

1

i i i i
i i

i
ii

i

A y A y
A y A yy

A A AA

=

=

+
= = =

+

∑ ∑
∑ ∑

3
1 1 2 2

2
1 2

2t×8t 7t+ 4t×6t 3t 184t 4.6t
2t×8t 4t×6t 40t

A y A yy
A A

Similarly, the second moment, or moment of inertia, of area A with respect to the y axis is 

2  dy
A

I z A= ∫ . (A.7)

We now define the polar moment of inertia of area A with respect to point O (Fig. A.8) as 
the integral

2  do
A

J A , 
 (A.8)

Fig. A.8
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where ρ is the distance from O to the element dA. If we use SI units, the moments of inertia 
are expressed in m4 or mm4.

An important relation may be established between the polar moment of inertia Jo of a given 
area and the moment of inertia Iz and Iy of the same area. Noting that 2 2 2y z ,  we write

2 2 2 2 2 d  d  d  do
A A A A

J A y z A y A z A

or

o z yJ I I= +  (A.9)

The radius of gyration of area A with respect to the z axis is defined as the quantity rz, that 
satisfies the relation

2     z
z z z

II r A r
A

= ⇒ =  (A.10)

In a similar way, we defined the radius of gyration with respect to the y axis and origin O. 
We then have 

2     y
y y y

I
I r A r

A
= ⇒ =   (A.11)

2     o
o o o

JJ r A r
A

= ⇒ =   (A.12)

Substituting for Jo, Iy and Iz in terms of its corresponding radi of gyration in Eg. (A.9), we 
observe that

2 2 2
0  z yr r r= +   (A.13)

Example A.03

For the rectangular area in Fig. A.9, determine (a) the moment of inertia Iz of the area with 
respect to the centroidal axis, (b) the corresponding radius of gyration rz.
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Fig. A.9

Solution

(a) Moment of inertia Iz. We select, as an element area, a horizontal strip with length b and 
thickness dy (see Fig. A.10). For the solution we use Eq. (A.6), where dA = b dy, we have

/ 2 / 2
/ 22 2 2 3

/ 2
/ 2 / 2

b d y b dy b y  dy y
3

h h
h

z h
A h h

I y A

3 3
3b h h 1          b h

3 8 8 12z zI I

 

Fig. A.10

(b) Radius of gyration rz. From Eq. (A.10), we have

3
2

1 bh h h12            
bh 12 12

z
z z

Ir r
A

= = = ⇒ =
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Example A.04

For the circular cross-section in Fig. A.11. Determine (a) the polar moment of inertia JO, (b) 
the moment of inertia Iz and Iy.

Fig. A.11
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Solution

(a) Polar moment of Inertia. We select, as an element of area, a ring of radius ρ and thickness 
dρ (Fig. A.12). Using Eq. (A.8), where dA = 2 πρ dρ, we have

/ 2 / 2
2 2 3

0 0

 d 2 d 2 d
D D

o
A

J A� � � � � � � �= = =∫ ∫ ∫ ,

4ð D
32oJ = .

Fig. A.12

(b) Moment of Inertia. Because of the symmetry of a circular area Iz = Iy. Recalling  
Eg. (A.9), we can write

4 D
322           

2 2
o

o z y z z
JJ I I I I

4D .
64z yI I

A.3 PARALLEL AXIS THEOREM

 

Fig. A.13
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Considering the moment of inertia Iz of an area A with respect to an arbitrary z axis  
(Fig. A.13). Let us now draw the centroidal z’ axis, i.e., the axis parallel to the z axis which 
passes though the area’s centroid C. Denoting the distance between the element dA and axis 
passes though the centroid Cby y’, we write y = y’ + d. Substituting for y in Eq. (A.6), we write

22  d '  dz
A A

I y A y d A ,

2 2'  d 2 ' d dz
A A A

I y A d y A d A= + +∫ ∫ ∫ ,

2
' 'z z zI I Q Ad= + +   (A.14)

where 'zI  is the area’s moment of inertia with respect to the centroidal z’ axis and Qz’ is the 
first moment of the area with respect to the z’ axis, which is equal to zero since the centroid 
C of the area is located on that axis. Finally, from Eq. (A.14)we have

2
'z zI I Ad= +  (A.15)

A similar formula may be derived, which relates the polar moment of inertia Jo of an area 
to an arbitrary point O and polar moment of inertia JC of the same area with respect to its 
centroid C. Denoting the distance between O and Cby d, we write

2
o CJ J Ad= +   (A.16)

Example A.05

Determine the moment of inertia Iz of the area shown in Fig. A.14 with respect to the 
centroidal z axis.

 
Fig. A.14
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Solution

The first step of the solution is to locate the centroid C of the area. However, this has already 
been done in Example A.02 for a given area A.

We divide the area A into two rectangular areas A1 and A2 (Fig. A.15) and compute the 
moment of inertia of each area with respect to the z axis. Moment of inertia of the areas are

1 2z z zI I I= + ,

where Iz1 is the moment of inertia of A1 with respect to the z axis. For the solution, we use 
the parallel-axis theorem (Eq. A.15), and write

2 3 2
1 ' 1 1 1 1 1 1 1

1A d b h b h d
12z zI I= + = +

3 2
1

1 8t (2t) 8t 2t (7t 4.6t)
12zI = × × + × × −

4
1 97.5 tzI =
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Fig. A.15

In a similarly way, we find the moment of inertia Iz2 of A2 with respect to the z axis and write

2 3 2
2 '' 2 2 2 2 2 2 2

1A d b h b h d
12z zI I= + = +

3 2
2

1 4t (6t) 4t 6t (4.6t 3t)
12zI = × × + × × −

4
1 133.4 tzI =

The moment of inertia Iz of the area shown in Fig. A.14 with respect to the centroidal z axis is

4 4 4
1 2 97.5t 133.4t 230.9t .z z zI I I= + = + =

Example A.06

 

Fig. A.16

Determine the moment of inertia Iz of the area shown in Fig. A.14 with respect to the 
centroidal z axis and the moment of inertia Iy of the area with respect to the centroidal y axis.

Download free eBooks at bookboon.com



INTRODUCTION TO MECHANICS 
OF MATERIALS: PART I

159

aPPendix

Fig. A.17

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis 
of symmetry, the location of the centroid C is in the intersection of the axes of symmetry.

Fig. A.18

We divide the area A into three rectangular areas A1, A2 and A3. The first way we can divide 
area A can be seen in Fig. A.17, a second way can be seen in Fig. A.18.

Solution the division of area A by Fig. A.17 (the first way) themoment of inertia Izis

1 2 3,z z z zI I I I= + +

where

2 3 2 4
1 ' 1 1 1 1 1 1 1

1A d b h b h d 196t ,
12z zI I= + = + = =

2 3 2 4
2 2 2 2 2 2 2 2

1A d b h b h d 36t ,
12z zI I= + = + = =

2 3 2 4
3 ''' 3 3 3 3 3 3 3

1A d b h b h d 196t .
12z zI I= + = + = =
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Resulting in

4 4 4 4
1 2 3 196t 36t 196t 428t .z z z zI I I I= + + = + + =

For the moment of inertia Iy we have

1 2 3,y y y yI I I I= + +

where

33 4
1 1 1

1 1h b 2t 6t 36t ,
12 12y yI I

33 4
2 2 2

1 1h b 6t 2t 4t ,
12 12y yI I

33 4
3 3 3

1 1h b 2t 6t 36t .
12 12y yI I
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Resulting in

4 4 4 4
1 2 3 36t 4t 36t 76t .y y y yI I I I= + + = + + =

The solution for the division of area A according to Fig. A.18 (by the second way) the moment 
of inertia Iz is

1 2 3,z z z zI I I I= − −

where

33 4
1 1 1

1 1b h 6t 10t 500t ,
12 12z zI I

33 4
2 2 2

1 1b h 2t 6t 36t ,
12 12z zI I

33 4
3 3 3

1 1b h 2t 6t 36t .
12 12z zI I

Resulting in

4 4 4 4
1 2 3 500t 36t 36t 428t .z z z zI I I I= − − = − − =

For the moment of inertia Iy we have

1 2 3,y y y yI I I I= − −

where

33 4
1 1 1

1 1h b 10t 6t 180t ,
12 12y yI I

3 23 2 4
2 2 2 2 2 2

1 1h b h b d 6t 2t 6t 2t 2t 52t ,
12 12y yI I

3 23 2 4
3 3 3 3 3 3

1 1h b h b d 6t 2t 6t 2t 2t 52t .
12 12y yI I
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Resulting in

4 4 4 4
1 2 3 180t 52t 52t 76t .y y y yI I I I= − − = − − =

Example A.07

Fig. A.19

In order to solve the torsion of a rectangular cross-section in Fig. A.19, we defined  
(See S.P. Thimoshenko and J.N. Goodier, Theory of Elasticity, 3d ed. McGraw-Hill, New 
York, 1969, sec. 109) the following parameters for b>h:

3γ b  h,J  (A.17)

2
1  b  h,S   (A.18)

2
2  b h ,S   (A.19)

where parameters α, b and γ are in Tab.A.1.

The shearing stresses at point 1 and 2 are defined as

1 max
1

T ,
S   2

2

T ,
S

  (A.20)

where T is the applied torque.
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Tab.A.1

h/b 1 1.2 1.5 2 3 5 10 >10

0.208 0.219 0.231 0.246 0.267 0.291 0.313 1/3

0.208 0.196 0.180 0.155 0.118 0.078 0.042 0

γ 0.1404 0.166 0.196 0.229 0.263 0.291 0.313 1/3

A.4 PRODUCT OF INERTIA, PRINCIPAL AXES

Definition of product of inertia is

  dyz
A

I y z A= ∫  (A.20a)
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in which each element of area dA is multiplied by the product of its coordinates and integration 
is extended over the entire area A of a plane figure. If a cross-section area has an axis of symmetry 
which is taken for the y or z axis (Fig. A.19), the product of inertia is equal to zero. In the 
general case, for any point of any cross-section area, we can always find two perpendicular 
axes such that the product of inertia for these vanishes. If this quantity becomes zero, the axes 
in these directions are called the principal axes. Usually the centroid is taken as the origin of 
coordinates and the corresponding principal axes are then called the centroidal principal axes. 

Fig. A.19a

If the product of inertia of a cross-section area is known for axes y and z (Fig. A.19a) thought 
the centroid, the product of inertia for parallel axes y’ and z’ can be found from the equation

' ' + mn.y z yzI I A=  (A.20b)

The coordinates of an element dA for the new axes are

y ' y n;= +   z ' z m.= +

Hence,

' ' y 'z 'd y n z m d yz d mn d ym d nz d .y z
A A A A A A

I A A A A A A

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).
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A.5 STRAIN ENERGY FOR SIMPLE LOADS

Fig. A.20

Consider a rod BC of length L and uniform cross-section area A, attached at B to a fixed 
support. The rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work 
done by the load F as it is slowly applied to the rod must result in the increase of some energy 
associated with the deformation of the rod. This energy is referred to as the strain energy of 
the rod. Which is defined by

0
 F d

x
Strain energy U x= = ∫  (A.21)

Dividing the strain energy U by the volume V = A L of the rod (Fig. A.20) and using Eq. (A.21),  
we have

0

F  d
A L

xU x
V

= ∫   (A.22)

Recalling that F/A represents the normal stress σx in the rod, and x/L represents the normal 
strain εx, we write

x x0
 dU

V  
  (A.23)

The strain energy per unit volume, U/V, is referred to as the strain-energy density and will 
be denoted by the letter u. We therefore have

x x0
 du  

  (A.24)
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A.5.1 ELASTIC STRAIN ENERGY FOR NORMAL STRESSES

In a machine part with non-uniform stress distribution, the strain energy density u can be 
defined by considering the strain energy of a small element of the material with the volume 
∆V. writing 

0lim V
Uu
VD →

D
=

D
 or d

d
Uu
V

= .  (A.25)

for the value of σx within the proportional limit, we may set σx = E εx in Eq. (A.24) and write
2

2 x
x x

1 1 σEε σ ε
2 2 2Exu .   (A.26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by 
substituting Eq. (A.26) into Eq. (A.25), to get

xó  d
2E

U V= ∫ .  (A.27)
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ELASTIC STRAIN ENERGY UNDER AXIAL LOADING

When a rod is acted on by centric axial loading, the normal stresses are σx = N/A from Sec. 2.2.  
Substituting for σx into Eq. (A.27), we have

2

2  d
2E
NU V

A
= ∫  or, setting d  dV A V= ,  

2

0

 d
2E

L NU V
A

= ∫  (A.28)

If the rod hasa uniform cross-section and is acted on by a constant axial force F, we then have

2L
2E
NU

A
=  (A.29)

4. Elastic strain energy in Bending

The normal stresses for pure bending (neglecting the effects of shear) is σx = My / I from Sec. 
4. Substituting for σx into Eq. (A.27), we have

2 2
x

2

σ  d  d
2E 2E

M yU V V
I  (A.30)

Setting dV = dA dx, where dA represents an element of cross-sectional area, we have

2 2
2

2
0 0

 y d dx  dx
2E 2E

L LM MU A
I I   (A.31)

Example A.08

 
Fig. A.21

Determine the strain energy of the prismatic cantilever beam in Fig. A.21, taking into account 
the effects of normal stressesonly.

Solution

The bending moment at a distance x from the free end is M F x= − . Substituting this expression 
into Eq. (A.31), we can write

22 2 3

0 0

F x F L dx  dx
2E 2E 6E

L LMU
I I I
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A.5.2 ELASTIC STRAIN ENERGY FOR SHEARING STRESSES

When a material is acted on by plane shearing stresses τxy the strain-energy density at a given 
point can be expressed as

0

 dxy xyu , 
  (A.32)

where γxy is the shearing strain corresponding to τxy. For the value of τxy within the proportional 
limit, we have τxy = G γxy, and write 

2
xy2

xy xy xy
1 1G
2 2 2G

u . 
  (A.33)

Substituting Eq. (A.33) into Eq. (A.25), we have

2
xy  d

2G
U V . 

  (A.34)

Elastic strain energy in Torsion

The shearing stresses for pure torsion areτxy = Tρ / J from Sec. 3. Substituting for τxy into 
Eq. (A.27), we have

2 2 2
xy

2

ñ d  d
2G 2 E

TU V V
G J

 
  (A.35)

Setting dV = dA dx, where dA represents an element of the cross-sectional area, we have

2 2
2

2
0 0

ρ d dx  dx
2G 2G

L LT TU A
J J   (A.36)

In the case of a shaft of uniform cross-sectionacted on by a constant torque T, we have

2L
2G
TU

J
=   (A.37)
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Elastic strain energy in transversal loading

If the internal shear at section x is V, then the shear stress acting on the volume element, 
having a length of dx and an area of dA, is τ = V Q / I t from Sec. 4. Substituting for τ into 
Eq. (A.27), we have

22 2 2

2 2
0

1  d  d  dx   d  dx
2G 2G  2G

L

V V A

V Q V QU V A A
I t I t    (A.38)

The integral in parentheses is evaluated over the beam’s cross-sectional area. To simplify this 
expression we define the form factor for shear

2

2 2  dS
A

A Qf A
I t

= ∫   (A.39)

Substituting Eq. (A.39) into Eq. (A.38), we have 
2

0

   dx
2G

L

S
VU f

A
= ∫   (A.40)
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Fig. A.22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each 
specific cross-section area. For example, if the beam has a rectangular cross-section with a 
width b and height h, as in Fig. A.22, then

b, t =  A b h,=  
31 b h

12
I =

2
2

h y h b h2A y b y y
2 2 2 4

Q y

 −    ′ ′= = + − = −    
    

 

Substituting these terms into Eq. (A.39), we get
/ 2 2 2

2
2 2

/ 23

bh b h 6y  b dy
4b 4 51 bh

12

h

S
h

f
+

−

 
= − = 

   
 
 

∫  (A.41)

Example A.09

Fig. A.23

Determine the strain energy in the cantilever beam due to shear if the beam has a rectangular 
cross-section and is subject to a load F, Fig. A.23. assume that EI and G are constant.
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Solution

From the free body diagram of the arbitrary section, we have

V(x) = F.

Since the cross-section is rectangular, the form factor 6
5Sf =  from Eq. (A.41) and therefore 

Eq. (A.40) becomes

2 2

0

6 F 3 F L   dx
5 2G 5 G

L

shearU
A A

= =∫

Using the results of Example A.08, with A = b h, 31 b h
12

I = , the ratio of the shear to the 
bending strain energy is 

2

2

2 3 2

3 F L
3 h E5 G  

F L 10 L G
6E

shear

bending

U A
U

I

= =

Since G = E / 2(1+n) and n = 0.5, then E = 3G, so 

2 2

2 2

3 h 3G 9 h
10 L G 10 L

shear

bending

U
U

= =

It can be seen that the result of this ratio will increasing as L decreases. However, even for 
short beams, where, say L = 5 h, the contribution due to shear strain energy is only 3.6% of 
the bending strain energy. For this reason, the shear strain energy stored in beams is usually 
neglected in engineering analysis.
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