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Preface

There has been a long-standing need for a comprehensive book on bio-
medical engineering that covers the analyses and applications of biomedical
and physiological systems as well as human fitness and sports. In address-
ing this need, this book can serve as a definitive textbook as well as a major
reference source.

The book’s contents include the following:

1.

An introductory chapter that develops the foundation of how
physiological systems and their assessment can be described by
means of governing differential equations, whose parameters can
be combined into nondimensional physiological diagnostic indices

A section on cardiological engineering mechanics, including three
chapters dealing with cardiac mechanics, left-ventricular contrac-
tility indices, and vascular mechanics

A section on pulmonary engineering mechanics, including three
chapters on lung ventilation and disease diagnosis, lung gas-transfer
mechanics and determination of O, and CO, diffusion coefficients,
and lung-ventilatory indices for extubation of chronic obstructive
lung disease patients from mechanical ventilatory support

A section on glucose—insulin regulation (in diabetes) engineering
mechanics, which has three chapters covering glucose-insulin
regulatory analysis, responses of glucose and insulin to glucose
tolerance tests, and indices for differential diagnosis of diabetic
patients and those at risk from becoming diabetic

A section on orthopedic engineering mechanics, involving three
chapters dealing with the analyses and design of internal bone
fracture-fixation plates as well as the design analyses of human
spinal vertebral body and intervertebral disc as optimally
designed human body structures

A section on fitness and sports engineering mechanics, on
(i) heart-rate variation during and after exercising on treadmill,
optimal walking, and jogging modes requiring minimal work
expenditure, and analyses of hip joints to determine their stiffness
and damping coefficients, and (ii) analyses of sports events



(namely soccer, baseball, basketball, and gymnastics) delineating
the analytical basis for intricacies of their techniques and perform-
ance (such as the basis of curving soccer kicks, baseball throws and
batting technique, and high-performance of Yurchenko layout
vault)

In addressing this comprehensive range of topics, the book covers a wide
spectrum of engineering mechanics disciplines of solid and fluid mechanics,
dynamics and vibrations, gas diffusion and transfer, and control systems.
The book can therefore be ideally employed as a textbook for a biomedical
engineering course at the senior undergraduate level or at the graduate
level.

In the first section on cardiological engineering mechanics, Chapter 2
describes left ventricular (LV) mechanics. This chapter deals with (1) deter-
mination of the pressure drop across a stenotic valve, (2) determination of
the constitutive properties of mitral and aortic valves from their static and
dynamic analyses, (3) determination of the intra-LV blood flow velocity and
pressure distributions (in normal and myocardial infarcted cases) before
and after nitroglycerin administration as a means of deciding if coronary
bypass surgery would benefit patients with myocardial infarcts, and (4) LV
passive and active elastances, as measures of LV pressure dynamics
response to LV volume changes and of LV contractility.

Chapter 3 deals with left ventricular contractility indices. Here, we first
determine the wall stress (o) in an ellipsoidal model of the LV, normalize it
(to *) with respect to LV pressure, and employ this noninvasive computa-
tional index (do™*/dt)max as a contractility index. It is found that this index
has a good correlation with the traditional LV contractility index (dp/d#)max,
which requires determination of LV pressure by cardiac catheterization. It is
also found that more ellipsoidally shaped LVs have higher values of this
contractility index (do*/d#)max. The second part of this chapter deals with
the formulation of the sarcomere model of a myocardial-wall fiber, and the
expression of its contractile element characteristics (of force vs. shortening
velocity) in terms of the monitorable data (of LV pressure, volume, wall
thickness, and myocardial volume). Again, this index bears a good correl-
ation with (dp/d#)max-

Chapter 4 is on vascular biomechanics. It deals with (1) noninvasive
determination of aortic pressure (as well as aortic stiffness and peripheral
resistance) in terms of LV volume (ejected into the aorta) versus time data,
and auscultatory diastolic and systolic pressures; (2) determination of aortic
constitutive property (of E vs. ¢) from measurement of pulse wave velocity,
aortic dimensions, and auscultatory diastolic pressure; (3) arterial bed per-
ipheral resistance (as the ratio of mean arterial pressure and flow rate) and
arterial impedance (as the ratio of arterial pulse pressure and flow rate); (4)
the phenomenon of wave reflection at aortic (arterial) bifurcations; and (5)
the composition and amplitude variation of the composite wave in aorta,
with an interesting postulation that in an ideal situation the heart is located
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at the site of minimum value of the composite wave pressure amplitude so
that it has minimal after-load.

The second section of the book is on pulmonary engineering mechanics.
In this section, Chapter 5 deals with lung ventilation modeling (with appli-
cation to lung disease determination) based on the differential equation of
lung volume (V) response to lung driving pressure (Py) (in an intubated
patient), in terms of lung compliance (C) and resistance to airflow (R). These
parameters, R and C, are then combined into nondimensional ventilatory
performance indices. The lung volume response expression can also be
fitted to the lung volume data in terms of R and C as well as the product
of pressure and compliance terms. The corresponding ventilatory perform-
ance index would not require intubation of the patient. A two-lobe lung
model is also developed, and its total lung volume expression is deter-
mined. By fitting this expression to the monitored lung volume data, we
can evaluate R, C, and ventilatory indices of left and right lung separately.

Chapter 6 deals with lung gas-transfer performance analysis. We first deal
with inspired and expired air composition analysis, based on mass balances.
We then derive the expressions for O, and CO, diffusion coefficients in
terms of O, consumption rate and CO, production rate (from the inspired-
expired air composition analysis), alveolar air O, and CO; partial pressures,
and O, and CO, concentrations in the venous blood.

Chapter 7 deals with evaluation of the lung status of mechanically venti-
lated intubated patients, and the index for deciding that they are ready to be
weaned off the mechanical ventilator. This index is expressed in terms of
lung capacitance (C) and flowrate resistance (R), as well as monitored tidal
volume (TV), breathing frequency (RF), and peak inspiratory pressure (Py).
The values of R and C are obtained by again modeling the lung ventilatory
volume response to its driving pressure, and evaluating them in terms of the
monitored values of lung volume (specifically, tidal volume) as well as
inspiratory peak pressure and pause pressure (when the lung volume is
maximum).

In the third section on glucose-insulin regulation (in diabetes)
engineering mechanics, Chapter 8 first deals with the basics of blood
glucose-insulin regulatory mechanics. This entails second-order differential
equations modeling and solutions of glucose and insulin blood-concentration
responses to glucose injection for three different types of glucose inputs:
glucose input as a step function, glucose input as an impulse function,
and glucose input as a rectangular pulse. The solutions of the governing
equations of glucose and insulin blood concentrations to these three inputs
are expressed in terms of the intrinsic parameters (a, B8, 7y, and 0)
that relate the time rates of change of blood glucose and insulin concentra-
tions to blood glucose and insulin concentrations as well as glucose
input function, in the form of two first-order differential equations.
These two first-order differential equations are combined into second-
order differential equations of glucose and insulin responses to glucose
inputs. These second-order differential equations have parameters of
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attenuation (or damping) constant (A) and system natural frequency (),
which are in turn expressed in terms of the intrinsic parameters («, 8, v,
and 8). The relations between these parameters A and w, (and hence
between «, B, v, and §), in turn, enable us to designate the system response
as underdamped (for normal subjects), overdamped (for diabetic subjects),
and critically damped (for subjects at risk of becoming diabetic).

Chapter 9 entails analytical simulation of the oral glucose tolerance test
involving the governing equation of blood glucose concentration (y)
response to glucose ingestion. This governing equation is a second-order
damped-oscillatory differential equation in glucose concentration (y)
response to an impulse glucose-input function. This model equation param-
eters are the system’s damping constant (A), natural frequency (w,), and
damped frequency (wg). The equation is solved for (1) underdamped
response pertaining to the data of ““glucose concentration versus time”” for
a normal subject and (2) overdamped response to simulate the “glucose
concentration versus time”’ data of a diabetic subject. The equation solutions
are fitted to the data, and the model parameters are determined analytically.

The values of the model parameters are distinctly different for normal
and diabetic subjects. The purpose of this analytical simulation of the
glucose-tolerance test (by means of the solutions of the governing differen-
tial equation) is to provide an analytical method to characterize the glucose
concentration (y) versus time data in terms of the values of the model
parameters. This is deemed to more reliably represent the entire data
(of y vs. t), instead of merely employing discrete values (y) of the data to
differentially diagnose diabetic subjects and borderline diabetic subjects
(whose data is represented by a critically damped solution of the governing
equation) from normal subjects.

Chapter 10 constitutes solutions of the governing differential equations of
glucose concentration (y) and insulin concentration (x) to impulse glucose
input function (to simulate glucose tolerance test data). These solutions’
expressions (representing underdamped, overdamped, and critically
damped responses) of the system differential equations model are fitted to
the "y versus t”” and “x versus t”’ data. Depending on the value of the
regression correlation coefficient, a particular response function (i.e., under-
damped or overdamped or critically damped function) is selected to best
fit the data. It is found that the data of some subjects, who were clinically
classified as normal or diabetic, are better fitted by means of a critically
damped solution; this then placed these subjects in the category of being
borderline diabetic or at risk of becoming diabetic. Next, the model param-
eters are combined together in the form of indices characterizing glucose
and insulin concentration data. These two indices are further combined into
one index, which is evaluated for all the patients studied. It is found the
values of this index fall in distinct ranges for normal subjects, diabetic
subjects, and borderline diabetic subjects. Hence, it can be concluded that
this index value can be reliably employed for the differential diagnosis of
diabetes.
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We now move to Section IV on orthopedic engineering mechanics.
Therein, Chapter 11 deals with osteosynthesis of fixation of fractured bone
by means of a bone plate and screws, when the bone—plate assembly is
subjected to axial loading and bending loading. Both analytical and finite-
element solutions are carried out. The issue that is explored at length is to
design the placement of the screws (with respect to the fractured site) and
the stiffness grading of the plate, such that at the fracture site the bone callus
is not subjected to tensile stresses and that away from the fracture site the
bone has minimal stress shielding. A novelty explained in this chapter is our
deploying a helical plate for fixing bones with helical cracks. A detailed
finite-element stress analysis is carried out to demonstrate how a helical
plate (and its screws) can be employed to provide maximal stiffness to the
fractured bone—plate assembly. The advantage of the helical plate is that the
screws fixing the plate to the bone are in different planes, and thereby
provide optimal stiffness to the fractured bone—plate assembly under varied
loading conditions.

Chapter 12 is on the analysis of the spinal vertebral body (VB), modeled as
a hyperboloid cortical-bone shell, subjected to axial, bending, and torsional
loadings. It is shown that under all of these loading states, the forces are
transmitted across the VB (from the top to the bottom of the VB) as axial
forces through the generators of the hyperboloid shell. In other words, the
vertebral body is shown to be so intrinsically shaped and designed such that
it has only axial forces transmitted through it. This makes it bear heavy
loads with minimal weight (represented by a thin cortical shell thickness).
We can employ this intrinsically optimal VB design concept to propose the
design of an anterior fixator made up of two rings (fixed to the upper and
lower end-plates) and connected by straight generators to form a hyperbol-
oid shaped structure (resembling a cane stool), into which the fractured
vertebral body fragments can also be deposited to eventually form a solid
fixator.

We next go on to analyze the intrinsic design of an intervertebral disc. The
disc is modeled as a thick-walled isotropic cylinder, filled with nucleus-
pulposus (NP) fluid material. When this disc model is axially loaded, the
NP fluid is also pressurized, in addition to the disc wall being stressed by
the axial loading. The pressurized NP then exerts radial pressure on the
cylindrical disc wall, and subjects it to further radial and circumferential
stresses. Now the disc wall material has a stress-dependent elastic modulus
(typical of anatomical structures). Hence when the disc wall is further
stressed by the radial pressure exerted on it by the NP fluid, its elastic
modulus value is enhanced, and the resulting radial displacements do not
increase in the same proportion as the increasing axial load. In other words,
the disc is able to contain the radial displacements under increasing axial
loading, without bulging radially. This is the feature of its optimal intrinsic
design. Now, when a disc has radial cracks (due to being excessively
loaded), the NP fluid seeps out of the cracks onto the surrounding nerve
roots, and causes back pain. The orthopedic solution for such a herniated
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disc is to denucleate the herniated disc. However, based on our analysis,
if the NP fluid is removed, then the disc wall is no longer radially stressed
and its modulus is not correspondingly increased. In fact, we have shown
that a denucleated disc undergoes greater deformation compared to a
normal disc for the same level of loading. Hence, a better solution would
be to place a jell sac in place of the NP fluid, which can simulate the role of
the NP fluid.

We now come to the final section on fitness and sports engineering
mechanics. Here, Chapter 14 describes the biomechanics of a fitness index,
optimal jogging modes, and assessment of the hip joint pathology. The first
part of the chapter deals with the formulation of a cardiac fitness index
composed of the parameters of a first-order differential equation modeling
of heart-rate response during and after treadmill exercising. This index is
shown to clearly differentiate fit subjects from unfit subjects. We next
analyze human jogging by stipulating that for an optimal jogging mode,
a subject would involve minimal muscle actuation if he or she were to
have the stride frequency of the free-swinging leg simulated as a double-
compound pendulum. The stride frequencies are derived in terms of the
limb segment’s masses, lengths, and locations of the center of mass of upper
and lower limb segments, and the mass moment of inertia at the centers of
masses of the upper and lower limbs. The lower of the two computed stride
frequencies is employed to stipulate the optimal jogging leg frequency. This
optimal jogging mode is especially recommended for subjects undergoing
cardiac rehabilitation. Next, we want to ensure that jogging is not causing
hip problems. For this purpose, we model the swinging leg by means of a
second-order differential equation of free damped oscillatory motion of the
swing angle (0) of the simple compound leg-pendulum model, in terms of a
viscous damping constant (b), and a joint-stiffness parameter (k). The solu-
tion of the governing differential equation is obtained (for the case of small
damping) as a ‘0 versus t”” damped-oscillatory response. From the meas-
ured amplitudes of the extreme values of 6, we then evaluate the parameters
b and k, to characterize the joint pathology.

Chapter 15 analyzes how spin can impart lateral acceleration and force
(due to the magnus force effect) to a soccer ball (while kicking it), and make
the ball swerve. The resulting planes of the ball trajectory (normal to the
ground) are computed to simulate some real data derived from videos of
world-cup soccer matches. It can be seen how (1) a right footer taking a
corner kick from the left corner can make the ball swerve toward the goal (to
deceptively beat the goal keeper) by imparting an anticlockwise spin to the
ball and (2) how a left footer, taking a corner kick from the left corner, can
make the ball swerve away from the goal (to facilitate heading into the goal)
by imparting a natural clockwise spin to the ball.

Chapter 16 describes the mechanics of pitching a baseball, of ball-bat
interactions, of batting, and of an optimal bat, replete with theory
and applications in the form of simulations. The first part of the chapter
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demonstrates (1) how a pitcher imparts spin-induced lateral deflection to
the baseball to pitch a curve ball and (2) how spin-induced drop and lift can
be imparted to the baseball. In the second part of the chapter, on bat-ball
collisions, the primary emphasis is on where the ball should strike the bat,
such that maximum energy is transferred by the bat to the ball or maximum
ball speed is imparted to the ball. This “sweet spot of the bat” can be
defined as the center of percussion, or the node of the fundamental bat-
bending vibrational mode. The third part of the chapter, on the mechanics of
the bat, deals with the ideal bat weight for a batter. Now based on the
conservation of momentum equation for bat-ball collision, a player can
transfer maximum momentum to the ball either (1) by using a lighter bat
and swinging his or her arm more vigorously or (2) by using a heavier bat
and leaning his or her body more into the ball when striking it.

The final Chapter 17 is on the dynamic analysis of gymnastics” Yurchenko
layout vaulting. The Yurchenko layout vault, pioneered by Natalia
Yurchenko in the 1982 World Cup Gymnastics competition, comprises a
forward running approach, followed by a cartwheel half-turn to orient the
body such that the back faces the vaulting horse at the point of takeoff from
the springboard. The gymnast then takes off from the springboard using a
back-flip action to impact the horse, and finally completes a one-and-half
somersault rotation with the body fully extended (or laid out) before land-
ing. The chapter discusses the optimal technique for this Yurhcenko layout
vault (for a given gymnast), defined by a decrease in horse impact time, and
the position and alignment of the body segments at the end of the postflight.
For this purpose, a five-segment rigid-linked model is developed, which
consists of the hand, whole arm, upper and lower trunk, and the whole leg.
In this model, each segment has a center of mass (CM), the segments are
linked by hinges, gravitational forces are exerted at the segment’s CMs, the
ground reaction forces on the segments are considered to act at the centers
of pressure, and the effect of the segment’s muscles is to produce moments
at the joints. The governing equations of motion are formulated for the
segments. For input anthropometric, kinematics, and ground reaction-
force data, we can obtain solutions for the muscle moments at the joints
and for the joint reaction forces. The optimization procedure determines the
set of joint torques and kinematics required to produce this optimal tech-
nique (as indicated above), in terms of vault duration and loading angle.

As can be noted, the book covers the detailed analyses of (1) cardiological,
pulmonary, glucose-insulin regulation systems, to address their medical
applications in terms of disease assessment, (2) the most effective ortho-
pedic osteosynthesis designs as well as of spinal vertebral body and inter-
vertebral disc that make them intrinsically optimally designed structures,
and (3) of sports events and simulations, to provide insights into the tech-
niques required for high performance of these sports events. The book is
tailored to serve as a textbook for a one- or two-semester biomedical engin-
eering mechanics course. However, it can also be effectively employed by
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clinicians for assessment of physiological systems, by anatomists to obtain
insights into optimal anatomical designs in nature, and by sportsmen and
sports coaches to optimize performances.

Dhanjoo N. Ghista
Singapore
Email: d.ghista@gmail.com
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2 Applied Biomedical Engineering Mechanics

1.1 Scope

This introductory chapter delineates the theme and scope of the book.
Herein, we are providing a novel concept of physiological systems analysis,
in terms of nondimensional physiological indices (NDPIs), for quantifying
patient health and disease status as well as patient improvement. We have
developed NDPIs for several physiological phenomena and systems, and
indicated as to how they can be employed diagnostically. NDPIs have been
formulated and evaluated for (1) left-ventricular pumping performance, (2)
cardiac fitness and conditioning, (3) lung ventilatory function, (4) oral
glucose tolerance test, (5) arteriosclerosis, (6) atherosclerosis and peripheral
resistance, (7) mitral valve property, and (8) osteoporosis. This chapter is
based on my paper, Ref. [1].*

1.2 Introduction

The concept of nondimensional physiological number index is quite new,
and has been adopted from engineering, where nondimensional numbers
(made up of several parameters) are employed to characterize a regime or
strata disturbance phenomena. For example, in a cardiovascular fluid-flow
regime, the Reynold’s number

Nre :pVD//*L (11)

is employed to characterize the conditions when N,. exceeds a certain
critical value, at which laminar flow changes to turbulent flow, which can
occur in the ascending aorta when either the aortic valve is stenotic (giving
rise to murmurs) or in the case of anemia (decreased blood viscosity).

Similarly, we can construct other such physiological numbers to charac-
terize disturbance from physiological homeostasis. In physiological medi-
cine, the use of nondimensional indices or numbers can provide a
generalized approach by which unification or integration of a number of
isolated but related events into one NDPI can help to characterize an
abnormal state associated with a particular physiological system. The evalu-
ation of the distribution of the values of such NDPI(s), in a big patient
population, can then enable us to designate normal and disordered ranges
of NDPI, with a critical value of NDPI separating these two ranges, as
illustrated in Figure 1.1. In this way, NDPI(s) can help us to formulate
physiological health indices (PHIs), not only to facilitate differential diag-
nosis of patients but also to assess the severity of the disease or disorder.
Herein, we have formulated several such new NDPIs [1].

* With permission from the publisher World Scientific Publishing Co. (Singapore).
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FIGURE 1.1
Integration of a number of isolated but related events into one nondimensional physiological
index (NDPI) can help to characterize an abnormal state of a particular physiological system.

In this chapter, we have gone one step further and also applied this
concept of nondimensional indices to characterize the cost-effective per-
formance of a hospital unit, namely, the intensive care unit. Finally, we
indicate how a hospital operating budget can be distributed among its
various departments such that each department operates cost effectively.

1.3 Formulation of NDPI(s) for Some Physiological Systems
1.3.1 Index for Efficiency of Left-Ventricular Pumping

We formulate the expression for left-ventricular (LV) pumping efficiency (&)
as follows:

Useful LV power output to eject into the aorta blood
B (or ejection power output)
(LV power to develop the intra-LV pressure during
isovolumic contraction) + (ejection power output)
(P sy — P ed)Vs
= Loy (12)
1 (Psy - Ped)Ved + (Psy - Ped)Vs
2 Tisv Ts
o 2[(Psy/Ped) - 1](VS/Ved)(Te/Tisv)
B [(PSy/Ped) - 1](Te/Tisv) + 2[(Psy/Ped) - 1](Vs/ved)

where (as illustrated in Figure 1.2) (1) Pog4 and Psy are the end-diastolic and
maximum-systolic pressures, (2) Vs and V4 are the stroke volume and end-
diastolic volume, and (3) Tisy and T, are the time periods of isovolumic
contraction and ejection.

All of the quantities in Equation 1.3 can be measured noninvasively, and
hence ¢ can be evaluated noninvasively. Let us obtain some idea of the order
of magnitude of &. Let us assume that, in a normal case,

&

e (1.3)
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FIGURE 1.2 (See color insert following page 266.)
Left-ventricular work (W), energy input (E), power output and input, and efficiency (&).
(Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)

S

Ved

T; 0.06 1 P
= ejection fraction = 0.6, %Sev =036 z = and sz -5

Hence, ¢ is of the order of 15% for a normal person (i.e., with no cardiac
disease). In other words, the useful power is 15% of the power required to
develop the requisite contractility (to in turn raise the intra-LV pressure) in a
normal person, and could well go down to even 10% or below in the case of
a failing heart.

1.3.2 Assessing Cardiac Fitness and Conditioning by Means
of a Treadmill Test

The cardiac-fitness model [2] consists of a first-order differential
equation system model describing the heart rate (HR) response (y) to exertion
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(walking and jogging on a treadmill) monitored in terms of the work exertion
(WE) as measured by normalized VO,(x), where x and y are defined as
follows:

_ VO,(t) —VOy(rest)  HR(f) — HR(rest)
a VOz(rest) V= HR(rest)

(1.4)

where VO, and HR represent the oxygen-consumption rate and heart
rate, respectively. It is to be noted that both x and y are nondimensional
quantities.

The subject is asked to exercise on the treadmill for a period of time, f.
(minutes). During this period, the VO, and HR(t) (and hence x and y) are
monitored. Now we develop a model to simulate the HR(#) response to
VOz(t) or exertion, (1) during exercise (i.e., for t <t,) and (2) thereafter for
HR(#) decay after the termination of exercise (i.e., for t > t,).

For a person, the model equation is represented by

d
<k = Coxl) (1.5)

where the variation of the normalized VO, (or WE) is given by
x(t) = D1 —e ) for t<t, (1.6)
x(t) = x(te)e ™™ for t>t, (1.7)

and f, = time when exercise terminates.
The y solutions to Equations 1.5 through 1.7 are represented by

CoD o CoD kit ke
(k )(1 t)+<7(k1—k2)>(e F_e™™) for t<te (1.8)

_ Cox(te)
(ki —ks)

(e”““’“ —eh (H”)) +y(to)e M%) for the recovery period t > t,
(1.9)

where ki, ka, k3, Cp, and D are the model parameters that can serve as
cardiac-fitness parameters. These responses are depicted in Figure 1.3.

1.3.2.1 Monitored and Computed Results for a Typical Normal Subject

For a sample patient, the monitored VO,(x) for ¢ < t, is represented analyti-
cally (by means of Equation 1.6) as x =2.6547(1 — e~ **"), for t < t,.. Hence, k,
and D in Equation 1.6 are 0.25 m " and 2.6547, respectively. The values of Cy
and k; are obtained by making Equation 1.8 simulate the (y—t) data in
Figure 1.3.

The solution for y (Equation 1.8) during the stress test (for f <t.) is then
obtained as

y =0.797(1 — e ") 1 1.129(¢ 0% — 70", for t<t. (=9min) (1.10)
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FIGURE 1.3

Graph of y (the computed HR response) versus t. (Adopted from Lim, G.H., Ghista, D.N.,
Koo, T.Y., Tan, J.C.C., Eng, P.C.T., and Loo, C.M., Int. . Comp. Appl. Technol. (Biomed. Eng.
Comp.), 21, 38, 2003.)

i.e., the value of the parameter k; in Equation 1.7 is 0.85 m .

Likewise, the solution for HR(t), as given by Equation 1.9, for y after the
stress test (during the recovery period) is obtained by making Equation 1.9
simulate the (y —t) data (for ¢ > t,) in Figure 1.3

y=1.088(e "% — e %) 10.68¢ %" for t>t (1.11)

for the value of the parameter k3(=0.28 m ') in Equation 1.9.
Now, the parameters D, ki, k;, and k3 can be combined into a single
cardiac-fitness index (CFI):

 kikate
" kD

CFI (1.12)

For this patient, the value of CFI is 3.23. We need to evaluate CFI for a big
spectrum of patients, and then compute its distribution curve to determine
the efficiency of this index, in order to yield distinct separation of CFI ranges
for healthy subjects and cardiac patients. This CFI can then also be
employed to assess improvement in cardiac fitness following cardiac
rehabilitation regime.
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1.3.3 Nondimensional Lung Ventilatory Performance Index

When a person breathes, the lung volume (V) can be taken to be the
response to the lung inflation pressure. We formulate a lung ventilatory
performance index (LVPI) as follows:

LVPI = RC (BR) (1.13)

where BR is the breathing rate, and R and C are resistance to airflow and
lung compliance in the following differential equation of lung-volume (V)
ventilatory-response to lung inflation pressure (P, represented by the
right-hand side of the following equation):

Rd—v—kK:PN:Pl cos wt + P sin wt (1.14)
dt C
wherein PN = (P — Pp) — Pe (end-expiratory pressure), as illustrated in
Figure 1.4.

This model can be employed to monitor the lung-volume response to lung
inflation pressure in mechanical ventilation of patients with chronic
obstructive lung disease [3] as well as in normal patients by devising and
placing a pressure transducer in the inflation duct of a spirometer [4]. The
pleural pressure (Pp) is measured by placing a baloon catheter transducer
through the nose into the esophagus, and adopting the esophageal tube
pressure to be the pressure in the pleural space surrounding it.

In Figure 1.4, V is the lung volume in liters (L), the right-hand side terms
constitute the driving pressure in cm H,O (= pressure at the mouth—pleural
pressure), R is the resistance to airflow (in cm H,O s L), Cis the lung
compliance (in L/cm H,0), and P; and P, are the magnitudes of cosine and
sine terms of the driving (oscillatory) net pressure Py = (mouth-pressure
minus pleural pressure) minus end-expiratory pressure.

For a typical Py, cyclic pressure profile (Figure 1.4), given by

Py =-184cm H,O, P,=316cm H,0, o =05mrads! (1.15)

the solution to Equation 1.14, to satisfy the condition of V(t =0)=0, is
given by

(cos wt + wTsin wt) (sin wt — wT cos wt)

V =P C T + P,C T
o oCr
e <71 o szz) (Py + Pyar) (1.16)

where 7 = RC. By fitting this lung-volume solution to the clinically monitored
lung-volume data (by parameter-identification method), we can evaluate the
parameters: R=1.24 (cm HyO) s L', C=021L (cm H,O) . Now let us
evaluate the nondimensional LVPI given by Equation 1.13
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FIGURE 1.4
Lung pressures and volume as functions for normal breathing. (Note that the pressure extremes
occur before the volume extremes.) (Adopted from Ghista, D.N., . Mech. Med. Biol., 4, 401, 2004.)

LVPI = RC (BR per minute)

where BR, the breathing rate =15/min or 0.25/s for the data provided in
Figure 1.4. For our case study, the value of LVPI is 3.9.

Let us now see how lung disease will influence R, C, and hence LVPI. For
instance in emphysema, the destruction of lung tissue will produce a more
compliant lung and hence a larger value of C=0.5 L (cm H,O) ', yielding a
value of LVPI of about 10. In asthma, there is increased airway resistance
(due to contraction of the smooth muscles around the airways) to say R=5
(cm H,0) s L. The breathing rate can also go up to BR =20/min. Hence,
the value of LVPI can go up to 20. In the case of lung congestion due to
mitral valve disease, it would be important to determine LVPI, so as to serve
as an indicator for determining cardiac condition (in end-stage heart dis-
ease). By determining the distribution of a big patient population, we can
determine the LVPI ranges for normal and disease states, and can hence
employ this model to diagnose lung disease states.
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A comprehensive analysis of lung ventilation performance (with applica-
tion to lung disease characterization) is provided in Chapter 5.

1.3.4 Nondimensional Diabetes Index with Respect to Oral Glucose
Tolerance Testing

Clinically, patients are diagnosed to be diabetic based on their blood-glucose
concentrations at half-hour intervals during an oral glucose tolerance test
(OGTT). On the other hand, the blood-glucose concentration responses dur-
ing OGTT can be modeled as responses to oral ingestion of glucose, modeled
as an impulse function Gé(t). For OGTT simulation (entailing digestive and
blood-pool chambers), the differential equation, governing blood-glucose
response (y) to oral ingestion of glucose, can be represented as follows [5]:

Y+ 24y + wry = G8(t), ying/L, GingL) ‘()"
or
Y +ATay + Ay = G8(t) (1.17)

where

wy(=A"?) is the natural oscillation frequency of the system

A is the attenuation or damping constant of the system (in h™!)

w(w? — A%)'? is the angular frequency (in rad /h) of damped oscillation
of the system

M=2A/T4 = w?) is the (proportional-control) parameter (in h™2),
representing pancreatic-insulin response proportional to the blood-
glucose concentration (y)

T4 is the (derivative-time) parameter (in h), representing regulation of
glucose concentration proportional to rate-of-change of glucose
concentration (i)

The input to this system is taken to be the impulse function due to the orally
ingested glucose bolus [G], while the output of the model is the blood-
glucose concentration response y(t).

For an impulse glucose input, a normal patient’s blood-glucose concen-
tration data are depicted in Figure 1.5 by open circles. Based on the nature of
these data, we can simulate them by means of the solution of the oral
glucose regulatory (second-order system) model (Equation 1.17), as an
underdamped glucose concentration response curve, given by

y(t) = (G/w)e ! sin wt (1.18)

where A is the attenuation constant, o = (0?2 —A%)Y? is the damped
frequency of the system, w, (the natural frequency of the system)=A"?,
and A =2A/Tj.

The model parameters A (or w,), T4 (or A and Ty), and G are obtained by
matching Equation 1.18 to the monitored glucose concentration y(t)
data (represented by the open circles). The computed values of parameters
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FIGURE 1.5

OGTT response curve: A=1.4 h™' for the normal subject (i.e., higher damping coefficient
value); A=0.808 h™' for the diabetic patient (i.e., lower damping coefficient). (Adopted from
Dittakavi, S.S., and Ghista, D.N., . Mech. Med. Biol., 1, 193, 2001.)

are A=2.6 h™?, T4=1.08 h. This computed response is represented in
Figure 1.5 by the bottom curve, fitting the open-circles clinical data.

For a potential diabetic subject, the blood-glucose concentration data are
depicted by closed circles in Figure 1.5. In order to model-simulate these
data, we adopt the solution of model Equation 1.17, as an overdamped
glucose concentration response function:

y(t) = (G/w)e A sinh wt (1.19)

This function is made to match the clinical data depicted by closed circles,
and the values of A and T4 are computed to be 0.27 h~2 and 6.08 h, respec-
tively. The top curve in Figure 1.5 represents the blood-glucose response
curve for this potentially diabetic subject. The values of the fitted parameters
(Ta, A, A, and G) for both normal and diabetic patients are indicated in the
figure, to provide a measure of difference in the parameter values.

Now, we come to the interesting part of this model, by formulating the
nondimensional diabetes index (DBI) as

2 2
DBl = AT4 = AT _ 24 (1.20)
A w?
The value of DBI in Figure 1.5 for the normal and the diabetic subjects is 1.5
and 4.9, respectively. We have further found (in our initial clinical tests) that
DBI for normal subjects is <1.6, while the DBI for diabetic patients is >4.5.
This is a testimony of the efficacy of the model, and especially for the

nondimensional DBI.
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A comprehensive analysis of oral glucose tolerance test (OGTT) is pro-
vided in Chapter 9.

1.3.5 Characterization of Aortic Stiffness or Arteriosclerosis

The blood flow in the artery is pulsatile and the pulse-wave velocity (PWV)
is given by PWV = (Eh/2ap)'/?, where E is the elastic modulus of the artery, a
is the arterial (cylindrical tube) radius, & is the arterial wall thickness, and
p is the blood density. For a circular cylindrical arterial tube of radius a and
wall thickness h, we can express the arterial wall stress o and elastic
modulus E, as follows:

Pa _130Pa 2(PWV)%ap
h~ ok h ’

in terms of (1) the aortic dimensions a4 and h, (2) the auscultatory (or
automatedly) measurable diastolic pressure (P), and (3) the PWV monitored
by determining both the arterial diameters (echocardiographically) at two
sites Ax apart and the time At for the pressure pulse wave to travel the
distance Ax. Table 1.1 depicts the computed values of o and E at four
independent times for a typical subject. All the quantities in Equation 1.21
can be monitored noninvasively, in order to compute the values of E and o.

The values of E and ¢ in columns 5 and 6 of Table 1.1 can be represented as

N/m?, E= E =Ey+ mo (1.21)

E(N/m?) = 4.20 4 0.5 x 10°(N/m?) = mo + C (1.22)

where m is the slope of E-o graph (assumed to be a straight line) and C is the
y intercept of the line.
We will now define the arteriosclerotic nondimensional index

ART — NDI = mE;/(mean diastolic pressure) (1.23)
For the above patient, the value of the ART — NDI is

(4.2)(0.5 x 10° N/m?)
(87 x 137 N/m?)

ART — NDI = =17.6 (1.24)

and will be much higher for arteriosclerotic patients, which we can deter-
mine by conducting clinical test applications of this analysis.

TABLE 1.1
Computation of E and o from Measurements of PWV, a and h
N N
P (mmHg) PWV (m/s) a (mm) h (mm) E [—2} o [_z}
m m-
80 5.3 41 1.10 2.13 x 10° 3.38 x 10*
85 5.4 45 1.00 2.6 x 10° 497 x 10*
90 5.42 5.0 0.90 3.01 x 10° 5.97 x 10*

95 55 5.0 0.90 3.38 x 10° 6.68 x 10*
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1.3.6 Noninvasive Determination of Aortic Elasticity (m), Peripheral
Resistance (R), and the Aortic NDI

Figure 1.6 depicts schematically the outflow tract of the left ventricle (LV)
into the ascending aorta and a blood-control volume V in the ascending
aorta. We can represent the aortic pressure (P) response to outflow rate I(t)
from the LV into the aorta (with reference to the blood-control volume, V),
as derived in Figure 1.6, by [6]

(dP/df) + AP = ml(t) (1.25)

where m = volume elasticity of aorta (in Pa/m®), A =(m/R) in s ', and the
LV outflow rate is given by

I(t) = (A) sin(m/ts)t + (A/2) sin(m/t)t for 0 <t < t;(systole)
=0 for f> t;(diastole) (1.26)

If t;=0.35 s and the stroke volume (SV) is known (from, say, echocardio-
graphy), then we have (from Equation 1.26)

ts
J [(A) sin(m/ts)t + (A/2) sin2m /t)t] = SV (1.27)
0

where A= (SV)/2t,.

F(t) _ outflow rate K(f) Aortic pressure, P(1)

v A TPR, R(t)
X . -
It .,0....-..3 Volume, V Qgrg;;F("volume) elasticity, m
Given:
I(t)=(A) sin(z/t)t + (Al2) sin(2r/tt, 0 < t < tg
=0, t< g
10 T,=0.35s, SV=71.4cc
Inflow rate A=320 cc/s
dv Pt). dP_ (m
— =l -F()=I(t)- —*; =——=—|= |P+
3 =0-ro=10- 20 L= (e iy
Therefore, (dPAt) + AP = mi(t)
FIGURE 1.6

To derive the equation for aortic-pressure response to the stroke-volume or LV ouput rate I(t).
(Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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FIGURE 1.7

Computed aortic pressure profile. (Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
P, =auscultatory systolic pressure; Py = P, =auscultatory diastolic pressure; (0 <t < t)=
aortic systolic phase (during which blood is ejected into the aorta from the left ventricle);
(ts <t < T)=aortic diastolic phase.

Thus, if SV =71.4cc, then A = 320 cc/s (1.28)

The solution of Equation 1.25 for the aortic diastolic and systolic periods is
obtained as follows:
Aortic diastolic pressure expression (Figure 1.7):

Py(t) = P1e ", P, = pressure at the start of diastole

= Py (at t = T) = pressure at the end of systolic phase
or auscultatory diastolic pressure (1.29)

. Py(t) = Poe 2T, where T=0.8 s
Aortic systolic pressure expression (Figure 1.7):

mAw mAw A sin wt — w cos wt
Py(t) = [ Py + + e ™M+ mA
s ( TN w2 )\2—|—4w2) ( A+ w? )
mA (A sin2wt — 2w cos 2wt T
ma , == 1.30
2 ( A2t 42 ) RS (1.30)

We now (1) incorporate into Equations 1.29 and 1.30 the auscultatory data
on Py (=80 mm Hg) and P, (=118 mm Hg) with T=0.8 s, as well as (2)
invoke continuity in diastolic and systolic pressure expressions to (3) put
down the following three equations (in three unknowns: m, A, and t,, at
which Pg= P,):
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P4(at t; = 0.35 s) = Ps(at t; = 0.35 s) (1.31)
dPs/dt =0, att =1, =0.25s (1.32)
Py(t = tm) = P2(=118 mm Hg) (1.33)

to compute: A =0.66 s~', m=0.78 mm Hg cm >, R(=m/A)=1.18 mm Hg
ecm s, for t,,=0.25 s and T=0.8 s. By substituting the values of these
parameters into Equations 1.29 and 1.30, we can determine the aortic pres-
sure profile, as illustrated in Figure 1.7.

We now formulate an index:

Aortic number = AT = mT/R (1.34)

where A =m /R in the governing differential equation (Equation 1.25).
For the given auscultatory data, and for the above computed parameters:
m=103 x 10° Pam™>, R=156 x 10° Pam s, and A =0.66 5™,

we obtain the Aortic number = AT = (0.66 s~)(0.8 s) = 0.52 (1.35)

1.3.7 Mitral Valve Property Characterization (to Provide
Interventional Guidelines)

Determining the in vivo constitutive property of the mitral valve (MV) (for a
quantifiable estimate of its calcific degeneration) constitutes another example
combining “clinical-data monitoring and processing” with “modeling-
for-clinical diagnosis.” Herein, we combine (1) the vibrational analysis of
MYV, along with the use of echocardiography (to determine the MV geometry)
and spectral phonocardiography (of the first heart sound [FHS] associated
with MV vibration) to determine the second peak frequency (f,) of the FHS
spectrum and (2) the static analysis of the semicircular MV leaflet model
(held along its circular boundary), as illustrated in Figure 1.8, to (3) obtain the
following expressions given by Equations 1.36 and 1.37 for stress (o) and
modulus (E) of the MV leaflet membrane [7]:

2022 2022
mfyacp  mfyap

Ko /2 (K11/2)?

36)

Stress (o) in the mitral valve leaflet membrane =

where
a is the radius of the semicircular leaflet
p is the leaflet membrane density per unit area
K, is the mth zero of the nth order Bessel function J,(k)
m (number of nodal circles) =1
n (number of nodal diameters) =1
K1 =3.832
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FIGURE 1.8

Functional mechanics of the mitral valve: (a) Mitral valve opening at start of left-ventricular
diastole. (b) As the filling left ventricle distends, traction is applied through the chordae tendineae
to the valve cusps pulling them together. (c) Start of ventricular systole seals the valves together by
the high internal pressure and the flow pattern in the ventricular chamber. It is at this point in time
that the MV starts vibrating. (Modified from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)

o t2(1 —v)

1.37
25, (1.37)

Modulus (E) of the mitral valve leaflet membrane =

where

t is leaflet thickness

v is Poisson’s ratio

qo is the pressure difference across the leaflet at time of occurrence of

the closed MV vibration
. . _ 2 —n

S, (the summation of a series) = n:1§5w [771 (2+n)3]

Based on Equations 1.36 and 1.37, the nondimensional constitutive para-
meter (m) of the MV, given by

dE 37 p*t2a*(1 —
m=9E_Smhrtall =y) (1.38)

do qOSn(Kll /2)

can be employed diagnostically to track the deterioration due to calcification
of the MV, in terms of the change (Am) in the value of the parameter m,
according to the relationship:

Am = (0m/Of)Af + (0m/q0)Aqo (1.39)
Am_ (AR %)
so that: o 4<f2 ) 2( e (1.40)
or, HEMAM) +4<%) - 2<%> (1.41)
m f2 70

While tracking a patient over a time period, the primary change will be in
the FHS frequency f,(=Af;), due to progressive calcification of the MV.
Hence, from Equation 1.40, we can adopt
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%” = (42](2) (1.42)

to represent the change (Am) in the parameter (1), by merely monitoring the
change in FHS frequency (Af,) with respect to the earlier value (f2).

Section 2.5 provides a detail analysis of determination of in vivo proper-
ties of heart valves and their disease status.

1.3.8 Noninvasive Determination of Osteoporosis Index
for Osteoporosis Detection

Osteoporosis refers to a group of metabolic bone diseases that are charac-
terized by decreased density of normally mineralized bone. Literally, it is a
condition of porous bones, which is characterized by decrease in mechanical
strength and stiffness of the bone. Thus, the bone is subjected to fracture.
The basic problem is that bone resorption outpaces bone formation.

The noninvasive measurements of bone density techniques now available
are single-photon absorptiometry, dual-photon absorptiometry, dual x-ray
absorptiometry, qualitative computed tomography, and ultrasound. How-
ever, a low-cost method for determination of osteoporosis index (OI) can be
formulated in terms of the flexural stiffness (EI) of the ulna bone (where E is
elastic modulus and I is moment of inertia of the bone cross-section) and
bone density (p). The combined term of EI and the density (p) of ulna can be
determined, because it can be shown to be proportional to the natural
frequency (f) of ulna vibrations, which in turn can be obtained from its
resonance excitation frequency.

In order to determine the resonance frequency of the ulna beam, it can be
simply supported at its extremities and a vibrating probe can be pressed
against the skin at the center of the forearm as carried out in [8]. Then, if the
ulna bone (of average cross-sectional area A) has a weight W (or mass m) per
unit length (such that W=mg =pAg, where p is the density), and length I,
its primary-mode frequency f is given (in terms of its angular frequency p)

by [9]
jop_1m (BN
27 2w 12 \pA

1/2 1/2
=157 <EI> =157 [EI] (1.43)

pAI* (ulna mass)PB

By altering the frequency of the vibrating probe, we set the ulna into
resonance. The resonant frequency will be equal to the natural frequency.
For f (resonance or primary-mode frequency) =400 Hz, A=50 x 10* m?,
I=3x10"° m* length ()=0.17 m, p=18x 10> kg/m> [10] , we get
E =20 x 10° N/m? from Equation 1.43.
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It is seen that f is a measure of ulna stiffness (EI), mass and length. We can
hence define and evaluate an osteoporosis index (Ol) in terms of its reson-
ance frequency (f), given by Equation 1.43. Thus, by modeling the ulna
bone as a simply supported vibrating beam, and determining its resonance
(or natural transverse-vibrational frequency), we can measure the bone
mineralization content in terms of this OL

1.4 Conclusion

Biomedical engineering needs to be a professional field, and hence biomed-
ical engineering graduates need to be employed in hospitals. A field that
biomedical engineers can also contribute to is hospital cost-effective man-
agement. In this concluding section, we will throw some light on this
intriguing field, which can make biomedical engineers more versatile and
enhance their employment in hospitals.

We have seen how we can formulate and evaluate nondimensional physio-
logical numbers, to serve as physiological-system disorder indices, and hence
represent health status. These nondimensional health-status indicators would
also be indispensable for quantifying and evaluating performance indicators
of healthcare units and hospital departments (as illustrated in the next section),
and also lead to a more knowledgeable means of billing codes for hospital
remuneration from state health departments and/or insurance companies.

A hospital has clinical service departments, medical supply and hospital
service departments, and financial-management and administrative depart-
ments. Each of these five sets of departments has to function in a cost-
effective fashion. Let us, for example, consider the intensive care unit
(ICU) department. The human resource to an ICU department consists of
physicians and nurses. Using activity-based costing, we can determine the
human-resource strength, based on an assumed reasonable probability-of-
occurrence of (for instance) two patients simultaneously (instead of just one
patient) having life-threatening episodes.

1.4.1 Performance Index

We can then formulate the ICU performance indicator in terms of the
amounts by which the physiological health index (PHI) values of patients
were (1) enhanced in the ICU for those patients discharged into the ward
from the ICU, and (2) diminished in the ICU in the case of patients who died
in the ICU. Let us say that patients are admitted to the CCU if their PHI value
falls below 50%. Thus, if the PHI of a patient improves from 30 to 50, the
physiological health improvement index (PHII) for that patient is given by

PHII = 100 <503_030> = 67 (or 67%) (1.44)
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Thus, the PHII value is higher if a more seriously ill patient is discharged
from the ICU, and lower if a not-so-seriously ill patient is discharged, i.e., if

50-40

PHII = 100( > =25 (or 25%) (1.45)

We can then formulate the ICU performance index (PFI) for an ICU as
follows.

ICU Performance Index (PFI)
2 PHII of patients

= 1.46
Number of those patients treated during a time period (1.46)

Hence, the higher the value of ICU performance index, the better the
performance of the ICU. If now a patient dies, as a result of the PHII
becoming negative, i.e., slipping from (say) 30 to 10, then

10—
PHII = 100 0-30) _ —67 (1.47)
30
As a result, 2 PHII (in Equation 1.46) will decrease, and the overall value
of ICU performance index (namely, PFI, as calculated by means of Equation
1.46) will fall.

1.4.2 Cost-Effective Index

Now consider that (1) we have one physician and five nurses for a 10-bed
CCU, based on the probability-of-occurrence of two patients having life-
threatening events being, say, 0.2 (or 20%), and that (2) for this human
resource/staffing, the ICU performance index value is (say) 40. If we
increase the staffing, the ICU performance index value could go up to 50
or so, at the expense of more salary cost. So now we can come up with
another indicator, namely, cost-effectiveness index (CEI), given by

CEI — Performance index

Total salary index (in salary units)
_ Performance index
~ Resource index (in terms of salary units)

(1.48)

where, say a salary of $1000=0.1 unit, $10,000=1 unit, $20,000 =2 units,
and so on.

Thus, if an ICU has one physician with a monthly salary of $20,000 (i.e., 2
salary units) and five nurses with a total monthly salary of $25,000 (i.e., total
of 2.5 salary units), then from Equation 1.48
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Performance index (of 40) 40 111
Salary units index or resource index, Ri[=2+2.5)] 45

CEI(ICU) =
(1.49)

Now let us assume that we raise the PFI(ICU) to (say) 50 by augmenting the
nursing staff, so as to have six nurses (R; =3 units) and 1.5 full-time equiva-
lent physicians on duty (R; =3 units). Then,

PFI 50
CEIICU) = 1~ = =5 =

8.3 (1.50)

Thus, while the PFI of ICU has gone up from 40 to 50, the CEI of ICU has
gone down from 11.1 to 8.3.

1.4.3 Strategy of Operation

Our strategy would be to operate this “performance-resource” system in
such a way that we can determine the resource index R; for which we can
obtain acceptable values of PFI and CEI

Now let us formulate how a hospital budget can be optimally distributed.
Let a hospital have “n”” number of departments and a prescribed budget (or
budget index, BGI). We would want to distribute the budget among the
departments, such that none of the ““n”” departments has a PFI below the
acceptable value of PFI, and a CEI below the acceptable value of CEIL,.

So the operational problem is to be formulated as follows.

How to distribute or divide the given budget (or budget index value) into
R; (i=1, ..., n), such that PFI; > PFI, and CEI; > CEI,, for all i. This then is
the prime task of a hospital administrator.
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2.1 Introduction and Scope

Biomechanics has been associated with major physiological advances and
medicine. However, considerable insight into physiology and medicine can
also be gained from innovative applications of even relatively basic engin-
eering analyses. In this chapter, we are developing the concept of cardiology
to demonstrate how even fundamental engineering disciplines can bring to
bear enhanced logic to cardiology, to:

¢ Determine the pressure-drop across a stenotic aortic valve (AV)
e Demonstrate how AV disorders could lead to myocardial infarct
* Depict likely sites for myocardial ischemias and infarcts

» Explain how myocardial infarct impairs stroke volume and car-
diac output

¢ Obtain quantifiable measures of left-ventricular (LV) stiffness and
contractility, so as to provide a measure of impaired LV pumping
capacity

2.2 Pressure-Drop across a Stenotic Aortic Valve

We start our journey in the heart, by analyzing the pressure-drop across a
stenotic AV. The inlet and outlet to and from the left ventricle is regulated
by heart valves. If the AV gets diseased and becomes stenotic, it will result
in a big pressure-drop across the valve, which can be evaluated in terms of
the LV outflow rate and the dimensions of the outflow tract, using Bernoulli
theorem equation, as carried out in Figure 2.1.

=27 2 2 2

=t
A

2.1
2 A7 2.1
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FIGURE 2.1
LV longitudinal cross-section showing the aortic
outflow tract.

Pressure drop between sections 2 and 3 (refer Figure 2.1),

11 ?

ViR vy (1 - é)
A3 A5 A3 Az

Py —P;y (A AN (A A,
Hence, (ﬁ) <A3) -1+ k. ( ) + (/Tz) (1 — A_3> (2.3)
2A7

For a stenotic AV, let us take Q=1.6 x10"* m’s~! (corresponding to a
cardiac output of 4 L/min, HR=80 min~}, ejection period=0.31 s),
outflow-tract diameter d;=1.6 cm, d>,=0.8 cm, d3=2 cm, coefficient
k.=0.33, blood density p=1000 kg/m>, we obtain from Equation 2.3,
pressure-drop across AV (P, — P3) =5071 Pa or 38 mmHg.

Q?

Py~ Py ="

2.2)

2.3 Why Valvular Disorders Can Lead to Myocardial Infarcts?

The high pressure-drop across a stenotic AV will lead to increase in LV
chamber pressure and LV hypertension (as illustrated in Figure 2.2). This is
because the LV will have to contract and pump more vigorously, in order to
overcome this pressure-drop (P; — P3) across the stenotic AV, and appropri-
ately perfuse the systemic circulation. In other words, the LV chamber
pressure (P;) will increase (as schematized in Figure 2.2).

Now, by using the simplified Laplace law for wall stress in a pressurized
thin-spherical shell, namely:

LV pressure (P1) x chamber radius (R)

2x wall thickness () @4

wall stress (o) =
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P, =100 mm Hg

FIGURE 2.2
Why chronic AV stenosis can lead to MI? If P; 1, then o 1, — LV-Work 1, and LV O, demand 1.

it can be readily seen that this leads to augmented wall stress (o) and associ-
ated increased oxygen (O,) demand, which can cause myocardial infarcts
(due to O,, supply-demand mismatch), as depicted in Figure 2.2. Based on
Equation 2.4, the LV could compensate for this augmented wall stress, by
increasing its wall thickness (), to thereby contain the wall stress (0) and
hence the O, demand, and thereby prevent formation of myocardial ischemia
and infarct. If now there is O, supply-demand mismatch, this phenomenon
will cause myocardial ischemia, and eventually myocardial infarct (MI).

Where to look out for the presence of myocardial ischemic (or infarcted)
segment?

In order to answer this question, we need to keep in mind that the circum-
ferential (tensile) wall stress (o) in a pressurized thick-walled sphere, simu-
lating the LV (Figure 2.3), is maximum at the inner (endocardial) wall [1], as
expressed by Equations 2.5 and 2.6 and plotted in Figure 2.3. This is, in fact,
where myocardial ischemias and infarcts mostly occur, because of the higher
resistance to flow and myocardial perfusion near the inner wall. This appre-
ciation can enable us to justify either coronary bypass grafting or even
myocardial canalization for reperfusion from the intra-LV blood pool itself.

The expressions for o, and oy are given by [1]

o B0

P (ﬁ)3. (2.5)
o |6 6]
5= 1_—(_)3 (2.6)
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LV thick-walled pressurized Stresses in LV
spherical-shell model myocardial wall
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FIGURE 2.3

Normalized wall-stress variations for the LV spherical thick-walled model (r; =1.5 cm,
7, = 2.5 cm at an instant during the ejection phase).
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2.4 How Myocardial Infarct Impairs Stroke Volume
and Cardiac Output?

Figure 2.4 illustrates the wall motion of a contracting LV with an infarcted
myocardial wall segment. We can apply the Bernoulli theorem between
points 1 (on the lateral wall) and 4 (at the entrance to aorta), points 2 and
4, and points 3 and 4, as follows:

Py +(pV3/2) =Pa+(pV2/2) or Py=Pi+(p/2)(Vi-V2)  (27)

Py+(pV3/2) = Pa+(pV2/2) or Pa=Pr+(p/2)(V;—-VY)  (28)

P3+(pV3/2) = Pa+(pV2/2) or Pa=P3+(p/2(V;—-V2) (29
Therefrom we obtain from Equations 2.7 through 2.9:

1 n
Loy

i=1

(2.10)

for n points along the endocardial wall.

Let us say that a set of points j (=1, ...,m) lie on the infarcted wall
segment, and the remaining points k (=1, ...,t) lie on the contracting
endocardial wall. Then,

NI

1 m t 1 m t )

FIGURE 2.4

Contracting infarcted LV. In this figure, the regions associ-
ated with points 1 and 3 have normal wall contraction,
whereas the wall region associated with point 2 is infarcted.
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Now for these j points on the infarcted endocardial wall, V; will be zero, and
(as per Equation 2.11), P, will be diminished. In other words, the output
pressure will be diminished. With less LV pressure generated to overcome
the aortic pressure (or LV afterload), the stroke volume (SV) and hence the
cardiac output (CO) will also be impaired.

Thus, it can be seen that if an LV has a myocardial infarct, its myocardial
wall will be stiffer and noncontractile in the infarcted region (Figure 2.4).
Hence, the LV pressure generated will be impaired as illustrated by Equa-
tion 2.11. Thereby, the LV stroke volume and hence its cardiac output will
be diminished.

2.5 Noninvasive Diagnosis of Diseased Heart (Mitral
and Aortic) Valves, Based on Their Dynamics
Modeling, Echo-, and Phonocardiography

2.5.1 Background

Diseases of heart valves (e.g., aortic and mitral) can result in valve leaflet
thickening (qualitatively detected by auscultation and echocardiography),
valvular stenosis, and high pressure-drop and valvular regurgitation (quali-
tatively detected by Doppler echocardiography). These detection methods
are indirect and empirical, entailing measurement of influences of deterior-
ation of valvular tissue properties on heart-sound frequency, pressure-
gradient across the valve, and intracardiac flow, as opposed to direct
measurement of in vivo tissue properties. As per these methods, if timely
surgical-corrective or replacement intervention is not carried out, it can
result in myocardial ischemia and even infarct.

Our approach to this issue is based on our findings that valvular disease
affects the elastic constitutive properties of valvular tissues [2-6]. Hence, by
developing methods for determination of the in vivo properties of healthy
and diseased valves (in terms of leaflet modulus vs. stress), and by categori-
zing healthy and diseased tissues in terms of their parametric ranges, we
can not only sensitively and quantitatively differentiate between healthy
and diseased valves but also detect the severity of their diseased states.

2.5.2 Mitral Valve Biomechanical Model to Detect Diseased Valve

First heart sounds (FHS) are associated with the closure and ensuing vibrations
of mitral valves (MV) and can be related to the resonant vibrational frequencies
of MV [3]. Now the vibrational frequencies of MV are governed by and can be
expressed in terms of valvular tissue elasticity [4]. Since a degenerating MV
tissue has altered elasticity [2], it will have altered vibrational frequency.
Thus, by combining heart-sound power-spectral and valvular mechanics
analyses with 2-d echocardiographic analysis (to determine MV dimensions),
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we can determine the in vivo elastic constitutive property of MV, as a
relationship between the elastic modulus (E) and stress (o) properties of the
membrane. For this purpose, stress and vibrational model analyses of MV
leaflets have been carried out based on semicircular models of the leaflet
geometry obtainable from two-dimensional (2-D) echocardiography [2A4].
The MV leaflet-membrane static and vibrational analyses will yield expres-
sions for the membrane leaflet stress (o) and modulus (E) as functions of its
primary vibrational frequency and its geometrical size parameter. From
these expressions, we will formulate a new stress-based property (¢) and a
modulus-based property (E*), which can be determined in terms of the
vibrational (and FHS) frequency (f) and valve dimension parameter (a).
The parameters of E* versus o* constitutive property can be employed to
differentially diagnose normal and diseased MV(s).

2.5.2.1 Analysis

1. The MV forms a component and one segment of the boundary of
the left ventricle (with the left atrium). Thus the LV primary-mode
vibrational frequency (f;;) will be lower than the MV primary-
mode vibrational frequency (fy,). The MV cusps can be modeled
as semicircular membranes held along the valve ring as well as
along the edges by the chordae tendineae [2,4]. The equation of
equilibrium of an element of the MV leaflet membrane is repre-
sented (in polar coordinates) by

PWs,  OWs 1 PW. >~ 44
2 o s s - s - g 0 .
T(V-Wg) = T( o2 + o +1’2 Y ) q n:§135 o sinn6

(2.12)
where
q is the leaflet loading (= differential pressure across the leaflet)

W, is the membrane deflection
T is the membrane tension

For the boundary conditions of a semicircular leaflet membrane of
radius a (held along its edges):

Wi(r=a,0)=0; Wir,06=0)=0; Wi, =m)=0 (2.13)

Hence, we obtain the leaflet deflection as

8}

Z an?Z 0_ 2) [<r> "~ (2) 2} sin nf (2.14)

n=1,3,5

It is noted that the above expression for Wy contains the tension
term T. We can determine the tension T in the membrane from the
condition that the change in membrane surface area due to its
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stretching by tension T in it (given by dAr = T(1 — v)ma?/Et) equals
the change in its surface area (of thickness f) due to its being deflected
by Ws (Equation 2.14) under the loading g, (given by dA, =
qéa'*s,/T?), to obtain the following expression for the tension T and
stress o (= T/t) in the mitral valve leaflet membrane [2]:

3
T Eq5a°S, !
o=T- ertza & (2.15)

where E and v are the elastic modulus and Poisson’s ratio of the
valve leaflet material, and

o0

= > =0.0234 (2.16)
n=13,5,7 ”(2 + ”)

We have thus obtained an expression for the stress (o) in the
membrane, from the static analysis of the membrane under load-
ing go and tension T in the membrane.

. In order to determine the constitutive property of the heart-valve
membrane, we also need to determine the expression for its elastic
modulus (E). For this purpose, we will now carry out a vibration
analysis of the valve membrane associated with the FHS. Now at
the instant of occurrence of the FHS, the closing MV membrane is
vibrating about its deflected shape W(r, 6), due to the differential
pressure g on it, by the amount Wy(r, 8), which is obtained from the
solution of the following MV vibrational equation:

S(FWa TOWa 1 PWe\ _ Wy
a2 7 or 2 a2 ) Por

(2.17)

By making the solution Wy satisfy the following boundary
conditions:

Wya(r=a,0,t) =0, Wu(,0=0,t)=0, W4, 06=m,t)=0

we obtain the primary-mode vibrating frequency of the semicir-
cular MV membrane (as the frequency of the corresponding circu-
lar membrane vibrating about its diameter as a nodal line) as [2]:

3.832 Jo w22 ad
mv = — —, :7]'1'1‘7 2.1
f 2ma \/; o (1.916)* (2-182)

where d is the density of the valve leaflet membrane. Then by com-
bining the static and dynamic analyses results of Equations 2.15
and 2.18, we obtain the expression for the mitral valve leaflet
modulus as

w36 dPra*(1 —v)
C (1.916)°43 S,

(2.18b)

31
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wherein f,,, corresponds to the third peak of the FHS spectrum
(since lower frequency peaks correspond to LV vibrations).
As a matter of interest, for the data: f,,, =100 Hz, go= 2 mm Hg,
d=1.02 gm/cm3, a=1 cm, t=05 mm, v=0.5, and evaluating S,
(Equation 2.16), we get 0 =2.75 x 10° N/m? and E = 1.6 x 10° N/m?.
3. Now, changes in MV pathology will affect its density (d) and
thickness (), and its modulus (E) vs. stress (o) property which
we want to determine by combining FHS power-spectrum analysis
(to determine fny) and 2-d echocardiographic analysis (to deter-
mine the size parameter 7).

We now designate a new stress-based property (o) of mv (from
Equation 2.18a), as

202 2
o =2 = TImh (2.19a)
d (1916)

as well as a new modulus-based property (E*) of MV (from Equa-
tion 2.18b), as

_Egg _ 71—

E* =10 —
d3t2 (1.916)%S,,

(2.19b)
We can now employ the E* vs. ¢* relationship as a constitutive
property of MV, to characterize and track its degeneration for
timely intervention purpose.

This technology and methodology can provide the basis for timely
surgical and/or replacement intervention for a diseased MV. In order
to apply this analysis, we can determine the valvular leaflet size
parameter from 2-D echocardiograms. The valvular leaflet vibra-
tional frequency can be obtained from the frequency spectra of the
FHS phonocardiographic signal associated with MV movement.

We can study a number of patients and determine the in vivo (E*, o)
values of their valves, at regular intervals during their degeneration
process. We can also simultaneously and regularly monitor cardiac
symptoms and chamber sizes and correlate them with the valvular
constitutive E*-o™ property. By means of these correlations, we can
determine the critical (E*-c*) boundary at which intervention will
have to be made to replace the degenerated natural valve by means
of a prosthetic flexible-leaflet MV [2].

2.5.3 Aortic Valve Biomechanical Model to Determine Normal
and Diseased Aortic Valve Properties

Second heart sounds (SHSs) are associated with the closure and ensuing
vibration of AVs. The heart-sound spectral frequencies can be related to the
resonant vibrational frequencies of heart valves [5]. Now the vibrational
frequencies of heart valves are governed by and can be expressed in terms
of their tissue elasticity [6]. Since a degenerating tissue has altered elasticity
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[3], it will have altered its vibrational (primary) frequency, and hence
altered the heart-sound power-spectral frequency profile.

Thus, by combining 2-D echocardiography (to obtain valvular geometry),
heart-sound power-spectral analysis (to obtain the valvular vibrational fre-
quency), and valvular mechanics (stress-deformation and vibrational) ana-
lyses, we can determine the in vivo valvular properties of AVs [5,6].

The AV (as shown in Figure 2.5A) has three membrane sectors (each of
angle 27r/3). Each of these three membrane sectors deforms (by an amount W)
under the differential pressure (P) across the valve. At the same time, toward
the closure of the AV (and associated with the SHS), each membrane sector
vibrates; it has been shown [6] that the second spectral peak (f) frequency of
the SHS is best able to differentiate between normal and pathological valve.

Just as in the case of the MV analysis, we can also carry out both static-
deformation and vibrational analyses of the AV membrane sectors [5-7].
From these analyses, we can obtain expressions for the elastic modulus and
the stress in the valve leaflet, in terms of the SHS’s second spectral peak
frequency (f), the radius (a) of the valve ring, density (D) of the leaflet
material, the pressure difference (P) across the valve leaflet, and Wy (the
deflection of the valve leaflet under the differential pressure P) at the time of
occurrence of the SHS. We will then express the valve leaflet constitutive
property in terms of a modified modulus property (E*) and stress (o), both
of which can be determined noninvasively in terms of f and a.

AV
ring \f a, =0

Wgs* (max deflection) is at 0.76a

(A
AV leaflet top edge (in open position)
0,0
0=-p ©0.0) 0=pB=rl3
AV Region Q, Boundary
. leaflet Ty
AV ~/ top-edge é/
Ieaﬂet_j
ring
Isoamplitude contour
curves u (x, y) =y
(B) (©)
FIGURE 2.5

Aortic Valve geometry and deformation profile: (A) Schematic of the aortic valve geometry. (B)
Aortic leaflet membrane analyzed as a circular 120° sector. (C) Schematic of the isoamplitude
shape-function curves u; (x, y) = u; (shown dotted in one of the leaflets), depicting the profile of
the deflected surface of the AV leaflet when it vibrates.
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2.5.3.1 Analysis (Figure 2.5)

1. Anaortic valve leaflet membrane (shown in Figure 2.5A) is analysed
as a circular 120° sector-shaped membrane of § =+8=+7/3 and
radius r (=a), as depicted in Figure 2.5B. Its boundary is represented
by a simply connected plane curve I'y enclosing a region €, as
depicted in Figure 2.5C. When the AV vibrates at the time of its
closure (associates with the SHS), its membrane deflection at a
point in the region )y at any time t is denoted by W(x, y, t).

2. Let us start with the deflection (W) of this 120° sector leaflet mem-
brane (of 6 = +7/3 and radius r = a) at the time of occurrence of the
SHS. When the membrane vibrates in one of its modes, the profile of
its deflection surface can be described by a family of isoamplitude
curves, which form a set of level curves u(x, y) = u; (constant) when
projected on the (x, y) plane, as shown in Figure 2.5C. This family of
isoamplitude curves is denoted by I',, (for 0 < u < u*, where u* is the
maximum value of u), wherein I'y denotes the leaflet membrane
boundary, and the region bounded by I', is denoted by ,. We
hence need to scale u(x, y) to the static deflection W(x,y) of the
pressure-loaded valve at the time of occurrence of SHS, by making
u* (the maximum value of u(x,y)) correspond to the maximum
static deflection (W¢) of the valve membrane (at the location of u*).

3. In the context of membrane analogy, when torsion is applied to a
cylindrical beam with the same cross-section as the valve leaflet
membrane (120° sector) boundary, the lines of constant shearing
stress coincide with these isodeflection contours of the membrane.
Hence, the function u(x, y) satisfies the same Poisson equation as
the Prandtl stress function (of torsion of a cylindrical beam of the
same cross-section as the 120° valve leaflet section), given by [5,6]:

V2u(x,y) = -2 (2.20a)

The static deflection W, under the pressure loading P (equal to aortic
pressure minus LV pressure) and leaflet tension T, is given by [5,6]:

V*W, =P/T (2.20b)

However, we need to scale u(x, y), such that its maximum value u*
corresponds to the maximum static deflection W¢, as follows [5,6]:

*
—2TW,
P

so that (1) the W, shape contours correspond to the u(x, ) contours
and (2) u(x,y)=—2Ws(x,y)T/P.

In order to specify u* in equation (3), we need to first obtain the u
(x, y) or u(r, 8) for a 120° (27/3) sector-shaped membrane. Herein,
the boundary shape of an aortic leaflet is approximated as a

u* = max [u(x,y)] = (2.21)
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circular sector of angle 27/3. Then, from the corresponding torsion
problem, it can be shown [6] that for a sector of a circle, with
boundary given by (r = 0,7 = a,0 = +8), we have the deformed
deflection—amplitude shape function u(r, 6) as [5,6]

1 2 cos 20 > @n+1)g; w0 1
Aoy 2n+1 —=7
=2 st ; ;) COS[( e )23] 2
1 2 1
_ (_q\ntl _
Az = (=1) {(2n+1)7r—4ﬁ @it Dm (2n+1)7r+4ﬁ}
(2.22a)

wherein r is the radial coordinate and a is the valve ring radius.
The function u is a plane harmonic function which satisfies the
condition # = 0 at the boundary givenby (r = 0,7 = 4,0 = £8).
By symmetry, the maximum value of u will be found along the
line 6 = 0. The computation of u along this line satisfies the profile
of the membrane’s deflection shape.

By choosing the aortic valve leaflet sector angle to be 8 = 7/3 and
by carrying out an iterative computer calculation [5,6], we obtain
the maximum u(r, 6) value of u* = 0.11181r* at r = 0.76a. In other
words, for the aortic leaflet model, the maximum value of u(r, 6) is

* = 0.064584% at r = 0.764, ie.,

U* = Umayx = 0.111817%(at 6 = 0 and r = 0.76a) = 0.064584> (2.22b)

Likewise, W¥ also occurs at 8 = 0 and r = 0.76a

. When the aortic valve closes, its leaflets membranes are set into
vibration. Hence, we next carry out a vibration analysis of the
aortic valve leaflet. Consider a portion of the membrane boundary
represented by a closed contour u(x,y) = constant at an instant ¢.
For the vibrating membrane, the differential equation of motion at
any instant t can be written as follows [5,6]

(82W 0? W) *W

o oy ) T Par
PW 1 PW *W

where T denotes the membrane tension per unit length, W denotes
the deflection of the membrane, ds denotes an element of the closed
curve u = constant, I', corresponds to the earlier mentioned family
of isoamplitude curves, fF,, denotes integration along a closed
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contour u(x, y) = constant, ”“u denotes double integration over the
interior of the closed region bounded by the contour u(x, y)=
constant, £),, denotes the region bounded by I';, and p is the mem-
brane mass per unit area. The solution to the above equation can be
expressed as

W(u,t) = f: wifi(t) =Y wi(u)e ™" (2.23b)
i=1

where the eigenfunctions w;(u), corresponding to this free vibration
problem, are given in terms of the zeroth-order Bessel functions as

wi(u) = AJo(V2kg) + BYo(V2kg) (2.24)
where
g = (u*—u'?
K = (p/T)w?

A and B are arbitrary constants

In order to avoid infinite displacement of u at any point of the
membrane, we set B=0. Then considering the boundary condition
of the membrane having zero displacement around the boundary
u(r,0) =0 or u(x, y) =0, we obtain (from Equation 2.24)

JoV2u*k =0 (2.25a)
for which v2u* = B; (2.25b)

where B; is the ith zero of the zeroth order Bessel function J,. Then
the symmetric mode eigenvalues @ (associated with frequency w)
are given by

V2u*k = @ = 2.4048, 5.5201, 8.6537, . .. (2.26)

From Equation 2.26, we can express the tension (T) and hence
stress (o = T/h) in the leaflet membrane in terms of its vibrational
frequency (f=w/2m) and u* (=0.064584%). It has been determined
by us [6] that when the data of the valve’s SHS spectral peak
frequency (f) and radius (a) are plotted on the (f-a) coordinate
plane, employment of the second peak frequency of the SHS
spectrum (corresponding to the second mode of vibration, for
which @ =5.5201) is best able to effectively separate normal and
pathological AVs. Hence, we will adopt @ = 5.5201.

For the second mode frequency, we take @ =5.5201, and obtain

5.52012

2
k2 - 2t

(2.27a)

2 _
w; =

I
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or
5.5201
= (T/p)/? (2.27b)
/ \/_
or
T 8mf2Du*
7T h T 55012 (2.28)

where f= w,/2m, the density D = p/h =1 g/cm?, and u* = 0.064584°.

. Wenow obtain an expression for the tension (T) in the AV membrane
under its pressure-loaded state. For this purpose, we equate (1)
the change dA,, in the membrane surface area due to its taking up
the deflected shape (Ws) under the pressureloading P to (2) the change
dArinits surface area due its being stretched by the tension T in it.

The expression for dA,, is obtained as [6]
dA, = P Au* (2.29)
v =g u )
where A is the membrane area before deformation.
The expression for dAr is obtained as [6]
2T(1 - v)A
Eh

Upon equating dA,, to dAr, we obtain the following expression for
the tension T in the leaflet:

dAr = (2.30)

[ EnpP2y* 13
]

= ltea=9) (2.31)

Keeping in mind that the static deflection satisfies the classical
Poisson equation, and that
Wg -2T
P = —2T— and u*= TW; = 0.064584* (2.32)

we obtain from Equations 2.31 and 2.32, the expression for the
Young’s modulus of the AV leaflet material, as

Ehu* Ehu* Wi
3 _ 2
T =ta-n" “T60-w ( >
Ehu* Wi
— < ) T2 (2.33a)

or

A1 -v)T 4wl —v)o
T @)
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where u* = 0.064584% and W7 is the maximum deflection of the AV
leaflet.

. Now from the secondary vibrational mode of the AV leaflet, the

stress in the aortic valve leaflet membrane can be written from
Equation 2.28, as
T 8 2 ZD *
_I_8=/Dw (2.34)
h (5.5201)

where u* =0.064584* and D =1 g/cm® or 10° kg/m°>. Hence, from
Equation 2.34

o(in N/m?) = 167.35f%a* (2.35)

where the vibrational frequency f (=the SHS spectrum’s second
peak frequency) is in hertz (Hz) and a is in meters.

. Now, we note that the valve leaflet modulus (as with most soft

tissues) is a function of the stress o within it; we will assume this to
be a quasi-linear function in the (E, o) operating range of the AV.
At the instance of occurrence of the SHS, the pressure difference
across the AV is small, and hence the corresponding leaflet stress
o(=01) and modulus E(= E;) are also small; accordingly, the leaf-
let deformation W;(=W7) will also be small. However, at the start
of the filling phase, there is a big pressure difference across the
leaflet; the corresponding leaflet stress o(=0,) and modulus
E(=E,) will also be bigger than o7 and E;, and the corresponding
leaflet deformation W5 will be measurable. However, based on our
assumption (that E varies quasi-linearly with o), we can state that

Ey/oy = Ey/0» (2.36)
Hence, we can put down, from Equations 2.33b and 2.35,

167.35f2a>  (W3)?

= 2.37
E1 414*(1 — V) ( 3 )
so that
4 2,2, % 1—
E, = 5694/ 1‘2( o) (2.38)
(W2)
wherein u* = 0.064584>
At the same time, we can employ Equation 2.35, as
o1 = 167.35f%a* (2.39)

wherein
oy is in N/mz,fis in Hz, and 4 is in m.
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8. We can determine these pairs of values (o4, E;) for different
cycles, plot E versus o, formulate the (E, o) relationship as
E =po+Ey, and evaluate the constitutive parameters p and E, for
a patient. For patients with pathological (or calcified) AVs, we can
hence determine the distributions of these parameters p and E,,
correlate them with valve leaflet pathology and pressure-drop
across the valve, and arrive at their critical values for the replace-
ment of the valve by a prosthetic valve.

Thus, we can distinguish valve leaflet pathology by means of the
parameters p and E,. For their determination, we evaluate E from
Equation 2.38 and o from Equation 2.39 at the instant of occur-
rence of SHS for each cardiac cycle, over a number of cycles. For
evaluation of o, we need to monitor the valve-ring radius (a) and
the frequency (f) of the second spectral peak of SHS. For evalu-
ation of E, we need to also monitor the maximum static deflection
W3(Wg) of the valve leaflet, which happens to be on its symmet-
rical axis (0 =0) at r=0.76a at the start of the filling phase with
respect to Wi at the instant of SHS occurrence (i.e. taking W7 to be
the undeformed value; this can be done by ultrasound).

For a=0.8 cm (or 0.008 m), f=100 Hz, D=1 g/cm® (or 10°
kg/m3), v=0.5, W3 =3 mm (or 0.003 m), we get o =107 N/m2
(from Equation 2.39) and E=98.37 N/m? (from Equation 2.38).
At other LV cycles, we will obtain different values of o and E,
and hence of p and E,. The values of p and E, can then be
employed diagnostically to characterize and track pathological
changes in the AV leaflet (from normal AV), and determine their
critical values at which timely intervention can be carried out so as
to avoid a big pressure-drop across the valve leaflet, leading to
myocardial ischemia and infarction.

9. An alternative and perhaps more convenient approach (which
would obviate the measurement of aortic leaflet deformation)
would be to employ a modified leaflet elastic modulus parameter

E*(in N) = E(W?)?, so that from Equation 2.33b
E*=E(W})* =4u*(1 - v)o=0.1304%, foru* =0.064584*> and »=0.5

Then substituting for o(=167.35f2a?) from Equation 2.35,
we obtain

E* = 21.6f%*

We can then compute E*(=21.6f%a*) and o(=167.35f?a%) for
different cardiac cycles, plot E* vs. o, and determine the regression
curve based expression for E* in terms of 0. The parameters of this
expression would then represent the constitutive parameters for
leaflet pathology.
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2.6 Diseased LV Myocardial Segment Detection

For detection of the location and extent of ischemic and infarcted LV
myocardial segments, we are invoking the concept that myocardial disease
affects the elastic constitutive or modulus property of the myocardial tissue,
and hence its ultrasonic echo-intensity distribution. The ultrasonic echotex-
ture of the myocardium will be considerably heterogeneous in the case of an
infarcted myocardium. Thus, by quantifying the ultrasonic echo-intensity
distributions of LV myocardial segments, we can distinguish between nor-
mal, infected, and ischemic tissues.

Two-dimensional B-scan echocardiographic images of the heart can be
scanned for tissue characterization and quantitative texture analysis of myo-
cardial regions [8,9]. Each myocardial tissue component generates a grey
scale pattern or texture related to the tissue density and fibrous content. In
diseased states (such as myocardial ischemia and infarcts), changes in tissue
density have been recognized. It has been found that hyper- reflectile echoes
(HREs) correlate well with diseased myocardial tissue [8,9].

Figure 2.6a depicts the echo-intensity profile of an infant with visible scars
in regions 1 and 2. The digitized echo-intensity profiles of these two regions
are depicted in Figure 2.6b. In Figure 2.6b, the irreversibly damaged
infarcted region is depicted in dark shade, the peri-infarcted ischemic bor-
der is depicted slightly lighter, while the normal tissue is depicted in light
shade [9]. The aim of our drug therapy would be to convert the ischemic
(slightly dark) region into normal (light) region.

In the neonatal infant patients who came to postmortem, their highly
reflectile ultrasonic echozones were pathologically examined, and found
to be necrotic and calcified [8-10]. We have thus demonstrated the capabil-
ity of distinguishing scarred myocardial segments from healthy segments.
Further, since the modulus property (and hence the echo-intensity) reflects
myocardial disease severity, this concept can be further developed to pro-
vide the basis for differential detection of infarcted myocardial segments as
well as the bordering ischemic myocardial segments.

Table 2.1 displays the echo-intensity values of myocardial segments of nine
normal infants. The upper bound of the echo-intensity (of the pericardium
region A) was set to 100% in each normal infant and the intensities from the
rest of the image were referenced or normalized to this level. Thus, in the case
of male patient W, for instance, the normaliszed echo-intensities of regions B,
C, D, and E are 49.5, 31.3, 39.3, and 35.1, respectively. We note that the upper
bound of echo-intensity value of healthy tissue (expressed as a percentage of
pericardial echo-intensity) is 54.2 (in the case of patient TY).

Table 2.2 displays the echo-intensities of myocardial segments (normal-
ized with respect to the pericardial echo-intensity, so as to make the results
independent of instrumentation characteristics) of six infant patients with
diseased hearts. It is noted (from the last column) that the normalized echo-
intensities of the highly reflectile elements (HREs) from these six infant
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(b)

FIGURE 2.6 (See color insert following page 266.)

(a) Long axis 2-D ultrasonic view of a pediatric patient’s heart, showing highly echoreflectile
regions 1 and 2 and a healthy region 3. (b) Echocardiographic texture analysis, showing echo-
intensity levels from myocardial region 1. (Adopted from Figure 2 of Kamath, M.V., Way, R.C.,
Ghista, D.N., Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med., 15,
137, 1986.)
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TABLE 2.1

Echo-Intensity Values for Various Anatomic Regions of Normal Pediatric Hearts
(Based on Long Axis Vies). (Adopted from Kamath, M.V., Way, R.C., Ghista, D.N.,
Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med.,
15, 137, 1986.)

Patient (Sex) Region A Region B Region C Region D Region E

W M) M: 227.75 M: 112.83 M: 71.21 M: 89.55 M: 80.06
SD: 13.54 SD: 25.27 SD: 19.41 SD: 17.91 SD: 18.74
N: 65 N: 84 N:75 N:31 N: 65
P: 100 P: 49.5 P:31.3 P:39.3 P:35.1

G (F) M: 218.40 M: 98.30 M: 66.24 M: 103.10 M: 86.21
SD: 14.74 SD: 15.79 SD: 20.20 SD: 21.13 SD: 32.62
N: 67 N:76 N: 41 N: 42 N:98
P: 100 P: 45 P:30.3 P:47.2 P:39.5

S (M) M: 212.01 M: 97.20 M: 42.09 M: 82.43 M: 92.43
SD: 14.27 SD: 12.93 SD: 20.07 SD: 22.47 SD: 20.93
N: 66 N: 84 N: 69 N:21 N: 60
P: 100 P: 458 P: 258 P:38.9 P:43.6

R (M) M: 226.81 M: 92.23 M: 58.49 M: 89.50 M: 78.73
SD: 12.46 SD: 16.42 SD: 19.10 SD: 14.69 SD: 17.89
N:78 N: 96 N: 55 N: 30 N: 56
P:100 P:40.7 P: 258 P:39.8 P:34.7

TY (M) M: 195.85 M: 75.78 M: 57.93 M: 106.21 M: 93.78
SD: 14.22 SD: 19.00 SD: 26.10 SD: 16.96 SD: 15.24
N: 67 N:74 N: 44 N: 24 N: 64
P: 100 p: 387 P:29.6 P: 54.2 P: 479

O [F M: 204.11 M: 83.93 M: 57.79 M: 103.81 M: 84.77
SD: 12.66 SD: 16.94 SD: 18.24 SD: 24.89 SD: 18.28
N: 44 N: 93 N:43 N:43 N: 56
P: 100 P:428 P:29.5 P: 53 P:433

SG (M) M: 209.53 M: 101.98 M: 63.921 M: 68.61 M: 94.18
SD: 14.19 SD: 14.60 SD: 17.97 SD: 17.56 SD: 20.80
N: 38 N: 65 N: 36 N:18 N: 84
P: 100 P: 487 P:30.5 P: 327 P:449

WB (F) M: 237.22 M: 93.78 M: 75.27 M: 110.65 M: 106.85
SD: 12.94 SD: 20.51 SD: 20.39 SD: 24.80 SD: 32.87
N: 82 N: 86 N:77 N:17 N: 47
P: 100 P:395 P: 317 P: 46.6 P:50.0

L (F) M: 227.11 M: 89.09 M: 63.76 M: 108.95 M: 117.27
SD: 12.56 SD: 20.08 SD: 25.99 SD: 27.24 SD: 16.46
N:72 N:77 N:76 N: 37 N: 67
P: 100 P:39.2 P:28.1 P:48.0 P:51.6

Note: The numbers in the four rows represent mean (M), standard deviation (SD), number of
pixels (N), and percentage of pericardial intensity (P). A = posterior pericardium, B=
anterior myocardium, C=posterior myocardium, D =anterior mitral leaflet, and
E =septum.

patients were distinctly higher than the echo-intensity range of normal
myocardial tissue segments.

The normalized lower bound of the highly reflectile infarcted myocardial
segments is 63.1% (Table 2.2), whereas the normalized upper bound of
normal myocardial tissue is 54.2% (Table 2.1). Thus, the normalized echo
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TABLE 2.2

Intensity Values for Various Anatomic Regions of diseased Pediatric Hearts
(Based on Long Axis Vies). (Adopted from Kamath, M.V., Way, R.C., Ghista, D.N.,
Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med.,
15, 137, 1986.)

Patient (Sex) = Region A  Region B Region C  Region D  HRE and Its Location

B (M) M:167.44  M:54.76 M: 51.02 M: 82.20 M: 105.74
SD: 25 SD: 28.2 SD: 17.71 SD: 24.68 SD: 30.88
N: 65 N: 84 N:75 N: 31 N: 65
P: 100 p:327 P:30.5 P:49.1 P: 63.1
Septum
P (F) M: 14876  M:61.73 M: 79.81 M: 61.7 M: 108.18
SD: 26.78 SD:23.02  SD:22.05 SD: 24.2 SD: 13.03
N: 50 N:75 N: 47 N: 49 N: 40
P: 100 P: 415 P:53.8 P: 41.50 P:72.6
Septum
Br (M) M:141.65  M: 683 M: 69.3 M: 33.93 M: 89.412
SD: 29.56 SD: 26.8 SD: 24.8 SD: 24.4 SD: 28.0
N: 40 N: 40 N: 49 N: 44 N:79
P: 100 P:415 P:53.8 P:415 P:731
Septum
F (F) M:157.34  M:50.1 M: 60.8 M: 53.8 M: 112.1
SD: 30.0 SD: 29.5 SD: 18.8 SD: 22.7 SD: 10.3
N: 35 N: 45 N: 49 N: 44 N:31
P: 100 P:31.8 P:38.6 P:342 P:71.2
Right ventricle
HI (M) M: 168.1 M: 54.7 M: 58.2 M: 62.4 M: 96.4
SD: 21.35 SD: 21.8 SD: 16.9 SD: 20.0 SD: 14.7
N: 47 N: 36 N:33 N: 37 N: 49
P: 100 P:32.5 P:34.6 P:37.1 P:473
Left ventricle
GM™M) M: 117.7 M: 46.9 M: 45.5 M: 42.7 M: 85.3
SD: 20.6 SD: 19.0 SD: 20.6 SD: 19.1 SD: 22.6
N: 45 N: 44 N: 40 N: 49 N: 37
P: 100 P:39.8 P:38.7 P:36.2 P:72.5
Right ventricle

Note: The numbers in the four rows represent mean (M), standard deviation (SD), number
of pixels (N), percentage of pericardial intensity (P). A =posterior pericardium,
B =anterior myocardium, C = posterior myocardium, and D = septum.

intensity range of ischemic myocardial segments is 54.2%—-63%. If a myocar-
dial segment has normal echo-intensity in this range, and if
after pharmacological drug therapy its echo-intensity becomes less than
54.2, then we can say that this drug is effective in normalizing the ischemic
myocardial segment on the border of the infarcted myocardial region.

2.6.1 Comments

We have noted that diseased (qualified) heart valves can cause high LV
wall stress leading to myocardial ischemia. Hence, we need a more defini-
tive index for diseased heart valve (based on the biomechanical property
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of the valve leaflets) as well as a more reliable guideline for intervention
before the onset of myocardial ischemia.

For the purpose of determining the valvular leaflet biomechanical prop-
erty, to characterize valvular degeneration, we have shown that (1) we can
make use of noninvasive determination of valve leaflet vibrational frequency
(from spectral phonocardiography) and valve leaflet deformation (by
processing 2-D echocardiograms), (2) express the valve leaflet modulus (E)
and stress (o) in terms of valve leaflet vibrational frequency and deformation,
and (3) then develop an analytic expression for E as a function of ¢.

The parameters of this E-o expression can then be employed to character-
ize valve leaflet degeneration, which in turn is manifested as valvular sten-
osis and /or incompetency, and thereafter lead to myocardial ischemia. If we
were to determine the pressure-drop across the heart valve or LV backflow,
and use it as a measure of candidacy for intervention, then it is quite possible
that at that stage the patient’s LV wall stress could have become high enough
to cause myocardial ischemia or infarct. Thus, we could employ LV wall
stress as a criterion for intervention, except that it requires knowledge of
intra-LV pressure, which cannot be determined noninvasively.

Hence, we suggest (based on our research) that we employ echocardio-
graphic texture analysis (i.e., LV myocardial echo-intensity profile deter-
mination) as a criterion for intervention. In other words, we can keep
postponing intervention until myocardial ischemia becomes discernable,
on the 2-D echo-intensity profile of the LV, as a normalized echo-intensity
segment in the 54.2%—-64% range.

We then want to propose that (1) we determine the valve leaflet’s bio-
mechanical (E vs. o) property, as described herein, (2) correlate the biomecha-
nical E versus o property (displayed graphically and/or analytically) with
the intervalvular pressure-drop and/or backflow (due to valvular regurgi-
tation), and (3) also correlate this biomechanical (E vs. o) property with
myocardial 2-D echo-intensity profile (as demonstrated in this section).

This will reveal to us the following:

* Sensitivity of valve leaflet (E vs. o) biomechanical property to
depict valvular degeneration and dysfunction

» New early warning signal for timely intervention, before the onset
of LV myocardial ischemia, based on its detection of the myocar-
dial 2-D echo-intensity profile

« Effectiveness of a particular drug therapy in converting an ische-
mic peri-infarcted myocardial segment (in the normalized echo-
intensity range of 54.2-64.2) into a normal myocardial segment
(having normalized echo-intensity <54.2)

e Comprehensive profile of the LV heart-valve property, associated
with LV heart-valve dysfunction (characterized by stenosis or
incompetency), and LV myocardial property distribution, repre-
sented by its echo-intensity distribution
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2.7 Analysis of Blood Flow in the LV (Using Monitored LV
Wall-Motion Data to Determine Intra-LV Flow Velocity
and Pressure-Gradient Distributions)

2.7.1 Finite-Element Analysis of Blood Flow in the LV

The data required for the finite-element analysis (FEA) consist of

e LV 2-D long-axis frames during LV diastolic and systolic phases
e LV pressure versus time, associated with these LV frames

e Computation of LV instantaneous wall velocities as well as
instantaneous velocity of blood entering the LV during the filling
phase and leaving the LV during the ejection phase

From this FEA, we determine the instantaneous distributions of intra-LV
blood-flow velocity and differential pressure during filling and ejection
phases, to intrinsically characterize LV resistance-to-filling (RTF) and LV
contractility (CONT), respectively [11].

The FEA employed for computing intra-LV flow velocity and pressure
distributions entails solution of the potential equation:

VP =0 (2.40)

where V? is the Laplacian operator, ® is the velocity potential, and V® is the
velocity vector. For FEA, the governing differential equation

I PP PP
T 2.41
5 gy =0 (2.41)
for a 2-D planar flow domain, is transformed to a finite-element equation
form, by making use of the Galerkin-weighted residual procedure.

The resulting stiffness-matrix system of equations

[K]{®} = {F} (2.42)

can be solved for @ at those point(s) in the flow domain, by specifying
0®/0n(V,) along the endocardial boundary, and ® at those point(s) on the
boundary where V,, is not specified. By specifying ® to be constant along
the open boundaries, the flow can be constrained to be normal to that
boundary; this constraint also allows the solution to obtain a flow balance.
The value of the constant ® is arbitrary, and ® =0 is specified along the
open boundary.

The matrix system [K], in Equation 2.42, is symmetrical and banded.
Equation 2.42 is solved for ® using a Gaussian elimination method, which
transforms the matrix system [K]. From the computed values of ® at each
internal point, we determine the velocity components at each internal point
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of the LV chamber and hence obtain instantaneous maps of intra-LV blood-
flow velocity patterns.

2.7.2  Analysis for Intra-LV Pressure Distribution

Once the intra-LV flow velocities are determined, the intracardiac pressure
distribution at any point inside the LV chamber can be obtained from the
Bernoulli equation for unsteady potential flow as

P+ (1/2) pV? + p(0®/0t) = C(t) (2.43)

where
P is the pressure
(1/2)pV? is the dynamic pressure term
p is the density of blood
V is the velocity of blood
p(0®/dt) is the effect due to acceleration
C(t) represents the total pressure as sensed by a pressure probe facing
the oncoming fluid.

C(t) is a constant and the gravitational or hydrostatic effects are neglected.
The partial derivative, (0®/0t), is computed from the value of ® at the same
point at successive instants, using the finite difference scheme.

Since we want the procedure not to utilize the catheter-pressure data, we
can obtain the pressure distribution relative to a reference point in the
chamber, say at the center of the aortic or mitral orifice. Hence the differential
pressure field at a point s, in terms of the pressure P at the inlet (during
diastole) or outlet (during the ejection phase) of the ventricle, is given by

P — Po = (1/2)p(V5 — V2) + p(O® /Oty — OD/t],) (2.44)

where Vj and V; are, respectively, the velocity of blood flow at the center of
the orifice (i.e., at the aortic or mitral orifice during systolic or diastolic
phase) and at a point s inside the LV chamber. The differential pressure
(Ps — Pg) can be expressed and displayed in nondimensional form, as

1
Cp = (Ps — Py)/ 5 pV2 (2.45)

where C, is the nondimensional pressure coefficient.

This instantaneous graphical display of the relative pressure distribution
in the LV chamber can provide an indication of the RTF as well as of the
effectiveness of the LV contraction in setting up the appropriate pressure
distribution in the chamber, so as to promote adequate emptying.

By comparing intra-LV pressure-gradients before and after administra-
tion of nitroglycerin (a myocardial perfusing agent, and hence a quasi-
simulator of coronary bypass surgery), we can infer how the myocardium
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is going to respond and how these LV functional indices will improve after
coronary bypass surgery.

2.7.3 Intra-LV Flow during Diastolic Filling

How well and how easily the LV fills is depicted by the instantaneous intra-
LV flow distribution and the interframe variations in flow distribution,
which are governed by the segmental stiffness of the LV, and are manifest-
ations of RTF. In general, the flow is highest during the first half of the
diastole (20-30 cm s~ ') in all patients, and the relative flow during all phases
of diastole is at a maximum in the inflow segment of the LV, just below
the MV.

The results suggest that the early filling phase could possibly be due to
the actively relaxing LV wall setting up a pressure-gradient, conducive to
filling, instead of the LV wall motion responding passively to blood flow.
Subsequently, during late-filling phases, the increasing stiffness of the LV
wall (due to increasing LV volume) provides increased resistance to
LV filling in the form of reduced flow.

The ideal situation is for the wall contraction to be so graded that
adequate flow is generated in the apical region and a near-uniform flow is
maintained throughout the LV chamber. The factors contributing to
adequate intra-LV flow and cardiac output, with a smooth washout,
are strong LV wall contraction and uniformly accelerating wall motion.
If following administration of nitroglycerin, the LV wall can contract
more uniformly and thereby set up a more favorable intra-LV velocity
field, instead of a pattern of compensatory regional hypercontractility (and
associated high wall tension and oxygen demand) to make up for a region of
hypocontractility, then such a patient would be a good candidate for cor-
onary bypass surgery.

The results of the analysis are displayed in Figure 2.7; for a typical patient
with a myocardial infarct

e Figure 2.7al and a2 depict superimposed LV outlines during
diastole and systole, before nitroglycerin administration (al) and
after nitroglycerin administration (a2)

o Figure 2.7bl and cl depict intra-LV blood-flow velocity dis-
tributions during diastole and systole, before nitroglycerin
administration

* Figure 2.7b2 and c2 depict intra-LV blood-flow velocity distributions
during diastole and systole, after nitroglycerin administration

* Figure 2.7d1 and el depict intra-LV blood-flow pressure distributions
during diastole and systole, before nitroglycerin administration

» Figure 2.7d2 and e2 depict intra-LV blood-flow pressure dis-
tribution during diastole and systole, after nitroglycerin
administration
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From a computational viewpoint, the intra-LV flow is determined from
the LV wall-motion boundary condition to the potential-flow equation
(Equation 2.30), and the intra-LV pressure-gradient can in turn be computed
from the flow by employing Equation 2.33. However, we could interpret the
phenomenon as if the LV wall stiffness were providing the resistance to wall
motion for filling during diastole, and the contracting LV were facilitating
emptying of the LV during systole, thereby setting up the requisite intra-LV
pressure-gradients and velocity distributions.

For this patient, Figure 2.7d1 and el demonstrate poor LV RTF and LV
CONT in terms of adverse intra-LV blood pressure-gradients during
filling and ejection phases, respectively. However, following administra-
tion of nitroglycerin, these filling and ejection phases’ pressure-gradients
(and hence LV RTF and LV CONT) are improved (Figure 2.7d2 and e2),

Diastole Systole

Frame 1 Frame 2 Frame 3 Frame 1 Frame 2 Frame 3

Diastole s Diastole ~——
b1 [ 50.00 cm/s b2 [ 50.00 cm/s

Frame 1 Frame 2 Frame 3 Frame 1 Frame 2 Frame 3
Systole ~ — 50.00 cm/s Systole —— 50.00 cm/s
cl c2
FIGURE 2.7

Results for a typical patient with a myocardial infarct: (a) Superimposed sequential diastolic
and systolic endocardial frames (whose aortic valve centers and the long axis are matched) (1)
before and (2) after administration of nitroglycerin. (b) Instantaneous intra-LV distributions of
velocity during diastole (1) before and (2) after administration of nitroglycerin. (c) Instantan-
eous intra-LV distributions of velocity during ejection phase (1) before and (2) after adminis-
tration of nitroglycerin.



Left Ventricular Mechanics 49

Case TDGRDP 2-3
Case TDNGRDP 2-3
el Diastole e2 Diastole

FIGURE 2.7 (continued)

(d) Instantaneous intra-LV distributions of pressure differential during diastole (1) before
and (2) after administration of nitroglycerin. (e) Instantaneous intra-LV distributions of pres-
sure differential during ejection phase (1) before and (2) after administration of nitroglycerin.
(Adopted from Figure 5 of Subbaraj, K., Ghista, D.N., and Fallen, E.L., ]. Biomed. Eng., 9, 206,
1987.)

thereby providing the basis for advocating coronary bypass surgery for
this patient.

2.8 Explaining Left-Ventricular Pressure Dynamics in Terms
of LV Passive and Active Elastances (as Measures of LV
Pressure Dynamics Response to LV Volume Change
and LV Contractility)

2.8.1 Scope

There has been a lot of characterization of the heart as a pump by means
of models based on elastance and compliance. In this section, we are
presenting a somewhat new concept of time-varying passive and active
elastances. The biomechanical basis of LV cyclical elastances is presented.
We have defined elastance in terms of the relationship between ventricular
pressure and volume, as dP=EdV + VdE, where E includes passive (Ep)
and active (E,) elastance. By incorporating this concept in LV models to
simulate diastolic (filling) and systolic phases, we have obtained the time-
varying expression for E, and the LV-volume-dependent expression for Ep.
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These two elastances of E, and E, can be deemed to represent intrinsic LV
properties. The active elastance (E,) can be used to characterize the LV
contractile state, while passive elastance (E;) can represent a measure of
LV pressure response to LV filling and emptying. Further, we have dem-
onstrated how the LV pressure dynamics (and LV pressure response to LV
volume) can be explained in terms of E, and E, [12,13].

2.8.2 Concepts of Passive and Active Elastances

At the start of the diastolic filling phase, the LV incremental pressure dPpy is
the response (1) to LV E, continuing to decrease due to the sarcomere
continuing to relax well into the filling phase and (2) to the rapid inflow
of blood and the corresponding increase in LV volume, along with increase
in LV E,. The corresponding governing differential equation, relating LV
pressure and volume, can be put down as [12]

M(AV) + d(EV) = M(dV) + VAE + EAV = dPry (2.46)

where

1%4 represents the time derivative of V (dV/dt, in which t is measured
from the start of filling phase)

V represents the volume of the LV (mL) during the filling phase

PLy represents the pressure of the LV in mmHg (hereafter symbolized
by P)

M represents the inertia term = [LV wall density (p)/(LV surface area/
wall thickness)] = ph/ 47R*fora spherical LV model (in mmHg/(mL/ %))

E represents LV elastance (mmHg/mL)

Likewise during ejection, the LV pressure variation (dPry) is caused by both
E, variation as well as E, decrease (due to LV volume decrease). The
instantaneous time-varying ventricular elastance (E) is the sum of (1) the
volume-dependent passive elastance (E,) and (2) the active elastance (E,)
due to the activation of the LV sarcomere. Hence,

E=E,+E (2.47)

We will now provide the expressions for E, and E,, and then their formu-
lations.

2.8.2.1 Expression for Passive Elastance (E,) of the LV

The passive (inactivated) myocardium exhibits properties of an elastic
material, developing an increasing stress as strain increases, as occurs
during ventricular filling. The passive stress—strain relation of a myocardial
muscle strip is nonlinear and follows an exponential relationship [14-16].
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Likewise, the relation between LV passive pressure and volume is adopted
to be exponential, as

P = Pye*” (2.48)
so that, E, = (dP/dV) = Epe” (2.49)

where E, is the passive elastance coefficient (=Pyz,), z, is the passive
elastance exponent parameter, and V is the LV volume; its evaluation for a
clinical case is provided in a subsequent section. During the latter part of the
diastolic phase, we use Equation 2.49 to fit the LV pressure-volume relation
to determine the corresponding parameters, Py and z, (or Ep and z,), and
hence obtain the passive elastance E.

2.8.2.2 Expression for Active Elastance (E,) of the LV

During isovolumic contraction, dV=0. Hence dV =0, and E, is constant
and equal to Epeq (the value of E, at end-diastole). As a result, the governing
Equation 2.46 becomes VAE =dPyy, which can be discretized as

Vi(Ei — Ei-1) = Vil(Eai + Ep,i)) — (Eaic1 + Epic1)]
= Vi(Eai + Eped — Eaji-1 — Eped) = dPrLy,; = P; — Pi 4

(P;i — Pi_q)

Hence, E,; = 7

+ Eai1 (2.50)

where i is a time instant during the isovolumic contraction and relaxation, V;
and Pry ; are the monitored LV volume and pressure at this instant, and Eeq
is the passive elastance at the end-diastolic phase.

During the ejection phase, the governing equation (Equation 2.46) can be
discretized, in a similar way, as

o (P,' — Pi—l) — MdVi — V,'(Ep,,' — Ep,i_l) - Ep,i(Vi - Vi—l) + ViEa,i—l
a1l —
’ 2V = Vi,

(2.51)

Also, during isovolumic relaxation, because dV =0, dv= 0, and E, is con-
stant and equal to its end-systolic value of E,., the governing Equation 2.46
again becomes VdE =dPLy, which can be represented as

Vi[(Ea,i + Ep,i) - (Ea,ifl + Ep,ifl)] = Vi(Ea,i + Epes - Ea,ifl - Epes) = cIPLV,i
=P —Pi,

P; —P;4

Therefore, E,;= + Eaic1 (2.52)

where E is the passive elastance at the end of systole.
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During the diastolic phase, the formula for computing active elastance is
the same as Equation 2.51. Hence, from Equations 2.50 through 2.52, we can
calculate the values of active elastance from LV pressure-volume data
during the cardiac cycle. After calculating the values of active elastance
(Ea), we adopt the following expression for E, [12]:

E,=Ego|l—c (’c) Z( e (W) (2.53)

where (1) t is measured from the start of isovolumic contraction, (2) the
parameter E,, is the active elastance coefficient, (3) the time coefficient
(rc) describes the rate of elastance rise during the contraction phase,
while (7g) describes the rate of elastance fall during the relaxation phase, (4)
the exponents “Z.” and “Zg” are introduced to smoothen the curvatures of
the E, curve during isovolumic contraction and relaxation phases, (5) the
parameter d is a time constant whose (to be determined) value is during
the ejection phase, and (6) u(t — d) is the unit step function, so that u(t —d) =0
fort <d.

The rationale for the formulation of Equation 2.53 is based on E, incorp-
orating (1) parameters (Z. and 7¢) reflecting the generation of LV pressure
during isovolumic contraction, (2) parameters (Zr and 7g) reflecting the
decrease of LV pressure during isovolumic relaxation and early filling,
and (3) all of these parameters (Z, 7c, Zgr, and 7g) representing the LV
pressure—-volume relationship during filling and ejection phases. We can
determine the values of these parameters by fitting Equation 2.53 to the
computed values of E, (from Equations 2.50 through 2.52), and employing
the parameter-identification procedure to evaluate these above-mentioned
parameters.

2.8.3 Clinical Application

Data Measurements. The subjects in this study (satisfying appropriate
ethics procedures) were studied in a resting recumbent state, after preme-
dication with 100-500 mg of sodium pentobarbital by retrograde aortic
catheterization. LV chamber pressure was measured by a pigtail catheter
and Statham P23Eb pressure transducer; the pressure was recorded during
ventriculography. Angiography was performed by injecting 30-36 mL of
75% sodium diatrizoate into the LV at 10 to 12 mL/s. It has been found, by
using biplane angiocardiograms, that orthogonal chamber diameters are
nearly identical [17]. These findings are used to justify the use of single-
plane cine techniques, which allow for beat-to-beat analysis of the chamber
dimensions.

For our study, monoplane cineangiocardiograms were recorded in an
RAO 30° projection from a 9 in. image intensifier using 35 mm film at



Left Ventricular Mechanics 53

150
100

P (mmHg)

V(mL)

h (cm)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

FIGURE 2.8

An example of a patient (HEL) measured LV pressure, volume, and wall thickness during a
cardiac cycle; t = 0-0.08 s is the isovolumic contraction phase, t = 0.08-0.32 s is the ejection
phase, t = 0.32-0.40 s is the isovolumic relaxation phase, and t = 0.40-0.72 s is the filling phase.
Note that even after 0.4 s, the LV pressure still continues to decrease from 17 (at 0.4 s, at start of
filling) to 8 mmHg at 0.44 s. (Adopted from Figure 2 of Zhong, L., Ghista, D.N., Ng, E.Y.K., and
Lim, S.T., Biomed. Eng. Online, 4, 10, 2005.)

50 frames/s, using INTEGRIS Allura 9 system at the National Heart Centre
(NHC), Singapore. Therefrom, automated analysis was carried out to calcu-
late LV volume and myocardial wall thickness. The LV data of a typical
patient, employed for this analysis, consist of measured volume and myo-
cardial thickness of the chamber as well as the corresponding pressure
(Figure 2.8). All measurements are corrected for geometric distortion due
to the respective recording systems. Figure 2.9 displays pressure versus
volume for this patient.

This figure shows that although LV volume must remain constant during
the isovolumic phases, it does not actually do so. The changes in volume
cause changes in pressure due to bulk-modulus effect. It is noted that the LV
volume increases slightly during isovolumic relaxation, instead of being
constant. Similarly, LV volume increases slightly during isovolumic con-
traction. This slight increase in LV volume during isovolumic contraction is
what causes LV pressure to increase.

Case Study. Here, we show one case study. The LV cineangiographic data
(depicted in Figure 2.8), consists of measured LV volume and correspond-
ing pressure. When LV pressure and volume are plotted in Figure 2.9, it is
noted that during the early filling phase, LV pressure decreases even though
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FIGURE 2.9

Relationship between LV volume and pressure for one sample data. Points (21-36) constitute
the filling phase, (1-5) constitute the isovolumic contraction phase, (5-17) constitute the ejection
phase, and (17-21) constitute the isovolumic relaxation phase. Note that after point 21 (the start
of LV filling), the LV pressure decreases; this characterizes LV suction effect. (Adopted from
Figure 3 of Zhong, L., Ghista, D.N., Ng, E.Y.K,, and Lim, S.T., Biomed. Eng. Online, 4, 10, 2005.)

LV volume increases. This phenomenon is defined as the “LV suction
effect,” which can be explained by using our concepts of active and passive
elastances.

From the data in Figure 2.9, we will now compute E, and E,, by employ-
ing the analysis in Section 2.8.2.

Evaluation of E,. By fitting Equation 2.48 to the pressure and volume data,
as shown in Figure 2.10, we obtain the values of the parameters Py and z, as

zp =0.040 mL™", Py =0.080 mmHg (2.54)

and the E,, function (corresponding to its expression given by Equation 2.49)
as follows:

E, = 3.20 x 1073204V (2.55)
We now propose to adopt E,, as a measure of LV RTF. During ejection and

filling phases, E, can be calculated at any time using Equation 2.55.

Evaluation of E,. Using Equations 2.50 through 2.52, we can calculate the
active elastance E, during isovolumic contraction, ejection, isovolumic
relaxation, and diastolic filling phases, respectively. The values of E, during
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FIGURE 2.10

Here we have used Equation 2.48 to fit the pressure-volume data during filling phase. The
volume 100 mL corresponds to the start of the filling phase, and the volume 150 mL corresponds
to the end of the filling phase. (Adopted from Figure 4 of Zhong, L., Ghista, D.N., Ng, E.Y.K,,
Lim, S.T., Tan, RS, and Chua, L.P., Proc. Inst. Mech. Eng. Part H, . Eng. Med., 220, 647, 2006.)

a cardiac cycle are shown in Figure 2.11. Then the parameters in Equation
2.53 can be determined by fitting the computed values of E,, which are listed
in Figure 2.11 caption as well as in Table 2.3.

Upon substituting these computed values of the parameters (E,o, 7, Z.,
Tr, Zr) into Equation 2.53, we obtain the E,(t) function as follows:

M)O'%} (2.56)

E, =220 [1 . e—(ﬁ)l%} {e—( e

2.8.4 Results of Case Studies

Depicting the Computed Values of E, and E, (in Figure 2.12). The variations
of model-derived nonlinear passive and active elastances for the subject
HEL are shown in Figure 2.12. For this particular subject (HEL), the max-
imum active elastance is 2.10 mmHg/mL. Herein, it is noted that the LV
pressure decreases immediately after opening of the MV at frame 21 and
then starts increasing. This is because of the effect of E,.

The period of LV pressure depression from frames 21 to 23 during early
filling enables passive filling of the LV by suction. This suction period of
0.04 s (=12.5% filling period) from time frames 21 to 23 also corresponds to
the period during which active elastance persists (due to the continued
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FIGURE 2.11

Calculated values of active elastance E, during cardiac cycle. Using Equation 2.53 to fit the
calculated values, we have: E,o = 2.20 mmHg/mL, 7c = 0.17s,Z.= 1.96,d = 0.3s, 7 = 0.12s,
and Zz = 0.96. Note that E, reaches its maximum value at frame. Also note the drastic decrease in
E, after frame 21, which contributes to LV suction effect. (Adopted from Figure 5 of Zhong, L.,
Ghista, D.N., Ng, E.Y.K,, Lim, S.T,, Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, |. Eng.
Med., 220, 647, 2006.)

activation of the contractile element of the myocardial sarcomere into the
filling phase) but keeps decreasing.

2.8.4.1 Pressure Dynamics during Filling Phase

The pressure variation during filling is a combination of pressure changes
due to the action of both active elastance (E,) and passive elastance (E,)

TABLE 2.3

Computed Values of Parameters in E, Expression
(Equation 2.53), for the Subject Whose LV Data
Are Given in Figure 2.9

Parameters Values Unit

E.o 2.20 mmHg/mL

TC 0.17 S

Z: 1.96 Nondimensional
d 0.3 S

TR 0.12 S

Zr 0.96 Nondimensional
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FIGURE 2.12

Pressure, active elastance E,, passive elastance E,, and total E = (E, + E;) for the sample
subject data shown in Figure 2.2. In this figure, frames 1-5 represent the isovolumic contraction
phase, frames 5-17 represent the ejection phase, frames 17-21 represent the isovolumic relax-
ation phase, and frames 21-37 represent the diastolic filling phase. Note the drastic decrease in
E, after frame 21, which offsets the increase in E, (due to LV volume increase) and contributes
to the LV suction effect. (Adopted from Figure 6 of Zhong, L., Ghista, D.N., Ng, E.Y.K,, Lim,
S.T., Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, ]. Eng. Med., 220, 647, 2006.)
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response to blood filling caused by LA contraction. In Equation 2.46, if we
neglect the term MdV (as being small compared to the other terms in
Equation 2.51), the pressure dynamics is expressed as

P;—Piy = (Ep;i +Ea)(Vi = Vii1) + Vi(Eai — Eajii1 + Epi — Epi1)  (2.57)

By employing the monitored LV volume values and the computed values of
E, and E,, we can compute the values of LV pressure. In other words, if we
obtain the LV volume values, and if somehow the E, and E, functions (as
given by Equations 2.55 and 2.56) were known as intrinsic properties of the
LV, then we could compute the LV pressure variation from Equation 2.57.
Let us take the computed values of E, and E,, and V; and V;_; during early
filling, and compute (P2, — P,1) as follows:

Py — Py = (Epa2 + Ea22)(Vaa — V1) + Vaa(Ea22 — Eap1 + Ep22 — Ep1)
= —6.7 mmHg (2.58)

We can see that (P, — P»1) is negative, thereby demonstrating the suction
effect. Now, we take the computed values of elastances and LV volumes
during late filling and compute (P34 — P33):

P3g — P33 = (Epjsa + Ea3a)(Vas — V33) + V3a(Ea3s — Eass + Epsa — Ep3)
=17 mmHg (2.59)

We note that (P34 — P33) is positive.

In Figure 2.13, these pressure differences are plotted from the beginning
of the isovolumic contraction phase. It can be seen that the computed
pressure difference closely approximates the monitored LV pressure dif-
ference.

2.8.4.2 Pressure Dynamics during Ejection Phase
We can likewise determine the pressure variation during ejection phase, as

Pi—Pi 1 = (Epi + Eai)(Vi = Vii1) + Vi(Eai — Eai1 + Epi — Epic1)  (2.60)

Let us take the computed values of (E;, and E,, V;and V;_;) during early and
late ejection, and compute (P; — Ps) and (P14 — P15), as follows:

P7 — Ps = (Ep7 + Ea7)(V7 — V) + V7(Ea7 — Eas + Ep7 — Epg) = 9 mmHg
2.61)

P16 — P15 = (Ep16 + Ea16)(Vie — V1s) + Vis(Ea16 — Eajs + Ep1s — Ep,15)
= —4 mmHg (2.62)
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Pressure dynamics during ejection and filling phases. Note the pressure decrease (i.e., negative
AP;) during early filling (from frames 21 to 23), representing LV suction phenomenon even
though the LV volume is increasing from frames 21 to 23 (in Figure 2.9). Also, LV pressure
increase keeps decreasing during the first third of ejection phase, remains constant in the
middle third phase of ejection, and becomes negative in late ejection phase. (Adopted from
Figure 7 of Zhong, L., Ghista, D.N., Ng, E.Y.K,, Lim, S.T., Tan, R.S., and Chua, L.P., Proc. Inst.
Mech. Eng. Part H, ]. Eng. Med., 220, 647, 2006.)

We note that (P; — P¢) is positive, while (P14 — Py5) is negative, indicating
that the LV pressure has already started decreasing because of the E,, effect.

In Figure 2.13, these computed pressure differences (P; — P;_,) are plotted.
This graph illustrates how (1) E, increase (due to force development in the
myocardial sarcomere) and constant E;, during isovolumic contraction con-
tribute to LV pressure increase, (2) E, increase during ejection (due to
increase in sarcomeric force development) and E, decrease (due to blood
volume decrease) contribute to LV pressure dynamics during the ejection
phase, and (3) E, decrease and E,, increase (due to blood volume increase)
contribute to the pressure dynamics during the filling phase.

2.8.5 Active Elastance as a New Contractility Index

The basis of E, is that the LV chamber wall is comprised of helically wound
myocardial fibers. When these fibers contract at the start of isovolumic
contraction, the LV chamber is deformed and the LV pressure increases.
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FIGURE 2.14

Relating our contractility index E,max to the traditional contractility index dP/dfmax, with r
being the correlation coefficient. (Adopted from Figure 8 of Zhong, L., Ghista, D.N., Ng, E.Y.K,,
Lim, S.T., Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, ]. Eng. Med., 220, 647, 2006.)

A myocardial fiber comprises of the sarcomere, containing actin and myosin
filaments. It is the development of interfilament bonds that causes (1) the
development of contractile force and fiber shortening and (2) LV pressure
generation, as depicted by Figure 2.8.

Thus, the operation of this myocardial fiber sarcomeres, in conjunction
with the helical orientation of the myocardial fibers, gives rise to the concept
of LV active elastance (E,). This is why E, is deemed to be an intrinsic
property of the LV; this is also why we now propose E, to represent a
contractility index. However, because E,(t) is a cyclic time-varying function,
we have decided to adopt the maximum value of E, (E, max) during cardiac
cycle to represent a new contractility index. In Figure 2.14, we have depicted
the computed traditional contractility index (dP/d#)max as well as E, max for
a number of subjects studied by us. The good correlation between E, ax and
(dP/df)max agrees well for the employment of E, ..« as a contractility index.

2.8.6 Discussion

LV Suction Phenomena. Diastolic suction is defined as that property of the
left ventricle that tends to cause it to refill itself during early diastole
independent of any contractile effort from the left atrium (LA). Physiologists
have been intrigued by the observation that the relaxing ventricle seems
somehow to suck blood into its chamber. With pioneering physical
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intuition, Katz [18] proposed that the early rapid filling of the heart is due
to mechanical suction of blood by the ventricle. The concept of the heart as a
suction pump has over the years been suggested by many researchers [18-
23], and is no longer questioned; however, the underlying mechanisms have
not been clarified.

Many researchers have believed that LV suction was caused by elastic
recoil during relaxation, or by a sudden stretching resulting from the filling
of the coronary arteries, or by a marked asynchronous cessation of contrac-
tion [19]. Earlier in 1981, Sabbah and Stein [24] had indicated that early
rapid filling of the LV is due to forces within the ventricular wall that act to
restore the ventricle to its diastolic dimensions. This means that the suction
phenomenon is resulting from the contributions of elastic recoil and restor-
ing loads due to the compression of sarcomeres.

Later in 1986, Robinson and colleagues [25] proposed that the connective
tissue matrix of the heart as a whole (including its connection to the vessel)
stores contractile strain during systole. This strain is recovered as elastic
recoil in diastole, and performs external work on the left-atrial (LA) blood,
by sucking it into the LV. This physiological phenomenon of the heart muscle
shortening, storing elastic strain in its structures, and then relengthening to
cause suction has also been expressed by Prewitt et al. [26] and Kovacs [27].

However, these explanations are quite ambiguous. It is in fact the rapid
decrease in LV wall E, that causes a decrease in LV pressure below the value
of LA pressure, as shown by our Equation 2.58 to thereby create a suction
effect on the LA blood. In other words, the LV pressure continues to
decrease during early filling, because of continuing sarcomere relaxation
(and decrease in LV elastance) and rapid filling of blood, resulting in
volume acceleration. The rapid decrease in elastance during isovolumic
relaxation extends into the filling phase, and can explain the decrease in
LV pressure (in Figure 2.13) even after LV filling has commenced. In
Equation 2.47, it is seen that P; can be less than P;_; (or that P; — P;_; <0) only
if (Ea; — Eai—1) is negative, i.e., active elastance is decreasing. The pressure
dynamics during filling (calculated using Equation 2.57), as depicted in
Figure 2.13, confirms the decrease of pressure during early filling.

Hence, it is our novel concept of “’decreasing E, during the early phase of
filling” that enables us to explain the phenomenon of decreasing LV pres-
sure during the early stage of filling. In other words, it is suggested that the
sarcomere actin-myosin activity continues into the filling phase. The
decreasing E, during the filling phase reflects decreasing sarcomeric activity
during filling. Likewise, the increase in E, during isovolumic contraction is
responsible for increase in LV pressure at constant volume, as demonstrated
by means of Equation 2.50. This concept is in fact indirectly supported
by several works [21,22,28-39] relating diastolic suction to negative LV
pressure.

E, max as a Contractility Index. Earlier, we have seen how Figure 2.14 shows
the correlation between E, ,.x and the invasive measures of LV contractility.
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It is noted that E, ,ax has a high degree of correlation with (dP/df)max- It is
interesting to compare our correlation-coefficient value (0.9307) with the
value of 0.89 obtained by Mehmel et al. [38] by their computing elastance
as an extrinsic property =[P/(V — Vg4)les. The difference between the two
indices is that dP/dtn.x is an extrinsic index based on the LV pressure
response, while our E, . is an intrinsic index which in fact governs the
LV pressure response.

Pressure Variation Phenomena. Both the active and passive elastances
(given by Equations 2.61 and 2.62 and depicted in Figures 2.10 and 2.11)
can explain LV pressure variation during ejection, as indicated by Equations
2.51 and 2.52. In other words, the increase of E, during ejection (due to
increase in sarcomeric contractile force) and decrease of E, during ejection
(due to LV volume decrease) together causes the pressure variation during
ejection, as shown in Figure 2.8. Likewise, the combined action of E, and E,
contributes to the change of LV pressure during LV filling phase, as
demonstrated by Equations 2.58 and 2.59. What is implied here is that the
intrinsic property of LV (represented by E, and E,) contributes to the
manner in which the pressure varies during ejection and filling and in fact
during the cardiac cycle.

2.9 Conclusion

Let us recapitulate the organization and contents of this chapter. We started
with pointing out how a stenotic AV could augment LV wall stress and
cause an oxygen supply-demand mismatch. We then developed the basis
of how echocardiography and phonocardiography can be combined to
determine the stiffness properties of MV and AV as well as the passive
stiffness property of the LV. Then, we showed how echotexture determin-
ation can help to detect ischemic and infarcted segments, and how pharma-
cological treatment could help us to noninvasively determine the restoration
of myocardial ischemic segments to normality.

Perhaps the best way to illustrate the effect of LV myocardial infarct is to
determine the intra-LV flow velocity and pressure distributions from LV
wall-motion data obtained echocardiographically. We have demonstrated
this for a typical patient, and shown how the adverse blood pressure-
gradient from the apex to the base of the LV can be improved by adminis-
tration of nitroglycerin (a vasodilator), so as to justify the candidacy of that
potential’s impaired LV to be improved by coronary bypass surgery.

Finally, we have formulated a new concept of dual passive and active
elastances operating throughout the cardiac cycle. These passive and
active elastances values are evaluated separately and individually. Our
definitions of E, and E, enable us to explain the phenomena of (1) LV
suction during early filling, (2) LV pressure rise during isovolumic con-
traction, (3) LV pressure variation during the ejection phase, and (4) LV
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pressure-drop during the relaxation phase. From the viewpoint of intrinsic
indices of LV assessment, E,, can represent LV myocardial stiffness property
and resistance to LV filling. On the other hand, E, has been shown to
correspond to LV contractility, as depicted by Figure 2.14. Herein, we
have shown a high degree of correlation between E, jnax and (dP/d#)max-
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3.1 Scope

Contractility is the key mechanism of left ventricular pumping role. Hence,
indices of contractility are important for differentiating poorly contracting
left ventricles (LVs) from normally contracting LVs. In this chapter, we
provide the theory and application of contractility indices based on (1) the
left ventricular shape factor, in terms of the LV wall stress normalized with
respect to the LV internal pressure, and (2) the spirally wound myocardial
fiber’s sarcomere characteristics of contractile element force versus shorten-
ing velocity. These contractility indices values are compared to the values of
the traditional contractility index of (dP/df)max, and good correlations are
observed between our new indices and the traditional index of (dP/d#)max-

3.2 Left Ventricular Shape Factor Based Contractility Index

Over the past decades, while several indices for estimating the left ven-
tricular contractile state have been proposed, very few studies have been
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dedicated to the influence of the LV shape factor on its contractility. It has
been observed that the shape of the LV is of clinical relevance for prognosis
of heart patients [1-5]. In this regard, some investigators have associated a
more spherically shaped and less-ellipsoidal shaped LV with the failing
heart [6]. Invasive animal experiments have indicated that the shape of the
LV is somewhat like a prolate ellipsoid [7]. From cineventriculography, we
can obtain the two-dimensional shape of the LV, and therefrom the ellips-
oidal shape of LV. This information has been applied, herein, to develop a
left-ventricular ellipsoidal geometry model and its wall stress. We can then
define an LV shape-based index to represent the capacity of the LV to
generate necessary and sufficient intramyocardial stress (o) to provide
necessary and sufficient pressure and kinetic energy to the ejected blood.
Further, we can normalize this wall stress with respect to the LV pressure
(0*=0/P), and gauge LV contractile capability in terms of the maximum
value of generated normalized intramyocardial stress, or (do*/df)max. Thus
it can help provide more insight into the LV shape-based contractile stress
for its ejection function [8].

Our concept of an LV shape-based contractility index is that it is a
measure of the capacity of the LV myocardial sarcomere to contract and
generate the wall stress that will adequately raise intra-LV pressure to eject
the blood. Now since the LV wall stress depends on its shape, the LV
contractile capacity also depends on the LV shape. This is the rationale
behind the LV shape-based index. On the basis of clinical observations, a
healthy LV shape factor is more akin to the optimal-ellipsoidal shape factor,
but transforms into a more spherical shape in a poorly contracting LV as
well as in LV failure. Hence, our LV shape-based index, expressed as
(do*/dt)max, is meant to quantitatively express this clinical observation.

3.2.1 LV Model Geometry Development

Herein, the LV is treated as a prolate spheroid, truncated 50% of the
distance from equator to base, as suggested by Streeter and Hanna [9]
(Figure 3.1). The LV shape can be defined by the major and minor radii of
its two surfaces: the endocardium of the LV and the septum, and a surface
defined by the epicardium of the free wall. The overall longitudinal distance
from the base to apex (=3LA/2) is thus 1.5 times the major radius of
the ellipse. Left ventricular cavity and wall volumes are calculated from
the epicardial anterior—posterior (AP) and base-apex lengths according to
equations:

 9m[(LA + h)(SA + h)> — LA x SA?]
- 8

~ 9m(SA)’LA
==

VM

(3.1)

1% (3.2)



70 Applied Biomedical Engineering Mechanics

(—=

LA/2

LA

FIGURE 3.1

Left ventricle (LV) model geometry, showing the

major and minor radii of the inner surface of the LV

(LA & SA) and the wall-thickness (h). T

wherein
Vis LV volume
Vum is myocardial volume
h is wall-thickness
LA and SA are endocardial major and minor radii

Simplifying Equation 3.1 by neglecting the 9m(LA x h? + 2SA x h* + h%)/8
term, we obtain

97 (2LA x SAZ + SA%)h

\%Yi 3

(3.3)

Now, LV volume (V), wall-thickness (), and myocardial volume (V) are
measured by cineventriculography. Hence, by using Equations 3.2 and 3.3,
we can calculate the major and minor radii LA and SA. Firstly, from
Equation 3.2, we have

8V

A= (9mSAZ) G4

Then, by substituting Equation 3.4 into Equation 3.3, we get

9w [ 16V )
Vv =g (%SA +54 )”
16V 8V,
2, PV O9YM
SA +9’TI'SA 91h

which gives us an equation in SA to obtain the value of SA.

3.2.2 Determination of LV Model Wall Stress

The generated wall stress (GWS) in the LV is a measure of the effectiveness
of the sarcomere contractile machinery of the LV myocardium. The GWS is
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adjusted to be necessary and sufficient for carrying out its ejection function.
Hence, we deem that the normalized wall stress /P (=0*) developed for
blood ejection can provide a more intrinsic measure of its contractile cap-
acity than, for instance, (dP/df)max, because the developed LV pressure is in
fact a consequence of the generated LV wall stress.

For an ellipsoidal shell, the circumferential wall stress o (referred to as o)
at the waist of the LV ellipsoidal model is given by Mirsky [10] as

_ SA|. SASA/LAY| SA | (SA/h)(SA/LA)
=P [1 esa+n | T YT 2cAm 1 (35
From Equations 3.2 and 3.3, we have by putting S=SA/LA
SA V SA v 2+S
T ia) mwer =T 0

where
S =SA/LA constitutes the LV shape factor
V*=Vm/V represents the volume ratio

Combining Equations 3.5 and 3.6, we can express the normalized stress o™ as

, O 248 S*2+9)
of=—= 1

_ =f(V*S 3.7
p v 22 +8S)+V* fV5) (37)
Equation 3.7 is a function of S for a given V*. We can now compute the time-
variation of o* during ejection, in terms of V* and S. Figure 3.2 indicates the
cyclic variations of 1, S (=SA/LA), and o* versus time during the ejection
phase, for three of our patients.

3.2.3 Normalized Wall Stress based Shape Factor Index

A well-known definition of contractility is (dP/df)max. However, we can
more intrinsically characterize contractility in terms of the max rate of
generation of the LV normalized stress ¢* (=o/P) using Equation 3.7, as

do*

FI1 =
S dt

max
SV[16+8V* + (24 + 8V*)S 4 (12 +2V*)S2 + 28]
[V(2+95)/V] +S +5[3248V* 4+ (56 + 12V*)S + (32 +4V*)S? 4 653]

v* V*(4+25+V*)?

=F(S,5,V,V, V¥ (3.8)
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FIGURE 3.2

Variation of 1, S, and o* versus time during the ejection phase for subject HEL with myocardial
infarct (MI) and double vessel disease (DVD), subject DDM with DVD and hypertension (HTN),
and subject SKS with triple vessel disease (TVD), during the ejection phase. Herein, t=0
represents the start-of-ejection. Subject SKS has the minimum generated ¢*, while subject
DDM has the maximum ¢* during the ejection phase. (Adopted from Zhong, L., Ghista, D.N.,
Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)
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FIGURE 3.2 (continued)

Equation 3.8 indicates that corresponding to a patient’s V() and V(t) vari-
ations, the shape factor index SFI1 value for that patient is a function of the
shape factor (S) of an LV. Now cardiologists have been observing that an
infarcted LV becomes less ellipsoidal as compared to a normally contracting
LV shape [6]. This resultant distorted shape of an impaired LV does not
allow it to contract and deform in an optimal twisting mode [11], so as to
perform its pumping function and deliver the requisite cardiac output
efficiently. In accordance with this clinical observation, our shape factor
index SFI1 (Equation 3.8) incorporates the LV shape factor (S=SA/LA),
and the influence of the distorted shape of an infarcted LV to its impaired
pumping function.

3.2.4 Optimal Left Ventricle Shape Factor and Corresponding
Shape Factor Index 2

Let us designate the optimal shape factor S (=SA/LA) to be that value
for which the generated myocardial wall stress o* for a given LV volume
(at the start-of-ejection V =V, = V,q) is maximum for a specific value of V*.
The concept of optimizing the shape factor is based on the rationale that
LV pressure P=o0/c*. During systole, the interaction of the actin-myosin
filaments causes contraction of the myocardial fibers and generation of
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myocardial wall stress (0). The resultant LV pressure generation is given by
o/o*, where o* is purely dependent on LV geometry and is a function of the
shape factor (S) and volume ratio (V*). For a particular V*, as S increases
(i.e., as the LV becomes more spherical and less ellipsoidal), o* decreases,
hence the LV pressure increases, as seen in Figure 3.3. For an adequate

25F 1

G*

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5 L L
0.5 1 15 2

FIGURE 3.3

Variation of o* with (a) S for different values of V*(=Vy/V) and (b) V* for different values of S.
(Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N.,
J. Biomech., 39, 2397, 2006.)
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amount of LV wall stress (o) generated, we want the LV pressure to be
maintained low, so that its oxygen demand is minimal. Hence, we want that
(for a specific V*) o be as high as possible and correspondingly S be as low
as possible, i.e., the LV must be more ellipsoidal in shape.

From Equation 3.7, we can maximize o* with respect to S, as

do* 1 1 [(8S+125*+4S%)(V* +4+25) — (85*+85° +25%)] 0 (39)
s v* v* (V*44+28) '

Simplifying Equation 3.9, we have
65* + (4V* +32)S° + (12V* +52)S? + 4(V* +4)S — (V* +4)> =0  (3.10)

from which we obtain the optimal shape factor S as a function of V*, as
shown in Figure 3.4. It appears that S is linearly proportional to the V¥,
as given by

S°P = 0.053V* 4 0.39 (3.11)

This line can be called the optimal-S line.

0.51 T T

0.5 S°%=0.053V*+0.39 b
0.49 b
0.48 E

0.47 E

sop

0.46 E

0.45 i

0.44 | 1

0.43 i

0.42 . L
0.5 1 15 2

Vv

FIGURE 3.4

Optimal shape factor S versus V* at the start-of-ejection, represented by: S =0.053V* - 0.39.
(Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N,,
J. Biomech., 39, 2397, 2006.)
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If we substitute Equation 3.11 into d®¢*/dS?, we get d’¢*/ds® to be
negative. In other words, this optimal S function (of V*) maximizes o, in
accordance with our rationale. The significance of Equation 3.11 is that one
can adjudge the cardiac health state of a patient merely in terms of how
close the shape factor S (=SA/LA) corresponding to a patient’s V* value (at
the start-of-ejection) is to the optimal value obtained from Figure 3.4. We do
not even need to compute o* or do*/dt in order to evaluate how efficiently a
particular LV is pumping.

Hence, another way to define LV contractility would be in a nondimen-
sional form at the start-of-ejection (se), as follows:

(Sse - Sgg

SFI2 =
Sse

(3.12)

where
See is the measured shape factor value

Set is the corresponding optimal value at the start-of-ejection

So, as SFI2 value increases, the LV contractility becomes poorer. Then, from
Equation 3.12, the SFI2 value for the patient’s data shown in Figure 3.2 is
obtained to be 0.21 for subject HEL, 0.057 for subject DDM, and 0.11 for
subject SKS, as shown in Table 3.1. Note that for both our new indices of
the 3 subjects, the patient DDM has the higher EF; correspondingly SFI1 is
maximum for DDM, and SFI2 is minimum for DDM.

Below the optimal line (Figure 3.4), the shape of the LV becomes physio-
logically unnatural (i.e., too narrow), in order to support a reasonable
value of V., the volume at the start-of-ejection. We can postulate that if
the shape factor S is located in the A zone of Figure 3.5, it can be a tolerable
shape to provide a reasonable LV contractility; then, the B zone of Figure 3.5
can represent a poorly contracting LV, while the C zone can represent a
failing heart. The three cases are depicted on the (5-V*) plane, in Figure 3.5.
This is further validated by the good correlation of SFI1 and SFI2 with
the traditional contractility indices of EF and (dP/df)m.x, as discussed in
the next section.

TABLE 3.1

Clinical History, Calculated S, SFI1, and SFI2
from Subjects (HEL, DDM, and SKS)

Subject Disease See SFI1 SFI2 EF
HEL MI, DVD 0.56 3.84 0.21 0.36
DDM DVD, HTN 0.48 6.90 0.057 0.66

SKS TVD 0.55 1.72 0.11 0.24
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We can postulate LVs to be normal contracting, poorly contracting, and failing heart, as
illustrated in the above figure. Subject DDM, shown on the S-V* plane, can hence be depicted
to have normally contracting heart. On the other hand, subjects HEL and SKS have poorly
contracting hearts. The corresponding SFI2 values of these 3 subjects are shown in Table 3.1,
based on the location of the calculated (S, V*) plots on this plot. (Adopted from Zhong, L.,
Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)

3.2.5 Optimally Shaped LV(s) Compared to Abnormally Shaped LV(s)
for Different Age Groups

Now let us see how an optimally shaped LV looks like, for different values of
normal LV volume V. (volume of the start-of-ejection) variation with age. In
other words, for various age groups, we have taken normal V. values for
Asian and American populations, based on the data shown in Table 3.2. Figure
3.6illustrates the LV(s) for the same value of A in each age group, for 3 different
values of V, at the start-of-ejection. For each such V, value, we compute the
value of SA corresponding to S = S°P, determine S, and then plot the LV shape.

The anatomically abnormal LV(s) (to the left of the optimal LVs) have less
than normal end-diastolic volume (EDV) as well as less than optimal con-
tractility. Hence, they would not be able to meet the SV demand of the
circulatory and organ systems. The physiologically abnormal LV(s) (to the
right of the optimal LVs) have bigger “SA’ values and bigger “/S”” values,
for the same value of “LA’” as the optimal LVs. Hence, as shown in Equation
3.7, these enlarged LVs will have lower values of ¢* and hence higher LV
pressure for the same amount of myocardial-wall o generated. They will
hence be prone to becoming hypertensive.
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TABLE 3.2
Normal Values of Left Ventricle (LV) Volumes and Mass for Adults and Children

End-Diastolic End-Systolic Ejection

Volume Volume Volume Fraction Thickness Left Ventricle
(mL/m?) (mL/m?) (mL/m?) (SV/EDV) (mm) Mass (gm/m?)
Adults

70£20 45413 24 0.67£0.08 10.9+£2.0 92+11
Children and infants less than 2 years of age

42410 28.6 13.4 0.68 £0.05 96 +11
More than 2 years of age

73+£11 44+5 2747 0.63+0.05 86+11

Source: From Dodge, H.T. and Sandler, H., in Cardiac Mechanics, 1. Mirsky, D.N. Ghista, and
H. Sandler, New York, Wiley, 1973, 171-201.

3.2.6 Clinical Applications

3.2.6.1 Measurements

All subjects included in this study were in resting recumbent state, after
premedication. The LV chamber pressure was measured by a pigtail cath-
eter and Statham P23Eb pressure transducer; the pressure was recorded
immediately before or during the angiocardiography in all cases. Single
plane cineangiocardiograms were recorded in a posterior-anterior projec-
tion from an image intensifier at 50 frames /s using INTEGRIS Allura 9 with
Dynamic Flat Detector (Philips Inc.). For a sample subject (HEL), the LV
ellipsoidal model’s pressure, volume, wall thickness (as derived from the
cineventriculography films) are presented in Figure 3.7, along with the
calculated ellipsoid major and minor axis (LA and SA from Equations 3.1
and 3.3), and calculated absolute value of do*/dt (from Equation 3.8).

3.2.6.2 Subjects

Ten subjects with EF =0.63 + 0.05 and (dP/d#)max = 1406 + 51 mmHg/s were
selected to comprise group 1. They did not use nicotine, caffeine or alcohol.
The age profiles were similar and their anthropometric data, blood pressure,
heart rate, and ejection fraction (EF) were within the expected range.

Ten other patients (with coronary and/or valvular disease) with EF =
0.49 £0.13 and (dP/d)max = 1183 &+ 62 mmHg/s were classified into group
2, having mean-age of 57.4 years. Finally, we have group 3 of hospitalized
patients (of having EF=0.38+£0.12 and (dP/df)max= 948 78 mmHg/s)
with poor (clinically assessed) contractility. These subjects are listed in
Table 3.3.

3.2.6.3 Results

For each subject, the chamber pressure and dimensions are monitored at
20 ms intervals during the cardiac cycle. A typical set of pressure and
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FIGURE 3.6

Schematics of (1) anatomically abnormal, (2) optimal, and (3) physiological abnormal LV
shapes, for children less than 2 years of age, more than 2 years of age, and adults, based
on data in Table 3.2. (Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T.,
Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)

chamber variations for the subject HEL is shown in Figure 3.7. For this
subject, the time-derivative of normalized stress (¢*) and the shape factor (5)
are calculated for each 20 ms during the cardiac cycle (Figure 3.7e). Figure
3.7g also depicts the cyclic variation of absolute value of (do*/dt) during the
ejection phase. During ejection, the maximum value of SFI1 is found to
be 3.84s".
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Pressure (P), volume (V), and dimensions (A, B, h, and s) during a cardiac cycle (using
LV ellipsoidal model), along with the absolute value of (do*/df) calculated using Equation
3.8 during the ejection phase for subject HEL. (Adopted from Zhong, L., Ghista, D.N., Eddie,
Y.K.\Ng., Lim, S.T., Chua, T., and Lee, C.N., . Biomech., 39, 2397, 2006.)

Considering that S > S°P is associated with poor contractile heart, Table
3.3 summarizes the patients” history, which includes patient age, heart rate
(HR), EF, myocardial volume of LV (Vy), start-of-ejection volume V/(se), and
end-ejection volume V(ee).

TABLE 3.3

Clinically Monitored Data and Computed Parameters for Three
Groups: Group 1 (Normal Contractility), Group 2 (Inadequate
Contractility), and Group 3 (Poor Contractility)

Group 1 Group 2 Group 3

Age (years) 58.70 £6.65 57.40 £5.85 58.20+9.11
(dP/dt)max 1406.00 £ 51.00 1183.00 & 62.00% 948.00 = 78.00"
HR (beats/min) 72.69+9.20 67.70 £10.04 74.02 +10.09
Vm (ml) 146.00 4 43.00 189.00 4 78.00 216.00 £ 80.00"
V(se) (ml) 119.26 +£31.75 148.70 £ 68.32 177.414+90.00
V(ee) (ml) 43.64 +9.87 79.45+53.75% 116.73 +£54.01%
EF 0.63 +£0.05 0.49+0.13° 0.38+0.12°

? p<.05 compared with normal contractility group.
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Figure 3.8 depicts the mean and standard deviation of V), EF, and V(se),
and V(ee) for all the patients analyzed by us. There exists a substantial
difference (p <.05) between the average values of EF, V};, V(ee) in normal
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FIGURE 3.8

Comparison of the EF, MV (wall volume), and V(se), V(ee) in groups 1 (normal contractility),
2 (inadequate contractility), and 3 (poor contractility). In figure (c), the first bar corresponds to
start-of-ejection (se) and the second bar to end ejection (ee). Figure (d) provides the mean values
of V, S, §°°, and SFI2. The S°° was calculated using Equation 3.11. In Figure (a), the mean
parameter values are given for the 3 groups and values that were statistically different (P <.05)
from group 1 are indicated (*). (Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim,
S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)

(continued)
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FIGURE 3.8 (continued)

patients compared to patients with inadequate and poor contractility. In
Figure 3.8d, we take the average values of V(se) and S(se) for each group,
and then show how the corresponding LV shape looks like for these three
groups. The LV in group 3 (with poor contractility) has a bigger S value
compared to group 1. Thus, based on Figure 3.5, group 1 has normal
contractility, group 2 has poor contractility, while group 3 represents a
failing heart. Thus, it can be concluded that a more-spherical shape is
associated with poor systolic function and decreased contractility of the LV.

Ranges for shape factor indices: Figure 3.9 illustrates the values of S(se),
S(ee), (dP/dt)max, SFI1, and SFI2 for the three groups: group 1 (normal
subjects), group 2 with inadequate contractility, and hospitalized group 3
with poor contractility. The values of SFI1 and SFI2 in group 1 are consid-
ered to be normal contractility. Group 3 patients with poor contractility have
comparatively lower values of SFI1 (p < .05) and bigger SFI2 as compared to
those of normal group (p <.05).

The average value of SFI1 decreases and of SFI2 increases in group 2 and
group 3, in relation to SFI1 and SFI2 for normal group 1. The average values
of SFI1 and SFI2 for normal group are 8.754+2.30 s ' and 0.09 +0.07
(Table 3.4). In the group of patients with poor contractility (group 3) the
values of the indices are significantly different compared to group 1
(p < .05). The index SFI2 is biggest in group 3, suggesting that this group
is having a more spherical or abnormal LV shape. Therefore it can again be
concluded that a less ellipsoidal and more-spherical shape is associated
with poor systolic function and decreased contractility of the LV, which is
also in agreement with the SFI1 values in Figure 3.9d and the values of EF
in Figure 3.8a. This supports our premise that an infarcted LV is less
ellipsoidal compared to a normally contracting LV.
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FIGURE 3.9

Comparison of S at end systole, (dP/df)max, SFI1, SFI2, for group 1 (normal), group 2 (mild
heart failure), and group 3 (severe heart failure). (Adopted from Zhong, L., Ghista, D.N., Eddie,
Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., ]. Biomech., 39, 2397, 2006.)
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TABLE 3.4

Mean Values with Standard Deviations of S(se), S(ee), SFI1,
and SFI2 for Group 1 (Normal Contractility), Group 2
(Inadequate Contractility), and Group 3 (Poor Contractility)

Group 1 Group 2 Group 3
S(se) 0.5040.03 0.51+0.05 0.57 +0.08"
S(ee) 0.4440.02 0.47 +0.05 0.53+0.10°
SFI1 (s 8.75+£2.30 5.78 +£1.30% 3.90+1.30%
SFI2 0.09+0.07 0.11+0.09 0.23+0.12°

a

p < .05 compared with normal contractility group.

3.2.7 Comparison with Traditional Invasive LV (dP/d#)ax

For the 3 groups of patients, the comparisons between the indices (SFI1 and
SFI2) are summarized in Table 3.4. Further comparisons between the SFI1
and (dP/dt)max, SFI2 and (dP/dt)max are displayed in Figure 3.10a and b.
Figure 3.10a shows a fair correlation of r =.713 between SFI1 and (dP/dt)max
as SFI1 = 0.0096 (dP/dt)max —5.1, r = .73, p < .01, while Figure 3.10b sug-
gests a fair correlation:

SFI2 = 0.00033 (dP/dt),, +0.54, r= .60, p< .0l

3.2.8 Discussion and Conclusion

On the basis of Figure 3.10, we can conclude that our new SFI1 (evaluated
for different groups of patients, i.e., normal, mild, and severe heart failures)
compares favorably with that of conventional index (dP/d#)may, in distin-
guishing patients with poor contractility from normal patients. Further, SFI1
can be determined noninvasively and is also demonstrated to be potentially
more sensitive to changes in the LV shape. Thus the new index SFI1 can be
an excellent substitute to (dP/dt)max for contractility measure. Concerning
the second index SFI2, although its correlation with (dP/dt)max is not so
good as that of SFI1, it is more convenient to compute it and hence use it
clinically to diagnose the heart disease.

The shape of LV has intrigued physiologists as well as clinicians in
attempting to gain a better understanding of its mode of operation, and
trying to obtain diagnostic information on its performance [2,5,13-15]. In
this study, we developed new SFIs, SFI1 and SFI2, based on the LV wall
stress and hence on the LV shape. We have further shown that the SFI1 and
SFI2 compare well with (dP/dt)max. This confirms that the function and
contractility of the LV are closely related to its shape changes. Hence, an
evaluation of its shape permits early prediction of both physiological and
pathophysiological changes in LV functionality.
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FIGURE 3.10
Relating new developed contractility indices SFI1, SFI2 to traditional contractility index

(dP/df)max- 1, correlation coefficient.

.|
3.3 Left Ventricular Sarcomere Contractile Characteristics
and Associated Power Index

3.3.1 Left Ventricle Cylindrical Model (Incorporating the Myocardial
Fibers within Its Wall)

We represent the left ventricle (LV) as a thick-walled cylindrical shell. Trans-
verse isotropy is assumed with respect to the axis of the cylinder [16-18].
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FIGURE 3.11

(a) Schematic of LV myocardial
structure, (b) LV cylindrical
model, depicting a typical myo-
cardial fiber arranged as a helix
within the LV model wall; L, R;,
and R, are the length, inner, and
outer radii of the LV cylindrical
model. (Adopted from Ghista,
D.N., Zhong, L., Eddie, Y. K.Ng.,
Lim,S.T., Tan,R.S., and Chua, T.,
Mol. Cell. Biomech., 2,217, 2005.) (a) (b)

In Figure 3.11, we depict this LV model cylinder wall to be composed of
N myocardial fiber units, oriented as helixes of pitch angle «. Half of these
(i.e., N/2) fibers are wrapped in a clockwise fashion, and the other N/2 fibers
in counter-clockwise fashion. The biomechanical model ultra-structure of
each fiber is the MSU, as depicted later in Figure 3.11.

For our LV cylindrical model [19], we assume that each myocardial model
fiber is helically wrapped within the LV cylindrical model wall (as illus-
trated in Figure 3.11), and composed of two in-series MSUS, as illustrated in
Figure 3.12. In actuality, there will be many MSUs along any one myocardial
fiber from bottom to top. However, herein, for convenience of analysis, we
adopt each myocardial fiber to be composed of two MSUs in series.

Now although there are a number of myocardial fibers across the LV wall
thickness, it is assumed that, within the wall of our LV model, one set (N/2
number) of fibers are oriented in a clockwise fashion, while another equal
number (N/2) of fibers are oriented counterclockwise. Hence, across the LV
wall thickness, we have two fibers; in other words, the LV wall thickness
equals to the thickness of two fibers thickness.

The geometric parameters of the LV cylindrical model are defined
in Figure 3.11. The volumes of myocardial wall (MV) and of the LV are
given as

Vm = m(R% — R})L = w(2R; + h)hL (3.13)
V =mR’L (3.14)

where
R; and R, are inside and outside radii of the cylindrical model
L and h are the length and wall-thickness of the model

Herein, the LV volume (V), wall thickness (), and myocardial volume (V)
are obtained by cineventriculography. Using Equations 3.13 and 3.14,
we can calculate the instantaneous radii R;(f) and length L(f) (at any time
instant t) in terms of the measured Vy, V, and h, as
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3.3.2 Myocardial Structural Unit (MSU) Model

In Figure 3.12a, the sarcolemma of the MSU is shown to consist of overlap-
ping myosin and actin filaments. The myosin filament is symmetrical about
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FIGURE 3.12 (See color insert following page 266.)

(a) The actin and myosin filaments constituting the contractile components of the myocardial
fibril; (b) Myocardial fibril model composed of two symmetrical myocardial structural units
(MSUs), which are mirror images of each other. Each MSU is composed of (i) an effective mass
(m) that is accelerated; (ii) connective-tissue series element having parameter k (elastic modulus
of the series element) and the force Fg; (iii) the parallel viscous element of the sarcolemma
having viscous damping parameter B, and force Fyg; (iv) the contractile element (CE), which
generates contractile force Fcg between the myosin (thick) and actin (thin) filaments. When the
contractile element shortens (by amount x,), the series element lengthens (i.e., x; increases).
During ejection, the MSU xr decreases, and during filling the MSU xt increases. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2,
217, 2005.)
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its midpoint, and contains two sets of regular arrays of myosin heads.
Muscle contraction is driven by the motor protein II, which binds transiently
to an actin filament, generates a unitary filament displacement or “working
stroke,” then detaches and repeats the cycle [20]. Sarcomere shortening is
generated by the relative sliding of the two filaments, driven by the working
stroke of the myosin head. In Figure 3.12b, we define the myocardial fibril
model to be composed of two myocardial structural units (MSUs) in series.
On the basis of MSU three-element model [21] and Huxley cross bridge
theory [22,23], the sarcomere actin-myosin filaments can be represented by
the contractile element (CE), the connective tissue can be represented by the
series-elastic element (SE), while the sarcolemma can be represented by a
parallel viscous element (VE), as illustrated in Figure 3.12b.

Hence, the biomechanical model of the myocardial structural unit (MSU)
consists of the MSU mass, a series-elastic element (SE), a parallel-viscous
element (VE), and a contractile element (CE) [24]. The sarcomere represents
the fundamental functional structure of contraction of the MSU. It makes the
muscle fiber contract, and generates stress within the wall.

In Figure 3.12b, m denotes the MSU mass; B, is the viscosity parameter; k
is the connective tissue elasticity parameter; xr is the displacement of the
MSU relative to the center line; x; is the displacement of the MSU mass due
to contraction and resulting shortening of its CE; x; is the displacement of
SE = (x — x1); Fcg denotes the force generated by the CE; Fyg denotes the
force in the VE; and F; denotes the resulting total MSU force, which is
related to the chamber pressure of LV.

3.3.3 Determination of Fiber Density, Length, and Force; Fiber Angle
a and MSU Force (F); Torque Produced on the LV
due to Fiber Activation

It is known that the LV twists during systole and unwinds thereafter. This
twist is due to the contraction of the myocardial fibers. We also acknow-
ledge that the fiber angle will vary across the wall thickness and also with
time during a cycle. Nevertheless, for convenience of theoretical analysis,
we have adopted that in our LV model there are two adjacent sets of fibers
within the wall thickness, one set oriented clockwise and another set
oriented counter clockwise. Each myocardial fiber is assumed to be oriented
helically within the LV myocardial wall, at a pitch angle « (as illustrated in
Figure 3.11), with N/2 fibers are oriented helically clockwise at pitch angle
a, and the other N/2 fibers are oriented anticlockwise at the same pitch
angle, analogous to that adopted by Pietrabissa et al. [25]. We now deter-
mine this fiber angle for our LV model.

3.3.3.1 Fiber Density, Length, and Force

During filling, the fibers will extend as the LV cylindrical model fills with
blood. During systole, the fibers will contract and shorten, deform and twist
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the LV cylindrical model. Thus, the LV will twist and unwind during a
cardiac cycle.

In this cylindrical model, there are N number of myocardial fibers within
the LV wall (as shown in figure). Hence:

N o Acylinder

1
2~ 2 (3.16)

wherein
Acylinder (the cross-section area of cylindrical model myocardium) =
(k2 - R?)
Amsu (the cross-section area of MSU) approximately equals 7.85 x 107°
cm? [26]

While Acyjinger varies during a cycle, the number of fibers remains constant.
Hence, we can determine the value of N at the start of isovolumic contrac-
tion, from Equation 3.16.

The activation of these fibers develops an active force (Fcg) in the sarco-
mere unit of MSU, which in turn generates wall stress and thereby raises the
intraventricular pressure. When the pressure exceeds the pressure in the
aorta, then the aortic valve opens, the LV shortens (and its wall thickens) to
pump an appropriate stroke volume.

The instantaneous length (I;) of each myocardial fiber (or myofiber) is
given by

L
lt_ !

= 3.17
sin o ( )

where [, is the instantaneous length of the LV model.
For instantaneous LV pressure P(t), the force in a myofiber is given by
(with reference to Figure 3.11)

Fo= Nt
"7 (N/2)sinay

(3.18)

where R; denotes the instantaneous value of the inner radius of the model
obtained from Equations 3.13 and 3.14.

Because we have two MSUs in series along each myofiber, the axial
displacement xt of an MSU (shown in Figure 3.12) can be related to the
change of length (Al;) of an MSU, and hence to the change in length (AL;) of
the LV cylinder model as

Al AL
=— = 3.19
=7 7 2sinay) (319
where
AL=L,,1— Ly Li;1 and L, refer to successive time instants
L is given by Equation 3.15
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3.3.3.2 Determining the Fiber Pitch Angle o

We refer to the paper of Pietrabissa et al. [25], wherein it is shown that the
fiber angle for a cylindrical model can be shown to be independent of the LV
instantaneous dimensions, and hence can be assumed to be constant
throughout the cycle. We now determine this fiber angle «.

At any instant, it is assumed that the depolarization wave is traveling
along one set of myocardial fibers, i.e., either along N/2 clockwise or N/2
anticlockwise oriented fibers. The contraction of one set (N/2) of these fibers
hence results in a clockwise or anticlockwise twist of the LV. The distance
(d) along a circumference between two adjacent fibers arranged in the same
direction (i.e., clockwise or counter-clockwise) is given by (with reference to
Figure 3.13):

o 2’1TRi _4’1TRi

d_(N/Z)_ N

(3.20)

The axial pitch (1) between the fibers arranged in the same direction inter-
sected by a cylinder generator is given by

L 2L

"= (3.21)

wherein 1/2 is the number of fibers arranged in the same direction inter-
sected by a cylinder generator.
From Equations 3.20 and 3.21

(3.22)

In Figure 3.14a, the equilibrium of axial forces in one set of fibers arranged
in the same direction, acting on the bottom or top circular plane surface of
the LV model cylinder, requires that the sum of the vertical components of
the fiber forces equilibrates the force due to LV pressure acting on the LV
top (or bottom) surface. Hence, as indicated before (by Equation 3.18):

RS
T

FIGURE 3.13

Calculation of distances u and d. (Adopted from Ghista,
D.N., Zhong, L., Eddie, YK.Ng., Lim, S.T., Tan, RS,
and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.) d



Left Ventricular Contractility Indices 91

FIGURE 3.14 (See color insert
following page 266.)

(a) Equilibrium of fiber force and
LV pressure on the top circular
plane of the LV cylindrical
model. (b) Equilibrium of fiber

@)

Two fibers across the thickness; there p dL i1 the ci
are NJ2 pairs of fibers oriented clockwise ~ force and LV pressure in the cir-

and N/2 pairs of fibers oriented counter- ~ cumferential direction. (c) Loca-
clockwise within the LV wall tion of two sets of fibers across

the LV wall thickness. (Adopted
from Ghista, D.N., Zhong, L.,
Eddie, Y.K.Ng., Lim, ST., Tan,
R.S., and Chua, T., Mol. Cell. Bio-
(c) mech., 2,217, 2005.)

mRIP = (N/2)(Fsin ) (3.23)

where
P is the LV cavity pressure
F, is the force within each of the N fibers

In Figure 3.14b, the force equilibrium of the cylinder in the circumferential
direction, under the action of fiber forces arranged in the same direction,
requires that:

(2LR)P = nF cos a (3.24)

Upon substituting Equations 3.23 and 3.24 into Equation 3.22, we obtain the
equivalent fiber angle («) for the LV as follows:

1
tana = — 3.25
VG (.25)

which yields a =35.26°.

3.3.3.3 Torque Imparted to the LV by Fiber Contraction

At this point, it is noteworthy that (on the basis of Figure 3.14a), while the
vertical components of the fiber forces cause pressure on the top and bottom
surfaces of the LV chamber (as per Equation 3.23), their horizontal compon-
ents produce a torque (T) in the LV, given by

N/2)wR%P; cos a
Ty = (N/2)F,cos a;y = ( /I\)I/Z ;intat L. TerPtctgat (3.26)
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This torque (T;) will result in a twist of the LV by angle 0, given by

_ TtLt . ’ITRiZPtLt(Cthlt)

b="g e (3.27)

where
Ly is the instantaneous length of the LV cylindrical model
a, (=a) is given by Equation 3.25
J (the polar moment of inertia) = w(R$ — R{)/2
G (the shear modulus of the LV myocardium) = 100 Gpa [27]

This means that for, say, a 60 mmHg pressure rise during isovolumic
contraction, an LV model (having R;=2 cm, R,=3 cm, and L =14 cm) will
twist by an amount of 10°; then, it will twist more up to 20° to the instant
when the LV pressure becomes maximum. After that, the LV will rewind.
These calculated twist angles correspond to the monitored values [28],
thereby lending some credibility to our model.

Equation 3.27 relates the twist angle (0) to the fiber angle (). It indicates
that if we can measure the twist angle 6 (of the apex of the LV with respect to
its base) by MRI-tagging, then we can also determine the value of the fiber
angle a corresponding to the monitored LV pressure. So, we do not need to
adopt a to stay constant during a cardiac cycle. Hence, although in this
chapter, we have taken « to be constant during a cardiac cycle, we can
subsequently compute the instantaneous value of a from Equation 3.27.
However, at this stage, we are in a position to only obtain data on LV
pressure and volume and not simultaneously on the twist angle. It has
been shown that this twist angle 6 varies by about 10° during systole [28],
which corresponds to the value obtained from Equation 3.27.

It can be conceptually noted that for certain instantaneous dimensions R;
and L;, the in vivo value of § during a cardiac cycle influences the value of P,
generated. However, for the sake of demonstrating how we can relate the
sarcomere contractile force and shortening velocity to LV pressure and
volume data (and compute these sarcomere parameters), we adopt the
angle o to remain constant throughout the cycle (even though we concede
that this is not true in practice).

3.3.4 Dynamics of a Myocardial Structural Unit

3.3.4.1 Governing Equation of MSU Dynamics and Its Solution

From Figure 3.15, the governing differential equation for an MSU dynamics,
due to the generated contractile force (Fcg), can be expressed as

mXy + ByXo — Fcg +kx; =0 (3.28)
or

mxq1 + Byx1 + kx; = Fcg — ByXT — mXt (3.29)
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FIGURE 3.15 (See color insert following page 266.)

Dynamic model of MSU having effective mass m; k is the elastic modulus of series element; B, is
the viscous-damping parameter of parallel viscous element; F; denotes the total generated force
caused by the contractile stress Fcg; Fsg is the force in the series element [=k(x1 + x1e4)], Where
X1eq 1S the deformation of the SE at end diastole; Fyg, is the force in the viscous element (= By x;);
x1 then represents the added deformation of the SE during systole (over and above its deform-
ation during the filling phase) due to the development of Fcg. (Adopted from Ghista, D.N.,
Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

where

Fcg is the applied force exerted by the contractile-element of MSU

m is the muscle mass per unit cross-section area = m(R2 — R?)Lp/2N

p is muscle density

B, is the viscous damping parameter of the parallel viscous element
(VE)

k is the elastic stiffness (or modulus) of the series-elastic element (SE)

xt is the shortening displacement of the myocardial-fiber unit relative
to its center-line

x1 is the stretch of the SE element =x, — xt

x; is the displacement of muscle mass m (relative to center-line) due to
CE contraction = x1+ x; (positive sign represents shortening)

Fyg =Byx; and Fsg = k(x1 + X1eq) (3.30)

wherein
X1eq 18 x1 at end diastole (= Fieq/k)
Ficq is the fiber force at end diastole, obtainable from Equation 3.24
corresponding to R; and P at end diastole

Because the terms m¥; and mXt can be neglected due to their small values
compared to other terms; for instance, mX; and mxt are of the order of 10%1,
while the other terms are of the order of 10%* [24]. Equation 3.29 can thus be
rewritten as

Byx1 + kx1 = Fcg — ByXT (3.31)

Now, let us consider myocardial contraction during the systolic phase. The
systolic contraction can be considered to comprise of two temporal phases,
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FIGURE 3.16

Schematic of LV pressure and aortic pressure variation during a cardiac cycle. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y. K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2,
217, 2005.)

as depicted in Figure 3.16. Phase I, denoted by t, (and measured in
seconds), corresponds to isovolumic contraction; it comprises the interval
from the closing of the mitral valve until the opening of the aortic valve.
Phase II, denoted by t,, corresponds to the ejection phase.

As shown in Figure 3.12, each myocardial fiber from bottom to top edge of
the LV myocardial model is composed of two MSUs. The governing differ-
ential equation for this model is given by Equations 3.28 and 3.29. Now let
us discuss the terms on the right-hand side of Equation 3.31. As the MSU
(and LV) depolarizes, excitation—contraction coupling leads to sarcomere
contraction and the development of ventricular wall stress along with a
rapid increase in intraventricular pressure, as shown in Figure 3.15. During
this phase of systolic contraction, we express the generated MSU-CE force
(Fcp) function (analogous to the LV pressure wave shape) as

Fce = Fcro sin(wcet)e’Z“t (3.32)

where
we = T/1s; ts is the contraction duration, to be determined
Fcro and z are the additional parameters, to be determined
t =0 corresponds to the start of isovolumic contraction phase

It should be noted that this expression for Fcg is similar to that for the active
elastance of our earlier paper [29].
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Let us now discuss the xr term on the right hand side of Equation 3.31.
During the filling phase, the MSU will stretch passively due to LV enlarge-
ment. Concerning the xt term (depicted in Figures 3.12 and 3.15), during the
filling phase, it will be negative and its absolute value will increase due to
passive stretching of the myocardial fibers caused by LV volume increase.
During this phase, with reference to Figure 3.15, the SE element will stretch
while x, =0, and hence x; = —x1. At the end of filling phase, we denote x; by
X1ed- Further increase in x; now occurs during isovolumic contraction due to
the development of Fcg and the generation of CE shortening (x,). However,
in this phase xr =0, and hence xilSO is only due to x, caused by Fcg.

During the ejection phase, x is positive and is caused by LV ejection and
volume decrease. At the same time, x; is being generated by CE contraction,
resulting in Fcg development. Somewhere during the ejection phase, x, will
reach its maximum value and thereafter decrease. Now during the isovo-
lumic relaxation phase, x, keeps decreasing, while xt does not change from
its end-ejection value.

Then when the filling phase starts, xr again becomes negative and |xy| starts
increasing as the LV volume increases. Meanwhile x, keeps decreasing and
reaches a zero value, a short while after the start of filling phase at t =£,,. This
time period t, is designated as the LV suction phase caused by deceasing Fcg,
before the left atrium starts to contract and pump blood with the LV. Herein,
we will also demonstrate this suction effect in terms of the time period #.

3.3.4.2 Phase I: Solving Equation 3.31 for Isovolumic Contraction Phase
(during 0 <t <t'*°)

Since both the mitral and aortic valves are closed, the volume of blood in
the ventricle is constant. Yet the pressure inside LV is increasing due to the
sarcomere contraction, i.e., due to Fcg generation. Hence, putting
xr=2Xr=Xr=0, and employing Fcg from Equation 3.32, we can rewrite
Equation 3.31 as

Byx1 + kx1 = Fcro sin(wcet)e_Z“t (3.33)

The solution of Equation 3.33 is given by x1(=x%), as follows:

x1(t) = x%°(t) = Cre /B! 4 [asin(weet) + b cos(weet)]e ! (3.34)
where
_ FCEO(k - Zcer) __ FcroBywee
(k — Zcer)2 + (Bv(")ce)2 ’ (k— Zcer)2 + (Bva)ce)2

For this phase of contraction, the initial condition that we will impose is

xX0)=C;+b=0 (3.35)
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from which
Ci=-b (3.36)
Hence, x; (= xﬁs"), during the isovolumic contraction phase, is given by

x1(t) = x5(t) = (=b)e ™! + [asin(weet) 4 b cos(wet)]e ! (3.37)

3.3.4.3 Phase Il: Expression for xy and Solving Equation 3.19 for the Ejection
Phase to Determine Parameters xto and z.

For mathematical convenience, we make a shift in the time variable and
redefine it as t, =t — t;s,, such that

0<t, <t (3.38)

where ¢, is the ejection phase duration.
In this phase, xt is no longer zero, and hence we need to relate it to the LV
dimensional change, as per Equation 3.19, as

Al (Lasny — L)

2 2sina (3.39)

wherein
Li and L, refer to successive time instants ¢; and #;;
L; (or L) is given by Equation 3.15 in terms of V, MV, and h

We now adopt for % a function to correspond to that of the LV flow rate V
[30], as follows:

XT = X10 sin(weta)efz“t“ (3.40)

where
w, = 7/t,, t, is the duration of ejection as shown in Figure 3.19
X1o and z, are the (to-be-determined) parameters
t,=0 corresponds to the start-of-ejection phase

By integrating Equation 3.40, and employing the initial condition of
xt (t,=0)=0, we get

XTo0 . ot XToWe Alt
_10 t to)]e zhe 4 10 2t
7+ [ze sin(wet,) + w, cos(w,t,)]e + 7+ a2 >
_@m-L) a1

2sina

XT = —

Now, based on Equation 3.41, xt can be evaluated in terms of Al;and hence in
terms of monitored LV wall thickness h(t), LV volume V(t), and myocardial
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volume MV. Hence, the parameters x1o and z. (of #t in Equation 3.40) can
be obtained by matching the xr expression of Equation 3.41 with the clini-
cally obtained MSU length-change Al;/2, as indicated by Equation 3.41. This
then enables us to also determine the expression xt (Equation 3.40) in terms
of its now evaluated parameters xty and z..

Then, by substituting Equations 3.32 and 3.40 into the governing Equation
3.31, we have

Byx1 + kx1 = Fcpo sin [wee(ts + tiso)]e_zw(t”“is") — ByxTo sin(wetg)e_zet“ (3.42)

where t, is the time variable. The solution of Equation 3.42 is given by
x1(=x%), as follows:

x1(ta) = X4(ta) = Coe ™™/l 4 {asin[wee(ta + tiso)] + bcos[wee(t + tiso)] e =l i)

+ [csin(w,t,) + d cos(w,t,)]e =" (3.43)
where
_ FCEO(k - Zcer) __ FcroBvwee
(k — Zcer)2 + (BVwCB)Z ' (k — Zcer)2 + (vace)z
_ Byxto(k — Byze) _ B‘Z,xTOCUe
(k - sze)2 + (vae)2 ’ (k - sze)2 + (vae)2

In Equation 3.43, the unknown parameters are k, By, Fcro, Wce, and Zee.

Now x;(t) between phases I and II is continuous, i.e. xj(f; =0) =
xif"(t = tiso). This determines the initial condition for phase II. Hence, from
Equations 3.37 and 3.43, we get

xile(o) = C2 + [a Sin((‘)cetiso) + bCos(mcetiso)]eizceiliso + d
= x1150(t = tiso)

= —be M/l 4 [a8in(weetiso) + b COS(Wetiso)]e < (3.44)

Solving Equation 3.44, we get
Cp = —be M/Bvtio _ (3.45)
Hence, the total SE deformation x;(=x{) during the ejection phase (on top of

x; at #*° the end of isovolumic contraction, given by Equation 3.37) can be
written as

x1(te) = x§(ta) = (—be /Mo — d)e /Bl
+ {asin[wce(ts + tiso)] + b cos[wce(ta + tiso)] e =l Hi)
+ [csin(wet,) + d cos(wet,)]e =" (3.46)
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3.3.4.4 Evaluating the Model Parameters (k, B,, Fcgo, ®ce, Zce)

Having determined the parameters xpy and z, from Equation 3.41, by
matching xr with Al, we will now determine the remaining parameters k,
By, Fcpo, Wee, and zce (in Equation 3.33). On the basis of Figures 3.12 and 3.14
and Equations 3.30 and 3.31, we put down

Fsg = Fi = k(total SE deformation) = k(xjeq + x7) = Fieq + kx3 (3.47)

where (1) x{ during the ejection phase is given by Equation 3.46, (2) Xjeq
(1 at end diastole) is given by Equation 3.30, and (3) F; and Fi.q are obtained
in terms of LV pressure, model geometry, fiber angle («) and N from
Equation 3.24. Hence,

2mRA(P — Pey)

k% =F, — Fooy —
1= 5™ Fred (Nsina)

(3.48)

wherein the x] expression is given by Equation 3.46. We now match the
expression for kxj (of Equation 3.46) with the evaluated value of the right-
hand side term of Equation 3.48 in terms of clinical-derived data (of LV
pressure, as well as R; and N from Equations 3.15 and 3.16) of the subject. By
carrying out parameter-identification, we can determine the corresponding
parameters k as well as B, Fcgo, @ce, and ze. (in Equation 3.46). Once we
know the values of these parameters, we can determine the values of the x§
during the ejection phase.

3.3.5 Sarcomere Force (Fcg), Shortening Velocity (x;), and Power

3.3.5.1 Determining Sarcomere Contractile Fc¢ and x5, and Their
Physiological Implications

Having evaluated the parameters (k, By, Fcro, ®ce, Zce) in the earlier section,
we can determine the CE contractile force Fcg from Equation 3.32, as well as
x1 during isovolumic contraction (from Equation 3.37) and during ejection
(from Equation 3.46). The shortening displacement of CE, x; (=x; + x7), can
also be computed by employing (1) x; from Equation 3.46 in terms of its
evaluated parameters k, By, Fcgo, @ce, and zq., and (2) xt from Equation 3.41
in terms of its evaluated parameters xty and z.. Now, for a total variation of
x, during a cardiac cycle, we adopt the x, expression as

Xo = Xp, Sin(weet)e 2! = x1 + x7 (3.49)

where
x1 can be computed from Equation 3.46
xt from Equation 3.41
t =0 corresponds to the start of isovolumic contraction phase

Hence, in Equation 3.49, we can now evaluate the additional parameters x5,
and z, by parameter-identification.
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Myocardial fiber shortening x; is an important cardiac performance par-
ameter. On the basis of Equation 3.49, it starts at the end of LV filling and
initiates LV contraction. Somewhere during the ejection phase, it reaches its
maximum value. It then starts decreasing and continues to do so into the
filling phase, causing the phenomenon of LV suction. It would be interesting
to determine the instant (f,) within the filling-phase, when x, becomes zero.
From a cardiac physiological viewpoint, during this time-interval (from the
start of filling up to the instant ¢,), the left ventricular pressure value will be
below its value at the start of filling phase. This time period from the start of
filling phase up to f, is denoted as the LV suction phase [31].

Hitherto, it has been difficult to provide an explanation for this suction
phase. However, it can be explained in terms of the continuing activation of
the contractile element into the filling phase from Equations 3.32, 3.48, and
3.49, as follows:

2mR%(P, — P
—I\§ = Ped) _p Py = Fep — Frd = Fos + Fue — Faa
SIn o

+ By[x20 Sin(wcet)]eizzt —Feqa  (3.50)

= Fcpp sin(weet)e 2!

In Equation 3.50, we have determined the parameters of Fcg and Fyg from
the monitored instantaneous LV pressure (P;), and the LV geometry
(defined by R, and R;). As per Equation 3.50, it is Fcg (due to sarcomere
contraction) that intrinsically governs the generation of this pressure Py
Hence, it is the continuing activation of CE into the filling phase that causes
LV suction and a temporal dip in LV pressure before the left atrium con-
tracts and pumps blood into the LV. Later on, we will demonstrate the
suction effect in terms of the time instant t; in the filling phase.

3.3.5.2 Power Generated by the Sarcomere Contractile-Element

Now, because we have incorporated 2 MSU(s) in each myocardial fiber (as
illustrated in Figures 3.12), we now define the LV myocardial sarcomere
instantaneous power (MSP) in terms of the MSU-CE force causing shorten-
ing by amount x, and shortening rate of x5, as

MSP = 2 x (g) (FCE X XZ) = N(PCE X Xz) (351)

where
both Fcg and x, are functions of time
FcE is the contractile force generated by each contractile element
X is the shortening velocity of the CE element

In this equation, N is computed from Equation 3.16; Fcg is computed
from Equation 3.32, with its parameters (Fcgo, ®wee, and z..) obtained from
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Equation 3.48 by parameter-identification scheme; x, = x; + x, with x; and
xt computed from Equations 3.46 and 3.41, respectively. The total myocar-
dial sarcomere power (TMSP) is then obtained as

TMSP = N JFCE dx; (3.52)
i.e., by the area under the Fcg versus X, curve.

3.3.5.3 Defining a Contractile Power Index

Herein, in quantifying the contractile performance of the LV, we define
contractility (corresponding to the traditional contractility index of
(dP/df)max) as the ability of the LV myocardium to produce a contractile
force with a high shortening-velocity capability, so as to exert maximum
contractile power. In order to compare power among patients of differing
LV size and mass, we normalize MSP with respect to myocardial volume, as

where Vy is LV wall volume (mL), MSPI is in Watt/liters.

3.3.6 Clinical Application and Results

The analysis is now applied to the clinically obtained data of the subject’s
left ventricular (instant-of-instant) dimensions (obtained by cineangiocar-
diograph) and chamber pressure (obtained by cardiac catheterization). In so
doing, for each subject’s left ventricular data (of pressure, volume, wall
thickness, and myocardial volume), we evaluate the model parameters Fcg
and x,, the contractile power input and the new contractility index MSPI
(given by Equation 3.53).

Table 3.5 lists the measured hemodynamic variables for three subjects
(subject HEL, DDM, and TPS). Subject HEL serves as a representative of a

TABLE 3.5
Clinical History, Measured Hemodynamic Data from Subjects (HEL, DDM, and TPS)

Subject HEL DDM TPS
Disease MlI, DVD DVD, HTN LAD and ischemia
LVP (mmHg) 122/18 170/24 147/22

AQOP (mmHg) 125/75 169/99 140/71

EDV/ESV (ml) 132.5/84.3 121.7/41.3 112/35.5

EF 0.36 0.66 0.68

Note: LVP, left ventricle chamber pressure; AOP, aortic pressure; EDV, end-diastolic volume;
ESV, end-systolic volume; EF, ejection fraction; MI, myocardial infarct; DVD, double
vessel disease; HTN, hypertension; LAD, left artery disease.
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FIGURE 3.17

LV Pressure variation and LV (thick-wall cylinder) model dimensions variations, during
a cardiac cycle for subject HEL. V); =185 mL. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K.Ng., Lim, S.T,, Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

patient with myocardial infarct. Subject DDM is an example of a patient
with double vessel disease (DVD) and hypertension, treated with PTCA.
Subject TPS corresponds to a patient with native LAD, ischemia in anterior
territory, and mitral regurgitation (MR). These three subjects have also
been studied by our earlier analysis of passive and active elastance com-
putation [29]. Figure 3.17 depicts one-sample cineangiocardiographically
derived LV dimensions and the derived cylindrical model dimensions
during a cardiac cycle.

3.3.6.1 Evaluation of the Model Parameters

From the clinical data shown in Figure 3.17, we calculate the LV model xr,
using Equation 3.39. This “xt versus time” function during ejection is
shown in Figure 3.18, as illustrated by the round points. We then use the
expression of xt given by Equation 3.41 to fit this clinical-derived data of “'x
versus t”’/, and determine the parameters xtg and z., as shown in Figure 3.18.
The model-computed xt matches the xt (=(L;;1 — L;)/2 sine) clinical data
very well, with R-square =0.9944 and RMS=0.02 cm. The solid line is the
model-computed displacement xt (Equation 3.41), while the round points
constitute the clinical-derived xt.
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FIGURE 3.18 (See color insert following page 266.)

Computed xr(t) during the ejection phase (t =0 corresponds to start-of-ejection): From the data
shown in Figure 3.17, we calculate the model xt during the ejection phase by using Equation
3.39, as shown by the round points in the figure. This data is now fitted with Equation 3.41. The
resulting values of the parameters (xry and z.) are shown in the figure and also listed in Table
3.4. Here t=0 corresponds to the start-of-ejection. (Adopted from Ghista, D.N., Zhong, L.,
Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

Now, we use the LV pressure and R; data in Figure 3.17, along with
calculating N (by Equation 3.16), to obtain the right-hand side of the
Equation 3.48, and to hence evaluate the term kx{. Since the expression
for x{ is given by Equation 3.46, we can now employ the parameter-
identification scheme to make the kx{ expression (Equation 3.46) fit the
values of kx§(= 2mR(P — Peq)/N sin ), and compute the other parameters
k, By, Fcro, wee, and ze, in Equation 3.50 (as listed in Table 3.6). In Figure
3.19, we have shown how the kx{ expression (Equation 3.46) matches
the computed values of kx{, to evaluate the parameters k, By, ocro, ®Wce,
and z.

From the data shown in Figure 3.17, we calculate the LV model myo-
cardial force F; and Fiq using Equation 3.22. Then we compute
kx§(= (F¢ — Feq)/N) = ZwRiZ(P — Peq)/N sin a, as shown by the round points
in this figure, with N=2.24 x 10° from Equation 3.16. This clinical-
derived data of (F;— Fiq)/N is now fitted with kx{ expression (based on
Equation 3.46), to obtain the values of kx{ parameters (Fcgo, Zce, k, By, wce)
listed in the figure as well as in Table 3.4. Herein, t =0 corresponds to the
start-of-ejection.
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TABLE 3.6

Computed Values of MSU Terms xt and x;, and of Their Parameters Related to the
Subject HEL Shown in Figure 3.20, during Ejection Phase (N =2.24 x 10°)

Variable Parameters Values How Obtained RMS
XT X1o (cm) 10.28+1.71 xr fit using Equation 3.29 0.02 cm
Ze (571 6.50 +1.83 R-square
0.99
x4 Fcgo (Pa cm?) 5.66+1.61 kx§ fit using Equation 3.36 RMS
0.028 Pa cm?
Zee (571 3.95+1.06 R-square
B, (Pa cm s) 0.12 +0.069
k (Pa cm) 3.95+1.28 0.97
e (s7Y) 7.14+1.95
X7 X20 0.55+0.01 x, fit using Equation 3.37 0.01
Zp —3.03+0.12 0.99

3.3.6.2 Determination of CE Force Fcg and Shortening x, Characteristics,
with Determination of the LV Suction Effect

Shown in Figure 3.20 are the computed values of MSU dynamics terms for
subject HEL. Figure 3.20a provides the measured data of LV pressure in one
cardiac cycle. By means of the values of the parameters (k, By, 0 cgo, ®ce, and
Zee) in Table 3.4, we have determined and plotted x; versus time, x, versus

22| O Clinical-derived data|
Curve fit
2 i
1.8 i
FCEO =5.66+1.61
~ 16 Z:.=3.95+1.06
S k=3.95+1.28
c 14+t 3
8 B,=0.12 + 0.069 d
;;_" 12 Wee=7.14+1.95 b
x 1L |
0.8 | i
0.6 | i
04 i
02 L 1 1 1 1
0 0.05 0.1 0.15 0.2
Time (s) from the start-of-ejection phase
FIGURE 3.19

Computed kx{ and its parameters during the ejection phases (=0 corresponds to start-of-
ejection). (Adopted from Ghista, D.N., Zhong, L., Eddie, Y. K.Ng., Lim, S.T., Tan, R.S., and Chua,
T., Mol. Cell. Biomech., 2, 217, 2005.)
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FIGURE 3.20 (See color insert following page 266.)

Computed results of MSU model-dynamics terms x1, X, X, X2, and Fcg, for subject HEL. Diastolic
phase: 0-0.32 s; isovolumic contraction phase: 0.32-0.4 s; ejection phase: 0.4-0.64 s; isovolumic
relaxation phase: 0.64-0.72 s. Here t =0 corresponds to the start-of-filling. Note that Fcg and x,
extend into the filling phase; t;=0.04 s. (Adopted from Ghista, D.N., Zhong, L., Eddie, Y. K.Ng.,
Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2,217, 2005.)

time, and xt versus time, in Figure 3.20b. The computed CE shortening-
velocity (x;) and force (Fcg) are shown in Figures 3.20c and 3.23d, respect-
ively. Notice that the CE force variation during systole is similar to that of
LV active elastance in our earlier paper [29].

Now we adopted the expression x, given by Equation 3.49 in order to
project the time-duration (ty) of sarcomere shortening continuing into the
filling phase. We can now see, from Figure 3.20b, that this duration is 0.04 s.
This validation and quantification of the LV suction effect is an important
added finding of our model analysis.

3.3.6.3 Computing TMSP and MSPI (Equations 3.52 and 3.53)

Next, we also plot the “force versus shortening”” and the “force versus
shortening velocity” for the CE after the initiation of isovolumic contraction
phase, as shown in Figures 3.21 and 3.22. As seen in Figure 3.21 for patient
HEL, the CE shortening (x;) reaches its maximum value late in the ejection
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FIGURE 3.21

CE Force (Fcg) versus displacement (x,) relationship for subject HEL. The arrow direction
indicates progression of time, starting from the diastolic-filling phase. Here t=0.32 s corres-
ponds to the end-of-filling, the time t = 0.32 s corresponds to the start of isovolumic-contraction
phase. The CE shortening (x,) becomes zero at t=0.76 s, about 0.04 s into the filling phase.
(Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol.
Cell. Biomech., 2, 217, 2005.)

phase. The area encircled by force-displacement curve and x-axis represents
the CE energy input.

In Figure 3.22 for patient HEL, the CE shortening velocity increases, along
with increasing CE force. They both reach their maximum values at about
one-third ejection, and thereafter decrease. The area encircled by the curve,
multiplied by the number of fibers (N) gives us the value of the index TMSP.
From this figure, we can again note that the contractile element stays active
for 0.04 (=0.76 - 0.72) s into the filling phase. This causes LV suction of blood,
even prior to the initiation of left atrial contraction. From Figure 3.22, we
calculate TMSP to be 5.40 W. The maximum value of instantaneous power,
MSP .« (Equation 3.51), is computed to be 3.32 W. Using this value, we now
calculate the contractility index MSPI (Equation 3.53) to be 17.94 W /L.

3.3.7 Discussion: Comparison of CE Performance Characteristics
for Three Patients, and Correlation of MSPI with (dP/d®),,.x
3.3.7.1 Computation of CE Performance Characteristics for Other Subjects

This analysis is now carried out for two other subjects (DDM and TPS) listed
in Table 3.5, and the results are provided in Table 3.5. For these subjects, the
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FIGURE 3.22

CE force (Fcg) versus shortening-velocity (i) relationship for subject HEL. The arrow direction
indicates progression of time, starts from diastolic filling phase. Here t =0.32 s corresponds to
the end-of-filling, the time t=0.32 s corresponds to the start of isovolumic-contraction phase.
The next-cyclic filling phase starts at t =0.72 s, while Fcg becomes zero at t =0.76 s. In other
words, the LV suction effect lasts for about 0.04 s into the filling phase. If we observe the LV
pressure variation in Figure 3.21a, we can note that the LV pressure in fact decreases after
initiation of filling phase and recovers to the level of the start of filling phase after about 0.04 s.
To determine the LV power-input, we determine the area under this curve and multiply it by N.
This gives LV TMSP =5.40 W. (Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T.,
Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

TMSPs are 5.18 W and 5.48 W. Figures 3.23 and 3.24 depict the computed
“CE force versus shortening’”” and “CE force versus shortening-velocity”
characteristics for subjects HEL (with MI, DVD), DDM (DVD, HTN), and
TPS (LAD, MR, ischemia). Figure 3.23 shows the CE force-shortening for
these three subjects with different heart diseases. The area encircled by the
curve and the x-axis indicates the amount of energy generated by the CE.

In Figure 3.24 it is seen that the CE force-shortening-velocity curve
follows the same trend for all the subjects. The CE force and shortening
velocity both reach their maximal values at about one-third ejection. How-
ever, the loop made by HEL has the least area encircled within it, and
correspondingly has the least contractile power input of the three subjects
(as seen in Table 3.7).

3.3.7.2 Computation of MSPI, in Comparison with (dP/dt),,,.x

Finally, we compute the traditional indices of contractility (EF and
(dP/df)max), and compare them with our proposed contractility index
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FIGURE 3.23

CE Force (Fcg)-displacement (x5) for subjects HEL, DDM, and TPS. Of the three subjects, TPS
has the biggest area encircled by the Fcg versus x, curve; hence, this subject’s CE is generating
higher energy relative to the other two subjects. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

MSPI. Figures 3.25 and 3.26 show the correlations between MSPI and EF, and
between MSPI and (dP/dt)max. The respective correlations are as follows:
MSPI=55EF —2.4, (r=.8905); MSPI = 0.04 (dP/df) . — 22, (r=.9054).
These good correlations hence add credence to our newly formulated
contractility index.

3.3.8 Highlights

We have analyzed the LV systolic performance by means of an LV mecha-
tronic cylindrical model of myocardial fiber located within the LV
model wall. The myocardial fibers are helically oriented within the
LV model wall. Each myocardial fiber sarcomere unit is composed of
three elements: series element (analogue to connective tissue), viscous elem-
ent (analogue to sarcolemma), and contractile element (analogue to sarco-
mere). The sarcomere contraction is associated with the relative sliding of
the actin-myosin filaments.

The contractile force Fcg and shortening x; of the LV myocardial-sarcomere
unit are related to the LV pressure and volume data, and evaluated in terms
of the model’s parameters (k, B,). After that, we determine the in vivo
characteristics of the LV sarcomere (CE), in terms of ““Fcg versus x,”” and
“Fcg versus X", as well as the power generated by the sarcomere (CE). Both
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CE force (Fcg)-velocity (i) relationships for subjects HEL, DDM, and TPS. Of the three
subjects, the subject TPS has the biggest area encircled within the Fcg versus %, curve, and
hence has the bigger contractile power input. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K\Ng., Lim, S.T,, Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

Fcg versus X, characteristics and the total myocardial sarcomere power
input (TMSP) can be regarded as important LV functional indices.

Our evaluated in vivo CE force versus shortening and CE force
versus shortening-velocity characteristics are seen to depict LV contractile

TABLE 3.7

Clinical History: (dP/dt)max, Maximal Contractile Force, Fcg, Shortening Velocity X,
of CE, Area under Fcg versus x,, Calculated Maximum Power (Power,,,), TCPI,
Myocardial Volume (MV), and Left Ventricular Contractility Index (MSPI)

from Subjects (HEL, DDM, and TPS)

Subject HEL DDM TPS
Disease MlI, DVD DVD, HTN LAD, ischemia
EF 0.36 0.66 0.68

(dP/dt)max (mmHg/s) 984 1475 1478

MV (mL) 185 138 140

Maximum Fcg (Pa cm?) 2.74 412 3.98

Maximal shortening velocity ¥, (cm/s) 5.55 6.84 7.82

TCPI (W) 5.40 5.97 6.33

Powermax (W) 3.32 5.18 5.48

MSPI (W/L) 17.94 37.53 39.14
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Correlation of the myocardial sarcomeric power index (MSPI) to EF, the correlation coefficient
r=.8905.
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Correlation of the myocardial sarcomeric power index MSPI to the traditional contractility
index (dP/d#)max, with the correlation coefficient r =.9054.
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function features. Less area encircled within the force-shortening velocity
curve is associated with less contractility; this indicates that an LV with
impaired contractility is not able to generate as much power required to
provide adequate EF and stroke volume as a properly-contracting LV.

Subject HEL has myocardial infarct, and hence has a weaker contracting
myocardium. This is manifested by a lower CE maximal force and shorten-
ing velocity, in comparison with subjects DDM and TPS (shown in Table
3.5). Correspondingly, its values of maximum power generated by CE and
the contractility index (MSPI) are lower than for the other two subjects. Also,
the area of CE force-displacement curve for subject HEL is significantly less
compared with the other two subjects. These results quantify how myocar-
dial infarct impairs the left ventricular performance in terms of our model’s
contractile power generated and contractility indices. Subject TPS (with
myocardial ischemia) has the maximal area encircled within its Fcg and x5
curve. This could reflect an adaptive mechanism attempting to restore the
LV performance, which is in agreement with its ejection fraction value
(EF =0.68).

Table 3.7 summarizes all of these results. Figure 3.26 enables us to compare
our MSPI with the traditional (dP/d#)max- On the basis of case studies for
30 subjects, our new power index MSPI correlates well with the traditional
contraction index (dP/d#)max, and hence may merit clinical employment.
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4.1 Scope

In this chapter, we analyze the various phenomena that occur in the cardio-
vascular tree [1], namely

1. how the aortic pressure waveform can be obtained from the left-
ventricular (LV) outflow rate into the aorta and the auscultatory
diastolic and systolic blood pressures [2], as well as

2. other vascular phenomena associated with pulsatile blood flow in
the arterial bed to

(a) determine the aortic constitutive property,

(b) develop the concepts of arterial impedance and peripheral
resistance [3],

(c) study wave reflection,
(d) analyze what happens at arterial branching, and

(e) study how wave reflection influences the composite pressure
wave and the hydraulic load on the heart [4].

4.2 Determination of Aortic Pressure-Time Profile along
with Aortic Stiffness and Peripheral Resistance

4.2.1 Introduction

In both Ayurvedic medicine and traditional Chinese medicine, the pressure-
pulse shape is felt to provide diagnostic information concerning diseases
and disorders. Conventionally, accurate measurement of blood pressure
waveform requires insertion of a catheter into the artery. Some of the
noninvasive methods that are currently utilized for blood pressure are the
auscultatory measurement and the oscillometric measurement methods [5].
In this regard, a precise evaluation of the aortic pressure-time profile and
correlation of its shape parameters with diseases (using traditional Chinese
and Ayurvedic medical knowledge-base system) would constitute a signifi-
cant contribution to medicine.

During the LV ejection phase, as the blood is pumped into the aorta, the
aortic pressure rises and the aorta distends [6]. Thus, not all of the blood
pumped into the aorta is distributed into the peripheral circulation imme-
diately, and a portion of it is stored in the distended central aorta. The
equation governing the modulation of aortic pressure can be formulated
by considering that the rate of change of aortic pressure is governed by the
product of (1) the volume elasticity (or distensibility of the aorta) (dP/dV)
and (2) the difference between and the rate-of-inflow I(f) into the aorta
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created by the ventricular pump (stroke volume) and the rate-of-outflow
Q(t) from the aorta into the systemic circulation (peripheral blood flow).

After closure of the aortic valve, no more blood enters the aorta, but the
distended vessel now recoils according to its volume elasticity, and
the blood is propelled into the peripheral circulation. Thus, the rate of fall
of aortic pressure, in the elastic aortic chamber during this diastolic phase, is
a function of the volume elasticity of the aorta and the flow resistance.
We will now analyze how we can determine the arterial pressure pulse
profile [2].

4.2.2 Analysis of Aortic Diastolic and Systolic Pressure

For the blood control volume, shown in Figure 4.1, we have

dav o P
o~ O-Qt) =1 - — 4.1)

where I(t) and Q(t) are inflow and outflow rates of the aorta, respectively,

and R is the resistance to flow in the aorta.
We can also put down

dP dP 4V dV

ar—aviar M *2
where m is volume elasticity of the aorta.
By combining Equations 4.1 and 4.2, we obtain
dP m
— + =P =ml(t 4.
o+ P =mi) 43)
dv Q)
dt %
FIGURE 4.1

Control volume analysis to derive Equations 4.1 and 4.4
for aortic pressure response to left-ventricular flow rate
into the aorta. (Adopted from Figure 1 of Zhong, L.,
Ghista, D.N., Ng, EYK., Lim, ST., and Chua, T,
J. Mech. Med. Biol., 4, 499, 2004.)
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By putting A = m/R, Equation 4.3 becomes

dP

T + AP =mli(t) (4.4)
where ) is a parameter representing the aortic volume elasticity and the
flow resistance during the diastolic phase.

The left ventricle pumps blood into the aorta only during the systolic
phase. The aortic inflow rate I(t) is schematized in Figure 4.2. Based on
the I(t) profile, the inflow rate into the aorta can be approximated by the
following function:

I(t) = ae Pt — ) for 0 <t < ts (systole)
=0 for t;<t< T (diastole) (4.5)

where a and b are constants related to the rate-of-inflow and £, is the duration
of the cardiac ejection phase. Then, by carrying out integration of Equation 4.5
with respect to time, we can formulate the LV volume ejected into the aorta
(or blood volume input into the aorta) during the systolic phase, as

a 2 2/b—t
V=—e ™ +t(-—t) + Q + constant (4.6)
b b b
< |
=
|
L | L L L L |
(@ O | T
- | |
| |
—~ |
= | | |
| | |
| |
1 | 1 1 1 1 |
(b 0 | i
) | | T
FIGURE 4.2 l l
Schematics for (a) Vpy(t) the LV _ T | |
volume, (b) V,(t) volume input =< | | |
into the aorta, (c) aortic inflow 0 | T ettt Ht—1) l
rate, and (d) volume acceleration © L I L L P
d?V,/df* during the LV ejection | I T
phase. The period for the systolic r | |
phase is t=0—t,, and (t;—T) is ‘}‘5 : :
the period for the diastolic phase. = | |
(Adopted from Figure 2 of ;ﬁ | |
Zhong, L., Ghista, D.N., Ng, EYK,, N | |
Lim, S.T., and Chua, T., J. Mech. - - - -
Med. Biol., 4, 499, 2004.) (d) & Time (s) T
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In Equation 4.6, by imposing the initial condition, such that at the start of
the ejection phase the aortic volume V(t=0)=0, we obtain the following
expression for the volumes ejected into the aorta:

v = [tz—kt(% _ ts> + (2/bb— tS)] G —2/b) 4.7)

b b b?

In Figure 4.2d, the volume acceleration of blood ejected by the LV into the
aorta is shown. The maximum value of this volume acceleration d?V, /dt?,
can be employed as an LV contractility index.

4.2.3 Diastolic Pressure P4(t) Analysis

During diastole, the aortic valve is closed with zero inflow into the aorta.
Hence, in Equation 4.4, I(t) =0, and we get

dp
g HAP=0 (4.8)

The solution of Equation 4.8 is

P = Py(t) = Coe™ 4.9)

From Figure 4.3, we have
Pyt =t;) = P> (4.10)
Pyt =T)=P; (4.11)

where P; is the aortic pressure at the end of cardiac ejection or the start of
aortic diastole. Equation 4.9 describes the variation of aortic pressure Py(t)
during the ventricular diastolic phase.

Exponentially damped

Pressured  systolic pressure variation Py(t)
(mmHg)

P1=Fs WW;‘} T ) Exponential decrease
P W \ P, of diastolic pressure Py(f)

Aortic
pressure

P3=Pd

0 th t Time (s) T

FIGURE 4.3

Schematic variation of aortic pressure during a cardiac cycle. Herein, (0 — t;) is the aortic systolic
phase and (t; — T) is the aortic diastolic phase. P; is the aortic systolic pressure and P5 is the
aortic diastolic pressure. (Adopted from Figure 3 of Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim,
S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)
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Combining Equations 4.9 through 4.11, we obtain the expression for the
parameter A in terms of the end-diastolic pressure P; and end-systolic
pressure P, in the form of

In (P,/P m
A= (7(,%/155)3) =R (4.12)
From Equations 4.9 and 4.11, we have
Cp = Pse? (4.13)
Hence, Equation 4.9, for diastolic pressure becomes
Pq(t) = P3e*TH (4.14)

where the A expression is given by Equation 4.12.

4.2.4 Systolic Pressure Py() Analysis

During systole, when the ventricle pumps blood into the aorta, the inflow
rate is represented by the function I(t) = ae ?#(t; — t), given by Equation 4.5.
Hence, from Equations 4.4 and 4.5, we obtain

% + AP = mae " t(ts — ) (4.15)
Upon solving Equation 4.15, we obtain an expression for the (exponentially
damped) variation of the aortic pressure P4(t) during systole,

2

2 )
P:Ps _ —At ma _p| 2 —t b—A S 4.1
() =Cie™ + e+ (o k) A (4.16)

where m and A are the model parameters, which can be determined by
making Equation 4.16 match the arterial tonometry data. However, herein,
we will employ systolic and diastolic arterial pressure obtained from cuff
auscultatory method to evaluate the model parameter’s m and A.

From Figure 4.3, we have

Ps(t = 0) = P3, the aortic diastolic pressure (4.17)
Therefore, we have from Equation 4.16

~ ma2/(b—A) — &)

C, = P; T

(4.18)

Upon substituting the expression for C; into Equation 4.16, we get the total
expression for P(t).
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4.2.5 Determination of P,

Now, we need to evaluate the coefficients 2 and b in Equation 4.7, and then
evaluate the model parameters m and A in Equation 4.4. For this purpose,
we note that we can determine the pressures P; and P; by the cuff auscul-
tation procedure. However, in order to determine A, we also need to know
the value of P;, the maximum value of Py(t), which is the auscultatory
systolic pressure, as shown in Figure 4.3. Hence by differentiating Equation
416 and equating it to zero, we can obtain the time t,,, when P4(t) is
maximum, and equal to P;. Now,

dPs(t) At ma - _p 2
a CiAe +b_)\€ bt +

“2A+bts(b—A)  Mi(b—2) —2)
b—A (b—A)?
(4.19)

By putting dPg(t)/dt =0 at t =t,,, we obtain

ma

—Cire Mm
1A€ +b—A

b [_btm2+2A+bts(b—/\) Ats(b — ) _2)\] 0

b—A m (b—A)?
(4.20)

Then, based on Equation 4.16, we have

2 5 —ts)
Py = Cre M 4 g 2 g (S g Vg A 4.21
1 C]e +b—)\e m+ b—)\ s m+ b—A ( )
where C; is given by Equation 4.20.
In addition, for compatibility between Py4(t) and P4(f) expressions, the
diastolic pressure must be equal to the systolic pressure at time t,, so that

Equation 14 Equations 16 and 18

P Py(t =ts) Py(t = t5) (4.22)

This equation involves the aortic diastolic pressure (P;) and the systolic
pressure (P;), which can be obtained from the noninvasive cuff sphygmo-
manometry method, with sufficient accuracy.

4.2.6 Determination of Coefficients a and b in Equation 4.7

In order to evaluate the coefficients ¢ and b, we need to know the aortic
volume V,(t) during LV ejection. For this purpose, the LV geometry and
hence the LV volume data can be obtained from cineangiography measure-
ments. In other words, from the dynamic geometry of the left ventricle,
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FIGURE 4.4

(a) Cineangiography-derived data of LV volume versus time during ejection. (b) Volume input
into the aorta from the LV as derived from Figure 4.4a during the systolic phase. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K,, Lim, S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)

we can get the volume-time curve of the aorta during the systolic phase.
In Figure 4.4b, we present the data on cineangiographically derived
aortic volume during systole, derived from LV volume versus time of
Figure 4.4a. Then, by using Equation 4.7 to match the derived aortic volume
variation from the measurable LV volume (as shown in Figure 4.5), we can
determine the coefficients a and b, as given in Table 4.1. However, if we can
monitor LV volume geometry from LV echocardiography, then the coeffi-
cients a2 and b can be obtained noninvasively and the procedure for the
determination of the aortic pressure profile can be noninvasive.

4.2.7 Determination of the Model Parameters m and A

We note that we can monitor P; (Equation 4.21) and P; (Equation 4.18) by
cuff sphygmomanometry. In order to determine m and A, we also need to
evaluate f,, in Equation 4.20. We thus have three unknowns: m, A, and tp,.
The corresponding three equations are Equations 4.20 through 4.22, which
involve the three to-be-determined parameters (m, A, and f,,) based on
our knowledge of the monitored values of P; and P;. For the subject,
whose LV volume Viy(t) is displayed in Figure 4.4a, the corresponding
monitored auscultatory pressures are P;=120 mmHg and P;= 83.57
mmHg. Hence by solving Equations 4.20 through 4.22, we evaluate the
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FIGURE 4.5 (See color insert following page 266.)

Plot of computed aortic volume versus time during the systolic phase of the aorta. The round
points represent the measured data, while the solid line represents the filled computed volume
curve for values of a and b given in Table 4.1. The prediction bounds define the width of
the interval with a level of 95%. The values of these parameters and the RMS 1 (root-mean-
square error) are given in Table 4.1.

parameters: t,=0.175 s, m=0.2796 mmHg/mL, A=0.4680 sfl, and
R=0.5974 mmHg.s/mL; these values are also tabulated in Table 4.1.
Then, by substitution of these values of m and A, into Pg(f) and P(f)
expression (given by Equations 4.14 and 4.16), we obtain the complete aortic
pressure-time profile, as shown in Figure 4.6.

TABLE 4.1

Parameters Evaluated in the Case Study

Parameters Values Unit

m 0.2796 mmHg/mL
A 0.468 s

tm 0.175 S

a 2.827 x 10° mL/s

b 20.37 st

RMS 1 0.012 mL

RMS 2 1.78 mmHg
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FIGURE 4.6

Plot of the computed aortic pressure during one cardiac cycle, t;=0.35 s. The time period
(0 — t,) represents the systolic phase, and (fs — 1) represents the diastolic phase. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K,, Lim, S.T., and Chua, T., ]. Mech. Med. Biol., 4, 499, 2004.)

4.2.8 Validation of the Computed Aortic Pressure Profile

For proper validation, we need to know the aortic beat-to-beat pressure profile
obtained by tonometry. However, for this subject, we only know P; and P;
from cuff sphygmomanometry. So let us compare the aortic pressure Pg(t)
with the cineangiographically monitored P;y(t) during the ejection phase.
The result is shown in Figure 4.7, where the LV pressure is greater than the
aortic pressure during the early systolic phase due to the pressure-drop across
the aortic valve. However, the aortic pressure is greater than LV pressure in
the latter phase of ejection due to the backflow during the late systolic phase.
However, if we are interested in determining aortic stiffness parameter m and
the peripheral resistance R, then we match our expression for aortic pressure
given by Equation 4.16 with the actual monitored beat-to-beat aortic pressure
by catheterization, and evaluate the parameters m, A, and R.

4.2.9 Application

If we can obtain the LV volume from echocardiography as well as the
diastolic pressure (P3) and systolic pressure (P) by cuff sphygmomanome-
try, we can get the aortic pressure profile as well as the derived aortic
parameters (A, R, and m). Hence, we can also determine the LV contractility
(the maximum value of the LV volume ejected into the aorta) as [d*V, /dt*],nax
in terms of noninvasively monitored LV flow rate from its volume data.
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Plot of model-computed pressure versus time during the systolic phase of the aorta. Round
points represent the measured LV data, while the solid line represents the model-computed
aortic pressure curve. The RMS 2 value for this match is given in Table 4.1. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K,, Lim, S.T., and Chua, T., ]. Mech. Med. Biol., 4, 499, 2004.)

Alternatively, if we know the beat-to-beat aortic pressure by arterial
tonometry, which also requires information about cuff sphygmomanome-
try-derived Pq(t) and P4(f), we can match these data with the expressions
(given by Equations 4.14, 4.16, and 4.8) of P4(t) and Pg(f), and hence get the
values of parameters (A, R, m, and 4, b). For reduction of the peripheral
(vascular) resistance R (or A parameter), to in turn reduce blood pressure,
we can administer administration drugs to reduce stress-induced peripheral
vasoconstriction.

Our determination of the aortic characteristics is based on aortic param-
eters (A, R, and m), as well as its pressure-time profile during the systolic
and diastolic filling phases. The ability to determine the aortic pressure
noninvasively may be deemed to be significant. The volume ejected into
the aorta and the inflow rate into the aorta (Equations 4.7 and 4.5), associ-
ated with the parameters a and b, also have physiological implications. For
an aorta with different pathological conditions, these parameters would of
course change.

With a large enough database for different patients (N> 30), we can
determine the distribution of aortic stiffness parameter (1) and peripheral
(vascular) resistance R (or parameter A), from which we can categorize
normal patients and patients with arteriosclerosis (with high value of m)
and vasoconstriction (with high value of R). This analysis can hence enable
the clinician to decide on appropriate drug administration, to alter the aortic
pressure profile, and to in fact treat hypertension.
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4.3 Aortic Stiffness and Arterial Impedance
4.3.1 Measure of Aortic Stiffness (or Arteriosclerosis)

Now that we have stepped out from the heart into the aorta, we can
recognize that the blood flow in the aorta is pulsatile. This pulsatile flow
phenomenon can be employed [3] to measure and obtain the formula for
pulse-wave velocity (PWV) and arterial wall stress.

The pulse-wave velocity (PWV or V), V, = (Eh/ 2ap)/?, is obtained from
the governing pulse-wave propagation differential equation

Ppox* = (1/V2)o*plor* (4.23)
and the arterial wall stress
o=pa/h (4.24)

where
E = elastic modulus of the arterial wall
a = aortic inner radius
h = arterial wall thickness

We can then better characterize arteriosclerosis (or hardened artery disease)
in terms of the aortic constitutive property of its wall elastic modulus (E) versus
wall stress (o), by determining (for each cardiac cycle) E and o, as follows:

2(arterial radius, a) (PWYV or Vp)2 (blood density, p)

arterial wall thickness, h ’ (4.25)
_ (auscultatory diastolic pressure, P4) (arterial radius, a)
o arterial wall thickness, h

to obtain the relationship:
E=mo +E (4.26)

Figure 4.8 illustrates schematically the measurement of the pulse-wave
velocity V.

Now in Equations 4.25 and 4.26, we can ultrasonically monitor the arterial
dimensions a and h, the auscultatory diastolic pressure P4, as well as the
PWV (V) from the time taken by a pulse to traverse between two aortic
cross-sections. Thus, from Equations 4.25 and 4.26, we can evaluate the E
versus o relationship, as shown in Table 4.2.

The in vivo constitutive relationship “E versus o',”” provides a clinical
measure of arterial stiffness and arteriosclerotic disease. For instance, for the
following monitored data in Table 4.2, the aortic constitutive relationship is
given by the following expression: E (N/m?) =4.20 + 0.5 x 10° (N/m?).
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FIGURE 4.8
Schematic of measurement of pulse-wave velocity V.

4.3.2 Determination of Arterial Impedance (Another Parameter
for Arteriosclerosis) from Pulse-Wave Velocity and Arterial
Cross-Sectional Area

In this section, we will study the concept of arterial impedance and how
it influences the pulse-wave reflection and the composite arterial pulse
pressure [4,5].

The arterial pulse waveform is derived from the complex interaction of the
LV stroke volume, the physical properties of the arterial tree, and the char-
acteristics of the fluid in the system [7]. The principal components of blood
pressure (p), flow rate (q) and velocity (1) comprise both a steady component
(mean arterial pressure and flow rate) and a pulsatile component (pulse
pressure and flow rate) [8], as shown in Figure 4.9 for pressure waveform.

p=<p>+Ap (4.27)
qg=<g>+4q

The pulsatile component of pressure is determined by the pattern of LV
ejection, the stroke volume, and the compliance characteristics of the arterial
circulation [9]. Arterial compliance is defined as the change in area or
volume of an artery or arterial bed for a given change in pressure [10].
The pulse pressure for a given ventricular ejection and heart rate will
depend on arterial compliance, as well as the timing and magnitude of
peripheral pulse-wave reflection.

TABLE 4.2

Clinical Measure of Arterial Stiffness from Monitoring the Arterial Dimensions
(a and h), the Auscultatory Pressure (P), and Pulse-Wave Velocity (V)

P (mmHg) V,, (m/s) a (mm) h (mm) E (N/m? =2c%ap/h S (N/m? = Pah

80 5.3 41 1.10 2.13 x 10° 3.88 x 10*
85 5.4 45 1.00 2.60 x 10° 497 x 10*
90 542 48 0.94 3.01 x 10° 5.97 x 10*

95 55 5.0 0.90 3.38 x 10° 6.86 x 10*
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FIGURE 4.9 (See color insert following page 266.)
Schematic of a typical arterial pressure waveform.

Impedance, a term borrowed from electrical engineering theory, describes
the opposition to flow presented by a system. The impedance load of the
arterial tree can be quantified by analyzing pulse pressure—flow relation-
ships produced through the effects of disease on the structural and func-
tional components of the arterial system [11,12]. Input impedance relates
simultaneously recorded arterial pressure and flow waveforms.

4.3.3 Peripheral Resistance (TPR) and Impedance (z,)
We define <g>= <£;>, where R = 8% = TPR (4.28)
T

With atherosclerosis, the arterial radius (z) decreases and resistance (R)
increases markedly. Hence, for a given <q>, <p> is increased a lot.

We define Ag = 2—:, where zp(impedance) = ZC %’ /% (4.29)
For a given Agq, Ap is high if z, (impedance) is high. In other words, the
impedance (zp) is a direct measure of arterial hardening or stiffness or
arteriosclerosis. We will now derive Equation 4.29.
Based on Figure 4.10, for force equilibrium:

O0Ap oil
—A—— P dx — pAdx B =0 (4.30)
ou  O0Ap
Ap gy =—A—" (4.31)
Now, Ag(x,t) = Au(x, t)
p080 4 9p (4.32)

8t o ox
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FIGURE 4.10
Equilibrium of a fluid element due to differential pressure pulse across it.

Now, let

FPAp 1 PPAp 1 9Ap
O0x2  (Eh/2ap) Of2 2 O

PAq 1 3°Aq
o2 2 o

Ap = fi(x — ct) (since
(4.33)

Ag = ¢i(x —ct) (since

For instance, we can have Ap = Ap; sinai (x —ct), and Agq sinzl\—" (x —ct).
Substituting Equation 4.33 in Equation 4.32, we get

—pedpy(x — ct) = —Af{(x — ct) (4.34)
Integrating, we get
pch = Af (4.35)
Hence, for right-propagating waves f(x — ct) and ¢(x — ct); the impedance is
given by
Now, for a left-propagating wave Ap, = f,(x 4 ct) and Ag, = ¢ (x + ct); we have
—pcd, = +Af
Hence, for a left-traveling wave,
Zm (: ”Zf) - —(% - i—gi (4.37)

4.3.4 Implication

If the arterial stiffness E is high (as in arteriosclerosis), then (as per Equa-
tions 4.29 and 4.36) both z, and Ap will be high. Based on Equations 4.28 and
4.36 (1) if a person smokes or has atherosclerosis, <p> will be elevated and
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(2) if a person has hardened artery (arteriosclerosis), Ap will be elevated.
Note that R (in Equation 4.28) is increased by high u and low 4. On the other
hand, z is increased by high E as well as low a and high h.

Reiterating, for a right-propagating wave, in Equation 4.23, let

. 2w
Ag=¢;=Aq smT(x —ct)

Then from Equation 4.35

pcAqq sinz)\—w (x —ct) = AAp, sinz/\—ﬂ- (x —ct) (4.38)
and hence,
_re_Anm
Z01 = A = Alh (4.39)

For a left-propagating wave, let
. 2m
Ap=f =Apy smT(x + ct)
2w
Ag=d¢, =Ap SmT(x + ct)
Since from Equation 4.32,
A A
o8q_, 0np

P o ox

we have corresponding to Equation 4.35:

2mpc . 2w _ Alw . 2w
> Agp smT (x+ct)=— > Aqp smT (x+ct) (4.40)
Therefore, pcAg, = —AAp» (4.41)
c A
and zp = ”Z S A_Z; (4.42)

Hence, the arterial pressure characteristics in normal, atherosclerosis, and
arteriosclerosis states will be as shown in Figure 4.11.

Summarizing, we have <p>=R <g>, where R is the arteriolar bed
resistance; and Ap=Z, Ag, where Z, is the arterial impedance. Thus, in a
hypertensive person, we can reduce <p> by reducing R, and reduce Ap by
reducing Z, (or increasing compliance) by appropriate medication.
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FIGURE 4.11
Schematics of arterial pressure profile for normal, atherosclerotic, and arteriosclerotic subjects.

4.4 Wave Reflection (due to Step Change in Arterial
Impedance)

Let us now study the phenomenon of wave reflection of this aortic pressure
wave. The arteriolar system may be assumed to act as a total absorber of
energy generated by the heart, so that the pressure (p) will be dissipated into
it. However, in the arterial segment, there are variations in vessel wall
elasticity and cross-sectional area, which can give rise to pulse-wave reflec-
tion. In order to develop the analysis to elucidate these effects, let us start
with a simple idealised model (Figure 4.12) of a step variation in the
characteristic arterial impedance (Zy) due to a step change in the cross-
sectional area (A) and/or the arterial elasticity (E).

When the incident pressure wave (Ap;) reaches one such junction of
impedance change characterized by proximal and distal vessels on either
side of the junction, part of the wave (Ap’) is transmitted and part (Aps)
reflected. Let Ap (= Ap; + Ap,) denote the composite wave in the proximal

Junction
|
z, : z
A
"
|
|
!, FIGURE 4.12
:/ Model for determination of the
Proximal | Distal reflection coefficient due to a
arterial tube : arterial tube step change in arterial impedance
(Zy, A E) ! (£, A", E") from Zy to Z;,. When the pulse
““““““““ ‘!“““““““" wave arrives at the junction, part
Incident —» Transmitted of it is transmitted and part of it is

—
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tube. Then, since on either side of the junction the pressure fluctuations
must be identical, we have

Ap(x, t) = Ap1(x — ct) + Apa(x + ct) = Ap’ (4.43)
Also, for continuity of flow, we must have
Aqi + Agp = A7 (4.44)
Now, based on Equations 4.36 and 4.37, we have

A A . Ay
A==, Ap=-2, A=

_or 4.45
Zo Zo Zl (4.45)

Upon substituting Equation 4.45 in Equation 4.44, and invoking Equa-
tion 4.43, we obtain
Zy Zy :
Z_(Apl) - Z—(APZ) =Ap = Ap1 + Ap, (4.46)
0 0

thereby yielding the following expression for the reflection coefficient (Ry):

_ Apy _ reflected wave pressure  Z;—Zp 1—);
~ Ap:  incident wave pressure  Z)+Zy 1+A;

f (4.47)

where
A =2Z/Z;

Now the following possible outcomes can take place: if A, <1, then
there will be reflection with no phase change, so that, for instance, a com-
pression wave will be reflected as a compression wave. If \;=1, R;=0 or
Ap, =0; this constitutes a matched vessel junction and there will be no
reflection at the junction (x=0). If A, >1, there will be reflection with 180°
phase change.

It can be noted that as A increases Ry decreases. Since A, = Z(proximal)/
Z;, (distal), if due to distal vasodilation Zj decreases (due to increase in vessel
diameter), then A, would increase and Rywould decrease, i.e., there would be
less reflection.

4.5 What Happens at an Arterial Bifurcation?

Let us now determine what happens at an arterial bifurcation [4]. Based on
Figure 4.13, we have
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Agy
AQ=AQ;
AQy «—
Ap=Ap;
APy «— \
Aq,
x=0 Ap,

FIGURE 4.13
Schematics of transmitted and reflected pressure and flow pulses at a bifurcation.

Ap = Ap' = Aph = Ap, (4.48)
b a , Ay A 1 1
Aq = Agqy + Aq, 7%+£7 Ap <%+%>

_ 22}" (if 2, = 20)) (4.49)

Also,
Ap = Ap1 + Ap, = Ap' = Ap| = Ap) (4.50)

and

Ag = Aqi +Aqy = Ag' = Agy + Ag, (4.51)

Hence, from Equation 4.51,

/ / /
S _Spp 4 AP 28p (4.52)
20 20 Zy Zy Z

Then, from Equations 4.52 and 4.50,
Zg Z _ r_
—Ap; — = Ap, = 2Ap" = 2Ap; + 2Ap,
20 20

or

z 2z
Apy (—0 - 2> =Ap, (—0 + 2) (4.53)
20 20
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If A, be defined as
20/ (4.54)
we have

%_26—220_1—2)\2

Apl B 26 + 220 B 1+ 2)\2 (455)
Let Ry (reflection coefficient) be defined as
Apz 1-— 2)\2
Rf=—"—== 4.
ST Ap 1421, (4.56)
So, for no reflection (as ideally expected in nature), Ap, = 0, R =0
. Zo
ie, A, =—=05 (4.57)
0
. E h\"3  /g\25
1.e., <E/ X h/> X (a) =05 (458)
Suppose
a' =0.75a (4.59)

This could be a reasonable assumption as the arterial radius keeps decreas-
ing with arterial branchings. Then, if we can assume conservation of mass
between the parent vessel and its bifurcations, we will have

2mah = 2(2ma'l) (4.60)

Hence, from Equations 4.58 through 4.60,

ﬂ/

h
5 =2-=2x(075) =15 (4.61)
E 0.25

and 7= W (4.62)

Now since based on Equations 4.59 and 4.61 (a'/a)’ =0.237 and h/h' =1.5,
respectively, then



Vascular Biomechanics 133

E/E' =0.703 (4.63)

It would be interesting to experimentally validate this relationship, based on
the appropriate experimentally determined value of a’'/a, as the basis of
intrinsic optimality condition at arterial bifurcations.

Hence, we have

(i) For Rf= 0, Ap, =0 or no reflection, and A, =0.5
i.e., A, = 0.5 means Ap, = 0, and Ry = 0 (i.e., no reflection) (4.64)
(i) For A, < 0.5, App = RfApy, and 0 < Ry < 1 (4.65)
and there is reflection with no phase change, i.e., an incident expansion
wave at a site will be superimposed by a reflected expansion wave (of less
magnitude) at that site. Let us represent Equation 4.65 by
Az sin(x + ct) = ReArsin(x —ct); 0 < Rf <1
and adopt Rf=0.3, so that
Ay sin(x + ct) = 0.3A;1 sin(x — ct) (4.66)

This means that the reflected pulse-wave amplitude will add to the ampli-
tude of the incident wave.

(111) For /\Z>0.5, A ZZ—R A 2, and Rq< 0
P A f

Let Ry=—-0.2; then, A;sin(x+ct) =—1A;sin(x —ct) = 1A sin[(x — ct) — 7],
i‘e., Az = A1/5

This means that the reflected pulse wave will be 180° out of phase with the
incident way and contribute to decreasing the amplitude of the combined
incident and reflected wave. An interesting implication of this analysis is
that some persons, in whom the reflected wave is in phase with the incident
wave, could be intrinsically hypertensive.

4.6 Artery Dividing into n Branches

In nature and in the body, there is a lot of inbuilt and intrinsic optimization,
as to the design of cardiovasculature, pulmonary bronchioles, heart valves,
etc. To investigate these phenomena could indeed be fascinating. We will
briefly illustrate this concept with respect to arterial branching.



134 Applied Biomedical Engineering Mechanics

Let an artery of impedance Z,, divide into n identical branches, each one
having impedance Z,4. Then at the branch site, we have the following
governing equations:

Ap;(incident pressure pulse) + Ap, (reflected pressure pulse)
= Apq (the transmitted pressure pulse in each
of the branched vessels) (4.67)

Agi(incident flow-rate pulse) + Ag, (reflected flow-rate pulse)
= nAgq (sum of the flow-rate pulse in the n
branch vessels) (4.68)

Now since

Aql = Apl/Zop
and qu = —Apz/Zop (469)

where the arterial impedance zo=p(PWV)/A=pc/A (the cross-sectional
area) and the pulse-wave velocity

PWV (or ¢) = (Eh/2ap)"/? = (Eh/2p)"* (/| A)/* (4.70)
We then obtain from Equations 4.68 and 4.69,

Apy B Ap, . Apq

471
Zop Zop Zod ( )
and
Zod Zod -
Apq (”Zop> —Apy <nZOp) = Apg 4.72)
Then, from Equations 4.67 and 4.72, we obtain
Zod Zod
Api (1 — A 1) = 4.7
”1< nzop>+ P2<n20p+ ) 0 *7)
Therefore,
Zoq — NZ
BP2 _ Zoa = Mop (4.74)

E - Zod + nZOp

Now for no reflection at the branched junction, we need to put the
pulse-reflection coefficient Ry=(AP,/AP;) equal to zero, giving us (from
Equation 4.74)
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Rf = (1 —nA,)/(1+nA;) =0;
wherein A, = zop/Zod, (4.75)

ie, A, =zop/2oa = 1/1 (4.76)

Then, based on Equations 4.76, 4.29, and 4.70, we obtain the relationship

(PWV, /PWV4)(Ag/Ap) = 1/n 4.77)
Ep hp\"? (AaY*

It would be so interesting to check if this relationship holds good
at branched arterial sites, as an index of optimal design of arterial
branched junctions, for minimizing pulse-wave reflections at the branched
junctions.

4.7 Wave Reflection Influence on the Composite (Arterial)
Pressure Wave

Now that we have seen how wave reflection occurs, let us study the
influence of the wave reflection on the composite pressure and flow-rate
waves. Then we can understand how wave reflection affects the amplitude
and time course of the composite (or integrated) pressure wave which in
turn constitutes the ventricular afterload [4].

Consider a composite wave Ap(x,t) made up of an incident wave, Ap; =
A cos(kx —wt+¢1) and a reflected wave, Ap, =B cos(kx —wt + ¢,) where
w=wave frequency and ¢ is the phase angle. We can rewrite the expres-
sions for the two pressure waves as follows:

Ap1 = Acos [wt — (kx + ¢1)]

(4.79)
Apy = Beos [wt + (kx + ¢,)]
We can analyze for the following alternative situations:

(a) Incident and reflected waves (Ap; and Ap,) will be in phase at
points x,, (= xp, X2, ...), if, based on Equation 4.79:

kxy + ¢y = —(kxy + 1) +nm;, n=0,2,4, ... (4.80)

Then, the amplitude of the composite wave will be A+ B, and the
incident and reflected waves will be in phase. These points of
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amplification of pressure fluctuation are referred to as antinodal
points of pressure.

(b) Incident and reflected waves (Ap; and Ap,) will be 180° out of
phase at x,, (=x1, x3, x5, etc.), if, based on Equation 4.79

kxy, + ¢ = —(kx, + ) +nm;, n=1,3,5, ... (4.81)

The composite wave will then have an amplitude of A — B, and will be in
phase with the incident wave if A > B. These sites of minimal pressure
fluctuation are referred to as nodal points.

Equations 4.80 and 4.81 can be restated as

2kxy + 1+ ¢, =nm; n=0,1,2, ...; reflected wave in phase with

incident wave

2kxpi1+ 1 +dy=m+1)m n=0,1,2, ...; reflected wave 180° out of
phase with incident wave

Upon subtracting these two equations, we obtain
2k(xp41 — X)) = 2kAx = m; Ax = 7/2k

and since k, the wave number, is equal to 27/A, where A is the wavelength,
we have the distance between nodal and antinodal points:

Ax =A/4 (4.82)

This situation is pictorially depicted in Figure 4.14. It can be seen that the
ideal location of the heart with respect to the vascular system is at a nodal
point and not at an antinodal point (of maximal pressure fluctuation), where
it would have to do a lot more work.

Let us continue on, and develop the expression for the composite pressure
wave Ap. This is given from Equation 4.79 by

Ap = A cos[wt — (kx + ¢1)] + B cos[wt + (kx + ¢p,)]
= Acos(kx + ¢1) cos wt + Asin(kx + ¢,) sin wt
+ Bcos(kx + ¢,) cos wt — Bsin(kx 4 ¢,) sin wt
= a1(x) cos wt + a(x) sin wt (4.83)

where

a1(x) = Acos(kx + ¢1) + B cos(kx + ¢,) and
ap(x) = Asin(kx + ¢1) — Bsin(kx + ¢,)
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FIGURE 4.14

Variation of pressure amplitude oscillations along the arterial segment showing the location
of nodal and antinodal points.

Expression 4.83 for the composite pressure wave can be more concisely
expressed as

Ap = a(x)[cos wtcos ¢ — sin wt sin ¢p] = a(x) cos[wt + P(x)]
where

a(x) = [a} + a3]"/* = [A® + B? + 2AB cos(2kx + ¢; + )]/
= A + B, when 2kx + ¢, + ¢, = nm;
for n even, corresponding to an antinodal point
= A — B, when 2kx + ¢ + ¢, = n;
for n odd, corresponding to a nodal point

and ¢(x) = tan! (— a2(x)> = tan

a(x)

(4.84a)

1 [ Asin(kx + ¢1) — Bsin(kx + ¢,)
[_ A cos(kx + ¢1) — Beos(kx + ¢,)
(4.84b)
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Thus, if we study the composite pressure wave, the following observations
can be made:

1. At any site n in the vascular tree, the oscillation Ap(=a(x)
cos[wt 4+ ¢(x)]), is sinusoidal with a frequency w and a constant
amplitude a(x) at x.

2. At different sites x, the amplitude of the oscillation Ap will be

different.
3. Phase of the oscillation Ap(=a(x) cos[wt + ¢(x)]) will vary along x,
as given by
tan b (x) Asin(kx + ¢1) — Bsin(kx + ¢,) (4.85)

~ Acos(kx + ¢;) + Beos(kx + ¢,)

Now, the relation of ¢ with the phase angle ¢, of the incident wave is given by

ABsin(2kx + ¢, + b,)
2 — ABcos(2kx + ¢ + )

tan [p(x) — 1] =~ (4.86)

and in general ¢ will be different from ¢;.

Now let us see what happens to the composite flow wave or oscillation.
According to Equations 4.36 and 4.37 we have for the composite flow pulse-
wave oscillation

1
Ag =—-(Ap1 — Ap2) (4.87)
0
Substituting for Ap; and Ap, from Equation 4.79, we obtain

Ag = Zio [A cos[wt — (kx + ¢1)] — B cos[wt + (kx + ¢,)]]
= b(x) cos[wt + (x)] (4.88)

where

A2 + B2 — 2AB cos(2kx + 1 + ¢,)
bx) = 7
A—B .
=— for 2kx + ¢, + ¢, = nmr; for n even, corresponding
0

to an antinodal point
A+B .
=— for 2kx + ¢ + ¢, = nar; for n odd, corresponding
0

to a nodal point (4.89a)




Vascular Biomechanics 139

TABLE 4.3

Pressure Pulse, Flow Pulse, and Impedance at Nodal and Antinodal Points

Pressure Flow Rate Z, Impedance = Pressure
Fluctuation Fluctuation Fluctuation/Flow
n Amplitude Amplitude Fluctuation
Even A+B (A-B)/Z, & Zo
(antinodal point) (max, if A (min, if A
and B positive) and B positive)
0dd A—B (A+B)/Z gg;g; . Z
(nodal point) (min, if A (max, if A
and B positive) and B positive)

Note: A and B are the amplitudes of the incident and reflected pressure waves.

Asin(kx 4+ ¢) — Bsin(kx + ¢,)

— _1 —
and §(x) = tan A cos(kx + ¢1) + B cos(kx + ¢,)

(4.89b)

Thus, from Equations 4.84 and 4.88, we develop Table 4.3.

Thus, at nodal points, we have low pressure fluctuations and high flow
fluctations. On the other hand, at antinodal points, we have high pressure
fluctuations and low flow fluctuations. At the heart, we have large fluctu-
ations of flow and ideally low fluctuations of pressure, while at the other
end of the arterial tree we have low fluctuations of flow but high fluctu-
ations of pressure.

Now in the case of the human arterial system, the wavelength for the first
harmonic of the pulse wave is of the order of A=400 cm, so that
A/4=100 cm. Thus, if the heart be deemed to be naturally located at the
nodal point, the first subsequent antinodal point will be 100 cm away from it.
Thus, from the heart toward the terminus of the arterial tree, the pressure
pulse will increase. In other words, the terminal or distal pressure pulse
amplitude will exceed the proximal pressure pulse amplitude, which would
be minimum at the entrance to the aorta. Correspondingly, the distal flow
pulse amplitude will decrease, as schematically shown in Figure 4.15.

o 2601
N
< L
e 220
o L
£ 180 7/\/\
[%]
(%]
L 140 . ) ) ;
o Ascending Thoracic Abdominal Abdominal
aorta aorta aorta middle aorta distal Famoral
FIGURE 4.15

Variation of the pressure pulse along with aorta showing that the amplitude of pressure
oscillation increases distally from the heart. It is to be noted that the corresponding flow velocity
oscillation amplitude will, on the other hand, decrease distally from the heart.
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4.8 Preventing Myocardial Infarction (by Reducing
the Hydraulic Load on the LV)

We have recognized that the hydraulic load on the LV would be due to (1)
the aortic steady pressure <p> and (2) the composite pulse pressure of
amplitude (A — B) at a nodal point, due to arterial branchings. The hydraulic
load on the heart can be manipulated by reducing arteriolar resistance,
increasing arterial compliance, and by reducing or delaying reflected pres-
sure waves arriving back at the heart during systole. Most vasodilator
agents are considered to exert their beneficial effect by arteriolar dilatation.
It is also likely that some vasodilators such as nitroglycerin may reduce
wave reflections by a direct effect on the compliance of peripheral arteries.
Agents, which increase arterial compliance and yet have little effect on
arteriolar resistance, are likely to be of value in reducing the left ventricular
pulsatile load, yet maintain mean vascular perfusion pressures unchanged.
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5.1 Scope

This chapter deals with modeling of lung ventilation, first, in the form of a first-
order differential equation of the lung volume (V) response to lung driving
pressure (Pyy), in terms of the lung compliance (C) and resistance to airflow
rate (R). The solution of this equation is derived in terms of compliance (C) and
the resistance to flow rate (R), which can then be employed to diagnose lung
disease states. The parameters R and C are also combined to formulate a
nondimensional index, whose ranges of values would differ with lung disease
states. Thus, this index makes it more convenient to diagnose lung diseases.

The determination of the model parameters R and C from lung volume
and driving pressure requires intubation of the patient. However, the solu-
tion of the governing equation also contains terms involving a combination
of pressure and compliance as well as of 7 (= RC). Hence, when this solution
is made to match the monitored lung volume response, we can evaluate
these terms without requiring to know the driving pressure independently;
this avoids intubation of the patient. We then formulate another corre-
sponding nondimensional index involving these terms, and demonstrate
that this index in fact involves the pressure terms, as well as R and C
independently. This provides validation of this index, based on the lung
volume response to driving pressure in terms of R and C.

We next formulate a second-order differential equation for lung volume
response to lung driving pressure. We demonstrate how the new parameters
of this governing equation can be determined. These parameters also involve
Rand C, and hence can also be employed to diagnose lung disease states.

Now, it is possible that one lobe of the lung be normal and the other
diseased. For this purpose, we develop a two-lobe lung model in terms of
the response of their volumes to lung driving pressure. This two-lobe model
is formatted using the first-order differential equation model. The model
involves the compliance and flow resistances of the two lobes. We then
demonstrate how this two-lobe model can be employed to separately evalu-
ate the parameters of the two lobes, and hence assure the normality or
diseased states of the two lobes separately.

This chapter is developed along similar lines to our previous Chapter 4 in
Ref. [1], and the figures employed are adopted from this chapter in the
afore-mentioned book.*

5.2 Ventilatory Function Represented by a First-Order
Differential Equation Model

Lung mechanics involves inhalation and exhalation pressure and volume
changes. Three pressures are involved in the ventilatory function, namely

* With permission from the publisher WIT Press, Southampton, U.K.
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FIGURE 5.1

Lung ventilation lumped parameter model. In the figure, P, is the alveolar pressure; Py, is
the pressure at the mouth; P, is the pleural pressure; Pe=P,—P,=2ho/r=2T/r, the lung
elastic recoil pressure; r is the radius of the alveolar chamber and  is its wall thickness; T is
the wall tension in the alveolar chamber; V is the lung volume; R is the resistance to airflow;
and C is the lung compliance. Adopted from Ghista, D.N., Loh, K.M., and Damodaran, M., in
Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and
Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)

atmospheric pressure or pressure at the mouth (P,,), alveolar pressure (P,),
and pleural pressure (Pp). The pressure gradient between the atmospheric
and alveolar pressures causes respiration to occur. During inspiration,
P, <Py, and air enters the lungs. During expiration, P, > Py, and air is
expelled out of the lungs passively. This pressure differential between
P, and P, provides the driving pressures (PL) for gas flow, in terms of the
elastic recoil pressure of the lumped alveolar chamber and the pressure
differential between P,, and P, (expressed as RV). Thus, the assessment of
respiratory mechanics involves the measurements of flows, volumes, pres-
sure-gradients, and their dynamic interrelationships. The lung ventilatory
model (LVM) then enables computation of lung compliance (C) and airway
resistance-to-airflow (R), which are the parameters of the governing equa-
tion. Lung ventilatory dysfunction due to various diseases is characterized
by the altered values of R and C, or in terms of an index involving a
combination of R and C. Hence, the LVM can be employed to detect and
characterize lung disease states.

The lung ventilation model is based on the equilibrium differential equa-
tion, expressing lung volume response to driving pressure across the lung.
This dynamic relationship includes lung compliance (C) and the resistance-
to-flow (R) offered by the airways during inspiration and expiration. In this
model, the pressure generated by the respiratory muscles on the chest wall,
namely the mouth pressure minus the pleural pressure, represents the
driving force for the operation of the respiratory pump (for lung filling
and expiration), as depicted in Figure 5.1.

5.2.1 Simulating Clinical Data

The clinical data consists of lung volume and driving pressure (mouth
pressure — pleural pressure) in intubated subjects. The lung volume can be
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measured by integrating the airflow velocity—time curve, where the airflow
velocity can be measured by means of a ventilator pneumatograph. Inhalation
and exhalation pressures are measured by means of a pressure transducer
connected to the ventilatory tubing. The pleural pressure is measured by
placing a balloon catheter transducer through the nose into the esophagus,
assuming that the esophageal tube pressure equals the pressure in the pleural
space surrounding it.

5.2.2 Derivation of the Governing Differential Equation for Lung Volume
(V) Response to Driving Pressure

For developing the lung ventilatory model, we employ a typical sample
clinical data on both lung pressure (mouth pressure — pleural pressure) and
volume, as depicted in Figure 5.2.

(V) +05[

Airflow resistance is
higher during inspiration
than expiration

V, Tidal volume (liters) (FRC) 0
+0.51

V, Air flow-rate @
(liters/second)
-0.5

+1|

P,, Alveolar pressure
with respect to the pressure 0 The alveolar pressure (P,)
at the mouth (cm H,0) curve is in phase with the
airflow curve. It constitutes
the resistance pressure

qL

Py, Pleural pressure (cm H,0) -5

-9 " 1 1 1
o 1 2 3 4 5

Seconds

FIGURE 5.2 (See color insert following page 266.)

Lung ventilatory model and lung-volume and pleural-pressure data. In the bottom figure,
graph 1 represents (P, — P,) = —Pg (the pressure required to overcome lung elastance
plus lung elastic recoil pressure at the end of expiration =V/C + Pe); graph 2 represents Py,
obtained by adding (P, — Py,) to graph 1. The driving pressure Pn(t) in Equation 5.1 equals P,
minus Py at the end of expiration. (Adopted from Ghista, D.N., Loh, K.M., Damodaran, M., in
Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and
Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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Based on Figure 5.1, we get
(Py — Pp) = Pe (elastic recoil pressure)
Pg = (2ho)/r =2 T/r = V/C + P (at the end of expiration)
(Pm — Pa) = R(dV/dt)
PL:Pm_Pp:(Pm_Pa)+(Pa_Pp)
From the above equations, we get

R(dV/d#) + V/C = PL — Pg = Py (5.1)

where Py is the total (positive) pressure across the lung and (P, — Pejo) = PN
(the driving pressure). Equation 5.1 is the governing differential equation of
lung volume (V) response to driving pressure Py.

5.3 Lung Ventilation Performance Using the Linear
First-Order Differential Equation Model

We first analyze lung ventilation function by means of Equation 5.1.
A sample clinical pressure-volume data is displayed in Figure 5.2.

Graph 2, at the bottom of Figure 5.2, represents P, (with respect to the
pressure at the mouth) = P, — Pp,,. According to our analysis (Equation 5.1),

14 dv
_PL:(Pp_Pm):(Pp_Pa)+(Pa_Pm):_<E+Pe10)_RE

-V
Py — Peo = Pn(t) = RV + C
which is in fact Equation 5.1.
In the model governing Equation 5.1, for lung volume (V) response to
driving pressure (Py):

RV + = = Py(t) — Peyg = Px(t) (5.2)

0l <

(1) The values of the net driving pressure are obtained from the Py data,
provided in Figure 5.3a, where Pn(t) values are with respect to Pgjp; (2) the
parameters of this governing-differential equation are lung compliance (C)
and airflow resistance (R) (in the equation, both R and C are instantaneous
values); (3) lung V=V(t) — V, (the lung volume at the end expiration); the
lung volume date is provided in Figure 5.3b; (4) Pyp is the lung elastic recoil
pressure at the end of expiration, and (5) Pep = Pey — V/C.

The frequency of the lung ventilatory cycle is w, and T is the period of one
lung inspiration—expiration cycle. For our sample data w =1.26 rad/s. At the
end of expiration when w t =w T, Py = P.
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FIGURE 5.3

(a) The pressure curve Pn(f) represented by Equation 5.5 matched against the pressure data
(represented by dots). (b) The volume curve V(f) represented by Equation 5.8, for C, =0.21321
(em H,0) ! and R, =2.275 cm H,0 s L™ ! matched against the volume data represented by dots.
In this figure, the lung volume and lung pressure are indicated with respect to the end-
expiratory volume and pressure, respectively. (Adopted from Ghista, D.N., Loh, KM., and
Damodaran, M., in Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numer-
ical Simulation and Applications. V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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Let the driving pressure Pn(f) be represented by means of the following
expression:

3
Px(t) =) Pysin(wit +c))
i=1

Then, the governing Equation 5.2 (for lung volume response to driving
pressure) becomes

oV 2
RV + == Pn(b) = Z P; sin(w;t + ¢;) (5.3)
=1

where the right-hand side represents the net driving pressure, Py=
(Pm — Pp) — Pejo. This Py is in fact the driving pressure (Pp, — Pp,) normalized
with respect to its value at the end of expiration. Equation 5.3 can be
rewritten as follows:

3

1
Rl: Z i sin(w;t + ¢;) (5.4)
-1

o

where the Pn(t) clinical data (displayed in Figure 5.3) is assumed to be
represented by

3
Pn(t) = Pisin(wit + ¢;) (5.5a)
i=1

where

P; =1581 cm H,O P, = -5.534 cm H,O P3; = 0.5523 cm H,0O
w1 = 1.214 rad/s wy =0.001414 rad/s w3 =2.401 rad/s (5.5b)
c1 = —0.3132 rad ¢, = 3.297 rad c3 = —2.381 rad

The clinical driving pressure Pn(t) data, as represented by Equation 5.5,
is depicted in Figure 5.3a. The corresponding lung volume V(t) response is
also represented in Figure 5.3b. If, in Equation 5.4, we designate R, and C, as
the average values (R and C) for the ventilatory cycle, then the solution of
Equation 5.4 (as derived in Appendix A) is given by

+He /&G (5.6)

Vi) — 23: P;C.[ sin (wit + ¢;) — wiRaCa cos (wif + ¢;)]
— (1+ 0?(RaCa)?)

where 7, =R,C,. An essential condition is that the flow rate (dV/dt) be zero
at the beginning and end of expiration. In other words, we want that
dV/dt=0 at t =0, in order to determine the constant H.
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From Equation 5.6, we have

_t/'ra — —
——e =0att=0
(l + a)l-zTi) Ta

t

dv 23: P,C, [w,-(cos wit +¢;) + a)l-ZTa sin(w;t + Ci)] H

. 2o
i—1 (1+wir?) Ta

) 23: PiCqy[wicosci + w?tasing]  H

3. PiCata|w; cosc; + w?r, sing;]

i=1 (1 + “’1'27&) 672

When this expression of H is substituted in Equation (5.6), the resulting

3
expression of V(t = 0) = > P;C, sinc;. Its value becomes very small for the
i=1

data values in Equation (5.5b) and the order of magnitude of C,. Hence, we
can assume that V(t = 0) ~ 0. Also, based on the values of (P;, ¢;, ;) and of
the general order of magnitude of 7, and C,, the value of H during a
respiratory cycle is small, so that we can afford to neglect the exponential
term in Equation 5.6. Hence, the lung volume response to driving pressure
can be represented by Equation 5.6 without the exponential term.

Now, by matching the above V(t) in Equation 5.6, without the exponential
term, with the given V(t) data (in liters) in Figure 5.3b, and carrying out
parameter identification, we can determine the in vivo values of R, and
C, to be

C, = 0.23132 L(cm HZO)fl, R, =2.275(cm H,0)s L' and
(5.7b)
Ta =0485s
The computed V() curve, represented by Equation 5.6, without the expo-
nential term, for the above values of C, and R,, is shown in Figure 5.3b.
We can, however, also analytically evaluate R, and C, by satisfying some
conditions. For this purpose, we first note that V is maximum (=tidal
volume, TV) at t =t,=2.02 s. At t=1,, the exponential term et/ in Equa-
tion 5.6 becomes of the order of ¢~ '%, and hence negligible. Then, by putting
V(t = 2.02) = 0 in Equation 5.6 (without the exponential term), we obtain

P,C, [wi cos(w; X 2.02+¢;) + w?Ta sin(w; x 2.02 + Ci)]
(14 w?r?

V2o = =0 (5.8

3
i=1

in which the values of P;, w;, and ¢; are given by Equation 5.5b. Then by
solving Equation 5.8, we get 7,=0.522 s, which is of the same order of
magnitude as 7, evaluated earlier and given by Equation 5.7b.

Then, we also note that at ¢,=2.02 s (at which dV/dt=0), V=0.55 L.
Hence, upon substituting the parametric values from Equation 5.5b into
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Equation 5.6, and neglecting the exponential term, we get the following
algebraic equation:

3 : 2
P,C it i) — w; it i
V(i’)|t:2_02 _ Z iCal sm(w, + Cl) w;Ty cos(w;t + Cl)]

(1 + w?r?

=255C, (5.9)
i=1

by employing the values of P;, w;, and c; from Equation 5.5b. Now since
V(t=2.02s5)=0.55L, we get

255 Clatt—2025) = 0.55 L

. (5.10)
Clatt=2025) = 0.22 L(cm H,O)

which is also of the same order of magnitude as the average compliance C,
given by Equation 5.9.

Since lung disease will influence the values of R and C, these param-
eters can be employed to diagnose lung diseases. For instance, in the case
of emphysema, the destruction of lung tissue between the alveoli produces
a more compliant lung, and hence results in a larger value of C. In
asthma, there is increased airway resistance (R) due to contraction of the
smooth muscle around the airways. In fibrosis of the lung, the membranes
between the alveoli thicken and hence lung compliance (C) decreases.
Thus, by determining the normal and diseased ranges of the parameters R
and C, we can employ this simple lung-ventilation model for differential
diagnosis.

5.4 Ventilatory Index

Although R, and C, have by themselves diagnostic values, let us formulate a
nondimensional index to serve as a ventilatory performance index VTI; (to
characterize ventilatory function) as

VTI; = [(R,C,)(Ventilatory rate in s~ *)60]* = 72 (BR)?60? (5.11)

where BR is the breathing rate.

Now, let us obtain its order of magnitude by adopting representative
values of R, and C, in normal and disease states. Let us take the earlier
computed values of R, =2.275 (cm H,0) s L', C, =0.2132 L (cm H,0)},
and BR=12m ' or 0.2 s7', computed by simulating the data of Figure 5.3
by means of Equation 5.6, as given by Equation 5.7b.

Then, in a supposed normal situation, the value of VTI, is of the order of
33.88. In the case of obstructive lung disease (with increased R,), let us take
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R,=5(cm H,O) s L, C,=012L (cm HZO)_l, and BR=0.3 s7}; then we get
VTI; =116.6. For the case of emphysema (with enhanced C,), let us take
R,=2.0 (cm HO) s L%, C, =0.5 L (cm H,0) !, and BR=0.2 s ; then
we obtain VTI; =144. In the case of lung fibrosis (with decreased C,), we
take R, =2.0 (cm HO)s L™}, C, =0.08 L (cm H,O) !, and BR=0.2 s ; then
we obtain VTI; =3.7.

We can hence summarize that VTI; would be in the range of 2-5 in
the case of fibrotic lung disease, 5-50 in normal persons, 50-150 in the
case of obstructive lung disease, and 150-200 for the case of emphysema.
This would of course need more validation by analyzing a big patient
population.

Now, all of this analysis requites pleural pressure data, for which the
patient has to be intubated. If now we evaluate the patient in an outpatient
clinic, in which we can only monitor lung volume and not the pleural
pressure, then can we develop a noninvasively obtainable ventilatory
index?

5.4.1 Noninvasively Determinable Ventilatory Index

In order to formulate a noninvasively determinable ventilatory index based
on the governing Equation 5.1, we need to recognize that in this case Pn(t)
(and hence P;, w, and c;) will be unknown, and we hence need to redesignate
the model parameters and indicate their identification procedure. For this
purpose, we fit Equation 5.6 (without the exponential term) to the V(t) data
in Figure 5.3a, and obtain

PiC =0.3223 P,C=0.3143 P5C = —0.02269 (5.12)
w; =—1.178 @y = 05067 w3 =1.855 (5.13)

01 =90223 ¢ =02242 3 =—3.961 (5.14)

72 = 0.5535 (5.15)

We can now also formulate another noninvasively determinable nondimen-
sional ventilatory index (VTI,) in terms of these parameters as follows:

(BR)7[TV]? (BR)R[TV]?
VTI, = = 5.16
2 7 |PLC||P,C||P5C| — |P1P,P5C2 (5.16)

It is seen that VTI; can in fact be expresse