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Preface

There has been a long-standing need for a comprehensive book on bio-
medical engineering that covers the analyses and applications of biomedical
and physiological systems as well as human fitness and sports. In address-
ing this need, this book can serve as a definitive textbook as well as a major
reference source.

The book’s contents include the following:

1. An introductory chapter that develops the foundation of how
physiological systems and their assessment can be described by
means of governing differential equations, whose parameters can
be combined into nondimensional physiological diagnostic indices

2. A section on cardiological engineering mechanics, including three
chapters dealing with cardiac mechanics, left-ventricular contrac-
tility indices, and vascular mechanics

3. A section on pulmonary engineering mechanics, including three
chapters on lung ventilation and disease diagnosis, lung gas-transfer
mechanics and determination of O2 and CO2 diffusion coefficients,
and lung-ventilatory indices for extubation of chronic obstructive
lung disease patients from mechanical ventilatory support

4. A section on glucose–insulin regulation (in diabetes) engineering
mechanics, which has three chapters covering glucose–insulin
regulatory analysis, responses of glucose and insulin to glucose
tolerance tests, and indices for differential diagnosis of diabetic
patients and those at risk from becoming diabetic

5. A section on orthopedic engineering mechanics, involving three
chapters dealing with the analyses and design of internal bone
fracture-fixation plates as well as the design analyses of human
spinal vertebral body and intervertebral disc as optimally
designed human body structures

6. A section on fitness and sports engineering mechanics, on
(i) heart-rate variation during and after exercising on treadmill,
optimal walking, and jogging modes requiring minimal work
expenditure, and analyses of hip joints to determine their stiffness
and damping coefficients, and (ii) analyses of sports events
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(namely soccer, baseball, basketball, and gymnastics) delineating
the analytical basis for intricacies of their techniques and perform-
ance (such as the basis of curving soccer kicks, baseball throws and
batting technique, and high-performance of Yurchenko layout
vault)

In addressing this comprehensive range of topics, the book covers a wide
spectrum of engineering mechanics disciplines of solid and fluid mechanics,
dynamics and vibrations, gas diffusion and transfer, and control systems.
The book can therefore be ideally employed as a textbook for a biomedical
engineering course at the senior undergraduate level or at the graduate
level.

In the first section on cardiological engineering mechanics, Chapter 2
describes left ventricular (LV) mechanics. This chapter deals with (1) deter-
mination of the pressure drop across a stenotic valve, (2) determination of
the constitutive properties of mitral and aortic valves from their static and
dynamic analyses, (3) determination of the intra-LV blood flow velocity and
pressure distributions (in normal and myocardial infarcted cases) before
and after nitroglycerin administration as a means of deciding if coronary
bypass surgery would benefit patients with myocardial infarcts, and (4) LV
passive and active elastances, as measures of LV pressure dynamics
response to LV volume changes and of LV contractility.

Chapter 3 deals with left ventricular contractility indices. Here, we first
determine the wall stress (s) in an ellipsoidal model of the LV, normalize it
(to s*) with respect to LV pressure, and employ this noninvasive computa-
tional index (ds*=dt)max as a contractility index. It is found that this index
has a good correlation with the traditional LV contractility index (dp=dt)max,
which requires determination of LV pressure by cardiac catheterization. It is
also found that more ellipsoidally shaped LVs have higher values of this
contractility index (ds*=dt)max. The second part of this chapter deals with
the formulation of the sarcomere model of a myocardial-wall fiber, and the
expression of its contractile element characteristics (of force vs. shortening
velocity) in terms of the monitorable data (of LV pressure, volume, wall
thickness, and myocardial volume). Again, this index bears a good correl-
ation with (dp=dt)max.

Chapter 4 is on vascular biomechanics. It deals with (1) noninvasive
determination of aortic pressure (as well as aortic stiffness and peripheral
resistance) in terms of LV volume (ejected into the aorta) versus time data,
and auscultatory diastolic and systolic pressures; (2) determination of aortic
constitutive property (of E vs. s) from measurement of pulse wave velocity,
aortic dimensions, and auscultatory diastolic pressure; (3) arterial bed per-
ipheral resistance (as the ratio of mean arterial pressure and flow rate) and
arterial impedance (as the ratio of arterial pulse pressure and flow rate); (4)
the phenomenon of wave reflection at aortic (arterial) bifurcations; and (5)
the composition and amplitude variation of the composite wave in aorta,
with an interesting postulation that in an ideal situation the heart is located
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at the site of minimum value of the composite wave pressure amplitude so
that it has minimal after-load.

The second section of the book is on pulmonary engineering mechanics.
In this section, Chapter 5 deals with lung ventilation modeling (with appli-
cation to lung disease determination) based on the differential equation of
lung volume (V) response to lung driving pressure (PN) (in an intubated
patient), in terms of lung compliance (C) and resistance to airflow (R). These
parameters, R and C, are then combined into nondimensional ventilatory
performance indices. The lung volume response expression can also be
fitted to the lung volume data in terms of R and C as well as the product
of pressure and compliance terms. The corresponding ventilatory perform-
ance index would not require intubation of the patient. A two-lobe lung
model is also developed, and its total lung volume expression is deter-
mined. By fitting this expression to the monitored lung volume data, we
can evaluate R, C, and ventilatory indices of left and right lung separately.

Chapter 6 deals with lung gas-transfer performance analysis. We first deal
with inspired and expired air composition analysis, based on mass balances.
We then derive the expressions for O2 and CO2 diffusion coefficients in
terms of O2 consumption rate and CO2 production rate (from the inspired–
expired air composition analysis), alveolar air O2 and CO2 partial pressures,
and O2 and CO2 concentrations in the venous blood.

Chapter 7 deals with evaluation of the lung status of mechanically venti-
lated intubated patients, and the index for deciding that they are ready to be
weaned off the mechanical ventilator. This index is expressed in terms of
lung capacitance (C) and flowrate resistance (R), as well as monitored tidal
volume (TV), breathing frequency (RF), and peak inspiratory pressure (Pk).
The values of R and C are obtained by again modeling the lung ventilatory
volume response to its driving pressure, and evaluating them in terms of the
monitored values of lung volume (specifically, tidal volume) as well as
inspiratory peak pressure and pause pressure (when the lung volume is
maximum).

In the third section on glucose–insulin regulation (in diabetes)
engineering mechanics, Chapter 8 first deals with the basics of blood
glucose–insulin regulatory mechanics. This entails second-order differential
equationsmodeling and solutions of glucose and insulin blood-concentration
responses to glucose injection for three different types of glucose inputs:
glucose input as a step function, glucose input as an impulse function,
and glucose input as a rectangular pulse. The solutions of the governing
equations of glucose and insulin blood concentrations to these three inputs
are expressed in terms of the intrinsic parameters (a, b, g, and d)
that relate the time rates of change of blood glucose and insulin concentra-
tions to blood glucose and insulin concentrations as well as glucose
input function, in the form of two first-order differential equations.
These two first-order differential equations are combined into second-
order differential equations of glucose and insulin responses to glucose
inputs. These second-order differential equations have parameters of
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attenuation (or damping) constant (A) and system natural frequency (vn),
which are in turn expressed in terms of the intrinsic parameters (a, b, g,
and d). The relations between these parameters A and vn (and hence
between a, b, g, and d), in turn, enable us to designate the system response
as underdamped (for normal subjects), overdamped (for diabetic subjects),
and critically damped (for subjects at risk of becoming diabetic).

Chapter 9 entails analytical simulation of the oral glucose tolerance test
involving the governing equation of blood glucose concentration (y)
response to glucose ingestion. This governing equation is a second-order
damped-oscillatory differential equation in glucose concentration (y)
response to an impulse glucose-input function. This model equation param-
eters are the system’s damping constant (A), natural frequency (vn), and
damped frequency (vd). The equation is solved for (1) underdamped
response pertaining to the data of ‘‘glucose concentration versus time’’ for
a normal subject and (2) overdamped response to simulate the ‘‘glucose
concentration versus time’’ data of a diabetic subject. The equation solutions
are fitted to the data, and the model parameters are determined analytically.

The values of the model parameters are distinctly different for normal
and diabetic subjects. The purpose of this analytical simulation of the
glucose-tolerance test (by means of the solutions of the governing differen-
tial equation) is to provide an analytical method to characterize the glucose
concentration (y) versus time data in terms of the values of the model
parameters. This is deemed to more reliably represent the entire data
(of y vs. t), instead of merely employing discrete values (y) of the data to
differentially diagnose diabetic subjects and borderline diabetic subjects
(whose data is represented by a critically damped solution of the governing
equation) from normal subjects.

Chapter 10 constitutes solutions of the governing differential equations of
glucose concentration (y) and insulin concentration (x) to impulse glucose
input function (to simulate glucose tolerance test data). These solutions’
expressions (representing underdamped, overdamped, and critically
damped responses) of the system differential equations model are fitted to
the ‘‘y versus t’’ and ‘‘x versus t’’ data. Depending on the value of the
regression correlation coefficient, a particular response function (i.e., under-
damped or overdamped or critically damped function) is selected to best
fit the data. It is found that the data of some subjects, who were clinically
classified as normal or diabetic, are better fitted by means of a critically
damped solution; this then placed these subjects in the category of being
borderline diabetic or at risk of becoming diabetic. Next, the model param-
eters are combined together in the form of indices characterizing glucose
and insulin concentration data. These two indices are further combined into
one index, which is evaluated for all the patients studied. It is found the
values of this index fall in distinct ranges for normal subjects, diabetic
subjects, and borderline diabetic subjects. Hence, it can be concluded that
this index value can be reliably employed for the differential diagnosis of
diabetes.
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We now move to Section IV on orthopedic engineering mechanics.
Therein, Chapter 11 deals with osteosynthesis of fixation of fractured bone
by means of a bone plate and screws, when the bone–plate assembly is
subjected to axial loading and bending loading. Both analytical and finite-
element solutions are carried out. The issue that is explored at length is to
design the placement of the screws (with respect to the fractured site) and
the stiffness grading of the plate, such that at the fracture site the bone callus
is not subjected to tensile stresses and that away from the fracture site the
bone has minimal stress shielding. A novelty explained in this chapter is our
deploying a helical plate for fixing bones with helical cracks. A detailed
finite-element stress analysis is carried out to demonstrate how a helical
plate (and its screws) can be employed to provide maximal stiffness to the
fractured bone–plate assembly. The advantage of the helical plate is that the
screws fixing the plate to the bone are in different planes, and thereby
provide optimal stiffness to the fractured bone–plate assembly under varied
loading conditions.

Chapter 12 is on the analysis of the spinal vertebral body (VB), modeled as
a hyperboloid cortical-bone shell, subjected to axial, bending, and torsional
loadings. It is shown that under all of these loading states, the forces are
transmitted across the VB (from the top to the bottom of the VB) as axial
forces through the generators of the hyperboloid shell. In other words, the
vertebral body is shown to be so intrinsically shaped and designed such that
it has only axial forces transmitted through it. This makes it bear heavy
loads with minimal weight (represented by a thin cortical shell thickness).
We can employ this intrinsically optimal VB design concept to propose the
design of an anterior fixator made up of two rings (fixed to the upper and
lower end-plates) and connected by straight generators to form a hyperbol-
oid shaped structure (resembling a cane stool), into which the fractured
vertebral body fragments can also be deposited to eventually form a solid
fixator.

We next go on to analyze the intrinsic design of an intervertebral disc. The
disc is modeled as a thick-walled isotropic cylinder, filled with nucleus-
pulposus (NP) fluid material. When this disc model is axially loaded, the
NP fluid is also pressurized, in addition to the disc wall being stressed by
the axial loading. The pressurized NP then exerts radial pressure on the
cylindrical disc wall, and subjects it to further radial and circumferential
stresses. Now the disc wall material has a stress-dependent elastic modulus
(typical of anatomical structures). Hence when the disc wall is further
stressed by the radial pressure exerted on it by the NP fluid, its elastic
modulus value is enhanced, and the resulting radial displacements do not
increase in the same proportion as the increasing axial load. In other words,
the disc is able to contain the radial displacements under increasing axial
loading, without bulging radially. This is the feature of its optimal intrinsic
design. Now, when a disc has radial cracks (due to being excessively
loaded), the NP fluid seeps out of the cracks onto the surrounding nerve
roots, and causes back pain. The orthopedic solution for such a herniated
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disc is to denucleate the herniated disc. However, based on our analysis,
if the NP fluid is removed, then the disc wall is no longer radially stressed
and its modulus is not correspondingly increased. In fact, we have shown
that a denucleated disc undergoes greater deformation compared to a
normal disc for the same level of loading. Hence, a better solution would
be to place a jell sac in place of the NP fluid, which can simulate the role of
the NP fluid.

We now come to the final section on fitness and sports engineering
mechanics. Here, Chapter 14 describes the biomechanics of a fitness index,
optimal jogging modes, and assessment of the hip joint pathology. The first
part of the chapter deals with the formulation of a cardiac fitness index
composed of the parameters of a first-order differential equation modeling
of heart-rate response during and after treadmill exercising. This index is
shown to clearly differentiate fit subjects from unfit subjects. We next
analyze human jogging by stipulating that for an optimal jogging mode,
a subject would involve minimal muscle actuation if he or she were to
have the stride frequency of the free-swinging leg simulated as a double-
compound pendulum. The stride frequencies are derived in terms of the
limb segment’s masses, lengths, and locations of the center of mass of upper
and lower limb segments, and the mass moment of inertia at the centers of
masses of the upper and lower limbs. The lower of the two computed stride
frequencies is employed to stipulate the optimal jogging leg frequency. This
optimal jogging mode is especially recommended for subjects undergoing
cardiac rehabilitation. Next, we want to ensure that jogging is not causing
hip problems. For this purpose, we model the swinging leg by means of a
second-order differential equation of free damped oscillatory motion of the
swing angle (u) of the simple compound leg-pendulum model, in terms of a
viscous damping constant (b), and a joint-stiffness parameter (k). The solu-
tion of the governing differential equation is obtained (for the case of small
damping) as a ‘‘u versus t’’ damped-oscillatory response. From the meas-
ured amplitudes of the extreme values of u, we then evaluate the parameters
b and k, to characterize the joint pathology.

Chapter 15 analyzes how spin can impart lateral acceleration and force
(due to the magnus force effect) to a soccer ball (while kicking it), and make
the ball swerve. The resulting planes of the ball trajectory (normal to the
ground) are computed to simulate some real data derived from videos of
world-cup soccer matches. It can be seen how (1) a right footer taking a
corner kick from the left corner can make the ball swerve toward the goal (to
deceptively beat the goal keeper) by imparting an anticlockwise spin to the
ball and (2) how a left footer, taking a corner kick from the left corner, can
make the ball swerve away from the goal (to facilitate heading into the goal)
by imparting a natural clockwise spin to the ball.

Chapter 16 describes the mechanics of pitching a baseball, of ball–bat
interactions, of batting, and of an optimal bat, replete with theory
and applications in the form of simulations. The first part of the chapter
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demonstrates (1) how a pitcher imparts spin-induced lateral deflection to
the baseball to pitch a curve ball and (2) how spin-induced drop and lift can
be imparted to the baseball. In the second part of the chapter, on bat–ball
collisions, the primary emphasis is on where the ball should strike the bat,
such that maximum energy is transferred by the bat to the ball or maximum
ball speed is imparted to the ball. This ‘‘sweet spot of the bat’’ can be
defined as the center of percussion, or the node of the fundamental bat-
bending vibrational mode. The third part of the chapter, on the mechanics of
the bat, deals with the ideal bat weight for a batter. Now based on the
conservation of momentum equation for bat–ball collision, a player can
transfer maximum momentum to the ball either (1) by using a lighter bat
and swinging his or her arm more vigorously or (2) by using a heavier bat
and leaning his or her body more into the ball when striking it.

The final Chapter 17 is on the dynamic analysis of gymnastics’ Yurchenko
layout vaulting. The Yurchenko layout vault, pioneered by Natalia
Yurchenko in the 1982 World Cup Gymnastics competition, comprises a
forward running approach, followed by a cartwheel half-turn to orient the
body such that the back faces the vaulting horse at the point of takeoff from
the springboard. The gymnast then takes off from the springboard using a
back-flip action to impact the horse, and finally completes a one-and-half
somersault rotation with the body fully extended (or laid out) before land-
ing. The chapter discusses the optimal technique for this Yurhcenko layout
vault (for a given gymnast), defined by a decrease in horse impact time, and
the position and alignment of the body segments at the end of the postflight.
For this purpose, a five-segment rigid-linked model is developed, which
consists of the hand, whole arm, upper and lower trunk, and the whole leg.
In this model, each segment has a center of mass (CM), the segments are
linked by hinges, gravitational forces are exerted at the segment’s CMs, the
ground reaction forces on the segments are considered to act at the centers
of pressure, and the effect of the segment’s muscles is to produce moments
at the joints. The governing equations of motion are formulated for the
segments. For input anthropometric, kinematics, and ground reaction-
force data, we can obtain solutions for the muscle moments at the joints
and for the joint reaction forces. The optimization procedure determines the
set of joint torques and kinematics required to produce this optimal tech-
nique (as indicated above), in terms of vault duration and loading angle.

As can be noted, the book covers the detailed analyses of (1) cardiological,
pulmonary, glucose–insulin regulation systems, to address their medical
applications in terms of disease assessment, (2) the most effective ortho-
pedic osteosynthesis designs as well as of spinal vertebral body and inter-
vertebral disc that make them intrinsically optimally designed structures,
and (3) of sports events and simulations, to provide insights into the tech-
niques required for high performance of these sports events. The book is
tailored to serve as a textbook for a one- or two-semester biomedical engin-
eering mechanics course. However, it can also be effectively employed by
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clinicians for assessment of physiological systems, by anatomists to obtain
insights into optimal anatomical designs in nature, and by sportsmen and
sports coaches to optimize performances.

Dhanjoo N. Ghista
Singapore

Email: d.ghista@gmail.com
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1.1 Scope

This introductory chapter delineates the theme and scope of the book.
Herein, we are providing a novel concept of physiological systems analysis,
in terms of nondimensional physiological indices (NDPIs), for quantifying
patient health and disease status as well as patient improvement. We have
developed NDPIs for several physiological phenomena and systems, and
indicated as to how they can be employed diagnostically. NDPIs have been
formulated and evaluated for (1) left-ventricular pumping performance, (2)
cardiac fitness and conditioning, (3) lung ventilatory function, (4) oral
glucose tolerance test, (5) arteriosclerosis, (6) atherosclerosis and peripheral
resistance, (7) mitral valve property, and (8) osteoporosis. This chapter is
based on my paper, Ref. [1].*

1.2 Introduction

The concept of nondimensional physiological number index is quite new,
and has been adopted from engineering, where nondimensional numbers
(made up of several parameters) are employed to characterize a regime or
strata disturbance phenomena. For example, in a cardiovascular fluid-flow
regime, the Reynold’s number

Nre ¼ rVD=m (1:1)

is employed to characterize the conditions when Nre exceeds a certain
critical value, at which laminar flow changes to turbulent flow, which can
occur in the ascending aorta when either the aortic valve is stenotic (giving
rise to murmurs) or in the case of anemia (decreased blood viscosity).

Similarly, we can construct other such physiological numbers to charac-
terize disturbance from physiological homeostasis. In physiological medi-
cine, the use of nondimensional indices or numbers can provide a
generalized approach by which unification or integration of a number of
isolated but related events into one NDPI can help to characterize an
abnormal state associated with a particular physiological system. The evalu-
ation of the distribution of the values of such NDPI(s), in a big patient
population, can then enable us to designate normal and disordered ranges
of NDPI, with a critical value of NDPI separating these two ranges, as
illustrated in Figure 1.1. In this way, NDPI(s) can help us to formulate
physiological health indices (PHIs), not only to facilitate differential diag-
nosis of patients but also to assess the severity of the disease or disorder.
Herein, we have formulated several such new NDPIs [1].

* With permission from the publisher World Scientific Publishing Co. (Singapore).
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In this chapter, we have gone one step further and also applied this
concept of nondimensional indices to characterize the cost-effective per-
formance of a hospital unit, namely, the intensive care unit. Finally, we
indicate how a hospital operating budget can be distributed among its
various departments such that each department operates cost effectively.

1.3 Formulation of NDPI(s) for Some Physiological Systems

1.3.1 Index for Efficiency of Left-Ventricular Pumping

We formulate the expression for left-ventricular (LV) pumping efficiency («)
as follows:

« ¼
Useful LV power output to eject into the aorta blood

(or ejection power output)

(LV power to develop the intra-LV pressure during

isovolumic contraction) þ (ejection power output)

¼
(Psy � Ped)Vs

Tisv

1

2

(Psy � Ped)Ved

Tisv
þ (Psy � Ped)Vs

Ts

(1:2)

« ¼ 2[(Psy=Ped)� 1](Vs=Ved)(Te=Tisv)

[(Psy=Ped)� 1](Te=Tisv)þ 2[(Psy=Ped)� 1](Vs=Ved)
(1:3)

where (as illustrated in Figure 1.2) (1) Ped and Psy are the end-diastolic and
maximum-systolic pressures, (2) Vs and Ved are the stroke volume and end-
diastolic volume, and (3) Tisv and Te are the time periods of isovolumic
contraction and ejection.

All of the quantities in Equation 1.3 can be measured noninvasively, and
hence « can be evaluated noninvasively. Let us obtain some idea of the order
of magnitude of «. Let us assume that, in a normal case,

Normal

%
 P

op
ul

at
io

n

Dysfunction
NDPI Value

FIGURE 1.1
Integration of a number of isolated but related events into one nondimensional physiological
index (NDPI) can help to characterize an abnormal state of a particular physiological system.
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Vs

Ved
¼ ejection fraction ¼ 0:6,

Tisv

Te
¼ 0:06 s

0:36 s
¼ 1

6
, and

Psy

Ped
¼ 5

Hence, « is of the order of 15% for a normal person (i.e., with no cardiac
disease). In other words, the useful power is 15% of the power required to
develop the requisite contractility (to in turn raise the intra-LV pressure) in a
normal person, and could well go down to even 10% or below in the case of
a failing heart.

1.3.2 Assessing Cardiac Fitness and Conditioning by Means
of a Treadmill Test

The cardiac-fitness model [2] consists of a first-order differential
equation systemmodel describing the heart rate (HR) response (y) to exertion

P (t) Ventricular
pressure

P(t) Ventricular
pressure

LV power output
= (Psy – Ped)Vs/Ts

LV contractile power
= (Psy – Ped)Ved/(2Tisv)

Isovolumic
contraction

4

3

2

W

0
1, 6

5 Psy

Tisv

Te

4

3

5

Filling
stage

2 6 (1)

Pressure in the
left-ventricular

chamber

Pressure in
aorta

Isovolumic
relaxation

The four stages of the left-ventricular cycle

Ped

Ved

Vs
V(t)

4

3

2

E

0
1, 6

5 Psy

Ped

Ved

Vs
V(t)

FIGURE 1.2 (See color insert following page 266.)
Left-ventricular work (W), energy input (E), power output and input, and efficiency («).
(Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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(walking and jogging on a treadmill) monitored in terms of the work exertion
(WE) as measured by normalized V

�
O2(x), where x and y are defined as

follows:

x ¼ V
�
O2(t)� V

�
O2(rest)

V
�
O2(rest)

, y ¼ HR(t)�HR(rest)

HR(rest)
(1:4)

where V
�
O2 and HR represent the oxygen-consumption rate and heart

rate, respectively. It is to be noted that both x and y are nondimensional
quantities.

The subject is asked to exercise on the treadmill for a period of time, te
(minutes). During this period, the V

�
O2 and HR(t) (and hence x and y) are

monitored. Now we develop a model to simulate the HR(t) response to
V
�
O2(t) or exertion, (1) during exercise (i.e., for t< te) and (2) thereafter for

HR(t) decay after the termination of exercise (i.e., for t> te).
For a person, the model equation is represented by

dy

dt
þ k1y ¼ C0x(t) (1:5)

where the variation of the normalized V
�
O2 (or WE) is given by

x(t) ¼ D(1� e�k2t) for t< te (1:6)

x(t) ¼ x(te)e
�k3t for t> te (1:7)

and te¼ time when exercise terminates.
The y solutions to Equations 1.5 through 1.7 are represented by

y ¼ C0D

k1

� �
(1� e�k1t)þ C0D

(k1 � k2)

� �
(e�k1t � e�k2t) for t� te (1:8)

y¼ C0x(te)

(k1� k3Þ
�
e�k3(t�te)� e�k1(t�te)

�
þ y(te)e

�k1(t�te) for the recovery period t� te

(1:9)

where k1, k2, k3, C0, and D are the model parameters that can serve as
cardiac-fitness parameters. These responses are depicted in Figure 1.3.

1.3.2.1 Monitored and Computed Results for a Typical Normal Subject

For a sample patient, the monitored V
�
O2(x) for t< te is represented analyti-

cally (by means of Equation 1.6) as x¼ 2.6547(1� e�0.25t), for t � te. Hence, k2
andD in Equation 1.6 are 0.25 m�1 and 2.6547, respectively. The values of C0

and k1 are obtained by making Equation 1.8 simulate the (y�t) data in
Figure 1.3.

The solution for y (Equation 1.8) during the stress test (for t� te) is then
obtained as

y ¼ 0:797(1� e�0:85t)þ 1:129(e�0:85t � e�0:25t), for t � te (¼9min ) (1:10)
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i.e., the value of the parameter k1 in Equation 1.7 is 0.85 m�1.
Likewise, the solution for HR(t), as given by Equation 1.9, for y after the

stress test (during the recovery period) is obtained by making Equation 1.9
simulate the (y� t) data (for t� te) in Figure 1.3

y ¼ 1:088
�
e�0:28t � e�0:85t

�þ 0:68e�0:85t for t � te (1:11)

for the value of the parameter k3(¼ 0.28 m�1) in Equation 1.9.
Now, the parameters D, k1, k2, and k3 can be combined into a single

cardiac-fitness index (CFI):

CFI ¼ k1k3te
k2D

(1:12)

For this patient, the value of CFI is 3.23. We need to evaluate CFI for a big
spectrum of patients, and then compute its distribution curve to determine
the efficiency of this index, in order to yield distinct separation of CFI ranges
for healthy subjects and cardiac patients. This CFI can then also be
employed to assess improvement in cardiac fitness following cardiac
rehabilitation regime.

Time (min)

 0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
0 2 4 6 8 10 12 14 16 18 20 22 24

y

Best-fit Actual
dy

dt
 + k1y = C0D (1–e–k2t)  for t ≤ te (period of exercise); dimension of k1 and C0 is t –1

dy

dt
 + k1y = C0x (te)e–k3t  for t ≥ te; dimension of k3 is t –1

FIGURE 1.3
Graph of y (the computed HR response) versus t. (Adopted from Lim, G.H., Ghista, D.N.,
Koo, T.Y., Tan, J.C.C., Eng, P.C.T., and Loo, C.M., Int. J. Comp. Appl. Technol. (Biomed. Eng.

Comp.), 21, 38, 2003.)
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1.3.3 Nondimensional Lung Ventilatory Performance Index

When a person breathes, the lung volume (V) can be taken to be the
response to the lung inflation pressure. We formulate a lung ventilatory
performance index (LVPI) as follows:

LVPI ¼ RC (BR) (1:13)

where BR is the breathing rate, and R and C are resistance to airflow and
lung compliance in the following differential equation of lung-volume (V)
ventilatory-response to lung inflation pressure (PN, represented by the
right-hand side of the following equation):

R
dV

dt
þ V

C
¼ PN ¼ P1 cosvtþ P2 sinvt (1:14)

wherein PN ¼ (Pm � Pp)� Pe (end-expiratory pressure), as illustrated in
Figure 1.4.

This model can be employed to monitor the lung-volume response to lung
inflation pressure in mechanical ventilation of patients with chronic
obstructive lung disease [3] as well as in normal patients by devising and
placing a pressure transducer in the inflation duct of a spirometer [4]. The
pleural pressure (Pp) is measured by placing a baloon catheter transducer
through the nose into the esophagus, and adopting the esophageal tube
pressure to be the pressure in the pleural space surrounding it.

In Figure 1.4, V is the lung volume in liters (L), the right-hand side terms
constitute the driving pressure in cm H2O (¼pressure at the mouth–pleural
pressure), R is the resistance to airflow (in cm H2O s L�1), C is the lung
compliance (in L=cm H2O), and P1 and P2 are the magnitudes of cosine and
sine terms of the driving (oscillatory) net pressure PN ¼ (mouth-pressure
minus pleural pressure) minus end-expiratory pressure.

For a typical PL cyclic pressure profile (Figure 1.4), given by

P1 ¼ �1:84 cm H2O, P2 ¼ 3:16 cm H2O, v ¼ 0:5 p rad s�1 (1:15)

the solution to Equation 1.14, to satisfy the condition of V
�
(t ¼ 0) ¼ 0, is

given by

V ¼ P1C
( cosvtþ vt sinvt)

1þ v2t2
þ P2C

( sinvt� vt cosvt)

1þ v2t2

þ e
�t
t

vCt

1þ v2t2

� �
(P2 þ P1wt) (1:16)

where t¼RC. By fitting this lung-volume solution to the clinically monitored
lung-volume data (by parameter-identification method), we can evaluate the
parameters: R¼ 1.24 (cm H2O) s L�1, C¼ 0.21 L (cm H2O)�1. Now let us
evaluate the nondimensional LVPI given by Equation 1.13
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LVPI ¼ RC (BR per minute)

where BR, the breathing rate¼ 15=min or 0.25=s for the data provided in
Figure 1.4. For our case study, the value of LVPI is 3.9.

Let us now see how lung disease will influence R, C, and hence LVPI. For
instance in emphysema, the destruction of lung tissue will produce a more
compliant lung and hence a larger value of C¼ 0.5 L (cm H2O)�1, yielding a
value of LVPI of about 10. In asthma, there is increased airway resistance
(due to contraction of the smooth muscles around the airways) to say R¼ 5
(cm H2O) s L�1. The breathing rate can also go up to BR¼ 20=min. Hence,
the value of LVPI can go up to 20. In the case of lung congestion due to
mitral valve disease, it would be important to determine LVPI, so as to serve
as an indicator for determining cardiac condition (in end-stage heart dis-
ease). By determining the distribution of a big patient population, we can
determine the LVPI ranges for normal and disease states, and can hence
employ this model to diagnose lung disease states.
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FIGURE 1.4
Lung pressures and volume as functions for normal breathing. (Note that the pressure extremes
occur before the volume extremes.) (Adopted fromGhista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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A comprehensive analysis of lung ventilation performance (with applica-
tion to lung disease characterization) is provided in Chapter 5.

1.3.4 Nondimensional Diabetes Index with Respect to Oral Glucose
Tolerance Testing

Clinically, patients are diagnosed to be diabetic based on their blood-glucose
concentrations at half-hour intervals during an oral glucose tolerance test
(OGTT). On the other hand, the blood-glucose concentration responses dur-
ing OGTT can be modeled as responses to oral ingestion of glucose, modeled
as an impulse function Gd(t). For OGTT simulation (entailing digestive and
blood-pool chambers), the differential equation, governing blood-glucose
response (y) to oral ingestion of glucose, can be represented as follows [5]:

y00 þ 2Ay0 þ w2
ny ¼ Gd(t), y in g=L, G in g(L)�1(h)�1

or

y00 þ lTdy
0 þ ly ¼ Gd(t) (1:17)

where
vn(¼l1=2) is the natural oscillation frequency of the system
A is the attenuation or damping constant of the system (in h�1)
v(v2

n � A2)1=2 is the angular frequency (in rad=h) of damped oscillation
of the system

l(¼2A=Td ¼ v2
n) is the (proportional-control) parameter (in h�2),

representing pancreatic-insulin response proportional to the blood-
glucose concentration (y)

Td is the (derivative-time) parameter (in h), representing regulation of
glucose concentration proportional to rate-of-change of glucose
concentration (y0)

The input to this system is taken to be the impulse function due to the orally
ingested glucose bolus [G], while the output of the model is the blood-
glucose concentration response y(t).

For an impulse glucose input, a normal patient’s blood-glucose concen-
tration data are depicted in Figure 1.5 by open circles. Based on the nature of
these data, we can simulate them by means of the solution of the oral
glucose regulatory (second-order system) model (Equation 1.17), as an
underdamped glucose concentration response curve, given by

y(t) ¼ (G=v)e�At sinvt (1:18)

where A is the attenuation constant, v ¼ (v2
n � A2)1=2 is the damped

frequency of the system, vn (the natural frequency of the system)¼ l1=2,
and l¼ 2A=Td.

The model parameters l (or vn), Td (or A and Td), and G are obtained by
matching Equation 1.18 to the monitored glucose concentration y(t)
data (represented by the open circles). The computed values of parameters
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FIGURE 1.5
OGTT response curve: A¼ 1.4 h�1 for the normal subject (i.e., higher damping coefficient
value); A¼ 0.808 h�1 for the diabetic patient (i.e., lower damping coefficient). (Adopted from
Dittakavi, S.S., and Ghista, D.N., J. Mech. Med. Biol., 1, 193, 2001.)

are l¼ 2.6 h�2, Td¼ 1.08 h. This computed response is represented in
Figure 1.5 by the bottom curve, fitting the open-circles clinical data.

For a potential diabetic subject, the blood-glucose concentration data are
depicted by closed circles in Figure 1.5. In order to model-simulate these
data, we adopt the solution of model Equation 1.17, as an overdamped
glucose concentration response function:

y(t) ¼ (G=v)e�At sinhvt (1:19)

This function is made to match the clinical data depicted by closed circles,
and the values of l and Td are computed to be 0.27 h�2 and 6.08 h, respec-
tively. The top curve in Figure 1.5 represents the blood-glucose response
curve for this potentially diabetic subject. The values of the fitted parameters
(Td, l, A, and G) for both normal and diabetic patients are indicated in the
figure, to provide a measure of difference in the parameter values.

Now, we come to the interesting part of this model, by formulating the
nondimensional diabetes index (DBI) as

DBI ¼ ATd ¼ 2A2

l
¼ 2A2

v2
n

(1:20)

The value of DBI in Figure 1.5 for the normal and the diabetic subjects is 1.5
and 4.9, respectively. We have further found (in our initial clinical tests) that
DBI for normal subjects is <1.6, while the DBI for diabetic patients is >4.5.
This is a testimony of the efficacy of the model, and especially for the
nondimensional DBI.
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A comprehensive analysis of oral glucose tolerance test (OGTT) is pro-
vided in Chapter 9.

1.3.5 Characterization of Aortic Stiffness or Arteriosclerosis

The blood flow in the artery is pulsatile and the pulse-wave velocity (PWV)
is given by PWV¼ (Eh=2ar)1=2, where E is the elastic modulus of the artery, a
is the arterial (cylindrical tube) radius, h is the arterial wall thickness, and
r is the blood density. For a circular cylindrical arterial tube of radius a and
wall thickness h, we can express the arterial wall stress s and elastic
modulus E, as follows:

s ¼ Pa

h
¼ 130Pa

h
N=m2, E ¼ 2(PWV)2ar

h
, E ¼ E0 þms (1:21)

in terms of (1) the aortic dimensions a and h, (2) the auscultatory (or
automatedly) measurable diastolic pressure (P), and (3) the PWVmonitored
by determining both the arterial diameters (echocardiographically) at two
sites Dx apart and the time Dt for the pressure pulse wave to travel the
distance Dx. Table 1.1 depicts the computed values of s and E at four
independent times for a typical subject. All the quantities in Equation 1.21
can be monitored noninvasively, in order to compute the values of E and s.

The values of E and s in columns 5 and 6 of Table 1.1 can be represented as

E(N=m2) ¼ 4:2s þ 0:5� 105(N=m2) ¼ ms þ C (1:22)

wherem is the slope of E–s graph (assumed to be a straight line) and C is the
y intercept of the line.

We will now define the arteriosclerotic nondimensional index

ART�NDI ¼ mE0=(mean diastolic pressure) (1:23)

For the above patient, the value of the ART – NDI is

ART�NDI ¼ (4:2)(0:5� 105 N=m2)

(87� 137 N=m2)
¼ 17:6 (1:24)

and will be much higher for arteriosclerotic patients, which we can deter-
mine by conducting clinical test applications of this analysis.

TABLE 1.1

Computation of E and s from Measurements of PWV, a and h

P (mmHg) PWV (m=s) a (mm) h (mm) E
N

m2

� �
s

N

m2

� �

80 5.3 4.1 1.10 2.13� 105 3.38� 104

85 5.4 4.5 1.00 2.6� 105 4.97� 104

90 5.42 5.0 0.90 3.01� 105 5.97� 104

95 5.5 5.0 0.90 3.38� 105 6.68� 104

Ghista/Applied Biomedical Engineering Mechanics DK8315_C001 Final Proof page 11 28.5.2008 11:57pm Compositor Name: MSubramanian

Biomechanics in Medical Diagnosis 11



1.3.6 Noninvasive Determination of Aortic Elasticity (m), Peripheral
Resistance (R), and the Aortic NDI

Figure 1.6 depicts schematically the outflow tract of the left ventricle (LV)
into the ascending aorta and a blood-control volume V in the ascending
aorta. We can represent the aortic pressure (P) response to outflow rate I(t)
from the LV into the aorta (with reference to the blood-control volume, V),
as derived in Figure 1.6, by [6]

(dP=dt)þ lP ¼ mI(t) (1:25)

where m¼ volume elasticity of aorta (in Pa=m3), l¼ (m=R) in s�1, and the
LV outflow rate is given by

I(t) ¼ (A) sin(p=ts)tþ (A=2) sin(2p=ts)t for 0 < t < ts (systole)

¼ 0 for t > ts (diastole) (1:26)

If ts¼ 0.35 s and the stroke volume (SV) is known (from, say, echocardio-
graphy), then we have (from Equation 1.26)

ðts
0

	
(A) sin(p=ts)tþ (A=2) sin(2p=ts)t


 ¼ SV (1:27)

where A¼p (SV)=2ts.

IV

F(t)

Volume, V

Aortic pressure, P(t)
TPR, R(t )
Aortic (volume) elasticity, m
λ = m/R

Given:
I(t ) = (A) sin(p /ts)t  +  (A/2) sin(2p /ts)t , 0 < t  < ts
 = 0
Ts = 0.35 s, SV = 71.4 cc
A = 320 cc/s

LA

I(t )

Inflow rate

LV

Outflow rate I(t)

It

Therefore, (dP/dt )  +  λP  =  ml (t)

m
R

P  +  ml(t)
P(t)
R

dP
dt

 = I(t) – F (t) = I(t) –  = –
dV
dt

;

, t < ts

FIGURE 1.6
To derive the equation for aortic-pressure response to the stroke-volume or LV ouput rate I(t).
(Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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Thus, if SV ¼ 71:4 cc, then A ¼ 320 cc=s (1:28)

The solution of Equation 1.25 for the aortic diastolic and systolic periods is
obtained as follows:

Aortic diastolic pressure expression (Figure 1.7):

Pd(t) ¼ P1e
�l(t�ts), P1 ¼ pressure at the start of diastole

¼ P0 (at t ¼ T) ¼ pressure at the end of systolic phase

or auscultatory diastolic pressure (1:29)

; Pd(t) ¼ P0e
�l(T�t), where T¼ 0.8 s

Aortic systolic pressure expression (Figure 1.7):

Ps(t) ¼ P0 þ mAv

l2 þ v2
þ mAv

l2 þ 4v2

� �
e�lt þmA

l sinvt� v cosvt

l2 þ v2

� �

þmA

2

l sin 2vt� 2v cos 2vt

l2 þ 4v2

� �
, v ¼ p

ts
(1:30)

We now (1) incorporate into Equations 1.29 and 1.30 the auscultatory data
on P0 (¼ 80 mm Hg) and P2 (¼ 118 mm Hg) with T¼ 0.8 s, as well as (2)
invoke continuity in diastolic and systolic pressure expressions to (3) put
down the following three equations (in three unknowns: m, l, and tm at
which Ps¼P2):

Aortic pressure (mmHg) profile

118
mm Hg

112
mm Hg

80
mm Hg

Pa

P2

P1

P0

t = 0 s t = ts t = T
Time (s)

tm
= 0.25 s = 0.35 s = 0.8 s

FIGURE 1.7
Computed aortic pressure profile. (Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
P2 ¼ auscultatory systolic pressure; P0 ¼ Pa ¼ auscultatory diastolic pressure; (0 < t < ts)¼
aortic systolic phase (during which blood is ejected into the aorta from the left ventricle);
(ts < t < T)¼ aortic diastolic phase.
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Pd(at ts ¼ 0:35 s) ¼ Ps(at ts ¼ 0:35 s) (1:31)

dPs=dt ¼ 0, at t ¼ tm ¼ 0:25 s (1:32)

Ps(t ¼ tm) ¼ P2(¼118 mm Hg) (1:33)

to compute: l¼ 0.66 s�1, m¼ 0.78 mm Hg cm�3, R(¼m=l)¼ 1.18 mm Hg
cm�3s, for tm¼ 0.25 s and T¼ 0.8 s. By substituting the values of these
parameters into Equations 1.29 and 1.30, we can determine the aortic pres-
sure profile, as illustrated in Figure 1.7.

We now formulate an index:

Aortic number ¼ lT ¼ mT=R (1:34)

where l¼m=R in the governing differential equation (Equation 1.25).
For the given auscultatory data, and for the above computed parameters:

m¼ 103� 106 Pa m�3, R¼ 156� 106 Pa m�3s, and l¼ 0.66 s�1,

we obtain the Aortic number ¼ lT ¼ (0:66 s�1)(0:8 s) ¼ 0:52 (1:35)

1.3.7 Mitral Valve Property Characterization (to Provide
Interventional Guidelines)

Determining the in vivo constitutive property of the mitral valve (MV) (for a
quantifiable estimate of its calcific degeneration) constitutes another example
combining ‘‘clinical-data monitoring and processing’’ with ‘‘modeling-
for-clinical diagnosis.’’ Herein, we combine (1) the vibrational analysis of
MV, alongwith the use of echocardiography (to determine theMVgeometry)
and spectral phonocardiography (of the first heart sound [FHS] associated
with MV vibration) to determine the second peak frequency (f2) of the FHS
spectrum and (2) the static analysis of the semicircular MV leaflet model
(held along its circular boundary), as illustrated in Figure 1.8, to (3) obtain the
following expressions given by Equations 1.36 and 1.37 for stress (s) and
modulus (E) of the MV leaflet membrane [7]:

Stress (s) in the mitral valve leaflet membrane¼ p2f 22 a
2r

(Kmn=2)
2
¼ p2f 22 a

2r

(K11=2)
2

(1:36)

where
a is the radius of the semicircular leaflet
r is the leaflet membrane density per unit area
Kmn is the mth zero of the nth order Bessel function Jn(k)
m (number of nodal circles)¼ 1
n (number of nodal diameters)¼ 1
K11¼ 3.832
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Modulus (E) of the mitral valve leaflet membrane¼p2s3t2(1�n)

q20a
2Sn

(1:37)

where
t is leaflet thickness
n is Poisson’s ratio
q0 is the pressure difference across the leaflet at time of occurrence of

the closed MV vibration
Sn (the summation of a series)¼ P

n¼1;3;5; ...

2�n
n(2þn)3

h i

Based on Equations 1.36 and 1.37, the nondimensional constitutive para-
meter (m) of the MV, given by

m ¼ dE

ds
¼ 3p6f 42 r

2t2a2(1� n)

q20Sn(K11=2)
4

(1:38)

can be employed diagnostically to track the deterioration due to calcification
of the MV, in terms of the change (Dm) in the value of the parameter m,
according to the relationship:

Dm ¼ (@m=@f )Df þ (@m=@q0)Dq0 (1:39)

so that :
Dm

m
¼ 4

Df2
f2

� �
� 2

Dq0
q0

� �
(1:40)

or,
m0(¼mþ Dm)

m
¼ 1þ 4

Df2
f2

� �
� 2

Dq0
q0

� �
(1:41)

While tracking a patient over a time period, the primary change will be in
the FHS frequency f2(¼Df2), due to progressive calcification of the MV.
Hence, from Equation 1.40, we can adopt

(a)
Rapid diastolic

filling

Flow
currents

2a

2a

(b) (c)

FIGURE 1.8
Functional mechanics of the mitral valve: (a) Mitral valve opening at start of left-ventricular
diastole. (b) As the filling left ventricle distends, traction is applied through the chordae tendineae
to the valve cusps pulling them together. (c) Start of ventricular systole seals the valves together by
the high internal pressure and the flow pattern in the ventricular chamber. It is at this point in time
that the MV starts vibrating. (Modified from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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Dm

m
¼ 4Df2

f2

� �
(1:42)

to represent the change (Dm) in the parameter (m), by merely monitoring the
change in FHS frequency (D f2) with respect to the earlier value ( f2).

Section 2.5 provides a detail analysis of determination of in vivo proper-
ties of heart valves and their disease status.

1.3.8 Noninvasive Determination of Osteoporosis Index
for Osteoporosis Detection

Osteoporosis refers to a group of metabolic bone diseases that are charac-
terized by decreased density of normally mineralized bone. Literally, it is a
condition of porous bones, which is characterized by decrease in mechanical
strength and stiffness of the bone. Thus, the bone is subjected to fracture.
The basic problem is that bone resorption outpaces bone formation.

The noninvasive measurements of bone density techniques now available
are single-photon absorptiometry, dual-photon absorptiometry, dual x-ray
absorptiometry, qualitative computed tomography, and ultrasound. How-
ever, a low-cost method for determination of osteoporosis index (OI) can be
formulated in terms of the flexural stiffness (EI) of the ulna bone (where E is
elastic modulus and I is moment of inertia of the bone cross-section) and
bone density (r). The combined term of EI and the density (r) of ulna can be
determined, because it can be shown to be proportional to the natural
frequency (f) of ulna vibrations, which in turn can be obtained from its
resonance excitation frequency.

In order to determine the resonance frequency of the ulna beam, it can be
simply supported at its extremities and a vibrating probe can be pressed
against the skin at the center of the forearm as carried out in [8]. Then, if the
ulna bone (of average cross-sectional area A) has a weightW (or mass m) per
unit length (such that W¼mg¼ rAg, where r is the density), and length l,
its primary-mode frequency f is given (in terms of its angular frequency p)
by [9]

f ¼ p

2p
¼ 1

2p

p2

l2
EI

rA

� �1=2

¼ 1:57
EI

rAl4

� �1=2

¼ 1:57
EI

(ulna mass)l3

� �1=2
(1:43)

By altering the frequency of the vibrating probe, we set the ulna into
resonance. The resonant frequency will be equal to the natural frequency.
For f (resonance or primary-mode frequency)¼ 400 Hz, A¼ 50� 10�4 m2,
I¼ 3� 10�8 m4, length (l)¼ 0.17 m, r¼ 1.8� 103 kg=m3 [10] , we get
E¼ 20� 109 N=m2 from Equation 1.43.
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It is seen that f is a measure of ulna stiffness (EI), mass and length. We can
hence define and evaluate an osteoporosis index (OI) in terms of its reson-
ance frequency ( f ), given by Equation 1.43. Thus, by modeling the ulna
bone as a simply supported vibrating beam, and determining its resonance
(or natural transverse-vibrational frequency), we can measure the bone
mineralization content in terms of this OI.

1.4 Conclusion

Biomedical engineering needs to be a professional field, and hence biomed-
ical engineering graduates need to be employed in hospitals. A field that
biomedical engineers can also contribute to is hospital cost-effective man-
agement. In this concluding section, we will throw some light on this
intriguing field, which can make biomedical engineers more versatile and
enhance their employment in hospitals.

We have seen how we can formulate and evaluate nondimensional physio-
logical numbers, to serve as physiological-system disorder indices, and hence
represent health status. These nondimensional health-status indicators would
also be indispensable for quantifying and evaluating performance indicators
of healthcare units and hospital departments (as illustrated in the next section),
and also lead to a more knowledgeable means of billing codes for hospital
remuneration from state health departments and=or insurance companies.

A hospital has clinical service departments, medical supply and hospital
service departments, and financial-management and administrative depart-
ments. Each of these five sets of departments has to function in a cost-
effective fashion. Let us, for example, consider the intensive care unit
(ICU) department. The human resource to an ICU department consists of
physicians and nurses. Using activity-based costing, we can determine the
human-resource strength, based on an assumed reasonable probability-of-
occurrence of (for instance) two patients simultaneously (instead of just one
patient) having life-threatening episodes.

1.4.1 Performance Index

We can then formulate the ICU performance indicator in terms of the
amounts by which the physiological health index (PHI) values of patients
were (1) enhanced in the ICU for those patients discharged into the ward
from the ICU, and (2) diminished in the ICU in the case of patients who died
in the ICU. Let us say that patients are admitted to the CCU if their PHI value
falls below 50%. Thus, if the PHI of a patient improves from 30 to 50, the
physiological health improvement index (PHII) for that patient is given by

PHII ¼ 100
50 --- 30

30

� �
¼ 67 (or 67%) (1:44)
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Thus, the PHII value is higher if a more seriously ill patient is discharged
from the ICU, and lower if a not-so-seriously ill patient is discharged, i.e., if

PHII ¼ 100
50 --- 40

40

� �
¼ 25 (or 25%) (1:45)

We can then formulate the ICU performance index (PFI) for an ICU as
follows.

ICU Performance Index (PFI)

¼ SPHII of patients

Number of those patients treated during a time period
(1:46)

Hence, the higher the value of ICU performance index, the better the
performance of the ICU. If now a patient dies, as a result of the PHII
becoming negative, i.e., slipping from (say) 30 to 10, then

PHII ¼ 100
10 --- 30

30

� �
¼ �67 (1:47)

As a result, S PHII (in Equation 1.46) will decrease, and the overall value
of ICU performance index (namely, PFI, as calculated by means of Equation
1.46) will fall.

1.4.2 Cost-Effective Index

Now consider that (1) we have one physician and five nurses for a 10-bed
CCU, based on the probability-of-occurrence of two patients having life-
threatening events being, say, 0.2 (or 20%), and that (2) for this human
resource=staffing, the ICU performance index value is (say) 40. If we
increase the staffing, the ICU performance index value could go up to 50
or so, at the expense of more salary cost. So now we can come up with
another indicator, namely, cost-effectiveness index (CEI), given by

CEI ¼ Performance index

Total salary index (in salary units)

¼ Performance index

Resource index (in terms of salary units)
(1:48)

where, say a salary of $1000¼ 0.1 unit, $10,000¼ 1 unit, $20,000¼ 2 units,
and so on.

Thus, if an ICU has one physician with a monthly salary of $20,000 (i.e., 2
salary units) and five nurses with a total monthly salary of $25,000 (i.e., total
of 2.5 salary units), then from Equation 1.48
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CEI(ICU)¼ Performance index (of 40)

Salary units index or resource index, Ri[¼(2þ 2:5)]
¼ 40

4:5
¼ 11:1

(1:49)

Now let us assume that we raise the PFI(ICU) to (say) 50 by augmenting the
nursing staff, so as to have six nurses (Ri¼ 3 units) and 1.5 full-time equiva-
lent physicians on duty (Ri¼ 3 units). Then,

CEI(ICU) ¼ PFI

Ri
¼ 50

(3þ 3)
¼ 8:3 (1:50)

Thus, while the PFI of ICU has gone up from 40 to 50, the CEI of ICU has
gone down from 11.1 to 8.3.

1.4.3 Strategy of Operation

Our strategy would be to operate this ‘‘performance-resource’’ system in
such a way that we can determine the resource index Ri for which we can
obtain acceptable values of PFI and CEI.

Now let us formulate how a hospital budget can be optimally distributed.
Let a hospital have ‘‘n’’ number of departments and a prescribed budget (or
budget index, BGI). We would want to distribute the budget among the
departments, such that none of the ‘‘n’’ departments has a PFI below the
acceptable value of PFIa and a CEI below the acceptable value of CEIa.

So the operational problem is to be formulated as follows.
How to distribute or divide the given budget (or budget index value) into

Ri (i¼ 1, . . . , n), such that PFIi � PFIa and CEIi � CEIa, for all i. This then is
the prime task of a hospital administrator.
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2.1 Introduction and Scope

Biomechanics has been associated with major physiological advances and
medicine. However, considerable insight into physiology and medicine can
also be gained from innovative applications of even relatively basic engin-
eering analyses. In this chapter, we are developing the concept of cardiology
to demonstrate how even fundamental engineering disciplines can bring to
bear enhanced logic to cardiology, to:

. Determine the pressure-drop across a stenotic aortic valve (AV)

. Demonstrate how AV disorders could lead to myocardial infarct

. Depict likely sites for myocardial ischemias and infarcts

. Explain how myocardial infarct impairs stroke volume and car-
diac output

. Obtain quantifiable measures of left-ventricular (LV) stiffness and
contractility, so as to provide a measure of impaired LV pumping
capacity

2.2 Pressure-Drop across a Stenotic Aortic Valve

We start our journey in the heart, by analyzing the pressure-drop across a
stenotic AV. The inlet and outlet to and from the left ventricle is regulated
by heart valves. If the AV gets diseased and becomes stenotic, it will result
in a big pressure-drop across the valve, which can be evaluated in terms of
the LV outflow rate and the dimensions of the outflow tract, using Bernoulli
theorem equation, as carried out in Figure 2.1.

P1 � P2 ¼ �V2
2

2
� �V2

1

2
þ rkcV

2
2

2
¼ �Q2

2

1

A2
2

� 1

A2
1

þ kc
A2

2

� �
(2:1)
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Pressure drop between sections 2 and 3 (refer Figure 2.1),

P2 � P3 ¼ �Q2

2

1

A2
3

� 1

A2
2

þ 1

A2
2

1� A2

A3

� �2
" #

(2:2)

Hence,
P1 � P3

�Q2

2A2
1

� � ¼ A1

A3

� �2

�1þ kc
A1

A2

� �2

þ A1

A2

� �2

1� A2

A3

� �2

(2:3)

For a stenotic AV, let us take Q¼ 1.6� 10�4 m3s�1 (corresponding to a
cardiac output of 4 L=min, HR¼ 80 min�1, ejection period¼ 0.31 s),
outflow-tract diameter d1¼ 1.6 cm, d2¼ 0.8 cm, d3¼ 2 cm, coefficient
kc¼ 0.33, blood density r¼ 1000 kg=m3, we obtain from Equation 2.3,
pressure-drop across AV (P1�P3)¼ 5071 Pa or 38 mmHg.

2.3 Why Valvular Disorders Can Lead to Myocardial Infarcts?

The high pressure-drop across a stenotic AV will lead to increase in LV
chamber pressure and LV hypertension (as illustrated in Figure 2.2). This is
because the LV will have to contract and pump more vigorously, in order to
overcome this pressure-drop (P1�P3) across the stenotic AV, and appropri-
ately perfuse the systemic circulation. In other words, the LV chamber
pressure (P1) will increase (as schematized in Figure 2.2).

Now, by using the simplified Laplace law for wall stress in a pressurized
thin-spherical shell, namely:

wall stress (s) ¼ LV pressure (P1)� chamber radius (R)

2x wall thickness (h)
(2:4)

LV

LA

RV

P1
d1 d2

d3 AO
P2 P3

FIGURE 2.1
LV longitudinal cross-section showing the aortic
outflow tract.
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it can be readily seen that this leads to augmented wall stress (s) and associ-
ated increased oxygen (O2) demand, which can cause myocardial infarcts
(due to O2, supply–demand mismatch), as depicted in Figure 2.2. Based on
Equation 2.4, the LV could compensate for this augmented wall stress, by
increasing its wall thickness (h), to thereby contain the wall stress (s) and
hence the O2 demand, and thereby prevent formation of myocardial ischemia
and infarct. If now there is O2 supply–demand mismatch, this phenomenon
will cause myocardial ischemia, and eventually myocardial infarct (MI).

Where to look out for the presence of myocardial ischemic (or infarcted)
segment?

In order to answer this question, we need to keep in mind that the circum-
ferential (tensile) wall stress (su) in a pressurized thick-walled sphere, simu-
lating the LV (Figure 2.3), is maximum at the inner (endocardial) wall [1], as
expressed by Equations 2.5 and 2.6 and plotted in Figure 2.3. This is, in fact,
where myocardial ischemias and infarcts mostly occur, because of the higher
resistance to flow and myocardial perfusion near the inner wall. This appre-
ciation can enable us to justify either coronary bypass grafting or even
myocardial canalization for reperfusion from the intra-LV blood pool itself.

The expressions for sr and su are given by [1]

sr

P
¼

ri
re

� �3
� ri

r

� �3
� �

1� ri
re

� �3
� � (2:5)

su

P
¼

ri
re

� �3
þ 1

2
ri
r

� �3
� �

1� ri
re

� �3
� � (2:6)

P3
= 80

P3 =
100

P1 = 100 mm Hg P1 = 120 mm Hg

LA
LA

LV

R

h

LV

R

h

FIGURE 2.2
Why chronic AV stenosis can lead to MI? If P1 ", then s ", ! LV-Work ", and LV O2 demand ".
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LV thick-walled pressurized
spherical-shell model

Stresses in LV
myocardial wall
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FIGURE 2.3
Normalized wall-stress variations for the LV spherical thick-walled model (ri ¼ 1:5 cm,
re ¼ 2:5 cm at an instant during the ejection phase).
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2.4 How Myocardial Infarct Impairs Stroke Volume

and Cardiac Output?

Figure 2.4 illustrates the wall motion of a contracting LV with an infarcted
myocardial wall segment. We can apply the Bernoulli theorem between
points 1 (on the lateral wall) and 4 (at the entrance to aorta), points 2 and
4, and points 3 and 4, as follows:

P1 þ (rV2
1=2) ¼ Pa þ (rV2

a=2) or Pa ¼ P1 þ (r=2)(V2
1 � V2

a) (2:7)

P2 þ (rV2
2=2) ¼ Pa þ (rV2

a=2) or Pa ¼ P2 þ (r=2)(V2
2 � V2

a) (2:8)

P3 þ (rV2
3=2) ¼ Pa þ (rV2

a=2) or Pa ¼ P3 þ (r=2)(V2
3 � V2

a) (2:9)

Therefrom we obtain from Equations 2.7 through 2.9:

Pa ¼ 1

n

Xn
i¼1

Pi þ r

2

1

n

Xn
i¼1

V2
i � V2

a

� �" #
(2:10)

for n points along the endocardial wall.
Let us say that a set of points j (¼ 1, . . . ,m) lie on the infarcted wall

segment, and the remaining points k (¼ 1, . . . , t) lie on the contracting
endocardial wall. Then,

Pa ¼ 1

n

Xm
j¼1

Pj þ
Xt

k¼1

Pk

2
4

3
5þ r

2

1

n

Xm
j¼1

Vj þ
Xt

k¼1

Vk

8<
:

9=
;� V2

a

2
4

3
5 (2:11)

FIGURE 2.4
Contracting infarcted LV. In this figure, the regions associ-
ated with points 1 and 3 have normal wall contraction,
whereas the wall region associated with point 2 is infarcted. M1

1
3

4
LA

2
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Now for these j points on the infarcted endocardial wall, Vj will be zero, and
(as per Equation 2.11), Pa will be diminished. In other words, the output
pressure will be diminished. With less LV pressure generated to overcome
the aortic pressure (or LV afterload), the stroke volume (SV) and hence the
cardiac output (CO) will also be impaired.

Thus, it can be seen that if an LV has a myocardial infarct, its myocardial
wall will be stiffer and noncontractile in the infarcted region (Figure 2.4).
Hence, the LV pressure generated will be impaired as illustrated by Equa-
tion 2.11. Thereby, the LV stroke volume and hence its cardiac output will
be diminished.

2.5 Noninvasive Diagnosis of Diseased Heart (Mitral

and Aortic) Valves, Based on Their Dynamics

Modeling, Echo-, and Phonocardiography

2.5.1 Background

Diseases of heart valves (e.g., aortic and mitral) can result in valve leaflet
thickening (qualitatively detected by auscultation and echocardiography),
valvular stenosis, and high pressure-drop and valvular regurgitation (quali-
tatively detected by Doppler echocardiography). These detection methods
are indirect and empirical, entailing measurement of influences of deterior-
ation of valvular tissue properties on heart-sound frequency, pressure-
gradient across the valve, and intracardiac flow, as opposed to direct
measurement of in vivo tissue properties. As per these methods, if timely
surgical-corrective or replacement intervention is not carried out, it can
result in myocardial ischemia and even infarct.

Our approach to this issue is based on our findings that valvular disease
affects the elastic constitutive properties of valvular tissues [2–6]. Hence, by
developing methods for determination of the in vivo properties of healthy
and diseased valves (in terms of leaflet modulus vs. stress), and by categori-
zing healthy and diseased tissues in terms of their parametric ranges, we
can not only sensitively and quantitatively differentiate between healthy
and diseased valves but also detect the severity of their diseased states.

2.5.2 Mitral Valve Biomechanical Model to Detect Diseased Valve

First heart sounds (FHS) are associatedwith the closure and ensuing vibrations
ofmitral valves (MV) and can be related to the resonant vibrational frequencies
of MV [3]. Now the vibrational frequencies of MV are governed by and can be
expressed in terms of valvular tissue elasticity [4]. Since a degenerating MV
tissue has altered elasticity [2], it will have altered vibrational frequency.

Thus, by combining heart-sound power-spectral and valvular mechanics
analyseswith 2-d echocardiographic analysis (to determineMVdimensions),
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we can determine the in vivo elastic constitutive property of MV, as a
relationship between the elastic modulus (E) and stress (s) properties of the
membrane. For this purpose, stress and vibrational model analyses of MV
leaflets have been carried out based on semicircular models of the leaflet
geometry obtainable from two-dimensional (2-D) echocardiography [2,4].
The MV leaflet-membrane static and vibrational analyses will yield expres-
sions for the membrane leaflet stress (s) and modulus (E) as functions of its
primary vibrational frequency and its geometrical size parameter. From
these expressions, we will formulate a new stress-based property (s*) and a
modulus-based property (E*), which can be determined in terms of the
vibrational (and FHS) frequency ( f ) and valve dimension parameter (a).
The parameters of E* versus s* constitutive property can be employed to
differentially diagnose normal and diseased MV(s).

2.5.2.1 Analysis

1. The MV forms a component and one segment of the boundary of
the left ventricle (with the left atrium). Thus the LV primary-mode
vibrational frequency (flv) will be lower than the MV primary-
mode vibrational frequency (fmv). The MV cusps can be modeled
as semicircular membranes held along the valve ring as well as
along the edges by the chordae tendineae [2,4]. The equation of
equilibrium of an element of the MV leaflet membrane is repre-
sented (in polar coordinates) by

T(r2Ws) ¼ T
@2Ws

@r2
þ @Ws

r@r
þ 1

r2
@2Ws

@u2

� �
¼ �q ¼ �

X1
n¼1,3,5

4q0
np

sin nu

(2:12)

where
q is the leaflet loading (¼differential pressure across the leaflet)
Ws is the membrane deflection
T is the membrane tension

For the boundary conditions of a semicircular leaflet membrane of
radius a (held along its edges):

Ws(r ¼ a, u) ¼ 0; Ws(r, u ¼ 0) ¼ 0; Ws(r, u ¼ p) ¼ 0 (2:13)

Hence, we obtain the leaflet deflection as

Ws ¼
X1

n¼1,3,5

¼ 4q0
npT(4� n2)

r

a

� �n

� r

a

� �2
� �

sin nu (2:14)

It is noted that the above expression for Ws contains the tension
term T. We can determine the tension T in the membrane from the
condition that the change in membrane surface area due to its
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stretching by tension T in it (given by dAT ¼ T(1� n)pa2=Et) equals
the change in its surface area (of thickness t) due to its beingdeflected
by Ws (Equation 2.14) under the loading q0 (given by dAw ¼
q20a

4sn=T
2), to obtain the following expression for the tension T and

stress s (¼T=t) in the mitral valve leaflet membrane [2]:

s ¼ T

t
¼ Eq20 a

2Sn
p2t2(1� n)

� �1=3
(2:15)

where E and n are the elastic modulus and Poisson’s ratio of the
valve leaflet material, and

Sn ¼
X1

n¼1,3,5,7

(2� n)

n(2þ n)3
¼ 0:0234 (2:16)

We have thus obtained an expression for the stress (s) in the
membrane, from the static analysis of the membrane under load-
ing q0 and tension T in the membrane.

2. In order to determine the constitutive property of the heart-valve
membrane, we also need to determine the expression for its elastic
modulus (E). For this purpose, we will now carry out a vibration
analysis of the valve membrane associated with the FHS. Now at
the instant of occurrence of the FHS, the closing MV membrane is
vibrating about its deflected shape Ws(r, u), due to the differential
pressure q on it, by the amountWd(r, u), which is obtained from the
solution of the following MV vibrational equation:

T
@2Wd

@r2
þ 1

r

@Wd

@r
þ 1

r2
@2Wd

@u2

� �
¼ r

@2Wd

@t2
(2:17)

By making the solution Wd satisfy the following boundary
conditions:

Wd(r ¼ a, u, t) ¼ 0, Wd(r, u ¼ 0, t) ¼ 0, Wd(r, u ¼ p, t) ¼ 0

we obtain the primary-mode vibrating frequency of the semicir-
cular MV membrane (as the frequency of the corresponding circu-
lar membrane vibrating about its diameter as a nodal line) as [2]:

fmv ¼ 3:832

2pa

ffiffiffiffi
s

d

r
, or s ¼ p2f 2mva

2d

(1:916)2
(2:18a)

where d is the density of the valve leaflet membrane. Then by com-
bining the static and dynamic analyses results of Equations 2.15
and 2.18, we obtain the expression for the mitral valve leaflet
modulus as

E ¼ p8f 6mv d
3t2a4(1� n)

(1:916)6q20 Sn
(2:18b)
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wherein fmv corresponds to the third peak of the FHS spectrum
(since lower frequency peaks correspond to LV vibrations).
As a matter of interest, for the data: fmv¼ 100 Hz, q0¼ 2 mm Hg,
d¼ 1.02 gm=cm3, a¼ 1 cm, t¼ 0.5 mm, n¼ 0.5, and evaluating Sn
(Equation 2.16), we get s¼ 2.75� 103 N=m2 and E¼ 1.6� 105 N=m2.

3. Now, changes in MV pathology will affect its density (d) and
thickness (t), and its modulus (E) vs. stress (s) property which
we want to determine by combining FHS power-spectrum analysis
(to determine fmv) and 2-d echocardiographic analysis (to deter-
mine the size parameter a).

We now designate a new stress-based property (s�) of mv (from
Equation 2.18a), as

s� ¼ s

d
¼ p2f 2mva

2

(1:916)2
(2:19a)

as well as a new modulus-based property (E�) of MV (from Equa-
tion 2.18b), as

E� ¼ Eq20
d3t2

¼ p8f 6mva
4(1� n)

(1:916)2Sn
(2:19b)

We can now employ the E� vs. s� relationship as a constitutive
property of MV, to characterize and track its degeneration for
timely intervention purpose.

This technology andmethodology can provide the basis for timely
surgical and=or replacement intervention for adiseasedMV. Inorder
to apply this analysis, we can determine the valvular leaflet size
parameter from 2-D echocardiograms. The valvular leaflet vibra-
tional frequency can be obtained from the frequency spectra of the
FHS phonocardiographic signal associated withMVmovement.

Wecanstudyanumberofpatientsanddetermine the invivo (E*,s*)
values of their valves, at regular intervals during their degeneration
process. We can also simultaneously and regularly monitor cardiac
symptoms and chamber sizes and correlate them with the valvular
constitutive E*–s* property. By means of these correlations, we can
determine the critical (E*–s*) boundary at which intervention will
have to be made to replace the degenerated natural valve by means
of a prosthetic flexible-leaflet MV [2].

2.5.3 Aortic Valve Biomechanical Model to Determine Normal
and Diseased Aortic Valve Properties

Second heart sounds (SHSs) are associated with the closure and ensuing
vibration of AVs. The heart-sound spectral frequencies can be related to the
resonant vibrational frequencies of heart valves [5]. Now the vibrational
frequencies of heart valves are governed by and can be expressed in terms
of their tissue elasticity [6]. Since a degenerating tissue has altered elasticity
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[3], it will have altered its vibrational (primary) frequency, and hence
altered the heart-sound power-spectral frequency profile.

Thus, by combining 2-D echocardiography (to obtain valvular geometry),
heart-sound power-spectral analysis (to obtain the valvular vibrational fre-
quency), and valvular mechanics (stress-deformation and vibrational) ana-
lyses, we can determine the in vivo valvular properties of AVs [5,6].

The AV (as shown in Figure 2.5A) has three membrane sectors (each of
angle 2p=3). Each of these threemembrane sectors deforms (by an amountWs)
under the differential pressure (P) across the valve. At the same time, toward
the closure of the AV (and associated with the SHS), each membrane sector
vibrates; it has been shown [6] that the second spectral peak ( f ) frequency of
the SHS is best able to differentiate between normal and pathological valve.

Just as in the case of the MV analysis, we can also carry out both static-
deformation and vibrational analyses of the AV membrane sectors [5–7].
From these analyses, we can obtain expressions for the elastic modulus and
the stress in the valve leaflet, in terms of the SHS’s second spectral peak
frequency ( f ), the radius (a) of the valve ring, density (D) of the leaflet
material, the pressure difference (P) across the valve leaflet, and Ws (the
deflection of the valve leaflet under the differential pressure P) at the time of
occurrence of the SHS. We will then express the valve leaflet constitutive
property in terms of a modified modulus property (E*) and stress (s), both
of which can be determined noninvasively in terms of f and a.

AV
ring r = a , q= 0

Ws* (max deflection) is at 0.76a

AV leaflet top edge (in open position)

AV
leaflet

top-edgeAV
leaflet
ring

Boundary
Γ0

Region Ω0

Isoamplitude contour
curves u (x, y) = ui

q = −b q = b = p /3 
(0,0)

(A)

(B) (C)

FIGURE 2.5
Aortic Valve geometry and deformation profile: (A) Schematic of the aortic valve geometry. (B)
Aortic leaflet membrane analyzed as a circular 1208 sector. (C) Schematic of the isoamplitude
shape–function curves ui (x, y)¼ui (shown dotted in one of the leaflets), depicting the profile of
the deflected surface of the AV leaflet when it vibrates.
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2.5.3.1 Analysis (Figure 2.5)

1. An aortic valve leaflet membrane (shown in Figure 2.5A) is analysed
as a circular 1208 sector–shaped membrane of u¼�b¼�p=3 and
radius r (¼a), as depicted in Figure 2.5B. Its boundary is represented
by a simply connected plane curve G0 enclosing a region V0, as
depicted in Figure 2.5C. When the AV vibrates at the time of its
closure (associates with the SHS), its membrane deflection at a
point in the region V0 at any time t is denoted byW(x, y, t).

2. Let us start with the deflection (Ws) of this 1208 sector leaflet mem-
brane (of u¼�p=3 and radius r¼ a) at the time of occurrence of the
SHS.When themembrane vibrates in one of itsmodes, the profile of
its deflection surface can be described by a family of isoamplitude
curves, which form a set of level curves u(x, y)¼ ui (constant) when
projected on the (x, y) plane, as shown in Figure 2.5C. This family of
isoamplitude curves is denoted by Gu (for 0� u� u*, where u* is the
maximum value of u), wherein G0 denotes the leaflet membrane
boundary, and the region bounded by Gu is denoted by Vu. We
hence need to scale u(x, y) to the static deflection W(x, y) of the
pressure-loaded valve at the time of occurrence of SHS, by making
u* (the maximum value of u(x, y)) correspond to the maximum
static deflection (Ws*) of the valve membrane (at the location of u*).

3. In the context of membrane analogy, when torsion is applied to a
cylindrical beam with the same cross-section as the valve leaflet
membrane (1208 sector) boundary, the lines of constant shearing
stress coincide with these isodeflection contours of the membrane.
Hence, the function u(x, y) satisfies the same Poisson equation as
the Prandtl stress function (of torsion of a cylindrical beam of the
same cross-section as the 1208 valve leaflet section), given by [5,6]:

r2u(x, y) ¼ �2 (2:20a)

The static deflectionWs, under the pressure loadingP (equal to aortic
pressure minus LV pressure) and leaflet tension T, is given by [5,6]:

r2Ws ¼ P=T (2:20b)

However, we need to scale u(x, y), such that its maximum value u*
corresponds to the maximum static deflection Ws*, as follows [5,6]:

u* ¼ max [u(x, y)] ¼ �2TW*
s

P
(2:21)

so that (1) theWs shape contours correspond to the u(x, y) contours
and (2) u(x, y)¼�2Ws(x, y)T=P.
In order to specify u* in equation (3), we need to first obtain the u
(x, y) or u(r, u) for a 1208 (2p=3) sector-shaped membrane. Herein,
the boundary shape of an aortic leaflet is approximated as a
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circular sector of angle 2p=3. Then, from the corresponding torsion
problem, it can be shown [6] that for a sector of a circle, with
boundary given by (r ¼ 0, r ¼ a, u ¼ �b), we have the deformed
deflection–amplitude shape function u(r, u) as [5,6]

u ¼ 1

2
r2

cos 2u

cos 2b
þ a2

X1
n¼0

"
A2nþ1

r

a

� �(2nþ1) p2b
cos 2nþ 1ð Þpu

2b

� � #
� 1

2
r2

A2nþ1 ¼ �1ð Þnþ1 1

2nþ 1ð Þp � 4b
� 2

2nþ 1ð Þp þ 1

2nþ 1ð Þp þ 4b

� �

(2:22a)

wherein r is the radial coordinate and a is the valve ring radius.
The function u is a plane harmonic function which satisfies the
condition u ¼ 0 at the boundary given by (r ¼ 0, r ¼ a, u ¼ �b).
By symmetry, the maximum value of u will be found along the
line u ¼ 0. The computation of u along this line satisfies the profile
of the membrane’s deflection shape.
By choosing the aortic valve leaflet sector angle to be b ¼ p=3 and
by carrying out an iterative computer calculation [5,6], we obtain
the maximum u(r, u) value of u* ¼ 0.11181r2 at r ¼ 0.76a. In other
words, for the aortic leaflet model, the maximum value of u(r, u) is
u* ¼ 0.06458a2 at r ¼ 0.76a, i.e.,

u* ¼ umax ¼ 0:11181r2(at u ¼ 0 and r ¼ 0:76a) ¼ 0:06458a2 (2:22b)

Likewise, Ws* also occurs at u ¼ 0 and r ¼ 0:76a

4. When the aortic valve closes, its leaflets membranes are set into
vibration. Hence, we next carry out a vibration analysis of the
aortic valve leaflet. Consider a portion of the membrane boundary
represented by a closed contour u(x, y)¼ constant at an instant t.
For the vibrating membrane, the differential equation of motion at
any instant t can be written as follows [5,6]

T
@2W

@x2
þ @2W

@y2

� �
¼ r

@2W

@t2

or, T

ð
Gu

@2W

@r2
þ 1

r2
@2W

@u2

� �
ds� r

ðð
Vu

@2W

@t2
dV ¼ 0 (2:23a)

where T denotes the membrane tension per unit length,W denotes
the deflection of themembrane, ds denotes an element of the closed
curve u¼ constant, Gu corresponds to the earlier mentioned family
of isoamplitude curves,

Ð
Gu

denotes integration along a closed
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contour u(x, y)¼ constant,
Ð Ð

Vu
denotes double integration over the

interior of the closed region bounded by the contour u(x, y)¼
constant, Vu denotes the region bounded by Gu, and r is the mem-
brane mass per unit area. The solution to the above equation can be
expressed as

W(u, t) ¼
X1
i¼1

wi(u)fi(t) ¼
X

wi(u)e
�ivt (2:23b)

where the eigenfunctionswi(u), corresponding to this free vibration
problem, are given in terms of the zeroth-order Bessel functions as

wi(u) ¼ AJ0(
ffiffiffi
2

p
kg)þ BY0(

ffiffiffi
2

p
kg) (2:24)

where
g ¼ (u*� u)1=2

k2 ¼ (r=T)v2

A and B are arbitrary constants

In order to avoid infinite displacement of u at any point of the
membrane, we set B¼ 0. Then considering the boundary condition
of the membrane having zero displacement around the boundary
u(r, u)¼ 0 or u(x, y)¼ 0, we obtain (from Equation 2.24)

J0
ffiffiffiffiffiffiffi
2u*

p
k ¼ 0 (2:25a)

for which
ffiffiffiffiffiffiffi
2u*

p
k ¼ Bi (2:25b)

where Bi is the ith zero of the zeroth order Bessel function J0. Then
the symmetric mode eigenvalues �v (associated with frequency v)
are given by

ffiffiffiffiffiffiffi
2u*

p
k ¼ �v ¼ 2:4048, 5:5201, 8:6537, . . . (2:26)

From Equation 2.26, we can express the tension (T) and hence
stress (s ¼ T=h) in the leaflet membrane in terms of its vibrational
frequency ( f¼v=2p) and u* (¼0.06458a2). It has been determined
by us [6] that when the data of the valve’s SHS spectral peak
frequency ( f ) and radius (a) are plotted on the ( f–a) coordinate
plane, employment of the second peak frequency of the SHS
spectrum (corresponding to the second mode of vibration, for
which �v¼ 5.5201) is best able to effectively separate normal and
pathological AVs. Hence, we will adopt �v ¼ 5.5201.

For the second mode frequency, we take �v¼ 5.5201, and obtain

k22 ¼
r

T
v2
2 ¼

5:52012

2u*
(2:27a)
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or

v2 ¼ (T=r)1=2
5:5201ffiffiffiffiffiffiffi

2u*
p (2:27b)

or

s ¼ T

h
¼ 8p2f 2Du*

5:52012
(2:28)

where f¼v2=2p, the densityD¼ r=h¼ 1 g=cm3, and u*¼ 0.06458a2.

5. Wenowobtain an expression for the tension (T) in theAVmembrane
under its pressure-loaded state. For this purpose, we equate (1)
the change dAw in the membrane surface area due to its taking up
thedeflectedshape(Ws)underthepressureloadingP to(2) thechange
dAT in its surface area due its being stretched by the tension T in it.

The expression for dAw is obtained as [6]

dAw ¼ P2

8T2
Au* (2:29)

where A is the membrane area before deformation.
The expression for dAT is obtained as [6]

dAT ¼ 2T(1� n)A

Eh
(2:30)

Upon equating dAw to dAT, we obtain the following expression for
the tension T in the leaflet:

T ¼ EhP2u*

16(1� v)

� �1=3
(2:31)

Keeping in mind that the static deflection satisfies the classical
Poisson equation, and that

P ¼ �2T
Ws*

u*
and u* ¼ �2T

P
Ws* ¼ 0:06458a2 (2:32)

we obtain from Equations 2.31 and 2.32, the expression for the
Young’s modulus of the AV leaflet material, as

T3 ¼ Ehu*

16(1� n)
P2 ¼ Ehu*

16(1� n)
2T

Ws*

u*

� �2

¼ Ehu*

16(1� n)
2
Ws*

u*

� �2

T2 (2:33a)

or

E ¼ 4u*(1� n)T

(Ws*)
2h

¼ 4u*(1� n)s

(Ws*)
2

(2:33b)
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where u*¼ 0.06458a2 and Ws* is the maximum deflection of the AV
leaflet.

6. Now from the secondary vibrational mode of the AV leaflet, the
stress in the aortic valve leaflet membrane can be written from
Equation 2.28, as

s ¼ T

h
¼ 8p2f 2Du*

(5:5201)2
(2:34)

where u*¼ 0.06458a2 and D¼ 1 g=cm3 or 103 kg=m3. Hence, from
Equation 2.34

s(in N=m2) ¼ 167:35 f 2a2 (2:35)

where the vibrational frequency f (¼ the SHS spectrum’s second
peak frequency) is in hertz (Hz) and a is in meters.

7. Now, we note that the valve leaflet modulus (as with most soft
tissues) is a function of the stress swithin it; we will assume this to
be a quasi-linear function in the (E, s) operating range of the AV.
At the instance of occurrence of the SHS, the pressure difference
across the AV is small, and hence the corresponding leaflet stress
s(¼s1) and modulus E(¼E1) are also small; accordingly, the leaf-
let deformation Ws*(¼W1*) will also be small. However, at the start
of the filling phase, there is a big pressure difference across the
leaflet; the corresponding leaflet stress s(¼s2) and modulus
E(¼E2) will also be bigger than s1 and E1, and the corresponding
leaflet deformationW2* will be measurable. However, based on our
assumption (that E varies quasi-linearly with s), we can state that

E1=s1 ¼ E2=s2 (2:36)

Hence, we can put down, from Equations 2.33b and 2.35,

167:35f 2a2

E1
¼ (W2*)

2

4u*(1� n)
(2:37)

so that

E1 ¼ 669:4f 2a2u*(1� v)

(W2*)
2

(2:38)

wherein u*¼ 0.06458a2

At the same time, we can employ Equation 2.35, as

s1 ¼ 167:35f 2a2 (2:39)

wherein
s1 is in N=m2, f is in Hz, and a is in m.
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8. We can determine these pairs of values (s1, E1) for different
cycles, plot E versus s, formulate the (E, s) relationship as
E¼ psþE0, and evaluate the constitutive parameters p and E0 for
a patient. For patients with pathological (or calcified) AVs, we can
hence determine the distributions of these parameters p and E0,
correlate them with valve leaflet pathology and pressure-drop
across the valve, and arrive at their critical values for the replace-
ment of the valve by a prosthetic valve.

Thus, we can distinguish valve leaflet pathology by means of the
parameters p and E0. For their determination, we evaluate E from
Equation 2.38 and s from Equation 2.39 at the instant of occur-
rence of SHS for each cardiac cycle, over a number of cycles. For
evaluation of s, we need to monitor the valve-ring radius (a) and
the frequency (f ) of the second spectral peak of SHS. For evalu-
ation of E, we need to also monitor the maximum static deflection
W2*(Ws*) of the valve leaflet, which happens to be on its symmet-
rical axis (u¼ 0) at r¼ 0.76a at the start of the filling phase with
respect to W1* at the instant of SHS occurrence (i.e. taking W1* to be
the undeformed value; this can be done by ultrasound).

For a¼ 0.8 cm (or 0.008 m), f¼ 100 Hz, D¼ 1 g=cm3 (or 103

kg=m3), v¼ 0.5, W2*¼ 3 mm (or 0.003 m), we get s¼ 107 N=m2

(from Equation 2.39) and E¼ 98.37 N=m2 (from Equation 2.38).
At other LV cycles, we will obtain different values of s and E,
and hence of p and E0. The values of p and E0 can then be
employed diagnostically to characterize and track pathological
changes in the AV leaflet (from normal AV), and determine their
critical values at which timely intervention can be carried out so as
to avoid a big pressure-drop across the valve leaflet, leading to
myocardial ischemia and infarction.

9. An alternative and perhaps more convenient approach (which
would obviate the measurement of aortic leaflet deformation)
would be to employ a modified leaflet elastic modulus parameter

E�(in N) ¼ E(W�
s )

2, so that from Equation 2.33b

E� ¼E(W�
s )

2¼ 4u�(1�n)s¼ 0:13sa2; for u� ¼ 0:06458a2 and n¼ 0:5

Then substituting for s(¼167:35f 2a2) from Equation 2.35,
we obtain

E� ¼ 21:6f 2a4

We can then compute E�(¼21:6f 2a4) and s(¼167:35f 2a2) for
different cardiac cycles, plot E� vs. s, and determine the regression
curve based expression for E� in terms of s. The parameters of this
expression would then represent the constitutive parameters for
leaflet pathology.
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2.6 Diseased LV Myocardial Segment Detection

For detection of the location and extent of ischemic and infarcted LV
myocardial segments, we are invoking the concept that myocardial disease
affects the elastic constitutive or modulus property of the myocardial tissue,
and hence its ultrasonic echo-intensity distribution. The ultrasonic echotex-
ture of the myocardium will be considerably heterogeneous in the case of an
infarcted myocardium. Thus, by quantifying the ultrasonic echo-intensity
distributions of LV myocardial segments, we can distinguish between nor-
mal, infected, and ischemic tissues.

Two-dimensional B-scan echocardiographic images of the heart can be
scanned for tissue characterization and quantitative texture analysis of myo-
cardial regions [8,9]. Each myocardial tissue component generates a grey
scale pattern or texture related to the tissue density and fibrous content. In
diseased states (such as myocardial ischemia and infarcts), changes in tissue
density have been recognized. It has been found that hyper- reflectile echoes
(HREs) correlate well with diseased myocardial tissue [8,9].

Figure 2.6a depicts the echo-intensity profile of an infant with visible scars
in regions 1 and 2. The digitized echo-intensity profiles of these two regions
are depicted in Figure 2.6b. In Figure 2.6b, the irreversibly damaged
infarcted region is depicted in dark shade, the peri-infarcted ischemic bor-
der is depicted slightly lighter, while the normal tissue is depicted in light
shade [9]. The aim of our drug therapy would be to convert the ischemic
(slightly dark) region into normal (light) region.

In the neonatal infant patients who came to postmortem, their highly
reflectile ultrasonic echozones were pathologically examined, and found
to be necrotic and calcified [8–10]. We have thus demonstrated the capabil-
ity of distinguishing scarred myocardial segments from healthy segments.
Further, since the modulus property (and hence the echo-intensity) reflects
myocardial disease severity, this concept can be further developed to pro-
vide the basis for differential detection of infarcted myocardial segments as
well as the bordering ischemic myocardial segments.

Table 2.1 displays the echo-intensity values ofmyocardial segments of nine
normal infants. The upper bound of the echo-intensity (of the pericardium
region A) was set to 100% in each normal infant and the intensities from the
rest of the imagewere referenced or normalized to this level. Thus, in the case
of male patientW, for instance, the normaliszed echo-intensities of regions B,
C, D, and E are 49.5, 31.3, 39.3, and 35.1, respectively. We note that the upper
bound of echo-intensity value of healthy tissue (expressed as a percentage of
pericardial echo-intensity) is 54.2 (in the case of patient TY).

Table 2.2 displays the echo-intensities of myocardial segments (normal-
ized with respect to the pericardial echo-intensity, so as to make the results
independent of instrumentation characteristics) of six infant patients with
diseased hearts. It is noted (from the last column) that the normalized echo-
intensities of the highly reflectile elements (HREs) from these six infant
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 yfx 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

 98 79 78 88 90 99 96 102 108 91 77 92 86 135 122 73 55

 99 114 115 101 114 126 128 114 116 119 126 82 68 84 103 78 57

 100 151 137 125 128 136 135 133 134 149 137 91 75 74 73 82 83

 101 175 177 171 151 144 143 154 147 138 142 139 139 126 64 76 71

 102 202 196 174 125 192 193 183 164 131 131 125 132 92 89 81 116

 103 139 143 183 193 206 217 233 248 209 146 116 102 111 113 117 116

 104 147 136 143 178 203 251 250 255 229 201 75 71 92 82 88 95

 105 108 110 132 151 210 223 227 249 255 255 230 210 104 87 81 112

 106 84 104 88 121 147 184 227 239 255 255 252 247 220 125 76 70

 107 83 110 108 122 135 175 194 183 206 228 211 255 255 184 141 131

 108 68 92 122 131 145 147 149 151 217 181 189 222 241 178 190 167

 109 56 76 81 122 132 137 145 143 154 150 156 156 195 190 206 190

110 76 63 96 96 82 83 103 120 142 128 133 141 153 181 192 194

 111 59 57 63 66 70 103 106 118 96 94 86 110 129 150 95 66

 112 58 60 59 57 58 61 71 77 106 89 91 92 110 147 97 85

 113 74 71 78 60 56 58 57 62 71 70 79 83 78 92 67 76

 114 57 57 65 63 57 56 63 56 51 56 58 80 85 78 67 55

 115 51 60 63 63 58 57 56 57 54 59 57 58 59 76 68 81

(a)

(b)

FIGURE 2.6 (See color insert following page 266.)
(a) Long axis 2-D ultrasonic view of a pediatric patient’s heart, showing highly echoreflectile
regions 1 and 2 and a healthy region 3. (b) Echocardiographic texture analysis, showing echo-
intensity levels from myocardial region 1. (Adopted from Figure 2 of Kamath, M.V., Way, R.C.,
Ghista, D.N., Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med., 15,
137, 1986.)
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patients were distinctly higher than the echo-intensity range of normal
myocardial tissue segments.

The normalized lower bound of the highly reflectile infarcted myocardial
segments is 63.1% (Table 2.2), whereas the normalized upper bound of
normal myocardial tissue is 54.2% (Table 2.1). Thus, the normalized echo

TABLE 2.1

Echo-Intensity Values for Various Anatomic Regions of Normal Pediatric Hearts
(Based on Long Axis Vies). (Adopted from Kamath, M.V., Way, R.C., Ghista, D.N.,
Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med.,
15, 137, 1986.)

Patient (Sex) Region A Region B Region C Region D Region E

W (M) M: 227.75 M: 112.83 M: 71.21 M: 89.55 M: 80.06
SD: 13.54 SD: 25.27 SD: 19.41 SD: 17.91 SD: 18.74
N: 65 N: 84 N: 75 N: 31 N: 65
P: 100 P: 49.5 P: 31.3 P: 39.3 P: 35.1

G (F) M: 218.40 M: 98.30 M: 66.24 M: 103.10 M: 86.21
SD: 14.74 SD: 15.79 SD: 20.20 SD: 21.13 SD: 32.62
N: 67 N: 76 N: 41 N: 42 N: 98
P: 100 P: 45 P: 30.3 P: 47.2 P: 39.5

S (M) M: 212.01 M: 97.20 M: 42.09 M: 82.43 M: 92.43
SD: 14.27 SD: 12.93 SD: 20.07 SD: 22.47 SD: 20.93
N: 66 N: 84 N: 69 N: 21 N: 60
P: 100 P: 45.8 P: 25.8 P: 38.9 P: 43.6

R (M) M: 226.81 M: 92.23 M: 58.49 M: 89.50 M: 78.73
SD: 12.46 SD: 16.42 SD: 19.10 SD: 14.69 SD: 17.89
N: 78 N: 96 N: 55 N: 30 N: 56
P:100 P: 40.7 P: 25.8 P: 39.8 P: 34.7

TY (M) M: 195.85 M: 75.78 M: 57.93 M: 106.21 M: 93.78
SD: 14.22 SD: 19.00 SD: 26.10 SD: 16.96 SD: 15.24
N: 67 N: 74 N: 44 N: 24 N: 64
P: 100 P: 38.7 P: 29.6 P: 54.2 P: 47.9

O (F) M: 204.11 M: 83.93 M: 57.79 M: 103.81 M: 84.77
SD: 12.66 SD: 16.94 SD: 18.24 SD: 24.89 SD: 18.28
N: 44 N: 93 N: 43 N: 43 N: 56
P: 100 P: 42.8 P: 29.5 P: 53 P: 43.3

SG (M) M: 209.53 M: 101.98 M: 63.921 M: 68.61 M: 94.18
SD: 14.19 SD: 14.60 SD: 17.97 SD: 17.56 SD: 20.80
N: 38 N: 65 N: 36 N: 18 N: 84
P: 100 P: 48.7 P: 30.5 P: 32.7 P: 44.9

WB (F) M: 237.22 M: 93.78 M: 75.27 M: 110.65 M: 106.85
SD: 12.94 SD: 20.51 SD: 20.39 SD: 24.80 SD: 32.87
N: 82 N: 86 N: 77 N: 17 N: 47
P: 100 P: 39.5 P: 31.7 P: 46.6 P: 50.0

L (F) M: 227.11 M: 89.09 M: 63.76 M: 108.95 M: 117.27
SD: 12.56 SD: 20.08 SD: 25.99 SD: 27.24 SD: 16.46
N: 72 N: 77 N: 76 N: 37 N: 67
P: 100 P: 39.2 P: 28.1 P: 48.0 P: 51.6

Note: The numbers in the four rows represent mean (M), standard deviation (SD), number of
pixels (N), and percentage of pericardial intensity (P). A¼posterior pericardium, B¼
anterior myocardium, C¼posterior myocardium, D¼ anterior mitral leaflet, and
E¼ septum.
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intensity range of ischemic myocardial segments is 54.2%–63%. If a myocar-
dial segment has normal echo-intensity in this range, and if
after pharmacological drug therapy its echo-intensity becomes less than
54.2, then we can say that this drug is effective in normalizing the ischemic
myocardial segment on the border of the infarcted myocardial region.

2.6.1 Comments

We have noted that diseased (qualified) heart valves can cause high LV
wall stress leading to myocardial ischemia. Hence, we need a more defini-
tive index for diseased heart valve (based on the biomechanical property

TABLE 2.2

Intensity Values for Various Anatomic Regions of diseased Pediatric Hearts
(Based on Long Axis Vies). (Adopted from Kamath, M.V., Way, R.C., Ghista, D.N.,
Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med.,
15, 137, 1986.)

Patient (Sex) Region A Region B Region C Region D HRE and Its Location

B (M) M: 167.44 M: 54.76 M: 51.02 M: 82.20 M: 105.74
SD: 25 SD: 28.2 SD: 17.71 SD: 24.68 SD: 30.88
N: 65 N: 84 N: 75 N: 31 N: 65
P: 100 P: 32.7 P: 30.5 P: 49.1 P: 63.1

Septum
P (F) M: 148.76 M: 61.73 M: 79.81 M: 61.7 M: 108.18

SD: 26.78 SD: 23.02 SD: 22.05 SD: 24.2 SD: 13.03
N: 50 N: 75 N: 47 N: 49 N: 40
P: 100 P: 41.5 P: 53.8 P: 41.50 P: 72.6

Septum
Br (M) M: 141.65 M: 68.3 M: 69.3 M: 33.93 M: 89.412

SD: 29.56 SD: 26.8 SD: 24.8 SD: 24.4 SD: 28.0
N: 40 N: 40 N: 49 N: 44 N: 79
P: 100 P: 41.5 P: 53.8 P: 41.5 P: 73.1

Septum
F (F) M: 157.34 M: 50.1 M: 60.8 M: 53.8 M: 112.1

SD: 30.0 SD: 29.5 SD: 18.8 SD: 22.7 SD: 10.3
N: 35 N: 45 N: 49 N: 44 N: 31
P: 100 P: 31.8 P: 38.6 P: 34.2 P: 71.2

Right ventricle
HI (M) M: 168.1 M: 54.7 M: 58.2 M: 62.4 M: 96.4

SD: 21.35 SD: 21.8 SD: 16.9 SD: 20.0 SD: 14.7
N: 47 N: 36 N: 33 N: 37 N: 49
P: 100 P: 32.5 P: 34.6 P: 37.1 P: 47.3

Left ventricle
G (M) M: 117.7 M: 46.9 M: 45.5 M: 42.7 M: 85.3

SD: 20.6 SD: 19.0 SD: 20.6 SD: 19.1 SD: 22.6
N: 45 N: 44 N: 40 N: 49 N: 37
P: 100 P: 39.8 P: 38.7 P: 36.2 P: 72.5

Right ventricle

Note: The numbers in the four rows represent mean (M), standard deviation (SD), number
of pixels (N), percentage of pericardial intensity (P). A¼posterior pericardium,
B¼ anterior myocardium, C¼posterior myocardium, and D¼ septum.

Ghista/Applied Biomedical Engineering Mechanics DK8315_C002 Final Proof page 43 30.5.2008 10:59am Compositor Name: VAmoudavally

Left Ventricular Mechanics 43



of the valve leaflets) as well as a more reliable guideline for intervention
before the onset of myocardial ischemia.

For the purpose of determining the valvular leaflet biomechanical prop-
erty, to characterize valvular degeneration, we have shown that (1) we can
make use of noninvasive determination of valve leaflet vibrational frequency
(from spectral phonocardiography) and valve leaflet deformation (by
processing 2-D echocardiograms), (2) express the valve leaflet modulus (E)
and stress (s) in terms of valve leaflet vibrational frequency and deformation,
and (3) then develop an analytic expression for E as a function of s.

The parameters of this E–s expression can then be employed to character-
ize valve leaflet degeneration, which in turn is manifested as valvular sten-
osis and=or incompetency, and thereafter lead to myocardial ischemia. If we
were to determine the pressure-drop across the heart valve or LV backflow,
and use it as a measure of candidacy for intervention, then it is quite possible
that at that stage the patient’s LVwall stress could have become high enough
to cause myocardial ischemia or infarct. Thus, we could employ LV wall
stress as a criterion for intervention, except that it requires knowledge of
intra-LV pressure, which cannot be determined noninvasively.

Hence, we suggest (based on our research) that we employ echocardio-
graphic texture analysis (i.e., LV myocardial echo-intensity profile deter-
mination) as a criterion for intervention. In other words, we can keep
postponing intervention until myocardial ischemia becomes discernable,
on the 2-D echo-intensity profile of the LV, as a normalized echo-intensity
segment in the 54.2%–64% range.

We then want to propose that (1) we determine the valve leaflet’s bio-
mechanical (E vs. s) property, as described herein, (2) correlate the biomecha-
nical E versus s property (displayed graphically and=or analytically) with
the intervalvular pressure-drop and=or backflow (due to valvular regurgi-
tation), and (3) also correlate this biomechanical (E vs. s) property with
myocardial 2-D echo-intensity profile (as demonstrated in this section).

This will reveal to us the following:

. Sensitivity of valve leaflet (E vs. s) biomechanical property to
depict valvular degeneration and dysfunction

. New early warning signal for timely intervention, before the onset
of LV myocardial ischemia, based on its detection of the myocar-
dial 2-D echo-intensity profile

. Effectiveness of a particular drug therapy in converting an ische-
mic peri-infarcted myocardial segment (in the normalized echo-
intensity range of 54.2–64.2) into a normal myocardial segment
(having normalized echo-intensity <54.2)

. Comprehensive profile of the LV heart-valve property, associated
with LV heart-valve dysfunction (characterized by stenosis or
incompetency), and LV myocardial property distribution, repre-
sented by its echo-intensity distribution
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2.7 Analysis of Blood Flow in the LV (Using Monitored LV

Wall-Motion Data to Determine Intra-LV Flow Velocity

and Pressure-Gradient Distributions)

2.7.1 Finite-Element Analysis of Blood Flow in the LV

The data required for the finite-element analysis (FEA) consist of

. LV 2-D long-axis frames during LV diastolic and systolic phases

. LV pressure versus time, associated with these LV frames

. Computation of LV instantaneous wall velocities as well as
instantaneous velocity of blood entering the LV during the filling
phase and leaving the LV during the ejection phase

From this FEA, we determine the instantaneous distributions of intra-LV
blood-flow velocity and differential pressure during filling and ejection
phases, to intrinsically characterize LV resistance-to-filling (RTF) and LV
contractility (CONT), respectively [11].

The FEA employed for computing intra-LV flow velocity and pressure
distributions entails solution of the potential equation:

r2F ¼ 0 (2:40)

wherer2 is the Laplacian operator,F is the velocity potential, andrF is the
velocity vector. For FEA, the governing differential equation

@2F

@x2
þ @2F

@y2
¼ 0 (2:41)

for a 2-D planar flow domain, is transformed to a finite-element equation
form, by making use of the Galerkin-weighted residual procedure.

The resulting stiffness-matrix system of equations

[K]{F} ¼ {F} (2:42)

can be solved for F at those point(s) in the flow domain, by specifying
@F=@n(Vn) along the endocardial boundary, and F at those point(s) on the
boundary where Vn is not specified. By specifying F to be constant along
the open boundaries, the flow can be constrained to be normal to that
boundary; this constraint also allows the solution to obtain a flow balance.
The value of the constant F is arbitrary, and F¼ 0 is specified along the
open boundary.

The matrix system [K], in Equation 2.42, is symmetrical and banded.
Equation 2.42 is solved for F using a Gaussian elimination method, which
transforms the matrix system [K]. From the computed values of F at each
internal point, we determine the velocity components at each internal point
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of the LV chamber and hence obtain instantaneous maps of intra-LV blood-
flow velocity patterns.

2.7.2 Analysis for Intra-LV Pressure Distribution

Once the intra-LV flow velocities are determined, the intracardiac pressure
distribution at any point inside the LV chamber can be obtained from the
Bernoulli equation for unsteady potential flow as

Pþ (1=2) rV2 þ r(@F=@t) ¼ C(t) (2:43)

where
P is the pressure
(1=2)rV2 is the dynamic pressure term
r is the density of blood
V is the velocity of blood
r(@F=@t) is the effect due to acceleration
C(t) represents the total pressure as sensed by a pressure probe facing

the oncoming fluid.

C(t) is a constant and the gravitational or hydrostatic effects are neglected.
The partial derivative, (@F=@t), is computed from the value of F at the same
point at successive instants, using the finite difference scheme.

Since we want the procedure not to utilize the catheter-pressure data, we
can obtain the pressure distribution relative to a reference point in the
chamber, say at the center of the aortic ormitral orifice. Hence the differential
pressure field at a point s, in terms of the pressure P0 at the inlet (during
diastole) or outlet (during the ejection phase) of the ventricle, is given by

Ps � P0 ¼ (1=2)r(V2
0 � V2

s )þ r(@F=@tj0 � @F=@tjs) (2:44)

where V0 and Vs are, respectively, the velocity of blood flow at the center of
the orifice (i.e., at the aortic or mitral orifice during systolic or diastolic
phase) and at a point s inside the LV chamber. The differential pressure
(Ps�P0) can be expressed and displayed in nondimensional form, as

Cp ¼ (Ps � P0)=
1

2
rV2

0 (2:45)

where Cp is the nondimensional pressure coefficient.
This instantaneous graphical display of the relative pressure distribution

in the LV chamber can provide an indication of the RTF as well as of the
effectiveness of the LV contraction in setting up the appropriate pressure
distribution in the chamber, so as to promote adequate emptying.

By comparing intra-LV pressure-gradients before and after administra-
tion of nitroglycerin (a myocardial perfusing agent, and hence a quasi-
simulator of coronary bypass surgery), we can infer how the myocardium
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is going to respond and how these LV functional indices will improve after
coronary bypass surgery.

2.7.3 Intra-LV Flow during Diastolic Filling

How well and how easily the LV fills is depicted by the instantaneous intra-
LV flow distribution and the interframe variations in flow distribution,
which are governed by the segmental stiffness of the LV, and are manifest-
ations of RTF. In general, the flow is highest during the first half of the
diastole (20–30 cm s�1) in all patients, and the relative flow during all phases
of diastole is at a maximum in the inflow segment of the LV, just below
the MV.

The results suggest that the early filling phase could possibly be due to
the actively relaxing LV wall setting up a pressure-gradient, conducive to
filling, instead of the LV wall motion responding passively to blood flow.
Subsequently, during late-filling phases, the increasing stiffness of the LV
wall (due to increasing LV volume) provides increased resistance to
LV filling in the form of reduced flow.

The ideal situation is for the wall contraction to be so graded that
adequate flow is generated in the apical region and a near-uniform flow is
maintained throughout the LV chamber. The factors contributing to
adequate intra-LV flow and cardiac output, with a smooth washout,
are strong LV wall contraction and uniformly accelerating wall motion.
If following administration of nitroglycerin, the LV wall can contract
more uniformly and thereby set up a more favorable intra-LV velocity
field, instead of a pattern of compensatory regional hypercontractility (and
associated high wall tension and oxygen demand) to make up for a region of
hypocontractility, then such a patient would be a good candidate for cor-
onary bypass surgery.

The results of the analysis are displayed in Figure 2.7; for a typical patient
with a myocardial infarct

. Figure 2.7a1 and a2 depict superimposed LV outlines during
diastole and systole, before nitroglycerin administration (a1) and
after nitroglycerin administration (a2)

. Figure 2.7b1 and c1 depict intra-LV blood-flow velocity dis-
tributions during diastole and systole, before nitroglycerin
administration

. Figure 2.7b2 and c2 depict intra-LV blood-flow velocity distributions
during diastole and systole, after nitroglycerin administration

. Figure 2.7d1 and e1 depict intra-LV blood-flow pressure distributions
during diastole and systole, before nitroglycerin administration

. Figure 2.7d2 and e2 depict intra-LV blood-flow pressure dis-
tribution during diastole and systole, after nitroglycerin
administration
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From a computational viewpoint, the intra-LV flow is determined from
the LV wall-motion boundary condition to the potential-flow equation
(Equation 2.30), and the intra-LV pressure-gradient can in turn be computed
from the flow by employing Equation 2.33. However, we could interpret the
phenomenon as if the LV wall stiffness were providing the resistance to wall
motion for filling during diastole, and the contracting LV were facilitating
emptying of the LV during systole, thereby setting up the requisite intra-LV
pressure-gradients and velocity distributions.

For this patient, Figure 2.7d1 and e1 demonstrate poor LV RTF and LV
CONT in terms of adverse intra-LV blood pressure-gradients during
filling and ejection phases, respectively. However, following administra-
tion of nitroglycerin, these filling and ejection phases’ pressure-gradients
(and hence LV RTF and LV CONT) are improved (Figure 2.7d2 and e2),

a1 a2

b1 b2

c1 c2

Diastole

Frame 1 Frame 2
Diastole Diastole50.00 cm/s 50.00 cm/s

50.00 cm/s 50.00 cm/s

Frame 3

Frame 1 Frame 2
Systole

Frame 3 Frame 1 Frame 2
Systole

Frame 3

Frame 1 Frame 2 Frame 3

Systole Diastole Systole

FIGURE 2.7
Results for a typical patient with a myocardial infarct: (a) Superimposed sequential diastolic
and systolic endocardial frames (whose aortic valve centers and the long axis are matched) (1)
before and (2) after administration of nitroglycerin. (b) Instantaneous intra-LV distributions of
velocity during diastole (1) before and (2) after administration of nitroglycerin. (c) Instantan-
eous intra-LV distributions of velocity during ejection phase (1) before and (2) after adminis-
tration of nitroglycerin.
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thereby providing the basis for advocating coronary bypass surgery for
this patient.

2.8 Explaining Left-Ventricular Pressure Dynamics in Terms

of LV Passive and Active Elastances (as Measures of LV

Pressure Dynamics Response to LV Volume Change

and LV Contractility)

2.8.1 Scope

There has been a lot of characterization of the heart as a pump by means
of models based on elastance and compliance. In this section, we are
presenting a somewhat new concept of time-varying passive and active
elastances. The biomechanical basis of LV cyclical elastances is presented.
We have defined elastance in terms of the relationship between ventricular
pressure and volume, as dP¼EdVþVdE, where E includes passive (Ep)
and active (Ea) elastance. By incorporating this concept in LV models to
simulate diastolic (filling) and systolic phases, we have obtained the time-
varying expression for Ea and the LV-volume-dependent expression for Ep.

d1

e1

d2

e2

Case TDGRDP 1–2 Case TDNGRDP 1–2

Case TDNGRDP 2–3
Case TDGRDP 2–3

Diastole Diastole

FIGURE 2.7 (continued)
(d) Instantaneous intra-LV distributions of pressure differential during diastole (1) before
and (2) after administration of nitroglycerin. (e) Instantaneous intra-LV distributions of pres-
sure differential during ejection phase (1) before and (2) after administration of nitroglycerin.
(Adopted from Figure 5 of Subbaraj, K., Ghista, D.N., and Fallen, E.L., J. Biomed. Eng., 9, 206,
1987.)
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These two elastances of Ea and Ep can be deemed to represent intrinsic LV
properties. The active elastance (Ea) can be used to characterize the LV
contractile state, while passive elastance (Ep) can represent a measure of
LV pressure response to LV filling and emptying. Further, we have dem-
onstrated how the LV pressure dynamics (and LV pressure response to LV
volume) can be explained in terms of Ea and Ep [12,13].

2.8.2 Concepts of Passive and Active Elastances

At the start of the diastolic filling phase, the LV incremental pressure dPLV is
the response (1) to LV Ea continuing to decrease due to the sarcomere
continuing to relax well into the filling phase and (2) to the rapid inflow
of blood and the corresponding increase in LV volume, along with increase
in LV Ep. The corresponding governing differential equation, relating LV
pressure and volume, can be put down as [12]

M(d _V)þ d(EV) ¼ M(d _V)þ VdEþ EdV ¼ dPLV (2:46)

where
_V represents the time derivative of V (dV=dt, in which t is measured
from the start of filling phase)

V represents the volume of the LV (mL) during the filling phase
PLV represents the pressure of the LV in mmHg (hereafter symbolized

by P)
M represents the inertia term¼ [LV wall density (r)=(LV surface area=

wall thickness)]¼ rh=4pR2 for a spherical LVmodel (inmmHg=(mL=s2))
E represents LV elastance (mmHg=mL)

Likewise during ejection, the LV pressure variation (dPLV) is caused by both
Ea variation as well as Ep decrease (due to LV volume decrease). The
instantaneous time-varying ventricular elastance (E) is the sum of (1) the
volume-dependent passive elastance (Ep) and (2) the active elastance (Ea)
due to the activation of the LV sarcomere. Hence,

E ¼ Ea þ Ep (2:47)

We will now provide the expressions for Ep and Ea, and then their formu-
lations.

2.8.2.1 Expression for Passive Elastance (Ep) of the LV

The passive (inactivated) myocardium exhibits properties of an elastic
material, developing an increasing stress as strain increases, as occurs
during ventricular filling. The passive stress–strain relation of a myocardial
muscle strip is nonlinear and follows an exponential relationship [14–16].
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Likewise, the relation between LV passive pressure and volume is adopted
to be exponential, as

P ¼ P0e
zpV (2:48)

so that, Ep ¼ (dP=dV) ¼ Ep0e
zpV (2:49)

where Ep0 is the passive elastance coefficient (¼P0zp), zp is the passive
elastance exponent parameter, and V is the LV volume; its evaluation for a
clinical case is provided in a subsequent section. During the latter part of the
diastolic phase, we use Equation 2.49 to fit the LV pressure–volume relation
to determine the corresponding parameters, P0 and zp (or Ep0 and zp), and
hence obtain the passive elastance Ep.

2.8.2.2 Expression for Active Elastance (Ea) of the LV

During isovolumic contraction, dV¼ 0. Hence d _V¼ 0, and Ep is constant
and equal to Eped (the value of Ep at end-diastole). As a result, the governing
Equation 2.46 becomes VdE¼dPLV, which can be discretized as

Vi(Ei � Ei�1) ¼ Vi[(Ea,i þ Ep,i)� (Ea,i�1 þ Ep,i�1)]
¼ Vi(Ea,i þ Eped � Ea,i�1 � Eped) ¼ dPLV,i ¼ Pi � Pi�1

Hence, Ea,i ¼ (Pi � Pi�1)

Vi
þ Ea,i�1 (2:50)

where i is a time instant during the isovolumic contraction and relaxation, Vi

and PLV,i are the monitored LV volume and pressure at this instant, and Eped

is the passive elastance at the end-diastolic phase.
During the ejection phase, the governing equation (Equation 2.46) can be

discretized, in a similar way, as

Ea,i ¼
(Pi � Pi�1)�Md _Vi � Vi(Ep,i � Ep,i�1)� Ep,i(Vi � Vi�1)þ ViEa,i�1

2Vi � Vi�1

(2:51)

Also, during isovolumic relaxation, because dV¼ 0, d _V¼ 0, and Ep is con-
stant and equal to its end-systolic value of Epes, the governing Equation 2.46
again becomes VdE¼dPLV, which can be represented as

Vi[(Ea,i þ Ep,i)� (Ea,i�1 þ Ep,i�1)] ¼ Vi(Ea,i þ Epes � Ea,i�1 � Epes) ¼ dPLV,i

¼ Pi � Pi�1

Therefore, Ea,i ¼ Pi � Pi�1

Vi
þ Ea,i�1 (2:52)

where Epes is the passive elastance at the end of systole.
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During the diastolic phase, the formula for computing active elastance is
the same as Equation 2.51. Hence, from Equations 2.50 through 2.52, we can
calculate the values of active elastance from LV pressure–volume data
during the cardiac cycle. After calculating the values of active elastance
(Ea), we adopt the following expression for Ea [12]:

Ea ¼ Ea0 1� e
� t

tC

� �Zc
2
4

3
5 e

� (t�d)u(t�d)
tR

� �ZR
2
4

3
5 (2:53)

where (1) t is measured from the start of isovolumic contraction, (2) the
parameter Ea0 is the active elastance coefficient, (3) the time coefficient
(tC) describes the rate of elastance rise during the contraction phase,
while (tR) describes the rate of elastance fall during the relaxation phase, (4)
the exponents ‘‘Zc’’ and ‘‘ZR’’ are introduced to smoothen the curvatures of
the Ea curve during isovolumic contraction and relaxation phases, (5) the
parameter d is a time constant whose (to be determined) value is during
the ejection phase, and (6) u(t� d) is the unit step function, so that u(t� d)¼ 0
for t< d.

The rationale for the formulation of Equation 2.53 is based on Ea incorp-
orating (1) parameters (Zc and tC) reflecting the generation of LV pressure
during isovolumic contraction, (2) parameters (ZR and tR) reflecting the
decrease of LV pressure during isovolumic relaxation and early filling,
and (3) all of these parameters (Zc, tC, ZR, and tR) representing the LV
pressure–volume relationship during filling and ejection phases. We can
determine the values of these parameters by fitting Equation 2.53 to the
computed values of Ea (from Equations 2.50 through 2.52), and employing
the parameter-identification procedure to evaluate these above-mentioned
parameters.

2.8.3 Clinical Application

Data Measurements. The subjects in this study (satisfying appropriate
ethics procedures) were studied in a resting recumbent state, after preme-
dication with 100–500 mg of sodium pentobarbital by retrograde aortic
catheterization. LV chamber pressure was measured by a pigtail catheter
and Statham P23Eb pressure transducer; the pressure was recorded during
ventriculography. Angiography was performed by injecting 30–36 mL of
75% sodium diatrizoate into the LV at 10 to 12 mL=s. It has been found, by
using biplane angiocardiograms, that orthogonal chamber diameters are
nearly identical [17]. These findings are used to justify the use of single-
plane cine techniques, which allow for beat-to-beat analysis of the chamber
dimensions.

For our study, monoplane cineangiocardiograms were recorded in an
RAO 308 projection from a 9 in. image intensifier using 35 mm film at
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50 frames=s, using INTEGRIS Allura 9 system at the National Heart Centre
(NHC), Singapore. Therefrom, automated analysis was carried out to calcu-
late LV volume and myocardial wall thickness. The LV data of a typical
patient, employed for this analysis, consist of measured volume and myo-
cardial thickness of the chamber as well as the corresponding pressure
(Figure 2.8). All measurements are corrected for geometric distortion due
to the respective recording systems. Figure 2.9 displays pressure versus
volume for this patient.

This figure shows that although LV volume must remain constant during
the isovolumic phases, it does not actually do so. The changes in volume
cause changes in pressure due to bulk-modulus effect. It is noted that the LV
volume increases slightly during isovolumic relaxation, instead of being
constant. Similarly, LV volume increases slightly during isovolumic con-
traction. This slight increase in LV volume during isovolumic contraction is
what causes LV pressure to increase.

Case Study. Here, we show one case study. The LV cineangiographic data
(depicted in Figure 2.8), consists of measured LV volume and correspond-
ing pressure. When LV pressure and volume are plotted in Figure 2.9, it is
noted that during the early filling phase, LV pressure decreases even though
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FIGURE 2.8
An example of a patient (HEL) measured LV pressure, volume, and wall thickness during a
cardiac cycle; t ¼ 0–0.08 s is the isovolumic contraction phase, t ¼ 0.08–0.32 s is the ejection
phase, t ¼ 0.32–0.40 s is the isovolumic relaxation phase, and t ¼ 0.40–0.72 s is the filling phase.
Note that even after 0.4 s, the LV pressure still continues to decrease from 17 (at 0.4 s, at start of
filling) to 8 mmHg at 0.44 s. (Adopted from Figure 2 of Zhong, L., Ghista, D.N., Ng, E.Y.K., and
Lim, S.T., Biomed. Eng. Online, 4, 10, 2005.)
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LV volume increases. This phenomenon is defined as the ‘‘LV suction
effect,’’ which can be explained by using our concepts of active and passive
elastances.

From the data in Figure 2.9, we will now compute Ep and Ea, by employ-
ing the analysis in Section 2.8.2.

Evaluation of Ep. By fitting Equation 2.48 to the pressure and volume data,
as shown in Figure 2.10, we obtain the values of the parameters P0 and zp, as

zp ¼ 0:040 mL�1, P0 ¼ 0:080 mmHg (2:54)

and the Ep function (corresponding to its expression given by Equation 2.49)
as follows:

Ep ¼ 3:20� 10�3e0:040V (2:55)

We now propose to adopt Ep as a measure of LV RTF. During ejection and
filling phases, Ep can be calculated at any time using Equation 2.55.

Evaluation of Ea. Using Equations 2.50 through 2.52, we can calculate the
active elastance Ea during isovolumic contraction, ejection, isovolumic
relaxation, and diastolic filling phases, respectively. The values of Ea during
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FIGURE 2.9
Relationship between LV volume and pressure for one sample data. Points (21–36) constitute
the filling phase, (1–5) constitute the isovolumic contraction phase, (5–17) constitute the ejection
phase, and (17–21) constitute the isovolumic relaxation phase. Note that after point 21 (the start
of LV filling), the LV pressure decreases; this characterizes LV suction effect. (Adopted from
Figure 3 of Zhong, L., Ghista, D.N., Ng, E.Y.K., and Lim, S.T., Biomed. Eng. Online, 4, 10, 2005.)
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a cardiac cycle are shown in Figure 2.11. Then the parameters in Equation
2.53 can be determined by fitting the computed values of Ea, which are listed
in Figure 2.11 caption as well as in Table 2.3.

Upon substituting these computed values of the parameters (Ea0, tc, Zc,
tR, ZR) into Equation 2.53, we obtain the Ea(t) function as follows:

Ea ¼ 2:20 1� e�
t

0:17ð Þ1:96h i
e�

(t�0:3)u(t�0:3)
0:12ð Þ0:96

� �
(2:56)

2.8.4 Results of Case Studies

Depicting the Computed Values of Ep and Ea (in Figure 2.12). The variations
of model-derived nonlinear passive and active elastances for the subject
HEL are shown in Figure 2.12. For this particular subject (HEL), the max-
imum active elastance is 2.10 mmHg=mL. Herein, it is noted that the LV
pressure decreases immediately after opening of the MV at frame 21 and
then starts increasing. This is because of the effect of Ea.

The period of LV pressure depression from frames 21 to 23 during early
filling enables passive filling of the LV by suction. This suction period of
0.04 s (¼12.5% filling period) from time frames 21 to 23 also corresponds to
the period during which active elastance persists (due to the continued
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FIGURE 2.10
Here we have used Equation 2.48 to fit the pressure–volume data during filling phase. The
volume 100mL corresponds to the start of the filling phase, and the volume 150mL corresponds
to the end of the filling phase. (Adopted from Figure 4 of Zhong, L., Ghista, D.N., Ng, E.Y.K.,
Lim, S.T., Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, J. Eng. Med., 220, 647, 2006.)
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activation of the contractile element of the myocardial sarcomere into the
filling phase) but keeps decreasing.

2.8.4.1 Pressure Dynamics during Filling Phase

The pressure variation during filling is a combination of pressure changes
due to the action of both active elastance (Ea) and passive elastance (Ep)
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FIGURE 2.11
Calculated values of active elastance Ea during cardiac cycle. Using Equation 2.53 to fit the
calculated values, we have: Ea0 ¼ 2.20 mmHg=mL, tC ¼ 0.17 s, Zc¼ 1.96, d ¼ 0.3 s, tR ¼ 0.12 s,
andZR ¼ 0.96.Note thatEa reaches itsmaximumvalue at frame.Also note the drastic decrease in
Ea after frame 21, which contributes to LV suction effect. (Adopted from Figure 5 of Zhong, L.,
Ghista, D.N., Ng, E.Y.K., Lim, S.T., Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, J. Eng.

Med., 220, 647, 2006.)

TABLE 2.3

Computed Values of Parameters in Ea Expression
(Equation 2.53), for the Subject Whose LV Data
Are Given in Figure 2.9

Parameters Values Unit

Ea0 2.20 mmHg=mL
tC 0.17 S
Zc 1.96 Nondimensional
d 0.3 S
tR 0.12 S
ZR 0.96 Nondimensional
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FIGURE 2.12
Pressure, active elastance Ea, passive elastance Ep, and total E ¼ (Ea þ Ep) for the sample
subject data shown in Figure 2.2. In this figure, frames 1–5 represent the isovolumic contraction
phase, frames 5–17 represent the ejection phase, frames 17–21 represent the isovolumic relax-
ation phase, and frames 21–37 represent the diastolic filling phase. Note the drastic decrease in
Ea after frame 21, which offsets the increase in Ep (due to LV volume increase) and contributes
to the LV suction effect. (Adopted from Figure 6 of Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim,
S.T., Tan, R.S., and Chua, L.P., Proc. Inst. Mech. Eng. Part H, J. Eng. Med., 220, 647, 2006.)
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response to blood filling caused by LA contraction. In Equation 2.46, if we
neglect the term Md _V (as being small compared to the other terms in
Equation 2.51), the pressure dynamics is expressed as

Pi � Pi�1 ¼ (Ep,i þ Ea,i)(Vi � Vi�1)þ Vi(Ea,i � Ea,i�1 þ Ep,i � Ep,i�1) (2:57)

By employing the monitored LV volume values and the computed values of
Ep and Ea, we can compute the values of LV pressure. In other words, if we
obtain the LV volume values, and if somehow the Ep and Ea functions (as
given by Equations 2.55 and 2.56) were known as intrinsic properties of the
LV, then we could compute the LV pressure variation from Equation 2.57.
Let us take the computed values of Ea and Ep, and Vi and Vi�1 during early
filling, and compute (P22�P21) as follows:

P22 � P21 ¼ (Ep,22 þ Ea,22)(V22 � V21)þ V22(Ea,22 � Ea,21 þ Ep,22 � Ep,21)

¼ �6:7 mmHg (2:58)

We can see that (P22�P21) is negative, thereby demonstrating the suction
effect. Now, we take the computed values of elastances and LV volumes
during late filling and compute (P34�P33):

P34 � P33 ¼ (Ep,34 þ Ea,34)(V34 � V33)þ V34(Ea,34 � Ea,33 þ Ep,34 � Ep,33)

¼ 1:7 mmHg (2:59)

We note that (P34�P33) is positive.
In Figure 2.13, these pressure differences are plotted from the beginning

of the isovolumic contraction phase. It can be seen that the computed
pressure difference closely approximates the monitored LV pressure dif-
ference.

2.8.4.2 Pressure Dynamics during Ejection Phase

We can likewise determine the pressure variation during ejection phase, as

Pi � Pi�1 ¼ (Ep,i þ Ea,i)(Vi � Vi�1)þ Vi(Ea,i � Ea,i�1 þ Ep,i � Ep,i�1) (2:60)

Let us take the computed values of (Ep and Ea, Vi and Vi�1) during early and
late ejection, and compute (P7�P6) and (P16�P15), as follows:

P7 � P6 ¼ (Ep,7 þ Ea,7)(V7 � V6)þ V7(Ea,7 � Ea,6 þ Ep,7 � Ep,6) ¼ 9 mmHg

(2:61)

P16 � P15 ¼ (Ep,16 þ Ea,16)(V16 � V15)þ V16(Ea,16 � Ea,15 þ Ep,16 � Ep,15)

¼ �4 mmHg (2:62)
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We note that (P7�P6) is positive, while (P16�P15) is negative, indicating
that the LV pressure has already started decreasing because of the Ep effect.

In Figure 2.13, these computed pressure differences (Pi�Pi�1) are plotted.
This graph illustrates how (1) Ea increase (due to force development in the
myocardial sarcomere) and constant Ep during isovolumic contraction con-
tribute to LV pressure increase, (2) Ea increase during ejection (due to
increase in sarcomeric force development) and Ep decrease (due to blood
volume decrease) contribute to LV pressure dynamics during the ejection
phase, and (3) Ea decrease and Ep increase (due to blood volume increase)
contribute to the pressure dynamics during the filling phase.

2.8.5 Active Elastance as a New Contractility Index

The basis of Ea is that the LV chamber wall is comprised of helically wound
myocardial fibers. When these fibers contract at the start of isovolumic
contraction, the LV chamber is deformed and the LV pressure increases.
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Pressure dynamics during ejection and filling phases. Note the pressure decrease (i.e., negative
DPi) during early filling (from frames 21 to 23), representing LV suction phenomenon even
though the LV volume is increasing from frames 21 to 23 (in Figure 2.9). Also, LV pressure
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middle third phase of ejection, and becomes negative in late ejection phase. (Adopted from
Figure 7 of Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim, S.T., Tan, R.S., and Chua, L.P., Proc. Inst.
Mech. Eng. Part H, J. Eng. Med., 220, 647, 2006.)
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Amyocardial fiber comprises of the sarcomere, containing actin and myosin
filaments. It is the development of interfilament bonds that causes (1) the
development of contractile force and fiber shortening and (2) LV pressure
generation, as depicted by Figure 2.8.

Thus, the operation of this myocardial fiber sarcomeres, in conjunction
with the helical orientation of the myocardial fibers, gives rise to the concept
of LV active elastance (Ea). This is why Ea is deemed to be an intrinsic
property of the LV; this is also why we now propose Ea to represent a
contractility index. However, because Ea(t) is a cyclic time-varying function,
we have decided to adopt the maximum value of Ea (Ea,max) during cardiac
cycle to represent a new contractility index. In Figure 2.14, we have depicted
the computed traditional contractility index (dP=dt)max as well as Ea,max for
a number of subjects studied by us. The good correlation between Ea,max and
(dP=dt)max agrees well for the employment of Ea,max as a contractility index.

2.8.6 Discussion

LV Suction Phenomena. Diastolic suction is defined as that property of the
left ventricle that tends to cause it to refill itself during early diastole
independent of any contractile effort from the left atrium (LA). Physiologists
have been intrigued by the observation that the relaxing ventricle seems
somehow to suck blood into its chamber. With pioneering physical
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intuition, Katz [18] proposed that the early rapid filling of the heart is due
to mechanical suction of blood by the ventricle. The concept of the heart as a
suction pump has over the years been suggested by many researchers [18–
23], and is no longer questioned; however, the underlying mechanisms have
not been clarified.

Many researchers have believed that LV suction was caused by elastic
recoil during relaxation, or by a sudden stretching resulting from the filling
of the coronary arteries, or by a marked asynchronous cessation of contrac-
tion [19]. Earlier in 1981, Sabbah and Stein [24] had indicated that early
rapid filling of the LV is due to forces within the ventricular wall that act to
restore the ventricle to its diastolic dimensions. This means that the suction
phenomenon is resulting from the contributions of elastic recoil and restor-
ing loads due to the compression of sarcomeres.

Later in 1986, Robinson and colleagues [25] proposed that the connective
tissue matrix of the heart as a whole (including its connection to the vessel)
stores contractile strain during systole. This strain is recovered as elastic
recoil in diastole, and performs external work on the left-atrial (LA) blood,
by sucking it into the LV. This physiological phenomenon of the heart muscle
shortening, storing elastic strain in its structures, and then relengthening to
cause suction has also been expressed by Prewitt et al. [26] and Kovács [27].

However, these explanations are quite ambiguous. It is in fact the rapid
decrease in LV wall Ea that causes a decrease in LV pressure below the value
of LA pressure, as shown by our Equation 2.58 to thereby create a suction
effect on the LA blood. In other words, the LV pressure continues to
decrease during early filling, because of continuing sarcomere relaxation
(and decrease in LV elastance) and rapid filling of blood, resulting in
volume acceleration. The rapid decrease in elastance during isovolumic
relaxation extends into the filling phase, and can explain the decrease in
LV pressure (in Figure 2.13) even after LV filling has commenced. In
Equation 2.47, it is seen that Pi can be less than Pi�1 (or that Pi�Pi�1< 0) only
if (Ea,i�Ea,i�1) is negative, i.e., active elastance is decreasing. The pressure
dynamics during filling (calculated using Equation 2.57), as depicted in
Figure 2.13, confirms the decrease of pressure during early filling.

Hence, it is our novel concept of ‘‘decreasing Ea during the early phase of
filling’’ that enables us to explain the phenomenon of decreasing LV pres-
sure during the early stage of filling. In other words, it is suggested that the
sarcomere actin–myosin activity continues into the filling phase. The
decreasing Ea during the filling phase reflects decreasing sarcomeric activity
during filling. Likewise, the increase in Ea during isovolumic contraction is
responsible for increase in LV pressure at constant volume, as demonstrated
by means of Equation 2.50. This concept is in fact indirectly supported
by several works [21,22,28–39] relating diastolic suction to negative LV
pressure.

Ea,max as a Contractility Index. Earlier, we have seen how Figure 2.14 shows
the correlation between Ea,max and the invasive measures of LV contractility.
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It is noted that Ea,max has a high degree of correlation with (dP=dt)max. It is
interesting to compare our correlation-coefficient value (0.9307) with the
value of 0.89 obtained by Mehmel et al. [38] by their computing elastance
as an extrinsic property¼ [P=(V�Vd)]es. The difference between the two
indices is that dP=dtmax is an extrinsic index based on the LV pressure
response, while our Ea,max is an intrinsic index which in fact governs the
LV pressure response.

Pressure Variation Phenomena. Both the active and passive elastances
(given by Equations 2.61 and 2.62 and depicted in Figures 2.10 and 2.11)
can explain LV pressure variation during ejection, as indicated by Equations
2.51 and 2.52. In other words, the increase of Ea during ejection (due to
increase in sarcomeric contractile force) and decrease of Ep during ejection
(due to LV volume decrease) together causes the pressure variation during
ejection, as shown in Figure 2.8. Likewise, the combined action of Ea and Ep

contributes to the change of LV pressure during LV filling phase, as
demonstrated by Equations 2.58 and 2.59. What is implied here is that the
intrinsic property of LV (represented by Ea and Ep) contributes to the
manner in which the pressure varies during ejection and filling and in fact
during the cardiac cycle.

2.9 Conclusion

Let us recapitulate the organization and contents of this chapter. We started
with pointing out how a stenotic AV could augment LV wall stress and
cause an oxygen supply–demand mismatch. We then developed the basis
of how echocardiography and phonocardiography can be combined to
determine the stiffness properties of MV and AV as well as the passive
stiffness property of the LV. Then, we showed how echotexture determin-
ation can help to detect ischemic and infarcted segments, and how pharma-
cological treatment could help us to noninvasively determine the restoration
of myocardial ischemic segments to normality.

Perhaps the best way to illustrate the effect of LV myocardial infarct is to
determine the intra-LV flow velocity and pressure distributions from LV
wall-motion data obtained echocardiographically. We have demonstrated
this for a typical patient, and shown how the adverse blood pressure-
gradient from the apex to the base of the LV can be improved by adminis-
tration of nitroglycerin (a vasodilator), so as to justify the candidacy of that
potential’s impaired LV to be improved by coronary bypass surgery.

Finally, we have formulated a new concept of dual passive and active
elastances operating throughout the cardiac cycle. These passive and
active elastances values are evaluated separately and individually. Our
definitions of Ep and Ea enable us to explain the phenomena of (1) LV
suction during early filling, (2) LV pressure rise during isovolumic con-
traction, (3) LV pressure variation during the ejection phase, and (4) LV

Ghista/Applied Biomedical Engineering Mechanics DK8315_C002 Final Proof page 62 30.5.2008 10:59am Compositor Name: VAmoudavally

62 Applied Biomedical Engineering Mechanics



pressure-drop during the relaxation phase. From the viewpoint of intrinsic
indices of LV assessment, Ep can represent LV myocardial stiffness property
and resistance to LV filling. On the other hand, Ea has been shown to
correspond to LV contractility, as depicted by Figure 2.14. Herein, we
have shown a high degree of correlation between Ea,max and (dP=dt)max.
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31. Bloom WL and Kovács SJ, Negative ventricular diastolic pressure in beating
heart studied in vitro and in vivo, Proceedings of the Society for Experimental
Biology and Medicine, 93:451–454, 1956.

32. Brecher GA, Experimental evidence of ventricular diastolic suction, Circulation
Research, 4:513–518, 1956.

Ghista/Applied Biomedical Engineering Mechanics DK8315_C002 Final Proof page 64 30.5.2008 10:59am Compositor Name: VAmoudavally

64 Applied Biomedical Engineering Mechanics



33. Brecher GA, Critical review of recent work on ventricular diastolic suction,
Circulation Research, 6:554–566, 1958.

34. Brecher GA and Kissen AT, Relation of negative intraventricular pressure to
ventricular volume, Circulation Research, 5:157–162, 1957.

35. Fowler NO, Bloom WL, and Ferris EB, Systolic–diastolic pressure relationships
in the isolated beating heart, Circulation Research, 5:485–488, 1957.

36. Fowler NO, Shabetai R, and Braunstein JR, Transmural ventricular pressure in
experimental cardiac tamponade, Circulation Research, 7:733–739, 1959.

37. Hori M, Yellin EL, and Sonnenblick EH, Left ventricular diastolic suction as a
mechanism of ventricular filling, Japanese Circulation Journal, 146:124–129, 1982.

38. Mehmel HC, Stochins B, Ruffmann K, Olshausen K, Schuler G, and Kubler W,
The linearity of the end-systolic pressure–volume relationship in man and
its sensitivity for assessment of left ventricular function, Circulation,
63(6):1216–1222, 1981.

39. Shoucri RM, Active and passive stresses in the myocardium, American Journal of
Physiology Heart Circulatory Physiology, 279:H2519–H2528, 2000.

Ghista/Applied Biomedical Engineering Mechanics DK8315_C002 Final Proof page 65 30.5.2008 10:59am Compositor Name: VAmoudavally

Left Ventricular Mechanics 65



Ghista/Applied Biomedical Engineering Mechanics DK8315_C002 Final Proof page 66 30.5.2008 10:59am Compositor Name: VAmoudavally



3
Left Ventricular Contractility Indices

Dhanjoo N. Ghista and Liang Zhong

CONTENTS
3.1 Scope ............................................................................................................. 68
3.2 Left Ventricular Shape Factor Based Contractility Index .................... 68

3.2.1 LV Model Geometry Development ............................................. 69
3.2.2 Determination of LV Model Wall Stress..................................... 70
3.2.3 Normalized Wall Stress based Shape Factor Index .................. 71
3.2.4 Optimal Left Ventricle Shape Factor and Corresponding

Shape Factor Index 2 ...................................................................... 73
3.2.5 Optimally Shaped LV(s) Compared to

Abnormally Shaped LV(s) for Different Age Groups .............. 77
3.2.6 Clinical Applications ...................................................................... 78

3.2.6.1 Measurements .................................................................. 78
3.2.6.2 Subjects .............................................................................. 78
3.2.6.3 Results ............................................................................... 78

3.2.7 Comparison with Traditional Invasive LV (dP=dt)max ............ 84
3.2.8 Discussion and Conclusion ........................................................... 84

3.3 Left Ventricular Sarcomere Contractile Characteristics
and Associated Power Index .................................................................... 85
3.3.1 Left Ventricle Cylindrical Model (Incorporating the

Myocardial Fibers within Its Wall) .............................................. 85
3.3.2 Myocardial Structural Unit (MSU) Model ................................. 87
3.3.3 Determination of Fiber Density, Length, and Force;

Fiber Angle a and MSU Force (Ft); Torque
Produced on the LV due to Fiber Activation ............................ 88
3.3.3.1 Fiber Density, Length, and Force .................................. 88
3.3.3.2 Determining the Fiber Pitch Angle a ........................... 90
3.3.3.3 Torque Imparted to the LV by Fiber Contraction ..... 91

3.3.4 Dynamics of a Myocardial Structural Unit ................................ 92
3.3.4.1 Governing Equation of MSU Dynamics

and Its Solution ................................................................ 92
3.3.4.2 Phase I: Solving Equation 3.31 for Isovolumic

Contraction Phase (during 0< t< tiso).......................... 95

Ghista/Applied Biomedical Engineering Mechanics DK8315_C003 Final Proof page 67 29.5.2008 12:00am Compositor Name: MSubramanian

67



3.3.4.3 Phase II: Expression for xT and Solving
Equation 3.19 for the Ejection Phase to
Determine Parameters xT0 and ze.................................. 96

3.3.4.4 Evaluating theModel Parameters (k,Bv, FCE0,vce, zce) ... 98
3.3.5 Sarcomere Force (FCE), Shortening Velocity (ẋ2), and Power...... 98
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3.1 Scope

Contractility is the key mechanism of left ventricular pumping role. Hence,
indices of contractility are important for differentiating poorly contracting
left ventricles (LVs) from normally contracting LVs. In this chapter, we
provide the theory and application of contractility indices based on (1) the
left ventricular shape factor, in terms of the LV wall stress normalized with
respect to the LV internal pressure, and (2) the spirally wound myocardial
fiber’s sarcomere characteristics of contractile element force versus shorten-
ing velocity. These contractility indices values are compared to the values of
the traditional contractility index of (dP=dt)max, and good correlations are
observed between our new indices and the traditional index of (dP=dt)max.

3.2 Left Ventricular Shape Factor Based Contractility Index

Over the past decades, while several indices for estimating the left ven-
tricular contractile state have been proposed, very few studies have been
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dedicated to the influence of the LV shape factor on its contractility. It has
been observed that the shape of the LV is of clinical relevance for prognosis
of heart patients [1–5]. In this regard, some investigators have associated a
more spherically shaped and less-ellipsoidal shaped LV with the failing
heart [6]. Invasive animal experiments have indicated that the shape of the
LV is somewhat like a prolate ellipsoid [7]. From cineventriculography, we
can obtain the two-dimensional shape of the LV, and therefrom the ellips-
oidal shape of LV. This information has been applied, herein, to develop a
left-ventricular ellipsoidal geometry model and its wall stress. We can then
define an LV shape-based index to represent the capacity of the LV to
generate necessary and sufficient intramyocardial stress (s) to provide
necessary and sufficient pressure and kinetic energy to the ejected blood.
Further, we can normalize this wall stress with respect to the LV pressure
(s*¼s=P), and gauge LV contractile capability in terms of the maximum
value of generated normalized intramyocardial stress, or (ds*=dt)max. Thus
it can help provide more insight into the LV shape-based contractile stress
for its ejection function [8].

Our concept of an LV shape-based contractility index is that it is a
measure of the capacity of the LV myocardial sarcomere to contract and
generate the wall stress that will adequately raise intra-LV pressure to eject
the blood. Now since the LV wall stress depends on its shape, the LV
contractile capacity also depends on the LV shape. This is the rationale
behind the LV shape-based index. On the basis of clinical observations, a
healthy LV shape factor is more akin to the optimal-ellipsoidal shape factor,
but transforms into a more spherical shape in a poorly contracting LV as
well as in LV failure. Hence, our LV shape-based index, expressed as
(ds*=dt)max, is meant to quantitatively express this clinical observation.

3.2.1 LV Model Geometry Development

Herein, the LV is treated as a prolate spheroid, truncated 50% of the
distance from equator to base, as suggested by Streeter and Hanna [9]
(Figure 3.1). The LV shape can be defined by the major and minor radii of
its two surfaces: the endocardium of the LV and the septum, and a surface
defined by the epicardium of the free wall. The overall longitudinal distance
from the base to apex (¼ 3LA=2) is thus 1.5 times the major radius of
the ellipse. Left ventricular cavity and wall volumes are calculated from
the epicardial anterior–posterior (AP) and base-apex lengths according to
equations:

VM ¼ 9p[(LA þ h)(SAþ h)2 � LA� SA2]

8
(3:1)

V ¼ 9p(SA)2LA

8
(3:2)
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wherein
V is LV volume
VM is myocardial volume
h is wall-thickness
LA and SA are endocardial major and minor radii

Simplifying Equation 3.1 by neglecting the 9p(LA� h2 þ 2SA� h2 þ h3)=8
term, we obtain

VM ¼ 9p (2LA� SA2 þ SA
2
)h

8
(3:3)

Now, LV volume (V), wall-thickness (h), and myocardial volume (VM) are
measured by cineventriculography. Hence, by using Equations 3.2 and 3.3,
we can calculate the major and minor radii LA and SA. Firstly, from
Equation 3.2, we have

LA ¼ 8V

(9pSA2)
(3:4)

Then, by substituting Equation 3.4 into Equation 3.3, we get

VM ¼ 9p

8

16V

9pSA
þ SA2

� �
h

SA2 þ 16V

9pSA
� 8VM

9ph
¼ 0

which gives us an equation in SA to obtain the value of SA.

3.2.2 Determination of LV Model Wall Stress

The generated wall stress (GWS) in the LV is a measure of the effectiveness
of the sarcomere contractile machinery of the LV myocardium. The GWS is

FIGURE 3.1
Left ventricle (LV) model geometry, showing the
major and minor radii of the inner surface of the LV
(LA & SA) and the wall-thickness (h).

LA
SA

LA/2

h
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adjusted to be necessary and sufficient for carrying out its ejection function.
Hence, we deem that the normalized wall stress s=P (¼s*) developed for
blood ejection can provide a more intrinsic measure of its contractile cap-
acity than, for instance, (dP=dt)max, because the developed LV pressure is in
fact a consequence of the generated LV wall stress.

For an ellipsoidal shell, the circumferential wall stress su (referred to as s)
at the waist of the LV ellipsoidal model is given by Mirsky [10] as

s ¼ P
SA

h
1� SA(SA=LA)2

(2SAþ h)

" #
¼ P

SA

h
1� (SA=h)(SA=LA)2

2(SA=h)þ 1

" #
(3:5)

From Equations 3.2 and 3.3, we have by putting S¼ SA=LA

SA

h
¼ V

VM
2þ SA

LA

� �
¼ V

VM
(2þ S) ¼ 2þ S

V*
(3:6)

where
S ¼ SA=LA constitutes the LV shape factor
V*¼VM=V represents the volume ratio

Combining Equations 3.5 and 3.6, we can express the normalized stress s* as

s* ¼ s

P
¼ 2þ S

V*
1� S2(2þ S)

2(2þ S)þ V*

� �
¼ f (V*,S) (3:7)

Equation 3.7 is a function of S for a given V*. We can now compute the time-
variation of s* during ejection, in terms of V* and S. Figure 3.2 indicates the
cyclic variations of h, S (¼ SA=LA), and s* versus time during the ejection
phase, for three of our patients.

3.2.3 Normalized Wall Stress based Shape Factor Index

A well-known definition of contractility is (dP=dt)max. However, we can
more intrinsically characterize contractility in terms of the max rate of
generation of the LV normalized stress s* (¼s=P) using Equation 3.7, as

SFI1¼ ds*

dt

����
����
max

¼
_V(2þS)=V
� �þ _S

V*
�

S
S _V[16þ8V*þ (24þ8V*)Sþ (12þ2V*)S2þ2S3]

þ _S[32þ8V*þ (56þ12V*)Sþ (32þ4V*)S2þ6S3]

 !

V*(4þ2SþV*)2

����������

����������
max

¼F(S, _S,V, _V,V*) (3:8)
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FIGURE 3.2
Variation of h, S, and s* versus time during the ejection phase for subject HEL with myocardial
infarct (MI) and double vessel disease (DVD), subject DDMwith DVD and hypertension (HTN),
and subject SKS with triple vessel disease (TVD), during the ejection phase. Herein, t¼ 0
represents the start-of-ejection. Subject SKS has the minimum generated s*, while subject
DDM has the maximum s* during the ejection phase. (Adopted from Zhong, L., Ghista, D.N.,
Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)
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Equation 3.8 indicates that corresponding to a patient’s V(t: ) and _V(t) vari-
ations, the shape factor index SFI1 value for that patient is a function of the
shape factor (S) of an LV. Now cardiologists have been observing that an
infarcted LV becomes less ellipsoidal as compared to a normally contracting
LV shape [6]. This resultant distorted shape of an impaired LV does not
allow it to contract and deform in an optimal twisting mode [11], so as to
perform its pumping function and deliver the requisite cardiac output
efficiently. In accordance with this clinical observation, our shape factor
index SFI1 (Equation 3.8) incorporates the LV shape factor (S¼ SA=LA),
and the influence of the distorted shape of an infarcted LV to its impaired
pumping function.

3.2.4 Optimal Left Ventricle Shape Factor and Corresponding
Shape Factor Index 2

Let us designate the optimal shape factor S (¼ SA=LA) to be that value
for which the generated myocardial wall stress s* for a given LV volume
(at the start-of-ejection V¼Vse¼Ved) is maximum for a specific value of V*.
The concept of optimizing the shape factor is based on the rationale that
LV pressure P¼s=s*. During systole, the interaction of the actin–myosin
filaments causes contraction of the myocardial fibers and generation of

Time (s)

σ∗ (
σ/

P
)

Subject SKS (TVD)
Subject DDM (DVD, HTN)

Subject HEL (MI, DVD)

0.15 0.2 0.25 0.3 0.350
1

1.5

0.05 0.1

2

2.5

FIGURE 3.2 (continued)
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myocardial wall stress (s). The resultant LV pressure generation is given by
s=s*, where s* is purely dependent on LV geometry and is a function of the
shape factor (S) and volume ratio (V*). For a particular V*, as S increases
(i.e., as the LV becomes more spherical and less ellipsoidal), s* decreases,
hence the LV pressure increases, as seen in Figure 3.3. For an adequate

S

V ∗ = 1.2

V ∗ = 0.6

σ*

1.5

2

2.5

3

3.5

4

V ∗ = 2

0.2
0.5

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V ∗

S = 0.1

S = 0.5

σ*

1.5

2

2.5

3

3.5

4

S = 1

0.5
0.5

1

1 1.5 2

FIGURE 3.3
Variation of s* with (a) S for different values of V*(¼VM=V) and (b) V* for different values of S.
(Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N.,
J. Biomech., 39, 2397, 2006.)
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amount of LV wall stress (s) generated, we want the LV pressure to be
maintained low, so that its oxygen demand is minimal. Hence, we want that
(for a specific V*) s* be as high as possible and correspondingly S be as low
as possible, i.e., the LV must be more ellipsoidal in shape.

From Equation 3.7, we can maximize s* with respect to S, as

ds*

dS
¼ 1

V*
� 1

V*

[(8Sþ 12S2þ 4S3)(V*þ 4þ 2S)� (8S2þ 8S3þ 2S4)]

(V*þ 4þ 2S)2
¼ 0 (3:9)

Simplifying Equation 3.9, we have

6S4 þ (4V*þ 32)S3 þ (12V*þ 52)S2 þ 4(V*þ 4)S� (V*þ 4)2 ¼ 0 (3:10)

from which we obtain the optimal shape factor S as a function of V*, as
shown in Figure 3.4. It appears that S is linearly proportional to the V*,
as given by

Sop ¼ 0:053V*þ 0:39 (3:11)

This line can be called the optimal-S line.

V ∗

Sop = 0.053V ∗ + 0.39

S
op

0.5
0.42

0.43

1 1.5 2

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

FIGURE 3.4
Optimal shape factor S versus V* at the start-of-ejection, represented by: Sop¼ 0.053V*þ 0.39.
(Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N.,
J. Biomech., 39, 2397, 2006.)
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If we substitute Equation 3.11 into d2s*=dS2, we get d2s*=ds2 to be
negative. In other words, this optimal S function (of V*) maximizes s*, in
accordance with our rationale. The significance of Equation 3.11 is that one
can adjudge the cardiac health state of a patient merely in terms of how
close the shape factor S (¼ SA=LA) corresponding to a patient’s V* value (at
the start-of-ejection) is to the optimal value obtained from Figure 3.4. We do
not even need to compute s* or ds*=dt in order to evaluate how efficiently a
particular LV is pumping.

Hence, another way to define LV contractility would be in a nondimen-
sional form at the start-of-ejection (se), as follows:

SFI2 ¼ (Sse � S
op
se )

S
op
se

(3:12)

where
Sse is the measured shape factor value

S
op
se is the corresponding optimal value at the start-of-ejection

So, as SFI2 value increases, the LV contractility becomes poorer. Then, from
Equation 3.12, the SFI2 value for the patient’s data shown in Figure 3.2 is
obtained to be 0.21 for subject HEL, 0.057 for subject DDM, and 0.11 for
subject SKS, as shown in Table 3.1. Note that for both our new indices of
the 3 subjects, the patient DDM has the higher EF; correspondingly SFI1 is
maximum for DDM, and SFI2 is minimum for DDM.

Below the optimal line (Figure 3.4), the shape of the LV becomes physio-
logically unnatural (i.e., too narrow), in order to support a reasonable
value of Vse, the volume at the start-of-ejection. We can postulate that if
the shape factor S is located in the A zone of Figure 3.5, it can be a tolerable
shape to provide a reasonable LV contractility; then, the B zone of Figure 3.5
can represent a poorly contracting LV, while the C zone can represent a
failing heart. The three cases are depicted on the (S–V*) plane, in Figure 3.5.
This is further validated by the good correlation of SFI1 and SFI2 with
the traditional contractility indices of EF and (dP=dt)max, as discussed in
the next section.

TABLE 3.1

Clinical History, Calculated Sse, SFI1, and SFI2
from Subjects (HEL, DDM, and SKS)

Subject Disease Sse SFI1 SFI2 EF

HEL MI, DVD 0.56 3.84 0.21 0.36
DDM DVD, HTN 0.48 6.90 0.057 0.66
SKS TVD 0.55 1.72 0.11 0.24
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3.2.5 Optimally Shaped LV(s) Compared to Abnormally Shaped LV(s)
for Different Age Groups

Now let us see how an optimally shaped LV looks like, for different values of
normal LV volume Vse (volume of the start-of-ejection) variation with age. In
other words, for various age groups, we have taken normal Vse values for
AsianandAmericanpopulations, basedon thedata showninTable3.2. Figure
3.6 illustrates theLV(s) for thesamevalueofA ineachagegroup, for3different
values of Vse at the start-of-ejection. For each such Vse value, we compute the
value of SAcorresponding toS¼ Sop, determineS, and thenplot theLV shape.

The anatomically abnormal LV(s) (to the left of the optimal LVs) have less
than normal end-diastolic volume (EDV) as well as less than optimal con-
tractility. Hence, they would not be able to meet the SV demand of the
circulatory and organ systems. The physiologically abnormal LV(s) (to the
right of the optimal LVs) have bigger ‘‘SA’’ values and bigger ‘‘S’’ values,
for the same value of ‘‘LA’’ as the optimal LVs. Hence, as shown in Equation
3.7, these enlarged LVs will have lower values of s* and hence higher LV
pressure for the same amount of myocardial-wall s generated. They will
hence be prone to becoming hypertensive.

V ∗

S

0.6

0.45

0.5

0.55

0.6
C Failing heart

Poor contracting

Normal contracting

Optimal line

S = 0.053V ∗ + 0.39

S = 0.053V ∗ + 0.429

S = 0.053V∗ + 0.509

S = 0.053V ∗ + 0.39
S = 0.053V ∗ + 0.429
S = 0.053V ∗ + 0.507
Subject DDM (DVD, HTN)
Subject HEL (MI, DVD)
Subject SKS (TVD)

B

A

0.65

0.7

0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 3.5
We can postulate LVs to be normal contracting, poorly contracting, and failing heart, as
illustrated in the above figure. Subject DDM, shown on the S–V* plane, can hence be depicted
to have normally contracting heart. On the other hand, subjects HEL and SKS have poorly
contracting hearts. The corresponding SFI2 values of these 3 subjects are shown in Table 3.1,
based on the location of the calculated (S, V*) plots on this plot. (Adopted from Zhong, L.,
Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C003 Final Proof page 77 29.5.2008 12:00am Compositor Name: MSubramanian

Left Ventricular Contractility Indices 77



3.2.6 Clinical Applications

3.2.6.1 Measurements

All subjects included in this study were in resting recumbent state, after
premedication. The LV chamber pressure was measured by a pigtail cath-
eter and Statham P23Eb pressure transducer; the pressure was recorded
immediately before or during the angiocardiography in all cases. Single
plane cineangiocardiograms were recorded in a posterior–anterior projec-
tion from an image intensifier at 50 frames=s using INTEGRIS Allura 9 with
Dynamic Flat Detector (Philips Inc.). For a sample subject (HEL), the LV
ellipsoidal model’s pressure, volume, wall thickness (as derived from the
cineventriculography films) are presented in Figure 3.7, along with the
calculated ellipsoid major and minor axis (LA and SA from Equations 3.1
and 3.3), and calculated absolute value of ds*=dt (from Equation 3.8).

3.2.6.2 Subjects

Ten subjects with EF¼ 0.63� 0.05 and (dP=dt)max¼ 1406� 51 mmHg=s were
selected to comprise group 1. They did not use nicotine, caffeine or alcohol.
The age profiles were similar and their anthropometric data, blood pressure,
heart rate, and ejection fraction (EF) were within the expected range.

Ten other patients (with coronary and=or valvular disease) with EF¼
0.49� 0.13 and (dP=dt)max¼ 1183� 62 mmHg=s were classified into group
2, having mean-age of 57.4 years. Finally, we have group 3 of hospitalized
patients (of having EF¼ 0.38� 0.12 and (dP=dt)max¼ 948� 78 mmHg=s)
with poor (clinically assessed) contractility. These subjects are listed in
Table 3.3.

3.2.6.3 Results

For each subject, the chamber pressure and dimensions are monitored at
20 ms intervals during the cardiac cycle. A typical set of pressure and

TABLE 3.2

Normal Values of Left Ventricle (LV) Volumes and Mass for Adults and Children

End-Diastolic

Volume

(mL=m2)

Volume

(mL=m2)

End-Systolic

Volume

(mL=m2)

Ejection

Fraction

(SV=EDV)

Thickness

(mm)

Left Ventricle

Mass (gm=m2)

Adults
70� 20 45� 13 24 0.67� 0.08 10.9� 2.0 92� 11

Children and infants less than 2 years of age
42� 10 28.6 13.4 0.68� 0.05 96� 11

More than 2 years of age
73� 11 44� 5 27� 7 0.63� 0.05 86� 11

Source: From Dodge, H.T. and Sandler, H., in Cardiac Mechanics, I. Mirsky, D.N. Ghista, and
H. Sandler, New York, Wiley, 1973, 171–201.
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chamber variations for the subject HEL is shown in Figure 3.7. For this
subject, the time-derivative of normalized stress (s*) and the shape factor (S)
are calculated for each 20 ms during the cardiac cycle (Figure 3.7e). Figure
3.7g also depicts the cyclic variation of absolute value of (ds*=dt) during the
ejection phase. During ejection, the maximum value of SFI1 is found to
be 3.84 s�1.
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SA

LA

SA

LA

SA

LA

12.4 20 28
SFI 2

V(se) (mL)
− 0.20 0 0.20

S = 0.40 S = 0.51 S = 0.60

38.4 60 86.4
SFI 2

V(se) (mL)
− 0.20 0 0.20

S = 0.36 S = 0.45 S = 0.54

80 125 180
SFI 2

V(se) (mL)
− 0.20 0 0.20

S =  0.37 S = 0.46 S =  0.55
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abnormal (3) LV 
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FIGURE 3.6
Schematics of (1) anatomically abnormal, (2) optimal, and (3) physiological abnormal LV
shapes, for children less than 2 years of age, more than 2 years of age, and adults, based
on data in Table 3.2. (Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim, S.T.,
Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)
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Considering that S> Sop is associated with poor contractile heart, Table
3.3 summarizes the patients’ history, which includes patient age, heart rate
(HR), EF, myocardial volume of LV (VM), start-of-ejection volume V(se), and
end-ejection volume V(ee).

TABLE 3.3

Clinically Monitored Data and Computed Parameters for Three
Groups: Group 1 (Normal Contractility), Group 2 (Inadequate
Contractility), and Group 3 (Poor Contractility)

Group 1 Group 2 Group 3

Age (years) 58.70� 6.65 57.40� 5.85 58.20� 9.11
(dP=dt)max 1406.00� 51.00 1183.00� 62.00a 948.00� 78.00a

HR (beats=min) 72.69� 9.20 67.70� 10.04 74.02� 10.09
VM (ml) 146.00� 43.00 189.00� 78.00 216.00� 80.00a

V(se) (ml) 119.26� 31.75 148.70� 68.32 177.41� 90.00
V(ee) (ml) 43.64� 9.87 79.45� 53.75a 116.73� 54.01a

EF 0.63� 0.05 0.49� 0.13a 0.38� 0.12a

a p< .05 compared with normal contractility group.
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FIGURE 3.7
Pressure (P), volume (V), and dimensions (A, B, h, and s) during a cardiac cycle (using
LV ellipsoidal model), along with the absolute value of (ds*=dt) calculated using Equation
3.8 during the ejection phase for subject HEL. (Adopted from Zhong, L., Ghista, D.N., Eddie,
Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)
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Figure 3.8 depicts the mean and standard deviation of VM, EF, and V(se),
and V(ee) for all the patients analyzed by us. There exists a substantial
difference (p< .05) between the average values of EF, VM, V(ee) in normal
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FIGURE 3.8
Comparison of the EF, MV (wall volume), and V(se), V(ee) in groups 1 (normal contractility),
2 (inadequate contractility), and 3 (poor contractility). In figure (c), the first bar corresponds to
start-of-ejection (se) and the second bar to end ejection (ee). Figure (d) provides the mean values
of V, S, Sop, and SFI2. The Sop was calculated using Equation 3.11. In Figure (a), the mean
parameter values are given for the 3 groups and values that were statistically different (P< .05)
from group 1 are indicated (*). (Adopted from Zhong, L., Ghista, D.N., Eddie, Y.K.Ng., Lim,
S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)

(continued)
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patients compared to patients with inadequate and poor contractility. In
Figure 3.8d, we take the average values of V(se) and S(se) for each group,
and then show how the corresponding LV shape looks like for these three
groups. The LV in group 3 (with poor contractility) has a bigger S value
compared to group 1. Thus, based on Figure 3.5, group 1 has normal
contractility, group 2 has poor contractility, while group 3 represents a
failing heart. Thus, it can be concluded that a more-spherical shape is
associated with poor systolic function and decreased contractility of the LV.

Ranges for shape factor indices: Figure 3.9 illustrates the values of S(se),
S(ee), (dP=dt)max, SFI1, and SFI2 for the three groups: group 1 (normal
subjects), group 2 with inadequate contractility, and hospitalized group 3
with poor contractility. The values of SFI1 and SFI2 in group 1 are consid-
ered to be normal contractility. Group 3 patients with poor contractility have
comparatively lower values of SFI1 (p< .05) and bigger SFI2 as compared to
those of normal group (p< .05).

The average value of SFI1 decreases and of SFI2 increases in group 2 and
group 3, in relation to SFI1 and SFI2 for normal group 1. The average values
of SFI1 and SFI2 for normal group are 8.75� 2.30 s�1 and 0.09� 0.07
(Table 3.4). In the group of patients with poor contractility (group 3) the
values of the indices are significantly different compared to group 1
(p< .05). The index SFI2 is biggest in group 3, suggesting that this group
is having a more spherical or abnormal LV shape. Therefore it can again be
concluded that a less ellipsoidal and more-spherical shape is associated
with poor systolic function and decreased contractility of the LV, which is
also in agreement with the SFI1 values in Figure 3.9d and the values of EF
in Figure 3.8a. This supports our premise that an infarcted LV is less
ellipsoidal compared to a normally contracting LV.

V (se) = 119.26 mL
S (se) = 0.50
Sop

 = 0.45
SFI 2 = 0.09

(Based on Table 3.3)

V (se) = 148.70 mL
S (se) = 0.51
Sop

 = 0.46
SFI 2 = 0.11

(Based on Table 3.3)

(d)

V (se) = 177.41 mL
S (se) = 0.57
Sop

 = 0.45
SFI 2 = 0.23

(Based on Table 3.3)

FIGURE 3.8 (continued)
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FIGURE 3.9
Comparison of S at end systole, (dP=dt)max, SFI1, SFI2, for group 1 (normal), group 2 (mild
heart failure), and group 3 (severe heart failure). (Adopted from Zhong, L., Ghista, D.N., Eddie,
Y.K.Ng., Lim, S.T., Chua, T., and Lee, C.N., J. Biomech., 39, 2397, 2006.)
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3.2.7 Comparison with Traditional Invasive LV (dP=dt)max

For the 3 groups of patients, the comparisons between the indices (SFI1 and
SFI2) are summarized in Table 3.4. Further comparisons between the SFI1
and (dP=dt)max, SFI2 and (dP=dt)max are displayed in Figure 3.10a and b.
Figure 3.10a shows a fair correlation of r¼ .713 between SFI1 and (dP=dt)max

as SFI1 ¼ 0:0096 (dP=dt)max�5:1, r ¼ :73, p < :01, while Figure 3.10b sug-
gests a fair correlation:

SFI2 ¼ 0:00033 (dP=dt)max þ 0:54, r ¼ :60, p < :01:

3.2.8 Discussion and Conclusion

On the basis of Figure 3.10, we can conclude that our new SFI1 (evaluated
for different groups of patients, i.e., normal, mild, and severe heart failures)
compares favorably with that of conventional index (dP=dt)max, in distin-
guishing patients with poor contractility from normal patients. Further, SFI1
can be determined noninvasively and is also demonstrated to be potentially
more sensitive to changes in the LV shape. Thus the new index SFI1 can be
an excellent substitute to (dP=dt)max for contractility measure. Concerning
the second index SFI2, although its correlation with (dP=dt)max is not so
good as that of SFI1, it is more convenient to compute it and hence use it
clinically to diagnose the heart disease.

The shape of LV has intrigued physiologists as well as clinicians in
attempting to gain a better understanding of its mode of operation, and
trying to obtain diagnostic information on its performance [2,5,13–15]. In
this study, we developed new SFIs, SFI1 and SFI2, based on the LV wall
stress and hence on the LV shape. We have further shown that the SFI1 and
SFI2 compare well with (dP=dt)max. This confirms that the function and
contractility of the LV are closely related to its shape changes. Hence, an
evaluation of its shape permits early prediction of both physiological and
pathophysiological changes in LV functionality.

TABLE 3.4

Mean Values with Standard Deviations of S(se), S(ee), SFI1,
and SFI2 for Group 1 (Normal Contractility), Group 2
(Inadequate Contractility), and Group 3 (Poor Contractility)

Group 1 Group 2 Group 3

S(se) 0.50� 0.03 0.51� 0.05 0.57� 0.08a

S(ee) 0.44� 0.02 0.47� 0.05 0.53� 0.10a

SFI1 (s�1) 8.75� 2.30 5.78� 1.30a 3.90� 1.30a

SFI2 0.09� 0.07 0.11� 0.09 0.23� 0.12a

a p< .05 compared with normal contractility group.
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3.3 Left Ventricular Sarcomere Contractile Characteristics

and Associated Power Index

3.3.1 Left Ventricle Cylindrical Model (Incorporating the Myocardial
Fibers within Its Wall)

We represent the left ventricle (LV) as a thick-walled cylindrical shell. Trans-
verse isotropy is assumed with respect to the axis of the cylinder [16–18].
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FIGURE 3.10
Relating new developed contractility indices SFI1, SFI2 to traditional contractility index
(dP=dt)max. r, correlation coefficient.
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In Figure 3.11, we depict this LV model cylinder wall to be composed of
N myocardial fiber units, oriented as helixes of pitch angle a. Half of these
(i.e.,N=2) fibers are wrapped in a clockwise fashion, and the otherN=2 fibers
in counter-clockwise fashion. The biomechanical model ultra-structure of
each fiber is the MSU, as depicted later in Figure 3.11.

For our LV cylindrical model [19], we assume that each myocardial model
fiber is helically wrapped within the LV cylindrical model wall (as illus-
trated in Figure 3.11), and composed of two in-series MSUs, as illustrated in
Figure 3.12. In actuality, there will be many MSUs along any one myocardial
fiber from bottom to top. However, herein, for convenience of analysis, we
adopt each myocardial fiber to be composed of two MSUs in series.

Now although there are a number of myocardial fibers across the LV wall
thickness, it is assumed that, within the wall of our LV model, one set (N=2
number) of fibers are oriented in a clockwise fashion, while another equal
number (N=2) of fibers are oriented counterclockwise. Hence, across the LV
wall thickness, we have two fibers; in other words, the LV wall thickness
equals to the thickness of two fibers thickness.

The geometric parameters of the LV cylindrical model are defined
in Figure 3.11. The volumes of myocardial wall (MV) and of the LV are
given as

VM ¼ p(R2
o � R2

i )L ¼ p(2Ri þ h)hL (3:13)

V ¼ pR2
i L (3:14)

where
Ri and Ro are inside and outside radii of the cylindrical model
L and h are the length and wall-thickness of the model

Herein, the LV volume (V), wall thickness (h), and myocardial volume (VM)
are obtained by cineventriculography. Using Equations 3.13 and 3.14,
we can calculate the instantaneous radii Ri(t) and length L(t) (at any time
instant t) in terms of the measured VM, V, and h, as

FIGURE 3.11
(a) Schematic of LV myocardial
structure, (b) LV cylindrical
model, depicting a typical myo-
cardial fiber arranged as a helix
within the LV model wall; L, Ri,
and Ro are the length, inner, and
outer radii of the LV cylindrical
model. (Adopted from Ghista,
D.N., Zhong, L., Eddie, Y.K.Ng.,
Lim, S.T., Tan, R.S., and Chua, T.,
Mol. Cell. Biomech., 2, 217, 2005.)
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Ri ¼
2Vh=VM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2Vh=VM)2 þ 4Vh2=VM

q
2

, L ¼ V

pR2
i

(3:15)

Then

Ro ¼ Ri þ h and Rm ¼ (Ro þ Ri)

2

3.3.2 Myocardial Structural Unit (MSU) Model

In Figure 3.12a, the sarcolemma of the MSU is shown to consist of overlap-
ping myosin and actin filaments. The myosin filament is symmetrical about
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FIGURE 3.12 (See color insert following page 266.)
(a) The actin and myosin filaments constituting the contractile components of the myocardial
fibril; (b) Myocardial fibril model composed of two symmetrical myocardial structural units
(MSUs), which are mirror images of each other. Each MSU is composed of (i) an effective mass
(m) that is accelerated; (ii) connective-tissue series element having parameter k (elastic modulus
of the series element) and the force FSE; (iii) the parallel viscous element of the sarcolemma
having viscous damping parameter Bv and force FVE; (iv) the contractile element (CE), which
generates contractile force FCE between the myosin (thick) and actin (thin) filaments. When the
contractile element shortens (by amount x2), the series element lengthens (i.e., x1 increases).
During ejection, the MSU xT decreases, and during filling the MSU xT increases. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T.,Mol. Cell. Biomech., 2,
217, 2005.)
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its midpoint, and contains two sets of regular arrays of myosin heads.
Muscle contraction is driven by the motor protein II, which binds transiently
to an actin filament, generates a unitary filament displacement or ‘‘working
stroke,’’ then detaches and repeats the cycle [20]. Sarcomere shortening is
generated by the relative sliding of the two filaments, driven by the working
stroke of the myosin head. In Figure 3.12b, we define the myocardial fibril
model to be composed of two myocardial structural units (MSUs) in series.
On the basis of MSU three-element model [21] and Huxley cross bridge
theory [22,23], the sarcomere actin–myosin filaments can be represented by
the contractile element (CE), the connective tissue can be represented by the
series-elastic element (SE), while the sarcolemma can be represented by a
parallel viscous element (VE), as illustrated in Figure 3.12b.

Hence, the biomechanical model of the myocardial structural unit (MSU)
consists of the MSU mass, a series-elastic element (SE), a parallel-viscous
element (VE), and a contractile element (CE) [24]. The sarcomere represents
the fundamental functional structure of contraction of the MSU. It makes the
muscle fiber contract, and generates stress within the wall.

In Figure 3.12b, m denotes the MSU mass; Bv is the viscosity parameter; k
is the connective tissue elasticity parameter; xT is the displacement of the
MSU relative to the center line; x2 is the displacement of the MSU mass due
to contraction and resulting shortening of its CE; x1 is the displacement of
SE¼ (x2� xT); FCE denotes the force generated by the CE; FVE denotes the
force in the VE; and Ft denotes the resulting total MSU force, which is
related to the chamber pressure of LV.

3.3.3 Determination of Fiber Density, Length, and Force; Fiber Angle
a and MSU Force (Ft); Torque Produced on the LV
due to Fiber Activation

It is known that the LV twists during systole and unwinds thereafter. This
twist is due to the contraction of the myocardial fibers. We also acknow-
ledge that the fiber angle will vary across the wall thickness and also with
time during a cycle. Nevertheless, for convenience of theoretical analysis,
we have adopted that in our LV model there are two adjacent sets of fibers
within the wall thickness, one set oriented clockwise and another set
oriented counter clockwise. Each myocardial fiber is assumed to be oriented
helically within the LV myocardial wall, at a pitch angle a (as illustrated in
Figure 3.11), with N=2 fibers are oriented helically clockwise at pitch angle
a, and the other N=2 fibers are oriented anticlockwise at the same pitch
angle, analogous to that adopted by Pietrabissa et al. [25]. We now deter-
mine this fiber angle for our LV model.

3.3.3.1 Fiber Density, Length, and Force

During filling, the fibers will extend as the LV cylindrical model fills with
blood. During systole, the fibers will contract and shorten, deform and twist
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the LV cylindrical model. Thus, the LV will twist and unwind during a
cardiac cycle.

In this cylindrical model, there are N number of myocardial fibers within
the LV wall (as shown in figure). Hence:

N

2
¼ Acylinder

2Amsu
(3:16)

wherein
Acylinder (the cross-section area of cylindrical model myocardium)¼
p(R2

o � R2
i )

Amsu (the cross-section area of MSU) approximately equals 7.85� 10�5

cm2 [26]

While Acylinder varies during a cycle, the number of fibers remains constant.
Hence, we can determine the value of N at the start of isovolumic contrac-
tion, from Equation 3.16.

The activation of these fibers develops an active force (FCE) in the sarco-
mere unit of MSU, which in turn generates wall stress and thereby raises the
intraventricular pressure. When the pressure exceeds the pressure in the
aorta, then the aortic valve opens, the LV shortens (and its wall thickens) to
pump an appropriate stroke volume.

The instantaneous length (lt) of each myocardial fiber (or myofiber) is
given by

lt ¼ Lt
sinat

(3:17)

where lt is the instantaneous length of the LV model.
For instantaneous LV pressure P(t), the force in a myofiber is given by

(with reference to Figure 3.11)

Ft ¼ pR2
i Pt

(N=2) sinat
(3:18)

where Ri denotes the instantaneous value of the inner radius of the model
obtained from Equations 3.13 and 3.14.

Because we have two MSUs in series along each myofiber, the axial
displacement xT of an MSU (shown in Figure 3.12) can be related to the
change of length (Dlt) of an MSU, and hence to the change in length (DLt) of
the LV cylinder model as

xT ¼ Dlt
2

¼ DLt
(2 sinat)

(3:19)

where
DL¼ Ltþ1� Lt, Ltþ1 and Lt refer to successive time instants
Lt is given by Equation 3.15
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3.3.3.2 Determining the Fiber Pitch Angle a

We refer to the paper of Pietrabissa et al. [25], wherein it is shown that the
fiber angle for a cylindrical model can be shown to be independent of the LV
instantaneous dimensions, and hence can be assumed to be constant
throughout the cycle. We now determine this fiber angle a.

At any instant, it is assumed that the depolarization wave is traveling
along one set of myocardial fibers, i.e., either along N=2 clockwise or N=2
anticlockwise oriented fibers. The contraction of one set (N=2) of these fibers
hence results in a clockwise or anticlockwise twist of the LV. The distance
(d) along a circumference between two adjacent fibers arranged in the same
direction (i.e., clockwise or counter-clockwise) is given by (with reference to
Figure 3.13):

d ¼ 2pRi

(N=2)
¼ 4pRi

N
(3:20)

The axial pitch (u) between the fibers arranged in the same direction inter-
sected by a cylinder generator is given by

u ¼ L

(n=2)
¼ 2L

n
(3:21)

wherein n=2 is the number of fibers arranged in the same direction inter-
sected by a cylinder generator.

From Equations 3.20 and 3.21

u

d
¼ tana ¼ LN

2pRin
(3:22)

In Figure 3.14a, the equilibrium of axial forces in one set of fibers arranged
in the same direction, acting on the bottom or top circular plane surface of
the LV model cylinder, requires that the sum of the vertical components of
the fiber forces equilibrates the force due to LV pressure acting on the LV
top (or bottom) surface. Hence, as indicated before (by Equation 3.18):

FIGURE 3.13
Calculation of distances u and d. (Adopted from Ghista,
D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S.,
and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

u

d
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pR2
i P ¼ (N=2)(Ft sina) (3:23)

where
P is the LV cavity pressure
Ft is the force within each of the N fibers

In Figure 3.14b, the force equilibrium of the cylinder in the circumferential
direction, under the action of fiber forces arranged in the same direction,
requires that:

(2LRi)P ¼ nF cosa (3:24)

Upon substituting Equations 3.23 and 3.24 into Equation 3.22, we obtain the
equivalent fiber angle (a) for the LV as follows:

tana ¼ 1ffiffiffi
2

p (3:25)

which yields a¼ 35.268.

3.3.3.3 Torque Imparted to the LV by Fiber Contraction

At this point, it is noteworthy that (on the basis of Figure 3.14a), while the
vertical components of the fiber forces cause pressure on the top and bottom
surfaces of the LV chamber (as per Equation 3.23), their horizontal compon-
ents produce a torque (T) in the LV, given by

Tt ¼ (N=2)Ft cosat ¼ (N=2)pR2
i Pt cosat

N=2 sinat
¼ pR2

i Ptctgat (3:26)

P

Ft

P Ft

a
a

aa Ft

2Ri

L

(a) (b)

Two fibers across the thickness; there 
are N /2 pairs of fibers oriented clockwise
and N /2 pairs of fibers oriented counter-

clockwise within the LV wall

 

(c)

FIGURE 3.14 (See color insert
following page 266.)
(a) Equilibrium of fiber force and
LV pressure on the top circular
plane of the LV cylindrical
model. (b) Equilibrium of fiber
force and LV pressure in the cir-
cumferential direction. (c) Loca-
tion of two sets of fibers across
the LV wall thickness. (Adopted
from Ghista, D.N., Zhong, L.,
Eddie, Y.K.Ng., Lim, S.T., Tan,
R.S., and Chua, T., Mol. Cell. Bio-

mech., 2, 217, 2005.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C003 Final Proof page 91 29.5.2008 12:00am Compositor Name: MSubramanian

Left Ventricular Contractility Indices 91



This torque (Tt) will result in a twist of the LV by angle ut given by

ut ¼ TtLt
JG

¼ pR2
i PtLt(ctgat)

JG
(3:27)

where
Lt is the instantaneous length of the LV cylindrical model
at (¼a) is given by Equation 3.25
J (the polar moment of inertia)¼p(R4

o � R4
i )=2

G (the shear modulus of the LV myocardium) ffi 100 Gpa [27]

This means that for, say, a 60 mmHg pressure rise during isovolumic
contraction, an LV model (having Ri¼ 2 cm, Ro¼ 3 cm, and L¼ 14 cm) will
twist by an amount of 108; then, it will twist more up to 208 to the instant
when the LV pressure becomes maximum. After that, the LV will rewind.
These calculated twist angles correspond to the monitored values [28],
thereby lending some credibility to our model.

Equation 3.27 relates the twist angle (u) to the fiber angle (a). It indicates
that if we can measure the twist angle u (of the apex of the LV with respect to
its base) by MRI-tagging, then we can also determine the value of the fiber
angle a corresponding to the monitored LV pressure. So, we do not need to
adopt a to stay constant during a cardiac cycle. Hence, although in this
chapter, we have taken a to be constant during a cardiac cycle, we can
subsequently compute the instantaneous value of a from Equation 3.27.
However, at this stage, we are in a position to only obtain data on LV
pressure and volume and not simultaneously on the twist angle. It has
been shown that this twist angle u varies by about 108 during systole [28],
which corresponds to the value obtained from Equation 3.27.

It can be conceptually noted that for certain instantaneous dimensions Ri

and Li, the in vivo value of u during a cardiac cycle influences the value of Pt

generated. However, for the sake of demonstrating how we can relate the
sarcomere contractile force and shortening velocity to LV pressure and
volume data (and compute these sarcomere parameters), we adopt the
angle a to remain constant throughout the cycle (even though we concede
that this is not true in practice).

3.3.4 Dynamics of a Myocardial Structural Unit

3.3.4.1 Governing Equation of MSU Dynamics and Its Solution

From Figure 3.15, the governing differential equation for an MSU dynamics,
due to the generated contractile force (FCE), can be expressed as

m€x2 þ Bv _x2 � FCE þ kx1 ¼ 0 (3:28)

or

m€x1 þ Bv _x1 þ kx1 ¼ FCE � Bv _xT �m€xT (3:29)
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where
FCE is the applied force exerted by the contractile-element of MSU
m is the muscle mass per unit cross-section area¼p(R2

o � R2
i )Lr=2N

r is muscle density
Bv is the viscous damping parameter of the parallel viscous element
(VE)

k is the elastic stiffness (or modulus) of the series-elastic element (SE)
xT is the shortening displacement of the myocardial-fiber unit relative
to its center-line

x1 is the stretch of the SE element¼ x2� xT
x2 is the displacement of muscle mass m (relative to center-line) due to
CE contraction¼ xTþ x1 (positive sign represents shortening)

FVE ¼ Bv _x2 and FSE ¼ k(x1 þ x1ed) (3:30)

wherein
x1ed is x1 at end diastole (¼ Fted=k)
Fted is the fiber force at end diastole, obtainable from Equation 3.24
corresponding to Ri and P at end diastole

Because the terms m€x1 and m€xT can be neglected due to their small values
compared to other terms; for instance, m€x1 and m€xT are of the order of 10

0–1,
while the other terms are of the order of 103–4 [24]. Equation 3.29 can thus be
rewritten as

Bv _x1 þ kx1 ¼ FCE � Bv _xT (3:31)

Now, let us consider myocardial contraction during the systolic phase. The
systolic contraction can be considered to comprise of two temporal phases,

m
k

Bv

x2xT
Center-line

x1 = x2− xT

Myosin
Actin

Ft FVE

FSE

FCE

FIGURE 3.15 (See color insert following page 266.)
Dynamic model of MSU having effective massm; k is the elastic modulus of series element; Bv is
the viscous-damping parameter of parallel viscous element; Ft denotes the total generated force
caused by the contractile stress FCE; FSE is the force in the series element [¼ k(x1þ x1ed)], where
x1ed is the deformation of the SE at end diastole; FVE is the force in the viscous element (¼Bv _x2);
x1 then represents the added deformation of the SE during systole (over and above its deform-
ation during the filling phase) due to the development of FCE. (Adopted from Ghista, D.N.,
Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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as depicted in Figure 3.16. Phase I, denoted by tiso (and measured in
seconds), corresponds to isovolumic contraction; it comprises the interval
from the closing of the mitral valve until the opening of the aortic valve.
Phase II, denoted by te, corresponds to the ejection phase.

As shown in Figure 3.12, each myocardial fiber from bottom to top edge of
the LV myocardial model is composed of two MSUs. The governing differ-
ential equation for this model is given by Equations 3.28 and 3.29. Now let
us discuss the terms on the right-hand side of Equation 3.31. As the MSU
(and LV) depolarizes, excitation–contraction coupling leads to sarcomere
contraction and the development of ventricular wall stress along with a
rapid increase in intraventricular pressure, as shown in Figure 3.15. During
this phase of systolic contraction, we express the generated MSU-CE force
(FCE) function (analogous to the LV pressure wave shape) as

FCE ¼ FCE0 sin(vcet)e
�zcet (3:32)

where
vce ¼ p=ts; ts is the contraction duration, to be determined
FCE0 and zce are the additional parameters, to be determined
t¼ 0 corresponds to the start of isovolumic contraction phase

It should be noted that this expression for FCE is similar to that for the active
elastance of our earlier paper [29].

P
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e 
(m

m
H

g)

Filling

Isovolumic
contraction

Isovolumic
relaxation

Ejection

Filling

Pressure in aorta

Pressure in the left
ventricular chamber

Time (s)te t rt iso

FIGURE 3.16
Schematic of LV pressure and aortic pressure variation during a cardiac cycle. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T.,Mol. Cell. Biomech., 2,
217, 2005.)
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Let us now discuss the xT term on the right hand side of Equation 3.31.
During the filling phase, the MSU will stretch passively due to LV enlarge-
ment. Concerning the xT term (depicted in Figures 3.12 and 3.15), during the
filling phase, it will be negative and its absolute value will increase due to
passive stretching of the myocardial fibers caused by LV volume increase.
During this phase, with reference to Figure 3.15, the SE element will stretch
while x2¼ 0, and hence x1¼�xT. At the end of filling phase, we denote x1 by
x1ed. Further increase in x1 now occurs during isovolumic contraction due to
the development of FCE and the generation of CE shortening (x2). However,
in this phase xT¼ 0, and hence xiso1 is only due to x2 caused by FCE.

During the ejection phase, xT is positive and is caused by LV ejection and
volume decrease. At the same time, x2 is being generated by CE contraction,
resulting in FCE development. Somewhere during the ejection phase, x2 will
reach its maximum value and thereafter decrease. Now during the isovo-
lumic relaxation phase, x2 keeps decreasing, while xT does not change from
its end-ejection value.

Then when the filling phase starts, xT again becomes negative and jxTj starts
increasing as the LV volume increases. Meanwhile x2 keeps decreasing and
reaches a zero value, a short while after the start of filling phase at t¼ to. This
time period to is designated as the LV suction phase caused by deceasing FCE,
before the left atrium starts to contract and pump blood with the LV. Herein,
we will also demonstrate this suction effect in terms of the time period t0.

3.3.4.2 Phase I: Solving Equation 3.31 for Isovolumic Contraction Phase
(during 0< t< tiso)

Since both the mitral and aortic valves are closed, the volume of blood in
the ventricle is constant. Yet the pressure inside LV is increasing due to the
sarcomere contraction, i.e., due to FCE generation. Hence, putting
xT¼ ẋT¼ €xT¼ 0, and employing FCE from Equation 3.32, we can rewrite
Equation 3.31 as

Bv _x1 þ kx1 ¼ FCE0 sin(vcet)e
�zcet (3:33)

The solution of Equation 3.33 is given by x1(¼xiso1 ), as follows:

x1(t) ¼ xiso1 (t) ¼ C1e
�k=Bvt þ [a sin(vcet)þ b cos(vcet)]e

�zcet (3:34)

where

a ¼ FCE0(k� zceBv)

(k� zceBv)
2 þ (Bvvce)

2
, b ¼ � FCE0Bvvce

(k� zceBv)
2 þ (Bvvce)

2

For this phase of contraction, the initial condition that we will impose is

xiso1 (0) ¼ C1 þ b ¼ 0 (3:35)
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from which

C1 ¼ �b (3:36)

Hence, x1 (¼ xiso1 ), during the isovolumic contraction phase, is given by

x1(t) ¼ xiso1 (t) ¼ (�b)e�k=Bvt þ [a sin(vcet)þ b cos(vcet)]e
�zcet (3:37)

3.3.4.3 Phase II: Expression for xT and Solving Equation 3.19 for the Ejection
Phase to Determine Parameters xT0 and ze

For mathematical convenience, we make a shift in the time variable and
redefine it as ta¼ t� tiso, such that

0 � ta � te (3:38)

where te is the ejection phase duration.
In this phase, xT is no longer zero, and hence we need to relate it to the LV

dimensional change, as per Equation 3.19, as

xT ¼ Dlt
2

¼ (L(tþ1) � Lt)

2 sina
(3:39)

wherein
Lt and Ltþ1 refer to successive time instants ti and tiþ1

Li (or L) is given by Equation 3.15 in terms of V, MV, and h

We now adopt for ẋT a function to correspond to that of the LV flow rate _V
[30], as follows:

_xT ¼ xT0 sin(veta)e
�zeta (3:40)

where
ve ¼ p=te, te is the duration of ejection as shown in Figure 3.19
xT0 and ze are the (to-be-determined) parameters
ta¼ 0 corresponds to the start-of-ejection phase

By integrating Equation 3.40, and employing the initial condition of
xT (ta¼ 0)¼ 0, we get

xT ¼ � xT0
z2e þ v2

e

[ze sin(veta)þ ve cos(veta)]e
�zeta þ xT0ve

z2e þ v2
e

¼ Dlt
2

¼ (Liþ1 � Li)

2 sina
(3:41)

Now, based on Equation 3.41, xT can be evaluated in terms ofDlt and hence in
terms of monitored LV wall thickness h(t), LV volume V(t), and myocardial
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volume MV. Hence, the parameters xT0 and ze (of ẋT in Equation 3.40) can
be obtained by matching the xT expression of Equation 3.41 with the clini-
cally obtained MSU length-change Dlt=2, as indicated by Equation 3.41. This
then enables us to also determine the expression ẋT (Equation 3.40) in terms
of its now evaluated parameters xT0 and ze.

Then, by substituting Equations 3.32 and 3.40 into the governing Equation
3.31, we have

Bv _x1 þ kx1 ¼ FCE0 sin [vce(ta þ tiso)]e
�zce(taþtiso) � BvxT0 sin(veta)e

�zeta (3:42)

where ta is the time variable. The solution of Equation 3.42 is given by
x1(¼xe1), as follows:

x1(ta) ¼ xe1(ta) ¼ C2e
�k=Bvta þ a sin[vce(ta þ tiso)]þ b cos[vce(tþ tiso)]f ge�zce(taþtiso)

þ [c sin(veta)þ d cos(veta)]e
�zeta (3:43)

where

a ¼ FCE0(k� zceBv)

(k� zceBv)
2 þ (Bvvce)

2
, b ¼ � FCE0Bvvce

(k� zceBv)
2 þ (Bvvce)

2

c ¼ � BvxT0(k� Bvze)

(k� Bvze)
2 þ (Bvve)

2
, d ¼ B2

vxT0ve

(k� Bvze)
2 þ (Bvve)

2

In Equation 3.43, the unknown parameters are k, Bv, FCE0, vce, and zce.
Now x1(t) between phases I and II is continuous, i.e., xe1(ta ¼ 0) ¼

xiso1 (t ¼ tiso). This determines the initial condition for phase II. Hence, from
Equations 3.37 and 3.43, we get

xe1(0) ¼ C2 þ [a sin(vcetiso)þ b cos(vcetiso)]e
�zcetiso þ d

¼ xiso1 (t ¼ tiso)

¼ �be�k=Bvtiso þ [a sin(vcetiso)þ b cos(vcetiso)]e
�zcetiso (3:44)

Solving Equation 3.44, we get

C2 ¼ �be�k=Bvtiso � d (3:45)

Hence, the total SE deformation x1(¼xe1) during the ejection phase (on top of
x1 at t

iso the end of isovolumic contraction, given by Equation 3.37) can be
written as

x1(ta) ¼ xe1(ta) ¼ (�be�k=Bvtiso � d)e�k=Bvta

þ a sin[vce(ta þ tiso)]þ b cos[vce(ta þ tiso)]f ge�zce(taþtiso)

þ [c sin(veta)þ d cos(veta)]e
�zeta (3:46)
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3.3.4.4 Evaluating the Model Parameters (k, Bv, FCE0, vce, zce)

Having determined the parameters xT0 and ze from Equation 3.41, by
matching xT with Dl, we will now determine the remaining parameters k,
Bv, FCE0, vce, and zce (in Equation 3.33). On the basis of Figures 3.12 and 3.14
and Equations 3.30 and 3.31, we put down

FSE ¼ Ft ¼ k(total SE deformation) ¼ k(xled þ xe1) ¼ Fted þ kxe1 (3:47)

where (1) xe1 during the ejection phase is given by Equation 3.46, (2) xled
(x1 at end diastole) is given by Equation 3.30, and (3) Ft and Fted are obtained
in terms of LV pressure, model geometry, fiber angle (a) and N from
Equation 3.24. Hence,

k � xe1 ¼ Ft � Fted ¼ 2pR2
i (P� Ped)

(N sina)
(3:48)

wherein the xe1 expression is given by Equation 3.46. We now match the
expression for kxe1 (of Equation 3.46) with the evaluated value of the right-
hand side term of Equation 3.48 in terms of clinical-derived data (of LV
pressure, as well as Ri and N from Equations 3.15 and 3.16) of the subject. By
carrying out parameter-identification, we can determine the corresponding
parameters k as well as Bv, FCE0, vce, and zce (in Equation 3.46). Once we
know the values of these parameters, we can determine the values of the xe1
during the ejection phase.

3.3.5 Sarcomere Force (FCE), Shortening Velocity (ẋ2), and Power

3.3.5.1 Determining Sarcomere Contractile FCE and x2, and Their
Physiological Implications

Having evaluated the parameters (k, Bv, FCE0, vce, zce) in the earlier section,
we can determine the CE contractile force FCE from Equation 3.32, as well as
x1 during isovolumic contraction (from Equation 3.37) and during ejection
(from Equation 3.46). The shortening displacement of CE, x2 (¼ x1þ xT), can
also be computed by employing (1) x1 from Equation 3.46 in terms of its
evaluated parameters k, Bv, FCE0, vce, and zce, and (2) xT from Equation 3.41
in terms of its evaluated parameters xT0 and ze. Now, for a total variation of
x2 during a cardiac cycle, we adopt the x2 expression as

x2 ¼ x2o sin(vcet)e
�z2t ¼ x1 þ xT (3:49)

where
x1 can be computed from Equation 3.46
xT from Equation 3.41
t¼ 0 corresponds to the start of isovolumic contraction phase

Hence, in Equation 3.49, we can now evaluate the additional parameters x2o
and z2 by parameter-identification.
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Myocardial fiber shortening x2 is an important cardiac performance par-
ameter. On the basis of Equation 3.49, it starts at the end of LV filling and
initiates LV contraction. Somewhere during the ejection phase, it reaches its
maximum value. It then starts decreasing and continues to do so into the
filling phase, causing the phenomenon of LV suction. It would be interesting
to determine the instant (to) within the filling-phase, when x2 becomes zero.
From a cardiac physiological viewpoint, during this time-interval (from the
start of filling up to the instant to), the left ventricular pressure value will be
below its value at the start of filling phase. This time period from the start of
filling phase up to to is denoted as the LV suction phase [31].

Hitherto, it has been difficult to provide an explanation for this suction
phase. However, it can be explained in terms of the continuing activation of
the contractile element into the filling phase from Equations 3.32, 3.48, and
3.49, as follows:

2pR2
i (Pt � Ped)

N sina
¼ Ft � Fted ¼ FSE � Fted ¼ FCE þ FVE � Fted

¼ FCE0 sin(vcet)e
�zcet þ Bv[x20 sin(vcet)]e

�z2t � Fted (3:50)

In Equation 3.50, we have determined the parameters of FCE and FVE from
the monitored instantaneous LV pressure (Pt), and the LV geometry
(defined by Ro and Ri). As per Equation 3.50, it is FCE (due to sarcomere
contraction) that intrinsically governs the generation of this pressure Pt.
Hence, it is the continuing activation of CE into the filling phase that causes
LV suction and a temporal dip in LV pressure before the left atrium con-
tracts and pumps blood into the LV. Later on, we will demonstrate the
suction effect in terms of the time instant t0 in the filling phase.

3.3.5.2 Power Generated by the Sarcomere Contractile-Element

Now, because we have incorporated 2 MSU(s) in each myocardial fiber (as
illustrated in Figures 3.12), we now define the LV myocardial sarcomere
instantaneous power (MSP) in terms of the MSU-CE force causing shorten-
ing by amount x2 and shortening rate of ẋ2, as

MSP ¼ 2� N

2

� �
(FCE � _x2) ¼ N(FCE � _x2) (3:51)

where
both FCE and ẋ2 are functions of time
FCE is the contractile force generated by each contractile element
ẋ2 is the shortening velocity of the CE element

In this equation, N is computed from Equation 3.16; FCE is computed
from Equation 3.32, with its parameters (FCE0, vce, and zce) obtained from
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Equation 3.48 by parameter-identification scheme; x2¼ x1þ xT, with x1 and
xT computed from Equations 3.46 and 3.41, respectively. The total myocar-
dial sarcomere power (TMSP) is then obtained as

TMSP ¼ N

ð
FCE d _x2 (3:52)

i.e., by the area under the FCE versus ẋ2 curve.

3.3.5.3 Defining a Contractile Power Index

Herein, in quantifying the contractile performance of the LV, we define
contractility (corresponding to the traditional contractility index of
(dP=dt)max) as the ability of the LV myocardium to produce a contractile
force with a high shortening-velocity capability, so as to exert maximum
contractile power. In order to compare power among patients of differing
LV size and mass, we normalize MSP with respect to myocardial volume, as

MSPI ¼ MSPmax=VM (3:53)

where VM is LV wall volume (mL), MSPI is in Watt=liters.

3.3.6 Clinical Application and Results

The analysis is now applied to the clinically obtained data of the subject’s
left ventricular (instant-of-instant) dimensions (obtained by cineangiocar-
diograph) and chamber pressure (obtained by cardiac catheterization). In so
doing, for each subject’s left ventricular data (of pressure, volume, wall
thickness, and myocardial volume), we evaluate the model parameters FCE
and x2, the contractile power input and the new contractility index MSPI
(given by Equation 3.53).

Table 3.5 lists the measured hemodynamic variables for three subjects
(subject HEL, DDM, and TPS). Subject HEL serves as a representative of a

TABLE 3.5

Clinical History, Measured Hemodynamic Data from Subjects (HEL, DDM, and TPS)

Subject HEL DDM TPS

Disease MI, DVD DVD, HTN LAD and ischemia
LVP (mmHg) 122=18 170=24 147=22
AOP (mmHg) 125=75 169=99 140=71
EDV=ESV (ml) 132.5=84.3 121.7=41.3 112=35.5
EF 0.36 0.66 0.68

Note: LVP, left ventricle chamber pressure; AOP, aortic pressure; EDV, end-diastolic volume;
ESV, end-systolic volume; EF, ejection fraction; MI, myocardial infarct; DVD, double
vessel disease; HTN, hypertension; LAD, left artery disease.
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patient with myocardial infarct. Subject DDM is an example of a patient
with double vessel disease (DVD) and hypertension, treated with PTCA.
Subject TPS corresponds to a patient with native LAD, ischemia in anterior
territory, and mitral regurgitation (MR). These three subjects have also
been studied by our earlier analysis of passive and active elastance com-
putation [29]. Figure 3.17 depicts one-sample cineangiocardiographically
derived LV dimensions and the derived cylindrical model dimensions
during a cardiac cycle.

3.3.6.1 Evaluation of the Model Parameters

From the clinical data shown in Figure 3.17, we calculate the LV model xT,
using Equation 3.39. This ‘‘xT versus time’’ function during ejection is
shown in Figure 3.18, as illustrated by the round points. We then use the
expression of xT given by Equation 3.41 to fit this clinical-derived data of ‘‘xT
versus t’’, and determine the parameters xT0 and ze, as shown in Figure 3.18.
The model-computed xT matches the xT (¼ (Liþ1� Li)=2 sina) clinical data
very well, with R-square¼ 0.9944 and RMS¼ 0.02 cm. The solid line is the
model-computed displacement xT (Equation 3.41), while the round points
constitute the clinical-derived xT.
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FIGURE 3.17
LV Pressure variation and LV (thick-wall cylinder) model dimensions variations, during
a cardiac cycle for subject HEL. VM¼ 185 mL. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C003 Final Proof page 101 29.5.2008 12:00am Compositor Name: MSubramanian

Left Ventricular Contractility Indices 101



Now, we use the LV pressure and Ri data in Figure 3.17, along with
calculating N (by Equation 3.16), to obtain the right-hand side of the
Equation 3.48, and to hence evaluate the term kxe1. Since the expression
for xe1 is given by Equation 3.46, we can now employ the parameter-
identification scheme to make the kxe1 expression (Equation 3.46) fit the
values of kxe1(¼ 2pR2

i (P� Ped)=N sina), and compute the other parameters
k, Bv, FCE0, vce, and zce, in Equation 3.50 (as listed in Table 3.6). In Figure
3.19, we have shown how the kxe1 expression (Equation 3.46) matches
the computed values of kxe1, to evaluate the parameters k, Bv, sCE0, vce,
and zce.

From the data shown in Figure 3.17, we calculate the LV model myo-
cardial force Ft and Fted using Equation 3.22. Then we compute
kxe1(¼ (Ft � Fted)=N) ¼ 2pR2

i (P� Ped)=N sina, as shown by the round points
in this figure, with N¼ 2.24� 105 from Equation 3.16. This clinical-
derived data of (Ft� Fted)=N is now fitted with kxe1 expression (based on
Equation 3.46), to obtain the values of kxe1 parameters (FCE0, zce, k, Bv, vce)
listed in the figure as well as in Table 3.4. Herein, t¼ 0 corresponds to the
start-of-ejection.
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FIGURE 3.18 (See color insert following page 266.)
Computed xT(t) during the ejection phase (t¼ 0 corresponds to start-of-ejection): From the data
shown in Figure 3.17, we calculate the model xT during the ejection phase by using Equation
3.39, as shown by the round points in the figure. This data is now fitted with Equation 3.41. The
resulting values of the parameters (xT0 and ze) are shown in the figure and also listed in Table
3.4. Here t¼ 0 corresponds to the start-of-ejection. (Adopted from Ghista, D.N., Zhong, L.,
Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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3.3.6.2 Determination of CE Force FCE and Shortening x2 Characteristics,
with Determination of the LV Suction Effect

Shown in Figure 3.20 are the computed values of MSU dynamics terms for
subject HEL. Figure 3.20a provides the measured data of LV pressure in one
cardiac cycle. By means of the values of the parameters (k, Bv, sCE0, vce, and
zce) in Table 3.4, we have determined and plotted x1 versus time, x2 versus

TABLE 3.6

Computed Values of MSU Terms xT and x1, and of Their Parameters Related to the
Subject HEL Shown in Figure 3.20, during Ejection Phase (N¼ 2.24� 105)

Variable Parameters Values How Obtained RMS

xT xT0 (cm) 10.28� 1.71 xT fit using Equation 3.29 0.02 cm
ze (s

�1) 6.50� 1.83 R-square
0.99

xe1 FCE0 (Pa cm2) 5.66� 1.61 kxe1 fit using Equation 3.36 RMS
0.028 Pa cm2

zce (s
�1) 3.95� 1.06 R-square

Bv (Pa cm s) 0.12� 0.069
k ( Pa cm) 3.95� 1.28 0.97
vce (s

�1) 7.14� 1.95
x2 x20 0.55� 0.01 x2 fit using Equation 3.37 0.01

z2 �3.03� 0.12 0.99
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FIGURE 3.19
Computed kxe1 and its parameters during the ejection phases (t¼ 0 corresponds to start-of-
ejection). (Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua,
T., Mol. Cell. Biomech., 2, 217, 2005.)
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time, and xT versus time, in Figure 3.20b. The computed CE shortening-
velocity (ẋ2) and force (FCE) are shown in Figures 3.20c and 3.23d, respect-
ively. Notice that the CE force variation during systole is similar to that of
LV active elastance in our earlier paper [29].

Now we adopted the expression x2 given by Equation 3.49 in order to
project the time-duration (t0) of sarcomere shortening continuing into the
filling phase. We can now see, from Figure 3.20b, that this duration is 0.04 s.
This validation and quantification of the LV suction effect is an important
added finding of our model analysis.

3.3.6.3 Computing TMSP and MSPI (Equations 3.52 and 3.53)

Next, we also plot the ‘‘force versus shortening’’ and the ‘‘force versus
shortening velocity’’ for the CE after the initiation of isovolumic contraction
phase, as shown in Figures 3.21 and 3.22. As seen in Figure 3.21 for patient
HEL, the CE shortening (x2) reaches its maximum value late in the ejection
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FIGURE 3.20 (See color insert following page 266.)
Computed results ofMSUmodel-dynamics terms x1, x2, xT, _x2, and FCE, for subjectHEL.Diastolic
phase: 0–0.32 s; isovolumic contraction phase: 0.32–0.4 s; ejection phase: 0.4–0.64 s; isovolumic
relaxation phase: 0.64–0.72 s. Here t¼ 0 corresponds to the start-of-filling. Note that FCE and x2
extend into the filling phase; t0¼ 0.04 s. (Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng.,
Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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phase. The area encircled by force-displacement curve and x-axis represents
the CE energy input.

In Figure 3.22 for patient HEL, the CE shortening velocity increases, along
with increasing CE force. They both reach their maximum values at about
one-third ejection, and thereafter decrease. The area encircled by the curve,
multiplied by the number of fibers (N) gives us the value of the index TMSP.
From this figure, we can again note that the contractile element stays active
for 0.04 (¼ 0.76 – 0.72) s into the filling phase. This causes LV suction of blood,
even prior to the initiation of left atrial contraction. From Figure 3.22, we
calculate TMSP to be 5.40 W. The maximum value of instantaneous power,
MSPmax (Equation 3.51), is computed to be 3.32 W. Using this value, we now
calculate the contractility index MSPI (Equation 3.53) to be 17.94 W=L.

3.3.7 Discussion: Comparison of CE Performance Characteristics
for Three Patients, and Correlation of MSPI with (dP=dt)max

3.3.7.1 Computation of CE Performance Characteristics for Other Subjects

This analysis is now carried out for two other subjects (DDM and TPS) listed
in Table 3.5, and the results are provided in Table 3.5. For these subjects, the
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FIGURE 3.21
CE Force (FCE) versus displacement (x2) relationship for subject HEL. The arrow direction
indicates progression of time, starting from the diastolic-filling phase. Here t¼ 0.32 s corres-
ponds to the end-of-filling, the time t¼ 0.32 s corresponds to the start of isovolumic-contraction
phase. The CE shortening (x2) becomes zero at t¼ 0.76 s, about 0.04 s into the filling phase.
(Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol.

Cell. Biomech., 2, 217, 2005.)
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TMSPs are 5.18 W and 5.48 W. Figures 3.23 and 3.24 depict the computed
‘‘CE force versus shortening’’ and ‘‘CE force versus shortening-velocity’’
characteristics for subjects HEL (with MI, DVD), DDM (DVD, HTN), and
TPS (LAD, MR, ischemia). Figure 3.23 shows the CE force–shortening for
these three subjects with different heart diseases. The area encircled by the
curve and the x-axis indicates the amount of energy generated by the CE.

In Figure 3.24 it is seen that the CE force–shortening-velocity curve
follows the same trend for all the subjects. The CE force and shortening
velocity both reach their maximal values at about one-third ejection. How-
ever, the loop made by HEL has the least area encircled within it, and
correspondingly has the least contractile power input of the three subjects
(as seen in Table 3.7).

3.3.7.2 Computation of MSPI, in Comparison with (dP=dt)max

Finally, we compute the traditional indices of contractility (EF and
(dP=dt)max), and compare them with our proposed contractility index

F
C

E
 (P

a.
cm

2 )

t = 0.34 s

t = 0.36 s

t = 0.38 s

t = 0.40 s

t = 0.52 s

t = 0.56 s

t = 0.60 s

t = 0.64 s

t = 0.68 s

t = 0.72 s

x2 (cm/s)

0.5

1

1.5

2

2.5

3

0
−20 −15 −10 −5 0 5 10

t = 0.32 st = 0.76 s

FIGURE 3.22
CE force (FCE) versus shortening-velocity ( _x2) relationship for subject HEL. The arrow direction
indicates progression of time, starts from diastolic filling phase. Here t¼ 0.32 s corresponds to
the end-of-filling, the time t¼ 0.32 s corresponds to the start of isovolumic-contraction phase.
The next-cyclic filling phase starts at t¼ 0.72 s, while FCE becomes zero at t¼ 0.76 s. In other
words, the LV suction effect lasts for about 0.04 s into the filling phase. If we observe the LV
pressure variation in Figure 3.21a, we can note that the LV pressure in fact decreases after
initiation of filling phase and recovers to the level of the start of filling phase after about 0.04 s.
To determine the LV power-input, we determine the area under this curve and multiply it byN.
This gives LV TMSP¼ 5.40W. (Adopted fromGhista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T.,
Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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MSPI. Figures 3.25 and 3.26 show the correlations betweenMSPI and EF, and
between MSPI and (dP=dt)max. The respective correlations are as follows:
MSPI¼ 55EF� 2.4, (r¼ .8905); MSPI ¼ 0:04 (dP=dt)max � 22, (r¼ .9054).
These good correlations hence add credence to our newly formulated
contractility index.

3.3.8 Highlights

We have analyzed the LV systolic performance by means of an LV mecha-
tronic cylindrical model of myocardial fiber located within the LV
model wall. The myocardial fibers are helically oriented within the
LV model wall. Each myocardial fiber sarcomere unit is composed of
three elements: series element (analogue to connective tissue), viscous elem-
ent (analogue to sarcolemma), and contractile element (analogue to sarco-
mere). The sarcomere contraction is associated with the relative sliding of
the actin–myosin filaments.

The contractile force FCE and shortening x2 of the LVmyocardial-sarcomere
unit are related to the LV pressure and volume data, and evaluated in terms
of the model’s parameters (k, Bv). After that, we determine the in vivo
characteristics of the LV sarcomere (CE), in terms of ‘‘FCE versus x2’’ and
‘‘FCE versus ẋ2’’, as well as the power generated by the sarcomere (CE). Both
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FIGURE 3.23
CE Force (FCE)–displacement (x2) for subjects HEL, DDM, and TPS. Of the three subjects, TPS
has the biggest area encircled by the FCE versus x2 curve; hence, this subject’s CE is generating
higher energy relative to the other two subjects. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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FCE versus ẋ2 characteristics and the total myocardial sarcomere power
input (TMSP) can be regarded as important LV functional indices.

Our evaluated in vivo CE force versus shortening and CE force
versus shortening-velocity characteristics are seen to depict LV contractile
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FIGURE 3.24 (See color insert following page 266.)
CE force (FCE)–velocity ( _x2) relationships for subjects HEL, DDM, and TPS. Of the three
subjects, the subject TPS has the biggest area encircled within the FCE versus _x2 curve, and
hence has the bigger contractile power input. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

TABLE 3.7

Clinical History: (dP=dt)max, Maximal Contractile Force, FCE, Shortening Velocity ẋ2
of CE, Area under FCE versus x2, Calculated Maximum Power (Powermax), TCPI,
Myocardial Volume (MV), and Left Ventricular Contractility Index (MSPI)
from Subjects (HEL, DDM, and TPS)

Subject HEL DDM TPS

Disease MI, DVD DVD, HTN LAD, ischemia
EF 0.36 0.66 0.68
(dP=dt)max (mmHg=s) 984 1475 1478
MV (mL) 185 138 140
Maximum FCE (Pa cm2) 2.74 4.12 3.98
Maximal shortening velocity ẋ2 (cm=s) 5.55 6.84 7.82
TCPI (W) 5.40 5.97 6.33
Powermax (W) 3.32 5.18 5.48
MSPI (W=L) 17.94 37.53 39.14
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function features. Less area encircled within the force-shortening velocity
curve is associated with less contractility; this indicates that an LV with
impaired contractility is not able to generate as much power required to
provide adequate EF and stroke volume as a properly-contracting LV.

Subject HEL has myocardial infarct, and hence has a weaker contracting
myocardium. This is manifested by a lower CE maximal force and shorten-
ing velocity, in comparison with subjects DDM and TPS (shown in Table
3.5). Correspondingly, its values of maximum power generated by CE and
the contractility index (MSPI) are lower than for the other two subjects. Also,
the area of CE force-displacement curve for subject HEL is significantly less
compared with the other two subjects. These results quantify how myocar-
dial infarct impairs the left ventricular performance in terms of our model’s
contractile power generated and contractility indices. Subject TPS (with
myocardial ischemia) has the maximal area encircled within its FCE and ẋ2
curve. This could reflect an adaptive mechanism attempting to restore the
LV performance, which is in agreement with its ejection fraction value
(EF¼ 0.68).

Table 3.7 summarizes all of these results. Figure 3.26 enables us to compare
our MSPI with the traditional (dP=dt)max. On the basis of case studies for
30 subjects, our new power index MSPI correlates well with the traditional
contraction index (dP=dt)max, and hence may merit clinical employment.
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4.1 Scope

In this chapter, we analyze the various phenomena that occur in the cardio-
vascular tree [1], namely

1. how the aortic pressure waveform can be obtained from the left-
ventricular (LV) outflow rate into the aorta and the auscultatory
diastolic and systolic blood pressures [2], as well as

2. other vascular phenomena associated with pulsatile blood flow in
the arterial bed to

(a) determine the aortic constitutive property,

(b) develop the concepts of arterial impedance and peripheral
resistance [3],

(c) study wave reflection,

(d) analyze what happens at arterial branching, and

(e) study how wave reflection influences the composite pressure
wave and the hydraulic load on the heart [4].

4.2 Determination of Aortic Pressure–Time Profile along

with Aortic Stiffness and Peripheral Resistance

4.2.1 Introduction

In both Ayurvedic medicine and traditional Chinese medicine, the pressure-
pulse shape is felt to provide diagnostic information concerning diseases
and disorders. Conventionally, accurate measurement of blood pressure
waveform requires insertion of a catheter into the artery. Some of the
noninvasive methods that are currently utilized for blood pressure are the
auscultatory measurement and the oscillometric measurement methods [5].
In this regard, a precise evaluation of the aortic pressure–time profile and
correlation of its shape parameters with diseases (using traditional Chinese
and Ayurvedic medical knowledge-base system) would constitute a signifi-
cant contribution to medicine.

During the LV ejection phase, as the blood is pumped into the aorta, the
aortic pressure rises and the aorta distends [6]. Thus, not all of the blood
pumped into the aorta is distributed into the peripheral circulation imme-
diately, and a portion of it is stored in the distended central aorta. The
equation governing the modulation of aortic pressure can be formulated
by considering that the rate of change of aortic pressure is governed by the
product of (1) the volume elasticity (or distensibility of the aorta) (dP=dV)
and (2) the difference between and the rate-of-inflow I(t) into the aorta
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created by the ventricular pump (stroke volume) and the rate-of-outflow
Q(t) from the aorta into the systemic circulation (peripheral blood flow).

After closure of the aortic valve, no more blood enters the aorta, but the
distended vessel now recoils according to its volume elasticity, and
the blood is propelled into the peripheral circulation. Thus, the rate of fall
of aortic pressure, in the elastic aortic chamber during this diastolic phase, is
a function of the volume elasticity of the aorta and the flow resistance.
We will now analyze how we can determine the arterial pressure pulse
profile [2].

4.2.2 Analysis of Aortic Diastolic and Systolic Pressure

For the blood control volume, shown in Figure 4.1, we have

dV

dt
¼ I(t)�Q(t) ¼ I(t)� P(t)

R
(4:1)

where I(t) and Q(t) are inflow and outflow rates of the aorta, respectively,
and R is the resistance to flow in the aorta.

We can also put down

dP

dt
¼ dP

dV
�
dV

dt
¼ m

dV

dt
(4:2)

where m is volume elasticity of the aorta.
By combining Equations 4.1 and 4.2, we obtain

dP

dt
þm

R
P ¼ mI(t) (4:3)

Q(t )

LA

LV

I(t )

dV
dt

FIGURE 4.1
Control volume analysis to derive Equations 4.1 and 4.4
for aortic pressure response to left-ventricular flow rate
into the aorta. (Adopted from Figure 1 of Zhong, L.,
Ghista, D.N., Ng, E.Y.K., Lim, S.T., and Chua, T.,
J. Mech. Med. Biol., 4, 499, 2004.)
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By putting l ¼ m=R, Equation 4.3 becomes

dP

dt
þ lP ¼ mI(t) (4:4)

where l is a parameter representing the aortic volume elasticity and the
flow resistance during the diastolic phase.

The left ventricle pumps blood into the aorta only during the systolic
phase. The aortic inflow rate I(t) is schematized in Figure 4.2. Based on
the I(t) profile, the inflow rate into the aorta can be approximated by the
following function:

I(t) ¼ ae�btt(ts � t) for 0 < t < ts (systole)

¼ 0 for ts < t < T (diastole) (4:5)

where a and b are constants related to the rate-of-inflow and ts is the duration
of the cardiac ejection phase. Then, by carrying out integration of Equation 4.5
with respect to time, we can formulate the LV volume ejected into the aorta
(or blood volume input into the aorta) during the systolic phase, as

V ¼ a

b
e�bt t2 þ t

2

b
� ts

� �
þ 2=b� ts

b

� �
þ constant (4:6)

FIGURE 4.2
Schematics for (a) VLV(t) the LV
volume, (b) Va(t) volume input
into the aorta, (c) aortic inflow
rate, and (d) volume acceleration
d2Va=dt

2 during the LV ejection
phase. The period for the systolic
phase is t¼ 0� ts, and (ts�T) is
the period for the diastolic phase.
(Adopted from Figure 2 of
Zhong, L., Ghista, D.N., Ng, E.Y.K.,
Lim, S.T., and Chua, T., J. Mech.

Med. Biol., 4, 499, 2004.) Time (s)

ae–bt t(ts –t)

(a)

(b)

(c)

(d)

0

0
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In Equation 4.6, by imposing the initial condition, such that at the start of
the ejection phase the aortic volume V(t¼ 0)¼ 0, we obtain the following
expression for the volumes ejected into the aorta:

V ¼ a

b
e�bt t2 þ t

2

b
� ts

� �
þ (2=b� ts)

b

� �
þ a(ts � 2=b)

b2
(4:7)

In Figure 4.2d, the volume acceleration of blood ejected by the LV into the
aorta is shown. The maximum value of this volume acceleration d2Va=dt

2,
can be employed as an LV contractility index.

4.2.3 Diastolic Pressure Pd(t ) Analysis

During diastole, the aortic valve is closed with zero inflow into the aorta.
Hence, in Equation 4.4, I(t)¼ 0, and we get

dP

dt
þ lP ¼ 0 (4:8)

The solution of Equation 4.8 is

P ¼ Pd(t) ¼ C2e
�lt (4:9)

From Figure 4.3, we have

Pd(t ¼ ts) ¼ P2 (4:10)

Pd(t ¼ T) ¼ P3 (4:11)

where P2 is the aortic pressure at the end of cardiac ejection or the start of
aortic diastole. Equation 4.9 describes the variation of aortic pressure Pd(t)
during the ventricular diastolic phase.

P3= Pd

P1= Ps

P2

Pressure
(mmHg)

0 ts TTime (s)

Aortic
pressure

Exponential decrease
of diastolic pressure Pd(t)

Exponentially damped
systolic pressure variation Ps(t)

P3

P1

t

LV pressure

tm

FIGURE 4.3
Schematic variation of aortic pressure during a cardiac cycle. Herein, (0� ts) is the aortic systolic
phase and (ts�T) is the aortic diastolic phase. P1 is the aortic systolic pressure and P3 is the
aortic diastolic pressure. (Adopted from Figure 3 of Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim,
S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)
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Combining Equations 4.9 through 4.11, we obtain the expression for the
parameter l in terms of the end-diastolic pressure P3 and end-systolic
pressure P2, in the form of

l ¼ ln (P2=P3)

(T � ts)
¼ m

R
(4:12)

From Equations 4.9 and 4.11, we have

C2 ¼ P3e
lT (4:13)

Hence, Equation 4.9, for diastolic pressure becomes

Pd(t) ¼ P3e
l(T�t) (4:14)

where the l expression is given by Equation 4.12.

4.2.4 Systolic Pressure Ps(t) Analysis

During systole, when the ventricle pumps blood into the aorta, the inflow
rate is represented by the function I(t) ¼ ae�btt(ts � t), given by Equation 4.5.
Hence, from Equations 4.4 and 4.5, we obtain

dP

dt
þ lP ¼ mae�btt(ts � t) (4:15)

Upon solving Equation 4.15, we obtain an expression for the (exponentially
damped) variation of the aortic pressure Ps(t) during systole,

P ¼ Ps(t) ¼ C1e
�lt þ ma

b� l
e�bt t2 þ 2

b� l
� ts

� �
t þ

2
b� l � ts
� �

b� l

� �
(4:16)

where m and l are the model parameters, which can be determined by
making Equation 4.16 match the arterial tonometry data. However, herein,
we will employ systolic and diastolic arterial pressure obtained from cuff
auscultatory method to evaluate the model parameter’s m and l.

From Figure 4.3, we have

Ps(t ¼ 0) ¼ P3, the aortic diastolic pressure (4:17)

Therefore, we have from Equation 4.16

C1 ¼ P3 �ma(2=(b� l)� ts)

(b� l)2
(4:18)

Upon substituting the expression for C1 into Equation 4.16, we get the total
expression for Ps(t).
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4.2.5 Determination of P2

Now, we need to evaluate the coefficients a and b in Equation 4.7, and then
evaluate the model parameters m and l in Equation 4.4. For this purpose,
we note that we can determine the pressures P1 and P3 by the cuff auscul-
tation procedure. However, in order to determine l, we also need to know
the value of P1, the maximum value of Ps(t), which is the auscultatory
systolic pressure, as shown in Figure 4.3. Hence by differentiating Equation
4.16 and equating it to zero, we can obtain the time tm, when Ps(t) is
maximum, and equal to P1. Now,

dPs(t)

dt
¼ �C1le

�lt þ ma

b� l
e�bt �bt2 þ�2lþ btsðb� lÞ

b� l
tþ ltsðb� lÞ � 2l

ðb� lÞ2
" #

(4:19)

By putting dPs(t)=dt¼ 0 at t¼ tm, we obtain

�C1le
�ltm þ ma

b� l
e�btm �btm

2 þ 2lþ btsðb� lÞ
b� l

tm þ ltsðb� lÞ � 2l

ðb� lÞ2
" #

¼ 0

(4:20)

Then, based on Equation 4.16, we have

P1 ¼ C1e
�ltm þ ma

b� l
e�btm t2m þ 2

b� l
� ts

� �
tm þ

2
b�l � ts
� �
b� l

� �
(4:21)

where C1 is given by Equation 4.20.
In addition, for compatibility between Pd(t) and Ps(t) expressions, the

diastolic pressure must be equal to the systolic pressure at time ts, so that

P2 ¼Equation 14
Pd(t ¼ ts) ¼Equations 16 and 18

Ps(t ¼ ts) (4:22)

This equation involves the aortic diastolic pressure (P3) and the systolic
pressure (P1), which can be obtained from the noninvasive cuff sphygmo-
manometry method, with sufficient accuracy.

4.2.6 Determination of Coefficients a and b in Equation 4.7

In order to evaluate the coefficients a and b, we need to know the aortic
volume Va(t) during LV ejection. For this purpose, the LV geometry and
hence the LV volume data can be obtained from cineangiography measure-
ments. In other words, from the dynamic geometry of the left ventricle,
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we can get the volume–time curve of the aorta during the systolic phase.
In Figure 4.4b, we present the data on cineangiographically derived
aortic volume during systole, derived from LV volume versus time of
Figure 4.4a. Then, by using Equation 4.7 to match the derived aortic volume
variation from the measurable LV volume (as shown in Figure 4.5), we can
determine the coefficients a and b, as given in Table 4.1. However, if we can
monitor LV volume geometry from LV echocardiography, then the coeffi-
cients a and b can be obtained noninvasively and the procedure for the
determination of the aortic pressure profile can be noninvasive.

4.2.7 Determination of the Model Parameters m and l

We note that we can monitor P1 (Equation 4.21) and P3 (Equation 4.18) by
cuff sphygmomanometry. In order to determine m and l, we also need to
evaluate tm in Equation 4.20. We thus have three unknowns: m, l, and tm.
The corresponding three equations are Equations 4.20 through 4.22, which
involve the three to-be-determined parameters (m, l, and tm) based on
our knowledge of the monitored values of P3 and P1. For the subject,
whose LV volume VLV(t) is displayed in Figure 4.4a, the corresponding
monitored auscultatory pressures are P1¼ 120 mmHg and P3¼ 83.57
mmHg. Hence by solving Equations 4.20 through 4.22, we evaluate the
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FIGURE 4.4
(a) Cineangiography-derived data of LV volume versus time during ejection. (b) Volume input
into the aorta from the LV as derived from Figure 4.4a during the systolic phase. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim, S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)
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parameters: tm¼ 0.175 s, m¼ 0.2796 mmHg=mL, l¼ 0.4680 s�1, and
R¼ 0.5974 mmHg . s=mL; these values are also tabulated in Table 4.1.
Then, by substitution of these values of m and l, into Pd(t) and Ps(t)
expression (given by Equations 4.14 and 4.16), we obtain the complete aortic
pressure–time profile, as shown in Figure 4.6.

Data and fits
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FIGURE 4.5 (See color insert following page 266.)
Plot of computed aortic volume versus time during the systolic phase of the aorta. The round
points represent the measured data, while the solid line represents the filled computed volume
curve for values of a and b given in Table 4.1. The prediction bounds define the width of
the interval with a level of 95%. The values of these parameters and the RMS 1 (root-mean-
square error) are given in Table 4.1.

TABLE 4.1

Parameters Evaluated in the Case Study

Parameters Values Unit

m 0.2796 mmHg=mL
l 0.468 s�1

tm 0.175 S
a 2.827� 105 mL=s3

b 20.37 s�1

RMS 1 0.012 mL
RMS 2 1.78 mmHg
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4.2.8 Validation of the Computed Aortic Pressure Profile

Forpropervalidation,weneed toknowtheaortic beat-to-beatpressureprofile
obtained by tonometry. However, for this subject, we only know P1 and P3

from cuff sphygmomanometry. So let us compare the aortic pressure Ps(t)
with the cineangiographically monitored PLV(t) during the ejection phase.
The result is shown in Figure 4.7, where the LV pressure is greater than the
aortic pressureduring the early systolic phasedue to thepressure-drop across
the aortic valve. However, the aortic pressure is greater than LV pressure in
the latter phase of ejection due to the backflow during the late systolic phase.
However, if we are interested in determining aortic stiffness parameterm and
the peripheral resistance R, then wematch our expression for aortic pressure
given by Equation 4.16with the actual monitored beat-to-beat aortic pressure
by catheterization, and evaluate the parametersm, l, and R.

4.2.9 Application

If we can obtain the LV volume from echocardiography as well as the
diastolic pressure (P3) and systolic pressure (P1) by cuff sphygmomanome-
try, we can get the aortic pressure profile as well as the derived aortic
parameters (l, R, and m). Hence, we can also determine the LV contractility
(themaximumvalue of the LVvolume ejected into the aorta) as [d2Va=dt

2]max

in terms of noninvasively monitored LV flow rate from its volume data.
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FIGURE 4.6
Plot of the computed aortic pressure during one cardiac cycle, ts¼ 0.35 s. The time period
(0� ts) represents the systolic phase, and (ts� 1) represents the diastolic phase. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim, S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)
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Alternatively, if we know the beat-to-beat aortic pressure by arterial
tonometry, which also requires information about cuff sphygmomanome-
try-derived Pd(t) and Ps(t), we can match these data with the expressions
(given by Equations 4.14, 4.16, and 4.8) of Pd(t) and Ps(t), and hence get the
values of parameters (l, R, m, and a, b). For reduction of the peripheral
(vascular) resistance R (or l parameter), to in turn reduce blood pressure,
we can administer administration drugs to reduce stress-induced peripheral
vasoconstriction.

Our determination of the aortic characteristics is based on aortic param-
eters (l, R, and m), as well as its pressure–time profile during the systolic
and diastolic filling phases. The ability to determine the aortic pressure
noninvasively may be deemed to be significant. The volume ejected into
the aorta and the inflow rate into the aorta (Equations 4.7 and 4.5), associ-
ated with the parameters a and b, also have physiological implications. For
an aorta with different pathological conditions, these parameters would of
course change.

With a large enough database for different patients (N> 30), we can
determine the distribution of aortic stiffness parameter (m) and peripheral
(vascular) resistance R (or parameter l), from which we can categorize
normal patients and patients with arteriosclerosis (with high value of m)
and vasoconstriction (with high value of R). This analysis can hence enable
the clinician to decide on appropriate drug administration, to alter the aortic
pressure profile, and to in fact treat hypertension.
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FIGURE 4.7
Plot of model-computed pressure versus time during the systolic phase of the aorta. Round
points represent the measured LV data, while the solid line represents the model-computed
aortic pressure curve. The RMS 2 value for this match is given in Table 4.1. (Adopted from
Zhong, L., Ghista, D.N., Ng, E.Y.K., Lim, S.T., and Chua, T., J. Mech. Med. Biol., 4, 499, 2004.)
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4.3 Aortic Stiffness and Arterial Impedance

4.3.1 Measure of Aortic Stiffness (or Arteriosclerosis)

Now that we have stepped out from the heart into the aorta, we can
recognize that the blood flow in the aorta is pulsatile. This pulsatile flow
phenomenon can be employed [3] to measure and obtain the formula for
pulse-wave velocity (PWV) and arterial wall stress.

The pulse-wave velocity (PWV or Vp), Vp¼ (Eh=2ar)1=2, is obtained from
the governing pulse-wave propagation differential equation

@2p=@x2 ¼ (1=V2
p)@

2p=@t2 (4:23)

and the arterial wall stress

s ¼ pa=h (4:24)

where
E¼ elastic modulus of the arterial wall
a¼ aortic inner radius
h¼ arterial wall thickness

We can then better characterize arteriosclerosis (or hardened artery disease)
in terms of the aortic constitutiveproperty of itswall elasticmodulus (E) versus
wall stress (s), by determining (for each cardiac cycle) E and s, as follows:

E ¼ 2(arterial radius, a) (PWV or Vp)
2 (blood density, r)

arterial wall thickness, h
,

s ¼ (auscultatory diastolic pressure, Pd) (arterial radius, a)

arterial wall thickness, h

(4:25)

to obtain the relationship:

E ¼ ms þ E0 (4:26)

Figure 4.8 illustrates schematically the measurement of the pulse-wave
velocity Vp.

Now in Equations 4.25 and 4.26, we can ultrasonically monitor the arterial
dimensions a and h, the auscultatory diastolic pressure Pd, as well as the
PWV (Vp) from the time taken by a pulse to traverse between two aortic
cross-sections. Thus, from Equations 4.25 and 4.26, we can evaluate the E
versus s relationship, as shown in Table 4.2.

The in vivo constitutive relationship ‘‘E versus s 0,’’ provides a clinical
measure of arterial stiffness and arteriosclerotic disease. For instance, for the
following monitored data in Table 4.2, the aortic constitutive relationship is
given by the following expression: E (N=m2)¼ 4.2sþ 0.5� 105 (N=m2).
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4.3.2 Determination of Arterial Impedance (Another Parameter
for Arteriosclerosis) from Pulse-Wave Velocity and Arterial
Cross-Sectional Area

In this section, we will study the concept of arterial impedance and how
it influences the pulse-wave reflection and the composite arterial pulse
pressure [4,5].

The arterial pulse waveform is derived from the complex interaction of the
LV stroke volume, the physical properties of the arterial tree, and the char-
acteristics of the fluid in the system [7]. The principal components of blood
pressure (p), flow rate (q) and velocity (u) comprise both a steady component
(mean arterial pressure and flow rate) and a pulsatile component (pulse
pressure and flow rate) [8], as shown in Figure 4.9 for pressure waveform.

p ¼ <p>þ Dp

q ¼ <q>þ Dq
(4:27)

The pulsatile component of pressure is determined by the pattern of LV
ejection, the stroke volume, and the compliance characteristics of the arterial
circulation [9]. Arterial compliance is defined as the change in area or
volume of an artery or arterial bed for a given change in pressure [10].
The pulse pressure for a given ventricular ejection and heart rate will
depend on arterial compliance, as well as the timing and magnitude of
peripheral pulse-wave reflection.

TABLE 4.2

Clinical Measure of Arterial Stiffness from Monitoring the Arterial Dimensions
(a and h), the Auscultatory Pressure (P), and Pulse-Wave Velocity (Vp)

P (mmHg) Vp (m=s) a (mm) h (mm) E (N=m2)¼ 2c2ar=h S (N=m2)¼Pah

80 5.3 4.1 1.10 2.13� 105 3.88� 104

85 5.4 4.5 1.00 2.60� 105 4.97� 104

90 5.42 4.8 0.94 3.01� 105 5.97� 104

95 5.5 5.0 0.90 3.38� 105 6.86� 104

h
p

p p
p(x + ∆x,t )

∆x
∆t

C =

p(x,t )

t

a

x ∆x

t

FIGURE 4.8
Schematic of measurement of pulse-wave velocity Vp.
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Impedance, a term borrowed from electrical engineering theory, describes
the opposition to flow presented by a system. The impedance load of the
arterial tree can be quantified by analyzing pulse pressure–flow relation-
ships produced through the effects of disease on the structural and func-
tional components of the arterial system [11,12]. Input impedance relates
simultaneously recorded arterial pressure and flow waveforms.

4.3.3 Peripheral Resistance (TPR) and Impedance (z0)

We define <q>¼ <p>

R
, where R ¼ 8mL

pa4
¼ TPR (4:28)

With atherosclerosis, the arterial radius (a) decreases and resistance (R)
increases markedly. Hence, for a given <q>, <p> is increased a lot.

We define Dq ¼ Dp

z0
, where z0(impedance) ¼ rc

A
¼ r

A

ffiffiffiffiffiffiffiffi
Eh

2ar

s
(4:29)

For a given Dq, Dp is high if z0 (impedance) is high. In other words, the
impedance (z0) is a direct measure of arterial hardening or stiffness or
arteriosclerosis. We will now derive Equation 4.29.

Based on Figure 4.10, for force equilibrium:

�A
@Dp

@x
dx� rAdx

@�u

@t
¼ 0 (4:30)

Ar
@�u

@t
¼ �A

@Dp

@x
(4:31)

Now, Dq(x, t) ¼ A�u(x, t)

r
@Dq

@t
¼ �A

@Dp

@x
(4:32)

∆p
<p>

t

FIGURE 4.9 (See color insert following page 266.)
Schematic of a typical arterial pressure waveform.
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Now, let

Dp ¼ f1(x� ct) since
@2Dp

@x2
¼ 1

(Eh=2ar)

@2Dp

@t2
¼ 1

c2
@2Dp

@t2

� �

Dq ¼ f1(x� ct) since
@2Dq

@x2
¼ 1

c2
@2Dq

@t2

� � (4:33)

For instance, we can have Dp ¼ Dp1 sin
2p
l (x� ct), and Dq1 sin

2p
l (x� ct).

Substituting Equation 4.33 in Equation 4.32, we get

�rcf0
1(x� ct) ¼ �Af 01(x� ct) (4:34)

Integrating, we get

rcf1 ¼ Af1 (4:35)

Hence, for right-propagating waves f(x� ct) and f(x� ct); the impedance is
given by

z01 ¼ D~p1
D~q1

¼ rc

A
¼ r

A

Eh

2ar

� �1=2
¼ 4r

p

Eh

2a5r

� �1=2
(4:36)

Now, for a left-propagatingwaveDp2¼ f2(xþ ct) andDq2¼f2(xþ ct);wehave

�rcf2 ¼ þAf2

Hence, for a left-traveling wave,

z02 ¼ rc

A

� 	
¼ � f2

f2

¼ �Dp2
Dq2

~

~

(4:37)

4.3.4 Implication

If the arterial stiffness E is high (as in arteriosclerosis), then (as per Equa-
tions 4.29 and 4.36) both z0 and Dpwill be high. Based on Equations 4.28 and
4.36 (1) if a person smokes or has atherosclerosis, <p> will be elevated and

(∆p+
∂∆p
∂x

dx ); u, average velocity

across the cross-section∆p

dx

pAdx(∂u/∂t)

FIGURE 4.10
Equilibrium of a fluid element due to differential pressure pulse across it.
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(2) if a person has hardened artery (arteriosclerosis), Dp will be elevated.
Note that R (in Equation 4.28) is increased by high m and low a. On the other
hand, z0 is increased by high E as well as low a and high h.

Reiterating, for a right-propagating wave, in Equation 4.23, let

Dp ¼ f1 ¼ Dp1 sin
2p

l
(x� ct),

Dq ¼ f1 ¼ Dq1 sin
2p

l
(x� ct)

Then from Equation 4.35

rcDq1 sin
2p

l
(x� ct) ¼ ADp1 sin

2p

l
(x� ct) (4:38)

and hence,

z01 ¼ rc

A
¼ Dp1

Dq1
(4:39)

For a left-propagating wave, let

Dp ¼ f2 ¼ Dp2 sin
2p

l
(xþ ct)

Dq ¼ f2 ¼ Dq2 sin
2p

l
(xþ ct)

Since from Equation 4.32,

r
@Dq

@t
¼ �A

@Dp

@x

we have corresponding to Equation 4.35:

2prc

l
Dq2 sin

2p

l
(xþ ct) ¼ �A2p

l
Dq2 sin

2p

l
(xþ ct) (4:40)

Therefore, rcDq2 ¼ �ADp2 (4:41)

and z02 ¼ rc

A
¼ �Dp2

Dq2
(4:42)

Hence, the arterial pressure characteristics in normal, atherosclerosis, and
arteriosclerosis states will be as shown in Figure 4.11.

Summarizing, we have <p>¼R <q>, where R is the arteriolar bed
resistance; and Dp¼Z0 Dq, where Z0 is the arterial impedance. Thus, in a
hypertensive person, we can reduce <p> by reducing R, and reduce Dp by
reducing Z0 (or increasing compliance) by appropriate medication.
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4.4 Wave Reflection (due to Step Change in Arterial

Impedance)

Let us now study the phenomenon of wave reflection of this aortic pressure
wave. The arteriolar system may be assumed to act as a total absorber of
energy generated by the heart, so that the pressure (p) will be dissipated into
it. However, in the arterial segment, there are variations in vessel wall
elasticity and cross-sectional area, which can give rise to pulse-wave reflec-
tion. In order to develop the analysis to elucidate these effects, let us start
with a simple idealised model (Figure 4.12) of a step variation in the
characteristic arterial impedance (Z0) due to a step change in the cross-
sectional area (A) and=or the arterial elasticity (E).

When the incident pressure wave (Dp1) reaches one such junction of
impedance change characterized by proximal and distal vessels on either
side of the junction, part of the wave (Dp0) is transmitted and part (Dp2)
reflected. Let Dp (¼Dp1þDp2) denote the composite wave in the proximal

120

P (mmHg)

100

80

140

120

100

130

100

70

A: Normal:
<p> = 100 mmHg,

∆p = 20 mmHg

B: Atherosclerosis:
<p> = 120 mmHg,

∆p = 20 mmHg

C: Arteriosclerosis:
<p> = 100 mmHg,

∆p = 30 mmHg

t

FIGURE 4.11
Schematics of arterial pressure profile for normal, atherosclerotic, and arteriosclerotic subjects.

Incident
reflected wave

Transmitted
wave

Proximal
arterial tube 

(Z0, A, E )

Distal
arterial tube 
(Z0�, A�, E�)

Z0 Z0�

Junction

FIGURE 4.12
Model for determination of the
reflection coefficient due to a
step change in arterial impedance
from Z0 to Z

0
0. When the pulse

wave arrives at the junction, part
of it is transmitted and part of it is
reflected.
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tube. Then, since on either side of the junction the pressure fluctuations
must be identical, we have

Dp(x, t) ¼ Dp1(x� ct)þ Dp2(xþ ct) ¼ Dp0 (4:43)

Also, for continuity of flow, we must have

Dq1 þ Dq2 ¼ Dq0 (4:44)

Now, based on Equations 4.36 and 4.37, we have

Dq1 ¼ Dp1
Z0

, Dq2 ¼ �Dp2
Z0

, Dq0 ¼ Dp0

Z0
0

(4:45)

Upon substituting Equation 4.45 in Equation 4.44, and invoking Equa-
tion 4.43, we obtain

Z0
0

Z0
(Dp1)� Z0

0

Z0
(Dp2) ¼ Dp0 ¼ Dp1 þ Dp2 (4:46)

thereby yielding the following expression for the reflection coefficient (Rf):

Rf ¼ Dp2
Dp1

¼ reflected wave pressure

incident wave pressure
¼ Z0

0 � Z0

Z0
0 þ Z0

¼ 1� lz
1þ lz

(4:47)

where

lz ¼ Z0=Z
0
0

Now the following possible outcomes can take place: if lz< 1, then
there will be reflection with no phase change, so that, for instance, a com-
pression wave will be reflected as a compression wave. If lz¼ 1, Rf¼ 0 or
Dp2¼ 0; this constitutes a matched vessel junction and there will be no
reflection at the junction (x¼ 0). If lz> 1, there will be reflection with 1808
phase change.

It can be noted that as lz increases Rf decreases. Since lz ¼ Z0(proximal)=
Z0
0 (distal), if due to distal vasodilation Z0

0 decreases (due to increase in vessel
diameter), then lzwould increase and Rfwould decrease, i.e., there would be
less reflection.

4.5 What Happens at an Arterial Bifurcation?

Let us now determine what happens at an arterial bifurcation [4]. Based on
Figure 4.13, we have
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Dp ¼ Dp0 ¼ Dp01 ¼ Dp02 (4:48)

Dq0 ¼ Dq01 þ Dq02 ¼
Dp0

z001
þ Dp0

z002
¼ Dp0

1

z001
þ 1

z002

� �

¼ 2Dp0

z00
(if z001 ¼ z002) (4:49)

Also,

Dp ¼ Dp1 þ Dp2 ¼ Dp0 ¼ Dp01 ¼ Dp02 (4:50)

and

Dq ¼ Dq1 þ Dq2 ¼ Dq0 ¼ Dq01 þ Dq02 (4:51)

Hence, from Equation 4.51,

Dp1
z0

� Dp2
z0

¼ Dp0

z00
þ Dp0

z00
¼ 2Dp0

z00
(4:52)

Then, from Equations 4.52 and 4.50,

z00
z0

Dp1 � z00
z0

Dp2 ¼ 2Dp0 ¼ 2Dp1 þ 2Dp2

or

Dp1
z00
z0

� 2

� �
¼ Dp2

z00
z0

þ 2

� �
(4:53)

∆q = ∆q1

∆q1�

∆p2�

∆q1�

∆p1�

∆p = ∆p1
∆p2

∆q2

x = 0

FIGURE 4.13
Schematics of transmitted and reflected pressure and flow pulses at a bifurcation.
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If lz be defined as

z0=z
0
0 (4:54)

we have

Dp2
Dp1

¼ z00 � 2z0
z00 þ 2z0

¼ 1� 2lz
1þ 2lz

(4:55)

Let Rf (reflection coefficient) be defined as

Rf ¼ Dp2
Dp1

¼ 1� 2lz
1þ 2lz

(4:56)

So, for no reflection (as ideally expected in nature), Dp2 ¼ 0, Rf ¼ 0

i:e:, lz ¼ z0
z00

¼ 0:5 (4:57)

i:e:,
E

E0 �
h

h0

� �0:5

� a0

a

� �2:5

¼ 0:5 (4:58)

Suppose

a0 ¼ 0:75a (4:59)

This could be a reasonable assumption as the arterial radius keeps decreas-
ing with arterial branchings. Then, if we can assume conservation of mass
between the parent vessel and its bifurcations, we will have

2pah ¼ 2(2pa0h0) (4:60)

Hence, from Equations 4.58 through 4.60,

h

h0
¼ 2

a0

a
¼ 2� (0:75) ¼ 1:5 (4:61)

and
E

E0 ¼
0:25

(a0=a)5 � (h=h0)
(4:62)

Now since based on Equations 4.59 and 4.61 (a0=a)5¼ 0.237 and h=h0 ¼ 1.5,
respectively, then
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E=E0 ¼ 0:703 (4:63)

It would be interesting to experimentally validate this relationship, based on
the appropriate experimentally determined value of a0=a, as the basis of
intrinsic optimality condition at arterial bifurcations.

Hence, we have

(i) For Rf ¼ 0, Dp2¼ 0 or no reflection, and lz¼ 0.5

i:e:, lz ¼ 0:5 means Dp2 ¼ 0, and Rf ¼ 0 (i:e:, no reflection) (4:64)

(ii) For lz < 0:5, Dp2 ¼ RfDp1, and 0 < Rf < 1 (4:65)

and there is reflection with no phase change, i.e., an incident expansion
wave at a site will be superimposed by a reflected expansion wave (of less
magnitude) at that site. Let us represent Equation 4.65 by

A2 sin(xþ ct) ¼ RfA1 sin(x� ct); 0 < Rf < 1

and adopt Rf¼ 0.3, so that

A2 sin(xþ ct) ¼ 0:3A1 sin(x� ct) (4:66)

This means that the reflected pulse-wave amplitude will add to the ampli-
tude of the incident wave.

(iii) For lz> 0.5, Dp2¼�Rf Dq2, and Rf< 0

Let Rf¼�0.2; then, A2 sin(xþ ct)¼� 1
5A1 sin(x� ct)¼ 1

5A1 sin[(x� ct)�p],
i:e:, A2 ¼ A1=5.

This means that the reflected pulse wave will be 1808 out of phase with the
incident way and contribute to decreasing the amplitude of the combined
incident and reflected wave. An interesting implication of this analysis is
that some persons, in whom the reflected wave is in phase with the incident
wave, could be intrinsically hypertensive.

4.6 Artery Dividing into n Branches

In nature and in the body, there is a lot of inbuilt and intrinsic optimization,
as to the design of cardiovasculature, pulmonary bronchioles, heart valves,
etc. To investigate these phenomena could indeed be fascinating. We will
briefly illustrate this concept with respect to arterial branching.
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Let an artery of impedance Zop divide into n identical branches, each one
having impedance Zod. Then at the branch site, we have the following
governing equations:

Dp1(incident pressure pulse)þ Dp2 (reflected pressure pulse)

¼ Dpd (the transmitted pressure pulse in each

of the branched vessels) (4:67)

Dq1(incident flow-rate pulse)þ Dq2 (reflected flow-rate pulse)

¼ nDqd (sum of the flow-rate pulse in the n

branch vessels) (4:68)

Now since

Dq1 ¼ Dp1=Zop

and Dq2 ¼ �Dp2=Zop (4:69)

where the arterial impedance z0¼ r(PWV)=A¼ rc=A (the cross-sectional
area) and the pulse-wave velocity

PWV(or c) ¼ (Eh=2ar)1=2 ¼ (Eh=2r)1=2(p=A)1=4 (4:70)

We then obtain from Equations 4.68 and 4.69,

Dp1
Zop

� Dp2
Zop

¼ n
Dpd
Zod

(4:71)

and

Dp1
zod
nZop

� �
� Dp2

zod
nZop

� �
¼ Dpd (4:72)

Then, from Equations 4.67 and 4.72, we obtain

Dp1 1� Zod

nZop

� �
þ Dp2

zod
nZop

þ 1

� �
¼ 0 (4:73)

Therefore,

DP2

DP1
¼ Zod � nZop

Zod þ nZop
(4:74)

Now for no reflection at the branched junction, we need to put the
pulse-reflection coefficient Rf¼ (DP2=DP1) equal to zero, giving us (from
Equation 4.74)
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Rf ¼ (1� nlz)=(1þ nlz) ¼ 0;

wherein lz ¼ zop=zod, (4:75)

i:e:, lz ¼ zop=zod ¼ 1=n (4:76)

Then, based on Equations 4.76, 4.29, and 4.70, we obtain the relationship

(PWVp=PWVd)(Ad=Ap) ¼ 1=n (4:77)

or
Ep

Ed
*
hp

hd

� �1=2
Ad

Ap

� �5=4
¼ 1=n (4:78)

It would be so interesting to check if this relationship holds good
at branched arterial sites, as an index of optimal design of arterial
branched junctions, for minimizing pulse-wave reflections at the branched
junctions.

4.7 Wave Reflection Influence on the Composite (Arterial)

Pressure Wave

Now that we have seen how wave reflection occurs, let us study the
influence of the wave reflection on the composite pressure and flow-rate
waves. Then we can understand how wave reflection affects the amplitude
and time course of the composite (or integrated) pressure wave which in
turn constitutes the ventricular afterload [4].

Consider a composite wave Dp(x, t) made up of an incident wave, Dp1¼
A cos(kx�wtþf1) and a reflected wave, Dp2¼B cos(kx�wtþf2) where
w¼wave frequency and f is the phase angle. We can rewrite the expres-
sions for the two pressure waves as follows:

Dp1 ¼ A cos [wt� (kxþ f1)]

Dp2 ¼ B cos [wtþ (kxþ f2)]
(4:79)

We can analyze for the following alternative situations:

(a) Incident and reflected waves (Dp1 and Dp2) will be in phase at
points xn (¼ x0, x2, . . . ), if, based on Equation 4.79:

kxn þ f2 ¼ �(kxn þ f1)þ np; n ¼ 0, 2, 4, . . . (4:80)

Then, the amplitude of the composite wave will be AþB, and the
incident and reflected waves will be in phase. These points of
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amplification of pressure fluctuation are referred to as antinodal
points of pressure.

(b) Incident and reflected waves (Dp1 and Dp2) will be 1808 out of
phase at xn (¼x1, x3, x5, etc.), if, based on Equation 4.79

kxn þ f2 ¼ �(kxn þ f1)þ np; n ¼ 1, 3, 5, . . . (4:81)

The composite wave will then have an amplitude of A�B, and will be in
phase with the incident wave if A>B. These sites of minimal pressure
fluctuation are referred to as nodal points.

Equations 4.80 and 4.81 can be restated as

2kxn þ f1 þ f2 ¼ np; n ¼ 0, 1, 2, . . . ; reflected wave in phase with

incident wave

2kxnþ1 þ f1 þ f2 ¼ (nþ 1)p; n ¼ 0, 1, 2, . . . ; reflected wave 180� out of

phase with incident wave

Upon subtracting these two equations, we obtain

2k(xnþ1 � xn) ¼ 2kDx ¼ p; Dx ¼ p=2k

and since k, the wave number, is equal to 2p=l, where l is the wavelength,
we have the distance between nodal and antinodal points:

Dx ¼ l=4 (4:82)

This situation is pictorially depicted in Figure 4.14. It can be seen that the
ideal location of the heart with respect to the vascular system is at a nodal
point and not at an antinodal point (of maximal pressure fluctuation), where
it would have to do a lot more work.

Let us continue on, and develop the expression for the composite pressure
wave Dp. This is given from Equation 4.79 by

Dp ¼ A cos[wt� (kxþ f1)]þ B cos[wtþ (kxþ f2)]

¼ A cos(kxþ f1) cos wtþ A sin(kxþ f1) sin wt

þ B cos(kxþ f2) cos wt� B sin(kxþ f2) sin wt

¼ a1(x) cos wtþ a2(x) sin wt (4:83)

where

a1(x) ¼ A cos(kxþ f1)þ B cos(kxþ f2) and

a2(x) ¼ A sin(kxþ f1)� B sin(kxþ f2)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C004 Final Proof page 136 29.5.2008 12:02am Compositor Name: MSubramanian

136 Applied Biomedical Engineering Mechanics



Expression 4.83 for the composite pressure wave can be more concisely
expressed as

Dp ¼ a(x)[cos wt cosf� sin wt sinf] ¼ a(x) cos[wtþ f(x)]

where

a(x) ¼ [a21 þ a22]
1=2 ¼ [A2 þ B2 þ 2AB cos(2kxþ f1 þ f2)]

1=2

¼ Aþ B, when 2kxþ f1 þ f2 ¼ np;

for n even, corresponding to an antinodal point

¼ A� B, when 2kxþ f1 þ f2 ¼ np;

for n odd, corresponding to a nodal point (4:84a)

and f(x) ¼ tan�1 � a2(x)

a1(x)

� �
¼ tan�1 � A sin(kxþ f1)� B sin(kxþ f2)

A cos(kxþ f1)� B cos(kxþ f2)

� �

(4:84b)
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FIGURE 4.14
Variation of pressure amplitude oscillations along the arterial segment showing the location
of nodal and antinodal points.
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Thus, if we study the composite pressure wave, the following observations
can be made:

1. At any site n in the vascular tree, the oscillation Dp(¼a(x)
cos[wtþ f(x)]), is sinusoidal with a frequency v and a constant
amplitude a(x) at x.

2. At different sites x, the amplitude of the oscillation Dp will be
different.

3. Phase of the oscillation Dp(¼a(x) cos[vtþ f(x)]) will vary along x,
as given by

tanf(x) ¼ � A sin(kxþ f1)� B sin(kxþ f2)

A cos(kxþ f1)þ B cos(kxþ f2)
(4:85)

Now, the relation offwith the phase anglef1 of the incidentwave is given by

tan [f(x)� f1] ¼
AB sin(2kxþ f1 þ f2)

A2 � AB cos(2kxþ f1 þ f2)
(4:86)

and in general f will be different from f1.
Now let us see what happens to the composite flow wave or oscillation.

According to Equations 4.36 and 4.37 we have for the composite flow pulse-
wave oscillation

Dq ¼ 1

Z0
(Dp1 � Dp2) (4:87)

Substituting for Dp1 and Dp2 from Equation 4.79, we obtain

Dq ¼ 1

Z0
A cos[vt� (kxþ f1)]� B cos[vtþ (kxþ f2)]½ �

¼ b(x) cos[vtþ c(x)] (4:88)

where

b(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 � 2AB cos(2kxþ f1 þ f2)

Z0

s

¼ A� B

Z0
for 2kxþ f1 þ f2 ¼ np; for n even, corresponding

to an antinodal point

¼ Aþ B

Z0
for 2kxþ f1 þ f2 ¼ np; for n odd, corresponding

to a nodal point (4:89a)
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and c(x) ¼ tan�1 � A sin(kxþ f1)� B sin(kxþ f2)

A cos(kxþ f1)þ B cos(kxþ f2)

� �
(4:89b)

Thus, from Equations 4.84 and 4.88, we develop Table 4.3.
Thus, at nodal points, we have low pressure fluctuations and high flow

fluctations. On the other hand, at antinodal points, we have high pressure
fluctuations and low flow fluctuations. At the heart, we have large fluctu-
ations of flow and ideally low fluctuations of pressure, while at the other
end of the arterial tree we have low fluctuations of flow but high fluctu-
ations of pressure.

Now in the case of the human arterial system, the wavelength for the first
harmonic of the pulse wave is of the order of l¼ 400 cm, so that
l=4¼ 100 cm. Thus, if the heart be deemed to be naturally located at the
nodal point, the first subsequent antinodal point will be 100 cm away from it.
Thus, from the heart toward the terminus of the arterial tree, the pressure
pulse will increase. In other words, the terminal or distal pressure pulse
amplitude will exceed the proximal pressure pulse amplitude, which would
be minimum at the entrance to the aorta. Correspondingly, the distal flow
pulse amplitude will decrease, as schematically shown in Figure 4.15.

TABLE 4.3

Pressure Pulse, Flow Pulse, and Impedance at Nodal and Antinodal Points

n

Pressure

Fluctuation

Amplitude

Flow Rate

Fluctuation

Amplitude

Z, Impedance¼Pressure

Fluctuation=Flow

Fluctuation

Even
(antinodal point)

AþB

(max, if A
and B positive)

(A�B)=Z0

(min, if A
and B positive)

(AþB)
(A�B) : Z0

Odd
(nodal point)

A�B
(min, if A
and B positive)

(AþB)=Z0

(max, if A
and B positive)

(A�B)
(AþB) : Z0

Note: A and B are the amplitudes of the incident and reflected pressure waves.
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FIGURE 4.15
Variation of the pressure pulse along with aorta showing that the amplitude of pressure
oscillation increases distally from the heart. It is to be noted that the corresponding flow velocity
oscillation amplitude will, on the other hand, decrease distally from the heart.
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4.8 Preventing Myocardial Infarction (by Reducing

the Hydraulic Load on the LV)

We have recognized that the hydraulic load on the LV would be due to (1)
the aortic steady pressure <p> and (2) the composite pulse pressure of
amplitude (A�B) at a nodal point, due to arterial branchings. The hydraulic
load on the heart can be manipulated by reducing arteriolar resistance,
increasing arterial compliance, and by reducing or delaying reflected pres-
sure waves arriving back at the heart during systole. Most vasodilator
agents are considered to exert their beneficial effect by arteriolar dilatation.
It is also likely that some vasodilators such as nitroglycerin may reduce
wave reflections by a direct effect on the compliance of peripheral arteries.
Agents, which increase arterial compliance and yet have little effect on
arteriolar resistance, are likely to be of value in reducing the left ventricular
pulsatile load, yet maintain mean vascular perfusion pressures unchanged.
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5.1 Scope

This chapter dealswithmodeling of lungventilation, first, in the formof a first-
order differential equation of the lung volume (V) response to lung driving
pressure (PN), in terms of the lung compliance (C) and resistance to airflow
rate (R). The solution of this equation is derived in terms of compliance (C) and
the resistance to flow rate (R), which can then be employed to diagnose lung
disease states. The parameters R and C are also combined to formulate a
nondimensional index, whose ranges of valueswould differ with lung disease
states. Thus, this index makes it more convenient to diagnose lung diseases.

The determination of the model parameters R and C from lung volume
and driving pressure requires intubation of the patient. However, the solu-
tion of the governing equation also contains terms involving a combination
of pressure and compliance as well as of t (¼RC). Hence, when this solution
is made to match the monitored lung volume response, we can evaluate
these terms without requiring to know the driving pressure independently;
this avoids intubation of the patient. We then formulate another corre-
sponding nondimensional index involving these terms, and demonstrate
that this index in fact involves the pressure terms, as well as R and C
independently. This provides validation of this index, based on the lung
volume response to driving pressure in terms of R and C.

We next formulate a second-order differential equation for lung volume
response to lung driving pressure. We demonstrate how the new parameters
of this governing equation can be determined. These parameters also involve
R and C, and hence can also be employed to diagnose lung disease states.

Now, it is possible that one lobe of the lung be normal and the other
diseased. For this purpose, we develop a two-lobe lung model in terms of
the response of their volumes to lung driving pressure. This two-lobe model
is formatted using the first-order differential equation model. The model
involves the compliance and flow resistances of the two lobes. We then
demonstrate how this two-lobe model can be employed to separately evalu-
ate the parameters of the two lobes, and hence assure the normality or
diseased states of the two lobes separately.

This chapter is developed along similar lines to our previous Chapter 4 in
Ref. [1], and the figures employed are adopted from this chapter in the
afore-mentioned book.*

5.2 Ventilatory Function Represented by a First-Order

Differential Equation Model

Lung mechanics involves inhalation and exhalation pressure and volume
changes. Three pressures are involved in the ventilatory function, namely

* With permission from the publisher WIT Press, Southampton, U.K.
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atmospheric pressure or pressure at the mouth (Pm), alveolar pressure (Pa),
and pleural pressure (Pp). The pressure gradient between the atmospheric
and alveolar pressures causes respiration to occur. During inspiration,
Pa<Pm, and air enters the lungs. During expiration, Pa>Pm, and air is
expelled out of the lungs passively. This pressure differential between
Pm and Pp provides the driving pressures (PL) for gas flow, in terms of the
elastic recoil pressure of the lumped alveolar chamber and the pressure
differential between Pm and Pa (expressed as R _V). Thus, the assessment of
respiratory mechanics involves the measurements of flows, volumes, pres-
sure-gradients, and their dynamic interrelationships. The lung ventilatory
model (LVM) then enables computation of lung compliance (C) and airway
resistance-to-airflow (R), which are the parameters of the governing equa-
tion. Lung ventilatory dysfunction due to various diseases is characterized
by the altered values of R and C, or in terms of an index involving a
combination of R and C. Hence, the LVM can be employed to detect and
characterize lung disease states.

The lung ventilation model is based on the equilibrium differential equa-
tion, expressing lung volume response to driving pressure across the lung.
This dynamic relationship includes lung compliance (C) and the resistance-
to-flow (R) offered by the airways during inspiration and expiration. In this
model, the pressure generated by the respiratory muscles on the chest wall,
namely the mouth pressure minus the pleural pressure, represents the
driving force for the operation of the respiratory pump (for lung filling
and expiration), as depicted in Figure 5.1.

5.2.1 Simulating Clinical Data

The clinical data consists of lung volume and driving pressure (mouth
pressure – pleural pressure) in intubated subjects. The lung volume can be

T

V,Pa

T

Pel
R Pm

Pp: Pleural pressure

Air

Diaphragm

FIGURE 5.1
Lung ventilation lumped parameter model. In the figure, Pa is the alveolar pressure; Pm is
the pressure at the mouth; Pp is the pleural pressure; Pel¼Pa�Pp¼ 2hs=r¼ 2T=r, the lung
elastic recoil pressure; r is the radius of the alveolar chamber and h is its wall thickness; T is
the wall tension in the alveolar chamber; V is the lung volume; R is the resistance to airflow;
and C is the lung compliance. Adopted from Ghista, D.N., Loh, K.M., and Damodaran, M., in
Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and

Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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measured by integrating the airflow velocity–time curve, where the airflow
velocity can be measured bymeans of a ventilator pneumatograph. Inhalation
and exhalation pressures are measured by means of a pressure transducer
connected to the ventilatory tubing. The pleural pressure is measured by
placing a balloon catheter transducer through the nose into the esophagus,
assuming that the esophageal tube pressure equals the pressure in the pleural
space surrounding it.

5.2.2 Derivation of the Governing Differential Equation for Lung Volume
(V) Response to Driving Pressure

For developing the lung ventilatory model, we employ a typical sample
clinical data on both lung pressure (mouth pressure – pleural pressure) and
volume, as depicted in Figure 5.2.

Airflow resistance is
higher during inspiration 

than expiration

The alveolar pressure (Pa)
curve is in phase with the
airflow curve. It constitutes

the resistance pressure
Pp, Pleural pressure (cm H2O)

V, Tidal volume (liters) (FRC)

V, Air flow-rate
(liters/second)

Pa, Alveolar pressure 
with respect to the pressure

at the mouth (cm H2O)

Seconds

−5

−7

−9
0 21 3 4 5

1
1

2

2

+1

0

−1

0

0

−0.5

+0.5

(VT) + 0.5

•

FIGURE 5.2 (See color insert following page 266.)
Lung ventilatory model and lung-volume and pleural-pressure data. In the bottom figure,
graph 1 represents (Pp � Pa) ¼ �Pel (the pressure required to overcome lung elastance
plus lung elastic recoil pressure at the end of expiration ¼V=C þ Pel0); graph 2 represents Pp,
obtained by adding (Pa � Pm) to graph 1. The driving pressure PN(t) in Equation 5.1 equals Pp

minus Pel0 at the end of expiration. (Adopted from Ghista, D.N., Loh, K.M., Damodaran, M., in
Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and

Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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Based on Figure 5.1, we get

(Pa � Pp) ¼ Pel (elastic recoil pressure)

Pel ¼ (2hs)=r ¼ 2 T=r ¼ V=Cþ Pel0 (at the end of expiration)

(Pm � Pa) ¼ R(dV=dt)

PL ¼ Pm � Pp ¼ (Pm � Pa)þ (Pa � Pp)

From the above equations, we get

R(dV=dt)þ V=C ¼ PL � Pel0 ¼ PN (5:1)

where PL is the total (positive) pressure across the lung and (PL�Pel0)¼PN

(the driving pressure). Equation 5.1 is the governing differential equation of
lung volume (V) response to driving pressure PN.

5.3 Lung Ventilation Performance Using the Linear

First-Order Differential Equation Model

We first analyze lung ventilation function by means of Equation 5.1.
A sample clinical pressure–volume data is displayed in Figure 5.2.

Graph 2, at the bottom of Figure 5.2, represents Pp (with respect to the
pressure at the mouth)¼Pp�Pm. According to our analysis (Equation 5.1),

�PL ¼ (Pp � Pm) ¼ (Pp � Pa)þ (Pa � Pm) ¼ � V

C
þ Pel0

� �
� R

dv

dt

;PL � Pel0 ¼ PN(t) ¼ R _V þ V

C

which is in fact Equation 5.1.
In the model governing Equation 5.1, for lung volume (V) response to

driving pressure (PN):

RV
� þ V

C
¼ PL(t)� Pel0 ¼ PN(t) (5:2)

(1) The values of the net driving pressure are obtained from the PN data,
provided in Figure 5.3a, where PN(t) values are with respect to Pel0; (2) the
parameters of this governing-differential equation are lung compliance (C)
and airflow resistance (R) (in the equation, both R and C are instantaneous
values); (3) lung V¼V(t)�V0 (the lung volume at the end expiration); the
lung volume date is provided in Figure 5.3b; (4) Pel0 is the lung elastic recoil
pressure at the end of expiration, and (5) Pel0 ¼ Pel � V=C.

The frequency of the lung ventilatory cycle is v, and T is the period of one
lung inspiration–expiration cycle. For our sample data v¼ 1.26 rad=s. At the
end of expiration when v t¼v T, PL¼Pel0.
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FIGURE 5.3
(a) The pressure curve PN(t) represented by Equation 5.5 matched against the pressure data
(represented by dots). (b) The volume curve V(t) represented by Equation 5.8, for Ca ¼ 0.2132 l
(cm H2O)�1 and Ra¼ 2.275 cm H2O s L�1 matched against the volume data represented by dots.
In this figure, the lung volume and lung pressure are indicated with respect to the end-
expiratory volume and pressure, respectively. (Adopted from Ghista, D.N., Loh, K.M., and
Damodaran, M., in Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numer-

ical Simulation and Applications. V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C005 Final Proof page 150 29.5.2008 6:03pm Compositor Name: TSuresh

150 Applied Biomedical Engineering Mechanics



Let the driving pressure PN(t) be represented by means of the following
expression:

PN(t) ¼
X3
i¼1

Pi sin(vitþ ci)

Then, the governing Equation 5.2 (for lung volume response to driving
pressure) becomes

RV
� þ V

C
¼ PN(t) ¼

X3
i¼1

Pi sin(vitþ ci) (5:3)

where the right-hand side represents the net driving pressure, PN¼
(Pm�Pp)�Pel0. This PN is in fact the driving pressure (Pm�Pp) normalized
with respect to its value at the end of expiration. Equation 5.3 can be
rewritten as follows:

V
� þ V

RC
¼ 1

R

X3
i¼1

Pi sin(vitþ ci) (5:4)

where the PN(t) clinical data (displayed in Figure 5.3) is assumed to be
represented by

PN(t) ¼
X3
i¼1

Pi sin(vitþ ci) (5:5a)

where

P1 ¼ 1:581 cm H2O P2 ¼ �5:534 cm H2O P3 ¼ 0:5523 cm H2O

v1 ¼ 1:214 rad=s v2 ¼ 0:001414 rad=s v3 ¼ 2:401 rad=s

c1 ¼ �0:3132 rad c2 ¼ 3:297 rad c3 ¼ �2:381 rad

(5:5b)

The clinical driving pressure PN(t) data, as represented by Equation 5.5,
is depicted in Figure 5.3a. The corresponding lung volume V(t) response is
also represented in Figure 5.3b. If, in Equation 5.4, we designate Ra and Ca as
the average values (R and C) for the ventilatory cycle, then the solution of
Equation 5.4 (as derived in Appendix A) is given by

V(t) ¼
X3
i¼1

PiCa[ sin (vitþ ci)� viRaCa cos (vitþ ci)]

1þ v2
i (RaCa)

2
� � þHe �t=RaCa (5:6)

where ta¼RaCa. An essential condition is that the flow rate (dV=dt) be zero
at the beginning and end of expiration. In other words, we want that
dV=dt¼ 0 at t¼ 0, in order to determine the constant H.
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From Equation 5.6, we have

dV

dt
¼

X3
i¼1

PiCa vi(cosvitþ ci)þ v2
i ta sin(vitþ ci)

� �
1þ v2

i t
2
a

� � � H

ta
e�t=ta ¼ 0 at t ¼ 0

;
X3
i¼1

PiCa vi cos ci þ v2
i ta sin ci

� �
1þ v2

i t
2
a

� � � H

ta
¼ 0

;H ¼
X3
i¼1

PiCata vi cos ci þ v2
i ta sin ci

� �
1þ v2

i t
2
a

� � (5:7a)

When this expression of H is substituted in Equation (5.6), the resulting

expression of V(t ¼ 0) ¼ P3
i¼1

PiCa sin ci. Its value becomes very small for the

data values in Equation (5.5b) and the order of magnitude of Ca. Hence, we
can assume that V(t ¼ 0) ’ 0. Also, based on the values of (Pi, ci, vi) and of
the general order of magnitude of ta and Ca, the value of H during a
respiratory cycle is small, so that we can afford to neglect the exponential
term in Equation 5.6. Hence, the lung volume response to driving pressure
can be represented by Equation 5.6 without the exponential term.

Now, by matching the above V(t) in Equation 5.6, without the exponential
term, with the given V(t) data (in liters) in Figure 5.3b, and carrying out
parameter identification, we can determine the in vivo values of Ra and
Ca to be

Ca ¼ 0:23132 L(cm H2O)�1, Ra ¼ 2:275 (cm H2O) s L�1, and

ta ¼ 0:485 s
(5:7b)

The computed V(t) curve, represented by Equation 5.6, without the expo-
nential term, for the above values of Ca and Ra, is shown in Figure 5.3b.
We can, however, also analytically evaluate Ra and Ca by satisfying some

conditions. For this purpose, we first note that V is maximum (¼ tidal
volume, TV) at t¼ tv¼ 2.02 s. At t¼ tv, the exponential term e�t=ta in Equa-
tion 5.6 becomes of the order of e�10, and hence negligible. Then, by putting
V
�
(t ¼ 2:02) ¼ 0 in Equation 5.6 (without the exponential term), we obtain

V
�jt¼2:02 ¼

X3
i¼1

PiCa vi cos(vi � 2:02þ ci)þv2
i ta sin(vi � 2:02þ ci)

� �
(1þv2

i t
2
a)

¼ 0 (5:8)

in which the values of Pi, vi, and ci are given by Equation 5.5b. Then by
solving Equation 5.8, we get ta¼ 0.522 s, which is of the same order of
magnitude as ta evaluated earlier and given by Equation 5.7b.

Then, we also note that at tv¼ 2.02 s (at which dV=dt¼ 0), V¼ 0.55 L.
Hence, upon substituting the parametric values from Equation 5.5b into
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Equation 5.6, and neglecting the exponential term, we get the following
algebraic equation:

V(t)jt¼2:02 ¼
X3
i¼1

PiCa[ sin(vitþ ci)� vit
2
a cos(vitþ ci)]

(1þ v2
i t

2
a)

¼ 2:55Ca (5:9)

by employing the values of Pi, vi, and ci from Equation 5.5b. Now since
V(t¼ 2.02 s)¼ 0.55 L, we get

2:55 C(at t¼ 2:02 s) ¼ 0:55 L

C(at t¼ 2:02 s) ¼ 0:22 L(cm H2O)�1
(5:10)

which is also of the same order of magnitude as the average compliance Ca

given by Equation 5.9.
Since lung disease will influence the values of R and C, these param-

eters can be employed to diagnose lung diseases. For instance, in the case
of emphysema, the destruction of lung tissue between the alveoli produces
a more compliant lung, and hence results in a larger value of C. In
asthma, there is increased airway resistance (R) due to contraction of the
smooth muscle around the airways. In fibrosis of the lung, the membranes
between the alveoli thicken and hence lung compliance (C) decreases.
Thus, by determining the normal and diseased ranges of the parameters R
and C, we can employ this simple lung-ventilation model for differential
diagnosis.

5.4 Ventilatory Index

Although Ra and Ca have by themselves diagnostic values, let us formulate a
nondimensional index to serve as a ventilatory performance index VTI1 (to
characterize ventilatory function) as

VTI1 ¼ [(RaCa)(Ventilatory rate in s�1)60]2 ¼ t2a (BR)
2602 (5:11)

where BR is the breathing rate.
Now, let us obtain its order of magnitude by adopting representative

values of Ra and Ca in normal and disease states. Let us take the earlier
computed values of Ra¼ 2.275 (cm H2O) s L�1, Ca ¼ 0.2132 L (cm H2O)�1,
and BR¼ 12 m�1 or 0.2 s�1, computed by simulating the data of Figure 5.3
by means of Equation 5.6, as given by Equation 5.7b.

Then, in a supposed normal situation, the value of VTI1 is of the order of
33.88. In the case of obstructive lung disease (with increased Ra), let us take
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Ra¼ 5 (cm H2O) s L�1, Ca¼ 0.12 L (cm H2O)�1, and BR¼ 0.3 s�1; then we get
VTI1¼ 116.6. For the case of emphysema (with enhanced Ca), let us take
Ra¼ 2.0 (cm H2O) s L�1, Ca ¼ 0.5 L (cm H2O)�1, and BR¼ 0.2 s�1; then
we obtain VTI1¼ 144. In the case of lung fibrosis (with decreased Ca), we
take Ra¼ 2.0 (cm H2O) s L�1, Ca ¼ 0.08 L (cm H2O)�1, and BR¼ 0.2 s�1; then
we obtain VTI1¼ 3.7.

We can hence summarize that VTI1 would be in the range of 2–5 in
the case of fibrotic lung disease, 5–50 in normal persons, 50–150 in the
case of obstructive lung disease, and 150–200 for the case of emphysema.
This would of course need more validation by analyzing a big patient
population.

Now, all of this analysis requites pleural pressure data, for which the
patient has to be intubated. If now we evaluate the patient in an outpatient
clinic, in which we can only monitor lung volume and not the pleural
pressure, then can we develop a noninvasively obtainable ventilatory
index?

5.4.1 Noninvasively Determinable Ventilatory Index

In order to formulate a noninvasively determinable ventilatory index based
on the governing Equation 5.1, we need to recognize that in this case PN(t)
(and hence Pi, v, and ci) will be unknown, and we hence need to redesignate
the model parameters and indicate their identification procedure. For this
purpose, we fit Equation 5.6 (without the exponential term) to the V(t) data
in Figure 5.3a, and obtain

P1C ¼ 0:3223 P2C ¼ 0:3143 P3C ¼ �0:02269 (5:12)

v1 ¼ �1:178 v2 ¼ 0:5067 v3 ¼ 1:855 (5:13)

c1 ¼ 90,223 c2 ¼ 0:2242 c3 ¼ �3:961 (5:14)

ta ¼ 0:5535 (5:15)

We can now also formulate another noninvasively determinable nondimen-
sional ventilatory index (VTI2) in terms of these parameters as follows:

VTI2 ¼ (BR)t[TV]2

jP1CjjP2CjjP3Cj ¼
(BR)R[TV]2

jP1P2P3C2j (5:16)

It is seen that VTI2 can in fact be expressed in terms of P1, P2, P3, and the
lung parameters R, C. Then, after evaluating VTI2 for a number of patients,
its distribution can enable us to categorize and differentially diagnose
patients with various lung disorders and diseases.
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5.5 Work of Breathing

Just like the nondimensional ventilatory indices, the work of breathing
(WOB) is also an important diagnostic index. The premise for determining
WOB is that the respiratory muscles expand the chest wall during inspir-
ation, thereby lowering the pleural pressure (i.e., making it more negative)
below the atmospheric pressure to create a pressure differential from the
mouth to the alveoli during inspiration. Then, during expiration, the lung
recoils passively.

Hence, the work done (during a respiratory life cycle) is given by the area
of the loop generated by plotting lung volume (V) versus net driving
pressure (Pp). This plot is shown in Figure 5.4. Its area can be obtained
graphically, as well as analytically as shown below:

WOB ¼
ðt¼T

0

PN
dV

dt
dt (5:17a)
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FIGURE 5.4
Plot of lungpressure versus volume. The area under the curve provides theworkdone. (Adopted
fromGhista, D.N., Loh, K.M., andDamodaran,M., inHumanRespiration; Anatomy and Physiology,

Mathematical Modeling, Numerical Simulation and Applications. V. Kulish (Ed), WIT Press, South-
ampton, U.K., 2006.)
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Upon substituting the expressions for PN (from Equation 5.5a) and V (from
Equation 5.6, without the exponential term), we get:

WOB¼
ðt¼T

0

X3
i¼1

Pi sin vitþ cið Þ
X3
j¼1

PjCa vj cos vjtþ cj
� �þv2

j RaCa sin vjtþ cj
� �h i

1þv2
j R

2
aC

2
a

dt

¼
X3
i¼1

X3
j¼1

ðt¼T

0

Pi sin vitþ cið Þ PjCa vj cos vjtþ cj
� �þv2

j RaCa sin vjtþ cj
� �h in o

1þv2
j R

2
aC

2
a

dt

¼
X3
i¼1

X3
j¼1

ðt¼T

0

PiPjCavj sin vitþ cið Þcos vjtþ cj
� �þPiPjCa sin vitþ cið Þv2

j RaCa sin vjtþ cj
� �

1þv2
j R

2
aC

2
a

dt

¼
X3
i¼1

X3
j¼1

Ðt¼T

0

PiPjCavj

1þv2
j R

2
aC

2
a

sin vitþ cið Þcos vjtþ cj
� �

dt

þ Ðt¼T

0

PiPjv
2
j RaC

2
a

1þv2
j R

2
aC

2
a

sin vitþ cið Þsin vjtþ cj
� �

dt

2
66664

3
77775

¼
X3
i¼1

X3
j¼1

PiPjCavj

1þv2
j R

2
aC

2
a

ðt¼T

0

sin vitþ ciþvjtþ cj
� �þ sin vitþ ci�vjt� cj

� �
2

dt

þ
PiPjv

2
j RaC

2
a

1þv2
j R

2
aC

2
a

ðt¼T

0

cos vitþ ci�vjt� cj
� ��cos vitþ ciþvjtþ cj

� �
2

dt

2
66666664

3
77777775

(5:17b)

Therefore,

WOB¼
X3
i¼1

X3
j¼1

PiPjCavj

1þv2
j R

2
aC

2
a

cos ciþ cj
� �� cos viTþ ciþvjTþ cj

� �
2 viþvj

� �
þcos ci� cj

� ��cos viTþ ci�vjT� cj
� �

2 vi�vj

� �

2
6664

3
7775

þPiPjv
2
j
RaC

2
a

1þv2
j
R2
aC

2
a

sin viTþ ci�vjT� cj
� �� sin ci� cj

� �
2 vi�vj

� �
�sin viTþ ciþvjTþ cj

� �� sin ciþ cj
� �

2 viþvj

� �

2
6664

3
7775

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(5:17c)

The above expression for WOB can be evaluated, with the computed values
of Pi, ci, vi, and t (as indicated by Equation 5.5b). So let us substitute into this
equation the following values associated with Equation 5.5b:

P1 ¼ 1:581 cm H2O P2 ¼ �5:534 cm H2O P3 ¼ 0:5523 cm H2O

v1 ¼ 1:214 rad=s v2 ¼ 0:001414 rad=s v3 ¼ 2:401 rad=s

c1 ¼ �0:3132 rad c2 ¼ 3:297 rad c3 ¼ �2:381 rad

ta ¼ 0:485 s

(5:18)

We compute the value of WOB to be 0.9446 L (cm H2O) in 5 s, or 0.19 L (cm
H2O)s�1 or 0.14 L mmHg s�1 or 0.02 W. This value can be verified by
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calculating the value of the area of the pressure–volume loop in Figure 5.4
which is equal to 0.8 L (cm H2O).

5.6 Second-Order Model for Single-Compartment Lung Model

Let us now consider the dynamic (instead of static) equilibrium of the
spherical alveolar chamber of the lung model in Figure 5.1, obtained as

msu
�� þ (Pp � Pa)þ Pel ¼ 0 (5:19)

where
Pa and Pp are the alveolar and pleural pressures
u is the alveolar-wall displacement
ms is lung mass (M) per unit surface area¼M=4pr2

and

Pel ¼ 2sh

r
¼ V

C
þ Pel0 (5:20)

where
C (lung compliance) is in L (cm H2O)�1

ms (wall mass per unit surface area or surface density)¼ rh, where r is
the density (mass per unit volume)

s is the wall stress
h and r are the wall thickness and radius of the alveolar-lung chamber
Pel0 is the elastic recoil pressure at the end of expiration

Now, the corresponding oscillating alveolar volume, V ¼ 4
3p(rþ u)3, from

which we get

V
��

� 4pr2u
��

(5:21)

Now, by putting

Pp � Pa ¼ (Pm � Pa)þ (Pp � Pm) and PL ¼ Pm � Pp

so that,

Pp � Pa ¼ (Pm � Pa)� PL ¼ RV
�
� PL (5:22)

msu
�� ¼ M

4pr2

� �
V
��

4pr2

0
@

1
A ¼ MV

��

16p2r4
¼ M*V

��
; M* ¼ M

16p2r4
¼ ms

4p2r2
(5:23)
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we obtain from Equations 5.19 through 5.23:

M*V
��
þ (Pm � Pa)þ V

C
¼ PL � Pel,0; M* ¼ M

16p2r4
¼ ms

4p2r2

� �
: (5:24)

Now, putting Pm � Pa ¼ RV
�
, we obtain the governing equation, for lung

volume (V) response to driving pressure (PN), as

M*V
��
þ RV

�
þ V

C
¼ PL � Pel0 ¼

X3
i¼1

Pi sin (vitþ ci)� Pel0 ¼ PN (5:25)

where M*¼ms=4p r2 is in kgm�4.
The clinical data for PN in Figure 5.3, is assumed to be represented by

PN(t) ¼
X3
i¼1

Pi sin(vitþ ci) (5:26)

where
P1¼ 1.581 cm H2O P2¼�5.534 cm H2O P3¼ 0.5523 cm H2O
v1¼ 1.214 rad=s v2¼ 0.001414 rad=s v3¼ 2.401 rad=s
c1 ¼�0.3132 rad c2¼ 3.297 rad c3¼�2.381 rad

Then we can rewrite Equation 5.25 for lung volume response to driving
pressure, as

V
��
þ R

M*

� �
V
�
þ V

CM*
¼

X3
i¼1

Pi

M*
sin(vitþ ci) (5:27)

or as

V
��
þ 2nV

�
þ p2V ¼

X3
i¼1

Qi sin(vitþ ci) (5:28)

where
the damping coefficient, 2n¼R=M*
the natural frequency of the lung-ventilatory cycle, p2¼ 1=CM*

and

Qi ¼ Pi=M* (5:29)

So the governing Equation 5.28 of the lung ventilatory response to the
inhalation pressure has three parameters M*, n, and p2 or M*, R, and C, if
the lung pressure is also monitored by intubating the patient. The solution
of this equation (as derived in Appendix B) is given by
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V(t)¼
X3
i¼1

	
Qi(�2vi cos(vitþ ci)nþ sin(vitþ ci)p

2 � sin(vitþ ci)v
2
i )

4n2v2
i þ p4 � 2p2v2

i þv4
i




�
X3
i¼1

Qi=2

	�
�(n2 � p2)

1
2v2

i sin ci þ p2(n2 � p2)
1
2 sin ci � 2vin

2 cos ci

þ p2n sin ci � 2vin(n
2 � p2)

1
2 cos ci �v3

i cos ci þv2
i n sin ci þvip

2 cos ci

�

� e �nþ
ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t

��
(n2 � p2)

1
2(4n2v2

i þ p4 � 2p2v2
i þv4

i )

�


þ
X3
i¼1

Qi=2

	�
� p2(n2 � p2)

1
2 sin ci þ np2 sin ci þvi cos cip

2

þv2
i n sin ci � 2vin

2 cos ci þ 2vin(n
2 � p2)

1
2 cos ci

þv2
i (n

2 � p2)
1
2 sin ci �v3

i cos ci

�
e �n�

ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t

��
(n2 � p2)

1
2(4n2v2

i þ p4 � 2p2v2
i þv4

i )

�

(5:30)

We will ignore the exponential terms and perform parameter identification
by matching the above expression for V(t) to the clinical data, shown in
Figure 5.3. The matching is illustrated in Figure 5.5, where both the first-
and second-order differential equation solutions for V(t) are depicted. The
computed values of the model parameters (M*, n, p2) are also shown in the
table below the figure, along with the values of R and C computed from
these dynamic model parameters. Further, the first- and second-order
model values of R and C are compared in the table.

Figure 5.5 illustrates how the volume curve obtained by parametric iden-
tification compares with the actual lung volume. Figure 5.5 also illustrates
how closely the first- and second-order differential equation models com-
pare with each other in matching the actual clinical lung volume data. The
values of model parameters M*, n, and p2 (and the values of the intrinsic
parameters R and C obtained from them) are also given in Figure 5.5,
which then enables us to compare the values of R and C obtained by the
the two models.

5.7 Two-Compartmental First-Order Ventilatory Model

Now, it is possible that only one of the two lungs (or lung lobes) may be
diseased. Thus, let us develop a procedure to distinguish between the
normal lung and the pathological lung. We hence employ a two-compart-
ment model (based on our first-order differential equation model of lung
ventilatory function) to solve the problem of a two-lung model (schematized
in Figure 5.6).
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For this purpose we make the subject breathe at a particular frequency vi,
and monitor the total lung pressure PT(t) [or PT

N(t)] and total lung volume
VT(t), analogous to the lung pressure and volume data, depicted in
Figure 5.3. Correspondingly, we have PL(t) and VL(t), and PR(t) and VR(t)
for the left and right lungs, respectively. The governing equations will be as
follows (refer Figure 5.3):

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

Time (s)

V
ol

um
e 

(L
)

V versus t
Fit 1 first-order model
Fit 2 second-order model

First-Order Model Second-Order Model

3.02

1.14

0.39

2.44

0.35

2.28

0.23

M∗[cm H2O L–1s 2]

n   =
R

M∗
[s–1]

[s–2]p2 =
1

CM∗

R [cm H2O L–1s]

C [L /cm H2O]

Single compartmental
first-order equation

Single compartmental
second-order equation

FIGURE 5.5 (See color insert following page 266.)
Results of Second-order Single-compartment model (based on differential equation formula-
tion), compared with the First-order model. (Adopted from Ghista, D.N., Loh, K.M., and
Damodaran, M., in Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numer-

ical Simulation and Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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PT ¼ PL ¼ PR (5:31)

VT ¼ VL þ VR (5:32)

where

Vl(t) ¼ f (RL, CL, PT(t)) (5:33)

VR(t) ¼ f (RR, CR, PT(t)) (5:34)

In these equations,

(i) the variables PT(t), VT(t) are deemed to be known, i.e., monitored.

(ii) the parameters RL, CL, and RR, CR are to be evaluated.

Using the first-order differential equation model, presented in Section 5.3,
as given by Equation 5.6 (without the exponential term):

V(t) ¼
X3
i¼1

(PiCa)[ sin (vitþ ci)� vita cos (vitþ ci)]

(1þ v2
i t

2)
(5:35)

we put down the expression for VT(t) ¼ VL(CL,tL)þ VR(CR,tR), match it
with the total lung volume data (using a parameter-identification technique

Pi(t)

Pi(t), V
L(t), RL, CL Pi(t), V

R(t), RR, CR

FIGURE 5.6
Schematic of the two-compartment first-order lung-ventilation model. (Adopted from Ghista,
D.N., Loh, K.M., and Damodaran, M., in Human Respiration; Anatomy and Physiology, Mathe-
matical Modeling, Numerical Simulation and Applications. V. Kulish (Ed), WIT Press, Southampton,
U.K., 2006.)
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software), to obtain the values of (CL, tL) and (CR, tR), by means of which we
can differentially diagnose left and right lung lobes’ ventilatory capabilities
and associated disorders (or diseases).

5.7.1 Two-Compartmental Lung Ventilatory Model Analysis

Using Equation 5.6 without the exponential term, we put down the expres-
sion for the total lung volume equal to the sum of left and right lung
volumes, as follows:

V(t) ¼
X3
i¼1

PiC
L sin(vitþ ci)� vitL cos(v

t
i þ ci)

� �
(1þ v2

i t
2
L)

þ
X3
i¼1

PiC
R sin(vitþ ci)� vitR cos(vitþ ci)½ �

(1þ v2
i t

2
R)

(5:36)

where, for the clinical data, we have

P1¼ 1.581 cm H2O P2¼�5.534 cm H2O P3 ¼ 0.5523 cm H2O
v1¼ 1.214 rad=s v2¼ 0.001414 rad=s v3¼ 2.401 rad=s
c1 ¼�0.3132 rad c2¼ 3.297 rad c3¼�2.381 rad

Now, in order to develop a measure of confidence in our analysis, we first
generate the total lung volume data by assuming different values of C and R
for left and right lung lobes. We then use Equation 5.36 along with the above
data on pressure, to generate the total lung volume data. We adopt this
generated lung volume data as the clinical-volume data.

We now make our volume solution expression (Equation 5.36) match this
generated clinical volume data, by means of the parameter-identification
procedure, to evaluate C and R for the left and right lung lobes and hence
VTI1 and VTI2 (Equations 5.11 and 5.16) for these lobes. Based on the values
of VTI1 and VTI2, we can differentially diagnose the left and right lung lobes.

5.7.2 Simulation of a Stiff Right Lung (with Compliance Problems)

We now simulate a normal left lung and stiff right lung, represented by

RL ¼RR ¼ 1:14(cmH2O)L�1 and CL ¼ 0:11, CR ¼ 0:05L=(cm H2O) (5:37)

Substituting these parametric values into Equation 5.36, we generate the
total lung volume data, as illustrated in Figure 5.7.

Now our clinical data for this two-compartment model comprises of the
pressure data of Figure 5.3a and the generated total lung volume data of
Figure 5.7. For this clinical data, we match the volume solution given by
Equation 5.36 with the generated volume data, illustrated in Figure 5.7,
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and carry our parameter identification. The computed values of R and C, for
the left and right lungs, listed in the table of Figure 5.7, are in
close agreement with the initially assumed parametric values of Equation
5.37. This lends credibility to our model and to our use of parameter-
identification method.

Now for differential diagnosis, we also compute the lung-ventilatory
indices (given by Equations 5.11 and 5.16), as shown in the table of
Figure 5.7.
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FIGURE 5.7
Results of the two-compartment model, based on the first-order differential equation model. In
the table, the assumed values of R and C (in Equation 5.37) are indicated in brackets. It is noted
that the calculated values of R and C (by parameter-identification technique) match the assumed
values of R and C employed to generate the total lung volume data (shown in the figure).
(Adopted from Ghista, D.N., Loh, K.M., and Damodaran, M., in Human Respiration; Anatomy

and Physiology, Mathematical Modeling, Numerical Simulation and Applications. V. Kulish (Ed), WIT
Press, Southampton, U.K., 2006.)
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5.7.3 Simulation of a Right Lung with Flow-Rate Resistance Problems

Now, we simulate a lung with an obstructive right lung, as represented by

RL ¼ 1:14 (cm H2O)L�1s and RR ¼ 2:28 (cm H2O) L�1s, and

CL ¼ CR ¼ 0:11L=cm H2O
(5:38)

We substitute these parameter values into Equation 5.36 and generate the
total lung volume, as depicted in Figure 5.8. We then carry out a parameter-
identification procedure and determine the values of RL, RR, and CL, CR, for
the total lung volume (Equation 5.35) to match the generated lung volume
data. The simulation results are shown in Figure 5.8, and the computed
parametric values (along with the indices values) are depicted in the table
below the figure.
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FIGURE 5.8
Results of the two-compartment model, based on first-order differential equation model. In the
table, the assumed values of R and C (Equation 5.38) are shown in brackets. It is noted that the
calculated values of R and C (by parametric-identification method) closely match the assumed
values of R and C, employed to generate the total volume data (as shown in this figure).
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5.7.4 Determining Left and Right Lung Parameters and Indices without
Requiring Intubation of the Patient

We could also employ as model parameters PiC
L, PiC

R, tL, and tR in
Equation 5.36 representation of the total lung volume expression. This
would not require us to intubate the patient. We could then employ the
ventilatory index VTI2 for each lung lobe, to diagnose its disease state.

Appendix A: Solution of Equation 5.4

Equation (5.4) is

V
� þ V

RC
¼ 1

R

X3
i¼1

Pi sin vitþ cið Þ (A:1)

Its auxiliary equation is given by

mþ 1

RC
¼ 0; ;m ¼ � 1

RC
(A:2)

Hence the complimentary solution (CF) is given by

V tð Þ ¼ He�
1
RCt (A:3)

where H is a constant.
The particular integral (PI) is given by

PI ¼
X3
i¼1

1

Dþ 1
RC

� � 1

R
Pi sin vitþ cið Þ

" #
(A:4)

¼
X3
i¼1

D� 1
RC

� �
D2 � 1

R2C2

� � 1
R
Pi sin vitþ cið Þ

" #
(A:5)

¼
X3
i¼1

D� 1
RC

� �
�v2

i � 1
R2C2

� � 1

R
Pi sin vitþ cið Þ

" #
(A:6)

¼ �
X3
i¼1

RC2

R2C2 v2
i þ 1

� � D� 1

RC

� �
Pi sin vitþ cið Þ

" #
(A:7)

¼ �
X3
i¼1

RC2Pi

R2C2 v2
i þ 1

� � vi cos vitþ cið Þ � 1

RC
sin vitþ cið Þ

� �( )
(A:8)
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Therefore, PI ¼ �
X3
i¼1

RC2Pi

R2C2 v2
i þ 1

� �vi cos vitþ cið Þ � CPi

R2C2 v2
i þ 1

� � sin vitþ cið Þ
" #

(A:9)

Hence the General Solution of Equation (A.1) or (5.4) is:

V tð Þ ¼ He�
1
RCt �

X3
i¼1

RC2Pi

R2C2 v2
i þ 1

� �vi cos vitþ cið Þ � CPi

R2C2 v2
i þ 1

� � sin vitþ cið Þ
" #

(A:10)

V tð Þ ¼ He�
1
RCt þ

X3
i¼1

PiC sin vitþ cið Þ � RCvi cos vitþ cið Þ½ �
R2C2 v2

i þ 1
� � (A:11)

Now we impose the initial condition of dV=dt ¼ 0 at t ¼ 0. From Equation
(A.11), we get:

dV

dt
¼ �He�

1
RCt

RC
þ
X3
i¼1

PiCvi cos vitþ cið Þ þ RCvi sin vitþ cið Þ½ �
R2C2 v2

i þ 1
� � (A:12)

Putting dV=dt ¼ 0 at t ¼ 0, we get:

0 ¼ � H

RC
þ
X3
i¼1

PiCvi cos ci þ RCvi sin cið Þ
R2C2 v2

i þ 1
� � (A:13)

This yields

H ¼
X3
i¼1

PiCvit cos ci þ vit sin cið Þ
v2
i t

2 þ 1
� � (A:14)

where t ¼ RC.
Upon substituting this expression for H into Equation (A.11), let us now

determine V(t ¼ 0). From Equations (A.14) and (A.11), we get:

V t ¼ 0ð Þ ¼ H þ
X3
i¼1

PiC sin ci � RCvi cos cið Þ
R2C2 v2

i þ 1
� � (A:15)

¼
X3
i¼1

PiCvit cos ci þ vit sin cið Þ
v2
i t

2 þ 1
� � þ

X3
i¼1

PiC sin ci � vit cos cið Þ
v2
i t

2 þ 1
� � (A:16)
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where t ¼ RC

;V t ¼ 0ð Þ ¼
X3
i¼1

PiC v2
i t

2 sin ci þ sin ci
� �

v2
i t

2 þ 1
� �

¼
X3
i¼1

PiC sin ci v
2
i t

2 þ 1
� �

v2
i t

2 þ 1
� �

(A:17)

¼
X3
i¼1

PiC sin ci (A:18)

Appendix B: Solution of Equation 5.28

Equation 5.28 is:

V
�� þ 2nV

� þ p2V ¼
X3
i¼1

Qi sin vitþ cið Þ (B:1)

The auxiliary equation of Equation (B.1) is:

m2 þ 2nmþ p2 ¼ 0 (B:2)

for which

m ¼ �2n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 � 4p2

p
2

or,

m ¼ �n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

q
(B:3)

Hence the complimentary solution (CF) is:

V tð Þ ¼ k1e
�n�

ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t þ k2e

�nþ
ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t (B:4)

The particular solution (PI) of Equation (B.1) is given by:

PI ¼
X3
i¼1

1

D2 þ 2nDþ p2ð Þ Qi sin vitþ cið Þ½ � (B:5)
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Replacing D2 by �vi
2, we get:

PI ¼
X3
i¼1

1

�v2
i þ 2nDþ p2

� � �Qi sin vitþ cið Þ�
( )

(B:6)

¼
X3
i¼1

1

p2 � v2
i

� �þ 2nD

�
Qi sin vitþ cið Þ�

( )
(B:7)

Upon multiplying by the conjugate, we get:

PI ¼
X3
i¼1

p2 � v2
i

� �� 2nD
� ��

Qi sin vitþ cið Þ�
p2 � v2

i

� �þ 2nD
� �

p2 � v2
i

� �� 2nD
� �

( )
(B:8)

¼
X3
i¼1

p2 � v2
i

� �� 2nD
� ��

Qi sin vitþ cið Þ�
p2 � v2

i

� �2� 4n2D2

( )
(B:9)

Upon replacing D2 by � vi
2 in the denominator, we get:

PI ¼
X3
i¼1

p2 � v2
i

� �� 2nD
� �½Qi sin vitþ cið Þ�

p2 � v2
i

� �2þ 4n2v2
i

( )
(B:10)

¼
X3
i¼1

Qi p2 � v2
i

� �
sin vitþ cið Þ � 2nvi cos vitþ cið Þ� �
p2 � v2

i

� �2þ 4n2v2
i

( )
(B:11)

Hence the general solution (GS) of Equation (B.1) or (5.28) as given by

GS ¼ CFþ PI

is:

V tð Þ ¼ k1e
�n�

ffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p� �
t þ k2e

�nþ
ffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p� �
t

þ
X3
i¼1

Qi p2 � v2
i

� �
sin vitþ cið Þ � 2nvi cos vitþ cið Þ� �
p2 � v2

i

� �2þ 4n2v2
i

( )
(B:12)

Now to find the constants k1 and k2, we apply the initial conditions:

V tð Þ ¼ 0 at t ¼ 0;
dV

dt
¼ 0 at t ¼ 0 (B:13)

Putting V(t) ¼ 0 at t ¼ 0 in Equation (B.12), gives:

0 ¼ k1 þ k2 þ
X3
i¼1

Qi p2 � v2
i

� �
sin ci � 2nvi cos ci

� �
p2 � v2

i

� �2þ 4n2v2
i

( )
(B:14)
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Now, we want to impose the condition dV=dt ¼ 0 at t ¼ 0 in Equation
(B.12). From Equation (B.12), we get:

dV

dt
¼ k1 �n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

q� �
e �n�

ffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p� �
t þ k2 �nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

q� �
e �nþ

ffiffiffiffiffiffiffiffiffiffiffi
n2 �p2

p� �

þ
X3
i¼1

Qi p2 � v2
i

� �
vi cos vitþ cið Þ þ 2nv2

i sin vitþ cið Þ� �
p2 � v2

i

� �2þ 4n2v2
i

( )
(B:15)

Making dV
dt ¼ 0 at t ¼ 0, we get:

0¼ k1 �n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

q� �
þ k2 �nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

q� �
þ
X3
i¼1

Qi p2�v2
i

� �
vi cosciþ2nv2

i sinci
� �

p2 � v2
i

� �2�4n2v2
i

( )

(B:16)

Let Ci ¼ p2 � v2
i

� �
vi cos ci þ 2nv2

i sin ci
� �

(B:17)

Hence, Equation (B.16), can be rewritten as:

�n k1 þ k2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

q
k1 � k2ð Þ þ

X3
i¼1

QiCi

p2 � v2
i

� �2þ 4n2v2
i

¼ 0 (B:18)

Substituting for (k1 þ k2) from Equation (B.14) in the above Equation (B.18),
we get:

k1 � k2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p �n k1 þ k2ð Þ þ
X3
i¼1

QiCi

p2 � v2
i

� �2þ 4n2v2
i

( )
(B:19)

¼
X3
i¼1

nQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p p2 � v2
i

� �
sin ci � 2nvi cos ci

� �
p2 � v2

i

� �2þ 4n2v2
i

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p QiCi

p2 � v2
i

� �2þ 4n2v2
i

8>>><
>>>:

9>>>=
>>>;

(B:20)

Now solving for k1 and k2 from Equations (B.14) and (B.20), we get:

2k1 ¼
X3
i¼1

�Qi p2 � v2
i

� �
sin ci � 2nvi cos ci

� �
p2 � v2

i

� �2þ 4n2v2
i

þ nQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p p2 � v2
i

� �
sin ci � 2nvi cos ci

� �
p2 � v2

i

� �2þ 4n2v2
i

þ Qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p p2 � v2
i

� �
vi cos ci þ 2nv2

i sin ci
� �

p2 � v2
i

� �2þ 4n2v2
i

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(B:21)
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Therefore,

k1 ¼
X3
i¼1

Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�p2
p

p2�v2
i

� �
sinci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosci

þn p2�v2
i

� �
sinci�2n2vi cosci

þ p2�v2
i

� �
vi cosciþ2nv2

i sinci

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

(B:22)

Then from Equations (B.14) and (B.22), we get the expression for k2 as:

k2 ¼ �k1 �
X3
i¼1

Qi p2 � v2
i

� �
sin ci � 2nvi cos ci

� �
p2 � v2

i

� �2þ 4n2v2
i

( )
(B:23)

Simplifying Equation (B.22) for the constant k1, we get:

k1 ¼
X3
i¼1

Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p
p2 �v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2
p

p2 sin ci þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p
v2
i sin ci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � p2

p
vi cos ci þ np2 sin ci

þnv2
i sin ci � 2n2vi cos ci

þp2vi cos ci �v3
i cos ci

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

(B:24)

Then k2 can be obtained from Equation (B.14) or (B.23), as follows:

k2 ¼
X3
i¼1

�Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�p2
p

p2 sinciþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinci

þnv2
i sinci�2n2vi cosci

þp2vi cosci�v3
i cosci

0
BBBB@

1
CCCCA

�Qi p2�v2
i

� �
sinci�2nvi cosci

� �
p2�v2

i

� �2þ4n2v2
i

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(B:25)

¼�
X3
i¼1

Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�p2
p

p2 sinciþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinciþnv2

i sinci

�2n2vi cosciþp2vi cosci�v3
i cosci

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �
sinci�4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosci

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

(B:26)

Equations (B.26) and (B.24) can be rewritten as:

k2¼�
X3
i¼1

Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2 sinci�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

�2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinci

þnv2
i sinci�2n2vi cosci

þp2vi cosci�v3
i cosci

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

(B:27)
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and

k1¼
X3
i¼1

Qi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�p2
p

p2 sinciþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinci

þnv2
i sinci�2n2vi cosci

þp2vi cosci�v3
i cosci

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

(B:28)

Upon substituting the expression for k1 and k2 fromEquations (B.28) and (B.27)
into Equation (B.12), we get the general solution of Equation (B.1) or (5.28) as:

V tð Þ¼
X3
i¼1

Qie
�n�

ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�p2
p

p2 sinciþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

þ2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinci

þnv2
i sinci�2n2vi cosci

þp2vi cosci�v3
i cosci

0
BBBB@

1
CCCCA

� Qie
�nþ

ffiffiffiffiffiffiffiffiffiffi
n2�p2

p� �
t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2�v2

i

� �2þ4n2v2
i

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
p2 sinci�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
v2
i sinci

�2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2

p
vi cosciþnp2 sinci

þnv2
i sinci�2n2vi cosci

þp2vi cosci�v3
i cosci

0
BBBB@

1
CCCCA

þQi p2�v2
i

� �
sin vitþcið Þ�2nvi cos vitþ cið Þ� �
p2�v2

i

� �2þ4n2v2
i

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(B:29)
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6.1 Objectives

The primary function of the lung is to (1) oxygenate the blood and thereby
provide oxygen to the cells for metabolization purposes, and (2) to remove the
collected CO2 from the pulmonary blood. Herein, we will analyze the com-
positions of the inspired and expired air per breath, and from there compute
the O2 consumption and CO2 production rates. Next, we derive expressions
for diffusion coefficients DO2

and DCO2
in terms of the evaluated cardiac-

output, O2 and CO2 concentrations in arterial and venous blood, alveolar
and blood O2 and CO2 partial-pressures. We then take up a typical case
study, and demonstrate the computation of DO2

and DCO2
, to represent the

lung performance capability to oxygenate the blood.
This chapter (along with the figures) is based on our earlier Chapter 3 on

lung gas composition and transfer analysis in Human Respiration edited by
V. Kulish and published by WIT Press [1].*

6.2 Respiratory System

The respiratory system is the system of the body that deals with breathing.
When we breathe, the body takes in the oxygen that it needs and removes
the carbon dioxide that it does not need.

First, the body breathes in the airwhich is sucked through the nose ormouth
and down through the trachea (windpipe). The trachea is a pipe shaped by
rings of cartilage. It divides into two tubes called bronchi (Figure 6.1), which
carry air into each lung.

Inside the lung, the airway tubes divide into smaller and smaller
tubes called bronchioles. At the end of each of these tubes are small air
sacs called alveoli (Figure 6.2). Capillaries are wrapped around these
alveoli. The walls are so thin and close to each other that the air easily
seeps through. In this way, oxygen diffuses into the bloodstream, and
carbon dioxide (in the bloodstream) diffuses into the alveoli and is then
removed from the body when we breathe out (Figure 6.3).

6.3 Gas Transfer between Lung Alveoli

and Pulmonary Capillaries

The lung is designed for gas exchange. Its prime function is to allow oxygen
to diffuse from the alveolar air into the venous blood and to remove carbon

* With the permission of the publisher WIT Press, Southampton, U.K.
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FIGURE 6.1 (See color insert following page 266.)
Respiratory passages. (Adopted from Guyton, A.C., Text Book of Medical Physiology, Saunders,
Philadelphia, 1991. With permission from Elsevier.)
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FIGURE 6.2 (See color insert following
page 266.)
Trachea, bronchi, and alveoli.
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dioxide from the capillary blood into the alveoli to be exhaled. It also
metabolizes some compounds, filters toxic materials from the circulation,
and acts as a reservoir for blood. But its key function is gas exchange.

Oxygen and carbon dioxide move between the alveolar air and capillary
blood by simple diffusion. Fick’s law of diffusion states that the amount of
gas which moves across a sheet of tissue is proportional to the area of sheet
but inversely proportional to its thickness. The blood–gas barrier is about
0.5 mm and has an area of between 50 and 100 m2.

The prodigious surface area for diffusion from inside the limited alveolar
cavity is obtained by wrapping the capillaries around an enormous number
of alveoli. There are about 300 million alveoli in the human lung, each about
1=3 mm in diameter. If they were spherical, their total surface area would be
85 m2, but their volume is only 4 L.

6.4 Lung Air Composition Analysis (O2 Consumption

and CO2 Production Rates)

In this section, we will determine the O2 consumption and CO2 production
rates, from inspired and expired air compositions [1]. The lung functional

Blood flow

Capillary

Wall of
air sac Carbon

dioxide

Oxygen

Red
blood
cell

FIGURE 6.3 (See color insert following page 266.)
Exchange of carbon dioxide and oxygen.
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performance is characterized by (1) its ventilatory capacity, to bring air (and
hence O2) into the alveoli, and (2) its capacity to transfer O2 and CO2 into
and from the pulmonary capillary bed. Hence, the O2 and CO2 diffusion
coefficients as well as the O2 consumption rate and the CO2 production rate
represent the lung performance indices. We will deal with this item in the
next section.

We carry out a mass balance analysis, involving:

(1) Compositions of air breathed in and out

(2) Consumption or losses of O2, CO2, and H2O

Table 6.1 provides a typical sample clinical data on partial pressures
and volumes of N2, O2, CO2, and H2O of atmospheric air breathed in and
expired air, of one breath cycle. The monitored breathing rate (BR)¼ 12
breaths=min, at each breath 500 mL of air is inspired, and we assume PH2O

at 378C¼ 47 mmHg.
We first compute the volume of expired air compositions, and their pres-

sures based onpercent volume. It can benoted (fromTable 6.1) that the expired
air volume slightly exceeds the inspired air volume for this particular
breath cycle. The H2O loss of 30.1 mL (¼ 32.6� 2.5 mL) contributes to the
major portion of this difference. Note that the water vapor in atmospheric
air or inspired air is 0.49% and that in the expired air is 6.2%, while the
volume of water vapor in the expired air¼ (47 mmHg=713 mmHg)�
492.8¼ 32.6 mL

6.4.1 Calculation of O2 Consumption Rate and CO2 Production Rate

We now determine the O2 consumption rate and CO2 production rates from
the inspired and expired gases.

TABLE 6.1

Inspired Air Composition and Partial Pressures

Respiratory

Gases

Atmospheric Air Expired Air

mmHg mL=% mmHg mL=%

N2 597 393.1 566 393.1
78.55% 74.5%

O2 159 104.2 120 80.6
20.84% 15.7%

CO2 0.3 0.2 27 19.1
0.04% 3.6%

H2O 3.7 2.5 47 32.6
0.49% 6.2%

Total 760 500 760 525.3
100% 100%
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Assuming the patient breathes at 12 times per minute (and 500 mL of air
at each breath), we have

O2 consumption rate¼ (Inspired O2�Expired O2)� 12
¼ (104.2� 80.6)� 12
¼ 283.2 mL=min

CO2 production rate ¼ (Expired CO2� Inspired CO2)� 12
¼ (19.1� 0.2)� 12
¼ 226.8 mL=min

The amount of water vapor in the humidified expired air amounts to 6.2%
of the expired air (compared to 0.49% of the dry inspired air), corresponding
to partial pressure ratio of water vapor in the expired air (¼ 47=760). The
volume of the dry expired air¼ (525.3� 32.6) mL¼ 492.7 mL.

Now, let us assume that out of 500 mL of inspired air, the dead space air
volume (not taking part in gas-transfer process) is 150 mL, and the alveolar
air volume is 350 mL. We can then compute the dead space air volume
composition (refer Figure 6.4).

500 mL

Dead space
(150 mL)

CO2 O2

Alveolar air = 350 mL.
At 12 breaths/min,

we get alveolar ventilation
rate (V) = 4,200 mL/min

or 4.2 L /min

•{
FIGURE 6.4
Dead space volumes. (Modified from Ghista, D.N., Loh, K.M., and Ng, D., in Human Respiration:

Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and Applications, V. Kulish
(Ed), WIT Press, Southampton, U.K., 2005.)
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6.4.2 Dead Space Air Composition

The clinical data of expired air composition is

N2¼ 393.1 mL, O2¼ 83.36 mL, CO2¼ 16.87 mL, H2O¼ 34.15 mL
Total¼ 527.49 mL

Now, the dead space air (Figure 6.4) will be made up of (1) dry air portion
from the inspired air (assumed to be of amount 141 mL) plus (2) the
water vapor taken up by the dry air (estimated to be 9 mL). Since
the expired air portion of 141 mL will not have undergone O2 and CO2

transfer, its composition is the same as that of inspired air, and given by

N2¼ 111 mL (78.55%), O2¼ 29.40 mL (20.84%), CO2¼ 0.06 mL (0.04%),
H2O¼ 0.69 mL (0.49%); total volume¼ 141 mL

When this inspired air (in the dead space) of 141 mL is fully humidified, it
will take up a further X mL of H2O vapor, in the ratio of the partial-
pressures, as follows:

X

141
¼ 47

713
¼ 0:0659

;X ¼ 0:0659� 141 ¼ 9:29 mL of H2O vapor

(which is close to our estimated value of 9 mL).
So, by adding 9.29 mL of H2O vapor to 0.69 mL of water vapor in the

inspired portion of dead space air volume of 141 mL, the total water vapor
in the dead space air is 9.98 mL. The humidified dead space air composition
will hence be (as tabulated in column 2 of Table 6.2):

N2 ¼ 111.00 ml (¼ 73.78%),
O2 ¼ 29.40 ml (¼ 19.55%),

TABLE 6.2

The Alveolar Air Composition

Expired

Air (mL)

Dead Space

Air (mL)

Alveolar

Air (mL)

Alveolar

Air Partial

Pressure

(mmHg)

N2 393.1 111.00 282.1 569.41
O2 80.53 29.40 51.13 103.21
CO2 19.12 0.06 19.06 38.47
H2O 34.21 9.98 24.23 48.91
Total 526.96 150.44 376.52 760
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CO2 ¼ 0.06 ml (¼ 0.04%),
H2O ¼ 9.98 ml (¼ 6.63%),
Total¼ 150.44 ml

6.4.3 Alveolar Air Composition and Partial Pressures

We can now compute the alveolar air volume composition, by subtracting
the dead space air composition volumes from the expired air. These values
are tabulated in column 3 of Table 6.2.

Finally, we compute the partial pressures of O2 and CO2 (as well as of N2

and H2O), as tabulated in column 4 of Table 6.2, so that we can then
determine the diffusion coefficients of O2 and CO2 based on the monitoring
of arterial and venous blood concentrations.

6.5 Lung Gas-Exchange Model and Parametric Analysis

In this section we will characterize O2 and CO2 exchange capacities between
the lung alveoli and pulmonary capillary bed in terms of O2 and CO2

diffusion coefficients DO2
and DCO2

[1].

6.5.1 Expressions for (i) O2 and (ii) CO2 Diffusion Coefficients
(DO2

and DCO2
), Alveolar and Blood Partial Pressures

The gas exchange between the alveolar air and pulmonary capillary blood is
represented by the following O2 and CO2 conservation equations (Figure 6.5):

QVECVE
O2

¼ QAECAE
O2

þ V
�
O2

(transfer rate of O2 from the alveolar

air to capillary blood)

¼ QAECAE
O2

þ (DPO2
av )DO2

; P
cap
O2

¼ PAE
O2

; DO2
¼ V

�
O2

DPO2
av

(6:1)

in which P
cap
O2

¼ PPRB
O2

(O2 concentration of the pre-oxygenated blood)

QVECVE
CO2

¼ QAECAE
CO2

� V
�
CO2

(from capillary blood to alveoli)

¼ QAECAE
CO2

� (DPCO2
av )DCO2

; P
cap
CO2

¼ PAE
CO2

; DCO2
¼ V

�
CO2

DPCO2
av

(6:2)

in which P
cap
CO2

¼ PPRB
CO2

(CO2 concentration of the pre-oxygenated blood), and
wherein

(1) CVE
O2

¼ CAB
O2

, CAE
O2

¼ CVB
O2
; CVE

CO2
¼ CAB

CO2
, CAE

CO2
¼ CVB

CO2
:
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(2) QAB and QVB are arterial and venous blood flow-rates, QAB¼QVE

(at venous end), QVB¼QAE (at arterial end); also, QAB¼QVB¼Q.

(3) Pal
O2

and P
cap
O2

are the alveolar and capillary O2 partial pressures.

(4) Pal
CO2

and P
cap
CO2

are the alveolar and capillary CO2 partial pressures.

(5) DO2
and DCO2

are the O2 and CO2 diffusion coefficients, defined in
the caption of Figure 6.5.

(6) DPO2
av ¼ average of (Pal

O2
� P

cap
O2

) over the capillary length

DPCO2
av ¼ average of (P

cap
CO2

� Pal
O2
) over the capillary length.

(7) V
�
O2

is the O2 transfer rate from alveolar air to capillary blood

(¼O2 consumption rate), V
�
CO2

is the CO2 transfer-rate from capil-
lary blood (at arterial end) to alveolar air (¼CO2 production rate).

Now we can equate the arterial and venous blood flow rates, as

QAB ¼ QVB ¼ Q ¼ SV

EP
¼ CO

60

VO2
VCO2

VO2
VCO2

Venous blood 
at arterial end 

CO2
 = CO2

Arterial blood 
at venous end 

Inside the alveolus

VB AE CO2
 = CO2

AB VE

CCO2
 = CCO2

AB VECCO2
 = CCO2

 
VB AE

PO2
=40 mmHg

PCO2
=45 mmHg

PO2
=104 mmHg

PO2
=104 mmHg

PCO2
=40 mmHg

PCO2
= 40 mmHg

FIGURE 6.5
Schematic of blood–gas concentrations in the pulmonary capillary. Note that P

cap
O2

¼ PAE
O2

; VB,
venous blood; AB, arterial blood; AE, arterial end; VE, venous end. (Modified from Ghista,
D.N., Loh, K.M., and Ng, D., in Human Respiration: Anatomy and Physiology, Mathematical

Modeling, Numerical Simulation and Applications, V. Kulish (Ed), WIT Press, Southampton,
U.K., 2005.)

We define diffusing capacity of gas across the alveolar-capillary membrane as

D ¼ Volume-rate of transfer of gas

Average partial pressure difference
¼ V

�
of gas (mL=min)

DPav of the gas (mmHg)

For instance for O2, DO2 ¼
V
�
O2

from alveolar air to blood (mL=min)

DPO2
av (mmHg)

We will refer to DO2
as diffusion coefficient of O

2. VO2
is the O2 consumption rate, which can

either be obtained from inspired and expired compositions (as shown earlier) or from

Q
�
CAB
O2

� CVB
O2

� ¼ Q
�
CVE
O2

� CAE
O2

�
.

Typically, for example, DO2 ¼
252 mL=min

12 mmHg
¼ 21 mL=min mmHg:
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wherein SV, EP, and CO being the stroke-volume (in cc), ejection-period (in s),
and cardiac-output (in cc or mL=s), respectively. Hence, the above equations
can be rewritten, as indicated by the following Equations 6.3 and 6.4.

From Equation 6.1:

QABCAB
O2

¼ QVBCVB
O2

þ (DPO2
av )DO2

; P
cap
O2

¼ PAE
O2

¼ PVB
O2
; CVE

O2
¼ CAB

O2

QCAB
O2

¼ QCVB
O2

þ (DPO2
av )DO2

DO2
¼ Q(CAB

O2
� CVB

O2
)

(DPO2
av )

¼ V
�
O2

DPO2
av

(6:3)

wherein V
�
O2

is the oxygen consumption rate.
From Equation 6.2:

QABCAB
CO2

¼ QVBCVB
CO2

þ (DPCO2
av )DCO2 ; P

cap
CO2

¼ PAE
CO2

¼ PVB
CO2

; CVE
CO2

¼ CAB
CO2

QCAB
CO2

¼ QCVB
CO2

þ (DPO2
av )DCO2

DCO2
¼ Q(CVB

O2
� CAB

O2
)

(DPO2
av )

¼ V
�
CO2

DPCO2
av

(6:4)

wherein V
�
CO2

is the carbon dioxide production rate.
In Equations 6.3 and 6.4:

(1) Q, CAB
O2

and CVB
O2
, CAB

CO2
and CVB

CO2
can be monitored.

(2) DO2
and DCO2

represent the lung gas-exchange parameters.

(3) DPO2
av and DPCO2

av need to be determined in terms of (Pal
O2

and PVB
O2
)

and (Pal
CO2

and PVB
CO2

), respectively, in order to be able to evaluate
DO2

and DCO2
.

(4) Pal
CO2

itself depends on V
�
O2

and ventilation rate V
�
,

Pal
CO2

itself depends on V
�
CO2

and ventilation rate V
�
.

(5) PVB
O2

depends on CVB
O2
, and PVB

CO2
depends on CVB

CO2
.

Hence, from Equations 6.3 and 6.4, if we want to evaluate the diffusion

coefficients DO2
and DCO2

, we need to determine DPO2
av and DPCO2

av , for which

we need to also express Pal
O2
, P

cap
O2

and Pal
CO2

, P
cap
CO2

in terms of the monitorable

quantities of V
�
O2

and C
cap
O2

and V
�
CO2

and C
cap
CO2

. In this regard,

(1) Alveolar Pal
O2

can be expressed in terms of V
�
(the ventilation rate)

and V
�
O2

(the O2 consumption rate), based on Figure 6.6 [2], as

Pal
O2
(in mmHg) ¼ k1 1� e�k2 V

�
=V
�
m

� �
V
�
O2

�� �� �
(6:5)
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where

V
�
m is the maximum ventilation rate (¼50 L=min)

V
�
O2

(the O2 consumption rate or absorption rate from the
alveoli) ¼Q(CAB

O2
� CVB

O2
)

Equation 6.5 indicates that as
�
V
�
=V

�
m

�
increases Pal

O2
increases, and

as V
�
O2

increases Pal
O2

decreases (as in Figure 6.6).

(2) Alveolar Pal
CO2

can be expressed in terms of V
�
and V

�
CO2

based on
Figure 6.7 [2], as

Pal
CO2

(in mmHg) ¼ k3 e
�k4 V

�
=V
�
m

� �
=V
�
CO2

� �
(6:6)

where V
�
CO2

(the CO2 production rate or excretion rate from the

blood)¼Q(CVB
CO2

� CAB
CO2

).

This equation implies that as (V
�
=V

�
m) increases, Pal

CO2
decreases.

Also, as V
�
CO2

increases, Pal
CO2

increases, as per Figure 6.7.

(3) Blood PO2
can be obtained in terms of blood CO2

, from the O2

disassociation curve (providing concentrations in arterial or ven-
ous blood, as represented in Figure 6.8) as

Alveolar ventilation, L/min
0 10 20 30 40

150

100

50

0

A
lv

eo
la

r 
P O

2,
 m

m
 H

g
Upper limit at maximum ventilation

Normal Alveolar PO2

10
00

 m
L/

m
in 

O 2

25
0 m

L/min O2

FIGURE 6.6
Effect on alveolar PO2 of (i) Alveolar ventilation (V

�
), and (ii) rate of Oxygen absorption from

alveoli PO2
or O2 consumption rate, V

�
O2
. This relationship is expressed by Equation 6.5.

(Adopted from Guyton, A.C., Text Book of Medical Physiology, Saunders, Philadelphia, 1991.
With permission from Elsevier.)
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FIGURE 6.7
Effect on alveolar PCO2

of Alveolar ventilation rate (V
�
) and rate of Carbon dioxide excretion from

the blood or CO2 production rate (V
�
CO2

). This relationship is expressed by Equation 6.6.
(Adopted from Guyton, A.C., Text Book of Medical Physiology, Saunders, Philadelphia, 1991.
With permission from Elsevier.)
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FIGURE 6.8
Oxygen dissociation curves showing the total oxygen vol% or mL of O2 in each 100 mL of
normal blood. We will adopt oxygen concentration units to be (mL of O2=100 mL of blood), and
hence we will divide the numbers on the y-axis by 100. (Adopted from Guyton, A.C., Text Book
of Medical Physiology, Saunders, Philadelphia, 1991. With permission from Elsevier.)
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CO2
(mL=100mL) ¼ Cm

O2
1� e

�k5

�
PO2

=Pm
O2

�� 	

or C*O2
¼ 1� e

�k5P
*
O2 (6:7)

wherein

. Cm
O2

and Pm
O2

are the maximum values of blood O2 concentration
and partial pressure, respectively.

. C*O2
¼ CO2

Cm
O2

.

. P*O2
¼ PO2

Pm
O2

.

(4) Blood PCO2
can be obtained in terms of CCO2

, from the CO2 disas-
sociation curve (providing CO2 concentration in arterial or venous
blood, as represented in Figure 6.9) as

CCO2
(mL=100 mL) ¼ Cm

CO2
1� e

�k6 PCO2
=Pm

CO2


 � !" #

or C*CO2
¼ 1� e

�k6 PCO2
=Pm

CO2


 �
¼ 1� e

�k6P
*
CO2 (6:8)

wherein

. Cm
CO2

and Pm
CO2

are the maximum values of blood CO2 concentra-
tions and partial pressure, respectively.
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FIGURE 6.9
Carbon dioxide dissociation curve. We adopt carbon dioxide concentration units to be (mL of
CO2=100 mL of blood), and hence we divide the numbers on the y-axis by 100. (Adopted from
Guyton, A.C., Text Book of Medical Physiology, Saunders, Philadelphia, 1991. With permission
from Elsevier.)
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. C*CO2
¼ CCO2

Cm
CO2

:

. P*CO2
¼ PCO2

Pm
CO2

:

6.5.2 Quantifying Alveolar O2 and CO2 Partial Pressure Expressions

We will now quantify the earlier mentioned empirical expressions of Pal
O2

and Pal
CO2

in Equations 6.5 and 6.6.

(1) Now, let us refer Equation 6.5 for the Pal
O2

partial pressure curve
(Figure 6.6), represented by the equation

Pal
O2

¼ k1 1� e�k2 V
�
=V
�
m

� �
=V
�
O2

� �� �
¼ k1 1� e

�k2 V
� *=V

�
O2

h i" #

where V
� * ¼ V

�
=V

�
m (6:9)

wherein

V
�
is the alveolar ventilation rate (in L=min)

V
�
m is the maximum ventilation rate (¼ 50 L=min)

V
�
O2

is the O2 consumption rate (in L=min)

Herein, the coefficients k1 and k2 can be determined by having
this equation match the Figure 6.6 data. Note, in this equation,

when V
�
¼ 0, Pal

O2
¼ 0 from the equation, which satisfies the data in

Figure 6.6.
In Figure 6.6, for V

�
O2

¼ 0:25 L=min, when V
� * ¼ V

�
=V

�
m ¼ 0:5,

Pal
O2

¼ 140 mmHg.
Hence,

140 ¼ k1 1� e�k2(0:5=0:25)
h i

¼ k1(1� e�2k2 ) (6:10)

Also, whenV
�
O2 ¼ 1 L=min andV

� * ¼ 0:3 L=min, Pal
O2

¼ 100mmHg.
Hence,

100 ¼ k1 1� e�k2(0:3=1)
h i

¼ k1(1� e�0:3k2 ) (6:11)

From Equations 6.10 and 6.11, we get

140

100
¼ k1(1� e�2k2 )

k1(1� e�0:3k2 )
¼ 1� e�2k2

1� e�0:3k2

;140� 140e�0:3k2 ¼ 100� 100e�2k2

so that, k2 ¼ 4:18 min=L
(6:12)
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Upon substituting k2¼ 4.18 min=L into Equation 6.10, we obtain

140 ¼ k1 1� e�(2�4:18)
� �

, so that k1 � 140 mmHg (6:13)

Hence, the Pal
O2

curve can be represented by

Pal
O2
(mmHg) ¼ 140 1� e

�4:18 V
� *=V

�
O2

h i" #
(6:14)

Wherein

V
�
O2

¼ Q CAB
O2

� CVB
O2


 �

V
� * ¼ V

�

50 L=min

(2) Now, let us look at the Pal
CO2

expression:

Pal
CO2

¼ k3e
�k4 V

�
=V
�
m

� �
=V
�
CO2

� �
¼ k3e

�k4 V
� *=V�

CO2

h i

We note, from Figure 6.7 that for V
�
CO2

¼ 0:2 L=min and

V
� * ¼ 0:2, Pal

CO2
¼ 12. Hence, from the above equation, we get

12 ¼ k3e
�k4 (6:15)

Also, for V
�
CO2

¼ 0:8 L=min and V
� * ¼ 0:2, Pal

CO2
¼ 62 mmHg.

Hence,

62 ¼ k3e
�k4(0:2=0:8) ¼ k3e

�k4=4 (6:16)

From Equations 6.15 and 6.16, we get

12

62
¼ e�k4

e
�k4
4

¼ e�
3
4k4

; ln
12

62

� 	
¼ � 3

4
k4, so that k4 ¼ 2:19 (6:17)

Substituting k4¼ 2.19 into Equation 6.16, we obtain

62 ¼ k3e
�(2:19=4), ; k3 ¼ 107:18 (6:18)

Hence, the Pal
CO2

curve can be represented as

Pal
CO2

(mmHg) ¼ 107:18e�2:19 V
�
=V
�
m

� �
=V
�
CO2

� �
(6:19)
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wherein

V
� * ¼ V

�
=50 L=min

V
�
CO2

¼ Q(CVB
CO2

� CAB
CO2

)

6.5.3 Quantifying Arterial and Venous O2 and CO2 Partial
Pressure Expressions

We will now quantify the previous expressions of PAB
O2

and PVB
CO2

in terms of
CAB
O2

and CVB
CO2

, as given by Equations 6.7 and 6.8.

(1) From the O2 disassociation curve in Figure 6.8, we had put down

Blood CO2
¼ Cm

O2
1� e

�k5

�
PO2

=Pm
O2

�� �

or C*O2
¼ 1� e

�k5P
*
O2 (6:20)

wherein

C*O2
¼ CO2

Cm
O2

P*O2
¼ PO2

Pm
O2

Cm
O2

¼ 0:2 (or 20 mL of O2=100 mL of blood)

Pm
O2

¼ 140 mmHg

From Figure 6.8, at P*O2
¼ (40mmHg=140mmHg)¼ 0.29 (for normal

venous blood),

C*O2
¼ 15

20
¼ 0:75

Hence, from Equation 6.20:

0:75 ¼ 1� e�0:29k5

; k5 ¼ 4:78 (6:21)

Also, for

P*O2
¼ (95 mmHg=140 mmHg) ¼ 0:68 (for normal blood)

C*O2
¼ 0:19

0:20
¼ 0:95
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Hence, from Equation 6.20:

0:95 ¼ 1� e�0:68k5 or k5 ¼ 4:4 (6:22)

So we take the average value of k5:

; k5 ¼ (4:78þ 4:4)

2
¼ 4:59 (6:23)

Then, the O2 disassociation curve is given by

CO2
¼ CB

O2
¼ 0:2 1� e�4:59(PO2

=140)
h i

(6:24)

Hence, from the above equation, the partial pressure of O2 in
blood (PB

O2
) can be expressed as

PB
O2

¼ 140

4:59
ln

0:2

0:2� CB
O2

" #
¼ 30:5 ln

0:2

0:2� CB
O2

" #
(6:25)

(2) Finally, we look at CO2 disassociation curve (in Figure 6.9),
expressed as

CCO2
¼ CCO2=max 1� e

�k6

�
PCO2

=Pm
CO2

�� 	

or C*CO2
¼ 1� e

�k6

�
PCO2

=Pm
CO2

�
¼ 1� e

�k6P
*
CO2 (6:26)

wherein

Cm
CO2

¼ 0:8 (or 80 mL of CO2 in 100 mL of blood)

Pm
CO2

¼ 140 mmHg

On the basis of Figure 6.9, when P*CO2
¼ (20 mmHg=140 mmHg) ¼

0:14, C*CO2
¼ 0:38

0:80 ¼ 0:475,

so that

0:475 ¼ 1� e�0:14k6 and k6 ¼ 4:60 (6:27)

Also,whenP*CO2
¼ (70 mmHg=140 mmHg)¼ 0:5,C*CO2

¼ 0:60
0:80¼ 0:75,

so that

0:75 ¼ 1� e�0:5k6 and k6 ¼ 2:77 (6:28)
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So we take the average value of k6:

k6 ¼ (4:60þ 2:77)

2
¼ 3:69 (6:29)

Then, in the CO2 disassociation curve, the CO2 concentration is
given (from Equations 6.26 through 6.30) by

CCO2
¼ CB

CO2
¼ 0:8 1� e�3:69(PCO2

=140)
h i

(6:30)

so that the partial pressure of CO2 in blood (PB
CO2

) can be
expressed as

PB
CO2

(mmHg) ¼ 37:94 ln
0:8

0:8� CB
CO2

" #
(6:31)

Now we have been able to express: (1) Pal
O2

in terms V
�
O2

and V
� *, by

means of Equation 6.14; (2) Pal
CO2

in terms of V
�
CO2

and V
� *, by means

of Equation 6.19; (3) PB
O2

(or partial pressure of blood O2) in terms
of O2 blood concentration CB

O2
, by means of Equation 6.25; and (4)

PB
CO2

(or partial pressure of blood CO2) in terms of CO2 blood
concentration CB

CO2
, by means of Equation 6.31. We are now in a

position to develop the expressions for DPO2
av and DPCO2

av in the
pulmonary capillary bed.

6.5.4 Determining DPO2
av and DPCO2

av

In order to determine DO2
and DCO2

, we also need to determine DPO2
av and

DPCO2
av in Equations 6.3 and 6.4, respectively.
Figure 6.10 illustrates the variation of DPO2(¼Pal

O2
� P

cap
O2

) along the
length (l) of the capillary bed.

Let, l* ¼ l=lm (6:32)

Now we can express DPO2 as function l*, as follows:

DPO2(l*) ¼ DPO2
max fO2

(l*) (6:33)

where fO2
(l*) is a function that varies from 1 (at l*¼ 0) to 0 (at l*¼ 1).

Then

DPO2
av ¼ DPO2

max

ð1

0

fO2
(l*) dl*

0
@

1
A ¼ DPO2

max(FO2
) (6:34)
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On the basis of the data in Chapter 10 of [3], since DPO2
av ¼ 12 mmHg for

DPO2
max ¼ 65 mmHg, we have FO2 ¼ 0:185. We can hence put down

DPO2
av (mmHg) ¼ 0:185; DPO2

max ¼ 0:185 Pal
O2

� PVB
O2


 �
(6:35)

We can similarly determine the average value of DPCO2
av from Figure 6.11,

which shows the variation of DPCO2(¼P
cap
CO2

� Pal
CO2

) along the length l of the
capillary bed.

Let l* ¼ l=lm (6:36)

Then, we can represent Figure 6.11 as

DPCO2(l*) ¼ DPCO2
max fCO2

(l*) (6:37)

where fCO2
is a function that varies from 1 (at l*¼ 0) to 0 (at l*¼ 1), so that,

DPco2
av ¼ DPo2

max

ð1

0

fco2 (l*) dl*

2
4

3
5 ¼ DPco2

max(Fco2 ) (6:38)
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Alveolus PO2
= 104 mmHg 

Alveolar oxygen partial pressure

Pulmonary capillary
PO2

 = 40 mmHg PO2
= 104 mmHg

FIGURE 6.10
Uptake of oxygen by the pulmonary capillary blood. (Curve figure was constructed from
Mihorn and Pulley, Biophys. J., 8, 337, 1968; Guyton, A.C., Text Book of Medical Physiology,
Saunders, Philadelphia, 1991. With permission from Elsevier.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C006 Final Proof page 191 29.5.2008 6:39pm Compositor Name: TSuresh

Lung Gas-Transfer Performance Analysis 191



On the basis of the data in Chapter 10 of [3], since DPCO2
av ¼ 0:5 mmHg for

DPco2
max ¼ 5 mmHg; hence we have FCO2

¼ 0:1.
We can now put down

DPco2
av (mmHg) ¼ 0:1 DPo2

max ¼ 0:1 PVB
co2

� Pal
co2


 �
(6:39)

6.6 Sequential Procedure to Compute DO2
and DCO2

On the basis of Equations 6.3 and 6.35, we have

DO2
¼ Total O2 consumed

DPO2
av

¼ V
�
O2

DPO2
av

¼
Q CAB

O2
� CVB

O2


 �

0:185 Pal
O2

� PVB
O2


 � (6:40)

On the basis of Equations 6.4 and 6.39, we have

DCO2
¼ Total CO2 produced

DPCO2
av

¼
_VCO2

DPCO2
av

¼
Q CVB

CO2
� CAB

CO2


 �

0:1 PVB
CO2

� Pal
CO2


 � (6:41)
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FIGURE 6.11
Diffusion of carbon dioxide from the pulmonary blood into the alveolus. (Curve figure was
constructed fromMihorn and Pulley, Biophys. J., 8, 337, 1968; Guyton, A.C., Text Book of Medical
Physiology, Saunders, Philadelphia, 1991. With permission from Elsevier.)
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Note that in the denominators of these equations, we need to know V
�
O2
(t)

and V
�
CO2

(t) for determining Pal
O2

and Pal
CO2

, respectively, based on Equations
6.14 and 6.19.

(1) We first monitor: V(t), V
�
(t), SV(stroke volume), EP(cardiac ejection

period), CVB
O2
, CAB

O2
, CVB

CO2
, and CAB

CO2
(O2 and CO2 concentrations in

pre-oxygenated and post-oxygenated blood).

We can utilize the monitored values of CAB
O2

(¼CVE
O2
) and

CVB
O2
(¼CAE

O2
) in Equation 6.40, and the values of CAB

CO2
(¼CVE

CO2
) and

CVB
CO2

(¼CAE
CO2

) in Equation 6.41, as indicated below.

(2) We determine

Q¼ SV=ejection period, and therefrom

V
�
O2
(t) ¼ Q(CAB

O2
� CVB

O2
), the O2 consumption rate (6:42)

V
�
CO2

(t) ¼ Q(CVB
CO2

� CAB
CO2

), the CO2 production rate (6:43)

wherein we have utilized in the numerators of Equations 6.40 and

6.41, the monitored values of CVB
O2
, CAB

O2
, CVB

CO2
, and CAB

CO2
.

(3) We next obtain Pal
O2

and Pal
CO2

in the denominators of the above

Equations 6.40 and 6.41, by substituting the expressions for V
�
O2
(t)

and V
�
CO2

(t) as well as of V
� *
(¼V

�
=50) into the above equations for

Pal
O2

(Equation 6.14) and Pal
CO2

(Equation 6.19).

(4) We then obtain the values of PVB
O2
(or PAE

O2
) and PVB

CO2
(or PAE

CO2
Þ in the

denominators of Equations 6.40 and 6.41, by substituting the mon-

itored values of CVB
O2
( ¼ CAE

O2
) and CVB

CO2
(¼CAE

CO2
) as well as of

V
� *
(¼V

�
=50) into Equations 6.25 and 6.31.

With this information, we can evaluate DO2
and DCO2

in Equa-
tions 6.40 and 6.41.

(5) Alternately, in order to evaluate DO2
and DCO2

, we can also evalu-
ate DPO2

av from Equation 6.35, by employing the values of Pal
O2

in
step (3) and PVB

O2
in step (4), for its utilization in Equation 6.40.

We can likewise evaluate DPCO2
av from Equation 6.39, by employ-

ing the values of Pal
CO2

in step (3) and PVB
CO2

in step (4), for its
utilization in Equation 6.41.

Then, in order to determine the values of the lung gas-exchange
parameters (or indices) DO2

and DCO2
, we substitute into Equa-

tions 6.40 and 6.41 for (a) V
�
O2
(t) and V

�
CO2

(t) from step (2) and for

(b) DPO2
av and DPCO2

av from step (5).
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6.7 Case Studies

Let us now evaluate DO2
and DCO2

for a couple of typical cases’ data values.

6.7.1 Case Study 1

The monitored data is as follows:

CAE
O2

¼ CVB
O2

¼ 0:13, CVE
O2

¼ CAB
O2

¼ 0:18, CAE
CO2

¼ CVB
CO2

¼ 0:525,

CVE
CO2

¼ CAB
CO2

¼ 0:485; alveolar ventilation rate (V
�
)¼ 5 L=min, blood flow rate

in the pulmonary vascular bed (Q)¼ 5 L=min.
From Equation 6.25, we obtain

PVB
O2

¼ 30:5 ln
0:2

0:2� CVB
O2

" #
¼ 30:5 ln

0:2

0:2� 0:13

� �

¼ 32:02 mmHg (6:44)

From Equation 6.31, we obtain

PVB
CO2

¼ 37:94 ln
0:8

0:8� CVB
CO2

" #
¼ 37:94 ln

0:8

0:8� 0:525

� �

¼ 40:51 mmHg (6:45)

We have monitored cardiac output Q¼ 5 L=min. From the ventilation rate

V
�
¼ 5 L=min, we obtain (from Equation 6.9):

V
� * ¼ 5

50
¼ 0:1 (6:46)

Then, from Equation 6.3 or 6.42:

V
�
O2
(t) ¼ Q CAB

O2
� CVB

O2


 �
, so that from the above data,

V
�
O2
(t) ¼ 5000 � (0:05) ¼ 250 ml of O2=min consumption rate (6:47)

Likewise, from Equation 6.4 or 6.43 and the above data,

V
�
CO2

(t) ¼ Q(CVB
CO2

� CAB
CO2

) ¼ 5000(0:04)

¼ 200 ml of CO2=min production rate (6:48)
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Now, from Equation 6.14:

for V
� * ¼ 0:1 (Equation 6.46) and V

�
O2

¼ 0:25 L (Equation 6.47), we
obtain Pal

O2
:

Pal
O2

¼ 140 1� e�4:18
�
V
� *=V

�
O2

�� �

¼ 140 1� e�4:18[0:1=0:25]
h i

¼ 113:7 mmHg (6:49)

Likewise, from Equation 6.19, for V
� * ¼ 0:1 (Equation 6.46) and

V
�
CO2

¼ 0:20 L (Equation 6.48), we obtain

Pal
CO2

¼ 107:18e�2:19
�
V
� *=V

�
CO2

�
¼ 107:18e�2:19[0:1=0:2]

¼ 35:86 mmHg (6:50)

Now, we can evaluate the diffusion coefficients as follows:
From Equations 6.40, 6.35, 6.44, 6.47, and 6.49, along with the given data,

we get

DO2
¼ Q

�
CAB
O2

� CVB
O2

�
DPO2

av

¼ Q
�
CAB
O2

� CVB
O2

�
DPO2

max FO2
ð Þ ¼ V

�
O2
(in mL=min)

0:185
�
Pal
O2

� PVB
O2

�
mmHg

¼ 5000(0:05)

(113:7� 32:02)� 0:185
¼ 16:84 (mL O2=min)=mmHg (6:51)

Likewise, from Equations 6.41, 6.39, 6.45, 6.48, and 6.50, along with the given
data, we get

DCO2
¼ Q

�
CCB
CO2

� CAB
CO2

�
DPCO2

av

¼ V
�
CO2

(in mL=min)

0:1
�
PVB
CO2

� Pal
CO2

�
mmHg

¼ 5000(0:04)

(40:51� 35:86)� 0:1
¼ 430:11(mL CO2=min)=mmHg (6:52)

6.7.2 Case Study 2

For this case study (to determineDO2
andDCO2

), we have the following data:

(1) From the inspired and expired air data analysis (such as that
carried out in Section 6.4), we compute:

O2 consumption rate ¼ 283:2 mL=min (Section 6:4:1),

CO2 production rate ¼ 226:8 mL=min (Section 6:4:1),

Pal
O2

¼ 103:21 mmHg and Pal
CO2

¼ 38:47 mmHg (Table 6:2):

(6:53)
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(2) From the venous blood–gas analysis:

CVB
O2

¼ 0:13, CVB
CO2

¼ 0:548 (6:54)

Then, as per Equation 6.25,

PVB
O2

¼ 31:2 mmHg, (6:55)

corresponding to the monitored CVB
O2

¼ 0:13.
Also, for the monitored CVB

CO2
¼ 0:548, as per Equation 6.31, we get

PVB
CO2

¼ 43:84 mmHg (6:56)

We have obtained, from air composition analysis,

O2 consumption rate V
�
O2
(t) ¼ 283:3 mL=min (6:57)

and CO2 production rate V
�
CO2

(t) ¼ 226:8 mL=min (6:58)

Hence, from Equation 6.40 with the calculated values of V
�
O2

¼
283:3 mL=min (Equation 6.57), Pal

O2
(Equation 6.53), and of PVB

O2

(Equation 6.55), we obtain

DO2
¼ V

�
O2

DPO2
av

¼ 283:2

(103:21� 31:2)� 0:185

¼ 21:90 (mL O2=min )=mmHg (6:59)

Likewise, from Equation 6.41, along with the calculated values

of V
�
CO2 ¼ 226:8 mL=min (Equation 6.58), Pal

CO2
(Equation 6.53),

and PVB
CO2

(Equation 6.56), we obtain

DCO2
¼ V

�
CO2

DPCO2
av

¼ 226:8

(43:84� 38:47)� 0:1

¼ 417:68 (mL CO2=min )=mmHg (6:60)

It is noted that both the methods (in Sections 6.7.1 and 6.7.2) yield
similar values of DO2

and DCO2
, thereby providing validity to our

analysis. However, the advantage of this method (in Section 6.7.2)
over the previous method (in Section 6.7.1) is that it does not
require monitoring the cardiac output, and is hence simpler to
implement clinically.
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6.8 Nondimensional Gas-Transfer Index (NDGTI)

We can even formulate a nondimensional gas-transfer index as

NDGTI ¼ DCO2

DO2

�O2 consumption rate

CO2 production rate
(6:61)

Checking dimensions:

NDGTI ¼ DCO2

DO2

�O2 consumption rate

CO2 production rate

¼ (mL CO2=min)=mmHg

(mL O2=min)=mmHg
� mL O2=min

mL CO2=min

For our case 6.7.2, we have the value of NDGTI given by

NDGTI ¼ 417:68 (mL CO2=min)=mmHg

21:90 (mL O2=min)=mmHg
� 283:2 mL=min

226:8 mL=min
¼ 23:8 (6:62)

In summary, we have derived expressions for diffusion coefficients DO2
and

DCO2
, in terms of (1) evaluated cardiac-output CO, O2, and CO2 concentra-

tions in arterial and venous blood as well as alveolar and blood O2 and CO2

partial-pressures or (2) inspired and expired air data analysis and O2 and
CO2 concentrations of the venous blood. The coefficients DO2

and DCO2

represent the lung capability to oxygenate the blood.
The derived information of DO2

and DCO2
as well as of O2 and CO2

metabolic rates can be of considerable clinical use (including for SARS
assessment). Finally, the NDGTI index can be employed by clinicians to
assess the gas-transfer capacity of the lung-capillary bed system, in terms of
just one nondimensional index.
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7.1 Introduction

This chapter is about modeling of lung ventilation response of COPD patients
onmechanical ventilation, and howwe can develop a lung ventilatory index to
enable us to assess their lung status and decide when they are ready to be
weaned off themechanical ventilator. Inmechanically ventilated patients with
chronic obstructive pulmonary disease (COPD), elevated airway resistance
and decreased lung compliance (i.e., stiffer lung) are observed with rapid
breathing. The need for accurate predictive indicators of lung status improve-
ment is essential for ventilator discontinuation (or extubation) through
stepwisereductioninmechanical support, as andwhen patients are increasingly
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able to support their own breathing, followed by trials of unassisted breathing
preceding extubation and ending with extubation.

For determining if a patient is ready to be discontinued from mechanical
ventilation after the clinician has chosen an appropriate indicator to assess
lung status he or she will incorporate this indicator into three general
approaches for ventilator discontinuation which are (1) synchronized inter-
mittentmandatoryventilation (SIMV)where thenumber of breaths is supplied
by the ventilator and lowering the ventilator breaths will initiate more spon-
taneous breaths in the patient; (2) pressure support ventilation (PSV) which
provides inspiratory pressure assistance based on spontaneous efforts; and (3)
spontaneous breathing trial (SBT). The intent of the ventilatorydiscontinuation
process is to decrease the level of support provided by the ventilator, requiring
the patient to assume a greater proportion of the ventilatory workload.

For stepwise reduction in mechanical ventilatory support, the most useful
clinically employed indicators have been rapid shallow breathing index
(RSBI) <65 breaths=min=L (measured using ventilatory settings) and
respiratory rate or frequency (RF) <38 breaths=min. However, these are
extrinsic empirical indices; currently, there is no known easy-to-use, reliable
indicator that incorporates the intrinsic parameters governing the respira-
tory system mechanics for indicating lung status improvement or deterior-
ation and eventual ventilator discontinuation. For this reason, we have
developed an easy-to-employ lung ventilatory index (LVI), involving the
intrinsic parameters of a lung ventilatory model, represented by a first-order
differential equation in lung volume response to ventilator driving pressure.
The LVI is then employed for evaluating lung status of COPD patients
requiring mechanical ventilation because of acute respiratory failure.

7.2 Scope and Methodology

We recruited 13 mechanically ventilated patients with COPD in acute respira-
tory failure.All patientsmet thediagnostic criterion ofCOPD.The first attempt
at discontinuation (or weaning off the ventilator) for every patient was made
within a short duration (not exceeding 88 h). The patients in the study were
between the ages of 54–83 years. All the patients were on SIMV mode with
mandatory ventilation at initial intubation. Based on the physician’s judgment,
the modes were changed for eventual discontinuation of mechanical ventila-
tion. The time period for recording observations was 1 h. For all purposes in
this study, a successful ventilator discontinuation is defined as the toleration to
extubation for 24 h or longer and a failed ventilator discontinuation is defined
as either a distress when ventilator support is withdrawn or the need for
reintubation. Our LVI was then employed to distinguish patients who could
be successfully weaned off the mechanical ventilator.

Hence, the scope of our chapter is thatwehavedeveloped anLVI, based on a
lung model represented by a first-order differential equation in lung volume
dynamics to assess lung function and efficiency in the case of COPD patients
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requiring mechanical ventilation because of acute respiratory failure. Herein,
we have attempted to evaluate the efficacy of the LVI in identifying improving
or deteriorating lung condition in such mechanically ventilated COPD
patients, and consequently if LVI can be used as a potential indicator to predict
ventilator discontinuation. In a bioengineering study of 13COPDpatientswho
were mechanically ventilated because of acute respiratory failure, when their
LVIwas evaluated, it provided clear separation between patientswith improv-
ing and deteriorating lung condition. Finally, we formulated a lung improve-
ment index (LII) representative of the overall lung response to treatment and
medication, and a parameter m that corresponds to the rate of lung improve-
ment and reflects the stability of lung statuswith time. This chapter is based on
our Chapter 9 in Ref. [1] and the figures employed here are adopted from this
chapter.* Other works on this subject (of COPD, mechanical ventilation, and
weaning from mechanical ventilation) are given by Refs. [2–8].

7.3 Lung Ventilation Model

From a ventilatory mechanics viewpoint, the lungs can be considered analo-
gous to a balloon, which can be inflated and deflated (passively). The gradient
between the mouth pressure (Pm) and the alveolar pressure (Pal) causes res-
piration to occur. During inspiration, Pm>Pal which causes air to enter the
lungs. During expiration, Pal increases and is greater than Pm; this causes
the air to be expelled out of the lungs passively. These pressure differentials
provide a force driving the gas flow. The pressure difference between the
alveolar pressure (Pal) and pleural pressure (Pp) counterbalances the elastic
recoil. Thus, the assessment of respiratory mechanics involves the measure-
ment of flows, volumes (flow integrated over time), and pressure-gradients.
The lung ventilation model (shown in Figure 7.1) is based on the following
dynamic equilibrium differential equation (Equation 7.1), expressing lung
volume response to pressure across the lung:

RV
� þ V

C
¼ PL(t)� Pe ¼ PN(t) (7:1)

where
PL (total positive pressure across the lung)¼Pm�Pp, where Pp is
determined by intubating the patient, and assuming that the pressure
in the relaxed esophageal tube equals the pressure in the pleural
space surrounding it

lung compliance (C) and airflow resistance (R) are the parameters of the
governing Equation 7.1 with both R and C being instantaneous values

V¼V(t)�Ve (where Ve is the end-expiratory lung volume)
Pe is the end-expiratory pressure
PN (the net driving pressure)¼PL�Pe

*With the permission of the Publisher WIT Press, Southampton, U.K.
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R

FIGURE 7.1
Lungmodelwhere the alveoli are lumped into one chamber (of volumeV andpressurePal) and the
airway are lumped into one tube of resistance R to airflow rate. (Adopted from Ghista, D.N.,
Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and

Physiology, Mathematical Modeling, Numerical Simulation and Applications, V. Kulish (Ed), WIT
press, Southampton, U.K., 2006.)

Let B be the amplitude of the net pressure waveform applied by the ventilator,
Ca be the averaged dynamic lung compliance, Ra the averaged dynamic
resistance to airflow, PL (the driving pressure)¼PeþB sin(vt), and PN the net
pressure be given as PN¼B sin(vt). The governing Equation 7.1 then becomes

RaV
� þ V

Ca
¼ PN ¼ B sin(vt) (7:2)

The volume response to PN (the solution to Equation 7.2) is given by

V(t) ¼ BCa{sin(vt)� vkacos(vt)}

1þ v2k2a
þHe�ðt=kaÞ (7:3)

where
ka (¼RaCa) is the averaged time constant
the integration constant H is determined from the initial conditions
the model parameters are Ca and ka (i.e., Ca and Ra)
v is the frequency of the oscillating pressure profile applied by the

ventilator

Anessential condition is that the flow rate is zero at thebeginningof inspiration
and end of expiration. Hence, the flow rate dV=dt¼ 0 at t¼ 0. Applying this
initial condition to our differential Equation 7.3, the constantH is obtained as

H ¼ BCavka
1þ v2k2a

(7:4)

When this expression for H is substituted in Equation 7.3, we also get
V(t¼ 0)¼ 0. Then, from Equations 7.3 and 7.4, we obtain

V(t) ¼ BCa{sin(vt)� vka cos(vt)}

1þ v2k2a
þ BCavka
1þ v2k2a

e�ðt=kaÞ (7:5a)
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FIGURE 7.2 (See color insert following page 266.)
Lung ventilatory model data showing airflow (V

�
), volume (V), and net pressure (PN). Pause

pressure (Ptm ) occurs at tm, at which the volume is maximum (TV¼ tidal volume). Dt is the phase
difference between the time of maximum volume and peak pressure (Pk). It is also the time lag
between the peak andpause pressures.B is the amplitude of the net pressurewaveformPN applied
by the ventilator. This PN oscillates about Pe with amplitude of B. The difference between peak
pressure Pk and pause pressure Ptm is DP. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and Physiology, Mathematical Modeling,

Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)

For t¼ tm, V(t) is maximum and equal to the tidal volume (TV). In a normal
person, ka is of the order of 0.1 and 0.5 in ventilated patients with respiratory
disorders, which is relevant to our study of COPD patients. At t¼ tm at
which the lung volume is maximum, we note from Figure 7.2 that tm is of
the order of 2 s. Hence tm=ka is of the order 20 to 4, so that e�t=ka is of the
order of e�20 to e�4, which is very small and hence negligible. Hence, in
Equation 7.5, we can neglect the exponential term, so that

V(t) ¼ BCa{ sin(vt)� vka cos(vt)}

1þ v2k2a
(7:5b)

Figure 7.2 illustrates a typical data of V, V
�
, and PN (in which Pk is of the

order of 10 cm H2O for COPD patients). For evaluating the parameter ka, we
will determine the time at which V(t) is maximum and equal to the TV.
Hence putting dV=dt¼ 0 in Equation 7.5b, we obtain

cos(vt)þ vka sin(vt) ¼ e�ðt=kaÞ (7:6)
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Hence, from Equation 7.6, we obtain the following expression for ka:

tan(vt) ¼ 1=vka (7:7a)

or

ka ¼ �1=v tan(vtm) (7:7b)

where

since tan(vtm) ¼ �1=vka, then (7:8a)

tan(p � vtm) ¼ 1=vka or p � vtm ¼ tan�1 (1=vka) (7:8b)

Hence

tm ¼ p � tan�1 (1=vka)

v
(7:8c)

or

tm ¼p� u

v
, where u¼ tan�1 (1=vka)¼p�vtm, and ka ¼ 1=v tanu (7:8d)

Now, since both v and tm are known, we can evaluate ka from Equation 7.7b.
Also, from the above equations and as illustrated in Figure 7.2, the phase
difference (Dt) between t¼p=2v at which pressure PN (¼B sin vt) is
maximum (and equal to Pk) and tm (at which PN¼Pm) is

Dt ¼ tm � t ¼ p � tan�1 (1=vka)

v
� p

2v
(7:9a)

or

Dt ¼ (p=2)� tan�1 (1=vka)

v
(7:9b)

From Equations 7.8c and 7.8d

tan�1 (1=vka) ¼ u ¼ p � vtm (7:10)

Hence

sin u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p (7:11a)

cos u ¼ vkaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p (7:11b)
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Figure 7.2 shows the clinical lung volume response dynamics in response to
the net ventilatory driving pressure (PN). Referring to Figure 7.2, tm denotes
the time at which the lung volume is maximum. Since v (the frequency
of the oscillatory pressure profile applied by the ventilator) and tm (the time
at which V(t)¼TV) are known, we can also evaluate the model parameter
ka, from Equations 7.10 and 7.11. Now, from Equation 7.5b, we obtain

V(t ¼ tm) ¼ TV ¼ BCa{sin(vtm)� vka cos(vtm)}

1þ v2k2a
(7:12)

In Equation 7.12, if we put

N ¼ sin(vtm)� vka cos(vtm) (7:13a)

then, from Equation 7.8a, Equation 7.13a becomes

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p þ v2k2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p (7:13b)

or

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

q
(7:13c)

Then, based on Equations 7.13a and 7.13c, Equation 7.12 becomes

V(t ¼ tm) ¼ TV ¼ BCaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p (7:14)

Based on this equation, we can evaluate the complianceCa, if B (the amplitude
of PN) is known, since we have already evaluated ka (from Equation 7.7b).

7.4 Determining Lung Compliance (Ca) and Airflow

Resistance (Ra)

As shown in Figure 7.2, the peak pressure (Pk) is the maximum pressure in
the lungs during inspiration. The pause pressure (Ptm) is defined to occur
when V(t) is maximum, i.e., at t¼ tm at the end of inspiration. The peak
pressure occurs when the driving pressure is maximum at t¼p=2v, while
the pause pressure occurs when the lung volume is maximum, i.e., at end of
inspiration, when tm¼ (p� u)=v, as indicated by Equation 7.8d. It can be
interpreted that there is a phase lag of Dt between pause and peak pressures,
which is described by Equation 7.9. It is known that the driving pressure
(PL) is given as PL¼PeþB sin (vt), which leads us to
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Peak pressure (Pk) ¼ PL (at t ¼ p=2v) ¼ Pe þ B (7:15)

Pause pressure (Ptm) ¼ PL (at t ¼ tm ¼ (p � u)=v)

¼ Pe þ B sin v
p � u

v

� �� �
(7:16)

i:e:, pause pressure (Ptm) ¼ Pe þ B sin u (7:17)

Now, based on Equation 7.11a, Equation 7.17 becomes

Pause pressure (Ptm) ¼ Pe þ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p (7:18)

Then, from Equations 7.15 and 7.17, we get (as shown in Figure 7.2)

Pk � Ptm ¼ DP ¼ B� B sin u ¼ B(1� sin u) (7:19)

or B ¼ Pk � Ptm

(1� sin u)
¼ DP

(1� sin u)
(7:20)

where sin u is given by Equation 7.11b.
In Equation 7.20, since Pk, and Ptm as well as u (¼p�vtm) are measur-

able, the amplitude B (of PN) can be evaluated. Then from Equation 7.14, we
can evaluate the averaged lung compliance (Ca), because ka (¼RaCa) has
already been evaluated by Equation 7.7b. Hence, based on Equations 7.14,
7.11a, and 7.20, we obtain

Ca ¼ TV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2k2a

p
B

¼ TV

B sin u
¼ TV(1 � sin u)

DP sin u
(7:21)

Then, from Equations 7.21 and 7.8d, the average value of airflow resistance
(Ra) can be evaluated as

Ra ¼ ka=Ca ¼ DP sin u(1=v tan u)

TV(1� sin u)
¼ DP cos u

TVv(1� sin u)
(7:22)

For our patients, the ranges of the computed values of these parameters are

Ra ¼ 9� 43 cm H2O s=L

Ca ¼ 0:020� 0:080 L=cm H2O
(7:23)

Now that we have determined the expressions for the parameters Ra

and Ca, the next step is to develop an integrated index lung ventilatory
incorporating these parameters.
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7.5 Formulating a Lung Ventilatory Index (LVI)

Incorporating Ra and Ca

Correlations between average airflow resistance (Ra), average lung compli-
ance (Ca), tidal volume (TV), respiratory rate (RF), and maximum inspira-
tory pressure or peak pressure (Pk) could be used as a possible indicator for
determining lung status in a mechanically ventilated COPD patient with
acute respiratory failure. We hence propose that a composite index (LVI),
incorporating these isolated parameters, can have a higher predictive power
for assessing lung status and determining when a patient should be put on a
mechanical ventilator.

For this purpose, we note that COPD patients have higher Ra, lower Ca,
lower TV, higher Pk, and higher respiratory rate (or frequency) RF. If we
want the LVI to have a high value for a COPD patient, further increasing
LVI for deteriorating lung status and decreasing LVI for improving lung
status in a mechanically ventilated COPD patient in acute respiratory fail-
ure, then the LVI can be expressed as

LVI ¼ Ra(RF)Pk

Ca(TV)
(7:24)

where RF is the respiratory rate frequency.
Let us obtain the order of magnitude values of this LVI expression for

a mechanically ventilated COPD patient in acute respiratory failure
(by using representative computed values of the parameters Ra, Ca, RF,
TV, and Pk), in order to verify that the formula for LVI (given by Equation
7.24) can enable distinct separation of COPD patients in acute respiratory
failure from patients ready to be weaned off the respirator. For an intubated
COPD patient, we have

for Ra ¼ 15 cmH2O s=L, Ca ¼ 0:035 L=cm H2O, RF ¼ 0:33 s�1

TV ¼ 0:5 L and Pk ¼ 20 cm H2O,

LVI (intubated COPD) ¼ [15 cm H2O s=L][0:33s�1][20 cm H2O]

[0:035 L=cm H2O][0:5 L]

¼ 5654 (cm H2O=L)3 (7:25)

Now let us obtain the order of magnitude of LVI (by using representative
computed values of Ra, Ca, RF, TV, and Pk) for a COPD patient with
improving lung status just before successful discontinuation or extubation.
For a successfully weaned COPD patient (examined in an outpatient clinic),
we have
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for Ra ¼ 10 cm H2O s=L, Ca ¼ 0:050 L=cm H2O, RF ¼ 0:33 s�1

TV ¼ 0:35 L and Pk ¼ 12 cm H2O,

LVI (outpatient COPD) ¼ [10 cm H2O s=L][0:33 s�1][12 cm H2O]

[0:05 L=cm H2O][0:35 L]

¼ 2263 (cm H2O=L)3 (7:26)

Hence, for LVI to reflect lung status improvement in a mechanically venti-
lated COPD patient in acute respiratory failure, it has to decrease from LVI0
at the time of admission to the range of LVI for an outpatient COPD
patient at the time of discontinuation. Hence, we now put down for lung
ventilatory index variation (LVIV):

LVIV ¼ LVI(t) ¼ LVI0 e�mt (7:27)

where
LVI0 represents the value of LVI at the time of admission of the patient

to the respiratory care unit
Coefficient m, represents the rate of improvement (or deterioration) of

the patients lung status; m¼ 0 implies no change in lung condition
Coefficient m (the rate of decrease of LVI or improvement in lung

status) will be positive with deteriorating lung condition and nega-
tive for improving lung condition

We can also formulate a lung improvement an index LII (or DLVI%), as a
measure for overall lung status improvement or deterioration, as

LII¼DLVI(%)¼LVI (at entry or intubation)�LVI (at discharge or extubation)

LVI (at entry)
�100

(7:28)

and employ it for justifying discontinuation of mechanical ventilation.

7.6 Evaluating Lung Ventilatory Index

7.6.1 LVI Characteristics

Now that we have formulated LVI (Equation 7.24), let us verify for select
patient data that LVI is indicative of lung status improvement or deterior-
ation. For this purpose, we have categorized the intubated patients into two
categories: (1) patients who were successfully discontinued and (2) patients
who failed discontinuation. Table 7.1 provides the range of LVI values for
the two categories, where for all successful discontinuations the LVI is close
to the value for an outpatient COPD patient.
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In Table 7.1, all patients who were successfully discontinued have LVI at
discontinuation in the range of 1,194–4,589 cm H2O=L3. Similarly, patients
with failed discontinuation have LVI at discontinuation in the range
of 7,144–15,658 cm H2O=L3. Thus LVI is indicating a clear separation
between successful and failed discontinuation of mechanical ventilation.
In Figure 7.3, we have provided the distribution of LVI as a measure of
outcome for successful and failed discontinuation of mechanically venti-
lated COPD patients in acute respiratory failure (approximated as a normal
distribution). In Figure 7.4, we have provided the LVI characteristics
for four patients, indicating their lung status. Among these patients, patient
4 had failed extubation while the other three patients were successfully
extubated.

TABLE 7.1

Range of LVI Values at Intubation and Outcome

Outcome Number

Age

(years)

Sex

(M=F)

Time of

Intubation

(h)

LVI at

Intubation

(cm H2O=L)3

LVI at

Outcome

(cm H2O=L)3

Successful
discontinuation

6 54–74 6=0 11–55 3,959–13,568 1,194–4,589

Failed
discontinuation

7 64–83 5=2 29–88 3,350–21,152 7,144–15,658

(6) Successful extubation case (7) Failed extubation case

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

LV
I

LVI successful extubation

LVI failed extubation

FIGURE 7.3
Distribution of lung ventilatory index (LVI) (as a measure of outcome) at discontinuation for
patients with failed and successful weaning off the mechanical ventilator. For the six successfully
discontinued cases, the LVI was 2,900� 567 cm H2O=L3; for the seven failed discontinuation
cases the LVIwas 11,400� 1,433 cm H2O=L3. It is seen that LVI indicates clear separation between
failed and successful discontinuation. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., inHuman Respiration: Anatomy and Physiology, Mathematical Modeling,

Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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7.6.2 Comparing the Efficacies of Ra and Ca with LVI

Now let us evaluate the significance ofRa andCa with lung status. In Table 7.2,
we have provided information on the values of Ra and Ca at intubation as well
as for successful and failed discontinuation for the two classes of patients. In
Figures 7.5 and 7.7, we have provided Ra and Ca characteristics for the same
four patients discussed in Figure 7.4. We observe that patients with successful
discontinuation had (1) Ra at discontinuation in the range of 9–14 cmH2O s=L
compared to 17–23 cm H2O s=L in failed discontinuation cases and (2) Ca for
successful discontinuation in the range of 0.03–0.08 L=cm H2O compared to
0.028–0.042 L=cm H2O in failed discontinuation cases.

TABLE 7.2

Ranges of Ra and Ca at Intubation and Associated with Outcomes for Successful
and Failed Ventilator Weaning

Outcome

Ra at

Intubation

(cm H2O s=L)

Ra at

Outcome

(cm H2O s=L)

Ca at

Intubation

(L=cm H2O)

Ca at

Outcome

(L=cm H2O)

ka at

Intubation

(s)

ka at

Outcome

(s)

Successful

discontinuation

14–32 9–14 0.03–0.047 0.030–0.080 0.42–1.50 0.27–1.12

Failed

discontinuation

14–25 17–23 0.03–0.037 0.028–0.042 0.42–0.925 0.47–0.99

Hours after admission (or intubation) 
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LVI (patient 1)

LVI (patient 2)

LVI (patient 3)

LVI (patient 4)

FIGURE 7.4 (See color insert following page 266.)
Lung ventilatory index (LVI) (showing lung status) in fourmechanically ventilatedCOPDpatients
in acute respiratory failure. Note that patients 1, 2, and 3 were successfully discontinued, and
patient 4 had failed discontinuation. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and Physiology, Mathematical Modeling,

Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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Figure 7.5 shows the time variation in the parameter Ra of successfully
extubated patients (SEPs) and the unsuccessfully extubated patients (UEPs).
It is noted that Ra decreases steadily in SEPs, but continues to be high in
UEPs. The distribution of Ra (in Figure 7.6), graphically illustrates distinct
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FIGURE 7.5 (See color insert following page 266.)
The variations in Ra for four mechanically ventilated patients, showing that patients 1, 2, and 3
are all discontinued at lower airflow resistance (Ra) values of 8–10 cm H2O s=L, i.e., closer to
outpatient COPD values of Ra; for these patients, the Ra values decreased with mechanical
ventilation. For patient 4 (who could not be weaned off), the Ra values remained at a high level.
(Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human

Respiration: Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and Applica-
tions, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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FIGURE 7.6
Distribution of Ra at discontinuation for successful and failed extubation. Ra ¼ 11.5 � 0.83 cm
H2O s=L for the six successful discontinuation cases, and 20� 1 cmH2O s=L for the seven failed
discontinuation cases. Hence, Ra indicates a clear separation between failed and successful
discontinuations. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B., Bandi, P., and Kumar,
R.V., in Human Respiration: Anatomy and Physiology, Mathematical Modeling, Numerical Simulation
and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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separation of UEPs and SEPs. Yet in the case of patient 2 in Figure 7.5, the
resistance at intubation was 12.38 cm H2O s=L and decreased only slightly at
discontinuation to 10.82 cmH2O s=Lwithin the period of 15 h of intubation to a
value corresponding to that of an outpatient COPD patient. However, for this
patient 2, theLVI changed from7300 to 4500 cmH2O=L3 as shown inFigure 7.4,
and is significantly closer to the outpatient COPD patient LVI at successful
discontinuation as shown in Figure 7.3 and Table 7.1. This indicates that Ra by
itself is less sensitive to the change in lung status compared to LVI.

Now let us observe the dynamics of Ca, to see if it can by itself pro-
vide proper separation between normal and COPD patients. Figure 7.7,
illustrating the Ca dynamics of the same four patients, does not show a
definitive trend of increasing Ca for SEPs; in fact, the Ca of even patient
1 kept decreasing (although, as shown in Figure 7.4, its ka decreased). In
fact, from both Table 7.2 and Figure 7.8, it is seen that Ca (by itself) cannot
provide clear separation between patients with improving and deteriorat-
ing lung status.

Hence, it is seen that both Ra and Ca (by themselves) cannot be reliable
indicators for assessing lung status in mechanically ventilated COPD
patients in acute respiratory failure, compared to the LVI.

7.6.3 LVI as a Reliable Predictor of Ventilator Discontinuation

We have noted that only LVI can be a reliable indicator of lung status in a
mechanically ventilated COPD patient with acute respiratory failure. But
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FIGURE 7.7 (See color insert following page 266.)
The variations in Ca for four mechanically ventilated patients, indicating that the Ca values for
patients 1, 2, and 4 were all in the lower values and did not change significantly from the time
of intubation; incidentally, the lung status for patients 1 and 2 improved and they were
successfully discontinued, while patient 4 failed discontinuation. (Adopted from Ghista, D.N.,
Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and

Physiology, Mathematical Modeling, Numerical Simulation and Applications, V. Kulish (Ed), WIT
press, Southampton, U.K., 2006.)
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can it be used as a predictor for ventilator discontinuation? Now, an ideal
predictor of ventilator discontinuation would safely and easily distinguish
patients needing discontinuation and continued ventilatory support, which
we have successfully indicated with our patient data. Also, it has been
speculated that as much as 42% of the time spent by patients on mechanical
ventilation are instances when they could have been extubated, and in many
cases unnecessary delays in the discontinuation process is associated with
further complications [2–8].

In this context, we observe that LVI has adequately addressed the issue by
identifying patients whose LVI values have stayed consistently in the LVI
range for successful extubation. For example, in Figure 7.4 there are four
instances when the LVI value for patient 4 is lower than 5000 cm H2O=L3,
and closer to the value for an ideal COPD outpatient; yet this patient was
not weaned off the mechanical ventilator. This leads us to conclude that LVI
can be a reliable factor in the clinician’s judgment to identify patients
needing discontinuation. Thus, we can state that LVI is a reliable index for
discontinuation.

7.7 Assessing Lung Improvement Index (LII) and Rate

of Lung Improvement (m)

The rationale behind designating LII (Equation 7.28) as an index is not as an
indicator for lung status per se, because there are instances when the patient
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FIGURE 7.8
Distribution of Ca at extubation for successful and failed discontinuation. Ca ¼ 0.055 � 0.0083
L=cmH2O for the six successful discontinuation cases, and 0.034� 0.0027 L=cmH2O for the seven
failed discontinuation cases. Hence, Ca (by itself) does not provide a clear separation between
failed and successful discontinuations. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., inHuman Respiration: Anatomy and Physiology,Mathematical Modeling,

Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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lung had improved from the time of initial intubation but could not be
sustained upon discontinuation. However, LII could be representative of
the overall lung response to treatment and medication. As regards use of
LVIV for assessment of continuing improvement of mechanically ventilated
COPD patients, the coefficient m in Equation 7.27 corresponds to the rate of
improvement or deterioration in lung status. It is to be noted that for a
patient with improving lung condition, m will be positive and vice versa.

We have observed that in most patients, m decreased immediately after
the first few hours of mechanical ventilation, and later on varied somewhat
and stabilized before successful discontinuation. Hence, we propose that m
provides a measurement of lung status change at any point in time, and
hence provide a clear separation between patients with improving and
deteriorating lung status, as indicated by Figure 7.9. Table 7.3 provides
information on both LII and m for patients with successful and failed

TABLE 7.3

Range of LII and m at Intubation and Outcome

Outcome Number

Age

(years)

Sex

(M=F)

Time of

Intubation

(h)

LII (%) at

Outcome

m at

Outcome

Successful
discontinuation

6 54–74 6=0 11–55 26% to 86% 0 to 0.18

Failed
discontinuation

7 64–83 5=2 29–88 �101% to 49% �0.045 to 0.015
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FIGURE 7.9
The distribution of m for patients with successful and failed discontinuation or extubation. The
parameter m ¼ 0.09 � 0.03 for the six successful discontinuation cases, and �0.015 � 0.01 for
the seven failed discontinuation cases. Hence, m indicates appreciable separation between
successful and failed discontinuations (or weaning off the ventilator). (Adopted from Ghista,
D.N., Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and

Physiology, Mathematical Modeling, Numerical Simulation and Applications, V. Kulish (Ed), WIT
press, Southampton, U.K., 2006.)
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discontinuation, while Figures 7.9 and 7.10 illustrate their distributions.
Based on Table 7.3 and Figure 7.10, we can say that both LII and m show
distinct outcomes for patients with successful extubation.

7.8 Conclusion

We have shown LVI, LII, and m to be reliable indicators for mechanically
ventilated COPD patients in acute respiratory failure. We have also indi-
cated how they can be collectively employed to decide extubating a patient.
In conclusion, the way in which we could employ LVI, LII, and m in
combination is as follows. Starting with evaluation of LVI at the time of
intubation, we can employ LII and m to designate signs of lung improve-
ment. Then, when LVI value persists being less than 3000 cm H2O=L3 for
2–3 h, we could decide to extubate the patient.
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8.1 Background

8.1.1 History and Prevalence of Diabetes

Albert Einstein once said, ‘‘The most incomprehensible thing about the uni-
verse is that it is comprehensible.’’ Human or more specifically the human
body is a part of this still largely incomprehensible universe. There has been
and will always be constant effort to unravel the mystery of the human body.

Diseases are part of this mystery. How do they happen? How do we cure
them? Why some diseases are more prevalent in one ethnic group than the
others? Can we use the power of science and technology to know more
about them? Diabetes is one of the diseases that has been around for a very
long time and yet has not been fully understood amid progress in many
fields of science and technology.

There was a prescription for frequent urination, the most common symp-
tom of diabetes, on an Egyptian papyrus dating back to 1500 BC. Much later
in 100 AD, the Greek physician Aretaeus of Cappadocia first named the
condition ‘‘diabetes,’’ which is Greek for ‘‘siphon,’’ since people with dia-
betes urinated often. In 1889, two European scientists discovered that
removing pancreases from dogs caused diabetes. Until this century, the
only way doctors had to treat diabetes was through diet. Then the first
major progress happened in 1922, with the successful purification and
subsequent injection of insulin taken from an animal into a boy with dia-
betes. It greatly improved his condition and life expectancy, very uncom-
mon at that time.

Diabetes is now one of the commonest noninfectious medical conditions
in the world and the numbers are rising. It currently affects about 151
million people worldwide and the number will double by 2010 according
to professor Paul Zimmet of the World Health Organization. Diabetes is a
leading cause of blindness, renal failure, and limb amputation all over the
world. The need to detect diabetic risk factors and treat organ disorders and
complications associated with diabetes has provided the motivation for the
technology for more precise categorization of at-risk subjects, confirmed
diabetics, and severely diabetics. To gain understanding about diabetes,
let us now take a look at blood glucose regulation of the human body.

8.1.2 Blood Glucose Regulation

Glucose enters the blood from two sources: from the intestine where carbo-
hydrates are absorbed from digested food and from liver. Figure 8.1 shows
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how the body relies on two hormones, which have two opposite actions:
insulin and glucagon, produced in the pancreas to maintain a constant
blood glucose level.

Insulin is made and secreted by the beta cells of the pancreatic islets, small
islands of endocrine cells in the pancreas. Glucagon is made and secreted by
the alpha cells of the pancreatic islets, shown in Figure 8.2. The liver stores
glucose in the form of glycogen, converts it back into glucose, and releases it
into the blood stream. The pancreas assists cells to assimilate blood glucose
by secreting insulin. This lowers the blood glucose level.

Since glucose is the essential fuel for the cells, normal blood glucose level
is necessary for the proper functioning of the organs. Diabetes is a metabolic
disorder in which blood glucose levels are abnormally high, because the
body does not produce enough insulin or becomes resistant to its effects.
The abnormally high blood glucose level found in diabetes can be detected
using two commonly employed tests: intravenous glucose tolerance test
(IVGTT) and oral glucose tolerance test (OGTT).
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FIGURE 8.1 (See color insert following page 266.)
Effects of insulin and glucagons released by the pancreas in achieving normal blood glucose
level.
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8.1.3 Classification of Diabetes

There are two major types of diabetes:

(1) Type 1 diabetes (previously known as juvenile-onset diabetes or
insulin-dependent diabetes mellitus [IDDM]). Type 1 diabetes
accounts for 5% to 10% of diabetes cases, and most often occurring
in children and young adults. People with type 1 diabetes must
take daily insulin injections to stay alive, since their bodies do not
produce any insulin. Without insulin, glucose cannot get to the
cells for energy or to the liver for storage. Further, excess glucose
in the blood causes organ and tissue damage over time.

(2) Type 2 diabetes (previously known as adult-onset diabetes or
noninsulin-dependent diabetes mellitus [NIDDM]). Type 2 dia-
betes accounts for 90% to 95% of diabetes cases, and usually
develops in middle age or later. Type 2 diabetes is associated
with insulin resistance, rather than due to lack of insulin as seen
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acini

Pancreas
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FIGURE 8.2 (See color insert following page 266.)
The pancreas has many islets that contain insulin-producing beta cells and glucagons-
producing alpha cells.
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in type 1 diabetes. Insulin levels in these cases are usually normal
or higher than average, but the body’s cells are rather sluggish
or insensitive in responding to it. This results in the build up of
unused glucose in the blood stream, causing higher than normal
blood glucose levels, and organ and tissue damage over time.

8.1.4 Objective

Our objective, in the Chapters 8, 9, and 10 of this Section III is to (1) model
glucose–insulin dynamics by means of appropriate differential equations,
(2) plot the glucose and insulin response solutions to these model equations,
(3) conduct clinical simulation of themodel differential equations’ solutions by
means of parameter-identification of intravenous and oral glucose tolerance
test models, and (4) develop a nondimensional index for diabetes (made up of
themodel parameters), anddemonstrate its sensitivity todifferentiate diabetics
from normals as well as identify so-called normals who are at risk for getting
diabetes. In this chapter, wewill concern ourselveswith objectives 1 and 2, and
also discuss the model’s characteristics and physiological significance.

The conventional clinical diagnosis of diabetes entails obtaining the
fasting blood glucose concentration values from OGTT. However, this
evaluation based on just one reading does not provide insight into the
glucose-regulatory dysfunctional etiology of diabetes disease–disorder and
effectiveness of antidiabetic drugs.

Therefore, it is deemed necessary to monitor blood glucose and insulin
concentration response dynamics to administered inputs of glucose during
the glucose tolerance tests. Then, model analysis of this clinical data needs
to be carried out by making the model solutions (or expressions for blood
glucose and insulin concentrations, in terms of the input glucose bolus
amount) match the blood glucose and insulin concentrations data, and
evaluating the model parameters.

Finally, the model parameters are grouped together to formulate a non-
dimensional index. A distribution of this index values demonstrates demar-
cation of nondiabetics, patients at risk for getting diabetes, and distinctly
diabetic patients.

8.2 Introduction to Glucose-Regulatory Modeling

Diabetes mellitus is a heterogeneous clinical syndrome characterized by
hyperglycemia and long-term specific complications: retinopathy, neur-
opathy, nephropathy, and cardiomyopathy. Automatic neuropathy leads
to visceral denervation, producing a variety of clinical abnormalities: car-
diac and respiratory dysrhythmias, gastrointestinal motility disorders,
urinary bladder dysfunction, and impotence.

Kinks in the body’s glucose factory: Glucose is an essential fuel for the
cells. Normal blood glucose level is necessary for the functioning of
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the organs. Blood sugar level rises in the case of damaged pancreas or when
the receptors on the cell walls (supposed to absorb the sugar) are defective.
In that situation, when the liver fails to detect the high blood sugar level,
excessive glucose is released into the blood. When the blood glucose level
exceeds 180–200 mg=dL, it starts spilling into urine.

The currently employed intravenous and oral glucose tolerance tests
merely monitor readings of blood glucose concentration, and do not provide
insight into the dynamics of blood glucose and insulin concentrations to
reliably diagnose risk-to-diabetes, resistance to insulin, and severity index.
For that purpose, it is necessary to model the glucose–insulin regulatory
(GIR) process, and employ the solution to simulate the clinical glucose
concentration curves for intravenous and oral glucose test inputs. The
parameters of the glucose–insulin regulatory system (GIRS) models can
then be employed as diagnostic indices.

For GIRS modeling, to simulate IVGTT and OGTT, we require to formu-
late the nature of glucose-input function and the GIRS transfer function to
simulate monitored glucose and insulin blood concentration response
curves. The objective and scope of this chapter is to provide the foundations
for the GIRS model, so that it can be employed (in the succeeding chapters)
to simulate the GIR process (and its dysfunction in the case of diabetes) by
means of IVGTT and OGTT.

In Chapter 9, we will deal with:

. modeling of blood glucose regulation and tolerance testing,

. elucidating how the glucose-regulatory system model’s transfer-
function can explain the blood glucose response data in intraven-
ous and oral glucose tolerance tests, and

. demonstrating patient simulation of the blood glucose-regulatory
models, by means of which the model parameters can be evalu-
ated and related to physiological parameters.

8.3 Modeling of Glucose–Insulin Regulation

We adopt the linearized biomathematical model of Bolie [1], as the basis of
our modeling, because it is simple but still compatible with the known
physiological mechanisms. This model characterizes the glucose–insulin
system by means of differential equations (given below as Equations 8.1
and 8.2) with four parameters: a, b, g, and d, representing pancreatic insulin
sensitivity to insulin and glucose blood concentrations, tissue glycogen stor-
age, and tissue glucose utilization to elevated blood glucose concentrations.

8.3.1 Differential-Equation Model of the Glucose–Insulin System

The compartmental block diagram of the blood glucose and insulin regula-
tory system (BGIRS) is illustrated in Figure 8.3. The glucose-input rate into
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the blood pool is represented by q in the figure. From the blood pool,
glucose is metabolized into the tissues, as represented by the two terms
dy (removal-rate of glucose from the blood pool independent of insulin) and gx
(removal-rate of glucose under the influence of insulin). In return, the
glucose influences the release rate of insulin into the blood pool by

by
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independent of 
insulin

Digestive
system

Liver
glycogen

Destruction

Pancreas

bNet increase in 
insulin release-

rate due to 
glucose

Glucose input due to 
absorption from

intestines 

q
Tissues

(metabolism) 

(Net increase 
in glucose 

removal-rate, 
due to insulin) 

(Average insulin
removal-rate

independent of
glucose)

(Average rate of
release of insulin by 

pancreas) 

Li

Average rate 
of release of

glucose

Yg

gx

g x

ax

dy
Blood glucose

y = q − gx − dy

x = −ax + by

•

•

Blood insulin

+

-

-

FIGURE 8.3
Block diagram of how (1) insulin level and rate of change of insulin _x governs blood glucose
concentration y(t), and (2) rate of change of glucose _y is influenced by insulin concentration
x(t) and ingested glucose-input rate q(t). The parameter b corresponds to insulin release
factor and the parameter g represents sensitivity or resistance to insulin (representative of
risk-to-diabetes). The term gx is the insulin-dependent glucose transport and the term dy is
the insulin-independent glucose transport.
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the pancreas (as represented by the by term). The insulin is also removed
independently of glucose (as per the term ax).

By considering the conservation rate of glucose and insulin in their
respective compartments, we obtain the basic equations, governing BGIRS:
With reference to the blood glucose–insulin system (depicted in Figure 8.3),
the corresponding first-order differential equations of the insulin and glu-
cose-regulatory subsystems are given by [1,2]:

x0 ¼ p(t)� axþ by (8:1)

y0 ¼ q(t)� gx� dy (8:2)

where
x is the blood insulin concentration (from its fasting level)
y is the blood glucose concentration (from its fasting level)
p is the insulin input rate
q is the glucose input rate, for unit blood glucose compartment volume (V)
x0, y0 denote the first-derivatives of x and y with respect to time

In these equations, the glucose–insulin model system parameters (regula-
tory coefficients) are a, b, g, and d (Tables 8.1 through 8.3). These coeffi-
cients, when multiplied by the blood glucose compartment volume V
(which is proportional to the body mass) denote, respectively (as depicted
in Figure 8.4):

. Sensitivity of insulinase activity to elevated insulin concentration
(aV)

. Sensitivity of pancreatic insulin output to elevated glucose con-
centration (bV)

. Combined sensitivity of liver glycogen storage and tissue glucose
utilization to elevated insulin concentration (gV)

. Combined sensitivity of liver glycogen storage and tissue glucose
utilization to elevated glucose concentration (dV)

TABLE 8.1

Nomenclature

Symbol Meaning Dimension

T Time Hour
V Extracellular fluid volume Liter
p Rate of insulin injection Units (liter)�1 (hour)�1

q Rate of glucose injection Grams (liter)�1 (hour)�1

x Extracellular insulin concentration Units=liter
y Extracellular glucose concentration Grams=liter
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8.3.2 Differential-Equation Model in Glucose Concentration [y],
for Insulin Infusion Rate [p¼ 0], and Glucose Inflow Rate [q]

In Equations 8.1 and 8.2, let the insulin infusion rate p¼ 0 and the glucose
infusion rate is q. Then, on differentiating Equation 8.2 on either side with
respect to t, we get the differential equation of blood glucose response (y) to
q input [2], as

y00 ¼ q0 � gx0 � dy0

¼ q0 � g(� axþ by)� dy0, on substituting for x0 from Equation 8:1

¼ q0 þ a(gx)� bgy� dy0

¼ q0 þ a(q� dy� y0)� bgy� dy0, on substituting for gx from Equation 8:2

¼ q0 þ aq� y0(aþ d)� y(adþ bg)

TABLE 8.2

Abbreviations and Meanings

IVGTT Intravenous glucose tolerance test
OGTT Oral glucose tolerance test
GI Gastrointestinal
BGCS Blood glucose control system
GIRS Glucose–insulin regulatory system
aV Sensitivity of insulinase activity

to elevated insulin concentration
bV Sensitivity of pancreatic insulin output

to elevated glucose concentration
gV Combined sensitivity of liver glycogen storage

and tissue glucose utilization to elevated
insulin concentration

dV Combined sensitivity of liver glycogen storage
and tissue glucose utilization to elevated
glucose concentration

TABLE 8.3

Units of Terms

Symbol Dimension

p Units (L)�1 (h)�1

q Grams (L)�1 (h)�1

a (h)�1

b (units) (h)�1 (g)�1

g (g) (h)�1 (units)�1

d h�1

A h�1

vn rad=h
v rad=h
Td h
l(¼v2

n) h�2
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Rearranging, we get the differential equation:

y00 þ y0(aþ d)þ y(adþ bg) ¼ q0 þ aq (8:3)

where y0 and y00 denote first and second time-derivatives of y.

8.3.3 Differential-Equation Model in Insulin Concentration (x),
for p¼ 0 and q Input

Differentiating Equation 8.1 on both sides with respect to t, we get [2]

x00 ¼ �ax0 þby0, for p¼ 0

¼�ax0 þb(q�gx� dy), upon substituting for y0 from Equation 8:2

¼�ax0 þbq�bgx� d(by)

¼�ax0 þbq�bgx� d(x0 þax), upon substituting for by from Equation 8:1

Rearranging, we get the differential equation for blood insulin response (x)
to q input, as

x00 þ x0(aþ d)þ x(adþ bg) ¼ bq (8:4)

where x0 and x00 denote first and second time-derivatives of x.
The solution analyses of the governing Equations 8.3 and 8.4 are given in

the next Section 8.4.

8.3.4 Laplace Transform Representation of Governing
Equations 8.3 and 8.4 [2]

1. Appendices A.8.1–8.4 provides a brief tutorial elaboration of the
Laplace transform (LPT) application to the solution of differential
equations. The transfer function (TF) corresponding to Equation
8.3 is obtained by taking LPT on both sides (assuming the initial
conditions to be zero), as indicated in Appendix A.8.5.

s2Y(s)þ sY(s) (aþ d)þ Y(s) (adþ bg) ¼ Q(s) (sþ a) (8:5)

Thereby, we obtain (for glucose response):

G(s) ¼ Y(s)

Q(s)
¼ (sþ a)

s2 þ s(aþ d)þ (adþ bg)
¼ G(s) (8:5a)

This transfer function, G(s) can be expressed in the form

G(s) ¼ Y(s)

Q(s)
¼ (sþ a)

(sþ p1)(sþ p2)
(8:5b)
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where
G(s) will have poles at s¼�p1 and s¼�p2, and a ‘‘zero’’ at s¼�a
p1þ p2¼aþ d
p1p2¼adþbg

Thus, p1 and p2 are the roots of the characteristic (quadratic)
equation:

p2 � (aþ d)pþ (adþ bg) ¼ 0, (8:6a)

and are given by

p1 and p2 ¼
(aþ d)� (aþ d)2 � 4(adþ bg)

� �1=2
2

¼ (aþ d)� (a� d)2 � 4bg
� �1=2

2
(8:6b)

Now, let us make the left-hand-side (LHS) of Equation 8.3 (of blood
glucose response),

y00 þ y0(aþ d)þ y(adþ bg), correspond to

y00 þ 2Ayþ v2
ny ¼ y00 þ lTdyþ ly ¼ q0 þ aq (8:6c)

where
A is the attenuation or damping constant of the system (in h�1)
vn is the natural frequency of the system (in rad=h)
Td is the derivative-time constant (in h)

For this purpose, we put

aþ d ¼ 2A ¼ lTd, adþ bg ¼ v2
n ¼ l

and

v ¼ (v2
n � A2)1=2 if A < vn

¼ (A2 � v2
n)

1=2 if A > vn (8:6d)

so that ly is the proportional-control term and (lTdy
0) is the deriva-

tive feedback control term with derivative time Td. Also, vn is
the natural frequency of y response, and v is its damped frequency
(in rad=h).

Then, from Equations 8.6b and 8.6c, we get

(A2 � v2
n)

1=2 ¼ [(aþ d)2 � 4(adþ bg]1=2

2
¼ [(a� d)2 � 4bg]1=2

2
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So, from Equations 8.6b and 8.6c, the roots of the characteristic
equation are given by

p1, p2

¼ A� (A2 � v2
n)

1=2 ¼ A� i(v2
n � A2)1=2

¼ A� v if A > vn (overdamaged response)

¼ A� iv if A < vn (underdamaged response) (8:6e)

Then, for A>vn (i.e., for overdamped and aperiodic response)

p1p2 ¼ A2 � v2, p1 þ p2 ¼ 2A,

p1 � p2 ¼ 2v,
A

v
¼ p1 þ p2

p1 � p2
¼ p1

p2
(8:6f)

and

(a� d) ¼ aþ a� d� a ¼ aþ a� 2A ¼ 2(a� A)

On the other hand, for A<vn (i.e., for underdamped response)

p1p2 ¼ A2 þ v2 ¼ v2
n, p1 þ p2 ¼ 2A, p1 � p2 ¼ 2iv (8:6g)

The response y(t) of the system, i.e., the solution of the Deq (8.3), is
obtained by taking the inverse transform of

Y(s) ¼ Q(s)(sþ a)

s2 þ s(aþ d)þ (adþ bg)
¼ Q(s)(sþ a)

(sþ p1)(sþ p2)
(8:7)

given by Equation 8.5.

2. Similarly from Equation 8.4, we get for blood insulin response:

X(s) ¼ bQ(s)

s2 þ s(aþ d)þ (adþ bg)
(8:8)

In Section 8.5, we determine y(t) and x(t) responses for different
forms of glucose-input function q(t).

8.4 Block Diagrams of Blood Glucose Control System

8.4.1 Blood Glucose–Insulin Regulatory Control System (BGCS) Model

In the block diagram of blood glucose–insulin regulatory (BGIR) system of
Figure 8.4, which is essentially a modification of Guyton’s BGIR system [3],
where the glucose intake q (either injected into blood or by natural absorption
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from intestines) is the input and the blood glucose concentration (y) is the
output of the blood glucose control system; the functions of the eight blocks
are indicated therein.

In the block diagram, if the extracellular fluid volume (V) is considered
equal to unity (1 L), it is readily noted that the summing points No. 4 and
No. 1 of the block diagram, respectively represent the governing pair of
differential Equations 8.1 and 8.2:

x0 ¼ p� axþ by and y0 ¼ q� gx� dy

A hydraulic analog of the insulin–glucose regulation is shown in Figure 8.5.

8.4.2 Control-System Derivation and Representation of Equations 8.1
and 8.2 to Obtain Equations 8.5a and 8.8

Figure 8.6 illustrates the steps involved in the process of obtaining the
transfer functions for glucose and insulin response. With reference to
Figure 8.6b, we can

(1) Rewrite Equation 8.1, in LPT representation, as

sX(s) ¼ �aX(s)þ bY(s) or X(s) ¼ bY

(sþ a)

(2) Rewrite Equation 8.2, in LPT format, as

sY(s) ¼ Q(s)� gX(s) or Y(s) ¼ Q� gX

sþ d

Pancreas

Gastrointestinal
intravenous injection

Glucose actionb

a g

d

Insulin action

Extra cellular
insulin

Extra cellular
glucose

q

Insulin destruction

Controled diffusion
into tissues

Passive diffusion
into tissues

FIGURE 8.5
Hydraulic analog of insulin–glucose regulation. (Adopted from Dittakavi, S.S. and Ghista, D.N.,
J. Mech. Med. Bio., 1, 193, 2001.)
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Y
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 + (a + d )s + (ad  + bg )

(s + a)Q

From Equation 1: x � = p � ax + by

We obtain for p = 0:
sX = �aX + bY

i.e., X(s ) =
s + a
bY

= (bY)(TF2)       (a)

From Equation 2: y � = q � gx + dy

We obtain sY (s ) = Q(s ) – g x(s ) � dY (s )

i.e., Y (s ) =
s + d

Q �gX
= (Q – gX )(TF1)       (b)

FIGURE 8.6
Control-system derivation and representation of Equation 8.5a. (a) General rule for getting the
transfer function of a closed-loop system represented in s-domain. (b) Representation of
governing Equations 8.1 and 8.2. Note that the X(s) and Y(s) expressions can be combined to
obtain X(s) given by Equation 8.8 and Y(s) given by Equation 8.5. (c) Closed-loop system of
s-domain, obtained from (b). (d) Transfer function.
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(3) Combine X(s) and Y(s), to obtain

X(s) ¼ bQ(s)

s2 þ s(aþ d)þ (adþ bg)
, which is Equation 8:8

and

Y(s) ¼ Q(s)(sþ a)

s2 þ s(aþ d)þ (adþ bg)
, which is Equation 8:5a

8.5 Analyses of Glucose and Insulin Responses to Clinically

Representative Glucose-Input Functions [2]

8.5.1 Glucose Response Characterization to Different Forms of Input
Functions q(t) into the Blood Pool

1. Glucose y(t) response to step glucose input q(t)¼ S u(t), where S¼
1 g of glucose (kg of body weight)�1 (h)�l, depicted in Figure 8.7a:
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(a)

FIGURE 8.7
(a) Simulated blood glucose response y(t) to unit-step input 1.0 g(kg)�1 (h)�1 (or 400mg [100mL]�1

(h)�1) of glucose infusion, given by Equation 8.11 as the solution of Equation 8.3, for a¼ 0.916,
b¼ 0.198, g¼ 3.23, and d¼ 3.04 (units provided in Table 8.3), these being the values adopted by
Bolie [1]. According to Equations 8.6c and 8.6d, these parametric values correspond to vn (the
natural frequency of the system)¼ (adþbg)1=2¼ 1.85 rad=h, and the damping coefficient A

(¼lTd=2)¼aþ d¼ 3.956=2¼ 1.978 h�1. Also, becauseA>vn, these values correspond to an over-
damped system, associated with a diabetic patient. However, because A is only slightly greater
than vn, this case may be deemed to represent critically damped response associated with the
subject being at risk to become diabetic. (Adopted from Dittakavi, S.S. and Ghista, D.N., J. Mech.

Med. Bio., 1, 193, 2001.)
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If q(t)¼ u(t), a unit-step function (aswith the case of IVGTT), ¼ 1 for
t> 1(and 0 for t< 0) then, Q(s)¼ 1=s, and Equation 8.5b becomes

Y(s) ¼ Q(s)� G(s) ¼ (sþ a)=s(sþ p1)(sþ p2) (8:9)

where p1 and p2 are the poles defined in Equation 8.6b.
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FIGURE 8.7 (continued)
(b) Simulated glucose concentration response to impulse input of glucose, of the blood glucose
control system Y(s)=Q(s), given by Equation 8.13 as the solution of Equation 8.3, for a¼ 0.916,
b¼ 0.198, g¼ 3.23, d¼ 3.04. (c) Simulated glucose response y(t) to glucose infusion as a rect-
angular-pulse input of magnitude 1.0 g(kg)�1(h)�1 (¼ 400 mg [100 mL]�1 (h)�1) for a period of
30 min. The response y(t) is given by Equation 8.14b as the solution of Equation 8.3, for
a¼ 0.916, b¼ 0.198, g¼ 3.23, d¼ 3.04; their units provided in Table 8.3. The y(t) response (and
hence even the peak value) depends on the values of the parameters. In all these glucose
response curves, y(0) is taken to be 80 mg=100 mL (assumed to be the fasting glucose concen-
tration). (Adopted from Dittakavi, S.S. and Ghista, D.N., J. Mech. Med. Bio., 1, 193, 2001.)
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Performing partial-fraction expansion, we get

Y(s) ¼ A0

s
þ A1

sþ p1
þ A2

sþ p2
(8:10)

For the above expression to be equal to Y(s) given by Equation 8.9,
we obtain

A0 ¼ a

p1p2

A1 ¼ (a� p1)

(p21 � p1p2)

A2 ¼ (a� p2)

(p22 � p1p2)

(note that the dimension of each term of Y(s) is t�1)
Now the subject’s mass is taken to be 70 kg, which corresponds

to a blood volume of 17.5 L. Hence 1 g of glucose=kg is equivalent
to 70 kg=17.5 L¼ 400 mg=100 mL. Hence the glucose-input
magnitude¼ 400 mg (100 mL)�1 h�1 or 4 g L�1 h�1.

Now taking the inverse LPT, and noting that the glucose-input
magnitude,

S¼ 1 g of glucose kg�1 h�1¼ 4 g L�1 h�1¼ 400 mg 100 mL�1 h�1,

we get, for input

q(t) ¼ S u(t)

y(t) ¼ 4(A0 þ A1e
�p1t þ A2e

�p2t)g=L (8:11)

Although, based on Equation 8.11, y(0)¼ 0, Equation 8.11 is
depicted by the graph in Figure 8.7a for y(0)¼ 80 mg=100 mL
(assumed to be the fasting glucose concentration value), by dis-
placing the origin to (0, 80).

2. Glucose y(t) response to unit-impulse glucose input: q(t)¼ I d(t),
where I¼ 1 g of glucose kg�1, depicted in Figure 8.7b.

If q(t)¼ d(t) (as in the case of IVGTT), then Q(s)¼ 1, and Equation
8.5b becomes

Y(s) ¼ (sþ a)

[(sþ p1)(sþ p2)]
(8:12)

We can employ thismodel to simulate IVGTT. In this test, for the input
glucosedose, I¼ 1gperkgof bodyweight. Ifweadopt abloodvolume
of 17.5 L for a 70 kg person, then y(0)¼ (70 g=17.5)¼ 400 mg=100 mL.
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Hence, for the input, we note that I¼ 1 g of glucose input per 1 kg of
bodyweight or I¼ 4 g of glucose=Lof blood, i.e., l g of glucose kg�l¼ 4
g of glucose L�1¼ 400 mg of glucose=100 mL.

Performing partial-fraction expansion, we get (from Equation
8.12):

Y(s) ¼ A3

(sþ p1)
þ B3

(sþ p2)
¼ (sþ a)

(sþ p1)(sþ p2)

where

A3 ¼ sþ a

sþ p2
(at s ¼ �p1) ¼ (a� p1)

(p2 � p1)

B3 ¼ sþ a

sþ p1
(at s ¼ �p2) ¼ (a� p2)

(p1 � p2)

Then, taking inverse LPT, we get for q(t)¼ I d(t), with I¼ 4 g of
glucose=L of blood:

y(t) ¼ I(A3e
�p1t þ B3e

�p2t)g=L

¼ 4[(a� p1)e
�p2t � (a� p2)e

�p2t]

(p2 � p1)
g=L (8:13)

Therefore,

y(0) ¼ 4 g=L (8:13a)

Note that at t¼ 0, y¼ 4 g L�1, or 400 mg=dL. However, when this
solution (Equation 8.13) is depicted in Figure 8.7b to simulate
IVGTT for an injected glucose bolus of 4 g=L or 400 mg=100 mL,
then y(0)¼ 400 mg=100 mLþ 80 mg=100 mL (of fasting blood
glucose concentration)¼ 480 mg=100 mL.

Equation 8.13 can also be expressed in terms of a, b, g, and d. Let
us recall that we had put

adþ bg ¼ v2
n, and aþ d ¼ 2A, in Equations 8:6c and 8:6d

Then, as per Equation 8.6e, we had obtained: p1 and p2 ¼ A�
(A2 � v2

n)
1=2 ¼ A� v for A>vn (for overdamped response),

and¼A� iv for A<vn (for underdamped response)

Then

p2 � p1 ¼ �2iv for A < vn

¼ �2v for A > vn
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Again, it is noted that for the values of the parameters (a, b, g,
and d) as indicated in Figure 8.7b, A[¼ (aþ d)=2 ¼ 1:978 h�1] >
vn[ ¼ (adþ bg)1=2 ¼ 1:85 h�1]. Hence this case corresponds to an
overdamped system, corresponding to a diabetic subject. How-
ever, we could say that A ffi vn, and hence this could represent a
critically damped case, which would imply that this subject is at
risk of becoming diabetic.

We also note that

_y (t) ¼ 4

(p2 � p1)
�p1(a� p1)e

�P1t þ p2(a� p2)e
�P2t

� �
(8:13b)

and

_y(0) ¼ 4[a� (p1 þ p2)] ¼ �4d (8:13c)

It can be noted that the negative slope of the curve at t¼ 0 corres-
ponds to the model analysis (Equation 8.13c) y0(0) ¼ 4 g L�1d ¼
4 gL�1(3:04 h)�1 ¼ 12:16 g L�1 h�1 ¼ 1216 mg(100 mL)�1(h)�1 ¼
3:04 gkg�1 h�1.

3. Glucose Response y(t) to Glucose input q(t)¼Rectangular-Pulse
function h(t), where h¼ 4 g (L)�1 (h)�1 or 400 mg (100 mL)�1 (h)�1,
shown in Figure 8.7c

Here, the input function

h(t) ¼ h grams of glucose (kg)�1(h)�1 for 0 < t � t0

¼ 0 for t � t0

In other words, a rectangular pulse consists of h(t)¼ h u(t)� h u
(t� t0).

The LPT of a rectangular pulse is

L[h(t)] ¼ H(s) ¼ (h=s)(1� e�t0s) ¼ (h=s)� (he�t0s)=s (8:14)

where the first part of the equation is the LPT of the positive step
and the second part is that of delayed negative step.

The transfer function G(s) of the blood glucose control system
is given by Equation 8.5b. Therefore, from Equations 8.14 and 8.5,
we get the LPT of the system response:

Y(s) ¼ H(s) *G(s) ¼
h(sþ a)

s(sþ p1)(sþ p2)
� h(sþ a)e�t0s

s(sþ p1)(sþ p2)
(8:14a)

where the poles are defined by Equation 8.6b, and p1 and p2 are the
roots of the characteristic Equation 8.6a.
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Now taking the inverse LPT of Y(s) in Equation 8.14a gives the
theoretical curve y(t), which is graphically depicted in Figure 8.7c
(for y(0)¼ 80 mg=100 mL of fasting glucose concentration):

y(t) ¼ h Ao þ A1e
�p1t þ A2e

�p2t
� �
� h Ao þ A1e

�p1(t�t0) þ A2e
�p2(t�t0)

� �
U(t� t0) (8:14b)

where the unit-step function is

U(t� t0) ¼ 0 for t < t0

¼ 1 for t > t0

A0 ¼ a

p1p2
, A1 ¼ (a� p1)

(p21 � p1p2)
, and A2 ¼ (a� p2)

(p22 � p1p2)
(8:14c)

In Equation 8.14b, the first term represents the response to positive
step starting at t¼ 0, while the second term represents the
response to the delayed negative step starting at t¼ t0. Also, Equa-
tion 8.14b can be written as two separate equations to represent
y(t), for different ranges of ‘‘t’’

y(t) ¼ h(A0 þ A1e
�p1t þ A2e

�p2t) for 0 < t � t0 (8:15)

y(t)¼h[A1{e
�p1t�e�p1(t�t0)}þA2{e

�p2t�e�p2(t�t0)}] for t� t0 (8:16)

When t¼ t0, we have:

y(t) ¼ h½ �(A1 þ A2)þ A1e
�p1t0 þ A2e

�p2t0 �
¼ h A0 þ A1e

�p1t0 þ A2e
�p2t0

� �
(8:17)

since the sum of the residues A0þAlþA2¼ 0, as per Hazony and
Riley rules. It may be noted that Equation 8.17 is essentially
Equation 8.15 for t¼ t0. Both the equations give the same y[t] for
t¼ t0, since in this case the response y[t] is continuous at t¼ t0.

As regards the implication and application of this rectangular
pulse, we can consider that when glucose bolus is administered to
a patient, as an impulse input to the gastrointestinal (GI) compart-
ment, the GI compartment converts this impulse input of glucose
into a rectangular-pulse response of glucose, which becomes the
input into the blood-pool compartment (BPC).

Hence y(t), given by Equation 8.14b and simulated in Figure 8.7c
(based on the previously indicated values of a, b, g, and d) could
be deemed to simulate the OGTT blood glucose response data
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depicted in Figure 9.5 of the next chapter (except for the pointed
and high peak value, as depicted in Figure 8.7c).

Note that in the above equations we can put h¼ either 1 g (kg)�1

(h)�1 or 4 g (L)�1 (h)�1 or 400 mg (100 mL)�1 (h)�1, depending on
the dimensional requirement of measuring y(t) being in grams of
glucose=liter of blood or in milligram of glucose=liter of blood.

At the rate of 1 g kg�1 h�1 (¼ 400mg [100mL]�1 h�1) over a 30min
period, a total of 0.5 g kg�1 dose would have been delivered. So for
a 70 kg person, the total dose would be 35 g delivered in 30 min.

8.5.2 Insulin x(t) Responses of the System: x(t) Output
to Glucose q(t) Input

The insulin response x(t) is obtained by taking the inverse LPT of Equation
8.8 on both sides, for various inputs of q(t), as considered above for y(t).

1. Insulin response to q(t)¼ step [U(t)] glucose input, as depicted in
Figure 8.8a
The insulin response, for unit-step glucose input, is given by

x(t) ¼ k0 þ k1e
�p1t þ k2e

�p2t

where

k0 ¼ b

p1p2
, k1 ¼ b

(p21 � p1p2)
, and k2 ¼ b

(p22 � p1p2)
(8:18)

If the input glucose mass-flow rate, q(t)¼ S u(t), with S¼ l g of
glucose (kg body mass�1 h�1 or 4 g L�1 h�1), then

x(t) ¼ 4(k0 þ k1e
�p1t þ k2e

�p2t) units=L (8:18a)

as depicted in Figure 8.8a, where the resting insulin concentration
is taken to be 4 m=100 mL (where the symbol m denotes milli units).

Here, the resting insulin concentration is assumed to be 4 m=
100 mL. At t¼1, Equation 8.18b yields x(t¼1)¼ 4 k0¼ 4b=p1p2,
which (for the parameters values given in Figure 8.8a)¼
4(0:198)=v2

n ¼ 0:792=1:852 ¼ 0:228 units=L or 22.8 m=100 mL.
Now since the resting insulin concentration is taken to be
4 m=100 mL, hence x(t¼1)¼ 26.8 m=100 mL, as shown by the
graph.

2. Insulin response to q(t)¼ impulse [I d(t)] glucose input, as depicted
in Figure 8.8b
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The insulin response is given by

x(t) ¼ Ib
(e�p1t � e�p2t)

(p2 � p1)
(8:19a)

which is also the derivative of Equation 8.18
If q(t)¼ I d(t), with I¼ 1 g (kg body weight)�1or 4 g (liter of blood

volume)�1,
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FIGURE 8.8
(a) Plasma-insulin simulated response x(t), to unit-step glucose input of 1.0 g (kgmass)�1 (h)�1 of
glucose infusion, given by Equation 8.18 as the solution of Equation 8.4, for a¼ 0.916, b¼ 0.198,
g¼ 3.23, d¼ 3.04; their units are provided in Table 8.3. (b) Simulated insulin-concentration
response x(t) to Impulse input of glucose for the system X(s)=Q(s), as given by Equation 8.19, as
the solutionof Equation 8.4,witha¼ 0.916,b¼ 0.198,g¼ 3.23, d¼ 3.04; their units are provided in
Table 8.3. The resting value of insulin concentration is taken to be 4 m=100 mL of blood, where m
denotesmilli units. (Adopted fromDittakavi, S.S. andGhista,D.N., J.Mech.Med. Bio., 1, 193, 2001.)
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then,

x(t) ¼ 4b(e�p1t � e�p2t)=(p2 � p1) units=L (8:19b)

This function is graphically depicted in Figure 8.8b, for x(0)¼ 4
m=100 mL of blood.

We can also express x(t) in terms of the basic parameters of the
model using the same expressions (as in Equation 8.6d and the
equation following it), namely:

adþ bg ¼ v2
n, aþ d ¼ 2A, v ¼ (v2

n � A2)1=2 ¼ [4bg � (a� d)2]1=2

2

with p1, p2 given, as in Equation 8.6e, by

¼ A� i(v2
n � A2)1=2

¼ A� (A2 � v2
n)

1=2

¼ A� v (for A > vn)

¼ A� iv (for A < vn)

Then, we obtain

x(t)¼ 4be�At e�ivt�e�ivt

2iv

� �
for A<vn or underdamped response

¼ 4b

v
e�At sinvt (units=L) (8:19c)

and

x(t) ¼ 4be�At e�vt � evt

�2v

� �
for A > vn or overdamped response

¼ 4b

v
e�At sinhvt (units=L) (8:19d)

Let us refer to Equation 8.19d for insulin response to impulse
glucose input:

x(t) ¼ (4b=v)e�At sinh vt, in units L�1

so that

x0(t) ¼ (4b=v)[v cosh vt� A sinh vt] e�At ¼ 0
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Then, to obtain the time at which x(t) is maximum, we put x0(t)¼ 0,
and get

vt ¼ tanh�1 v=A ¼ tanh�1 (0:7=1:98) ¼ tanh�1 (0:35) ¼ 0:38

i:e:, t ¼ 0:38=v ¼ 0:38=0:7 ¼ 0:54 h

Hence, as per model analysis, x(t) is maximum at t¼ 0.54 h. The
maximum value of insulin concentration is (as depicted in Figure
8.8b) 19 m=100 mL, for the resting value of 4 m=100 mL.

3. Insulin response to rectangular-pulse [h(t)] glucose input

The insulin response x(t) is given by

x(t)¼ h(k0þk1e
�p1tþ k2e

�p2t) for t< t0

¼ h(k0þk1e
�p1tþ k2e

�p2t)�h k0þ k1e
�p1(t�t0)þk2e

�p2(t�t0)
� �

U(t� t0)

for t> t0

¼ h[k1{e
�p1tþe�p1(t�t0)}þk2{e

�p2t�e�p2(t�t0)}]U(t� t0)

for t> t0 (8:20)

We put h¼ 400 mg 100 mL�1 h�1 in Equation 8.20, if x(t) is
measured in milli units (m)=100 mL of blood-pool volume.

8.6 Model Characteristics and Physiological Significance [2]

8.6.1 Model Characteristics

The solutions to Equations 8.5 and 8.8, to different modalities of glucose
input, have been provided in Section 8.5 and graphically illustrated in
Figures 8.7 and 8.8, to simulate glucose and insulin responses.

The Equations 8.11, 8.13, and 8.14b constitute the solutions of governing
Equation 8.3, employing Y(s) given by Equation 8.7, as glucose concentration
(y) responses (in gram=liter) to q(t), for unit-step, unit-impulse, and rect-
angular-pulse glucose inputs. Likewise, solutions for Equation 8.4 employ-
ing X(s) given by Equation 8.8, are given by Equations 8.18 through
Equations 8.20 for insulin-concentration response (x) in units=liter, for the
same three types of glucose input. The input glucose function q(t) is
expressed in gram per liter per hour (g L�1 h�l) for impulse, step, and
rectangular-pulse input signals.

As regards the data adopted by us to obtain these response curves, we
have assumed that a 70 kg normal person’s body contains 17.5 L of blood,
i.e., 4 kg body mass �1 L of blood or 1 g of glucose input=kg of body mass
�4 g of glucose input=L of blood. This relation requires that all the unit-
input response functions are to be multiplied by 4, for obtaining the
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response solutions to the governing Equations 8.3 and 8.4, because of
glucose input of 1 g=kg body mass being �4 g of glucose=L of blood;
moreover 1 g (or 1 unit)=L¼ 100 mg (or 100 m) per dL.

All of this data is employed (in the MATLAB program) for developing
the glucose and insulin output solutions to Equations 8.7 and 8.8, for the
above indicated forms of glucose-input functions. The resulting (computer-
simulated) response graphs are depicted in Figure 8.7a through c and
Figure 8.8a and b. For the sake of convenience, we have employed the
same values of parameters employed by Bolie [1]: a¼ 0.916, b¼ 0.198,
g¼ 3.23, and d¼ 3.04 (units given in Table 8.3) for all the types of response
curves depicted by Figures 8.7 and 8.8. By associating Equation 8.3 with
Equation 8.6c, corresponding to the values of these parameters, we can also
obtain values of the natural frequency of the system vn(¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adþ bg

p
) and of

the damping coefficient A¼ (aþ d)=2.
The discriminant of the quadratic Equation 8.6a, which is the under-root

term in Equation 8.6b, dictates the damping category into which the system
falls, namely

. For overdamped system, (a� d)2> 4bg, i.e., A>vn

. For critically damped system, (a� d)2¼ 4bg, i.e., A ¼ >vn

. For underdamped system, (a� d)2< 4bg, i.e., A<vn

For the above given values of (a, b, g, d) based on Equations 8.6c and 8.6d,

we obtain the damping coefficient, A ¼ (aþ d)=2 ¼ 1:98 h�1 the system’s

natural frequency vn ¼ (adþ bg)1=2 ¼ (2:78þ 0:64)1=2 ¼ 1:85 rad=h
and

T ¼ 2p

vn
¼ 3:396

l(¼ aþ d) ¼ 3:96 h�1

lTd(¼ adþ bg)

Td ¼ 1:16 h

Hence the system’s natural frequency, vn<A, and the system is over-
damped.

Also, as a check,
[(a� d)2 � 4bg]1=2

2
¼ (A2 � v2

n)
1=2 ¼ 0:7

Hence, because (a�d)2> 4bg, the adopted parameters’ values correspond to
the case of overdamped system associated with a diabetic patient. However,
A ffi vn and also T(¼ 2p=vn) is less than the critical value of 4 h. Hence it is
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more appropriate to associate this data with a critically damped system,
characterizing a subject at risk of being diabetic.

Although the values of the parameters (adopted by us) yield overdamped
system response curves of Figures 8.7 and 8.8, the glucose and insulin
response transfer-functions Equations 8.7 and 8.8 are infact also valid
to generate the response curves for critically damped and underdamped
systems.

8.6.2 Explanation of the Glucose- and Insulin-Simulated Response
Curves in Terms of the Model Characteristics

1. Transfer-function models are generally used to describe a system
output versus input. Hence in Equation 8.1, p is made to be zero so
as to make the system have only one input ‘‘q.’’ The outputs, y(t) of
Figure 8.7a and x(t) of Figure 8.8a, to unit-step glucose input of 4 g
of glucose=L of blood, are respectively obtained by taking the
inverse LPT of the corresponding s-domain equations.

2. The curves in Figures 8.7a and 8.8a represent the glucose and
insulin outputs y(t) and x(t) of the system, in response to the
unit-step input of glucose-intake q(with p¼ 0). The characteristics
of the regulatory system, represented by Equation 8.3, can be
explained in terms of the roots of the characteristic equation,
obtained by putting the denominator of G(s) (in Equation 8.5a)
equal to zero, as:

s2 þ s(aþ d)þ (adþ bg) ¼ (sþ p1)(sþ p2) ¼ 0 (8:21)

where p1 and p2 are the roots of: p2� p(aþd)þ (adþbg)¼ 0

3. The zero(s) of the system as well as the nature of the Input function
are responsible for the system response and behavior. Hence, in
Equations 8.5a and 8.5b, the zero (sþa) of the system also influ-
ences the system response.

The presence of a zero in the closed-loop transfer function
decreases the rise-time and increases the maximum overshoot of
the step-response [4]. This concept is illustrated by the early peak-
ing of computer-simulated glucose response y(t) in Figure 8.7a, in
response to a step-input q(t) of 1.0 g (kg)�1 (h)�1. It is contended
that although the characteristic equation’s roots are generally used
to study the relative damping and stability of linear control
systems, the zero(s) of the transfer function should not be over-
looked in their effects on the overshoot and rise-time of the step-
response [4].

4. Figure 8.7b shows the impulse-input response of glucose, as the
solution of Equation 8.3, with q¼ Id(t). We can infact employ
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this model response curve to simulate IVGTT response, to a
rapidly injected glucose bolus into the blood. By matching this
analytical response to the IVGTT clinical data (curve) of glucose
concentration, we can obtain the values of the parameters a, b,
g, and d.

In the simulated IVGTT data in Figure 8.7b, the glucose
dose¼ 1.0 g=kg, and the blood volume (V)¼ 17.5 L for a 70 kg
person; then y(0)¼ 70 g=17.5 L¼ 400 mg=100 mL. However,
because the fasting BGC value is 80 mg=l00 mL, hence the glu-
cose-response curves (to glucose impulse input, simulating
IVGTT), starts at 480 mg=dL on the y-axis (at time t¼ 0) and
ends at y(1)¼ 0 (at t¼1), as per Equation 8.13.

5. Because of the ‘‘zero’’ in Equations 8.5a and 8.5b, not only is the
glucose step-response of the system (i.e., response to step-function
input) of Figure 8.7a affected, but also the glucose impulse–
response depicted in Figure 8.7b.

However, when the second-order system consists of only poles
but no zeros, as in the case of Equation 8.8 representing insulin-
concentration output, the impulse–response curve of the system
starts from the origin [4,5], as shown in Figure 8.8b, for resting
insulin concentration of 4 m=100 mL.

6. So, the effect of zero in the glucose response transfer function is to
alter the initial value of glucose concentration y(0) from 0 to 400
mg=100 mL, i.e., from Y(0)¼ 80 (the assumed fasting glucose con-
centration) to y(0)¼ 480, as depicted in Figure 8.7b. In other words,
this glucose-tolerance model curve would have started from the
origin instead of 480 mg=l00 mL, if there were no zero.

Interestingly, in Section 9.3 of the next chapter, we will see that
the zero of BGCS is compensated (canceled) by introducing a pole
due to the gastrointestinal tract, resulting in the OGTT response
equation not containing zero.

8.6.3 Physiological Significance of the Model Simulation

1. Blood glucose-regulatory system model of Equation 8.2 yields the
response to a step-velocity glucose input (q), with zero steady-state
error. This means that in the steady-state, the rate of glucose
injected (q)¼ total rate of glucose metabolism (gxþ dy); this con-
dition is obtained by putting y0 ¼ 0 in Equation 8.2. Hence when
x0 ¼ y0 ¼ 0, x¼ x (ss or steady-state) and y¼ y(ss). Note that the
term (gx) is the insulin-dependent glucose transport, and the
term (dy) is the insulin-independent (or glucose concentration-
dependent) glucose transport.
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2. On the basis of Equation 8.2, we note that the y0 and y responses
are damped by the term gx (representing the glucose utilization by
the tissue due to insulin concentration). Hence, the value of g can
characterize insulin-resistance (Figure 8.3), indicative of ‘‘diabetic
risk factor.’’

3. In Equations 8.5a and 8.5b, it is the zero of the system, represented
by (sþa), which introduces the proportional-derivative effect,
resulting in a high rate of initial response to a step-input of glu-
cose, as depicted in Figure 8.7a. This feature of the system, i.e., the
early peaking phenomena (rapid rise of blood glucose level), is
due to the zero (sþa) of the system transfer function [Y(s)=Qs)] of
Equations 8.5a and 8.5b.

Appendix A: Tutorial on Laplace Transform Methodology

to Solve DEQ(S)

A.8.1 Types of Inputs (Forcing Functions)

The strength of a pulse is given by the product of pulse height and pulse
width i.e., its area. When the pulse width or duration is negligibly small
(when compared to the time-constants of the system and the pulse height
is infinitely large, the pulse input is called ‘‘impulse input.’’ Thus
the impulse function is a special limiting case of a pulse function. The
unit-impulse function d(t) has zero value everywhere except at t¼ 0,
where its impulse-strength is unity.

The step function whose height is unity is called ‘‘unit-step function.’’ It is
defined as follows:

U(t) ¼ 0 for t < 0

¼ 1 for t > 0

A.8.2 Laplace Transform

F(s) ¼
ð1

0

f (t)e�stdt

F(s)¼Laplace transform of f(t)
F(t)¼ Inverse LPT of F(s)
‘‘s’’ is the Laplace operator, whose dimensions is t�1

Some LPT of variables (with assumed zero initial conditions) are given
below:
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y:Y(s) yj:sY(s) yk:s2 Y(s)

x:X(s) xj:sX(s) xk:s2 X(s)

q:Q(s) qj:sQ(s)

if q(t) ¼ d(t), Q(s) ¼ 1, and if q(t) ¼ U(t), Q(s) ¼ 1=s

A.8.3 Application of Laplace Transform to the Solution
of Linear Differential Equation

The procedure is outlined as follows:

1. Transform the differential equation to the s-domain, using LPT
tables.

2. Manipulate the transformed algebraic equation and solve for the
output variable.

3. Perform partial-fraction expansion, so that the inverse LPT can be
obtained from the LPT table.

4. Perform the inverse LPT operation.

A.8.4 Transfer Function of a Linear Time Invariant System

The TF is defined to be the ratio of the LPT of the output (response function)
to the LPT of input (driving function) under the assumption that all initial
conditions are zero. This statement can be represented by the equation
G(s)¼Y(s)=Q(s)

G(s) ¼ Y(s) if Q(s) ¼ 1, i:e:, if q(t) ¼ �(t)

A.8.5 Transfer Function of the Glucose–Insulin System
Equation 8.3 Given by Equation 8.5a

For the system given by Equation 8.3:

y00 þ y0(aþ d)þ y(adþ bg) ¼ qþ aq

L[y(t)] ¼ Y(s)

L[y0(t)] ¼ sY(s)� y(0) ¼ sY(s)

L[y00(t)] ¼ s2Y(s)� sY(0)� y0(0) ¼ s2Y(s)

assuming all initial conditions to be zero.
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Similarly, L[q(t)] ¼ Q(s)

L[q(t)] ¼ sQ(s)� q(0) ¼ sQ(s)

Therefore,

s2Y(s)þ (aþ d)(sY(s))þ (adþ bg)Y(s) ¼ sQ(s)þ aQ(s)

Y(s)[s2 þ s(aþ d)þ (adþ bg)] ¼ Q(s)[sþ a]

Y(s)

Q(s)
¼ (sþ a)

s2 þ s(aþ d)þ (adþ bg)
¼ G(s): (8:A1)

A.8.6 Transfer Function of the Governing Glucose–Insulin
System Equation 8.6c

The TF of a general second-order system (with a zero at s¼�z) is repre-
sented by

(sþ z)=(s2 þ 2Asþ v2
n) (8:A2)

where
vn¼natural frequency of oscillation of system
A is the attenuation constant

The system is said to be under damped if A<vn, critically damped if
A¼vn, and over damped if A>vn.

Comparing the above equation with Equation 8.A1 and the system trans-
fer function of Equation 8.5a, we have the following relations:

z ¼ a, (adþ bg) ¼ v2
n, (aþ d) ¼ 2A

Hence, for the system represented by Equations 8.3 and 8.6c, we can put
their transfer-function denominators as

s2 þ s(aþ d)þ (adþ bg) ¼ (sþ p1)(sþ p2) ¼ s2 þ s(p1 þ p2)þ p1p2

so that

(aþ d) ¼ p1 þ p2 and (adþ bg) ¼ p1p2 (8:A3)

We can solve this pair of equations for p1 and p2, by substituting
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p1 ¼ adþ bg

p2
and p2 ¼ adþ bg

p1

into equation: aþ d¼ p1þ p2, from which we get

p22 � p2(aþ d)þ (adþ bg) ¼ 0

and

p21 � p1(aþ d)þ (adþ bg) ¼ 0

Hence p1 and p2 are the roots of the characteristic-quadratic equation:

p2 � p(aþ d)þ (adþ bg) ¼ 0

from which we obtain

p1, p2 ¼ (aþ d)� [(aþ d)2 � 4(adþ bg)]1=2

2

¼ (aþ d)� [(a� d)2 � 4bg]1=2

2
(8:A4)

Hence, both the transfer functions (8.A1) and (8.A2) of system’s Equations
8.3 and 8.6c can be represented by

G(s) ¼ (sþ a)

(sþ p1)(sþ p2)
(8:A5)

where p1 and p2 are given by Equation 8.A4.
The singular points at which G(s) (or its derivatives) approach infinity are

called poles. The points at which the function G(s) is equal to zero are called
zeros. Hence, the system represented by Equation 8.A1 has two poles at
s¼�p1 and s¼�p2 and one zero at s¼�a.

The inverse transform of the system transfer function is

L�1 (sþ a)

s2 þ s(aþ d)þ (adþ bg)

� 	
¼ L�1 (sþ a)

(sþ p1)(sþ p2)

� 	

¼ (a� p1)e
�p1t � (a� p2)e

�p2t

(p2 � p1)
(8:A6)
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9.1 Scope

In this chapter, we apply our blood glucose–insulin control system (BGCS)
model developed in the previous chapter to simulate glucose tolerance tests,
both intravenous glucose tolerance test (IVGTT) and oral glucose tolerance
test (OGTT).
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9.2 Intravenous Glucose Tolerance Test (IVGTT)

There are three methods of performing this test: (1) constant infusion of
glucose [at the rate of g(kg)�1 (h)�1] into blood, until the steady state of y(t)
curve is reached; (2) single dose (bolus) of glucose (1 g=kg mass of body)
rapidly injected into blood; (3) constant infusion at the same rate for 30 min.

In these three methods, blood glucose concentration is monitored at
uniform intervals, to obtain corresponding y(t) curves, as step response,
impulse response, and rectangular-pulse response. The corresponding
time-domain equations simulating these glucose response curves are repre-
sented by Equations 8.11, 8.13, and 8.14b of Chapter 8. These responses are
respectively illustrated in Figure 8.7a through c.

9.2.1 Glucose Regulation Model

Most of the glucose regulatory models (IVGTT) involve similar differential
equations with different notations. Here, we have decided to adopt Bolie’s
model [1], namely Equation 8.3 of Chapter 8, i.e.,

y00 þ (aþ d)y0 þ (adþ bg) y ¼ q0 þ aq (9:1)

9.2.2 Clinical Support for Model Justification

Among the system-response curves, those illustrated by Figure 8.7a through c
are clinically useful for diagnosis of diabetes, by the three methods indicated
above. Guyton and Hall [2] have demonstrated that the overshoot of the
response curve is caused by the initial buildup of glucose in the extracellular
fluid, before the insulin function has had time to become fully activated. In
the previous chapter, we have explained the same overshoot by means of
(1) the control-engineering concept of zero in the system and (2) the system’s
response property to a step input.

The clinical support for Figure 8.7c is given by Ref. [3], that in a normal
person when glucose is infused intravenously into the body at the rate of
1 g(kg)�1 (h)�1 for a period of half an hour, the concentration of blood
glucose does not rise more than 250 mg=100 mL at the end of infusion and
falls below the fasting level in 2 h. These two conditions are satisfied in our
simulated response curve of Figure 8.7c.

9.2.3 BGCS Model Parametric Determination from Simulation
of IVGTT Patient Data

Many authors, as for instance Insel et al. [3], Bergman et al. [4], Ferrannini
et al. [5], and Galvin et al. [6], have given definitions of increasing complexity
for the insulin sensitivity parameter (g, the reciprocal of insulin resistance)
and for other parameters a, b, and d. However, this can only be ascertained
after we have evaluated the parameters for a broad range of normal and
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diabetic subjects, and tracked some borderline subjects in order to determine
the sensitivity of the (insulin resistance) parameter g to ‘‘risk of becoming
diabetic.’’

1. Protocol suggested by us to evaluate the parameters a, b, g, and d
involves collection of glucose kinetics data from IVGTT, following a
single glucose bolus of 0.5 g=kg weight of the subject, representing
a unit-impulse input of glucose. For example, if the subject weighs
60 kg, the prescribed intravenous glucose dose is 30 g (or 30,000
mg). Thereafter, at uniform time intervals of 10 min, blood samples
are collected for a total experimental period of 1 h to determine both
glucose and insulin concentrations; these data are provided in
Tables 9.1 and 9.2.

For the administered glucose input, the model-response curves
y(t) and x(t) of the model Equations 9.3 and 9.4, given by Equations
8.13 and 8.19, can be made to match the glucose test data, and the
model system parameters (a, b, g, d) can thereby be evaluated.
Alternatively (but not as accurately), we can employ the basic
Equations 8.1 and 8.2 for data analysis, to evaluate the four para-
meters a, b, g, and d.

Let the glucose and insulin levels at time t, tþ l0, tþ 20, and
tþ 30 min (after subtracting their corresponding fasting levels) be
respectively represented by yt, ytþ 10, ytþ 20, ytþ 30, and xt, xtþ 10,
xtþ 20, xtþ 30. Let y

0
t be the slope of the glucose curve at t min, and

TABLE 9.1

Intravenous Kinetics Data: Data from a Normal Subject
(Weight 63.8 kg; Dose¼ 31.9 g)

Time in Minutes 0 5 10 20 30 40 50 60

Glucose concentration (y) in mg=100 mL 74.8 278.8 245.9 176.0 124.6 84.8 64.7 53.2
Insulin concentration (x) in m=100 mL 4.4 102.7 107.0 69.6 49.1 20.3 17.6 12.4

Note: Glucose dose of 0.5 g=kg bodyweight is given as a bolus injection in 5min (2.5% solution).
Readings of glucose and insulin at 0 min indicate fasting levels, and those at 5 min
indicate the levels reached after the bolus injection. The symbol m denotes milli units.

TABLE 9.2

Intravenous Kinetics Data: Data from a Hypertensive Patient
(Weight¼ 55.2 kg; Dose 27.6 g)

Time in Minutes 0 5 10 20 30 40 50 60

Glucose concentration in mg=100 mL 92.8 330.8 286.3 232.4 187.2 171.1 150.0 127.8
Insulin concentration in m=100 mL 4.7 62.9 120.9 146.0 166.4 130.0 139.8 81.6

Note: Glucose dose of 0.5 g=kg bodyweight is given as a bolus injection in 5min (2.5% solution).
Readings of glucose and insulin at 0 min indicate fasting levels, and those at 5 min
indicate the levels reached after the bolus injection. The symbol m denotes milli units.
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y0tþ10 the slope at tþ 10 min. Similarly, the slopes x0t and x0tþ20 can
also be found from x(t).

Thereafter, the values of model parameters a and b in Equation
8.1 can be found by determining their ‘‘best’’ values to satisfy the
four simultaneous equations corresponding to times t, tþ 10,
tþ 20, and tþ 30:

�x0t ¼ axt � byt; � x0tþ10 ¼ axtþ10 � bytþ10

�x0tþ20 ¼ axtþ20 � bytþ20; � x0tþ30 ¼ axtþ30 � bytþ30

(9:2)

arising from Equation 8.1, assuming that a and b have the same
values during the 30 min monitoring period.

The values of model parameters g and d in Equation 8.2 can
similarly be determined by solving the four simultaneous equa-
tions (corresponding to the four time intervals):

�y0t¼gxtþdyt; �y0tþ10¼gxtþ10þdytþ10; �y0tþ20¼gxtþ20þdytþ20

�y0tþ30¼gxtþ30þdytþ30 (9:3)

assuming that g and d have the same values during the 30 min
time period.

This methodology is employed to determine the parameters for
one typical normal subject (A) and for one typical atherosclerotic
hypertensive (ath-hyp) nondiabetic subject (B), both of whose
intravenous kinetics test data are provided in Tables 9.1 and 9.2.
The parametric values of these subjects are obtained as

a¼ 0:05 b¼ 0:96 g¼ 6:48 d¼ 1:76 for the normal subject (A)

a¼ 2:25 b¼ 15:12 g¼ 0:93 d¼ 0:12 for the atherosclerotic (9:4)

hypertensive patient (B)

Thedimensions of these parameters (a,b,g, d) are given inTable 8.3.
The following are the values for the parameters: (1) the damping
coefficientA(¼aþ d)¼ 1.8 h�1 for subject A and 2.37 h�1 for subject
B; and (2) the natural frequency vn(¼p

(adþ bg)) ¼ 2:74 rad=h for
subject A and 3.79 rad=h for subject B. It is seen that for both the
subjectsA<vn, indicative of underdampedmodel response, charac-
teristic of normal nondiabetic subjects.

2. There are points concerning data in Tables 9.1 and 9.2 that are
worth noting. For the normal subject, the dose of 31.9 g (at 0.5 g=kg
mass of the patient) is administered in 5 min. Hence,

y0(0) ¼ 278:8� 74:4

5 min
¼ 204 mg=100 mL

5 min
¼ 204=100

1=12 h
g L�1h�1

¼ 24 g L�1h�1

Now, from the model Equation 8.2, q¼ y0(0), since normalized x(0)
and y(0)¼ 0. Correspondingly, the administered dosage input
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rate q(t)¼ I d(t)¼ (dose 0.5 g kg�1)=(1=12) h¼ 6 g kg�1 h�1¼
24 g L�1 h�1¼ y0(0).

Also, in the data, the value of y (the blood glucose concentration)
5 min after the dose is administered is equal to (278.8� 74.4 ¼ )
204 mg=100 mL and this is for a dose of 0.5 g kg�1h�1.
Correspondingly, our model solution in Equation 8.13a gives
y(0)¼ 400 mg=100 mL for a dose of 1 g kg�1 h�1. After the first 5
min of glucose administration, the blood glucose concentration
becomes 204 mg=100 mL. Thereafter, the blood glucose system
response to this glucose input starts. Note that the blood glucose
concentration drops from 278.8 to 245.9 mg=100 mL within the
next 5 min, giving us a negative slope y0(5) of 3.95 g L�1 h�1.
The parameters’ values for both the subjects yield (a� d)2< 4bg,

corresponding to an underdamped glucose regulatory system.
However, as noted in Equation 9.4, for the atherosclerotic hyper-
tensive subject (relative to the normal subject), we obtain a reduced
value of g (i.e., reduced sensitivity or increased resistance to
insulin for tissue utilization of glucose) and an elevated value of
b (i.e., the insulin release factor in response to elevated glucose
concentration due to increased resistance to insulin). This could
imply that in an atherosclerotic hypertensive patient, there is
overworking of the pancreas due to reduced tissue utilization of
glucose. Although this is a preliminary study, this model is shown
to sensitively bring out these features, to diagnose atherosclerotic
hypertensive patients as having a high diabetes risk factor.

3. Even more interesting aspect is the phase comparison bet-
ween blood glucose and blood insulin concentration data, plotted
in Figure 9.1a and b. These plots show that in the case of the

 Glucose and insulin concentrations of the normal
 subject whose data are provided in Table 9.1
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FIGURE 9.1 (See color insert following page 266.)
Blood glucose and insulin concentration dynamics. The symbol m denotes milli units.
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Glucose and insulin concentrations of the hypertensive
subject whose data are provided in Table 9.2
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FIGURE 9.1 (continued)
(See color insert following page 266.)
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atherosclerotic hypertensive subject (B), the phase lag between
the blood glucose and the blood insulin concentration curves is
quite pronounced compared with that for the normal subject (A).
The situation appears even more fascinating when blood insulin
concentration is plotted versus blood glucose concentration for
the two patients in Figure 9.1c and d. A sort of hysteresis-type
loop becomes manifest, and the loop area is more pronounced for
subject B than for subject A. The loop area could be deemed to
correspond to an imbalance between the blood glucose amount
and the insulin release rate. Perhaps then, this loop area could
constitute another means for designating risk to diabetes and
glucose for clearly detecting diabetes. This phenomenon and
concept of characterizing it as a diagnostic index needs to be
explored further.

9.3 Oral Glucose Tolerance Test

9.3.1 OGTT Process

This OGTT test differs from IVGTT in that the glucose is administered in a
single dose orally (instead of being injected into blood). In this test, a fasting
person is given an oral glucose dose of 1 g=kg, for the purpose of diagnosing
diabetes. If the subject is normal and free from diabetes, the blood glucose
level rises from the fasting value of, say, 80 to 120–140 mg=dL, and then falls
back to below normal in about 2 h.

The physiology of the GI tract suggests that the intestinal glucose
absorption rate is constant for a limited time duration. Hence, the
glucose rectangular-pulse input h(t) into the blood pool can be deemed
to be representative of this phenomena. This in fact is made physiologically
possible by means of the combined effect of two mechanisms: (1) due to
the pyloric sphincter valve resistance which controls the transfer of
glucose from the stomach to the intestines in inverse proportion to the
stomach distension, and (2) due to the active transport of glucose from the
intestines into the blood (across the intestinal wall) at its maximum
rate, according to the Michaelis–Menten equation graphically depicted in
Figure 9.2.

Based on the similarity between Figure 8.7c (simulating glucose
response to a rectangular-pulse input of glucose) and the clinical data
curve of Figure 9.5, we could say that the OGTT response curve can be
characterized as glucose response to a rectangular-pulse input of glucose
into the blood-pool compartment (BPC) from the gastrointestinal compart-
ment (GIC). In this integrated system made up of the GIC and the BPC, the
input to GIC is an impulse (ingested) input of glucose. The GIC converts the
impulse input of glucose into a rectangular-pulse response of glucose.
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Thereafter, the BPC converts the rectangular-pulse input into the OGTT
response curve.

As such, Equations 8.14b and 8.14c can supposedly simulate the OGTT
data. However, for this glucose rectangular-pulse input h(t) into the blood
pool (from the GI tract), the model-response curve y(t), shown in Figure 8.7c
and described by Equations 8.14b and 8.14c, has a sharp corner at its
peak. On the other hand, the clinically monitored OGTT data (illustrated
in Figure 9.5) are obtained as smooth curves. So we need a more represen-
tative model for simulation of OGTT data.

This concept gets further support from Davenport [7], who indicates
that ‘‘variable rates-of-gastric emptying balance the variable-rates-of
absorption, to give a spuriously constant rate-of-absorption for the entire
GI tract. The introduction of hypertonic sugar solutions into the stomach
causes gastric distention and delays gastric emptying, and this in turn
determines the rate at which sugar is delivered to the small intestines
for absorption.’’

9.3.2 Model Analysis to Simulate OGTT Response Curve

The OGTT model-simulation response curve is considered to be the result of
giving impulse glucose dose (of 4 g of glucose=L) of blood-pool volume to
the combined system consisting of GI tract and blood-pool systems.
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FIGURE 9.2
Effect of substrate and enzyme concentrations on the rate of enzyme-catalyzed reaction.
Note: The following is the general form of Michaelis–Menten equation for active transport:
Rate of reaction¼ k1 (enzyme concentration) (substrate concentration)=(k2þ substrate concen-
tration). When there is no glucose in blood, during hypoglycemia (i.e., when ‘‘y’’ is much below
the fasting level), the active transport is carried out at its maximum rate. Thus, the passive and
active transports work together to maximize the intestinal glucose transport, so as to tide over
the crisis of hypoglycemia in diabetics.
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Based on the analysis carried out by Fisher and Teo in Equations 2.5
through 2.7 of Ref. [8], we can put down the transfer function (TF) of the
GI tract to be

GI TF ¼ G1(s) ¼ 1=(sþ a) (9:5)

because the intestinal glucose concentration variation is an exponential
decay, and its exponential parameter value is close to that of the parameter a.

In other words, we are indicating that the rate at which the ingested
glucose enters the blood pool is given by

q(t) ¼ G exp (�at) (9:6)

it being the solution of the DEq:

q0 þ aq ¼ Gd(t) (9:7)

representing the process occurring in the GI wall, by which the glucose
impulse input [Gd(t)] is converted into the exponential decay function of
Equation 9.6. This yields the GI tract TF to be (as given by Equation 9.5)

GI TF ¼ G1(s) ¼ 1=(sþ a) (9:8)

When we multiply this GI tract TF G1(s) by the TF G2(s) [¼ (sþa)=s2þ
s(aþ d)þ (adþbg)] of the blood-pool glucose metabolism given by
Equation 8.5a to get the overall TF of the combined digestive tract and
blood pool system as GS¼ 1=[s2 þ s(aþ d)þ (adþ bg)], and put Q(S)¼L
[Gd(t)]¼G gram of glucose per liter of blood-pool volume per hour, we get
for the digestive tract and blood-pool conglomerate,

Y(s) ¼ G={s2 þ s(aþ d)þ (adþ bg)} (9:9)

corresponding to impulse injected glucose-bolus input of q(t)¼Gd(t).
The corresponding OGTT response curve can then be represented by the

inverse Laplace transform of Equation 9.9, as follows:

y(t) ¼ G(e�p1t � e�p2t)=(p2 � p1) g=L (9:10)

where p1 and p2 are given by Equations 8.6b and 8.6e. The graphical
representation of this Equation 9.10 is illustrated in Figure 9.3.

9.3.3 Damped Response Model for OGTT Simulation

1. OGTT response curve needs to satisfy the following features [2,9]
of a normal clinical case, with a test glucose bolus q [¼Gd(t)] of 1 g
of glucose per kilogram of patient mass (i.e., for G¼ 1 g of glucose
per kilogram of patient per hour):

Ghista/Applied Biomedical Engineering Mechanics DK8315_C009 Final Proof page 261 29.5.2008 12:15am Compositor Name: MSubramanian

Glucose Tolerance Tests Modeling 261



. Peak value does not exceed 200 mg=dL.

. Peak is reached in approximately 0.5–1.5 h from the time t¼ 0
(i.e., from time of glucose ingestion), at least in normal subjects.

. There should not be a sharp turning point at the peak of the
curve, as obtained in Figure 8.7c for a rectangular-pulse input.

. Curve may be oscillatory in certain subjects, whose system is
underdamped.

The glucose-bolus impulse input at the mouth is after its trans-
port through the GIC deemed to be manifested as a rectangular-
pulse input to the glucose BPC, as depicted by Hobbie [9]. Even
though the TF of the GI tract can be represented by a definite
time integrator (1=s), the precise curve shape of the glucose
input to the blood pool cannot correspond to the clinical data.
In order to circumvent this problem, we have considered that
the gut and the blood pool together form one single compart-
ment, with even the glucose-bolus input (G) into this integrated
compartment to be regarded as an unknown (and to be deter-
mined) magnitude of the glucose input impulse function Gd(t) of
the clinically monitored OGTT data curve (representing the sys-
tem response).

2. The rate-control first-order model was first suggested by Hobbie
[9], but it could not explain the oscillatory features of the OGTT
curve. Earlier, we have indicated that the glucose-bolus impulse
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FIGURE 9.3
Impulse-input response of the combined system, consisting of the GI tract and blood pool, as
represented by Equation 9.10. Note: This curve is generated for parametric values of a¼ 0.196,
b¼ 0.198, g¼ 3.23, d¼ 3.04, whose units are provided in Table 8.3.
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input at the mouth becomes manifest as an exponential decay
input into the BPC, based on the TF G1(s) of the GI tract as
1=(sþa). When this exponential decay function becomes the
input into the BPC, represented by the TF G2(s)¼ (sþa)=[s2þ s(aþ
d)þ (adþbg)], we get the overall TF¼ 1=[s2þ s(aþ d)þ (adþbg)],
whereby

Y(s) ¼ G

s2 þ s(aþ d)þ (adþ bg)
(9:11)

for the combined digestive tract and blood-pool system, wherein
the glucose mass input-rate G(gmL�1h�1) is regarded as an
unknown (and to be determined) magnitude of the glucose-bolus
impulse-input Gd(t) into the combined system (whose clinically
monitored OGTT data represents the system response).

We can hence satisfactorily and conveniently represent the
OGTT response curve by means of an oral glucose-regulatory
second-order system model (involving a proportional-control
term plus a derivative feedback-control term), represented
(in Laplace transform) by another version of Equation 9.11 as
follows [10]:

Y(s) ¼ G=[s2 þ l(1þ Tds)] ¼ G=(s2 þ lTdsþ l)

l ¼ adþ bg, lTd ¼ aþ d
(9:12)

where the glucose-bolus input rate into the combined gut and BPC
is G(g L�1 h�1), ly is the proportional control term, and lTd(dy=dt)
is the derivative feedback control term having derivative time Td

[with lTd replacing (a+d) of Equations 9.9 and 9.11].
Equation 9.12 is now adopted to represent the response of the

blood glucose (proportionalþderivative) feedback control system
model for simulating glucose metabolism during OGTT, as illus-
trated in Figure 9.4.

Equation 9.12 can also be written as [10]

Y(s) ¼ G

(s2 þ 2Asþ v2
n)

(9:13)

where

G is in gram of glucose per liter of blood-pool volume per hour
vn (¼ l1=2) is the natural frequency of the system
A is the attenuation or damping constant of the system (in h�1)
l ¼ 2A=Td ¼ v2

n (in h�2)

vd (or v) ¼ (v2
n � A2)1=2 is the angular frequency (in rad=h) of

damped oscillation of the system
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The corresponding governing differential equations are [10]

y00 þ 2Ay0 þv2
ny¼Gd(t); damped frequency vd(or v)¼ (v2

n�A2)1=2

(9:14a)

y00 þlTdy
0 þly¼Gd(t); l(¼ 2A=Td)¼v2

n, Td ¼ 2A=v2
n (9:14b)

3. It is seen that the solution of Equation 9.14 (detailed inAppendix A)
for an underdamped response, i.e., for A2 < v2

n (corresponding to
that of normal subjects, represented by the lower curve in Figure
9.5), is given by

y(t) ¼ (G=v) e�At sinvt (9:15)

where v (or vd)¼ (v2
n � A2)1=2.

Then, the solution for overdamped response (in which A2 > v2
n,

corresponding to the upper curve of Figure 9.5 of a diabetic
subject) is given (as derived in Appendix A) by

y(t) ¼ (G=v) e�At sinhvt (9:16)

where v (or vd)¼ (A2 � v2
n)

1=2.
The solution for a critically damped response (in which A ¼vn)

is given (as derived in Appendix A) by

y(t) ¼ Gte�At (9:17)

for v2
n ¼ A2 ¼ l, and derivative time period Td ¼ 2A=l ¼ 2A=v2

n:

These solutions will be employed to simulate the clinical glucose
concentration data, and to therefrom evaluate the model system

+

–

Q (s ) = G

X (s )

Oral glucose
bolus

F = Feedforward transfer function = 1/s2

H = Feedback transfer function = l (1 + Tds)    where l=ad + bg and lTd = a+ d

G = Closed loop transfer function = F/(1 + FH) = [G/(s2+lTds +l]

1/s2 Blood
(glucose + insulin)

pool

Y(s) (for blood
glucose

concentration)

l (1 + Tds)
(P + D) controller represented
by pancreas and intestines

FIGURE 9.4
Pancreas in combination with intestines depicted as a proportional derivative feedback con-
troller l(1þTds). It is seen that the blood insulin concentration is given by: x¼lyþlTdy

0.
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parameters A and vn (or l and Td), to not only differentially diag-
nose diabetic subjects but also to characterize resistance to insulin.

The corresponding expressions for blood insulin concentrations
are obtained (on the basis of Figure 9.4) from

x ¼ lyþ lTdy
0 ¼ (adþ bg)yþ (aþ d)y0 (9:18)

9.3.4 Model Parameter Identification: Simulation with Patient Data
and Evaluation of Model Parameters

1. For Normal Subjects (Tables 9.3 and 9.4 and Figure 9.5 Bottom Curve)
The subjects were orally administered a bolus glucose dose of 4 g=L of blood
volume or 1 g of glucose=kg weight. Normalized BGC data (of Table 9.3) are
provided in Table 9.4. The averaged values of the last row are employed in
Figure 9.5. The average clinically obtained readings (above the fasting level,
i.e., normalized with respect to the fasting glucose values) of the five normal
male subjects (in the age group of 18–20 years) are at 1=4 h¼ 18.4 mg=dL, at
1=2 h¼ 25.4 mg=dL, and at l h¼ 23.2 mg=dL.
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FIGURE 9.5
OGTT clinical data of ‘‘normal’’ and ‘‘diabetic’’ subjects, and their model-simulation response
curves. Note: For the bottom curve (representing a normal subject), l¼ 2.6 h�2, Td¼ 1 h, and
G¼ 1.04 g L�1 h�1. For the top curve (representing a diabetic subject), l¼ 0.2657 h�2, Td¼ 6.08
h, and G¼ 2.9464 g L�1 h�1. (Adopted from Dittakavi, S.S. and Ghista, D.N., J. Mech. Med. Biol.,
1, 193, 2001).
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From this set of averaged values (given in the last row of Table 9.4) of
monitored OGTT blood glucose data in Figure 9.5 (bottom curve), the
response appears to be underdamped.

The solution of Equation 9.14 for an underdamped system (simulating the
normal subjects data in Figure 9.5) is given by Equation 9.15, as

y(t) ¼ (G=v)e�At sinvt

where G is the (to be determined) value of gram of glucose (administered to
the system) per liter of blood-pool volume per hour, A is the attenuation
constant, v (or vd)¼ (v2

n � A2)1=2 is the damped frequency of the system, vn

is the natural frequency¼ (l)1=2, and Td ¼ 2A=v2
n.

We apply Equation 9.15 to the data points of the clinically monitored
patient’s blood glucose response. The resulting three simultaneous equa-
tions (with parameters A, v, and G, obtained by using the three data points)
can be solved to yield: A¼ 1.4 h�1, v¼ 0.78 rad=h, and G¼ 1.04 g L�1 h�1.
Note that, A2( ¼ 1:96) < v2

n( ¼ 2:6). The detailed procedure and related
analysis are given in Appendix B.

Knowing the values of v and A, the parametric relationships of
Equation 9.14 are then employed to evaluate the model parameters l and
Td, as: l¼ 2.6 h�2 and Td¼ 1 h, for normal subjects, represented by the
bottom curve of Figure 9.5.

TABLE 9.3

Sample OGTT Clinical Data for a Normal Subject Observed BGC

No. of

Subject

Fasting

BGC (mg=dL)

0 h

(mg=dL)

1=4 h

(mg=dL)

1=2 h

(mg=dL)

1 h

(mg=dL)

2 h

(mg=dL)

1 77 77 90 98 83 55
2 78 78 91 93 109 80
3 75 75 85 97 100 102
4 68 68 99 100 96 58
5 74 74 99 111 100 105

TABLE 9.4

Observed BGC—Fasting BGC for the Normal Subject Whose Data Is Given
in Table 9.3

No. of

Subject

0 h

(mg=dL)

1=4 h

(mg=dL)

1=2 h

(mg=dL)

1 h

(mg=dL)

2 h

(mg=dL)

1 0 13 21 06 �22
2 0 13 15 31 02
3 0 10 22 25 27
4 0 31 32 28 �10
5 0 25 37 26 31
Average 0 18.4 25.4 23.2 5.6
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2. For a Typical Diabetic Subject (Table 9.5 and Figure 9.5 Top Curve)
The clinically obtained readings (above the fasting level) of the diabetic
subject are at 1=2 h¼ 100mg=dL, at 1 h¼ 140mg=dL, and at 2 h ¼ 150mg=dL.

The OGTT data of the diabetic subject (with the fasting glucose level of
175 mg=dL) depicted in Figure 9.5 (top) appear to be overdamped.

The corresponding solution, for an overdamped system, is given by
Equation 9.16, as

y(t) ¼ (G=v) e�At sinh vt

where v(or vd) ¼ (A2 � v2
n)

1=2 ¼damped frequency of the system, using the
earlier given notations for A and vn in Equations 9.13 and 9.14.

By simulating the diabetic subject’s clinical data (in Table 9.5) by Equation
9.16, we get simultaneous equations in A, v, and G. These equations can be
solved to get their best-fit values as A¼ 0.81 h�1, v¼ 0.622 rad=h, and
G¼ 2.9464 g L�1h�1.

By employing the relations in Equation 9.14, we then get l¼ 0.2657 h�2,
Td¼ 6.08 h as the parametric values associated with the upper curve of
Figure 9.5, for injected glucose input. The analytical details are provided
in Appendix C.

3. Interpretation of Results
The clinical data as well as its curve simulation by Equation 9.14 are
depicted in Figure 9.5. A comparison of the model’s parameter values for
the normal and diabetic patients is provided by Table 9.6. It is noted that the
two parameters G and Td are higher in the diabetic subject compared to the
normal subject, while l (¼ v2

n) is very low in the diabetic subject. Alterna-
tively, it can be noted that the damping constant A is 1.4 h�1 for the sample
normal subject compared to 0.81 h�1 for the sample diabetic subject, and

TABLE 9.5

OGTT Data for a Typical Diabetic Subject

Time of Observation 0 h (mg=dL) 1=2 h (mg=dL) 1 h (mg=dL) 2 h (mg=dL)

Observed BGC 175 275 315 325
Observed BGC� fasting BGC 0 100 140 150

Note: Fasting BGC¼ 175 mg=dL.

TABLE 9.6

Comparison of the Normal and Diabetic Subjects’ Parameters
of the Model Given by Equation 9.13

G [g (L)�1 (h)�1] l(h�2) ¼ v2
n Td (h) T¼ 2p=vn (h) A (h�1)

Normal 1.04 2.6 1.0 3.9 1.4
Diabetic 2.9464 0.2657 6.08 12.2 0.81
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T(2p=vn) is 3.9 h for the sample normal subject compared to 12.2 h for the
sample diabetic subject.

The time period T of the OGTT curve for the sample normal subject is
equal to 3.9 h. According to Ackerman, the value of T should be less than
4 h. Thus, our analysis also agrees with Ackerman et al.’s theory [11]. If we
reiterate Cramp and Carson [12], concerning the glucose dynamics OGTT,
it is noteworthy that in many physiological and clinical situations,
the normal or abnormal patient response is characterized by the presence
or absence of features such as overshoots, pure delays, and specific fre-
quencies of oscillation. It is these features, which are of prime significance
to the clinician.

Appendix A: Nature of Solution for Equation 9.14

The OGTT model equation to be solved is

y00 þ 2Ay0 þ v2
ny ¼ G d(t) (9:A1)

or

y00 þ 2Ay0 þ v2
ny ¼ 0

where y0 ¼ 0, y00 ¼ G, and the damped oscillation frequencyv ¼ (v2
n � A2)1=2.

We can represent the solution as

y ¼ c ert (9:A2)

Upon substituting Equation 9.A2 into Equation 9.A1, we obtain

r2 þ 2Arþ v2
n ¼ 0 (9:A3)

from which

r1, r2 ¼ �A� A2 � v2
n

� �1=2
(9:A4)

Now the evaluation of r1 and r2 depends on the square-root term
(A2 � v2

n).

Case 1: For A2 < v2
n or A2 � v2

n < 0, i.e., for v2
n � A2( ¼ v2) > 0, we have

A2 � v2
n ¼ i2(v2

n � A2) ¼ i2v2 v2 ¼ v2
n � A2 > 0

� �
(9:A5)

From Equations 9.A4 and 9.A5, we have
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r1, r2 ¼ �A� i2v2
� �1=2¼ �A� iv (9:A6)

The general solution of Equation 9.A1 is

y ¼ c1
2
(er1t þ er2t)þ c2

2i
er1t � er2t
� �

(9:A7)

Noting that cos vt¼ (e�ivtþ e�ivt)=2 and sin vt¼ (e�ivt� e�ivt)=2i,

y ¼ e�At(c1 cosvtþ c2 sinvt) (9:A8)

Since we have y(0)¼ 0, c1¼ 0, and

y ¼ c2 e
�At sinvt (9:A9)

and

y0 ¼ c2
�
e�Atv cosvtþ sinvt e�At(�A)

�
(9:A10)

Since

y0(0) ¼ G ¼ c2 v, c2 ¼ G=v (9:A11)

and hence

y ¼ (G=v)e�At sinvt (9:A12)

Case 2: A2 > v2
n, or A

2 � v2
n > 0

Then A2 � v2
n ¼ i2(v2

n � A2) ¼ v2

and

r1, r2 ¼ �A� (A2 � v2
n)

1=2 ¼ �A� v (9:A13)

The general solution is then

y ¼ c1e
(�Aþv)t þ c2e

(�A�v)t; r1 � r2 ¼ 2v (9:A14)

with

y(0) ¼ 0 ¼ c1 þ c2 (9:A15)

and

y1(0) ¼ G ¼ r1c1 þ r2c2 (9:A16)
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Therefore,

c1 ¼ G

(r1 � r2)
¼ G

2v
and c2 ¼ � G

(r1 � r2)
¼ � G

2v
(9:A17)

Hence, the solution is obtained as

y ¼ G

2v
e(�Aþv)t � e(�A�v)t
� �

¼ (G=v)e�At sinh (vt) (9:A18)

because sinhvt ¼ evt � e�vt

2
, and coshvt ¼ evt þ e�vt

2
(9:A19)

Case 3: A¼vn and r1¼ r2¼�A
Hence, in the case of repeated roots

y ¼ c1e
�At þ c2te

�At (9:A20)

where

c1 ¼ y0 ¼ 0, c2 ¼ y0(0) ¼ G (9:A21)

y ¼ Gte�At (for A ¼ vn, v ¼ 0) (9:A22)

Now

y0 ¼ G(�Ae�Attþ e�Att) ¼ Gt(1� At)e�At ¼ 0, when t ¼ 1=A ¼ T (9:A23)

Hence,

y ¼ ymax (when t ¼ 1=A ¼ T) ¼ (G=A)e�AT (9:A24)

From Equations 9.A22 and 9.A24, we obtain

y ¼ ymax(t=T) expA(T � t) (9:A25)

Appendix B: Model Simulation for the Normal

Patient’s OGTT Glucose Response

The impulse response of an underdamped (nearly critical) glucose regula-
tory system of normal subjects, whose fasting glucose level is taken to be
zero (lower curve of Figure 9.5) is (Equation 9.15)
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y(t) ¼ (G=v)e�At sinvt (9:B1)

where
G (in gram of glucose per liter of blood-pool volume per hour) is the
initial rate of glucose transport from GI tract to blood pool across
the intestinal membrane

A is the attenuation constant
v ¼ (v2

n � A2)1=2 is the damped frequency
vn is the natural frequency of the system

The means of the five blood glucose response values of the normal subject,
presented in Table 9.4 (obtained by subtracting the fasting glucose level
from clinically observed data of OGTT), are

at 1=4 h¼ 18.4 mg=dL¼ 0.184 g=L,
at 1=2 h¼ 25.4 mg=dL¼ 0.254 g=L, and
at 1 h¼ 23.2 mg=dL¼ 0.232 g=L.

From Equation 9.B1, we get

y(1=4) ¼ (G=v)e�A=4 sinv=4 ¼ 0:184 (9:B2)

y(1=2) ¼ (G=v)e�A=2 sinv=2 ¼ 0:254 (9:B3)

y(1) ¼ (G=v)e�A sinv ¼ 0:232 (9:B4)

Using the trigonometric identity sin 2u¼ 2 sin u cos u we obtain

from Equations 9:B3=9:B2 : 2e�A=4 cosv=4 ¼ (0:254=0:184) ¼ 1:380 (9:B5)

from Equations 9:B4=9:B3 : 2e�A=2 cosv=2 ¼ (0:232=0:254) ¼ 0:913 (9:B6)

Squaring Equation 9:B5 : 4e�A=2 cos2 v=4 ¼ 1:9 (9:B7)

and employing trigonometric identity 2 cos2 v=4¼ 1þ cosv=2, we get from
Equations 9.B7 and 9.B6:

(2 cos2 v=4)=( cosv=2) ¼ (1þ cosv=2)=( cosv=2) ¼ 2:08 (9:B8)

cosv=2 ¼ 0:926; hence v=2 ¼ 0:388 rad=h and v ¼ 0:775 rad=h (9:B9)

Putting cosv=2¼ 0.926 in Equation 9.B6, we get

2e�A=2 0:926 ¼ 0:913, i:e:, e�A=2 ¼ 0:493 (9:B10)

Hence, A¼ 1.4 h�1.
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Now v2 ¼ v2
n � A2, or v2

n ¼ v2 þ A2 ¼ (0:775)2 þ (1:4)2 ¼ 2:6 ¼ l (note,
v2
n > A2),

A ¼ (lTd=2) ¼ (2:6� Td)=2 ¼ 1:4 h�1,
Td¼ (2� 1.4)=2.6¼ 1.08 h, and
l ¼ 2.6 h�2.

Upon substituting the values of v and A in Equation 9.B4, we get
G¼ 1.04 g L�1 h�1

Appendix C: Model Simulation for the Diabetic Person’s

OGTT Data

The impulse response of an overdamped system of the diabetic patient,
normalized with respect to fasting glucose level (upper curve of Figure 9.5),
is the solution of Equation 9.14 for an overdamped system, given by
(Equation 9.16)

y(t) ¼ (G=v)e�At sinh vt (9:C1)

where
A is the attenuation constant
v ¼ (A2 � v2

n)
1=2 is the damped frequency

vn is the natural frequency of the system

The clinical glucose concentration values for the diabetic subject (obtained
by subtracting the fasting glucose level of the diabetic from the clinically
observed data of OGTT) are (Table 9.5)

at 1=2 h ¼ 100 mg=dL¼ 1.0 g=L,
at 1 h ¼ 140 mg=dL¼ 1.4 g=L,
at 2 h¼ 150 mg=dL¼ 1.5 g=L.

From Equation 9.C1, we get

y(1=2) ¼ (G=v)e�A=2 sinh v=2 ¼ 1:0 (9:C2)

y(1) ¼ (G=v)e�A sinh v ¼ 1:4 (9:C3)

y(2) ¼ (G=v)e�2A sinh 2v ¼ 1:5 (9:C4)

Using the trigonometric identity, sinh 2u¼ 2 sinh u cosh u, we obtain

from Equations 9:C3 and 9:C2 : 2e�A=2 cosh v=2 ¼ (1:4=1:0) ¼ 1:4 (9:C5)
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from Equations 9:C4 and 9:C3 : 2e�A cosh v ¼ (1:5=1:4) ¼ 1:07 (9:C6)

Squaring Equation 9:C5 : 4e�A cosh2 v=2 ¼ 1:96 (9:C7)

Now employing the trigonometric identity : 2 cosh2 v=2¼ 1þ cosh v, we get
from Equations 9.C7 and 9.C6

(2 cosh2 v=2)=( cosh v) ¼ (1þ cosh v)=( cosh v) ¼ (1:96=1:07) ¼ 1:83

(9:C8)

(1=cosh v)þ 1 ¼ 1:83, and hence v ¼ 0:6222 rad=h (9:C9)

Putting cosh v¼ 1.2 in Equation 9.C6, we get
1.07¼ 2� e�A� 1.2

i:e:, e�A ¼ 0:446 and A ¼ 0:808 h�1 (9:C10)

Now, v2 ¼ (A2 � v2
n), or v

2
n ¼ A2 � v2 ¼ (0:808)2 � (0:622)2 ¼ 0:266;

l ¼ v2
n ¼ 0:266 h�2,

A¼ (l Td=2)¼ (0.266�Td)=2¼ 0.808 h�1

i.e., Td¼ 6.08 h

Upon substituting the above values of l and Td in Equation 9.C3, we get
G¼ 2.946 g L�1 h�1 as the third parameter.
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In this chapter,we again provide thederivation of the basicmodel to represent
blood glucose and insulin responses to glucose ingestion in the oral glucose
tolerance test (OGTT). We then provide solutions, to the basic Blood glucose–
insulin regulatory system (BGIRS) model equations, for insulin response x(t)
to glucose bolus injestion in OGTT. Finally, we develop a nondimensional
index (NDI) based on the model parameters to facilitate characterization of
subjects as normal or diabetic or at risk of becoming diabetic.

10.1 Oral Glucose Tolerance Test (OGTT) Protocol

The test subjects need to fast for 12 h before the test and during the 2 h test.
A blood sample of the subject is taken before the beginning of the test. After
the subject drinks a 75 g of glucose solution dissolved in 250–300 mL of
water, the subject’s blood glucose and insulin concentrations are measured
at specified intervals of 30, 60, 90, and 120 min.

Qualitative interpretation of the results, for preliminary categorization of
the patients:

1. Blood glucose normal values [1,2]
Fasting: 70–115 mg=dL
30 min: less than 200 mg=dL
1 h: less than 200 mg=dL
2 h: less than 140 mg=dL
Normal insulin level (reference range): 1–30 mU=L [1,2]; mU
denotes milliunits

2. Impaired glucose regulation

When a person has a fasting glucose equal to or greater than 110 mg=dL
and less than 126 mg=dL, it is considered as impaired fasting glucose. This
is considered as a risk factor for diabetes and will likely trigger another test
in the future, but by itself does not provide sufficient evidence for the
diagnosis of diabetes.

A person is said to have impaired glucose tolerance when the 2 h glucose
results from the oral glucose tolerance test are greater than or equal to
140 mg=dL but less than 200 mg=dL. This is also considered a risk factor
for future diabetes. A person is deemed to be diabetic when the oral glucose
tolerance tests show that the blood glucose level at 2 h is equal to or more
than 200 mg=dL. This must be confirmed by a second test on another day.
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10.2 Representing Glucose and Insulin Responses by Their

Concentration–Time Profiles

When a glucose bolus is administered to a normal person, typical blood
glucose and insulin concentration–time profiles are illustrated in Figure
10.1, and can be regarded to be underdamped responses [1]. However,
when a glucose bolus is administered to a typical diabetic patient, the
blood glucose and insulin concentration–time profiles (illustrated in Figure
10.2) appear to be overdamped.

Comparing Figures 10.1 and 10.2 [1–3], we note that a normal person’s
glucose response is such that the blood glucose concentration (normalized
with respect to the fasting or initial value) peaks at levels of up to 1.06 g=L
(or 106 mg/dL), and is back to 0 g=L by the end of 2 h. Likewise, the
response curve for blood insulin (normalized with respect to fasting blood
insulin concentration) peaks up to 0.2 U=L (or 20 mu/dL) and returns to
0 U=L at the end of 2 h. On the other hand, for this typically diabetic patient,
the blood glucose concentration is peaking at 2.28 g=L (or 228 mg/dL), and
falls to only 2.20 g=L by the end of 2 h. The blood insulin response is quite
meager. It barely peaks at 0.04 U=L (or 4 mu/dL) at the end of 2 h, and
remains at this level.

The advantage in plotting the responses in the form of curves is that it
enables us to quantify the clinical criteria, by means of parametric modeling
of the response curve (i.e., underdamped or overdamped), as demonstrated in
the previous chapters. There are patients who do not fall into either clinical
category. Their response curves can place them into a critically damped
domain, whereby they are neither normal nor diabetic but at risk of becoming
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FIGURE 10.1 (See color insert following page 266.)
When glucose bolus is administered to a normal person, a typical response of blood glucose and
insulin correlation (normalized) with respect to their fasting or initial concentration values.
Blood glucose concentration is measured in g/L and insulin concentration is measured in U/L.
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diabetic. Even more relevantly, we demonstrate that we can combine the
parameters into anNDI, which ismore conveniently clinically implementable.

There are many works on modeling of glucose–insulin dynamic and
regulation [1–9]. However, this chapter is specifically oriented to modeling
the glucose and insulin responses to ingested glucose bolus for OGTT.
Herein, the glucose concentration–time data are simulated by an appropri-
ate type of solution (under- or over- or critically damped) of the governing
differential equations for glucose and insulin responses to glucose bolus
ingestion, presented in Chapter 8. The diagnosis of the patient (as normal, at
risk of being diabetic, as borderline diabetic, as diabetic) depends on the
solution category that the clinical data fall into.

In this chapter, we employ three sets of equations for the above men-
tioned three categories of glucose and insulin responses. These three sets of
equations are given by (i) Equations 10.10–10.12 for blood glucose response
and (ii) by Equations 10.14, 10.16, and 10.18 for insulin response. Now, each
set of clinical data is analyzed by the above three types of model response
equations, to determine the class of system response based on the best-fit
results. All the clinical data sets, presented herein, have been collected and
a priori analyzed by a qualified clinician. Also, the clinical data are normal-
ized by the respective fasting values. Normalization helps to facilitate the
accuracy of model computational simulation. Since both the blood glucose
and insulin responses are analyzed simultaneously, it is necessary to know
both the glucose and insulin responses simultaneously to ascertain that the
patient has been diagnosed correctly.

The subjects studied were of age range from 19 to 67 years old. The
physiological system responses to the orally ingested bolus of glucose
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FIGURE 10.2
When glucose bolus is administered to a diabetic patient, a typical response of blood glucose
and insulin correlation (normalized) with respect to their fasting or initial concentration values.
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were monitored closely for 2 h at 30 min intervals, and their data were
simulated by our model response expressions.

10.3 Differential Equation Model of the Glucose–Insulin

System

The compartmental block diagram of the blood glucose and insulin regula-
tory system (BGIRS) [1–3] is illustrated in Figure 10.3 (which is essentially
Figure 8.3 of Chapter 8), repeated here in the interests of maintaining
continuity. The glucose input-rate into the blood-pool is represented by
‘‘q’’ in the figure. From the blood-pool, glucose is metabolized into the
tissues in two ways, as represented by the two terms dy (removal-rate of
glucose from the blood-pool independent of insulin) and gx (removal-rate
of glucose under the influence of insulin). In return, the glucose influences
the release-rate of insulin into the blood-pool by the pancreas, as represented

Input

Digestion
system

Liver
glycogen

Tissues
(metabolism)

q Blood
glucose (y)
y = q–gx–dy

Glucose input due
to absorption from

intestines

Average glucose
removal-rate

independent of insulin

Average rate of
release of
glucose

Yg

Net increase in
insulin release-rate

due to glucose

Average insulin
removal-rate

independent of 
glucose

Average rate-
release of insulin

by pancreasLi

Net increase in
glucose removal-

rate, due to insulin

Destruction

Pancreas

Blood
insulin (x)

x = –ax + by

dy

gx

by

by

gx

ax

FIGURE 10.3
Blood glucose–insulin control system (BGIRS). Block diagram of how (1) insulin level and rate-
of-change of insulin x

�
(t) govern blood glucose concentration y(t), and (2) the rate-of-change of

glucose y
�
(t) is influenced by insulin concentration x(t) and ingested glucose input rate q(t).
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by the term by. The insulin is also removed independently of glucose, as per
the term ax.

10.3.1 Modeling of Glucose–Insulin Regulation of Oral
Glucose Tolerance Test (OGTT)

We have adopted the linearized biomathematical model of Bolie [1], as the
basis of ourmodeling, because it is simple but still compatible with the known
physiological mechanisms. This model characterizes the glucose–insulin
system by means of the differential equations (given later as Equations 10.1
and 10.2) with four parameters: a and b, g and d, representing (i) pancreatic
insulin sensitivity to insulin and glucose blood concentrations, and (ii) com-
bined sensitivity of liver glycogen storage and tissue glucose utilization to
elevated insulin and glucose concentrations.

The above block diagram of Figure 10.3 [1–3] illustrates how (1) the
insulin release-rate is governed by blood glucose concentration y(t)
and insulin level x(t), and (2) the rate-of-change of glucose is influenced
by insulin concentration x(t), glucose level y(t), and injested glucose input
rate q(t). In Figure 10.3

a represents pancreatic insulin sensitivity to elevated insulin concen-
tration, in (h)�1

b is the pancreatic insulin sensitivity to elevated glucose blood con-
centration, in (units) (h)�1 (g)�1

g is the combined sensitivity liver glycogen storage and tissue glu-
cose utilization to elevated blood insulin concentration, in (g) (h)�1

(units)�1

d is the combined sensitivity of liver glycogen storage and tissue
glucose utilization to elevated blood glucose concentration, in (h)�1

10.3.2 The Governing Differential Equations for Glucose
and Insulin Systems

By considering the conservation-rates of glucose and insulin in their respective
compartments,weobtain the basic differential equations, governing theBGIRS
(depicted in Figure 10.3), as (given by Equations 10.1 and 10.2 of Chapter 8)

_x ¼ p(t)� axþ by (10:1)

_y ¼ q(t)� gx� dy (10:2)

where
x is the blood insulin concentration (from its fasting level) in U/L
y is the blood glucose concentration (from its fasting level) in g/L
p is the insulin input-rate in (U) (L)�1 (h)�1

q is the glucose input-rate in g(L)�1(h)�1

ẋ and ẏ denote the first-derivatives of x and y with respect to time
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In these equations, the glucose–insulin model system parameters (regula-
tory coefficients) are a, b, g, d.

From Equations 10.1 and 10.2, we obtain the differential equation model
for glucose concentration (y) and insulin concentration (x), for insulin infu-
sion rate (p¼ 0) and glucose inflow rate (q). For glucose response, we obtain
(by differentiating both sides of Equation 10.2 with respect to ‘‘t’’)

€y ¼ q0 � g _x� d _y

¼ _qþ aq� _y(aþ d)� y(adþ bg)

Rearranging, we get the differential equation:

€yþ _y(aþ d)þ y(adþ bg) ¼ _qþ aq (10:3)

where _y and €y denote first and second time derivatives of y.
Similarly, differentiating both sides of Equation 10.1with respect to t, we get

€x ¼ �a _xþ b _y, assuming p ¼ 0

¼ �a _xþ bq� bgx� d( _xþ ax),

or,

€xþ _x(aþ d)þ x(adþ bg) ¼ bq (10:4)

where _x and €x denote first and second time derivatives of x.

10.3.3 Laplace Transform Representation of the Governing
Equations 10.3 and 10.4

1. Glucose response solution

The transfer-function (TF) corresponding to Equation 10.3 is
obtained by taking Laplace transforms of both sides (assuming
the initial conditions to be zero), to obtain the transform function
G(s) (as we showed in Chapter 8)

G(s) ¼ Y(s)

Q(s)
¼ (sþ a)

(sþ p1)(sþ p2)
(10:5)

Then the y(t) response of the system (i.e., the solution of the differ-
ential Equation 10.3) is obtained by taking the inverse transform of

Y(s) ¼ Q(s)(sþ a)

s2 þ s(aþ d)þ (adþ bg)
¼ Q(s)(sþ a)

(sþ p1)(sþ p2)
(10:6)

2. Similarly from Equation 10.4, we get the transfer function for
insulin response as

X(s)

Q(s)
¼ b

s2 þ s(aþ d)þ (adþ bg)
(10:7)
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In OGTT test, a fasting person is given an oral glucose dose of
1 g=kg, for diabetes diagnostic purpose. If the subject is normal
and free from diabetes, the blood glucose level rises from the
fasting value of, say, 80 mg=dL to 120–140 mg=dL, and then falls
back to below normal in about 2 h.

The physiology of the GI tract suggests that the intestinal glu-
cose absorption rate is constant for a limited time duration. Hence,
the glucose rectangular-pulse input h(t) into the blood-pool could
be representative of this phenomena. This is due to the combined
effect of two mechanisms: (1) the pyloric sphincter valve-resist-
ance which controls the transfer of glucose from the stomach to the
intestines in inverse proportion to the stomach distension, and (2)
the active transport of glucose from the intestines into the blood
(across the intestinal wall) at its maximum rate, according
to Michaelis–Menten equation, graphically depicted in Figure 9.2
of Chapter 9. We combine these two mechanisms into a single
equation representing blood glucose concentration response due
to oral ingestion of glucose, as represented by Figure 10.4.

Now forOGTT simulation,wenote that theGI compartment has the transfer
function G1(s)¼ 1=(sþa) [2,4], which is tantamount to a decay in glucose
concentration (at the rate of a) during its transmission through the GI tract,
in response to an impulse input Gd(t), wherein G is the amount of glucose per
liter of blood-pool volume per hour. This is depicted in Figure 10.4. The blood-
pool compartment has the transfer function G2(s)[¼ (sþa)=s2þ s(aþ d)þ
(adþbg)], as depicted in Figure 10.4, and given by Equation 10.5.
Hence, by multiplying G1(s) and G2(s), we get the transfer function of the

digestive tract and blood-pool conglomerate as

Y(s) ¼ (sþ a)

s2 þ s(aþ d)þ (adþ bg)
� 1

(sþ a)
� G

¼ G

s2 þ s(aþ d)þ (adþ bg)
¼ G

s2 þ lTdsþ l
(10:8a)

where

l ¼ (adþ bg)

G

GI tract

1
(s + a)

Y (s )
s2

 + (a + d)s + (a d + b g)
(s + a)Q (s )

Blood-pool

FIGURE 10.4
Laplace transform format of the GI tract and blood-pool system of governing Equation 10.5,
to simulate the monitored oral glucose tolerance test (OGTT) glucose response curve.
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and
lTd ¼ (aþ d)

This Equation 10.7 can be adopted to represent the response of the blood
glucose (proportionalþderivative feedback) control system model, for
simulating glucose metabolism during OGTT, as illustrated by Figure 10.4.

Equation 10.8a can also be written as

Y(s) ¼ G (in g L�1 h�1)

s2 þ 2Asþ v2
n

(10:8b)

where
vn¼ the natural frequency of the system
A ¼ the attenuation or damping constant of the system in h�1

l ¼ 2A=Td ¼ v2
n in h�2

v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v2

n � A2)
p

is the angular frequency of damped oscillation of the
system in rad/h

G ¼ grams of glucose per liter of blood pool volume per hour:
g(L)�1 (h)�1

10.4 Solutions to the OGTT Model Governing Differential

Equation, for Glucose Response (y) to Glucose Bolus

Ingestion (in OGTT)

On the basis of Equation 10.8, the governing differential equation of glucose
response (of the combined GI and blood-pool compartment) to glucose
bolus ingestion represented by the impulse function Gd(t) is given by

€yþ 2A _yþ v2
ny ¼ Gd(t) (10:9a)

where the damped oscillation frequency

vd (or v) ¼ (v2
n � A2)1=2; 2A ¼ aþ d, and v2

n ¼ adþ bg

or,

€yþ lTd _yþ ly ¼ 0; l(¼ 2ATd) ¼ v2
n, Td ¼ 2A=v2

n (10:9b)

wherein y0¼ 0 and y0 ¼G.

10.4.1 Solution for Glucose Response y(t)

Solution for underdamped case:
For A2 < v2

n or A2 � v2
n < 0, i:e:, for v2

n � A2(¼ v2) > 0, we have the solu-
tion to Equation 10.9 as
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y(t) ¼ (G=v)e�At sin=vt (10:10)

Solution for overdamped case:
For A2 > v2

n, or A
2 � v2

n > 0, we have

y(t) ¼ (G=v)e�At sinh vt (10:11)

Solution for critically damped case:
For v¼ 0, we have

y(t) ¼ Gte�At (10:12)

From the above equations, we can determine the model equation parameters
G, v, A, for each clinical case, by making the corresponding solution (for
underdamped or overdamped, or critically damped) response match the
OGTT clinical data, by Matlab-based parameter identification procedure. In
Chapter 9, we showed that we can also analytically evaluate these parameters.

10.4.2 Solutions for Insulin Response x(t) to Glucose
Bolus Ingestion (OGTT)

Our aim is to formulate the blood insulin concentration expressions involv-
ing the original model parameters (a, b, g, d), so that we can simulate the
OGTT insulin concentration data, and evaluate these parameters. For this
purpose, we could employ the OGTT model expression for insulin concen-
tration, given by Equation 9.18. However, in this expression, the parameters
are coupled. Instead, we can simply consider that the above expressions
(10.10–10.12) best represent the OGTT glucose concentration (y) data, whose
parameters (G, v, A) can be determined by parametric simulation of the
OGTT blood glucose concentration data. We can then proceed to solve for
the original parameters a, b, g and d, of the model by referring to the basic
model Equations 10.1 and 10.2.

For underdamped response of normal subjects, we obtain from Equations
10.1 and 10.10:

_x ¼ �axþ by ¼ �axþ b
G

v
e�At sinvt (10:13)

Solving Equation 10.13, we get the corresponding insulin response (derived
in Appendix A) for x(0) ¼ 0, as

x(t) ¼ �[Ae�At sinvt� ae�At sinvt� ve�at þ ve�At cosvt](bG=v)

A2 � 2Aaþ a2 þ v2
(10:14)

For overdamped response of diabetic subjects, we obtain from Equations
10.1 and 10.11:

_x ¼ �axþ by ¼ �axþ b
G

v
e�At sinh vt (10:15)
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Solving Equation 10.15, we get the insulin response (derived in Appendix B)
for x(0)¼ 0 as follows:

x(t)¼

1

2
[Acosh(vtþAt�at)þAsinh(�vtþAt�at)�Acosh(�vtþAt�at)�

Asinh(vtþAt�at)þvsinh(vtþAt�at)�vcosh(�vtþAt�at)�
asinh(�vtþAt�at)þasinh(vtþAt�at)�acosh(vtþAt�at)�
vcosh(vtþAt�at)þacosh(�vtþAt�at)þ2vþvsinh(�vtþAt�at)]e�(at)(bG=v)

2
666664

3
777775

(�v2þA2�2Aaþa2)

(10:16)

For a critically damped response (of borderline subjects), we obtain the insulin
response fromEquations 10.1 and 10.12 (derived inAppendixC) for x(0)¼ 0, as

_x ¼ �axþ by ¼ �axþ bGte�At (10:17)

The solution of Equation 10.17 is given by

x(t) ¼ �bG tAe�At � tae�At þ e�At � e�at
� �

(A� a)2
(10:18)

10.5 Evaluating the Model Parameters (a, b, g, d)

By simulating the glucose response with our y(t) solutions (of Equations
10.10, 10.11, or 10.12), we can evaluate the parameters G, A, and v. We will
now proceed to solve for the parameters: b, g, and d.

From Equation 10.9, we have the following relationships:

v2
n ¼ l ¼ (adþ bg) (10:19)

lTd ¼ 2A ¼ (aþ d) (10:20)

Then, after evaluating the parameter A (by matching the y(t) solution to the
glucose response data), we can obtain the value of (aþ d) from Equation
10.20, as

aþ d ¼ 2A (10:21)

Now, by matching the x(t) solution to the insulin response data, we can
evaluate the parameters a and b. Hence, from Equation 10.21, by substitut-
ing this evaluated value of a, we can obtain the value of d. Now, we have
solved for a, b, and d. But we still need to determine the parameter g.

For instance, in the case of underdamped response (of normal subjects),

v2
n ¼ v2 � A2 (10:22)
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Also, from Equation 10.19, we obtain

v2
n ¼ l ¼ (adþ bg)

and hence

v2 � A2 ¼ l ¼ (adþ bg) (10:23)

Now, in this equation, since only g is unknown, we can evaluate it. Hence,
we can determine all the four model parameters a, b, g, and d for normal
subjects.

In the case of overdamped response characteristic (of diabetic subjects),

v2 ¼ A2 � v2
n (10:24)

Also, from Equation 10.19

v2
n ¼ l ¼ (adþ bg)

A2 � v2 ¼ (adþ bg)
(10:25)

Hence, again in this above equation, since only g is as yet unknown, we
can evaluate it. Hence all the model parameters (a, b, g, and d) can be
determined.

10.6 Clinical Applications of the Model

We have decided that for a patient to be classified in any one of the three
(underdamped, overdamped, and critically damped) response categories,
the model solution equation should fit the data with a very high degree of
correlation coefficients: R-square � 0.90 and SSE � 0.1. In case a patient
data fit all the three (underdamped, overdamped, and critically damped)
response categories, we will designate the patient to the category for which
the R-square value is the highest.

10.6.1 Underdamped Category for Patients Clinically Designated
to be Normal (Table 10.1)

Clinically designated normal patients were assessed for their blood glucose
and insulin responses, based on the criteria presented in Section 10.1 of this
chapter. If both their blood glucose and insulin concentrations data demon-
strated underdamped features (by being best fitted by Equations 10.13 and
10.14), they were characterized as normal.

The underdamped features of a sample subject (that met the under-
damped criterion with a high R-square value) are illustrated in Figure 10.5.
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TABLE 10.1

Subjects That Were Well Fitted
by Underdamped Model Equation
Solutions 10.13 and 10.14.

Best Fitted (R-Square � 90%)

N11
N12
N13
N16
N18

Note: These subjects are placed in Table 10.4, based
on their DNDI index (Equation 10.28) value.
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FIGURE 10.5 (See color insert following page 266.)
The glucose–insulin response of a sample normal (nondiabetic) subject response.
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Equation 10.9 parameters (A, G, v) as well as the computed Equations 10.1
and 10.2 model parameters (a, b, g, d) are tabulated in the table of Figure
10.5 for this subject.

10.6.2 Overdamped Category of Patients Clinically Designated
as Diabetic (Table 10.2)

Now, we designate those patients whose blood glucose and insulin concen-
trations data were well fitted by overdamped response expressions (10.15
and 10.16) of the model equation, and designate them to be diabetic, as per
our model response category.

It is to be noted that subject N17 (clinically diagnosed to be normal) falls
into the category of overdamped model response. The response of the
patient D01 (who was also clinically diagnosed to be diabetic) is illustrated
in Figure 10.6. Additionally the Equation 10.9 parameters (A, G, v) and
Equations 10.1 and 10.2 parameters (a, b, g, d) are tabulated in the table of
Figure 10.6, for this subject.

10.6.3 Critically Damped Category of Patients (Table 10.3)

There are some patients (shown in Table 10.3) who were clinically diagnosed
to be normal, for whom the critically damped solution Equations 10.17 and
10.18 give a better fit of their glucose and insulin response data (and a higher
value of R-square) than the underdamped solution. One such patient is N03,
who was clinically diagnosed to be normal but whose response curves
(shown in Figure 10.7) best fit the critically damped model response.
Hence, this subject is only at risk of becoming diabetic, based on our model
solution.

Likewise, patient D05 was identified as diabetic, but he is only at risk of
becoming diabetic because his data is best fitted by the critically damped
response equation. His response curve is illustrated in Figure 10.8. The tables

TABLE 10.2

Subjects That Were Well Fitted by Overdamped
Model Equation Solutions 10.15 and 10.16

Best Fitted (R-Square � 90%)

N17
D01
D04
D07
D11
D13
D15
D16

Note: These subjects are placed in Table 10.5, based on their
values of the DNDI index (Equation 10.28).

Ghista/Applied Biomedical Engineering Mechanics DK8315_C010 Final Proof page 288 29.5.2008 12:18am Compositor Name: MSubramanian

288 Applied Biomedical Engineering Mechanics



TABLE 10.3

Subjects That Were Well Fitted by Critically Damped
Characteristic Model Equations 10.17 and 10.18

Best Fitted (R-Square � 90%)

N03
N04 (almost normal, based on DNDI value)
N10 (almost normal, based on DNDI value)
N15
D05
D12

Note: These subjects are placed in Table 10.6, based on their
values of the DNDI index (Equation 10.28).
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FIGURE 10.6
The glucose–insulin response of D01 is a good example of an overdamped response, charac-
teristic of a diabetic subject.
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of Figures 10.7 and 10.8 provide the values of (1) the parameters (A,G, and v)
of Equation 10.9 and (2) of the model Equations 10.1 and 10.2 parameters
(a, b, g, d), for these subjects.

10.7 Combined Nondimensional Index Representing

Both Glucose and Insulin Model Responses

There have been some works [5–9] dealing with insulin sensitivity to ele-
vated blood glucose. However, we have come up with a nondimensional
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FIGURE 10.7 (See color insert following page 266.)
The glucose–insulin response of N03 is a good example of a ‘‘missed’’ clinical diagnosis. Even
though the subject was diagnosed as normal, clinically (i.e., pronounced to be nondiabetic), the
subject in fact is at-risk of becoming diabetic, based on this subject’s data being best fitted by
the ‘‘critically damped response ’’ Equations 10.17 and 10.18, as well as based on the value
of the nondimensional diabetes index (Equation 10.28) and as indicated by Table 10.6.
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index, based on glucose and insulin responses, which is based on a com-
bination of model parameters and some important values of the glucose-
tolerance test. Herein, we will develop this index, and show (by means of
Tables 10.4 through 10.6) how it can be employed to categorize patients as
normal or diabetic or at risk of becoming diabetic.

10.7.1 System Parameters Identification

The OGTT glucose and insulin data of individuals will be used for system
parameter identification, and employed to evaluate the indices. The non-
dimension index for blood glucose response (GNDI) is formulated as
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FIGURE 10.8 (See color insert following page 266.)
The glucose–insulin response of D05 is another example of a missed clinical diagnosis. This
subject was diagnosed to be diabetic; however, based on our diabetes index DNDI, this subject
is at risk of being diabetic, as indicated by Table 10.6.
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GNDI ¼ ( ymax � y2)

G2
� Td

A
� Tmax

T5
2

� 106 (10:26)

where
ymax is the maximum blood glucose value in g=L
y2 is the blood glucose value at 2 h
G is the glucose administered to the system in gL�1h�1

Td is the derivative-time in h
A is the attenuation constant in h�1

Tmax is the time at which ymax occurs
T2 is 2 h

The nondimensionless index for insulin response (INDI) is formulated as

INDI ¼ bg

ad
(10:27)

where
a is the pancreatic insulin sensitivity to insulin in (h)�1

b is the pancreatic insulin sensitivity to elevated glucose blood concen-
trations in (units) (h)�1(g)�1

g is the liver glycogen storage and tissue glucose utilization due to
elevated insulin concentration in g(h)�1(units)�1

d is the tissue glucose utilization to elevated blood glucose concentra-
tions in (h)�1

The final combined diabetes nondimensionless index, combining both the
above indices and involving all the four model parameters (a, b, g, d), is
then given by

DNDI ¼ GNDI

INDI

¼ (ymax � y2Þ=G2
� �

(Td=A)(Tmax=T
5
2)� 106

bg=ad
(10:28)

wherein
a is the increase, means insulin removed
b is the increase, means insulin responsive to glucose concentration
g is the decrease, means blood glucose increases and not enough

glucose absorbed by tissues
d is the decrease, means blood glucose increase, and inadequate tissue
glucose utilization

The computed values of GNDI, INDI, and the integrated DNDI index, for the
undamped subjects, overdamped subjects, and critically damped subjects, are
provided in Tables 10.4 through 10.6, respectively. It is seen that undamped
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(and hence normal, as per our model) subjects have the value of DNDI in less
than 1.0 range, while the overdamped (and hence diabetic, as per our model)
subjects have DNDI in the 1000–200,000 range. Most critically damped (and
hence at-risk, as per our model) subjects have DNDI in the intermediate
50–1000 range; it is seen, from Table 10.6, that subjects N04 and N10 are
almost normal. Thus, this nondimensional index DNDI can be seen to pro-
vide effective separation of underdamped (normal), overdamped (diabetic),
and critically damped (at-risk of becoming diabetic) subjects.

10.8 Conclusion

We have shown that we can obtain more accurate discrimination of normal
diabetic subjects, by means of their being characterized by our model as
being underdamped, overdamped, and critically damped. Some patients
(clinically diagnosed to be normal) were designated by us to be in the
borderline category. However, some patients who were clinically declared
to be diabetic turned out to be only borderline. With more data, we can
obtain more assured DNDI ranges of underdamped, overdamped, and
critically damped subjects.

Appendix A: Solution of Equation 10.13

To solve: _x ¼ �axþ b
G

v
e�At sinvt (A:1)

The auxiliary equation is:

mþ a ¼ 0

Hence, the complimentary function (CF) is given by:

CF ¼ x(t) ¼ ke�at (A:2)

where k is the constant of integration.
The particular integral (PI) is given by:

PI ¼ 1

(Dþ a)
b
G

v
e�At sinvt (A:3)

PI ¼ b
G

v
e�At 1

(D� Aþ a)
sinvt ¼ b

G

v
e�At D� (a� A)

(D2 � (a� A)2)
sinvt

¼ b
G

v
e�At D� (a� A)

�v2 � (a� A)2
sinvt ¼ �b

G

v
e�At v cosvt� a sinvtþ A sinvt

v2 þ a2 � 2Aaþ A2

(A:4)
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Hence the general solution (GS) of Equation A.1 is given by:

GS ¼ CFþ PI (A:5)

x(t) ¼ ke�at � b
G

v
e�At v cosvt� a sinvtþ A sinvt

v2 þ a2 � 2Aaþ A2
(A:6)

Applying the initial condition: at t¼ 0, x(t)¼ 0 to Equation A.6, we get

0 ¼ k� b
G

v

v

v2 þ a2 � 2Aaþ A2

� �
(A:7)

Substituting the value of k from Equation A.7 into Equation A.6, we get

x(t) ¼ � b
G

v

� �
Ae�At sinvt� ae�At sinvt� ve�at þ ve�At cosvt

A2 � 2Aaþ a2 þ v2
(A:8)

which is the solution of Equation 10.13.

Appendix B: Solution of Equation 10.15

To solve: _x ¼ �axþ b
G

v
e�At sinhvt (B:1)

The auxiliary equation is:

mþ a ¼ 0 (B:2)

Hence, the complimentary function (CF) is given by:

CF ¼ x(t) ¼ ke�at (B:3)

where k is the constant of integration.
The particular integral (PI) is given by:

PI ¼ 1

(Dþ a)
b
G

v
e�At sinhvt ¼ 1

(Dþ a)
b
G

v
e�At evt � e�vt

2

� �

¼ 1

(Dþ a)
b
G

v

e(�Aþv)t � e�(Aþv)t

2

� �
¼ b

G

2v

e(�Aþv)t

�Aþ vþ a
� e�(Aþv)t

�A� vþ a

� �

¼ b
G

2v

(a� A� v)e(�Aþv)t � (a� Aþ v)e�(Aþv)t

(a� A� v)(a� Aþ v)

� �
(B:4)
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Hence, general solution of Equation B.1 is:

x(t) ¼ ke�at þ b
G

2v

(a� A� v)e(�Aþv)t � (a� Aþ v)e�(Aþv)t

(a� A� v)(a� Aþ v)

� �
(B:5)

Applying the initial condition: at t¼ 0, x(t)¼ 0 to Equation B.5, we get

0 ¼ kþ b
G

2v

�v� v

(a� A)2 � v2

� �
(B:6)

Hence, k ¼ bG

(a� A)2 � v2
(B:7)

Substituting the value of k into Equation B.5, we get

x(t)¼ bGe�at

2v[(a�A)2 �v2]
2vþ (a�A�v)e(�Aþvþa)t � (a�Aþv)e�(Aþv�a)t
� 	

(B:8)

Now in order to express the solution in hyperbolic form, we simplify
Equation B.8 as follows:

x(t) ¼ E 2vþ (a� A� v)e(�Aþvþa)t � (a� Aþ v)e�(Aþv�a)t
� 	

(B:9)

where E ¼ bGe�at

2v[(a�A)2�v2]

x(t) ¼ E

2vþ (a� A� v)
e(a�Aþv)t � e�(a�Aþv)t

2

� �
þ (a� A� v) e

�(a�Aþv)t

2

þ (a� A� v) e
(a�Aþv)t

2 � (a� Aþ v) e(a�A�v)t þ e�(a�A�v)t

2

� �

þ (a� Aþ v) e
�(a�A�v)t

2 � (a� Aþ v) e
(a�A�v)t

2

0
BBBBBBB@

1
CCCCCCCA

¼ E
2vþ (a� A� v) sinh (a� Aþ v)t� (a� Aþ v) cosh (a� A� v)t

þ (a� A� v) cosh (a� Aþ v)t� (a� Aþ v) sinh (a� A� v)t

 !

¼ E

2v� a sinh (�vtþ At� at)þ A sinh (�vtþ At� at)þ v sinh (�vtþ At� at)

�a cosh (vtþ At� at)þ A cosh (vtþ At� at)� v cosh (vtþ At� at)

þa cosh (�vtþ At� at)� A cosh (�vtþ At� at)� v cosh (�vtþ At� at)

þa sinh (vtþ At� at)� A sinh (vtþ At� at)þ v sinh (vtþ At� at)

0
BBBB@

1
CCCCA

(B:10)
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Hence, the solution is given by:

x(t) ¼ bGe�at

2v[(a� A)2 � v2]

�
2v� a sinh (�vtþ At� at)þ A sinh (�vtþ At� at)þ v sinh (�vtþ At� at)

�a cosh (vtþ At� at)þ A cosh (vtþ At� at)� v cosh (vtþ At� at)

þa cosh (�vtþ At� at)� A cosh (�vtþ At� at)� v cosh (�vtþ At� at)

þa sinh (vtþ At� at)� A sinh (vtþ At� at)þ v sinh (vtþ At� at)

0
BBB@

1
CCCA

(B:11)

which is the solution to Equation 10.15.

Appendix C: Solution of Equation 10.17

To solve: _x ¼ �axþ bGte�At (C:1)

The auxiliary equation is:

mþ a ¼ 0 (C:2)

Hence, the complimentary function (CF) is given by:

CF ¼ x(t) ¼ ke�at

where k is the constant of integration.
The particular integral (PI) is given by:

PI ¼ 1

(Dþ a)
bGte�At (C:3)

PI ¼ bGe�At 1

(D� Aþ a)
t ¼ �bGe�At

(A� a)
� 1

(1� D
A�a )

t

¼ �bGe�At

(A� a)
� 1� D

A� a

� ��1

t ¼ �bGe�At

(A� a)
� 1þ D

A� a
� D2

(A� a)2
þ . . .

� �
t

¼ �bGe�At

(A� a)
tþ 1

A� a

� �
(C:4)

;PI ¼ �bGe�At

(A� a)2
t(A� a)þ 1ð Þ (C:5)
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Hence the general solution (GS) of Equation C.1 is given by:

GS ¼ CFþ PI (C:6)

x(t) ¼ ke�at � bGe�At

(A� a)2
t(A� a)þ 1ð Þ (C:7)

Applying the initial condition: at t¼ 0, x(t)¼ 0 to Equation C.7, we get

0 ¼ k� bG

(A� a)2

; k ¼ bG

(A� a)2
(C:8)

Substituting the value of k from Equation C.8 into Equation C.7, we get

x(t) ¼ bG

(A� a)2
e�at � bGe�At

(A� a)2
t(A� a)þ 1ð Þ (C:9)

; x(t) ¼ �bG

(A� a)2
tAe�At � tae�At þ e�At � e�at
� �

(C:10)

which is the solution of Equation 10.17.
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11.1 Introduction and Scope

Axial compressive load is more prominent in fracture-fixed long bones and
hence internal fracture fixation by interfragmentary compression at the
fracture site needs to be achieved. However, due to the applied load eccen-
tricity (with respect to the central axis of the bone–plate assembly), bending
moment is also applied to the fracture-fixed bone. Bending moment will
induce both tensile and compressive stresses across the fracture site, and
open up the fracture, leading to the reduction in the stability of the fixation.
From an engineering perspective, fracture-fixed bone–plate assembly is
weakest in bending though it gets subjected to axial compressive loading.
Hence, in this chapter, we will analyze the plate-fixed fractured bone under
compression as well as in bending loading.

In this chapter, firstly using the composite beam theory based on the
mechanics of material approach, an analytical model is developed to calcu-
late the forces in the screws used in bone fracture fixation by the plate.
Based on the forces in the screws and stresses in the plate and the bone, an
optimal selection criterion of the fixation plate is proposed to ensure min-
imal deformation of the fractured bone as well as for necessary and suffi-
cient stress shielding. Secondly, employing the finite element method, the
use of stiffness-graded plate as a potential substitute to the homogeneous

Ghista/Applied Biomedical Engineering Mechanics DK8315_C011 Final Proof page 306 29.5.2008 12:22am Compositor Name: MSubramanian

306 Applied Biomedical Engineering Mechanics



stainless steel bone–plate is analyzed to determine the extent of increased
stress shielding. Thirdly, we demonstrate a novel concept of osteosynthesis
using hemihelical plates for fixation of oblique bone fractures. Parts of
this chapter are based on our work [1,2] concerning the biomechanical
analysis of bone–plate assemblies.

11.2 Analysis of Forces in the Plate Screws of an Internally

Fixed Bone under Axial Loading

When a plate is fixed (with the help of screws) to a fractured long bone for
fracture healing, the bone–plate assembly can be analyzed as a composite
beam sharing the load between the plate and the bone. In case of a bone–
plate assembly, remodeling removes most of the stress concentration effects
of the screw holes. However, the transfer of load between bone fragments is
through screws and plates, until the fracture is healed completely. Only
axial load is considered in this section, for the sake of simplicity (although
the stress state of bone is in practice also due to bending and torsional
loadings). In Figure 11.1, the axial load ‘‘P’’ is applied on the fracture-
fixed bone, where the distance between screws is ‘‘s.’’ The elastic calculation
shows that the load transferred by screws ‘‘a’’ and ‘‘b’’ in axial loading
condition is based on the geometrical and material properties of the bone
and the plate. The free body diagram of the load transfers among the bone,
plate, and screw is shown in Figure 11.2.

The plate and the bone are assumed to have the same amount of uniform
axial strain (based on compatibility consideration), and it is assumed that
the screws do not bend. In Figure 11.2, it is shown that Q2 denotes that part
of the applied load P diverted by screw a through the bone, and the
remaining load Q1 is the load transmitted to the remainder of the plate
through screw b into the bone. Thus, Q1þQ2¼P, and this is represented in
Figure 11.2b.

P P

ss

b a

Bone 

Plate
Screw 

s

Fracture gap

FIGURE 11.1
Free body diagram of bone and plate fixation under uniaxial tensile force. (From Ramakrishna,
K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech. Med. Biol., 5, 89, 2005.)
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The internal forces applied by the screws on bone are shown in
Figure 11.2c. The plate and the bone are deemed to be firmly held together
by the screws. In other words, it is assumed that the force P applied to the
plate–screw–bone assembly gets distributed into forcesQ1 andQ2 in the plate
and the bone (through the screws), as illustrated in Figure 11.2a. Hence,
if the axial strain in the plate and the bone segments is such that the screw
is not deformed by the bending moments exerted on it (as illustrated in
Figure 11.2c), then we have the condition:

Q1

ApEp
¼ Q2

AbEb
or

Q1

btEp
¼ 4 P�Q1ð Þ

pd2bEb

Therefore,

Q1

P
¼ ApEp

AbEb þ ApEp
or

Q1

P
¼ AE

1þ AE
(11:1)

where A is the nondimensional cross-sectional area equal to Ap=Ab (i.e.,
ratio of cross-sectional area of plate to cross-sectional area of bone) and E is

ab

(c)

Q1
Q1

b

2
Q1t

Q2

P

2
Q2t

a

Q2

Q2

P

Q1

−
2

Q1db −
2

Q2db

db

(b)

P

P

Q1

Q2

Fracture siteFracture site

b a

(a)

t

P

P

Screws

Screw
Screw

FIGURE 11.2
Free body diagram with detailed representation of forces in the fixation plate and bone. In the
figure ‘‘t’’ is the thickness of the plate and ‘‘db’’ is the outer diameter of the bone. (From
Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech. Med.

Biol., 5, 89, 2005.)
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the dimensionless modulus equal to Ep=Eb (i.e., ratio of plate modulus to
bone modulus). Figure 11.3 provides a graphical representation of Equation
11.1. The proportion of force P diverted by screw a into the bone is substan-
tial for a normal plate dimension (of thickness 2 mm and width 10 mm), and
of the order of 90% for E¼ 10.

From Equation 11.1, it is observed that for a bone–plate assembly under
uniaxial tensile=compressive load, the load transferred by the screws is
independent of their separation distance. Upon substituting representative
values of t¼ 2 mm, b¼ 10 mm, and db¼ 40 mm in Equation 11.1, Q1 is P=7.
Since Q1 is less than half the value of force P, it indicates that the transfer
of loads is not the same in both the screws, and screw b transfers less of
plate force P than screw a proximal to the fracture site. The amount of
load transferred by the screw depends on the ratio of the cross-sectional
area and material properties of the bone and the plate, as depicted in
Figure 11.3.

It is shown analytically that the two screws cannot equally share the
applied load. This is because, as seen in Figure 11.3, if Q1=P were to be 0.5,
A would be 0.1 for a representative value of E¼ 10. That is, for Ep¼ 10Eb,
Ap should be 0.1Ab; hence Ap would be 125.6 mm2 for a representative value
of Ab¼ 1256 mm2, and for a plate of width 10 mm, t would be 12.5 mm,
which is not practical. It is to be noted that the presented analysis is applic-
able for only small strains.

1
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Ap/Ab = 0.015

Ap/Ab = 0.1

Ap/Ab = 0.5

Ap/Ab = 1.0

FIGURE 11.3
This figure represents the influence for E and A on the shear force on the outer screw in axial
loading condition. For example, for t¼ 2 mm and width¼ 10 mm and outer diameter of the
bone¼ 40 mm, we get Ap¼ 20 mm2, Ab¼ 1256 mm2, and A¼ 0.0156. (From Ramakrishna, K.,
Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech. Med. Biol., 5, 89, 2005.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C011 Final Proof page 309 29.5.2008 12:22am Compositor Name: MSubramanian

Analysis for Internal Fixation of a Fractured Bone 309



11.3 Structural Analysis of Plate-Reinforced Fractured Bone

under Bending (to Determine the Forces Applied

by the Screws)

After fracture fixation, the plate (attached to the bone on the side which is in
tension) shields the bone from tensile stresses at the fracture interface (site 1)
and away from the fracture interface (site 2), as shown in Figure 11.4a. While
the tensile stress shielding at fracture interface is necessary to promote
healing, that away from the fracture can cause osteoporosis and reduction
in bone strength. This problem may be resolved by satisfying two objectives:
(1) designing for the neutral axis (NA) at the fracture interface to be at the
plate–bone interface, to ensure that no tensile stresses are transferred to
the callus while it is being formed and (2) designing for the NA away from
the fracture interface to be as far into the bone as possible, so that the bone is
subjected to the normally prevalent tensile stresses. These two requirements
can be satisfied by careful tailor-made design of the plate modulus and
geometry.

11.3.1 Bending Analysis of the Bone–Plate Assembly for Stresses
in Bone and Plate, Using Composite Beam Theory of Perfect
Bond between the Bone and the Plate

When a bone–plate assembly beam is subjected to bending moment (as
shown in Figure 11.4a), the material above the NA is subjected to tensile
stresses and the material below the NA bears compressive stresses. For a
fractured bone, the plate is preferably fixed on the tension side of the bone,
as per the tension band principle. The compatibility criterion for the bend-
ing analysis is that the curvature or bending deformation should be the
same in the plate and the bone, along the contact (bone and plate) interface.
The plate is assumed to be attached to the bone by means of two screws on

+
C

(a) (b) (d)(c)

++M Bone

Bone plate s1 (s1 + s2)/2 (s1 + s1)/2

(s4 + s3)/2(s3 + s4)/2

Fp Mp

MbFb

s2
s3

s4

M

FIGURE 11.4
(a) Fracture fixation by plate under bending moment; (b) normal stress distribution for bone–
plate assembly under bending moment; (c) the stresses in Figure 11.4b are a combination of the
stresses due to axial forces and bendingmoment; and (d) representation of the axial and bending
moment acting on the fracture fixation. (From Ramakrishna, K., Sridhar, I., Sivashanker, S.,
Ganesh, V.K., and Ghista, D.N., J. Mech. Med. Biol., 5, 89, 2005.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C011 Final Proof page 310 29.5.2008 12:22am Compositor Name: MSubramanian

310 Applied Biomedical Engineering Mechanics



either side of the fracture site. However, the bone–plate assembly (in
internal fixation) is assumed to behave as a composite beam during and
after healing, because the plate is assumed to be perfectly bonded to the
bone. In order to identify the role of the screws under bending, the total
moment taken up by the plate and the forces in the screws need to be
calculated.

The normal stress distribution on the plate–bone transverse section for the
applied moment (M) is shown in Figure 11.4b, where s1, s2, s3, and s4

are the stresses at the top surface of the plate, bottom surface of the plate,
top surface of the bone, and bottom surface of the bone, respectively.
As shown in Figure 11.4c and d, the stress in the plate can be regarded to
consist of (1) an axial stress (s1þs2)=2 due to an axial tensile force, Fp and
(2) a bending stress (s1�s2)=2 due to bending moment, Mp. Similarly, the
stress in the bone can be regarded to consist of (1) an axial compressive
force, Fb and (2) a moment, Mb.

At a cross section through the bone and the plate, the total normal stresses
are hence given by the following equations [1]:

s1 ¼
MEpC

S
(11:2)

s2 ¼
MEp(C� t)

S
(11:3)

s3 ¼ MEb(C� t)

S
(11:4)

s4 ¼ �MEb(db þ t� C)

S
(11:5)

where
S¼Ep I

0
pþEb I

0
b

I
0
p¼ IpþAp y1

2

I
0
b¼ IbþAb y2

2

S is the equivalent flexural stiffness of the plate–bone assembly
C is the distance between NA and the top surface of the plate
y1 is the distance between NA and center of plate
y2 is the distance between NA and center of bone

The moments and the axial forces that are shared by the plate and the
bone are given by

Mp ¼ MI
0
pEp

S
(11:6)

Mb ¼ MI
0
bEb

S
(11:7)
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Fp ¼ MEp(2C� t)(bt)

2S
(11:8)

Fb ¼ p(MEb)(2C� 2t� db)d
2
b

8S
(11:9)

11.3.2 Bending Analysis of Bone–Plate Assembly, in which the Plate
Is Attached to the Fractured Bone by Means of Screws

11.3.2.1 Analysis for Four Screws (Two on Each Side of Bone Callus
at the Fracture Site): Determination of Forces in Screws
and Stresses at the Top of Bone Surface

Now, the bone and the fixator plate are assumed to be held together by
means of four screws, two on either side from the midspan. We now carry
out analysis of the plate and the bone under the action of the moments Mp

and Mb (Equations 11.6 and 11.7) and the axial forces Fp and Fb (Equations
11.8 and 11.9), due to forces (W) exerted on the plate and the bone by
the inner screws and the forces (R) exerted on them by the outer screws,
as is carried out in Figure 11.5. Further, it is assumed that the two extreme

M M

Site 1 Site 2 

Bone plate 

Bone  

FpMp Fp

Fb

Mp

MbMb Fb

WW

a

x

RR

R R

y

Deflected beam (bone, plate) due to moment

Corrected beam (bone, plate) due to W (W = R)

FIGURE 11.5
Bone fracture fixation by bone plate fixed to the bone by means of two screws on either side of
fracture site 1. The two figures below illustrate the free body diagram of bone and plate as
clamped boundary condition. The bone and the plate are regarded as two independent struc-
tures, held together by (1) forces R¼ (W) applied by the two outer screws and (2) forces W
applied by the two inner screws. (From Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K.,
and Ghista, D.N., J. Mech. Med. Biol., 5, 89, 2005.)
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screws rigidly fix the bone–plate assembly by applying forces R, as shown in
Figure 11.5.

With moments Mp and Mb sustained by the plate and the bone, the
deflections in plate and bone will be different. Under this loading,
the compliant bone would deform more than the plate. Hence, in order for
the bone and the plate to deform by the same amount, forces have to be
applied through screws on the plate and the bone. Let the forces through
the screws be represented as ‘‘W,’’ as illustrated in Figure 11.5. The screw
forces W on the plate and the bone are equal in magnitude and opposite in
direction, and are assumed to make the plate and the bone have the same
deformation. The free body diagrams of the plate and the bone are shown in
Figure 11.5. As illustrated therein, W is the force acting on plate through
the screw to increase the plate deflection; similarly, W is the force imposed
on the bone by the screw to restrict its deflection.

In order to determine the force (W) exerted by the screws and stresses on
the top surface of the bone at site 1 (at the midspan of the plate) and at site 2,
the following analysis is performed:

1. Express the flexure-bending moment equations for the plate
and the bone, under the action of end forces (Fp and Fb) and end
moments (Mb and Mp), and the screw forces (W), as depicted in
Figure 11.5.

2. Impose the boundary condition that both plate and bone have zero
deflection and slope at the ends.

3. Equate the deflections in the bone to plate at the location of the
screws as well as at the midspans of the bone and the plate.

The parameters assigned for the calculations are as follows: Young’s modu-
lus (E) of the bone is assumed to be 21 GPa, and Young’s modulus of plate is
as varied as 200, 110, and 50 GPa. Further just after fracture fixation we
assume the presence of callus modulus taken to be Ec¼ 0.05Eb. Additional
data for the analysis are as follows: bone outer radius of 12 mm, bone inner
radius of 6 mm, plate of 15 mm width and 60 mm length, distance of 40 mm
between the screws, and applied bending moment is 1 Nm.With the applied
bending moment on the fracture-fixed bone–plate assembly (along with
the above-mentioned bone and plate geometrical dimensions and moduli),
Table 11.1 summarizes the results.

FromTable 11.1, it is noticed that in case 1, to have theNA inside the plate at
site 1 and maximum tensile stress in the top layer of the bone at site 2, the
thickness of the plate should be at least 3 mm. Similarly in case 2, the plate
thickness should be 4 mm. However, for the modulus of plate to be less than
50 GPa (in case 3, using carbon fiber reinforced polymer, CFRP), the NA is
shifted into the bone and thus causes some tensile stress in the upper layer of
bone (i.e., at site 1) leading todelayedhealing.Hence, the optimal plate should
have a modulus of 210 GPa and thickness of 3 mm for the cases considered.
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Ideally, it is preferable that the NA be located at the plate–bone interface
and the stress in the bone underneath the plate be zero (so that there is no
tensile stress) at the callus site; at the same time, the plate should not be
overly stiff, so that there is no tensile stress in the bone away from the callus
site (due to the NA being inside the plate). However, since the plate thick-
nesses are standardized, what is being implied from Table 11.1 is that the
stainless steel plate of 3 mm thickness yields the best option for (1) the callus
to be totally in compression, with the stress underneath the plate being
minimal and (2) the bone away from the callus fracture site to have the
maximal tensile stress.

11.3.2.2 Analysis of Six Screws (Three on Each Side of Callus
at the Fracture Site): Determination of Forces in the Screws
and Stresses at the Top of Bone Surface

Now, stress analysis is performed for the bone and the stainless steel plate
assembly with six screws (three on either side of the fracture), with
the following additional data: moment of inertia of plate (Ip)¼ 156 mm4,
the dimensions b¼ 40 mm and a¼ 20 mm (see Figure 11.6). The stresses
in the bone at fracture interface and away from it, for E (plate)¼ 210 GPa are

TABLE 11.1

Design Parameters of Plate and Calculated Stress Values in the Bone Callus
at Site 1 and in the Bone at Site 2

Modulus

of Callus

(GPa)

Modulus

of Plate

(GPa)

Thickness

of Plate

(mm)

Magnitude

of Forces

in Each

Screw (N).

Outer Screws

Are in

Tension

and Inner

Screws in

Compression.

Stress at

Site 1

on the

Top Surface

of the Bone

Callus

(N=mm2)

Stress at

Site 2 on the

Bone Top

Surface

(N=mm2)

Case 1 0.1 210 (316L 2 25.12 0.20 0.64
Stainless 3 26.72 �0.19 0.43
steel) 4 29.07 �0.30 0.27

5 30.2 �0.32 0.17
Case 2 0.1 110 (Titanium 2 18.86 0.38 0.72

alloy: 3 24.81 0.08 0.56
Ti–6Al–4V) 4 28.44 �0.12 0.40

5 29.42 �0.39 0.29
Case 3 0.1 50 (CFRP) 2 12.2 0.41 0.77

3 18.21 0.36 0.68
4 25.72 0.26 0.55
5 26.32 0.11 0.43
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tabulated in Table 11.2; and the forces in the screws are given in Table 11.3.
The optimal plate thickness is still 3 mm, even with the increase in the
number of screws from four to six.

11.4 Finite Element Analysis of Bone Fracture Fixation

11.4.1 Representation of Constitutive Properties of Callus
and Plate for the Finite Element Analysis

The objective of this section is to address the role of functionally graded
plate stiffness for optimal fracture fixation, using the ABAQUS finite elem-
ent package. The methodology will be illustrated only for bending moment
(as bending is deemed to be the predominant load that opens the crack),
applied onto a fractured long cylindrical bone–plate assembly. The purpose
of stiffness-graded plate is to explore the extent of stress shielding. In this

M
M

Screw 1 

Fp
Mp Fp

Fb

Mp

Mb
Mb Fb

x

y

Deflected beam (bone, plate) due to moment

Corrected beam (bone, plate) due to W1,W2, and R

b

W1

Bone plate 

Bone  

W2W2

a

x

RR

R R

W1

Screw 2 Screw 3 

FIGURE 11.6
Free body diagram of bone–plate assembly with six screws holding the bone and the plate
together, three on either side of the fracture site. From the calculations, it is noted that screw 1
(W1) is in compression, while screws 2 (W2) and 3 (R) are in tension.
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model, the callus at fracture site is considered to be homogeneous and
isotropic, with its modulus varying from 1% of bone modulus (grown
after fracture) to 100% of bone modulus at full healing. The bone and the
plate modulus assigned in the model are 21 and 210 GPa, respectively.

11.4.2 Two-Dimensional Analysis of Internally Fixed Fractured
Bone under Bending, Using Stiffness-Graded Plate
in Comparison with Stainless Steel Plate, for Perfect
Bonding of the Plate to the Bone

Functionally graded materials (FGMs) are currently being used for a range
of mechanical and structural applications. FGMs (made from a mixture of
ceramics and metals) are characterized by a smooth and continuous change
of the mechanical properties from one characteristic surface to the other.
Finite element analysis (FEA-ABAQUS) is used to determine the stress
distribution for the fracture-fixed bone–plate assembly, as illustrated in
Figure 11.7a through d, where the geometry and loading conditions (repre-
sented by four-point bending corresponding to a bendingmoment of 1 Nmm)
are shown in Figure 11.7a. Figure 11.7b represents the case of a 316L
stainless steel (SS) of uniform stiffness; Figure 11.7c is for the case of a

TABLE 11.2

Design Parameters of the Plate and Calculated Stress Values in the Bone Callus
at the Fracture Site 1 and in the Bone at Site 2

Modulus of

Callus (GPa)

Modulus of

SS Plate (GPa)

Plate

Thickness (mm)

Stresses at

Site 1 on the

Top Surface of

Callus (N=mm2)

Stresses at

Site 2 on the

Bone Top Surface

(N=mm2)

0.1 210 2 0.20 0.64
3 �0.17 0.43
4 �0.30 0.27
5 0.31 0.17

TABLE 11.3

Forces in the Screws for Six-Screw Bone–Plate Fixation
for the Plate Modulus of 210 GPa

Thickness of

Plate (mm)

Force in

Screw 1 (W1)

in N (Compressive)

Force in

Screw 2 (W2) in

N (Tensile)

Force in

Screw 3 (R) in

N (Tensile)

2 23.17 1.38 21.78
3 25.73 2.41 23.31
4 28.24 2.61 25.63
5 29.96 3.16 26.80
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lengthwise stiffness-graded plate (SGL); and Figure 11.7d is for the case of
thickness-wise stiffness-graded plate (SGT). In all the cases, it is assumed
that the plate is bonded to the bone, the primary purpose of the analysis
being to investigate the reduction in stress shielding provided by stiffness-
graded plates.

In order to make the model continuous at the fracture interface, callus
(of length 1% of the beam length) is assumed at the fracture site. Young’s
modulus of the callus is assumed to be 1% of that of bone at the initial
stages of healing, while its value is equal to that of bone modulus at the
final stages of healing. In Figure 11.7b, Young’s modulus of SS is 210 GPa.
In Figure 11.7c and d, Young’s modulus of SGL and SGT are varied
linearly from 210 to 21 GPa along the length and thickness directions of
the plate, respectively. The transfer of load between the bone and the plate
(bypassing the crack) enables the plate-reinforced bone to bear the load-
ing. At the same time, the plate prevents the crack from opening up, and
helps to induce compressive stress in the lower portion of the crack
interface.

Herein, the bone and the plate are assumed to be completely bonded at
the interface (using CONTACT PAIR option in ABAQUS, i.e., the nodes on
the contact surfaces are glued to each other, to thereby develop uniform
strain across the interface). Four noded (quadratic) plane-strain elements
are used to discretize the geometry. With the use of finite element method
(FEM), it is illustrated (in Figure 11.8) how the stresses at the fracture
interface vary, with an increase in callus stiffness due to fracture healing
(in Figure 11.8). In the early stages of healing, when the callus modulus is
1% of the bone modulus (where bone is modeled, it is assigned with
Young’s modulus of 20 GPa), the NA is located inside the plate and the
callus interface is in compression. As healing proceeds (the callus modulus
increases), the NA shifts down into the bone, allowing the callus to also bear
some tensile stress. In this way, the total tensile stress borne by the plate
decreases with increase in the callus modulus.

The computed variations of normal stresses along the plate–bone inter-
face at initial and final stages of healing are shown in Figure 11.9a and b,
respectively. It is observed that initially after fracture, all the three types of
plates shield the bone, by not allowing any tensile stress in the upper
bone layers (underneath the plate) close to the fracture interface. In other
words, at cross sections close to the fracture site, the NA is located within
the plate. However, about 10 mm away from the fracture site, the NA
becomes located into the bone region, and the bone starts bearing the tensile
stress. It is also observed that the stress-shielding zone size for the SS plate is
at least 50% greater than that for the SGL and SGT plates. Qualitatively, it
can be seen that with SGT, a higher compressive stress is developed in the
top layer at the fracture interface. It is noted that the stress distribution of
SGL follows that of SS plate at fracture site, and that of SGT plate away from
the fracture site.
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11.4.3 Two-Dimensional Analysis of Fracture-Fixed Bone
with Stiffness-Graded Plate for Different Screw Locations

In the previous case study, the plate was assumed to be perfectly bonded
to the bone. The same four-point bending problem is now analyzed by
fixing the plate with a maximum of three screws and a minimum of one
screw on either side of the fractured callus surface, as shown in Figure 11.10.
In the finite element (FE) simulations, the contact surface between the plate
and the bone is assumed to have a coefficient of friction of 0.37. The transfer
of load between the plate and the bone is through the screws; to simulate
this function, a finite length of 1 mm of plate is held (through a tie option)
to the bone.

Figures 11.11 through 11.16 depict the computed variations of normal
stresses on the bone and across the bone–plate interface for all the six
modalities of fixation at the initial and final stages of healing for the
six-screw fixation (S6), four-screw mode 1 fixation (S4-1), four-screw mode
2 fixation (S4-2), four-screw mode 3 fixation (S4-3), two screws near the
fracture site (S2N), and two screws away from the fracture site (S2E).

Modulus of callus is 50% of the
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FIGURE 11.8
Normal stress distribution at the callus (crack interface) and NA location for different callus and
plate properties, as healingprogresses (calculatedusing FE simulations). (FromRamakrishna, K.,
Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech. Med. Biol., 5, 89, 2005.)
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The variation of normal stresses in top layer of the bone for the S6 is
shown in Figure 11.11, for both initial and final stages of the healing. It can
be seen that in the early stages of healing, the bone is almost de-stressed at
the fracture. Also, it is noted that, because the screws are functioning as
elements holding the plate and the bone together, large variations of normal
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FIGURE 11.9
Results for stiffness-graded plate perfectly bonded to the bone. Comparison of the stresses
along the length of bone–plate interface for stainless steel (SS), lengthwise stiffness-graded
plate (SGL), and thickness-wise stiffness-graded plate (SGT); (a) stresses on bone versus
distance at initial stage of healing and (b) stresses on bone versus distance at final stage of
healing. These comparisons show that SGL and SGT offer less stress shielding compared to SS.
(From Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech.
Med. Biol., 5, 89, 2005.)
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stresses are seen at the screw sites of the bone. This is understandable
because in the initial stage of healing, the bone–plate assembly is almost
equivalent to that of two separate bone fragments held together by the plate
through the screws.

In the final stages of healing, the NA becomes relocated from the plate to
within the bone. At this stage, the screws are not playing such a major role
in maintaining the integrity of the bone, as in the early stages of healing.
Hence (as seen in Figure 11.11), the magnitudes of the stresses at the screws
near the fracture site are considerably lesser than those at the initial stage
of healing. From Figures 11.11 through 11.16, it is noted that the stress
distributions associated with fixation by modes S6, S4-1, S4-2, and S2E
give maximal stress-shield zones. Model S4-3 provides a smaller stress-
shield zone, while fixation by S2N provides minimal stress-shield zone.
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FIGURE 11.10
Different screw locations for which finite element analysis (FEA) is carried out: (a) six screws
(S6), (b) four screws, mode 1 (S4-1), (c) four screws, mode 2 (S4-2), (d) four screws, mode 3
(S4-3), (e) two screws near the fracture site (S2N), and (f) two screws away from the fracture site
(S2E). The distance (in mm) between screws is shown in the inset of (a). In (b) inset, an element
underneath the plate and on the bone is enlarged to depict the stress notation used in Table 11.4.
(From Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech.

Med. Biol., 5, 89, 2005.)
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Fixation mode S4-3. The figure shows normal stresses at the top face of bone in contact with the
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Med. Biol., 5, 89, 2005.)
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The influence of length of the plate in bearing the bending moment is
governed by the extreme screws.

The stress-shield zone is dependent on the working length of the
plate, and on the location of the screws. In fixation modes S4-3 and S2N,
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Fixation mode S2N. The figure shows normal stresses at the top face of bone in contact with
the plate for S2N (a) at initial stages of healing and (b) at final stages of healing. (From
Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech. Med.
Biol., 5, 89, 2005.)
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the entire length of the plates (S4-3 and S2N) is not utilized, as the extreme
screws are not used. If the extreme screws are not used, the ends of the
plates are not held to the bone, and will provide loose fixation. Hence,
fixation modes S4-3 and S2N are avoided in clinical practice. Fixation
by just two screws at the fracture site may not provide enough stability;
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FIGURE 11.16
Fixation mode S2E. The figure shows normal stresses at the top face of bone in contact with the
plate for S2E (a) at initial stages of healing and (b) at final stages of healing. In this fixation
configuration, bone is shielded from stresses for the entire length of the plate due to the usage
of the extreme screws. The extreme screws dictate the stress-shielding zone of the bone.
(From Ramakrishna, K., Sridhar, I., Sivashanker, S., Ganesh, V.K., and Ghista, D.N., J. Mech.
Med. Biol., 5, 89, 2005.)
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hence, S2E is not clinically applicable. However, fixation modes S4-1 and
S4-2, of plate with two screws on either side of the fracture, are clinically
relevant.

Now, considering the effect of plate stiffness on the stress distribution,
it is noticed that the SGL plate simulates the SS plate stress distribution
closer to the fracture zone, but simulates the SGT plate further away
from the callus. The level of stress shielding is not significantly affected
by the variation in plate modulus. This implies that the screw location on
the plate (rather than the stiffness of the plate) has a more dominating role in
minimizing the stress-shield zone. The shear stress near the screw and
the maximum compressive stress in the callus for various plate–screw
fixation modes are summarized in Table 11.4. Also from this table, it can

TABLE 11.4

Central Deflection, Shear Stresses at the Screw (at Bone–Plate Interface),
and the Maximum Compressive Normal Stress at the Fracture Site for Two-,
Four-, and Six-Screw Fixation Illustrated in Figure 11.10

Central

Deflection

(mm) at

Fracture

Site (10�5) Sxy-Shear Stress at Screw (MPa)

Maximum

Compressive

Stress

in Callus

(10�4 MPa)

Mode of

Fixation SS SGL SGT

Screw

Number

from

Fracture

Site SS SGL SGT SS SGL SGT

S6 1 �0.0037 �0.0025 �0.0025
68 70 72 2 0.0038 0.00557 0.007 �56 �59 �69.2

3 0.0263 0.0178 0.0196
S4-1 1 — — —

69 71 73 2 0.009 0.003 0.0068 �57 �58 �69
3 0.0254 0.0172 0.0193

S4-2 1 0.002 0.00007 0.00009
69 72 74 2 — — — �56 �59 �70.1

3 0.0274 0.0193 0.0221
S4-3 1 0.00075 0.00098 0.0033

80 86 87 2 0.026 0.0213 0.0200 �58 �61 �70.6
3 — — —

S2N 1 0.0314 0.0267 0.0123
96 98 100 2 — — — �86 �83.4 �90

3 — — —
S2E 1 — — —

69 71 75 2 — — — �57.3 �61.2 �71
3 0.025 0.018 0.023

Note: SS: stainless steel, SGL: stiffness graded along length, SGT: stiffness graded along
thickness.
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be observed that the S6 gives minimal central deflection at fracture site and
minimal shear stresses in the screws. For S4-1 design, the recommendation
(based on Table 11.4) for minimal deflection is that one screw should be
close to the fracture site and the other should be as far as possible from the
fracture site.

11.5 Mechanics of Osteosynthesis Using Hemihelical Plates

Fixation of fractured bone or for the healed bone to regain its prefracture
stiffness and strength, particularly in the case of oblique and helical cracks,
continues to pose an immense osteosynthesis challenge. This section
addresses the unique features of hemihelical plate (HHP) internal bone
fracture fixation, where screws are used to anchor an HHP onto the
fractured bone. This is a relatively new concept in internal fracture fixation.
The screws help in transferring forces between the plate and the fractured
bone. Consequently, these screws may be subjected to relatively large
shear stresses during movement of the fractured limb. In addition, the
bone surface adjacent to the screw could be subjected to the trauma of
insertion, which may cause some temporary bone necrosis. These factors
can lead to loosening and subsequent ‘‘pulling out’’ of the screws, thereby
destabilizing the entire assembly of bone fracture fixation [3–7].

Such a phenomenon of screw pullout is commonly observed in straight
plate fixation, where the screws are oriented normal to the plate in the
same plane. Therein, inclination (i.e., angling) of the screws is considered
to be a possible solution to mitigate the loosening of bone fracture
fixation (as shown in Figure 11.17) [8]. Apart from the possibility of
screw loosening, the straight plate also induces undue stress shielding
of the fractured bone. This is because the straight plate fixture is fastened
onto the tensile surface of the fractured bone (thereby de-stressing the
bone beneath the plate), and the plate material Young’s modulus (which
is �200 GPa for 316L stainless steel) is typically an order of magnitude
higher than that of bone, which is about 20 GPa. In order to reduce the
mismatch of the material properties of the plate and the bone, CFRP
composite materials and stiffness-graded plates have been recommended
[1,9,10].

Herein, firstly four-point bending experiments on a straight plate
fixation assembly, for four different screw configurations—convergent
(CSO), divergent (DSO), alternating (ASO), and perpendicular (PSO) are
discussed to determine (1) the forces present in the screws, (2) the stiffness
of the fixation assembly, and (3) the energy to failure. Secondly, the
concept of HHP fixation is delineated by providing the results of pullout
experiments with the aim of comparing the holding strengths between a
straight plate and a hemihelical plate for the various screw configurations
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mentioned above. Thirdly, FEA for three fracture fixation configurations
(i.e., straight plate, 908 helical plate, and 1808 helical plate), under uniaxial
compression as well as bending moment and torsional loadings, are per-
formed to compare the overall stiffness of the various assemblies and the
fracture gap movement.

11.5.1 Bending Experiments of Straight Plate and Fractured Bone Fixation
Assembly with Different Screw Orientations

11.5.1.1 Materials and Methods

A six-hole dynamic compression plate (DCP, 110 mm long) was attached
onto the tensile surface of a transversely fractured Synthes* femur bone
segment, using two 4.5 mm cortical screws on each side of the fracture
location. The fracture gap was about 2 mm. As depicted in Figure 11.17,
four different screw orientations were employed, namely PSO, CSO, DSO,
and ASO. In the PSO setup, the screws were arranged such that plate axis is
perpendicular to the screw axis (as shown in Figure 11.17a). In the CSO setup,
the screws were inclined at 158 (to the normal of the bone axis) toward the
fracture location (as shown in Figure 11.17b). In the DSO setup, the screws
were inclined at 158 (to the normal of the bone axis) away from the fracture
(see Figure 11.17c). In the ASO setup, the inner screws were inclined at 158
away from the fracture, while the outer screws were inclined at 158 toward
the fracture interface (see Figure 11.17d). In all of the above configurations,
the screws were placed in the first, second, fifth, and sixth screw holes
(counted from the left-hand side of the bone plate) of the DCP.

FIGURE 11.17
Schematics of straight plate and fractured bone
assembly models (for bending experiments),
for four different screw configurations: (a) PSO
(perpendicular), (b) CSO (convergent), (c) DSO
(divergent), and (d) ASO (alternating). All the
inclinations are 158 normal to the axis of the bone.

(a)

(b)

(d)

(c)

Axis of the screw 
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6th
hole

5th
hole

1st
hole

2nd
hole

* Synthes bones from Mathys Ltd.
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Figure 11.18 shows the experimental arrangement of the (dynamic
compression) straight plate bone fracture fixation assembly employed for
four-point bending experiments (before loading). For each test specimen,
two bolt gauges were placed along the axes of the screws corresponding to
the first and second holes of the DCP (as shown in Figure 11.19), to deter-
mine the forces in each screw due to its bending. In addition, three strain
gauges (from Tokyo Sokki Kenkyulo Co. Ltd.) were used to monitor the
nature of the stresses at various locations in the fracture fixation assembly:
one strain gauge was near the sixth hole of the DCP, a second strain gauge
was placed on the lateral side of the Synthes femur bone, and a third strain
gauge was attached to the compression side of the femur bone. All the bolt
and strain gauges (from Tokyo Sokki Kenkyulo Co. Ltd.) were connected to

Load direction 
Retort stand

Indentors

FIGURE 11.18
Bending experiments setup of the fracture-fixed bone before loading.

1st
Bolt 
gauge 3rd

4th

5th

2nd
Bolt 

gauge
FIGURE 11.19
Position of strain gauges on
synbone and plate. First and
second are bolt gauges; third
is strain gauge for stainless
steel; and fourth and fifth are
strain gauges for plastics.
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a data logger. Retort stands were used to grip the bone and prevent it from
rotating during loading due to the irregular geometry of the bone. Four-
point bending tests were conducted on all four configurations (i.e., PSO,
CSO, DSO, and ASO), using an Instron testing machine under displacement
control at a loading rate of 5 mm=min.

11.5.1.2 Results and Discussion

Muscle forces applied to the bone and compressive loading on the fracture
interface often give rise to bending due to the natural curvature of bones.
Hence, bending tests were carried out (on CSO, DSO, ASO, and PSO con-
figurations) to determine the relative (1) strengths, (2) bending stiffness, and
(3) energy to failure of the straight plate bone fracture fixation assemblies.
Figure 11.20 shows the load–displacement curves for PSO, CSO, DSO, and
ASO configurations of fracture fixation assemblies. The slopes of these load-
displacement curves indicate that ASO and PSO configurations offer,
respectively, the greatest and lowest bending stiffness for the bone fracture
fixation assembly. The CSO and DSO configurations result in similar but
intermediate levels of bending stiffness, as listed in Table 11.5.

The areas under the respective load–displacement curves indicate that
the CSO and DSO configurations result, respectively, in the greatest and
lowest energy to fracture or toughness for the bone fracture fixation assem-
bly. The PSO and ASO configurations result in similar but intermediate
levels of energy to fracture or toughness. This suggests that the ASO and
CSO configurations appear to provide the best compromise between bend-
ing stiffness and toughness for the bone fracture fixation assembly, com-
pared to those of PSO and DSO configurations (from the values depicted in
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FIGURE 11.20
Bending tests: load–displacement graphs for PSO, CSO, DSO, and ASO specimen configur-
ations. The slope of the load–displacement curve represents the stiffness of the assemblies and
the area of the load–displacement curve represents energy to refracture.
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Table 11.5). Strain gauge measurements provide verification that the frac-
tured bone and the DCP assembly behave as a composite beam in bending.

Figure 11.21a and b shows, respectively, plots of the ‘‘measured load
transfer versus the applied moment’’ in the innermost and outermost
screws in the PSO bone–plate fixation assembly. One of the primary roles

TABLE 11.5

Stiffness and Energy to Refracture for Perpendicular
Screw Orientation (PSO), Convergent Screw Orientation
(CSO), Divergent Screw Orientation (DSO), and
Alternating Screw Orientation (ASO) Configurations

Screw

Orientation

Stiffness

Fracture

Fixation (kN=m)

Energy to

Refracture of

Fracture

Fixation (J)

PSO 126 2.66
DSO 135 2.10
CSO 140 2.92
ASO 201 2.69

Screw is 
subjected to 
tensile force

Screw is 
subjected to

compressive force 

(c)
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FIGURE 11.21
Force in each screw versus moment applied for PSO (perpendicular), DSO (divergent), CSO
(convergent), and ASO (alternating) configurations. (a) For the screw near to the fracture
interface, (b) for the screw furthest from the fracture interface, and (c) schematic of the forces
in the screws. Extreme screw holds the plate onto the bone while subjected to bending. Hence,
the extreme screws are subjected to tensile force, while inner screws maintain the bone and the
plate to deform the same amount (i.e., deflection at the midspan of the plate equal). Thus, inner
screws are subjected to compressive force.
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of the screws is to ensure that the bone–plate fracture fixation assembly
(comprising of the bone, plate, and screws) deforms in an integrated fashion
when subjected to loading. As depicted in Figure 11.21c, the outermost
screws at the fracture interface experience predominantly tensile forces in
the process of keeping the plate fixed onto the bone, while the innermost
screws experience predominantly compressive forces in the process of
ensuring that the plate and the bone deform in an integrated manner.

At any given load, the magnitude of the force transfer by the innermost
screws is the greatest in the DSO configuration and lowest in the PSO
configuration. The CSO and ASO configurations provide intermediate
levels of force transfer in the innermost screws. In contrast, the magnitude
of force transfer by the outermost screws is greatest in the CSO configuration
and lowest in the PSO configuration. The DSO and ASO configurations
provide intermediate levels of force transfer in the innermost screws.

Overall, the experimental results suggest that angling the screws
improves the load transfer between the plate and the fractured bone during
bending. The DSO and CSO configurations appear to provide the best
compromise for improved load transferred between the plate and the frac-
tured bone for the outer and inner screws.

11.5.2 Hemihelical Plate versus Straight Plate Bone Fracture Fixation:
Experimental Observations

11.5.2.1 Materials and Methods

In this section, the use of HHP fixation is analyzed experimentally by
conducting pullout experiments with the aim of comparing the holding
strengths between a ‘‘straight plate fractured bone’’ assembly (with various
screw orientations) and a ‘‘hemihelical plate fractured bone’’ assembly.
Figure 11.22 illustrates the nomenclature of a helical plate. The ‘‘axis’’ is

Effective length of the plate 

Radius

Axis

½ pitch ~180�
helical plate 

Axis of the screws 

FIGURE 11.22 (See color insert following page 266.)
Terminology for a helical plate. Inset shows the side view of the helical plate, depicting the half
pitch of the plate.
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defined as a straight line along the length of the bone, while the ‘‘radius’’
is defined as the distance from the axis of the bone to the outer surface of
the bone (at midshaft). The ‘‘effective length’’ is the distance between the
ends of the plate along the axis of the bone, and the ‘‘pitch’’ is the degree of
rotation (or twist) of the plate. For example, 1 pitch represents a 3608 twist
of the plate, 12 pitch represents a 1808 twist of the plate, and 1

4 pitch represents
a 908 twist of the plate.

Fernandez [11] was the first to clinically moot the idea of fracture fixation
using helical bone plates. In particular, his anatomical study postulated the
advantage of helical plates for treating fractures on the humerus. Further
applications of helical plate have been illustrated by Gardner et al. [12],
Apivatthakakul et al. [13], and Yang [14], as well as by us [15]. Bone
fracture fixation using a 3608 or 2708 helical plate is not considered herein
due to the clinical application constraints. Hence, only 1808 and 908 helical
plates are considered in our investigation. In these experiments, a 12-hole
Zimmer dual compression contourable plate (DCCP), with 4.5 mm cortical
screws, was fixed onto a Synthes femur bone specimen by screws located at
the first, fourth, ninth, and twelfth hole positions.

Experiments were conducted to determine the axial pullout strengths of
both (1) hemihelical and (2) straight bone plates with PSO, CSO, DSO, and
ASO configurations, as indicated in Figure 11.23, in accordance with ASTM

(a)

(b)

(d)

(e)

(c)

Axis of the screw 

1st
hole 

4th
hole 

9th
hole 

12th
hole

1st
hole 

4th
hole

9th
hole 

12th
hole 

FIGURE 11.23
Pullout test models: inclined screw orientations; Straight plate fixation with (a) PSO (perpen-
dicular), (b) CSO (convergent), (c) DSO (divergent), and (d) ASO (alternating) configurations;
Helical plating (e) hemihelix �1808 Helical plate. In the hemihelical plate fixation setup, it is to
be noted that the screws are oriented in different planes, compared to all the screws being in the
same longitudinal plane in straight plate fixation.
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F1691-96. The experimental setup for the pullout experiments is shown in
Figure 11.24. Special grippers were designed and built to hold the ends of
the femur bone specimens, and comply with ASTM F1691-96 test tech-
niques. Each bone–plate fracture fixation assembly was loaded by a 5 kN
Instron testing machine, under displacement control, at a loading rate of
5 mm=min. The experiments were confined to one sample of each config-
uration (i.e., PSO, ASO, CSO, DSO, and hemihelical fixation assembly) due
to limited bone specimens; this is because the saw bones are not reusable as
they fracture after the test even though the plates remain in the elastic state.

11.5.2.2 Results and Discussion

Figure 11.25 shows the load–displacement responses for the hemihelical
bone plate and straight bone plate (with four different screw orientations)
during pullout testing. These pullout tests enable assessment of the
holding capacity of the plate and screws onto the fractured bone. As
shown in Figure 11.25, four distinct peaks were observed in the load-
displacement curves of straight bone plates (with various screw orienta-
tions). These peaks reflect sequential screw pullout, where the screws
located at the fourth hole loosens initially, followed by progressive loosen-
ing of the ninth, first, and twelfth holes in the bone plate (see Figures 11.24
and 11.26a). In contrast, no sequential screw pullout was observed in the
hemihelical bone–plate fixation (refer Figure 11.26b and c). It is also note-
worthy that the holding strength of the hemihelical bone–plate fixation is
higher than that of the straight bone plate with PSO, CSO, DSO, and ASO
configurations. Moreover, no screw loosening was observed in the hemi-
helical bone–plate fixation (as noted in Figure 11.26b and c).

The gradients of these load–displacement curves (Figure 11.25)
indicate that the straight bone plate with ASO and DSO configurations

Grippers  to hold the synbones 
at proximal and distal regions 

FIGURE 11.24
Setup for the pullout test of 1808 helical plate and bone fixation held by four cortical screws with
newly designed grippers holding the assembly.
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offer, respectively, the greatest and lowest stiffness for the bone fracture
fixation assembly for bending loading. Convergent and perpendicular
straight plate screw configurations as well as hemihelical bone plates result
in similar intermediate levels of stiffness (as listed in Table 11.6). The areas
under the respective load–displacement curves indicate that the hemihelical
and straight bone plates (with DSO configuration) result, respectively, in the

Pullout strength test: Load (N) versus extension of the load cell (mm)
Load versus extension for CSO
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FIGURE 11.25 (See color insert following page 266.)
Pullout tests: load versus extension curves for all the configurations of fixations shown in
Figure 11.22. An inset depicts the four peaks in the curve that represent the screw pullout for
the CSO (convergent) configuration. Similar screw pullout patterns were observed for PSO
(perpendicular), ASO (alternating), and DSO (divergent) configurations. The stiffness of the
assembly is the slope of the load versus extension curve and the area under the load versus
extension curve till the initiation of pullout represents the energy to pullout.
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greatest and lowest energy to fracture (or toughness) for the bone fracture
fixation assembly. The PSO, ASO, and CSO configurations for straight plate
fixation result in similar intermediate levels of energy to fracture (as shown
in Table 11.6).

Load direction 

(a)

(b) (c)

Load direction Load direction 

FIGURE 11.26 (See color insert following page 266.)
(a) Sequential pullout of straight plate PSO (perpendicular), CSO (convergent), DSO (diver-
gent), and ASO (alternating) configurations. (b) The holding power of hemihelical plate (HHP)
is high, such that sequential screw pullout is not observed. (c) However, the bone failed before
screw pullout, indicating that the fixation is stiff enough so that screw loosening does not occur.

TABLE 11.6

Stiffness and Energy to Initiate Pullout and Peak
Pullout for PSO, CSO, DSO, ASO, and Hemihelix
Configurations

Screw

Orientation

Stiffness

of Plate

Fixation

(kN=m)

Energy to

Pullout of

Plate Fixation (J)

Peak Pullout

Load of Plate

Fixation (N)

PSO 55.1 7.17 796
ASO 58.0 9.67 900
CSO 49.3 10.12 924
DSO 44.7 6.88 679
Hemihelix 55.4 10.83 1000
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The HHP also confers the highest pullout strength in the bone fracture
fixation assembly, compared to the straight plate configurations with four
different screw orientations. Overall, these results suggest that hemihelical
bone–plate fixation provides the optimal combination of strength, stiffness,
and toughness compared to straight bone plates with different screw orien-
tations. In addition, there is the risk of loosening and sequential screw
pullout in straight bone plates, since the axes of the screws are all in the
same plane (as seen from cross-sectional views along the longitudinal plane
of the bone fracture fixation assembly, see Figure 11.23a through d). In
contrast, the axes of the screws in the hemihelical bone fracture fixation
assembly are all in different planes (intersecting one another as shown in
Figure 11.23e), thus eliminating or minimizing the problem of loosening and
progressive sequential pullout of screws.

The primary aim of fixation is to promote swift healing of the fractured
bone and restore the strength to that of the intact bone. The results from
this study show that the properties of the fractured bone–plate assembly
stiffness and the energy required for bone refracture or screw pullout
are dependent on the orientation of the plate and thereby on the inclin-
ations of the screws. They indicate that not all types of inclined screw
configurations (as defined in Figure 11.17) are beneficial; only CSO and
ASO configurations show significant improvement over PSO and DSO
configurations in stiffness and energy for refracture; the CSO and
ASO configurations allow the fractured bone–plate assembly to fail at
higher load (1.16 and 1.13 times, respectively) and absorb more energy
(1.41 and 1.35 times, respectively) than the PSO configuration. It is also
apparent that inclining the screws enhances the load transferring capability
between the plate and the bone.

The pullout strength test has also shown the superior capability of angled
(inclined) screw fixation over the usual perpendicular screw fixation. Simi-
larly, CSO and ASO configurations give more holding strength between the
plate and the bone. However, there is still a chance of sequential pullout
(which is undesirable for the progress of fracture healing), as the axis of each
screw is still in the longitudinal plane (Figure 11.23a through d). On the
other hand, the 1808 helical plate performs better (in terms of pullout
strength or load-holding capacity) than any inclined screw configuration
(because of the multiplanar planes of screw fixations), and thus it solves the
problem of sequential pullout, because the axis of each screw is oriented in
different planes (Figure 11.23e). Thus, the helical plate provides much
higher holding strength than any straight plate fixation designs.

11.5.3 Hemihelical Plate versus Straight Plate Bone Fracture
Fixation—Finite Element Analysis

It can be observed (from Sections 5.1 and 5.2) that helical plating has an
improved load-holding capacity, which is necessary to avoid implant loos-
ening (which is more prominent in the osteoporotic bones or less quality
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bones). It is also necessary to analyze the fracture gap movement character-
istics and the assembly (fracture-fixed bone and plate) stiffness of the helical
plating with respect to the straight plate. For this purpose, FEA are carried
out for fixations of an oblique fracture (angled 458 to the axis of the bone)
fixed with a straight plate, a 908 helical plate, and a 1808 helical plate under
compression, bending, and torsion loadings using ABAQUS finite element
program.

11.5.3.1 Modeling of the Fractured Bone Fixation by a Helical Plate

FEA are carried out on the bone–plate–screw assembly, for (1) bone with
screw holes modeled as hollow cylinders (of outer diameter 24 mm, inner
diameter 16 mm, length 170 mm, and eight screw holes), (2) the eight screws
considered to be cylinders of diameter 3.5 mm (in order to reduce the
number of elements required for screws meshing, as screw threads require
finer elements for meshing), and (3) different plate configurations (i.e.,
straight plate, 908 helical plate, and 1808 helical plate). The plate dimensions
are 12 mm width, 4 mm thick, 140 mm effective length, while the radius of
the helix is 12 mm. In order to ‘‘produce’’ a helical plate, the straight plate is
curved, such that it fits exactly the outer diameter of the bone. The distance
between the screw holes is equal in all the plate configurations.

All three configurations of fixation (i.e., straight plate, 908 helical plate,
and 1808 helical plate) are modeled by commercial computer aided design
(CAD) software UNIGRAPHICS. The corresponding FE models are
depicted in Figure 11.27a through c. The modeled parts (i.e., plate, bone,
and screws) are imported into the commercial FEA software ABAQUS from
UNIGRAPHICS through a standard CAD translator format STEP. After

FIGURE 11.27 (See color insert
following page 266.)
Finite element models in ABA-
QUS: (a) straight plate model,
(b) 908 helical plate model, (c)
1808 helical plate model, and
(d) oblique fracture fixed by a
helical plate. The bone axis
(depicted in the figure) is
along coordinate 3.

45�

(a) (b) 

(c) (d)

1

2

3
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importing these parts into ABAQUS, the bone is modified to incorporate
the oblique fracture gap of 2 mm at its midspan, angled 458 to the axis of
bone (as shown in Figure 11.27d). The screws are positioned such that they
are always perpendicular to the top surface of the plate; in this way, the
screws are in different planes incorporating the bone axis (as previously
illustrated by Figure 11.23).

The bone is modeled as a transversely isotropic material, with moduli and
Poisson’s ratios of E1¼ 14.5 GPa, E2¼ 14.5 GPa, E3¼ 19.7 GPa, G12¼ 7.0 GPa,
G13¼ 7.0 GPa, G23¼ 5.28 GPa, y12¼ 0.285 GPa, y13¼ 0.285 GPa, and
y23¼ 0.26515 GPa (the directions 1, 2, 3 are shown in Figure 11.28) [16].
The plate and screw materials are assumed to be in elastic state for the
applied loading, and assigned 200 GPa Young’s modulus (316L stainless
steel) and 0.3 Poisson’s ratio values. For the locking-screw mechanism
during analysis, the screw head and the contoured surface of the plate are
tied together by means of a contact option available in ABAQUS. Similar
contact conditions are assigned for the cylindrical screw and bone, so that
the screw holds the bone during loading. A coefficient of friction of 0.37 is
assigned between the bone and the plate contact, and a value of 1 between
the broken bone fragments (i.e., at fracture interface). The analysis is carried
out using finite strain–displacement relation.

11.5.3.2 Loading and Boundary Conditions Imposed
on Fracture-Fixed Bone

Compressive, torsion, and bending loadings are applied on obliquely frac-
tured bones fixed by straight plate, 908 helical plate, and 1808 helical plate. In
order to apply a compression load of 150 N, one end of the fracture-fixed
bone is fully constrained and a compressive force of 150 N in the axial (U3)
direction is applied on the reference plane (as the loading condition) that is
fixed to the free end of the bone (as shown in Figure 11.28a). A four-point
bending loading state has been simulated, by applying a normal displace-
ment (U2) of 0.15 mm at the inner supports, located at 10 mm of the outer
simple supported ends, as shown in Figure 11.28b. For the torsional loading
the condition on the reference plane is modified to make the displacement
UR3¼�0.05 rad to simulate the torsional load, while the boundary condi-
tions (of the fixed end) are maintained (Figure 11.28c).

11.5.3.3 Results and Discussion

11.5.3.3.1 Stiffness of the Assembly

In both compression and bending, it is observed that the stiffness of the
fracture fixation (slope of the load deflection curves for the fracture-fixed
assembly) is lowest for 1808 helical plate, second lowest for 908 helical
plate, and highest for straight plate, as shown in Figure 11.29a and b.
In other words, it is minimum for 1808 helical plate and maximum for
straight plate. In torsion, the stiffness is lowest for straight plate, second
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lowest for 908 helical plate, and highest for 1808 helical plate, as indicated in
Figure 11.29c. This means that with the increase in the degree of contouring
in helical plating, the compression and flexural stiffnesses reduce, whereas
the torsional stiffness increases. Hence, the helical plate fixation makes the
assembly flexible in compression and bending loading conditions, while
providing maximum torsional stiffness.

U1 = U2 = U3 = UR1 = UR2
=UR3 = 0 

UR3 = –0.05 

U1 = U2 = U3 = UR1 = UR2 =
UR3 = 0 

(a)

(b)
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FIGURE 11.28 (See color insert following page 266.)
Loading and boundary conditions applied on the 1808 helical plate fixation on the simulated
fractured bone (with 458 oblique fracture): (a) compressive load, (b) bending load, and (c)
torsional load. Similar loading conditions are applied on the straight plate and the 908 helical
plate fixations. Here U1, U2, and U3 represent displacements along axes 1, 2, and 3, respect-
ively; UR1, UR2, and UR3 represent rotations about axes 1, 2, and 3, respectively.
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FIGURE 11.29
Comparison of stiffness of bone–plate assembly: (a) compressive load versus deflection of the
reference plane (depicted in the figure); (b) bending moment versus deflection at the midspan
of the top surface of the plate; and (c) torsion versus rotation of the reference plane (depicted in
the figure). Helical plate fixations offer less stiffness than the straight plate fixation in compres-
sion and bending loadings. In torsional loading helical plate fixation provides maximum
stiffness. Oblique fractures produced by torsion have been a big concern for fixation by straight
plates. Our helical plate provides a solution for this long-standing problem.
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11.5.3.3.2 Relative Fracture Gap Movement

Figure 11.30 illustrates the bone cross section at the fracture site. From the
FEA, we have computed the relative movements (i.e., the combined move-
ments of both the fracture fragments) at the fracture gap along the three axes
(1, 2, and 3) at all the locations A. B, C, D (in Figure 11.30), for the bone–plate
fracture fixation (with straight plate, 908 helical plate, and 1808 helical plate)
under axial, bending, and torsion loadings as depicted in Figures 11.31,
11.32, and 11.33, respectively.

It is observed that the fracture gap movement (or closure) along axis 3
(at locations A, B, C, and D) is maximum for 1808 helical plate fixation,
followed by 908 helical plate, and then by the straight plate in compression
and bending (Figure 11.31). Hence, it is perceived that enhanced gap closure
along the fracture site can be achieved by means of the helical plating, which
also enhances the bone healing [8,17,18]. Further, it is noted that the gap
closure becomes more uniform with the increase in the degree of contouring
in helical plate, for all the loading conditions considered in this study.
For torsional loading, it is noted from Figure 11.31c that only helical plate
fixation provides gap closure, while the straight plate fixation opens up the
gap at the fracture site.

Now, let us consider the lateral displacements at the fracture site, as
shown in Figures 11.32 and 11.33. The lateral movement could eventually

Location C

Location A

Location B 

Location D

2

13

Fixed end

FIGURE 11.30 (See color insert following page 266.)
Different locations considered in the finite element analyses (FEA), for computing fracture gap
movement. Location A is on the bone on the fracture gap and underneath the plate. Location D
is on the bone at fracture gap but on the opposite side of the plate. Locations B and C are on the
bone on the fracture gap and between locations A and D. Note: For better presentation of the
fracture gap, the left bone fragment was made invisible.
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FIGURE 11.31
Relative movement along axis 3 at A, B, C, and D locations on the fracture gap (a) for
compressive load, (b) for bending moment, and (c) for torsional load. Fracture gap closure is
maximum in the 1808 helical plate. It is seen that the fracture gap closes for all the plates in
compression and bending loadings. However, in the case of torsion, the fracture gap closes for
the helical plate only and opens up for the straight plate. ‘‘þ’’ displacement means gap closure,
‘‘�’’ displacement means opening up.
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lead to contact of the fractured surfaces, while causing compression and
shear at the fracture gap. Whereas compression is definitely conducive to
bone healing, studies on the role of shear at the fracture gap is somewhat
controversial [19]. According to Russel [20], shear at the fracture gap delays
healing, whereas Park et al. [19] report that shear at the fracture gap
enhances the fracture healing. More recently, use of semirigid fixation
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FIGURE 11.32
Relative movement along axis 2 at A, B, C, and D locations on the fracture gap (a) for
compressive load, (b) for bending moment, and (c) for torsional load. The movements in helical
plate along axis 2 are maximum in all the loading conditions indicating that the shear is
maximum in helical plate along with the maximum gap closure.
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with increased shear interfragmentary movement has led to an increased
amount of soft tissue formation and prolonged bone formation in the in vivo
experiments conducted by Schell et al. [21]. As regards shear displacements

Compression loading

Straight plate
Helical plate (90�)
Helical plate (180�)

−0.016
−0.014
−0.012

−0.01
−0.008
−0.006
−0.004
−0.002

0

−0.016

−2

−1.5

−1

−0.5

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

D
is

pl
ac

em
en

t (
m

m
)

A B C D

Locations on the bone at fracture gap

Locations on the bone at fracture gap

Locations on the bone at fracture gap

0.002

D
is

pl
ac

em
en

t (
m

m
)

Bending loading

D
is

pl
ac

em
en

t (
m

m
)

0

0.5

1 Torsion loading

(a)

(b)

(c)

2

13

Location A

Location C

Location D

Location
B

A B C D

A B C D

FIGURE 11.33
Relative movement (in shear) along axis 1 at A, B, C, and D locations on the fracture gap (a)
for compressive load, (b) for bending moment, and (c) for torsional load. It is seen that the
1808 helical plate has minimal shear displacement compared to the straight plate and 908
helical plate.
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along axes 1 and 2, the helical plate has more displacement compared to the
straight plate, at all the four locations in uniaxial compression and bending
loading conditions. Hence, the helical plate should not be used for trans-
verse fractures and for bones subjected to considerable compression and
bending. The helical plate fixation has less shear displacement along axis 1
compared to the straight plate fixation, and hence helical plate fixation
should be preferably employed for oblique fractures in bones subjected to
considerable torsional loading.

In conclusion (1) the axial compressive movement at the fracture gap
(along axis 3, promoting gap closure) is greater for helical plate fixation
than for straight plate fixation, and it increases with the degree of contouring,
(2) the lateral (shear) displacements at the fracture gap (along axes 1 and 2)
are generally greater for helical plate fixation than for straight plate fixation,
and they are in the ‘‘smallness range’’ that is conducive to healing [19].

Hence, based on fracture gap movements (for oblique fractures of the
bone), it can be concluded that helical plate fixation yields gap movements
that are more conducive to healing (for compression, bending, and torsional
loadings), when compared to straight plate fixation. This means that the
callus formed during the healing phase will be subjected to beneficial
compressive and shear stresses (at all locations shown in Figure 11.30) for
helical plate fixation, which will induce consolidation of callus into bone
and later aid remodeling of the bone.

11.5.3.3.3 Stresses on the Plate and Screws

The finite element contours of Von Mises stress in the plate reveal that in all
the loading conditions, the plate is highly stressed near the screw hole at the
fracture site (stressed approximately eight times more than the stresses at
the extreme ends of the plate; typical results are summarized in Table 11.7).
Hence, the plate failure (if it initiates) can be expected to take place at the
screw hole near the fracture site.

For all the fixations, the Von Mises effective stress in the screw follows
a typical trend: under compression and torsional loadings, the screws near-
est to the fracture site are stressed more than the furthest screws, while in
bending, the screws furthest from the fracture site are stressed more than
the nearest screws. The obtained maximum stresses in the screws are
tabulated in Table 11.8. It is to be noted that in the case of helical plate
fixation, the screws are more stressed in torsion compared to the straight
plate fixation; this may be taken to represent the price for higher holding
capacity of the helical plate.

11.5.3.3.4 Stress Shielding

As regards stress shielding of the bone, the location of the NA for bending
moment loading indicates the stress shielding offered by the plate on the
bone. As discussed earlier, the optimal fracture fixation will not allow
the fracture site to be in tension, i.e., the NA should at most be at the
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plate–bone interface. On the other hand, away from the fracture interface,
the NA should be located into the bone, so that the bone also bears tensile
stress. Figure 11.34 depicts the location of the NA on the bone cross section
at the fracture site, and at the sites of the first, second, third, and fourth
screws for straight plate, 908 helical plate, and 1808 helical plate fixations.
The location of NA is also tabulated in Table 11.9, from which it is noted that
the NA shift (away from fracture interface) into the bone for helical plate
fixation is more than that for the straight plate. Further, the amount of the

Fracture site,
i.e., location 1 

At first screw,
i.e., location 2 At second screw,

i.e., location 3 

At third screw,
i.e., location 4 

At fourth screw,
i.e., location 5 

Tensile stresses Compressive stresses 

Straight plate fixation 

Location 1 Location 2 Location 3 Location 4 Location 5 

90� helical plate fixation 

Location 1 Location 2 Location 3 Location 4 Location 5 

180� helical plate fixation

Location 1 Location 2 Location 3 Location 4 Location 5 

FIGURE 11.34 (See color insert following page 266.)
Locations of the neutral axis (NA) on the bone cross section at different places along the length
of the bone for straight plate, 908 helical plate, and 1808 helical plate fixations subjected to
bending moment. The change of color from grey to black represents the NA. (a) Locations
considered for the NA along the length of the bone; (b) cross sections of bone showing NA at
different locations along the length of the bone fixed by the straight plate; (c) cross sections of
bone showing NA at different locations along the length of the bone fixed by the 908 helical
plate; and (d) cross sections of bone showing NA at different locations along the length of the
bone fixed by the 1808 helical plate.
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shift in NA axis is also a function of the degree of contouring of helical plate.
Thus, the helical plate offers less (and hence beneficial) stress shielding
compared to the straight plate.

11.5.3.3.5 Remarks on Helical Plate Fixation

The advantages offered by helical plates are that:

1. Nearly uniform fracture gap closure, beneficial to healing, is
obtained at all locations of the fracture interface for all the loading
conditions and the uniformity of fracture gap closure improves
with the increased contouring of the plate, i.e., increasing the pitch.

2. In bendingmoment loading, theNA is located inside the plate at the
fracture site (similar to that of straight plate). Away from the frac-
ture site, due to the helical shape of the plate, the NA shifts into the
bone (as shown in the Figure 11.34) and can hence allow the bone to
take on both normal tensile and compressive stresses; also the
location ofNA is dependent on the degree of contouring of the plate.

3. In torsional loading, the bone elements are subjected to tensile
stresses on the long diagonal planes. Because the axis of helical
plate will be parallel to the orientation of the tensile stress (as
schematically shown in Figure 11.35), the helical plate will absorb
the tensile stresses caused by the torsional loading; this is not the
case with straight plate fixation, where the tensile stresses open up
oblique fracture gaps. Thus, the helical plate can be optimally
employed for treating spiral fractures.

TABLE 11.9

Location of the Neutral Axis at Different Sites along the Length of the Bone

Fixation

Type

Computed

Values

(for the Bone)

of the NA

Location

At Fracture

Site

At Cross

Section

at First

Screw

At Cross

Section

at Second

Screw

At Cross

Section

at Third

Screw

At Cross

Section

at Fourth

Screw

Straight
plate

Neutral axis
from top
of the
bone (mm)

Located
inside
the plate

1.5 2 2 2.5

908 helical
plate

Neutral axis
from top
of the
bone (mm)

Located
inside
the plate

2 2.6 3.2 4

1808 helical
plate

Neutral axis
from top
of the
bone (mm)

Located
inside
the plate

2.8 4.3 5.5 6.8
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4. From the clinical point of view, helical plates have freedom at
the entry point, during minimally invasive surgery according to
Fernandez [11].

5. Screw-holding power for helical plate fixation is higher (compared
to that of the straight plate), as the screws are inclined at different
orientations (as indicated in Table 11.6), thus avoiding sequential
screw loosening.

Apart from the advantages that helical plate fixation offers, helical plates are
not commercially available. Thus, currently, we need to contour a straight
plate into a helical plate as a temporary solution. As discussed earlier, the
procedure for contouring a straight plate to a helical plate is as follows:
the straight plate is bent to form a semicircular sector of a ring, and then its
ends are twisted in opposite directions to form a helical plate.

However, the repeatability of contouring the straight plate into a helical
plate is questionable. During contouring, excessive screw holes deformation
could take place and hence hamper easy insertion of the screws during
surgery. The situation is even worse if we contour the locking compression
plate (LCP), because the locking mechanism will be damaged due to exces-
sive deformation at screw hole during contouring. Residual stresses can also
develop in the helical plate while contouring, and this can have an impact
on the fatigue property of the helical plate. Similarly, excessively deformed
screw hole acts as a stress raiser, and the plate will tend to fail at the screw
hole during contouring itself. Thus, contouring the plates should be
replaced by manufacturing helical plates to near net shape.

While this study demonstrates the advantages offered by helical plate
fixations, more preferred anatomical locations for helical plating need to be
explored. Thus, our experimental and FEA have opened a new arena of
study in modern fracture fixation through helical plates.

11.6 Conclusion

In this chapter, we have carried out the analyses of plate fixation of the
fractured bone under axial and bending moment loadings.

Spiral fracture FIGURE 11.35
Schematic of a fracture-fixed bone by a 1808
helical plate under torsion.
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In the case of the plate screwed to the bone and compression loading of
the bone–plate assembly, the inner screw is found to transfer the majority
of the force from one half of the fractured bone to the other half (as depicted
in Figures 11.2 and 11.3).

Next, the bone–plate assembly under pure bending is analyzed. Initially
the plate is assumed to be bonded to the bone, and we have determined the
normal stresses acting on bone and plate, as influenced by their moments of
inertia and moduli. For these stresses, the forces and moments shared by the
bone and the plate (as depicted in Figure 11.4) are calculated. These forces
and moments are then applied to the bone–plate assembly (Figure 11.5), in
which the plate is screwed to the bone by means of two screws on either side
of the fracture site. In order to analyze this case (1) the flexure-bending
moment equations for the bone and the plate are worked out separately; (2)
the boundary condition of zero deflection and slope at the extreme ends
held by the two outer screws are applied to determine the expressions for
the bone and the plate deflections; and (3) the bone and the plate deflections
at the site of the inner screw locations are equated, in order to determine the
value of the force W in the screws.

A similar procedure was adopted for the case of three screws on either side
of the fracture site. In both the cases of two- and three-screw fixationmodes, it
was found that for the NA to be located at the plate–bone interface, the plate
should have an elastic modulus of 210 GPa and thickness of 3 mm.

Further investigation to reduce the stress shielding has also been studied
by means of stiffness-graded plates, in which the stiffness was varied both
across the plate thickness and plate length. Analyses were carried out for the
cases of (1) the plate screwed to the bone by means of one, two, and three
screws on either side of the fracture site, as depicted in Figure 11.10; (2) for
the callus modulus to be equal to 1% of the bone modulus (21 GPa) and
100% of the bone modulus at the fracture site, in order to simulate initial
and total fracture healing phases; and (3) the modulus of plate varying from
210 to 21 GPa both longitudinally and transversely in the plate.

It is seen that the screw locations from the fracture site (as depicted in
Figure 11.10) have a greater bearing on the stress shielding than the stiffness
variation of the plate. From Table 11.4, it is seen that fixation modality S4-2
(with two screws on either side of the fracture site, one being close to the
edge of the plate) is optimal, in terms of (1) yielding minimal deflection at
the fracture site, (2) providing adequately high maximum compressive
stress at the callus, and (3) providing adequately low stress shielding
away from the fracture site.

Finally, we have demonstrated the efficacy of using helical plate fixation
for improved osteosynthesis of fractured bone, especially for oblique and
spiral fractures, and particularly for torsional loading. The advantages
offered by helical plate fixation (relative to straight plate fixation) are in
terms of greater holding strength, greater energy to fracture, and higher
screw pullout strength. Further, based on our FEA of plate–bone assembly
(under compression, bending, and torsional loadings), for oblique fractures
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of the bone, the helical plate fixation is shown to yield (1) greater axial
displacement and fracture gap closure (conducive to callus consolidation
into bone) as well as (2) greater shear displacements (in the magnitude
range beneficial to fractured bone healing) compared to straight plate fix-
ation. In particular, for torsional loading and for oblique (and spiral) frac-
tures of the bone, it is more beneficial to use helical plate fixation for all of
the above-mentioned reasons.
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12.1 Introduction and Scope

Spine gives the body structure, support, and allows the body to bend with
flexibility. It is also designed to protect the spinal cord. The spine is made up
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of 24 small bones (vertebrae) that are stacked on top of each other to create the
spinal column. Between each vertebra, there is an intervertebral disk that
helps to cushion and transmit the load between the vertebrae and keeps the
vertebrae from rubbing against each other [1]. The flexibility of the spine is
primarily due to the intervertebral disks [2]. Each vertebra is held to the
others by groups of ligaments. There are also tendons that fasten muscles to
the vertebrae. The normal spine has an ‘‘S’’-like curve when looking at it from
the lateral side. The ‘‘S’’ curve must have evolved to help a healthy spine to
perform its role in providing stability, strength, and flexibility [3,4]. Natural
structures usually evolve with larger cross section, where stresses are max-
imum, and leaner cross section, where stresses are minimum, thereby attain-
ing minimum weight. Spinal biomechanical efficacy is to a large extent based
on the optimal intrinsic designs of the spinal vertebral body (VB).

In the VB, the load-carrying and transmitting function is primarily done
by the cortical VB, whose shape resembles a hyperboloid (HP) shell. We
have hence modeled the cortical VB as an HP shell, whose geometry and
composition is made up of its generators. This chapter analyzes the forces in
the VB generators due to compression, bending, and torsional loadings. The
unique feature of the HP geometry is that all the loadings are transmitted as
axial forces in the generators of VB HP shell. This makes the VB a high-
strength structure. Further, because the cortical VB material is intrinsically
made up of its generators (through which all the loadings are transmitted
axially), it also makes the VB a natural lightweight structure.

We then analyze for the optimal HP shape and geometry by minimizing
the sum of the forces in the HP VB generators (due to its loadings) with
respect to the HP shape parameter (angle b between pairs of generators). The
value of b is determined to be 26.58, which closely matches with the in vivo
geometry of the VB based on the magnetic resonance imaging (MRI). In other
words, for the HP shape parameter b¼ 26.58, the VB generators’ forces (under
the combined loadings acting on the VB) are minimal, so as to then enable it
to bear maximal amounts of loadings. In this way, we have demonstrated that
the VB is an intrinsically functionally optimal structure. This chapter (along
with Figures 12.2–12.10) is based on our paper on the Human lumbar VB as
an intrinsic functionally optimal structure [5].*

12.2 Introduction: Concept of the Spinal Vertebral Body

Being an Intrinsically Optimal Structure

In nature, anatomical structures are customized to be functionally opti-
mal [6,7]. If it is a load-bearing structure, then it is adroitly designed to be a
lightweight and high-strength structure. For example, a long bone ismodeled

*With permission from the publisher WIT Press, Southampton, U.K.

Ghista/Applied Biomedical Engineering Mechanics DK8315_C012 Final Proof page 358 29.5.2008 1:18am Compositor Name: MSubramanian

358 Applied Biomedical Engineering Mechanics



such that it can sustain maximum loading with least amount of material.
Consider the case of the femur. Its shape and material density correspond to
its stress trajectories under its functional loading (see Figure 12.1) as per
Wolff’s law [8]. In other words, there needs to be less density of bone where
the stress trajectories are apart (such as in trabecular bone) and more density
of bone where the stress trajectories are closer (as in cortical bone).

12.2.1 Optimal Dimensions of the Femur Cortical Bone

The diaphysial part of long bone (e.g., a femur) carries most of the bending
stress. Using the Euler–Bernoulli flexural equation, its bending strength
(BS), normalized with respect to its bending-moment bearing capacity, can
be defined as

BS � 4M

psbr3e
¼ 1� ri

re

� �4

(12:1)

where
M is the moment on the bone
sb is the maximum stress on the bone induced due to M
re is the external radius of the bone
ri is the internal radius of the bone (considering long bone to be a

hollow cylinder)

Also, its normalized weight factor (WF, i.e., normalized weight per unit
length) can be represented as

WF � p(r2e � r2i )

pr2e
¼ 1� ri

re

� �2

(12:2)

FIGURE 12.1
Wolff’s drawing of trabecular orientation in the proximal part of the femur and the cross section of
the femur. It is noted that the bonematerial distribution corresponds to the orientation of the stress
trajectories. (Adapted fromWolff, J., Das Gesetz der Transformation der Knochen, Hirschwald, 1892.)
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Maximizing the function (BS�WF) with respect to (ri=re), the optimal value
of (ri=re) is found to be 1=

ffiffiffi
2

p
(¼ 0:707), at which long bone has minimum

weight and maximum bending strength; the corresponding area ratio (inner
to outer cross-sectional area) is 0.5. Based on our measurements of femur
diaphysial cross sections, this area ratio is in the range 0.5� 0.2. This
analysis shows that at ri=re¼ 0.707, the long diaphysial bone segment has
maximum bending stiffness for minimal weight.

12.2.2 Spinal Vertebral Body as an Optimal Structure

In this section, we will analyze the VB structural design by carrying out the
stress analysis of how the cortical VB can bear uniaxial compression, bending,
and torsional loadings. Then, the relationship between the dimensions of VB
(based on physiological loading conditions) that makes it to be a functionally
optimal (lightweight and high-strength) structure is analyzed. In other
words, we will provide the relationship between the geometrical parameters
of the VB that makes it an intrinsically optimal structure. Finally, the optimal
design parameters obtained from the analysis are compared with published
MRI scans of VB.

12.3 Vertebral Body Shape and Membrane Stresses

12.3.1 Hyperboloid Geometry of the Vertebral Body

The HP anatomy and geometry of the cortical VB is formed by two families
of generators [9–11], as shown in Figure 12.2a. We will analyze, using shell
membrane theory, how this HP VB geometry enables the VB to efficiently
sustain (1) compressive loading ‘‘C’’ on the VB, to cause axial compression
in both sets of generators, (2) bending moment ‘‘M,’’ to result in compres-
sive forces in one set of generators (i.e., on the compression side of the
neutral axis) and tensile forces in other set of generators, and (3) torsional
loading ‘‘T,’’ to result in compressive forces (per unit length) in one family
of generators and tensile forces in the other family of generators oriented in
the other direction.

Figure 12.2b illustrates the HP geometry of the spinal VB. If we intersect
the HP shell surface with a vertical plane parallel to the yz plane but at
x¼�a, then the intersecting curves are given by

a2 þ y2

a2
� z2

b2
¼ 1 or z ¼ � b

a

� �
y (12:3)

which have the same slope as the asymptotes. Based on the HP geometry,
the HP surface can be generated by a pair of intersecting lines inclined at
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an angle b¼ tan�1(a=b) in the vertical plane tangent to the waist circle
(r0¼ a) [12].

The construction of the cortical VB HP, by a set of generators [13], is
illustrated in Figure 12.3, where the end-plate radius AN is R, radius of
the waist circle is ‘‘a,’’ and height of the VB is 2H. Based on it, we define the
HP VB geometrical parameter b as

tanb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R2 � a2)

p
H

¼ a

b
(12:4)

(b)

y

x

z

f

Origin

y

r0 a

r2

R

z

r1

R

H

H
b

Asymptotesr1: radius of curvature of 
 meridian
r2: slanted radius of horizontal
 section having radius r0
Kinematic relationship: 

r0 = r 2 (sin f)
As regards their magnitudes,

r 2
3

a4
b2

r1=

 Equation of HP curves: 

1
b2
z2

z2
a2

b2a2

y2

y2

x2

1At x = 0,

Equation of asymptotes:

y
a
b

z =

(a)

C
T

M

C
T

M

FIGURE 12.2 (See color insert following page 266.)
(a) Shows a typical vertebral body (VB) where the cortical VB is shaped as a hyperboloid (HP)
shell formed of two sets of generators. The height of the HP can be expanded or reduced by the
inclination of the generators. (b) Depicts geometry of HP shells. (Adopted from Ghista, D.N.,
Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)
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The primary dimensional parameters of the VB HP are hence (R, a, and H),
and tan b provides a relationship among them.

12.3.2 Membrane Stresses in the Vertebral Body Cortex

We adopt the membrane theory of shells to analyze the stresses in
the cortical VB [14]. Membrane stresses (meridian stress sø and hoop
stress su) have a relationship with the normal pressure pr, as depicted in
Figure 12.4. The equilibrium of forces in the radial (r) direction yields

�2sft(r2du) sin
d�

2

� �
þ 2sut(r1d�) sin

du

2

� �

þ pr 2r1 sin
d�

2

� �
� 2r2 sin du

2

� �� �
¼ 0 (12:5)

where, in the case of an HP, r2 is considered to be positive and
r1 is considered to be negative, and their magnitudes in terms of a, b,
and f are

r1 ¼ a2b2

(a2 sin2 �� b2 cos2 �)3=2
(12:6)

r2 ¼ a2

(a2 sin2 �� b2 cos2 �)1=2
(12:7)

F

B
N

A

C D

R

Hb

Origin

y

x

z ABCD constitutes a plane tangent to the 
waist circle at F.

H
a2R2

FE
EB

tan b (I)

Coordinates of point A are [ Ha2R2a ,, ]

Substituting into the HP equation: 1
b 2

z 2

a2

x2 + y2

We get 1
b 2
H 2

a2
a2+ R2 − a2

i.e., 1
b2
H2

a2
R2

or
R2– a2

R2– a2

aH
b (II)

From (I and II) we get: tan b =
b
a

H
(III)

E

FIGURE 12.3 (See color insert following page 266.)
Geometry of cortical vertebral body (VB) hyperboloid (HP) shell: The generators AD and BC
form the basis of the construction of the HP shell. (Adopted from Ghista, D.N., Fan, S.C.,
Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)
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For small angle u, sin u � u, which leads to

�s�tr2(du)(d�)þ sutr1(d�)(du) ¼ �pr[r1(d�)r2(du)]

or

s�t

r1
� sut

r2
¼ pr (12:8)

Denoting Nf¼sft and Nu¼sut as stresses per unit wall thickness (or stress
resultants), with t being the VB wall thickness, we obtain

N�

r1
�Nu

r2
¼ pr (12:9)

which is the ‘‘membrane equation’’ for the HP VB shell. This is because for
an HP shell, r1 is negative and r2 is positive. Now pr, the internal pressure in
the cancellous bone within the VB cortical shell, is negligible. Hence, by
putting pr¼ 0 (i.e., for an internally nonpressurized cortical VB HP shell),
Equation 12.9 results in

 

pr

(a) (b)

sf

sf df

• df+
sf+ (∂sf/∂f)df

sqsq sq

sf

sq

dq

∂sf

∂f

A
 

pr

r2

B

C
D

Z

dq/2
dqsq

sq

dq /2

r 1

A

D

B

 

C

(c) (d)

sf

df

df/2

• df+sf
∂sf

∂f

FIGURE 12.4 (See color insert following page 266.)
Stresses acting on an element of the vertebral body (VB) hyperboloid (HP) shell: (a) HP shell
element in equilibrium, (b) sf and su equilibrating internal pressure pr, (c) orientation of sf,
and (d) orientation of su. (Adopted fromGhista, D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I.,
Int. J. Des. Nat., 1, 34, 2006.)
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N� ¼ r1
r2

� �
Nu (12:10)

Substituting r1 ¼ (b2=a4)r32, from Figure 12.2, into Equation 12.10, the follow-
ing relationship between the stress resultants is obtained:

N� ¼ b2

a4
r22

� �
Nu (12:11)

12.4 Analysis for Forces in the Vertebral Body Generators

under Different Loadings

12.4.1 Stress Analysis of the Vertebral Body under Axial Compression

We will now analyze for stresses in the HP shell (generators) due to a
uniaxial compressive force, as shown in Figure 12.5. Assume that there are

a

Spacing = 2pa /n(b)

r0

Nf

 C 

Nf
(c)

Total applied force =C

(a)

sf

sf

sq
sq

C

FIGURE 12.5
Stresses at waist section of the hyperboloid (HP) shell: (a) stress components, (b) equivalent
straight bars (aligned with the generators) placed at equal spacing to take up the stresses,
and (c) equilibrium of forces on a shell segment. (Adopted from Ghista, D.N., Fan, S.C.,
Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)
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two sets of ‘‘n’’ number of straight bars placed at equal spacing of 2pa=n
measured at the waist circle, to constitute the HP surface, as shown
in Figure 12.5b. Due to the axisymmetric nature of the vertical load,
no shear stresses are incurred in the shell, i.e., sfu¼ 0, as in Figure 12.5a.
We then delineate a segment of the HP shell, and consider its force equilib-
rium (as illustrated in Figure 12.5c). Force equilibrium at any horizontal
section gives

(2pr0)N�( sin�) ¼ C (12:12)

Now, considering the segment at the waist circle where f¼ 908 and
r2¼ r0¼ a (throat radius), we get

(2pa)N�(� ¼ 90� ) ¼ C or N�(� ¼ 90� ) ¼
C

2pa
, compressive (12:13)

At the waist circle where r2¼ a, Equation 12.11 yields

Nu(� ¼ 90�) ¼
a4

b2
1

r22

� �
N�(� ¼ 90�) ¼

a2

b2

� �
N�(� ¼ 90� )

which, combining with Equation 12.13, leads to

Nu(� ¼ 90� ) ¼
a2

b2

� �
C

2pa
¼ C

2pa
( tanb)2 (12:14)

which is compressive in nature.
From Figure 12.6, the equivalent resultant compressive force ‘‘Fc’’ in a

fiber generator of the VB HP shell is given by

F2c ¼ N�
pa

n

� �h i2
þ Nu

pb

n

� �� �2
(12:15)

Fc

Fc Fc

Fc

n
2pa

n
2pb

Nf

Nf

Nq
Nq

FIGURE 12.6
Equivalent diagonal forces in the intersecting
bars to take up the stresses around a shell
element. (Adopted from Ghista, D.N., Fan, S.C.,
Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1,
34, 2006.)
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Substituting Equations 12.13 and 12.14 into Equation 12.15, we obtain

Fc ¼ C

2n cosb
¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ R2 � a2

p

2nH
(12:16)

Thus, the total axial loading is transmitted into the HP shell’s straight
generators as compressive forces.

12.4.2 Vertebral Body Stress Analysis under Bending Moment

When the VB is subjected to a bending moment (M), normal stresses (sy) are
developed at the waist circle (r0¼ a) cross section, as shown in Figure 12.7.
The bending moment sustained at the waist circle is given by

M ¼ 2

ða

0

sy 2
t

cosa
dy

� �
y (12:17)

where sy is the compressive stress normal to the cross section (due to
the bending moment M) acting on the two rectangular elements of the
length 2(t=cos a) and width dy.

Also

sy ¼ y

a
(sa) (12:18)

where sa is the stress at y¼ a (at the waist circle).

M

y
BB

t

ady y

N

A
NA is the neutral axis 

(a) 
(b) M

a

FIGURE 12.7
(a) Bending moment on the vertebral body (VB) and (b) plan view at the section BB (i.e., at waist
circle). (Adopted from Ghista, D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat.,
1, 34, 2006.)
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Upon combining Equations 12.17 and 12.18 we get

M ¼ 4t(sa)

ða

0

y2

a cosa
dy (12:19)

After substituting for y¼ a sina and dy¼ a cosa da, Equation 12.19 can be
rewritten as

M ¼ 4t(sa)

ðp=2

0

a2 sin2 a

a cosa
a cosada (12:20)

Upon integrating Equation 12.20, we get

M ¼ pa2t(sa) (12:21)

The normal stress at the waist circle in terms of bending moment (M) can be
written as

(sa) ¼ M

pa2t
(12:22)

Then the stress resultant, Nf, on the waist-circle element at ‘‘a’’ distance
from the neutral axis, is given by

(N�)a ¼ (sa)t

Thus, from Equation 12.22, we obtain

(N�)a ¼
M

pa2
(12:23)

According to Figure 12.8c, the force (Fm) in the VB HP generator is given by

F2m ¼ pa

n
(N�)a

� �2
þ pb

n
(Nu)a

� �2
" #

(12:24)

Upon substituting Nu value from Equation 12.11, we get

F2m ¼ pa

n
(N�)a

� �2
þ pb

n

a2

b2
(N�)a

� �� �2
" #

(12:25)
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Since tan b¼ a=b, Equation 12.25 reduces to

F2m ¼ M

pa2

� �2
pa

n

� �2
[1þ tan2 b]

or

Fm ¼ M

na cosb
(12:26)

where ‘‘Fm’’ can either be compressive or tensile force, based on the location
of the generators relative to the plane about which the bending moment is
applied.

12.4.3 Vertebral Body Stress Analysis under Torsional Loading

Next, we analyze the compressive and tensile forces in the HP shell gener-
ators when the VB is subjected to pure torsion (T). In this case (refer to
Figure 12.9a), the normal stress resultants are zero, and we only have the
shear stress resultant, as given by

Nf ¼ Nu ¼ 0 and Nfu ¼ tt (12:27)

The equilibrium of a segment of the shell at a horizontal section (as in Figure
12.9b) gives

Nf

M

(a)

(b)

Nf

Nq

Nq

(c)

N

A

NA: Neutral axis 

Nq

Nf

Nq

Fm Fm

FmFm

n
2pb

n
2pa

Nf

Compressive stresses 

a

M
N

A
Tensile
stresses

M

FIGURE 12.8 (See color insert following page 266.)
(a) Stress resultants at the waist section of vertebral body (VB) hyperboloid (HP) shell under
bending, (b) equilibrium of forces on a shell segment, and (c) equivalent diagonal forces in the
intersecting bars to take up the stresses around a shell element on the compression side of the
VB HP shell. (Adopted from Ghista, D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des.

Nat., 1, 34, 2006.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C012 Final Proof page 368 29.5.2008 1:18am Compositor Name: MSubramanian

368 Applied Biomedical Engineering Mechanics



[(2pr0)N�u]r0 ¼ T or (2pr20)N�u ¼ T (12:28)

At the waist circle, r2¼ r0¼ a (throat radius), we obtain for the shear stress
resultant

[(t � t)(2pa)]a ¼ T, i:e:, N�u ¼ T

2pa2
(12:29)

Now, consider an element at the waist circle as shown in Figure 12.9c. The
equivalent compressive force (FcT) and tensile force (FtT), in the directions
aligned to their respective set of shell generators, are given by

F2cT ¼ F2tT ¼ N�u
pa

n

� �2
þ N�u

pb

n

� �2

or

jFcTj ¼ jFtTj ¼ T

2na sinb
(12:30)
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t t
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FIGURE 12.9
(a) Stress resultants in the hyperboloid (HP) shell element (Nf¼Nu¼ 0 and Nfu¼ t t) due to
torsion T acting on the vertebral body (VB); (b) equilibrium of a shell segment under torsion (T)
and shear stresses (t) (or shear stress resultant Nfu); (c) equivalent diagonal forces in the
intersecting generators to take up the stresses around the shell element. (Adopted from Ghista,
D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C012 Final Proof page 369 29.5.2008 1:18am Compositor Name: MSubramanian

Human Lumbar Vertebral Body 369



Thus, a torsional loading on the VB HP shell is taken up by one set of
generators being in compression and the other set of generators being in
tension.

12.5 Optimal Design

12.5.1 Structural Analogy of the Vertebral Body to the Cane Stool

The above analyses illustrate how the intrinsic HP shape design of the VB
enables the loadings to be transmitted as axial (compressive=tensile) forces
through the generators of theHP shell. In this regard, theVB can be compared
to an HP cane stool (shown in Figure 12.10), which is an ideal high-strength
and lightweight structure. This is because all the loading exerted on it (by a
person sitting on it) is transmitted (to the ground) as axial forces in the cane
generators. Now a structure (such as a cane stool) is strongest in compression
(provided its length is less than the buckling length). This makes the cane
stool a high-strength and high load-bearing structure.

If the two sets of canes (at �b) of the cane stool are encircled at the waist
circle by a band, it increases the load-carrying capacity of the cane stool. If
additionally, these two sets of canes (�b) are tied at all their intersecting
points (as shown in Figure 12.10), their functional lengths are reduced, and
this further enhances the strength and load-carrying capacity of the
cane stool. Further, the cane stool is very light as it is just made up of
discrete canes (as generators of the HP structure). This structural con-
figuration makes the cane stool a very simple but effective load-bearing,
high-strength, and lightweight structure. Incidentally, such a cane stool of
radius 200 mm and height 175 mm has a nominal weight of 2.5 kg (or 25 N),
but can easily bear a load of at least 5000 N, which is 200 times its weight.

FIGURE 12.10
The humble hyperboloid (HP)-shaped cane
stool (with permission from www.exbali.com)
weighing 2.5 kg but capable of bearing 5000 N in
compression. (Adopted from Ghista, D.N., Fan,
S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des.

Nat., 1, 34, 2006.)
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Now, the spinal VB cortex has similar structural configuration and
properties as that of the cane stool, to make it an efficient load-bearing
and load-transmitting, high-strength, lightweight structure. The VB wall
can be deemed to be primarily comprised of the two sets of generators.
Just as in the case of cane stool (Figure 12.10), the VB wall transmits all
the loading as axial forces through its generators. This is the basis for a high-
strength and lightweight VB design.

12.5.2 Optimization of the Hyperboloid Shape of the Vertebral Body

Now the spinal VB has a definitive value range of the HP-shape geometrical
parameter b, and hence of its HP shape. In order to determine the structural
basis of this b value, we will calculate that value of b that makes the
combined axial force in its generators (due to combined compression, bend-
ing, and torsional loadings) to be minimum. In that case, this optimized VB
structure will be able to sustain maximal loading before the ultimate failure
load of its generators is reached.

The VB is subjected to the combined compression, bending moment, and
torsional loadings. Under this combined loading, the forces in the gener-
ators given by Equations 12.16, 12.26, and 12.30 can be combined using the
principle of linear superposition. Hence, for its optimal intrinsic design with
respect to the HP shape parameter b, to sustain the combined loadings (i.e.,
compression from Equation 12.16, bending moment from Equation 12.26,
and torsion from Equation 12.30), we need to have

d

db
[Combined forces in the generators] ¼ 0 (12:31)

Thus, from Equations 12.16, 12.26, and 12.30, we obtain

d

db

C

2n cosb
þ M

na cosb
þ T

2na sinb

� �
¼ 0

or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p

H

 !3
C

2
þM

a

� �
¼ T

2a
(12:32)

Equation 12.32 gives the relationship between the applied loading
and the geometry of the VB. For a specific set of values of R and H and
functionally occurring ratios of the loading values C, M, and T, the value of
the HP shape parameter ‘‘a’’ can be calculated from Equation 12.32 for the
intrinsic design of the VB. In Equation 12.32, considering the representative
values of C¼ 1000 N, M¼T¼ 3 Nm, along with R¼ 21.6 mm and H¼ 14.75
mm, based on Guo et al. [15] and Zhou et al. [11], we obtain a � 20.3 mm;
hence, from Equation 12.4, the value of the parameter b¼ 26.58.
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Hence, the optimal lightweight high-strength spinal VB geometry is given
by b¼ 26.58 with a=R¼ 0.939 (for H¼ 14.75 mm). The a=R value of 0.91
measured from the lumbar vertebrae MRI scan, shown in Figure 12.11,
confirms our analysis. Thus, the intrinsic design of the VB HP geometry is
such that it bears the combined loadings of compression as well as bending
and torsion, by minimizing the axial forces in the generators. In other
words, it can sustain and transmit maximal values of the loadings with
minimal amounts of material (because the entire loading is transmitted as
axial forces through the HP generators).

In summary, herein an internal stress analysis of the HP VB under
compression, bending moment, and torsion loadings is carried out. The
analysis shows that all the loading states are transmitted by the VB HB
generators as axial forces, thereby making the VB a high-strength structure
with a high load-bearing capacity. Explicit expressions for these axial forces
in the VB generators under compression, bending moment, and torsion
loading conditions are obtained (in terms of VB geometrical parameters).

Minimization of the total axial force for the combined loadings acting on
the VB gives the value of the HP shape parameter b¼ 26.58, for which
a=R¼ 0.939, which closely matches the measured value of a=R¼ 0.91 from
the VB MRI. Thus, for this value of b, the spinal VB can maximize its load-
bearing capacity. We have thereby demonstrated that the VB shape
and material distribution are modeled (by the loading sustained by it) to
be an optimal high-strength and lightweight structure, in the same way as a
femur shape and material distribution are based on the stress trajectories
(Figure 12.1) due to the loading sustained by it.

FIGURE 12.11
Magnetic resonance imaging (MRI) of
lumbar vertebrae: H=R¼ 0.7 (average
of L2 to L5) and a=R is 0.91 (average of
L2 to L5).
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12.6 Overview of Vertebral Body Fixators and Impact

of the Intrinsic Design on Better Anterior Fixation

Spinal VB fails if the load exceeds the sustainable limits. This generally
happens during impact loading conditions such as car crash or fall from
a height. Failure of the VB is very painful to the person, as the fractured
VB impinges on the nerve roots and the spinal cord and disrupts the
stability* of the spine. VB injury can either cause burst fractures or disloca-
tion of the VB. Burst fractures are more frequent to T12, L1, L2, and L3 of
spine VB, and cover up to 66.16% of all the spinal injuries [16]. Burst
fractures cause loss of sensory and neural stimulation below the level of
the injury, often resulting in paraplegia.

The characteristics of burst fracture (Figure 12.12) are that the VB is
partially or completely commuted, with the fragments of the posterior
wall retropulsed into the spinal canal causing neural injury. However, the
posterior ligamentous complex will still be intact. These fractures are
unstable in flexion–compression. As a result, the VB height reduces, and
the spinal canal is often extremely narrowed by the protruding posterior
wall fragments [16–18].

FIGURE 12.12
An axial burst fracture of the vertebral
body (VB). (From Aebi, M., Thalgott,
J.S., and Webb, J.K., AO ASIF Principles

in Spine Surgery, Springer, Heidelberg,
1998. With permission.)

* A stable spine should be one that can withstand axial forces posteriorly, and rotational forces,
thus being able to function to hold the body erect without progressive kyphosis and to protect
the spinal cord contents from further injury.
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The goals of surgical treatment in burst fracture are to (1) achieve pain
free and stable spine, (2) enable neurological recovery, (3) restore the cap-
acity of the spine to withstand physiological loads, (4) cause minimal
resection of injured fragments, and (5) employ small implants. The methods
available are posterior technique (with posterior fixators), anterior tech-
nique (with anterior fixators), or a combination of posterior and anterior
techniques. A comparison of the biomechanical efficacies of fixation tech-
niques has been reported by Rezaian and Ghista [17,18], and clinically by
Verlaan et al. [19].

Posterior fixators as illustrated in Figure 12.13 stabilize the spine by
reinforcing the spine posteriorly and in tension due to bending under
torso weight; thereby they increase the fractured spine stiffness, and protect
the fractured VB from being overstressed. Distraction applied by the pos-
terior systems generates an anteriorly directed force on the retropulsed
fragments (by the posterior ligament complex) to retract the fragments
and decompress the spinal cord.

According to Rezaian and Ghista [17,18], as the body weight acts anterior
to the spinal column, the spine is subjected to a flexion moment such that
the fractured VB is subjected to a compressive force. In the absence of the
posterior fixator, the tensile force is not adequately resisted by the posterior
spinal column. Hence, the burst VB is subjected to high compressive stresses
causing posterior displacement of the fractured fragment, and impingement

(a) (b) (c)

FIGURE 12.13
Posterior fixation technique as per AO ASIF recommendation: (a) the pedicles are entered and
Kirschner wires are inserted in each hole; (b) the pates are fitted in position over the Kirschner
wires; and (c) later bone graft is used between the vertebrae. (From Aebi, M., Thalgott, J.S., and
Webb, J.K., AO ASIF Principles in Spine Surgery, Springer, Heidelberg, 1998. With permission.)
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of the neural structures. The role of the posterior fixator is to bear this tensile
force by putting compression on the posterior column. This is because the
posterior fixator and fractured VB act as a composite structure (when sub-
jected to flexion bending) with the neutral axis located posteriorly in the
spinal column (Figure 12.14).

Even then, the fractured VB is subjected to some compressive stresses and
can undergo kyphosis or the VBmay not be able to sustain such compressive
force. Also, as the posterior system is offset from the spinal column,
the amount of tensile stress and strain on this posterior fixator can cause it
to fail [20,21]. Thus, a brace may need to be worn in conjunction with
posterior fixator. Also, the disadvantage of using posterior fixator (generally
spans 5–6 VB segments) is the reduction in the flexibility of the spinal system.
These factors make a supporting case for anterior fixation technique.

Anterior fixation technique is used to support the anterior column when
instability persists, particularly with the loss of height of VB. A dynamic
compression plate (DCP) can be placed anteriorly as shown in Figure 12.15.
However, because such a plate will be subjected to bending, loosening of the
screws due to poor fixation in the cancellous bone and backing out of screws
can be a problem that can cause erosion of aorta and vena cava.

Flexion moment

Compressive force in
the posterior portion of

the spinal column

Tension force in rod

Fractured VB

Compressive stress

FIGURE 12.14
Forces exerted on a lumbar spinal cross section due to the anteriorly actingweight load.Note that
under the flexion bendingmoment acting on the spinal column the anterior portion of the spinal
column is in compression, so that the fractured vertebral body (VB) will be in compression.
However, the tensile force in the posterior portion of the spinal column will be reduced by the
compression force applied to it by the posterior devices. This will, in turn, reduce
the compressive force and stresses on the fractured VB. (From Rezaian, S.M. and Ghista, D.N.,
IEEE Eng. Med. Biol., 13, 525, 1994. Copyright 1994.)
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Thus, the anterior fixator placed along the loading axis of the spine seems
to be an appropriate treatment option for burst fractures, like the Rezaian
fixator shown in Figure 12.16. This technique requires the removal of
some of the fractured VB, and two disks (upper and lower portions) of the

FIGURE 12.15
Anterior placement of the dynamic compression plate
according to AO ASIF. (From Aebi, M., Thalgott, J.S.,
and Webb, J.K., AO ASIF Principles in Spine Surgery,
Springer, Heidelberg, 1998. With permission.)

FIGURE 12.16 (See color insert following page 266.)
Rezaian spinal fixator is placed along the loading axis of the spine. (From Rezaian, S.M. and
Ghista, D.N., IEEE Eng. Med. Biol., 13, 525, 1994. Copyright 1994.)
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fractured VB. The Rezaian fixator is embedded into the end plates of the VB
and allows adjustment of the height by the turnbuckle technique [22].
Figure 12.17 demonstrates the manner in which the Rezaian fixator is simple
and at the same time an efficient anterior fixator, which bears and transmits
compression, bending moment, and torsional loadings on the spinal col-
umn. As illustrated in Figures 12.15 and 12.17, the novelty of this fixator is
that all the forces and stresses are transmitted directly through the body of
the fixator [17,18], and there is no bending sustained by the fixator.

The Rezaian fixator is fixed to the top and bottom of the VBs by means
of four spikes (which form part of the fixator). This makes the VB rest on
the fixator and hence directly transmit the forces through the fixator. This is
the reason for the high success rate of this fixator, enabling the paraplegic
patient to become ambulatory after a few days of hospitalization.
The disadvantages are that the spikes may not be sufficient to hold the
fixator within the spinal column due to the distraction and rotational forces.
There will be some movement at the bone fixator interface, which can
progress to a dislocation of the fixator. This problem needs attention.

One of the recent developments in treating burst fractures is the combin-
ation of lateral and anterior fixator, where anterior fixator constitutes a

Compressive force

Flexion moment

Torque

Compressive
bending stress

Tangential forces

Shear stresses

FIGURE 12.17
Rezaian spinal fixator biomechanics. (From Rezaian, S.M. and Ghista, D.N., IEEE Eng. Med.

Biol., 13, 525, 1994. Copyright 1994.)
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titanium cage as shown in Figure 12.18, and the lateral fixator is a short rod
bridging only two VBs [23]. The titanium cage is aligned along the axis of
the VB, and due to its hollowness it gives more room for grafting. However,
the fixation needs to be secured by additional lateral fixators, as the cage
alone is unstable in torsion.

What is conceptually proposed is that a fixator be designed to simulate
the cortical VB. It would be made up of two end-plate rings with spikes to
fix them into adjacent disks. The rings could then be connected by criss-
crossed generators. The fractured VB pieces could be enclosed within this
fixator, and even solidified by introducing hydroxyapatite (HA) based
polymethylmethacrylate (PMMA) cement.
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13.1 Scope

What are the structural features of the spinal intervertebral disc that make it
an intrinsically optimal structure? This is because it effectively contains its
lateral and axial deformations, while providing the necessary flexibility to
the spine. How this is achieved forms the basis of this chapter. The inter-
vertebral disc (IVD), as illustrated in Figure 13.1, consists of the annulus
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fibrosus (AF) enclosing the nucleus pulposus (NP). When the IVD is loaded
in axial compression, the NP gets pressurized and transmits radial stress to
the AF, which in turn gets stressed. However, the annulus fibrosus’ is a
stress-stiffening solid resembling that of a hyper-elastic material. This
increase in elastic modulus under loading in turn prevents the annulus
fibrosus from deforming in proportion to the applied loading. In other
words, as the IVD gets loaded, its deformation does not increase in the
same proportion as the loading to which it is subjected. This is what makes
the IVD an intrinsically optimal structure.

This chapter analytically models how this is made possible in an intact
IVD under uniaxial compression. It also demonstrates that if a ruptured disc
is denucleated surgically as a treatment for back pain (to prevent irritation
of the spinal nerve structures by the nucleus pulposus, as it is squeezed out
through the ruptured disc under compression loading), then the absence of
nucleus pulposus no longer stresses the annulus fibrosus as effectively as in
the case of an intact IVD.

Hence, the denucleated disc in fact deforms more than the intact disc
under compression loading, and hence loses its intrinsic capacity to contain
its deformation under increasing loading. This result serves as a contraindi-
cation for nucleotomy, and emphasizes that the nucleus pulposus needs to
be substituted by a biocompatible gel-filled balloon, to simulate the benefi-
cial effects of the NP.

This chapter (along with the figures) is based on our paper Ghista et al.
[1], published in the International Journal of Design and Nature.*

(a) (b)

Annulus
fibrosus

Nucleus
pulposus

Laminates

Vertebra

Disc

FIGURE 13.1
(a) The location of intervertebral disc within the spinal column. (b) Schematic of the disc
structure. The NP is surrounded by annulus fibrosus. This outer layer has lamellar structure
with highly ordered collagen structure.

*With permission from the Publisher WIT Press, Southampton, U.K.
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13.2 Introduction: Concept of the Intervertebral Disc

as an Optimal Structure

The IVD, as the principal component of the intervertebral joint (shown
in Figure 13.1a), sustains and transmits axial compression, bending, and
torsional loadings. It is centrally pressurized by the NP and surrounded by
the annulus (Figure 13.1b). The annulus fibers are oriented helically, at
almost 308–508 [2]. Under torsion, the torsional shear stresses on a disc
element will result in diagonally oriented tensile and compressive stresses.
It is revealing that these stresses due to torsion of the disc can thus
be directly absorbed by the angled fibers of the annulus. Thus, the IVD is
ideally designed for compression and bending as well as for torsion [3–11].
In this chapter, we will concentrate on the compression loading of the IVD,
in demonstrating its optimal design characteristics. The IVD also functions
as the shock-absorbing component of the spinal unit, comprising of two
adjacent vertebral bodies on either side of the IVD [12].

Figure 13.2 illustrates the spinal disc model. As indicated earlier, what
makes the IVD an optimal structure is the role of the NP to contain the
disc axial and radial deformations. The causative mechanism is that when
the disc is loaded in axial compression (or bending or torsion), the NP fluid
gets pressurized and stresses the surrounding annulus. The annulus is a
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FIGURE 13.2
(a) Geometry and deformation variables of the spinal disc, loaded in compressive force F. Note
that u is depicted as expansive radial deformation, while w is depicted as shortening axial
deformation. (Adopted from Ghista, D.N., Fan, S.C., Sridhar, I., and Ramakrishna, K., Int. J. Des.

Nat., 1, 146, 2007.) (b) Comparison of the effects of including linear and nonlinear material (M)
and geometry (G) solution options on compressive behavior of the disc. (From Fagan, M.J.,
Julian, S., Siddall, D.J., and Mohsen, A.M., Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 216, 299,
2002a. With permission.)
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stress-stiffening solid, such that its elastic modulus (E) increases with the
increase in stress (its stress–strain property is shown in Figure 13.2b) [13,14].
Hence under increased loadings, its elastic modulus value also increases, so
that the deformations are thereby contained.

In this chapter, an elasticity model of the disc, as a closed thick-walled
fluid-filled cylinder, is employed to determine its stress and deformations
under uniaxial compressive loading, and demonstrate the role of NP in
containing the disc deformations. It is also demonstrated that the nucleoto-
mized disc will undergo larger deformations than the normal disc, for the
same levels of loading, thereby drawing attention to the efficacy of nucleot-
omy to treat a ruptured disc and associated back pain.

This is the constitution of the spinal disc wherein the stress-dependent
Young’s modulus of the disc annulus can be represented as [13]:

E ¼ E0 þ 375:3s0:473 (13:1)

where
E0 (the residual Young’s modulus)¼ 4.2 MPa
the stress s is expressed in MPa

Further, for the simplicity of analysis we assume that the disc annulus
is isotropic, so that Ez¼Er¼Eu¼E. As the disc gets compressed (by increas-
ing the applied compressive force F), the annulus stresses (sz, sr, su) keeps
increasing. For each updated value of E for the enhanced stress state of the
disc (in response to increasing values of the compression force F on the disc),
the s (in Equation 13.1) is taken to be equal to the maximum value of the
principal stress (which happens to be the axial stresssz). For this relationship,
as the disc is loaded, the annulus stress state s¼ (sz) increases. Correspond-
ingly, its E increases, so as to thereby contain the disc deformations.

In this chapter, the mechanism of disc deformation containment for verti-
cal loading is delineated. Compressive loading (F) on the disc causes com-
pressive axial stress (sz) in the annulus and also pressurizes the NP fluid,
which then exerts hydrostatic pressure (pi), and hence compressive radial
stress sr on the annulus. This internal pressure in turn causes circumferential
hoop tensile stress (su) in the annulus. These stresses in turn influence the
strain state in the disc through its elastic modulus, and hence the axial and
radial deformations of the disc by virtue of Equation 13.1.

13.3 Disc Model Analysis: Disc Stresses, Displacements,

and Deformed Geometry

The disc is considered to be a thick-walled isotropic cylinder, whose geom-
etry and deformations are depicted in Figure 13.2a. In this analysis, linear
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stress–strain constitutive relations have been employed. However, the
IVD does undergo large deformations. According to Fagan et al. [5,15],
under compressive loading of the order of 2000 N, the deformations are
of the order of 1 mm (see Figure 13.2b). Hence, in order to compute
the disc deformations under compressive loading, small incremental load-
ings are adopted so that the resulting strains are infinitesimal. Thus, for
each incremental load state, (1) the NP pressure is determined, (2) the
incremental stresses are computed, and the total stress state is computed,
(3) the disc material modulus value is revised as per Equation 13.1, (4) the
disc deformations are determined, and (5) its geometry is updated.

Equilibrium equations: Because of the axial symmetry of the disc geom-
etry and loading conditions, there are no shear stresses, and the stress-
equilibrium equations are given by

in the radial direction,
dsr

dr
þ sr � su

r
¼ 0 (13:2)

in the axial direction,
dsz

dz
¼ 0 (13:3)

The strain–displacement relations: Let u be the radial displacement and w be
the axial displacement, as shown in Figure 13.2.

radial strain, «r ¼ sr

E
� n(su þ sz)

E
¼ du

dr
(13:4a)

circumferential strain, «u ¼ su

E
� n(sz þ sr)

E
¼ u

r
(13:4b)

axial strain, «z ¼ sZ

E
� n(sr þ su)

E
¼ dw

dz
(13:4c)

where
E is the isotropic Young’s modulus
n is the Poisson’s ratio of the disc material

The stresses in the disc in terms of displacements are obtained by matrix
inversion of Equation 13.4 and are given by

radial stress, sr ¼ E

1þ n

n

1� 2nð Þ
du

dr
þ u

r
þ dw

dz

� �
þ du

dr

� �
(13:5a)

circumferential (hoop) stress, su ¼ E

1þ n

n

1� 2nð Þ
du

dr
þ u

r
þ dw

dz

� �
þ u

r

� �

(13:5b)

axial stress, sz ¼ E

1þ n

n

1� 2nð Þ
du

dr
þ u

r
þ dw

dz

� �
þ dw

dz

� �
(13:5c)
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Note that su, sr, sz are adopted to be positive for tensile stress.
Now, by substituting the constitutive relations (Equation 13.5) into the

equilibrium equations (Equations 13.2 and 13.3), two partial differential
equations in displacements u and w are obtained, as follows:

d

dr

n

1� 2n

du

dr
þ u

r
þ dw

dz

� �
þ du

dr

� �
þ 1

r

du

dr
� u

r

� �
¼ 0 (13:6a)

d

dz

n

1� 2n

du

dr
þ u

r
þ dw

dz

� �
þ dw

dz

� �
¼ 0 (13:6b)

The solutions of Equations 13.6a and 13.6b can be expressed as

u ¼ A

r
þ Br (13:7)

w ¼ CzþD (13:8)

where, A, B, C, and D are the constants of integrations. These constants can
be determined by applying appropriate boundary conditions, as will be
shown later.

We will first show that the IVD deformations ua and wh are interrelated.
As the NP is incompressible [2], its volume after deformation is unchanged,
so that

pa2 h ¼ p(aþ ua)
2(h� wh)

This can be simplified, by neglecting higher-order terms (uawh and ua
2wh),

to yield

2pahua � pa2wh ¼ 0

or

ua ¼ a

2h

� �
wh (13:9)

It is to be noted that according to deformation defined in Figure 13.2a, wh

is the shortening deformation at z¼ h, while ua is the radial expansion
deformation at r¼ a.

Now, the integration constants A, B, C, and D are evaluated subjected to
the boundary conditions

ur¼a ¼ ua ¼ A

a
þ Ba (13:10a)
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sr ¼ 0 at r ¼ b (13:10b)

w ¼ 0 at z ¼ 0 (13:10c)

w ¼ �wh at z ¼ h (13:10d)

Using the above boundary conditions and utilizing Equations 13.5a, 13.7,
and 13.8, the constants in Equations 13.7 and 13.8 are obtained as

A ¼ (1� 2n)uaab
2

b2 þ a2 1� 2nð Þ (13:11a)

B ¼ ua
a2(1� 2n)þ 2nb2

ab2 þ a3(1� 2n)

� �
(13:11b)

C ¼ �wh

h
¼ � 2ua

a
(13:11c)

D ¼ 0 (13:11d)

Using these constants A, B, C, and D in Equations 13.7 and 13.8, the
stresses in Equation 13.5 can be obtained, by means of Equation 13.6, as
follows:

sr ¼ E

1þ n

n(2Bþ C)

1� 2nð Þ þ B� A

r2

� �

¼ � E

1þ n

uaa(1� 2n)

a2 1� 2nð Þ þ b2

� �
b2

r2
� 1

� �
(13:12a)

su ¼ E

1þ n

n(2Bþ C)

1� 2nð Þ þ Bþ A

r2

� �

¼ E

1þ n

uaa(1� 2n)

a2 1� 2nð Þ þ b2

� �
b2

r2
þ 1

� �
(13:12b)

sz ¼ E

1þ nð Þ
n(2Bþ C)

1� 2nð Þ þ C

� �
¼ � 2uaE

a(1þ n)

a2 1� 2nð Þ þ b2(1þ n)

a2 1� 2nð Þ þ b2

� �

¼ � whE

(1þ n)

a2 1� 2nð Þ þ b2(1þ n)

a2 1� 2nð Þ þ b2

� �
(13:12c)

Then from Equations 13.7, 13.11a, and 13.11b, the radial displacement is
given by

ur ¼ A

r
þ Br ¼ ua

ar

a2b2(1� 2n)þ r2[a2(1� 2n)þ 2nb2]

a2 1� 2nð Þ þ b2

� �
(13:13a)
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and hence ub (at r¼ b) is given by

ub ¼ 2bua
a

a2(1� 2n)þ nb2

a2 1� 2nð Þ þ b2

� �
(13:13b)

It is to be noted (from Equation 13.12c) that the sz is uniform throughout the
disc, and the minus sign implies that sz is compressive.

13.4 Stress Analysis of the Healthy Disc under Compression

Loading (F): Determining Disc Deformations

and Stresses in Terms of F

For an axially applied force F (as illustrated in Figure 13.3), the equilibrium
equation is

F ¼ pa2sf � p(b2 � a2)sz (13:14)

where
sf is the hydrostatic pressure in the fluid
sz is the axial stress in the annulus (as shown in Figure 13.3). Its sign is

taken to be negative in Equation 13.14, because positive sz is consid-
ered as tensile stress

Because the disc height (h) is small, therefore sf is approximately constant,
and hence

sf ¼ �srjr¼a ¼ pi (the pressure in NP) (13:15)

FIGURE 13.3 (See color insert following
page 266.)
Normal stresses sf and sz under the applied
force compressive F. (Adopted from Ghista,
D.N., Fan, S.C., Sridhar, I., and Ramakrishna,
K., Int. J. Des. Nat., 1, 146, 2007.)
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Combining Equations 13.15 and 13.12a, we get

pi ¼ E(1� 2n)

(1þ n)

ua
a

� � b2 � a2

a2 1� 2nð Þ þ b2

� �
(13:16)

Then, substituting for ua from Equation 13.16 into Equation 13.12c, we
obtain

pi ¼ � 1� 2n

2

b2 � a2

a2 1� 2nð Þ þ b2(1þ n)

� �
sZ (13:17)

The axial stress (sz) in the annulus is then obtained in terms of the applied
force F, by substituting the expression for pi from Equations 13.15 and 13.17
into Equation 13.14 as

sz ¼ � 2

p

F

b2 � a2

� �
a2 1� 2nð Þ þ b2(1þ n)

2b2(1þ n)þ a2(3� 6n)

� �
(13:18)

Then, from Equations 13.17 and 13.18, the NP pressure in terms of the
applied compressive force F is expressed as

pi ¼ 1� 2nð Þ
p

F

3a2 1� 2nð Þ þ 2b2 1þ nð Þ
� �

(13:19)

From Equations 13.18 and 13.12c, we get the radial deformation of the IVD
at the inner surface as

ua ¼ 1

p

1

E

F

b2 � a2

� �
a3(1� 2n)þ ab2

2b2(1þ n)þ a2(3� 6n)

� �
(13:20)

Then, from Equations 13.20 and 13.9, we get the axial deformation as

wh ¼ 2

p

1

E

F

b2 � a2

� �
h a2(1� 2n)þ b2
� �

2b2(1þ n)þ a2(3� 6n)

� �
(13:21)

By substituting Equation 13.20 into Equation 13.13b, the radial deformation
at the outer surface of the annulus, ub, is expressed in terms of the applied
force F as

ub ¼ 2

p

1

E

F

b2 � a2

� �
a2b(1� 2n)þ b3

2b2(1þ n)þ a2(3� 6n)

� �
(13:22)

Finally, from Equations 13.12a, 13.12b, and 13.20, we obtain the expressions
for sr and su, in terms of applied load F, as
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sr ¼ 1� 2n

p

F

b2 � a2

� �
a2

2b2(1þ n)þ a2(3� 6n)

� �
1� b2

r2

� �
(13:23)

su ¼ 1� 2n

p

F

b2 � a2

� �
a2

2b2(1þ n)þ a2(3� 6n)

� �
1þ b2

r2

� �
(13:24)

So now, we have obtained the expressions for the disc stresses and deform-
ation in terms of the applied compressive force F.

It is seen that as the disc gets loaded in compression (by the force F),
(1) both sz and pi increase, by virtue of Equations 13.18 and 13.19, (2) the
increased pi (which is a function of F) causes both sr and su and ub to
increase as per Equations 13.22 through 13.24, (3) the axial (shortening)
deformation wh increases according to Equation 13.21. Finally, the stresses
(sr, su, sz) are expressed in terms of F by Equations 13.18, 13.23, and 13.24,
while the deformations (ua, ub, and wh) are expressed in terms of F by means
of Equations 13.20 through 13.22.

13.5 Mechanism and Computation of Disc Deformation

The nucleus pulposus gets pressurized when the load F acts on it, as
per Equation 13.19. All the stresses increase with loading according to
Equations 13.18, 13.23, and 13.24, and so does the annulus modulus E
by Equation 13.1. Now E (the elastic modulus corresponding to the
deformed state of the disc under load F) will be greater than its value in
the unloaded state of the disc, as per Equation 13.1. Hence, as per Equations
13.21 and 13.22, both the axial and radial deformations will be contained,
because the term E is in the denominator of these expressions.

This is attributed to the disc design, wherein the annulus contains the
nucleus pulposus. This dependency of E on pi is also reported by Shirazi-
Adl et al. [13] and Ranu et al. [16,17] based on the experimental and finite-
element analysis of the annulus. The following procedure is adopted to
determine the disc deformation in response to compressive load:

Step 1

We start from the unloaded state, sz0 ¼ 0, for which E¼E0 as per Equa-
tion 13.1.

1. Initially an incremental compressive force of DF1¼ 1 N is applied
on the unstressed disc of dimensions (a0, b0, and h0), and the
resulting incremental stresses (Dsr1, Dsu1, Dsz1) are computed
using Equations 13.23, 13.24, and 13.18.

2. Next, the maximum value of these three stresses (Dsz1, Dsr1, Dsu1),
which happens to be Dsz1, is noted. Then, based on Dsz1, E¼E1 is
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computed according to the relation (based on Equation 13.1):
E1¼E0 (¼ 4.2)þ 373.3 [jDsz1j]0.473.

3. Disc deformations (wh1, ua1, and ub1), corresponding to the incre-
mental stresses are also computed from Equations 13.20 through
13.22, based on the above calculated value of E¼E1.

4. Disc geometry is now updated to: h1 ¼ h0�wh1, a1 ¼ a0 þ ua1,
b1 ¼ b0 þ ub1.

Step 2

1. Again, an incremental DF2¼ 1 N is applied on the deformed
geometry of the disc (a1, b1, and h1), and the incremental stresses
(Dsr2, Dsu2, Dsz2) are determined.

2. Next, the maximum value of these three stresses (Dsz2, Dsr2, Dsu2)
is noted, which happens to be Dsz2.

3. Stress state is upgraded to its current value sz2 (by adding Dsz2 to
Dsz1), and E2 is computed based on Equation 13.1, as

E2 ¼ E0(¼4:2)þ 373:3 (Dsz1 þ Dsz2)j j½ �0:473¼ E0 þ 373:3(sz2)
0:473

4. Then the incremental disc deformations (wh2, ua2, and ub2) are
determined corresponding to the current values of (sz2, sr2, su2),
with E2 as the updated annulus modulus. The total disc deform-
ation is now: wh1 þ wh2, ua1 þ ua2, ub1 þ ub2.

5. Deformed disc geometry is now updated to h2 ¼ h1 � (wh1 þ wh2),
a2 ¼ a1 þ (ua1 þ ua2), b2 ¼ b1 þ (ub1 þ ub2).

Step 3

Step 2 is repeated until the total compressive force reaches 2000 N, in order
to obtain the final deformed geometry at the desired applied load.

The resulting graphs of disc deformations wh, ua, and ub versus force (F)
are depicted in Figure 13.4, which depict the ‘‘disc-hardening’’ effect
whereby the disc deformations do not increase linearly with F.

13.6 Disc Herniation, Back Pain, and Nucleotomy

If the load F becomes very large, su can exceed the annulus material rupture
value, and cause the annulus to develop radial cracks. Then the NP breaks
through the annulus. A herniated disc occurs most often in the lumbar
region of the spine, especially at the lumbar L4–L5. This is because the
lumbar spine carries most of the body’s weight. People between the ages
of 30 and 50 appear to be more vulnerable, because the elasticity and water
content of the nucleus decrease with age. The pain resulting from herniation
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may be combined with radiculopathy (neurological deficit). The deficit may
include numbness, weakness, and reflex loss. These changes are caused by
compression of the nerve structures, created by pressure from the
NP material. Percutaneous nucleotomy is carried out, in order to remove
the NP from the sequestered disc, and thereby alleviate the back pain [18].
A probe is inserted into the centre of herniated disc under fluoroscope
monitoring, and the NP is removed through the probe. The analysis for (1)
volume aspiration of the NP fluid with respect to the time for different
external suction pressures and (2) the pressure drop in NP fluid with respect
to the time is reported by Ghista et al. [12].

13.7 Nucleotomized Disc Model Analysis: Geometry,

Stresses, and Displacements

For the nucleotomized disc, only the axial equilibrium needs to be satis-
fied (Equation 13.3), as there is no internal pressure; and the radial and
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FIGURE 13.4
(a) Disc vertical deformation versus compressive force on the annulus. (b) Radial bulge at
r¼ a versus compressive force on the annulus. (c) Disc radial bulge at r¼ b versus compressive
force. (d) Disc ub�ua versus F. The initial disc geometrical parameters adopted are a¼ 11 mm,
b¼ 25 mm, and h¼ 11 mm, and the annulus residual modulus E0 is taken to be 4.2 MPa.
(Adopted from Ghista, D.N., Fan, S.C., Sridhar, I., and Ramakrishna, K., Int. J. Des. Nat., 1,
146, 2007.)
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circumferential hoop stresses are identically equal to zero. The boundary
conditions w¼� wh,nu at z¼ h and w¼ 0 at z¼ 0, yield

w ¼ wnu ¼ �wh,nu
z

h
(13:25)

The circumferential strain is related to the axial strain by (the Poisson’s
ratio) as

«u ¼ unu
r

¼ �n«z ¼ �n
dwnu

dz
¼ n

wh,nu

h
(13:26)

Hence, the radial displacements at r¼ a and r¼ b for the nucleotomized disc
are given by

ua,nu ¼ n
wh,nu

h
a and ub,nu ¼ n

wh,nu

h
b (13:27)

13.7.1 Stress Analysis for a Vertical Loading on the Nucleotomized Disc

For a vertically applied force F, the equilibrium of the disc is shown in
Figure 13.5; the minus sign is employed because the axial stress sz,nu

(assumed to be tensile) acts on the vertebral end plate, and the axial stress
sz,nu in the annulus is hence given by

sZ,nu ¼ � 1

p

F

b2 � a2

� �
(13:28)

Using Hook’s law (3), the axial deformation is related to sz,nu and hence to
the applied force F, so that the decrease in disc height is given by

b

−sz,nu

h
a

sz,nu

Vertebral end plate
F

FIGURE 13.5 (See color insert following page 266.)
Normal stress sz,nu equilibrating the applied force
F in a nucleotomized disc. (Adopted from Ghista,
D.N., Fan, S.C., Sridhar, I., and Ramakrishna, K.,
Int. J. Des. Nat., 1, 146, 2007.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C013 Final Proof page 393 29.5.2008 1:22am Compositor Name: MSubramanian

Human Spinal Intervertebral Disc: Optimal Structural Design Characteristics 393



wh,nu ¼ 1

p

1

E

Fh

b2 � a2

� �
(13:29)

Then, from Equations 13.27 and 13.29, the radial expansion of the disc at
r¼ a is given by

ua,nu ¼ 1

p

n

E

Fa

b2 � a2

� �
(13:30)

Similarly, the radial expansion of the disc at r¼ b is given by

ub,nu ¼ 1

p

n

E

Fb

b2 � a2

� �

or

ub,nu ¼ bub,nu
a

(13:31)

13.7.2 Determination of Disc Deformation in Nucleotomized Disc

The same procedure as outlined in Section 13.5 is used to determine
the incremental and final deformations of the nucleotomized disc under
uniaxial compressive load of 2000 N. The resulting graphs of disc deform-
ations wh,nu, ua,nu, ub,nu versus F and (ub,nu� ua,nu) versus F are plotted in
Figure 13.6, along side the deformations of the normal disc in order to
provide a comparison.

It is seen that the nucleotomized disc has considerable greater deform-
ations than the normal disc. These deformations can result in compression
of the spinal cord nerve structures as well as the facet joints. Thus the
removal of NP has adverse effects like disc collapse and excessive radial
bulging. This trend has also been experimentally demonstrated by Meakin
and Huikins [19] and Judith et al. [20].

13.8 Conclusion: For the IVD to Retain Its Optimal

Structural Feature

Based on these results, in order to retain the stress-stiffening characteristic of
the disc and mimic the normal disc load-deformation behavior, it is not
advisable to carry out nucleotomy on herniated discs. Instead, it is advisable
to replace NP with a gel-filled balloon in the case of disc herniation [21].
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This chapter illustrates the natural anatomical-physiological design of the
intervertebral disc as an optimal load-bearing and deformation-containing
structure. This is because of the composite design of the IVD, in which the
NP is enclosed by the annulus. Thus, when the IVD is loaded, the NP gets
pressurized, its annulus stress increases, the annulus (stress-dependent)
modulus increases, and hence the annulus deformation are contained.
This is the salient feature of the IVD as an optimal structure, namely its
ability to contain its axial and radial deformations under increased loading.
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Section V

Fitness and Sports
Engineering Mechanics
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Biomechanics of Fitness Index:
Optimal Walking and Jogging Modes,
and Hip Joint Assessment

Dhanjoo N. Ghista, Jor Huat Ong, and Geok Hian Lim

CONTENTS
14.1 Scope ......................................................................................................... 399
14.2 Development of a Cardiac Fitness Index (Based On Exercise

and Postexercise Heart Rate Data)....................................................... 400
14.2.1 Fitness Assessment Model ...................................................... 400
14.2.2 Application to Fitness Evaluation.......................................... 402
14.2.3 Affirmation of Our Indices...................................................... 402

14.3 Optimal Walking Modality ................................................................... 403
14.3.1 Stride Frequency (SF) Analysis .............................................. 404
14.3.2 Stride Length (SL) Analysis .................................................... 406

14.4 Optimal Jogging Frequency .................................................................. 408
14.4.1 Introduction ............................................................................... 408
14.4.2 Methodology.............................................................................. 409
14.4.3 Analysis of Natural Frequency of the Lower Limb

(Based On Its Double-Compound Pendulum Model)........ 410
14.4.4 Results and Remarks................................................................ 413

14.5 Evaluation of the Hip Joint Characteristics........................................ 414
14.5.1 Analysis of Free Damped Oscillatory Motion

of the Free-Swinging Leg ........................................................ 414
14.5.2 Application ................................................................................ 421

References ........................................................................................................... 424

14.1 Scope

This chapter defines a fitness index based on a patient’s heart rate (HR)
response to physical exertion. This is useful in cardiac clinics to assess a
patient’s cardiac fitness status, as a preventive care measure or to rule out
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cardiac dysfunction before subjecting the patient to further tests. Next, we
have developed the analysis for the optimalwalkingmodality of a person as a
determinant of the stride length and frequency of the individual. In the case of
jogging, the optimal jogging frequency is postulated to correspond with the
natural oscillation frequency of the leg. Lastly, an assessment of the hip joint
status is carried out, based on a simple-compound leg pendulum analysis.

14.2 Development of a Cardiac Fitness Index (Based

On Exercise and Postexercise Heart Rate Data)

Everyone knows that exercise is good for health. So, you decide to start
walking or even jogging. Before doing so, you want to assess your current
fitness level. In this regard, in a cardiac clinic, the HR response to physical
exertion (usually on a treadmill) is a common test to assess a patient’s
cardiac fitness status, as a preventive care measure or to rule out cardiac
dysfunction before subjecting the patient to further tests. This test entails
assessment of the patient’s capability to continue exertion up to a certain HR
value without having angina pain symptoms. Herein, we propose a means
of quantifying this HR response to treadmill during and after exercising, in
the form of a differential equation (DEq) model. The parameters of this DEq
are then formulated into one nondimensional number or index, which can
be employed as a cardiac fitness index (CFI) [1].

14.2.1 Fitness Assessment Model

The fitness assessment model consists of a first-order differential equation
model describing the HR response (y) to exertion (exercise, jogging, etc.)
monitored in terms of the workload or power (W, measured in watts),
where y is defined as follows:

y ¼ HR(t)�HR(rest)

HR(rest)
(14:1)

The subject is exercised on the treadmill for a period of time te (minutes) at a
constant workload or power exerted (W), while the HR(t) (and hence y) is
monitored. Now, we develop a model to simulate (1) the y(t) response to the
power expended during exercise, i.e., during t< te, and (2) thereafter for y(t)
decay, after the termination of exercise. In a way, te represents the exercise
endurance of the subject. In order to compare the fitness capacity of subjects,
they are exercised at the same workload.

The model DEq for y response to exercise on the treadmill is given by

dy

dt
þ k1y ¼ C0W (14:2)
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where (1) k1 is a parameter and (2) C0 is a conversion factor to express W in
the same units as the other terms of the equation. The y solution to Equation
14.2 is represented by

y ¼ C0W

k1
(1� e�k1t)

¼ ye(1� e�k1t)

(1� e�k1te )
for t � te during exercise (14:3)

y ¼ yee
�k2(t�te) for t � te during the recovery period when W ¼ 0 (14:4)

where ye¼ y (t¼ te), and k1 and k2 are the model parameters which can serve
as cardiac fitness parameters (in units of min�1).

A sample y(t) response is illustrated in Figure 14.1 for the purpose of our
discussion. Now,

dy

dt
¼ k1yee

�k1t

(1� e�k1te )
for t � te

¼ �k2yee
�k2(t�te) for t � te (14:5)

For t< te, as k1 increases, y at te decreases anddy=dt also decreases (i.e., the rate of
rise of HR is also lesser). So, for a healthier subject, k1 is greater. For t� te, as k2
increases, theHR recovery is faster. Hence, a higher value of k2 is also associated
with a healthier subject. Based on this observation, we can develop a fitness
measure combining the parameters k1 and k2 into a single nondimensional index
which is higher for a fit person and lower for an unfit person. This Cardiac
Fitness Index (CFI) is given by

CFI ¼ k1 k2 t2e (14:6)
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FIGURE 14.1
Sample subject y versus t data. (Adopted from figure 2 of Lim, G.H., Ghista, D.N., Koo, T.Y.,
Tan, J.C.C., Eng, P.C.T., and Loo, C.M., Int. J. Comput. Appl. Technol., 21, 38, 2004.)
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According to this formulation of CFI, for subjects exercised at identical
workloads, a healthier subject would have (1) greater k1 (i.e., slower rate
of increase of HR during exercise); (2) greater k2 (i.e., faster rate of decrease
of HR following exercise); (3) greater te (i.e., exercise endurance); and hence
(4) higher value of CFI.

14.2.2 Application to Fitness Evaluation

A small study was conducted with five subjects of varying fitness levels to
test out the relevance of the CFI. Each subject was exercised on the treadmill
for a period of time te (10 min) at a constant speed (7.5 km=h), while their
HR was monitored. The HR was further monitored for 10 min after the
subject got off the treadmill. There were five subjects for the test:

Subject 1 (male) played tennis regularly at least three times a week for
at least 2 h each time.

Subject 2 (female) exercised a couple of times a week, running, play-
ing tennis, etc.

Subject 3 (female) exercised about three times a week by going to the
gym or playing tennis.

Subject 4 (male) swam once a week.

Subject 5 (male) was a competitive sprinter who trained almost every
day for at least an hour.

The results of the experiment are shown in Tables 14.1 and 14.2. The
values of k1 and k2 were obtained (by parameter estimation) by simulating
this data by means of Equations 14.3 and 14.4.

The computed values of k1, k2, and CFI are displayed in Table 14.3. The
general trend for the fitness can be estimated from the CFI. Subjects 1 and 5
who exercised regularly have significantly higher values of CFI than subject
4 who exercised very little compared to the other four subjects.

Hence, from this experiment, we conclude that the CFI can provide a
reliable quantification of a person’s fitness for exercise. We will nevertheless
need to evaluate CFI for a large spectrum of people (normal volunteers and
cardiac patients), and then compute its distribution curve, to determine the
efficacy of this index, in order to yield distinct separation of CFI ranges for
healthy subjects and unfit patients.

14.2.3 Affirmation of Our Indices

Recent work by Falcone et al. [2] has identified that marked HR increase
with exercise could serve as a novel and easily computed parameter that
could be clinically useful as an independent predictor of adverse cardiac
events, especially among patients with documented coronary artery disease.
As can be noted from Table 14.1, both subjects 3 and 4 have enhanced HR
increase (than the other three subjects) with exercise.
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Also, Cole et al. [3] found that a delayed decrease in the HR during the first
minute after gradedexercisewasapowerfulpredictorof theoverallmortality,
independent of workload, the presence or absence of myocardial perfusion
defects, andchanges inHRduringexercise.Hence, this affirmsourhypothesis
that for ahealthier subject, the rate of decrease (k2) of theHR from its value at te
back to the resting HR value was a good indicator of fitness.

14.3 Optimal Walking Modality

Now that we have been declared fit to exercise, let us start walking daily. For
this purpose, we will provide the basis of optimal (i.e., least tiring) walking
mode, in terms of the stride length and frequency customized for an individ-
ual (based on her=his leg mass and length). Hence, the problem consists of
analysis of (1) the optimal mode of leg swing, to determine the optimal stride
frequency (SF) that minimizes the muscle involvement or work and (2) the
optimal stride length, based on the concept of body adopting the most
comfortable stride configuration.

TABLE 14.1

Heart Rate Responses of the Subjects

Heart Rate of Subjects (HR)

Time (min) 1 2 3 4 5

0 72 85 90 85 65
1 126 141 155 132 111
2 137 151 159 147 108
3 135 156 168 159 113
4 133 155 165 165 110
5 134 152 171 165 113
6 134 152 176 172 111
7 134 154 173 172 108
8 133 153 172 173 116
9 134 155 173 171 118
10 133 155 173 173 118
11 87 125 137 145 84
12 78 105 115 119 82
13 78 100 107 118 78
14 76 93 105 112 73
15 80 91 103 107 79
16 79 94 100 106 72
17 77 88 102 105 72
18 76 87 99 107 74
19 73 83 101 100 70
20 72 86 100 100 70
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14.3.1 Stride Frequency (SF) Analysis

For optimal walking mode simulation, we can employ a simple-compound
pendulummodel to simulate the limb motion. It is deemed that the energy of
walking can beminimized if the leg pacing or stride frequency (SF) is adjusted
to that resulting from the undamped oscillatorymotion of the free swinging of
the leg,modeled as a simple–compound pendulumunder the effect of gravity.
This is because in this mode of leg motion, the influence of the leg muscles
(to accelerate and decelerate the leg during one stride) is minimal.

The equation of (free undamped oscillatory) motion of the cylindrical
simple–compound pendulum model of the free-swinging leg (Figure 14.2)
is [11]

TABLE 14.2

Computed y versus Time for the Five Subjects

y Values of Subjects

Time (min) 1 2 3 4 5

0 0 0.000 0.000 0.000 0.000
1 0.750 0.659 0.722 0.553 0.708
2 0.902 0.776 0.767 0.729 0.662
3 0.875 0.835 0.867 0.871 0.738
4 0.847 0.824 0.833 0.941 0.692
5 0.861 0.788 0.900 0.941 0.738
6 0.861 0.788 0.956 1.024 0.708
7 0.861 0.812 0.922 1.024 0.662
8 0.847 0.800 0.911 1.035 0.785
9 0.861 0.824 0.922 1.012 0.815
10 0.847 0.824 0.922 1.035 0.815
11 0.208 0.471 0.522 0.706 0.292
12 0.083 0.235 0.278 0.400 0.262
13 0.083 0.176 0.189 0.388 0.200
14 0.056 0.094 0.167 0.318 0.123
15 0.111 0.071 0.144 0.259 0.215
16 0.097 0.106 0.111 0.247 0.108
17 0.069 0.035 0.133 0.235 0.108
18 0.0556 0.024 0.100 0.259 0.138
19 0.014 �0.024 0.122 0.176 0.077
20 0 0.012 0.111 0.176 0.077

TABLE 14.3

Values of k1, k2, and CFI

Subject k1 k2 CFI

1 2.15 1.26 270.90
2 1.67 0.54 90.18
3 1.38 0.47 64.86
4 0.67 0.28 18.76
5 3.04 0.51 155.04
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mg
‘

2

� �
sin uþ J€u ¼ 0

or

k sin uþ J€u ¼ 0 (14:7)

where k ¼ mg ‘
2

� �
, J about O (for a cylinder)¼m‘2=3, and u is the angle of

rotation.
From Equation 14.7, we obtain

€u(t)þ 3g

2l

� �
sin u(t) ¼ 0 (14:8)

For small u, we can approximate sin u¼ u (for instance, sin 238¼ 0.39, and
238¼ 0.4 rad).

Hence, Equation 14.8 becomes

€u(t)þ 3g

2l

� �
u ¼ 0 (14:9)

or

€u(t)þ v2
n u(t) ¼ 0 (14:10)

where

vn ¼ (3g=2l)1=2 (14:11)

is the natural frequency of oscillation.
We adopt the solution (for angular displacement u) of Equation 14.10

(as depicted in Figure 14.3) to be

u(t) ¼ u0 cos (vnt) (14:12)

J (polar moment of inertia about the hip joint (O) = )ml2

3

l (≈ 90 cm)

Inertia torque 

= Jq = Jw

mg sin q

Diameter 
d (≈12 cm) 

mg

q

q

...

FIGURE 14.2
Model of the free-swinging leg
motion simulation as a cylindrical
simple-compound pendulum.
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Based on Equation 14.11, for a leg length ‘¼ 0.9 m,

vn (undamped natural angular frequency of oscillation)¼ 3g

2‘

� �1=2
� 4 rad=s

(14:13)

and the natural frequency of oscillation ( fn) ¼ vn=2p ¼ 4=2p cycles=s

¼ 0:65 cycles=s (14:14)

Now, since 1 cycle¼ 2 strides, we have the optimal stride frequency (SF):

fs ¼ vn

p
¼ 1

p

3g

2l

� �1=2
¼ 1:22ffiffi

‘
p

¼ 1:285 strides=s (for ‘ ¼ 0:9m) (14:15)

14.3.2 Stride Length (SL) Analysis

The left and right leg gait features (illustrated in Figure 14.4) are as follows:

1. At t1, when the right leg (RL) is about to make heel strike, the left
leg foot is flat on the ground. At t2, when the right leg is at heel
strike, the left leg is in toe-off mode.

2. When the left leg (LL) is swinging past the right leg (RL) at u¼ 0,
its foot is just clearing the ground and its center of mass (CM) is at
a height of ‘=2 above the ground; from instant t2 to t3, its CM2

L is
raised to CM3

L by an amount of ‘(1� cos u)=2.

3. From instant t2 to t3, the CM of RL is raised from CM2
R to CM3

R and
its hip joint is raised from H2 to H3.

q

p/2 3p/2

p

•

2p

q0

0

–q0

1 Stride

wnt

q (t = 0) = q0,    q (t = 0) = 0

q (t = p/w) = –q0,    q (t = 3p /2w)= 0

FIGURE 14.3
Variation of the angle u(t) during the leg pendulum swing, at its natural frequency, vn. One
stride is from u¼ u0 to �u0.
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4. Then, from t2 to t3, as H2 is raised to H3, CM2
B is raised to CM3

B;
hence, the CMB level increases by ‘(1� cos u).

Let us now assess what the optimal stride length ought to be. When the
left leg is swinging from instant t2 to t4, the right leg is in the stance phase
and the right foot is rolling from heel to toe on the ground. The orientations
of the legs and the positions of the body center of mass (CMB) are illustrated
in Figure 14.4.

t4

d

q

q

LL
at t2 

H3

CM1
B CM5

B
CM4

BCM2
B

CM2
L

CM3
L

CM4
L

A
C

Toe off Heel strike 

SL

CM1
B

CM2
B

CM3
B

CM5
B

CM4
B

RL at 
t2

LL
at t1

LL at t4

CM1
R

CM2
R

CM3
R

CM4
R

CM5
R

RL

at t5

H1

H2

H3

H4 H5

H5H1

LL at
t5

H2,4

D

B

FIGURE 14.4 (See color insert following page 266.)
Depiction of the orientation of left and right legs, and their centers of mass (CMi

L, CMi
R) at times

t1 to t5; H1: hip joint locations. The right leg is in stance phase from t2 to t4; the left leg is in swing
phase from t2 to t4. Note, that SL (stride length)¼ 2d¼ 2l sinu; H2 is at l cosu above the ground,
while H3 is at l above the ground; hence CMB is raised by l(1� cosu) from t2 to t3.
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At point B in Figure 14.4, the orientations of the left leg at t2 and t4 and
the stride length form a triangle (ABC) of base length AC¼ SL
(the stride length) and height (h)¼BD¼ ‘ cos u. Now, we want to assess
what SL should be in terms of the leg length ‘, i.e., what should be the
shape of this triangle ABC. For this purpose, let us invoke the concept of
‘‘symmetry for optimality;’’ in other words, the body adopts an optimal
comfortable stride configuration that provides symmetry. In this context, we
propose that the triangle AH2,4C (or ABC) in Figure 14.4 be an equilateral
triangle, for which u¼ 308, and hence SL¼AC¼ l.

Now, let us examine the rationality of this solution. While deriving the
expression for vn¼ (3g=2l)1=2 in Equation 14.15, we made the assumption of
‘‘small u’’ for which sin u¼ u. Now, the highest value of u up to which we
can have sin u¼ u is u¼p=6 or 308 (for which u¼ 0.52 radians and sin
u¼ 0.5). Hence, from the SL analysis, we can also have maximum u for
walking stride-frequency model analysis (in Section 14.3.1) to be 308, for
which SL¼AC � l (the leg length).

However, the lengths of sides AH2,4 and CH2,4 are not precisely the leg
length l, but a bit greater. This is because at A, the leg is in the toe-off phase,
while at B the leg is in the heel-strike phase. Hence, we can approximate
AH2,4¼CH2,4¼ 1.1l, so the optimal SL is 1.1l. Further, in our limited testing
of student volunteers, we also found that the most comfortable or preferred
stride length (PSL) corresponds to PSL¼ 1.1l (the leg length), for which
u¼ 308. For this value of u, the optimal walking speed is

Vo
W ¼ (PSL) (natural SF)

¼ (PSL) (vn=p) ¼ (1:1l vn)=p

¼ 1:1lð Þ
p

3g

2l

� �1
2

¼ 1:35l
1
2 (14:16)

For a person whose leg length is 1.2 m, the value of Vo
W ¼ 1:48 m=s or hence

this person will take 18 min to walk 1 mile (or 1600 m).

14.4 Optimal Jogging Frequency

14.4.1 Introduction

Now that we have been walking for some time, let us decide to go one
step further, and start jogging. In this regard, we have earlier postulated
that the leg motion frequency, corresponding to the natural-frequency of
oscillation of the leg about the hip joint, would be least tiring and most
comfortable for the jogger. It is again based on the rationale that if the leg
motion frequency were to be either lesser or greater than the fundamental
frequency of oscillation of the leg, the leg muscles would have to exert
more power to either decelerate or accelerate the limb from its natural
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oscillation frequency. Hence, for the least tiring–jogging mode, it would be
advantageous to jog at the natural oscillation frequency of the leg.

Kaneko et al. [4] in their study of optimum stride frequency (SF) in constant
speed running measured the energy cost as well as mechanical power and
mechanical efficiency under various combinations of step frequency and stride
length. They observed that the most efficient SF is indeed consistent with the
SF chosen or preferred by the subjects themselves. Similarly, Cavanagh and
Kram [5] showed that while individuals have different preferred stride fre-
quency (PSF), they appeared to maintain their PSF across a range of running
speeds. It was observed that over the range of running velocities between 3.15
and 4.12 m=s the PSF increased only 4%, but the PSL increased 28% (from 2.27
to 2.98 m) in the same velocity range. It can be inferred that (1) the running
economy is the criterion for the adoption of a PSF over the running speed
range of 3.15 to 4.12 m=s, while (2) a specific combination of SF and SL is
physiologically (and automatically) employed by runners=joggers to yield the
most comfortable (least tiring) jogging speed of 3.15 to 4.12 m=s.

Indeed observation of marathon runners can reveal that runners with
relatively smoother and more comfortable running gait, associated
with their PSF invariably end up as front-finishing runners. All of this sug-
gests that for distance running, the freely selected (or preferred) stride
frequency (PSF) can be related to economy in running. Herein, we will
assume that the PSF is naturally selected to correspond to the natural fre-
quency of oscillation of the swinging lower limb, for which the muscle force
and hence the work done are a minimum. This assumption is similar to the
proposal byHolts et al. [6,7] and Schot andDecker [8], where the resonance of
the freely swinging lower limb (modeled as a simple pendulum) has been
proposed as a mechanism responsible for lowest metabolic cost in walking.

14.4.2 Methodology

In our study, 10 healthy subjects (3 females and 7 males) with a mixture
of fitness levels were chosen. Six of these subjects were well-conditioned
athletes, who exercise regularly and represented the varsity in volleyball.
The level of fitness for each of the participants was gauged on the basis of
the Bruce incremental treadmill protocol, namely VO2 max test running on a
treadmill [5]. The daily resting HR average over a period of 30 days and the
body mass index (BMI) of each participant were used to reinforce the
classification of fitness derived from the Bruce incremental treadmill proto-
col—VO2 max test. In the study, the volunteers were asked to jog at their
least tiring pace with the aim of maintaining endurance over a long distance.
While running, the PSL and PSF of the subjects were recorded.

In order to validate our hypothesis analytically, the leg is analyzed as a
double-compound pendulum [9]. Expressions for the SFs are derived in
terms of the limb segments’ masses, as well as mass moments of inertia,
lengths, and locations of centers of mass. Based on the anthropometric
parameters of these subjects, their respective model-based SFs are then
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computed by substituting the anthropometric parameters’ values in the
derived expression for the natural oscillation frequency. These are com-
pared with the experimentally determined SF.

14.4.3 Analysis of Natural Frequency of the Lower Limb
(Based On Its Double-Compound Pendulum Model)

The natural frequencies of the lower limb are determined by modeling the
whole leg as a double-compound pendulum, pivoted at the hip joint [9]. In
this model, the whole leg is divided into two segments hinged at the knee
joint. The foot is considered to be an integral part of the lower leg, on the
assumption that the ankle joint rotation of the foot is small compared to the
rotations of the joints at the hip and knee positions.

Figure 14.5 shows the equivalence between the anatomical and the
double-compound pendulum model for the lower limb. The hip and
the knee joints are represented by hinge joints (A and B). Segment AB
represents the thigh, while segment BC represents the shank and the foot.
The segment masses (m1 and m2) and their mass moments of inertia (I1 and
I2) are located at the centers of mass CG1 and CG2 of the upper and lower
limb segments (AB and BC), respectively.

In Figure 14.6, R denotes the horizontal component of reaction at B (knee
joint), while u and w denote the angles of inclination to the vertical by limb
segments AB and BC, respectively. Assuming small oscillations, the equa-
tion of motion for the thigh segment (AB) is obtained by taking moments
about the hip joint (A), resulting in [9]:

IA€u ¼ �m1gaL1 sin u�m2gL1 sin uþ RL1 cos u (14:17)

A A

q

f

B B

C C

CG1 CG1

m1g

m2g

aL1

bL2

L1

L2

CG2
CG2

FIGURE 14.5
Double-compound pendulummodel of the swinging leg while jogging. (Adopted from figure 1
of Huat, O.J., Ghista, D.N., Beng, N.K., and John, T.C.C., Int. J. Comput. Appl. Technol., 21, 46,
2004.)
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Rearranging Equation 14.17 gives

R ¼ IA
L1

� �
€uþ am1 þm2ð Þgu (14:18)

From Figure 14.5, it can be seen that the horizontal displacement (x2) at the
center of gravity (CG2) of the lower leg (shankþ foot segment) is given as
(bL2fþ L1u). Hence, from consideration of equilibrium of the horizontal
forces, we get

R ¼ �m2€x2 ¼ �m2 bL2 €fþ L1€u
� �

(14:19)

Equations 14.18 and 14.19 are combined, to obtain

IA
L1

þm2L1

� �
€uþ bm2L2ð Þ €fþ am1 þm2ð Þgu ¼ 0 (14:20)

where

IA ¼ I1 þm1 aL1ð Þ2 (14:21)

Now, consider the rotation of the lower segment (BC) about its center of
gravity (CG2), in Figure 14.6. By taking moments about CG2, the following
equation is obtained:

I2€f ¼ RbL2 cosf�m2gbL2 sinf (14:22)

(m1 + m2)g

A

B

B

C

R

R

CG1

Thigh segment—free
 body diagram

Shank and foot segment—free
 body diagram

CG2m1g

m2g

m2g
m2g

aL1

bL2

L1

q
f

L2

FIGURE 14.6
Modeling the free-swinging leg (while jogging), as a double-compound pendulum, along with
the free body diagrams of the limb segment. (Adopted from figure 1 of Huat, O.J., Ghista, D.N.,
Beng, N.K., and John, T.C.C., Int. J. Comput. Appl. Technol., 21, 46, 2004.)
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Rearranging Equation 14.22 gives

R ¼ IB
bL2

� �
€f� bm2L2€fþm2gf (14:23)

where IB¼ I2þm2 (bL2)
2.

Equations 14.19 and 14.23 are combined to obtain the following differen-
tial equation:

m2L1ð Þ€uþ IB
bL2

� �
€fþ m2gð Þf ¼ 0 (14:24)

Now, by assuming sinusoidal oscillations, we have

u ¼ umax sin vtþ að Þ, and f ¼ fmax sin vtþ að Þ (14:25)

Then, by substituting u and w from Equation 14.25 into Equations 14.20
and 14.24, the resulting equations of motion (rewritten in matrix form) are
given [9] as

IA
L1
þm2L1

� �
v2 � am1 þm2ð Þg bm2L2v

2

m2L1v
2 IB

bL2

� �
v2 �m2g

2
4

3
5 umax

wmax

� 	
¼ 0

0

� 	
(14:26)

The frequency equation for this double-compound pendulum model (of the
leg) is obtained by setting the determinant of the (2� 2) square matrix of
Equation 14.26 to be zero. Hence, the two natural frequencies of the lower
limb are determined by finding the roots of v2 from the resulting frequency
equation.

The calculations of the natural frequencies require data regarding the
weights, centers of mass, lengths, and mass moments of inertia of the two
limb segments (AB and BC). The length of the thigh (L1) and the length of
the shank plus foot (L2) can be measured directly. The segments mass,
moments of inertia, and center of mass are estimated from the data com-
piled by Winter [10], where the mass of each segment is expressed as a
percentage of the total body mass. Based on the data compiled by Winter
[10], if the total body mass is denoted as M kg, then:

. Mass of the thigh, m1¼ 0.1M

. Mass of the shank and foot, m2¼ 0.061M

. Moment of inertia about the hip joint for the thigh segment,
IA¼m1 (0.54L1)

2

. Moment of inertia about the knee joint for shank and foot segment,
IB¼m2 (0.735L2)

2

. Parameters related to the centers of mass are a¼ 0.433 and
b¼ 0.606
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Note that SF is defined as the number of successive contacts of the same foot
in 1 s. Hence, the relationship between the computed natural frequency (vn

radians per second) and the computed stride frequency (CSF) is

CSF ¼ 2
vn

2p

� �
Hz ¼ vn

p
Hz (14:27)

For calculating the CSF, the lowest natural frequency of the model is
employed, corresponding to the oscillation of the two segments (AB and
BC) being in phase, as occurs during jogging or endurance running.

14.4.4 Results and Remarks

The heights, weights, thin lengths, and shank plus foot lengths for all the
volunteer subjects were measured. Measurements were taken on both
the legs and then averaged. Based on these measurements, the estimates
of the mass and inertia properties of the two segments (AB and BC) were
calculated from the data compiled by Winters [10].

It has been found from our studies, that the first six subjects are well-
conditioned athletes who exercise regularly and have represented the var-
sity in volleyball. Their resting HRs are less than 65 beats per minute, and
their BMI is in the normal range, except for subject 2 who is slightly
underweight. Subject 7 has a fitness indicator index ‘‘superior’’ according
to the _VO2 max test. The rest of the volunteers (subjects 8–10) do not exercise
regularly, and this is reflected in their _VO2 max classification as well as in
their resting HRs. It is further noted that subject 8 is ‘‘underweight,’’ and
subjects 9 and 10 are ‘‘overweight.’’

Figure 14.7 shows a plot of the CSF versus the PSF for all the subjects. In
this figure, it can be clearly seen that the values for the first six subjects are
along the 458 line and the other four data points are for less-fit volunteers
(classified as either ‘‘good’’ or ‘‘fair’’ under the _VO2 max test), who have
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average normal HRs and are either underweight or overweight as compared
to the norm. It does suggest that our modeling the whole leg as a double-
compound pendulum model (pivoted at the hip) accurately predicts the
PSFs of the volunteers.

Table 14.4 indicates a good match between PSFs and CSFs, and also
provides the values of their jogging speeds based on their PSLs. The results
suggest that as the fitness level of an individual increases, the PSF becomes
closer to the natural frequency of the lower limb (modeled as a double-
compound pendulum), and hence will result in the least muscular effort (or
least metabolic cost) required for jogging. This is in line with our suggestion
that SF is the critical factor that determines the muscular effort required to
generate the most economical jogging speed.

14.5 Evaluation of the Hip Joint Characteristics

Now, while we have been jogging for quite some time, we might be begin-
ning to feel some pain in the hip joint. So, how do we evaluate the hip joint
status? For this purpose, we incorporate a viscous damping factor, b, in our
earlier walking model (as depicted in Figure 14.8), so that the damping
moment about the hip joint is represented by b�̇.

14.5.1 Analysis of Free Damped Oscillatory Motion
of the Free-Swinging Leg

By referring to Figure 14.8, the differential equation of free-damped oscilla-
tory motion of the simple–compound pendulum model of the free-swinging
leg motion (incorporating the moment b _u across the hip joint) is [11]

J€u tð Þ þ b _u tð Þ þ ku ¼ 0 (14:28)

where (1) k¼mg‘=2 (refer Figure 14.8); (2) the moment of inertia J (about O)
for a cylinder model of the leg¼m‘2=3; (3) u is the angle of rotation.

We can now rewrite this equation as follows:

€uþ b

J

� �
_u (t)þ k

J

� �
u (t) ¼ 0

or, as

€uþ 2n _u tð Þ þ v2
nu tð Þ ¼ 0 (14:29)

where the damping parameter 2n¼ b=J, the undamped natural oscillatory
angular frequency is vn (vn

2¼ k=J, J¼ml2=3), and hence

v2
n ¼ 3g=2l (14:30)
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We assume a solution of Equation 14.28 as [12]

u ¼ Cert (14:31)

Upon substituting Equation 14.31 into Equation 14.28 we get

r2 þ 2nrþ v2
n ¼ 0

so that

r ¼ �n� n2 � v2
n

� �1=2
(14:32)

For the case of small damping (i.e., n2 < v2
n), we have (for v2

d ¼ v2
n � n2)

r1 ¼ �nþ ivd and r2 ¼ �n� ivd (14:33)

where vd is the damped angular frequency.
Upon substituting these roots into Equation 14.31, we get two solutions of

Equation 14.28. The sum or the difference of these two solutions multiplied
by a constant will also be a solution. Hence, the solutions for Equation 14.28
can be given by

u1 ¼ C1

2
er1t þ er2t
� � ¼ C1e

�nt cosvdt (14:34a)

O

Hip joint moment,
due to muscles and

 tendons acting across
 the hip joint

 

mg

q

 

COM

mg sinq

qmbq

l

q

FIGURE 14.8
Simple-compound leg pendulummodel, with: hip joint resistivemoment (due to damping)¼ b �̇;
J€u¼ inertia torque aboutO¼moment of inertia force at CMaboutOþ inertia torque about COM.
The moment of the weight component (mg sin u) about O is given by mg sinu�‘=2¼mg‘u=2¼ ku,
for small u.
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u2 ¼ C2

2
er1t � e�r2t
� � ¼ C2e

�nt sinvdt (14:34b)

Hence, by adding these two solutions, we obtain the general solution (for
angular displacement u) of Equation 14.28 as [12]

u ¼ e�nt C1 cosvdtþ C2 sinvdtð Þ (14:35)

for underdamped free oscillation with viscous damping.
Therefore,

_u ¼ e�nt


C2vd � nC1ð Þ cosvdt� C1vd þ nC2ð Þ sinvdt

�
(14:36)

where

vd ¼ damped angular frequency (of damped oscillations)

¼ v2
n � n2

� �1=2¼ vn 1� n2=v2
n

� �
 �1=2
, n < vn (14:37)

and C1 and C2 are to be determined from the initial conditions.
Then, the period of damped oscillations is given by [12]

td ¼ 2p

vd
¼ 2p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=v2

n

� �q (14:38)

so that

(vd=vn) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2=v2

n

� �q
(14:39)

as depicted in Figure 14.9.
For initial conditions:

u0(t ¼ 0) ¼ u0 and _u(t ¼ 0) ¼ 0 (14:40)

1.0

1.0

(n /ωn)

(wd/wn)

FIGURE 14.9
Graphical representation of the equa-
tion: (vd=vn)

2þ (n2=vn
2)¼ 1.
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we get the values of the constants in Equation 14.35, as

C1 ¼ u0 and C2 ¼ C1n

vd
¼ nu0

vd
(14:41)

Then, the solution (for angular displacement u) to Equation 14.35 can be put
down as

u ¼ e�nt[u0 cosvdtþ (nu0=vd) sinvdt]

¼ Ae�nt cos (vdt� ad) (14:42)

where A is the amplitude of oscillation and a is the phase angle.
Then, from the above equation, we have

A( cosvdt cosad þ sinvdt sinadt) ¼ u0 cosvdtþ nu0
vd

� �
sinvdt (14:43)

so that

A cosad ¼ u0 and A sinad ¼ nu0=vd (14:44)

Based on Equations 14.35, 14.41, and 14.44, the amplitude of oscillation (A)
is given by

A ¼ (C2
1 þ C2

2)
1=2 ¼ u20 þ

n2u20
v2
d

� �1=2

(14:45)

This response is depicted in Figure 14.10. Now, from Equation 14.42, we
have

for vdt� adð Þ ¼ 0, t (for um1) ¼ ad

vd
(14:46a)

for vdt� adð Þ ¼ p, t (for um2) ¼ p þ ad

vd
(14:46b)

for vdt� adð Þ ¼ 2p, t (for um3) ¼ 2p þ ad

vd
(14:46c)

Also, from Equations 14.35, 14.41, and 14.44, the phase angle,

ad ¼ tan�1 C2

C1

� �
¼ tan�1 n

vd

� �
(14:46d)

and the oscillation period (of damped oscillation)

td ¼ 2p

vd
(14:46e)
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We may regard the response solution for u in Equation 14.43 to represent an
underdamped harmonic motion having a decreasing amplitude Ae�nt (due
to damping parameter n), a phase angle ad, and an oscillatory period
td¼ 2p=vd, as represented in Figure 14.10 [12].

From Equation 14.42 for the oscillation (angular) displacement u, we note
that for um1, um2, and um3:

1. cos(vdt�ad) ¼ 1 at vdt�ad¼ 0 and 2p for um1 and um3, so that

t1(for oscillating amplitude, um1) ¼ ad

vd
(14:47a)

and t3(for um3) ¼ adþ2pð Þ
vd

, so that

t3 � t1 ¼ td ¼ 2p=vd (14:47b)

as indicated in Figure 14.10

2. cos(vdt�ad)¼�1 at vdt�ad¼p for um2, so that

t2 ¼ ad þ p

vd
¼ ad

vd
þ td

2
(14:47c)

3. um1¼ u(t1)¼Ae�nt1, um2¼ u(t2)¼� Ae�nt2

um3 ¼ u t3ð Þ ¼ Ae�nt3 (14:47d)

m3

td/2

t3t2t1

q0

q

Ae–nt

td = 2π/wd

t

wn

ad

m1

qm1

qm2

qm3

m2

O

FIGURE 14.10
Equation 14.42 ‘‘u versus t’’ damped oscillatory response of the leg model, depicting amplitude
umi at ti.
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Now, from Equation 14.43 we can put down

_u ¼ �Ae�ntvd sin vdt� adð Þ � nAe�ntvd cos vdt� adð Þ ¼ 0

which, in turn, gives

tan (vdt� ad) ¼ � n

vd
for _u ¼ 0 (14:48)

In Figure 14.10, we note that

1. Points of extreme u (of �̇¼ 0) are separated by equal time intervals
Dti¼p=vd¼ td=2, as depicted in the figure, so that (as indicated by
Equation 14.46e)

vd ¼ p
�
Dti and td ¼ 2Dti ¼ 2p=vd (14:49)

2. Maximum amplitudes umi occur at times ti, such that [12]

tiþ2 � ti ¼ t3 � t1 ¼ Dt13 ¼ 2p

vd
¼ td (14:50)

and

umi

um(iþ2)
¼ um1

um3
¼ Ae�nti

Ae�n(tiþtd)
¼ entd ¼ ed (14:51)

where d, the logarithmic decrement, is given from Equations 14.50
and 14.51 as

d ¼ ln
umi

um(iþ2)

� �
¼ ln

um1

um3

� �
¼ ntd ¼ 2pn

vd
(14:52)

We can hence determine d by merely measuring two successive extremes
u(s), um1 and um3, of oscillation of the swinging ‘‘leg pendulum’’.

Now, in Equation 14.52, the damping parameter (n), responsible for d, is a
measure of hip joint viscosity and pathology. In order to evaluate it, we can
measure two successive amplitudes um1 and um3 and td or Dt13 (the time
between um1 and um3). Then, based on Equation 14.52, we can determine
both n and vd as follows:

n ¼ ln (um1

�
um3)

td
¼ ln (um1

�
um3)

Dt13

vd ¼ 2p

td
¼ 2p

Dt13

9>>=
>>;

(14:53)
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Hence, from Equations 14.52 and 14.53, we can evaluate both vd (damped
frequency) and n (measure of damping). Then, from Equations 14.37 and
14.53, we can also evaluate vn (natural oscillatory frequency) as

vn ¼ v2
d þ n2

� �1=2¼ 4p2

Dt213
þ ln2ðum1

�
um3

�
Dt213

" #1=2

¼ 4p2 þ ln2ðum1

�
um3

�
 �1=2
Dt13

(14:54)

Upon evaluating both n and vn, from Equations 14.53 and 14.54, we can
determine the values of the hip joint parameters b and k in Equation 14.30 as

b ¼ 2nJ, k ¼ v2
n J, where J ¼ ml2=3 (14:55)

These constitute the damping and stiffness parameters of the hip joint,
for assessment purposes. Therefore, we can compute the hip joint para-
meters (b and k), illustrated in Figure 14.8, as follows:

b ¼ 2nJ ¼ 2nml2=3 (14:56)

k ¼ v2
nJ ¼ v2

nml2=3 (14:57)

14.5.2 Application

In order to implement this analysis, we can ask the subject to stand on a
platform and swing her=his leg, so as to measure the oscillatory period (td)
and the oscillating amplitude decrement (d) from the successive values of
u1 and u3 and the time interval (Dt13) between them, based on Equations 14.50
and 14.52. We can also compute vd and the value of the hip joint damping
parameter n from Equation 14.53, vn¼ (n2þvd

2)1=2 from Equation 14.54, the
value of the joint damping b from Equation 14.56, and the value of the joint
stiffness parameter k from Equation 14.57.

Now, suppose it is not feasible to experimentally measure d. In that case,
we can still obtain representative values of the joint damping parameter
(b¼ 2nJ) from the preferred stride frequency (PSF, fp) by approximating PSF
( fp)¼ 2f (leg oscillation frequency). For the leg oscillation frequency ( f ), we
have from the following equation:

f (cycles=s or Hz) ¼ vd

2p
¼ v2

n � n2
� �1=2

2p
(14:58)

and the oscillation period

td ¼ 2p=vd ¼ 1=f (14:59)
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Then, from measuring PSF ( fp), we can determine

(leg oscillation frequency) f ¼ fp
�
2 and vd ¼ 2pf ¼ pfp (14:60)

By measuring the subject’s leg length (‘), we can evaluate (employing
Equation 14.30) vn¼ (k=J)1=2¼ (3g=2‘)1=2, and hence compute the damping
parameters (from Equations 14.37 and 14.30)

n ¼ v2
n � v2

d

� �1=2
and b ¼ 2nJ ¼ 2nml2=3 (14:61)

Now, let us take the case of a subject whose ‘¼ 1 m, leg mass m¼ 10 kg, and
preferred walking stride frequency (PSF, fp)¼ 1.1 strides=s. We can then put
down (from Equation 14.58)

fp(PSF) ¼ 2(oscillating frequency, f ) ¼ 2f ¼ vd

�
p ¼ 1:1 Hz (14:62)

Hence, from Equation 14.62, we can compute the damped frequency oscil-
lation frequency

vd ¼ 1:1p ¼ 3:5 Hz, from PSF (14:63)

On the other hand, based on Equation 14.30, we have

vn ¼ k

J

� �
¼ 3g

2l

� �1=2

¼ 3:84 Hz (14:64)

Then, since based on Equation 14.38, v2
d ¼ v2

n � n2, we have

n ¼ v2
n � v2

d

� �1=2¼ 3:842 � 3:52
� �1=2¼ 1:58 s�1 (14:65)

The corresponding value of b is then given (from Equation 14.56) by

b ¼ 2nJ ¼ 2(1:58 s�1)
m‘2

3

� �
¼ 10:55 k gm2 s�1 for m ¼ 10 kg (14:66)

and the joint stiffness (k) can also be obtained (from Equations 14.30 and
14.57) as

k ¼ v2
n

ml2

3
¼ 3g

2l

� �
ml2

3

� �
¼ mgl

2
¼ 49 Nm (14:67)

Overdamped oscillatory motion of the free-swinging leg: Now, it is pos-
sible that the joint damping can be significant and n>vn. In that case, both
the roots of

r ¼ �n� n2 � v2
n

� �1=2
(14:68)
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will be real and negative, and the system is overdamped. The motion will
not be oscillatory but will be aperiodic.

We can put down the general solution as

u ¼ C1e
r1t þ C2e

r2t (14:69)

Now, we put the initial conditions

u0 t ¼ 0ð Þ ¼ u0 and _u t ¼ 0ð Þ ¼ 0 (14:70)

Therefore, from Equations 14.69 and 14.70, C1þC2¼ u0 and r1C1þ r2C2¼ 0,
giving

C1 ¼ �r2u0
r1 � r2ð Þ and C2 ¼ r1u0

r1 � r2ð Þ
and Equation 14.69 becomes

u ¼ �r2u0
r1 � r2ð Þ e

r1t þ r1u0
r1 � r2ð Þ e

r2t (14:71)

and the solution will look like that shown in Figure 14.11.
Now,

r1 ¼ �nþ n2 � v2
n

� �1=2
r2 ¼ �n� n2 � v2

n

� �1=2
9=
; (14:72)

It can be seen, from Equation 14.72, that both r1 and r2 will be negative.
At two time intervals, t¼ t1 and t2, we have

u1 ¼ �r2u0
r1 � r2ð Þ e

r1t1 þ r1u0
r1 � r2ð Þ e

r2t1

u2 ¼ �r2u0
r1 � r2ð Þ e

r1t2 þ r1u0
r1 � r2ð Þ e

r2t2

9>>=
>>;

(14:73)

t

q

q0

FIGURE 14.11
Graphical representation of Equation
14.71.
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Herein, the unknowns are r1 and r2. Upon monitoring u1 and u2 at t1 and t2
as the leg swings down from u0, we can solve for r1 and r2 from Equation
14.73 and then solve for vn and n from Equation 14.72, to characterize the
patient’s hip status in terms of b¼ 2 nml2=3 and k¼vn

2 ml2=3.
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15.1 Scope

It is a common observation that putting spin to a pitched baseball or to a
kicked soccer-ball imparts an out-of-plane curve to the ball trajectory. This
mechanism has been successfully used in soccer to deceive goalkeepers,
in basketball throws to obtain a better entering angle into the net, and in
baseball to induce the batter to swing and miss. So then, what is the
mechanism of this curving soccer kick or a backspinning basketball
throw? In addressing this issue, this chapter deals with the mechanics of a
spinning ball trajectory, as to how deviations in the ball’s original trajectory
are governed by different amounts of angular velocity and translational
velocity. It is shown as to how the amount and direction of spin plays
an important role in delineating the trajectory and the position of the ball
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in its trajectory. Then, this analysis is employed to simulate a number of
interesting situations in soccer and basketball, including the famous
Ronaldinho’s goal against England in the 2002 World-cup semifinals.

15.2 Theory: Lateral Force on the Spinning Ball

of a Soccer Kick

When a soccer ball is kicked with a spin about the vertical axis of the ball,
it will swerve laterally from its vertical–planar trajectory because of the
lateral force exerted by the air on the ball, as illustrated in Figure 15.1a
through c.

In Figure 15.1, the ball is kicked from right to left at velocity u. The air is
flowing in the opposite direction from left to right; u1 is the horizontal
velocity of air, v is the counter-clockwise angular velocity imparted to the
ball, G is the Circulation, and u is the horizontal velocity of kick. In Figure
15.1, it is noted that the ball has a higher velocity on one side (Figure 15.1b),
and a higher pressure intensity on the opposite side (Figure 15.1c), which
results in a transverse force as shown in Figure 15.1c. This lateral or trans-
verse force makes the ball curve sideways, as it travels from right to left in
the air.

Also, if the ball is kicked and spun in a vertical plane, it will have a lift
force (upward or downward) resulting from a combination of angular and
translational velocities caused by the air. As seen in Figure 15.1, the airflow
on one side of the ball is retarded relative to that on the other side, and
the pressure becomes greater than that on the other side, so the ball is
pushed laterally. The greater the velocity of the spin, the larger is this lateral

Transverse force 

Air

velocity

u∞

vq  = 2u∞ sin q vq = 2u∞ sin q +2πr
Γ

2πr
Γvc =

(a) (b) (c)

u +
q r

=
q

w
s2s1

vθ

••
q

w

= wr

FIGURE 15.1
Effect of circulatory flow superimposed on translatory flow. Here, the ball is kicked to the
left (as shown in (a)) and the spin imparted to it is counter-clockwise (as shown in (b)). The
resultant airflow pattern (c) causes a transverse force on the ball, causing the ball to curve
sideways as it travels from right to left.
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force or lift force. This phenomenon of lateral or lift motion produced by
imposing circulation over a uniform fluid stream, known as the Magnus
effect, can be used to explain the deviation of spinning balls from their
normal trajectories.

The corresponding lift force or lateral force (Figure 15.1) can be calculated
by Equation 15.1 derived from the Kutta–Joukowski Law, being first
noted by the German physicist, H.G. Magnus (1802–1870) and in honor
of the German and Russian fluid dynamists M.W. Kutta (1867–1944) and
N.E. Joukowski (1847–1927). They independently showed that, for a body of
any shape, the transverse force per unit length is ru1 G, and is perpendicu-
lar to the direction of the air velocity u1. The formula for this lateral or
transverse force (acting on the spinning ball) is given by

FL ¼ 1
2 rpR

3v v0h (15:1)

where
FL is the lateral force
r is the air density
R is the radius of the ball
v is the angular velocity of the spin
v0h is the initial horizontal velocity

A brief derivation of this expression is provided in the Appendix, while
some interesting applications of this phenomenon are given in the refer-
ences [1–5].

Using this simplified equation for lateral or lift force, we have studied
different cases of balls spinning with different velocities. Our results show
that the angular velocity of the ball during its motion in the air causes that
ball to deviate from its original trajectory, by different amounts for different
angular velocities and initial translatory velocities. Hence, the amount and
direction of spin play an important role in deciding the trajectory and final
position of the ball.

In Figure 15.2, a case study of such a soccer kick is illustrated, to
be analyzed later in Section 15.3.3. It is seen that the spin of the ball
contributes about 6.10 m in the direction of y, which results from the
acceleration in y direction caused by the lateral (or transverse) force due
to spin or angular velocity (v) imparted to the ball. In the feasible ranges
of the angular velocity or spin imparted to the ball and the initial velocity
with which the ball is kicked, the deviation (because of the spin) can vary
from 2 to 5 m in the normal kicking range. It is no wonder that a corner
kick, if properly taken with the right combination of initial velocity v0
and v, can make the ball swerve into the goal just under the bar and
place the ball in the top-far corner of the goal (as illustrated later on in
Figure 15.5).
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FIGURE 15.2 (See color insert following page 266.)
Analytical simulation of the trajectory of Ronaldinho’s famous free kick in the quarter-final
match against England in the 2002 World Cup (won by Brazil). The top figure shows the 3-D
trajectories of the ball, with and without spin. The bottom figure shows the top view (or the
horizontal projection) of the ball trajectory to its final location B into the goal. In doing so, to
the goalkeeper Seaman, the ball must have actually appeared to be sailing over the bar, only
to see it curve back to dip below the bar into the goal. In the figure, BC represents the goal bar,
k is the unit vector making an angle u with the x-axis, and b is the angle that the initial velocity
vector (v0) makes with Ok (in the xOy plane). The initial velocity vector v0 lies in the zOk plane.
The lateral deviation of the ball along the goal bar is 6.10 m, as shown in the figure.
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15.3 Analysis of the Soccer Kick

15.3.1 Theory: Trajectory of a Spinning Soccer-Ball Kick

As shown in Figure 15.3, the ball is kickedwith an initial velocity v0 at angle b
with the horizontal in the zOk plane, making an angle u with the zOx plane.
The conventional governing equations, of the ball’s (x, y, z) displacement-
time relations without spin, are

x ¼ (v0 cosb) cos ut (15:2)

y ¼ (v0 cosb) sin ut (15:3)

z ¼ v0 sinbt� 1
2 gt

2 (15:4)

where
v0 cos b (¼ vok) is the horizontal component of the initial velocity
along Ok

OE¼ (vok)t is the distance covered along the horizontal axis Ok (on the
ground)

g is the gravity acceleration

Now, when the ball is kicked by imparting it spin, i.e., angular velocity v
(counter-clockwise, looking down on the ball) about the vertical axis
through the ball (refer to Figure 15.4), then the ball displacement–time
relations (in the [k, j, z] coordinate frame) are given by (refer to Figure 15.4)

D

k

xO

z

y
j

•
R

•
P

v0

OPD is the ball trajectory; this trajectory plane (OPD )
slopes with respect to the vertical zOk plane 

The ball is kicked in 
the zOk plane at an 
angle b to the 
horizontal plane or to 
the axis Ok in the 
horizontal plane. The 
axes Ok and Oj make 
angle q with the axes 
Ox and Oy.

E

FG

d

b

q

q

q Path of the ball viewed from above or 
as projected on the horizontal 

FIGURE 15.3 (See color insert following page 266.)
Notations for soccer-ball kick-velocity and trajectory. The orthogonal lines (or axes) Ok and Oj

are in the horizontal plane xOy, and make angles uwith the Ox and Oy axes, respectively. ED is
the total horizontal deviation (d) of the ball when it lands on the ground at D. The curve ORD
is the horizontal projection of the trajectory of OPD.
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Horizontal displacement along Ok axis,

k(¼OE) ¼ (v0 cosb)t ¼ vokt (15:5)

Ball displacement in the ‘‘j’’ direction (normal to Ok),

j(¼ED) ¼ d (15:6)

wherein d is given by the following Equations 15.8 and 15.10
Vertical displacement along Oz,

z ¼ (v0 sinb)t� 1
2 gt

2 (15:7)

wherein

d ¼ 1
2 aLt

2 (15:8)

with aL (given by Equation 15.10) being the lateral acceleration due to the
lateral force (caused by v).

From Equation 15.5

t ¼ k(displacement)=vok ¼ OE

(v0 cosb)
(15:9)

with b being the angle of the tangent to the trajectory with respect to the
horizontal Ok axis.

OE = k, EF = k sinq
Also, OE = x(D) cos q + y(D) sinq
d  = y(D) cosq  – x(D) sinq

k

x

x� 

x

Oz

j
y

D

E

G

k

F
k sinq

Because of the deviation d (= ED), 
the final point of ball landing in the 
horizontal plane becomes D 
instead of E.

d

q

q

q

j

FIGURE 15.4 (See color insert following page 266.)
Ball displacements in the horizontal plane. The ball is kicked in the zOk vertical plane.
However, because of the counter-clockwise angular velocity (v) imparted to it, it has deviated
by an amount ‘‘d’’ (¼ED) perpendicular to Ok (i.e., parallel to Oj axis) when it lands on the
ground.
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The lateral acceleration

aL ¼ FL
m

¼ 1

2m
rpR3 vvok ¼ 1

2m
rpR3v(v0 cosb) (15:10)

where
FL is the lateral force (Equation 15.1)
m is the mass of the ball

Now, in the (x, y, z) coordinate frame, the ball displacement–time relations
are given by (Figures 15.3 and 15.4)

Ball displacement along Ox axis,

x ¼ [(v0 cosb) cos u]t� d sin u (15:11)

Ball displacement in the Oy direction,

y ¼ [(v0 cosb) sin u]tþ d cos u (15:12)

Vertical displacement of the ball,

z ¼ (v0 sinb)t� 1
2 gt

2 (15:13)

where d is given by Equation 15.8, and based on Equation 15.9

t ¼ k(displacement) or OE

v0 cosb(¼ vok)
¼ (xþ d sin u)=cos u

vok(¼vox=cos u)
¼ xþ d sin u

vox

¼ OF

vox
¼ x0

vox
(15:14)

The resulting trajectory (OPD) of the ball is shown in Figure 15.3, along
with the curved horizontal projection of the ball trajectory (ORD) in the
horizontal plane. D is the point at which the ball lands on the ground and P
is the highest point of the ball trajectory.

Let us take some reasonable data: ball radius R¼ 10 cm, v¼ 30 rad=s,
distance traveled along Ok(OE)¼ 40 m, initial velocity v0¼ 23 m=s, angle b
of the initial velocity vector with respect to the axis Ok¼ 208, air density
r¼ 1.25 kg=m3, ball mass m¼ 0.5 kg. If we substitute these data into Equa-
tions 15.5 through 15.14, then
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. From Equation 15.14, the time taken for the ball to land, t¼ 40=23
cos b¼ 1.85 s

. From Equations 15.8 and 15.10, the ball deviation (d¼DE) perpen-
dicular toOk in the kOj plane, when it lands (¼ ‘‘j’’ displacement of
the ball)

¼ rpR3v(v0 cosb)t
2

4m
¼ 4:35 m (15:15)

. Distance OD traveled by the ball in the horizontal plane (Equations
15.5, 15.6, and 15.15)

¼ (k2 þ j2)1=2 ¼ (OE2 þ ED2)1=2 ¼ 40:24 m (15:16)

. The z coordinate of the highest point P of the trajectory is obtained
by putting the z (or vertical) velocity of the ball (v0 sin b� gt)¼ 0,
and substituting t (time taken for the ball to go from O to P) ¼
v0 sinb=g ¼ 0:8 s into Equation 15.7, to obtain z(P)¼ 3.16 m

. The (k, j) coordinates (in the coordinate plane kOj) of the point R
(the projection of the ball-trajectory point P on the horizontal
plane)¼ (17.29, 0.81)

15.3.2 Exemplification of the Theory: Computation of the Spinning
Ball Trajectories

We will now solve some realistic soccer situations.

Example 15.1
Let us analyze how a spinning kick from the goal line can make the ball
swerve into net, as illustrated in Figure 15.5.

Here, we are given the final coordinates of the ball to be at C (41, 0, 2.4),
the top-far corner of the goal. The ball is kicked by a right footer in the
vertical plane zOk at v0¼ 28 m=s, b (angle made by V0 with Ok)¼ 198, ball
mass m¼ 0.5 kg, ball radius R¼ 0.1 m, air density r¼ 1.25 kg=m3. We need
to determine the values of u (illustrated in Figure 15.5), t and v, such that the
ball will land in the top-far corner of the goalpost.

The governing relations are (as adopted fromEquations 15.5 through 15.14):
displacement along Ok, distance k (Equation 15.5)

¼ (v0 cosb)t ¼ v0kt ¼ OE ¼ ODcos u (15:17)

deviation, d (Equations 15.8 and 15.10)

¼ rpR3vv0kt
2

4m
¼ rpR3v(v0 cosb)t

2

4m
¼ ED ¼ ODsin u (15:18)
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final vertical displacement z (Equation 15:13) ¼ (v0 sinb)t� 1
2 gt

2 ¼ DC

(15:19)

t ¼ k(distance)

v0k
¼ OE

v0k (horizontal velocity in the k direction)
(15:20)

These relations are rewritten as

OE ¼ (v0 cosb)t ¼ ODcos u ¼ x(D) cos u, where OD
¼ 41 m (as per data) (15:21)

ED(¼d) ¼ rpR3vv0 cosb

4m

� �
t2 ¼ ODsin u (15:22)

DC ¼ (v0 sinb)t� 1
2 gt

2 ¼ 2:4 m (15:23)

These 3 equations have to be solved for t, u, and v.
From Equation 15.23, we get t¼ 1.54 s.

Then, from Equation 15.21 and 15.22, we get

(v0 cosb)
2t2 þ 1

4m
rpR3v0 cosb

� �2
v2t4 ¼ OD2 (15:24)

Putting t¼ 1.54 s, v0¼ 28 m=s, b¼ 198, m¼ 0.5 kg, R¼ 0.1 m, r¼ 1.25 kg=m3,
and OD¼ 41 m into Equation 15.24, we obtain v¼ 35.18 rad=s.

Finally from Equation 15.21, we compute u¼ 6.068. So we have shown that
if the ball is kicked with an initial velocity of 28 m=s and angular velocity of
35 rad=s at u¼ 68 and b¼ 198, the ball will swerve into the goal.
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FIGURE 15.5 (See color insert following page 266.)
Corner kick by a right footer, straight into the goal. The player kicks the ball in the zOk plane,
with a counter-clockwise angular velocity v. The ball curves along OL0N0Q0 to C into the far-top
corner. The deviations of the ball trajectory projected on the horizontal plane are HL, GN, FQ,
and ED.
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On October 16, in the 11th min of the Euro 2004 qualifier match between
England and Macedonia, Macedonia’s Artim Sakiri carried out this feat, as
illustrated in Figure 15.6.

Example 15.2
To plan a freekick from top of the box, by making the ball bend around the
players’ wall (Figure 15.7).

Case 1: Right-footer kick, in the zOk vertical plane withv¼viz (Figure 15.7).
We adopt coordinates of the final location of the ball top-near corner of

the goal-net point C¼ (16.5, 5.5, 2.4), initial velocity v0¼ 14 m=s, angle of the

FIGURE 15.6
Illustration of Sakiri’s corner kick into the far-top corner of the goalpost, as simulated in
Example 15.1.
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FIGURE 15.7 (See color insert following page 266.)
Left-footer kick (OB) and right-footer kick (OC) around the players’ wall into the goalpost. The
ball is kicked in the vertical planes zOs and zOk.
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initial velocity vector with the horizontal b¼ 468, air density r¼ 1.25 kg=m3,
ball radius R¼ 0.1 m, ball mass m¼ 0.5 kg.

We want to determine the angular velocity (or spin v) to be imparted to
the ball and the angle u of the vertical plane zOk with the plane zOx, such
that the ball ends up at C into the top corner of the goal. For this purpose, we
first solve Equations 15.11 through 15.13, in which there are 3 unknowns,
namely d, u, and t.

In Equation 15.13, by substituting z¼ 2.4 m and the data values of
v0¼ 14 m=s and b¼ 468, we get t¼ 1.78 s.

From Equations 15.11 and 15.12,

x(D) cos uþ y(D) sin u ¼ OE (in Figures 15:7 and 15:4) ¼ (v0 cosb)t (15:25)

By substituting x(D)¼ 16.5 m, y(D)¼ 5.5 m, t¼ 1.78 s, v0¼ 14 m=s, and
b¼ 468, we get u¼ 12.928.

Also, from Equations 15.11 and 15.12, we can put down

y cos u� x sin u ¼ d, (15:26)

from which we get d¼ 1.67 m.
Then, from Equations 15.8 and 15.10, we get (for d¼ 1.67 m and t¼ 1.78 s)

v¼ 27.69 rad=s.

Case 2: Left-footer kick, in the zOs vertical plane, with v¼�viz (Figures
15.7 and 15.8).

We need the coordinates of (the far-top corner of the goal-net)
point B (¼ 16.5, 12.8, 2.4) in Figure 15.7 and point A (¼ 16.5, 12.8, 0) in
Figure 15.8. We take v0¼ 16 m=s, b¼ 618, r¼ 1.25 kg=m3, R¼ 0.1 m.

d sin q
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s

y

d cos q

z

O

Horizontal projection 
of the ball trajectory T

A (far-bottom corner
 of goal-net) 

d

Location of kicker 
•

Goal
D

q

q

q

a

a

FIGURE 15.8 (See color insert following page 266.)
Geometry of the left-footer kick in the horizontal xOy plane: zOs is the vertical plane in which
the ball is kicked, TA (d) is the horizontal deviation of the ball trajectory, A is the horizontal
projection of the ball-location B (into the net).
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The geometry of the kick and ball trajectory is illustrated in Figure 15.8.
The (x, y) coordinates of the ball are now given by the following equations

(instead of Equations 15.11 and 15.12):

x ¼ [(v0 cosb) cos u]tþ d sin u (15:27)

y ¼ [(v0 cosb) sin u]t� d cos u (15:28)

For the vertical displacement of the ball, we employ Equation 15.7

z ¼ (v0 sinb)t� 1
2 gt

2 (15:29)

The deviation of the ball trajectory is given by Equations 15.8 and 15.10, as

d ¼ 1

2
aLt

2 ¼ rpR3v(v0 cosb)t
2

4m
(15:30)

From Equation 15.29, by substituting z¼ 2.4 m and b¼ 618, we get t¼ 2.67 s.
From Equations 15.27 and 15.28,

x(A) cos uþ y(A) sin u ¼ OT ¼ (v0 cosb)t ¼ 20:73 (15:31)

By substituting x(A)¼ 16.5 m and y(A)¼ 12.8 m, we get u¼ 44.708.
Similarly, from Equations 15.27 and 15.28,

x(A) sin u� y(A) cos u ¼ d(¼TA) ¼ rpR3v(v0 cosb)t
2

4m
(15:32)

By substituting, in Equation 15.32, the value of x(A) and y(A), r, R, v0, b, m
(as provided earlier), we obtain v¼ 23.10 rad=s, d¼ 2.51 m. It would appear
that the goalkeeper would find it more difficult to judge a spot kick taken by
a left footer.

15.3.3 Case Study: Analysis of the Famous Ronaldinho Goal
against England in the Quarter-Final of the 2002 World Cup

In the 2002 World Cup, Brazil won a free kick 30 m out on the right flank.
Ronaldinho kicked the ball with his right foot and made the ball spin anti-
clockwise (view fromtop) (Figure15.9). The shotwasaimedat the far cornerof
thegoal and theball justdippedunder thebar.Thiswondergoalwon thegame
for Brazil. So let us simulate his goal, by doing an inverse analysis. Obtaining
the initial shot angles b and u by reviewing the video tape, we carried out an
inverseanalysis, bycomputing thevaluesof theangularvelocity (v), the initial
velocity (v0), and the in-flight time (t) of the ball (Figure 15.2).

From the video, we estimated, u¼ 38.458, b¼ 438, and the coordinates of
the ball landing into the goal (at the top right corner B) to be: x(B)¼ 30,
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y(B)¼ 30, z(B)¼ 2.4. We now solve Equations 15.9 through 15.13, for the
following unknown variables v0,v(¼ viz), and t. On the basis of Figure 15.2,
the relevant equations are

x(B) ¼ 30 ¼ [(v0 cosb) cos u]t� d sin u (15:33)

y(B) ¼ 30 ¼ [(v0 cosb) sin u]tþ d cos u (15:34)

z(B) ¼ 2:4 ¼ (v0 sinb)t� 1
2 gt

2 (15:35)

From Equations 15.33 and 15.34,

x(B) cos uþ y(B) sin u ¼ (v0 cosb)t ¼ 42:08 (15:36)

where u¼ 38.458 and b¼ 438.
From Equation 15.35,

2:4 ¼ v0 � ( sin 43�)t� 1
2 gt

2 (15:37)

Brazil won a free kick when Scholes tackled Kleberson from
behind, 30 m out on the right flank. Five Brazilians
lined up across the edge of the penalty area, seemingly
ready for the ball to be crossed towards the far-post.
 Goalkeeper David Seaman obviously expected this too.
He was only 3 m off his line and took a small step
forward when Ronaldinho struck the free kick.
 But Ronaldinho’s shot was aimed at the far-top corner and dipped just under
the bar with Seaman flapping helplessly. In a few short minutes, Ronaldinho had
turned the game on its head.

50th minute
ENGLAND 1
BRAZIL  2

Seaman

RivaldoSinclair
Campbell

Ferdinand

Mills
Butt

JuniorRoque

Gilberto
Lucio

Edmilson

Beckham Kleberson

Scholes

Ronaldinho

Cafu

Cole

FIGURE 15.9 (See color insert following page 266.)
Ronaldinho’s wonder goal, the famous right-foot free kick, that made the ball curve into the far-
top corner of the goalpost and won the game for Brazil in the 2002 World-cup quarter-finals.
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We then solve Equations 15.36 and 15.37, to obtain the values of v0¼ 21 m=s
and t¼ 2.74 s. Then based on Equations 15.8 and 15.10, the deviation from
the vertical plane in which the ball was kicked (with angular velocity v), is
computed from either Equation 15.33 or 15.34, as:

d ¼ (
rpR3v0 cosbt

2

4m
)v ¼ 4:84 m,

for geometrical construction of the trajectory (as illustrated in Figure 15.2),
giving:

v ¼ 21:35 rad=s: ð15:38Þ
The deviation along the goal line is d=cos u ¼ 6:10 m. If the ball had not
spun, it would have sailed over the top of the goal. Even if the ball had been
kicked with a lesser initial velocity and a smaller angle b, it would not
have curved that much, and it would have been easy for David Seaman
(England’s goalkeeper) to grab the ball because at that time he stood just in
the middle of the goal, as seen in Figure 15.9.

However, the tremendous angular velocity (of 21.35 rad=s) imparted to
the ball made it swerve and sail over Seaman, making it impossible to reach
it, despite of his height (as shown in Figure 15.10). From the analysis

FIGURE 15.10 (See color insert following page 266.)
Seaman tried to reach the ball but failed, and the ball just dipped below the bar into the top
corner of the goal-net.
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and computation, it can be seen that this wonder kick had the adroit
combination of u¼ 38.458, b¼ 438, v0¼ 21 m=s, v¼ 21.35 rad=s, making
the ball appear to come from outside and above and across the bar into
the net.

15.4 Basketball Foul Throw Analysis

One can often see (in an NBA game) that when a player shoots a ball into the
basket, the ball spins backwards when it leaves the hand of the player. Does
this technique help to improve the accuracy (and stability) of the throw? The
answer is yes. The backward spin produces an upward lift force, that enables
the ball to have a higher trajectory and a bigger entering angle into the basket
than a throw without spin. The advantage of a bigger entering angle
(in Figure 15.11) is that it reduces the possibility of the ball hitting the rim
and rebounding out, and makes the ball enter the basket squarely. Here, we
have studied the case of a throw, taken from the foul line.

The following conventional equations of trajectory are used for describing
the ball motion without spin (Figure 15.11):

x ¼ v0 cos ut (15:39)

z ¼ v0 sin ut� 1
2 gt

2 (15:40)

where u is the angle between the initial velocity and the horizontal direction
(the attacking angle or the shooting angle).

However, if a backspin (v) is imparted to the ball, the corresponding
equations for the spinning ball motion trajectory become altered to

x ¼ v0 cos ut (15:41)

z ¼ v0 sin utþ 1
2 (aL � g)t2 (15:42)

where aL the lift acceleration (as a result of v) is given by Equation 15.10, as
before in the case of a soccer ball.

Suppose in making a foul shot, as the ball leaves the player A’s hands, it is
about 2.1 m above the ground, i.e., z0¼ 2.1 m, in Figure 15.12. Then as the
ball travels in a vertical plane to enter the basket, it covers 0.95 m in the
vertical direction (z direction) and 3.97 m in the horizontal direction (x
direction). If a backspin is imparted to the ball when throwing, then because
of aL (in Equation 15.42), the ball has a smaller acceleration towards the
ground, due to the lift force generated by the spin.

In our simulation of player A’s throw, we found out computationally that
shots with initial velocity of 7–8 m=s, would need to have angular velocity of
backspin ranging from 1 to 10 rad=s (for different initial attacking angles to
the horizontal plane) in order to be able to enter the basket. The two cases
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studied (and illustrated in Figure 15.12) show that the ball with spin is lifted
by the lift force compared to the ball without spin. The deviations in these
two cases of v0¼ 7 and 8 m=s are 0.09 and 0.05 m, respectively; the corres-
ponding lift accelerations aL (computed from Equation 15.10) are 0.296 m=s2

and 0.35 m=s2, respectively. It also means that if a player wants the ball to
enter the basket without spin, he has to throw the ball at a higher angle u
and a greater velocity v0 to make the basket.

Our study also suggests that it is optimal for player A to throw the ball
with an initial velocity of 7–8 m=s, with an angular velocity v of 1–10 rad=s,
and an initial shooting angle (u) varying from 308 to 658. By throwing in
this way, he can make the ball pass directly through the middle of the
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(4.27 m)
1.4

1.2

1

0.8

0.6

0.4

0.2

0
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FIGURE 15.11
The definitions of u and a for basketball trajectory.
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basket. If he now wants to achieve the same result with a lower initial
velocity, he would have to make the ball spin in the air at more than
100 rad=s, which is impossible in practice (if other parameters remain
unchanged). On the other hand, if he would have to make a steeper throw
with a higher velocity of throw, this is far more difficult to control. Hence for
player A, the adroit combination of throw parameters to make a foul throw
at an initial velocity v0 of 7–8 m=s, is with a backspin angular velocity of
v¼ 1–10 rad=s, at u¼ 308–658.

15.5 Concluding Remarks

In a soccer kick or a basketball throw, there is bound to be some spin
imparted to the ball because of the orientation of the hand and foot at the

1.5

z – z0 (m)

z – z0 (m)

x (m)

x (m)

z0 = 2.1 m

z0 = 2.1 m

Basketball trajectory of v = 7 m/s q  = 45�, 
without and with spin w = 4.52 rad/s

Basketball trajectory of v = 8 m/s q  = 33�,
 without and with spin w = 3.98 rad/s
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FIGURE 15.12
Basketball trajectories for different throw parameters (v, u, v). The origin corresponds to the
point at which the ball leaves the hands at z0¼ 2.1 m above the ground.
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time of releasing and making ball contact, respectively. This spin will alter
the trajectory of the ball in an unpredictable way. Hence, in order to shoot
accurately, it is better to impart a deliberate spin to the ball.

Herein, we have simulated some soccer situations involving corner kick
and free kick taken just outside the box, and demonstrated how a spin-
imparting kick can make the ball deceptively swerve into the goal. The type
of kick, making the swerve, can also be employed by a halfback to pass to a
forward or to a striker out of reach of the defenders. As regards corner kicks,
it needs to be recognized that a right footer taking the kick from the left
corner will make the ball swerve towards the goal, while a left footer taking
the kick from the left flank will make the ball swerve away from the goal.
The reverse holds good when the kick is taken from the right corner.

As regards basketball, it is often seen that tall forwards are not so prolific
as shorter guards in foul shooting. Part of the reason could be that their
greater height requires a flatter ball trajectory, which is more difficult.
However, if they were to impart backspin to the ball, it would make the
ball arch more, so as to easily enter the net.

Appendix

Equation 15.1 is derived by Watts and Bahill [5]. They identified
three dimensionless parameters to describe the results of their lift-force
experiments:

CL ¼ 2FL
rAv2

, SP ¼ Rv

v
, Re ¼ 2vR

n
(15:A1)

where
CL is the lift coefficient
SP is the spin coefficient
Re is the Reynolds number
A is the cross-sectional area of the ball
R is the radius of the ball
v is the horizontal velocity
v is the angular velocity of the spin
n is the kinematic viscosity of the fluid
r is air density

Watts and Bahill [5] plotted CL versus SP for different types of balls, as
depicted in Figure 15.A1. Typical values of SP for baseballs range between
0.1 and 0.2. In this range, CL varies almost linearly with SP. Infact, for SP less
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than 0.4, the relation between CL and SP is almost a straight line of slope
unity. Hence, from CL � SP, we get

2FL
rAv2

¼ Rv

v
(15:A2)

Substituting A¼p R2, and rearranging the equation yields:

FL ¼ 1
2 rpR

3vv (15:A3)

Out of interest, it may be mentioned that the transverse force (FL), on a
cylindrical body (of length L and radius R) is given by

FCL ¼ pra(2LR)Rvv1 ¼ praA
cRvqoh ¼ 2raV

cvqoh (15:A4)
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FIGURE 15.A1
Plot of experimentally derived values of CL and SP. (Adapted fromWatts, R.G. and Bahill, A.T.,
Keep Your Eye on the Ball: Curve Balls, Knuckleballs, and Fallacies of Baseball, Freeman, New York,
2000. With permission.)
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where
v1 (the air-flow velocity away from the body) corresponds to the qoh

the initial horizontal velocity imparted to the body
2LR is the vertical area (Ac) of the projection of the surface exposed to

the flow
R is the radius of body cross-section
pR2 L represent the body volume (Vc)

On the other hand, for airflow past a spherical body, we have (from Equa-
tion 15.A3):

FSL ¼ 1

2p1=2
raA

3=2
s vqoh ¼ 3

8
raV

Svqoh (15:A5)

where
As is the projected area exposed to airflow
VS is the volume of the spherical body

A comparison of expressions Equations 15.A4 and 15.A5 shows that FCL is
about 5–10 times bigger than FSL, as can be expected.
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This chapter discusses the pitch, the bat–ball collision, and the swing of the
bat. Section 16.1, based on Bahill and Baldwin [1], describes the pitch in
terms of the forces on the ball and the ball’s movement. Section 16.2, based
on Bahill [2] and Bahill and Baldwin [3], discusses bat–ball collisions in
terms of the sweet spot of the bat and the coefficient of restitution (CoR).
Section 16.3 based on Bahill and Baldwin [3], presents a model for bat–ball
collisions, a new performance criterion, and the resulting vertical sweet spot
of the bat. Section 16.4, based on Bahill [2] and Bahill and Karnavas [4],
presents experimental data describing the swing of a bat and suggests ways
of choosing the best bat for individual batters.

This chapter is about the mechanics of baseball. To understand the whole
baseball enterprise, read Bahill et al. [5]. They populate a Zachman frame-
work with nearly 100 models of nearly all aspects of baseball.

16.1 Pitch

Batters say that the ball hops, drops, curves, breaks, rises, sails, or tails
away. The pitcher might tell you that he or she throws a fastball, screwball,
curveball, drop curve, flat curve, slider, changeup, split-fingered fastball,
splitter, forkball, sinker, cutter, two-seam fastball, or four-seam fastball. This
sounds like a lot of variation. However, no matter how the pitcher grips or
throws the ball, once it is in the air its motion depends only on gravity, its
velocity, and its spin.* In engineering notation, these pitch characteristics
are described respectively by a ‘‘linear velocity vector’’ and an ‘‘angular
velocity vector,’’ each with magnitude and direction. The magnitude of
the linear velocity vector is called ‘‘pitch speed’’ and the magnitude of the
angular velocity vector is called the ‘‘spin rate.’’ These vectors produce a
force acting on the ball that causes a deflection of the ball’s trajectory.

In 1671, Isaac Newton [6] noted that spinning tennis balls experienced a
lateral deflection mutually perpendicular to the direction of flight and of
spin. Later in 1742, Benjamin Robins [7] bent the barrel of a musket to
produce spinning musket balls and also noted that the spinning balls
experienced a lateral deflection perpendicular to the direction of flight and
to the direction of spin. In 1853, Gustav Magnus (see Refs. [8 and 9]) studied
spinning shells fired from rifled artillery pieces and found that the range
depended on crosswinds. A crosswind from the right lifted the shell and
gave it a longer range: a crosswind from the left made it drop short. Kutta
and Joukowski studied cylinders spinning in an airflow. They were the first
to model this force with an equation, in 1906. Although these four experi-
ments sound quite different (and they did not know about each other’s

* This statement is true even for the knuckleball, because it is the shifting position of the seams
during its slow spin en route to the plate that gives the ball its erratic behavior. Equations 16.1
through 16.7 give specific details about the forces acting on the ball.
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papers), they were all investigating the same underlying force. This force,
commonly called the Magnus force, operates when a spinning object (like a
baseball) moves through a fluid (like air) which results in it being pushed
sideways. Two models explain the basis of this Magnus force: one is based
on conservation of momentum and the other is based on Bernoulli’s prin-
ciple [10–12]. We will now apply the right-hand rules to the linear velocity
vector and the angular velocity vector in order to describe the direction of
the spin-induced deflection of the pitch.

16.1.1 Right-Hand Rules and the Cross Product

In vector analysis, the right-hand rules specify the orientation of the cross
product of two vectors. Figure 16.1a shows that the cross (or vector) prod-
uct, written as u� v, of nonparallel vectors u and v is perpendicular to the
plane of u and v: the symbol� represents the cross product. The angular
right-hand rule, illustrated in Figure 16.1b, is used to specify the orientation
of a cross product u� v. If the fingers of the right hand are curled in the
direction from u to v, the thumb will point in the direction of the vector
u� v. The coordinate right-hand rule is illustrated in Figure 16.1c. The index
finger, middle finger, and thumb point in the directions of u, v, and u� v,
respectively, in this local coordinate system. The vectors of Figure 16.1d
represent the angular velocity vector (spin), the linear velocity vector (dir-
ection), and the spin-induced deflection force of a spinning pitch.

16.1.2 Right-Hand Rules Applied to a Spinning Ball

The spinaxis of thepitchcanbe foundbyusing theangular right-handrule.As
shown in Figure 16.2, if you curl the fingers of your right hand in the direction
of spin, your extended thumb will point in the direction of the spin axis.

The direction of the spin-induced deflection force can be described using
the coordinate right-hand rule. Point the thumb of your right hand in the

v

u � v

Middle
finger

Spin-
induced

deflection

(a)

Curl of fingers
Index
finger

Direction

(b) (c) (d)

u

Right
thumb

Right
thumb

Spin
axis

FIGURE 16.1
(a) The vector (or cross) product of vectors u and v is perpendicular to the plane of u and v. (b)
The angular right-hand rule: If the fingers of the right hand are curled in the direction from u to
v, the thumb will point in the direction of the vector u�v, which is pronounced yoo cross ve. (c)
The coordinate right-hand rule: The index finger, the middle finger, and the thumb point in the
directions of u, v, and u�v, respectively. (d) For a baseball, the cross product of the spin axis
and the direction of motion gives the direction of the spin-induced deflection. (From Bahill, A.T.,
http:==www.sie.arizona.edu=sysengr=slides. With permission. Copyright 2004.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C016 Final Proof page 447 29.5.2008 1:28am Compositor Name: MSubramanian

Mechanics of Baseball Pitching and Batting 447



direction of the spin axis (as determined from the angular right-hand rule),
and point your index finger in the direction of forward motion of the pitch
(Figure 16.3). Bend your middle finger so that it is perpendicular to your
index finger. Your middle finger will be pointing in the direction of the spin-
induced deflection (of course, the ball also drops due to gravity). The
spin-induced deflection force will be in a direction represented by the
cross product of the angular and the linear velocity vectors of the ball:
angular velocity� linear velocity¼ spin-induced deflection force. Or mne-
monically, Spin axis�Direction¼ Spin-induced deflection (SaD Sid). This
acronym only gives the direction of deflection. The equation yielding
the magnitude of the spin-induced deflection force is more complicated
and is discussed in Section 16.1.4.

16.1.3 Deflection of Specific Kinds of Pitches

Figures 16.4 and 16.5 show the directions of spin (circular arrows) and spin
axes* (straight arrows) of some common pitches from the perspective of
the pitcher (Figure 16.4 represents a right-hander’s view and Figure 16.5 a

FIGURE 16.2
The angular right-hand rule: For a
rotating object, if the fingers are
curled in the direction of rotation,
the thumb points in the direction
of the spin axis. (Photograph
courtesy of Zach Bahill. From
Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permis-
sion. Copyright 2004.)

* These could be labeled spin vectors, because they suggest both magnitude and direction.
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left-hander’s view). We will now consider the direction of deflection of each
of these pitches.

Figure 16.4 illustrates the fastball, curveball, and slider, distinguished by
the direction of the spin axis. When a layperson throws a ball, the fingers are
the last part of the hand to touch the ball. If the ball is thrown with an
overhand motion, the fingers touch the ball on the bottom and thus impart
backspin to the ball. Most pitchers throw the fastball with a three-quarter
arm delivery, which means the arm does not come straight over the top, but
rather it is in between over the top and sidearm. This delivery rotates the
spin axis from the horizontal as shown in Figure 16.4. The curveball is also
thrown with a three-quarter arm delivery, but this time the pitcher rolls his
or her wrist and causes the fingers to sweep in front of the ball. This
produces a spin axis as shown for the curveball of Figure 16.4. This pitch

FIGURE 16.3
The coordinate right-hand rule: For
a baseball, if the thumb points in the
direction of the spin axis and the
index finger points in the direction
of forward motion of the pitch,
then the middle finger will point in
the direction of the spin-induced
deflection. (Photograph courtesy
of Zach Bahill. From Bahill, A.T.,
http:==www.sie.arizona.edu=sysengr=
slides. With permission. Copyright
2004.)

The right-handed pitcher’s view

VaSa

(a) Fastball (b) Curveball (c) Slider

The backside
 of the 
red dot

FIGURE 16.4 (See color insert following page 266.)
The direction of spin (circular arrows) and the spin axes (straight arrows) of a three-quarter arm
(a) fastball, (b) curveball, and (c) slider from the perspective of a right-handed pitcher,
meaning the ball is moving into the page. VaSa is the angle between the vertical axis and the
spin axis. (From Bahill, A.T., http:==www.sie.arizona.edu=sysengr=slides. With permission.
Copyright 2005.)
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will curve at an angle from upper right to lower left as seen by a right-
handed pitcher. Thus, the ball curves diagonally. The advantage of the drop
in a pitch is that the sweet area of the bat is about 2 in. long (5 cm) [2] but
only one-third of an inch (8 mm) high [3,13]. Thus, when the bat is swung in
a horizontal plane, a vertical drop is more effective than a horizontal curve
at taking the ball away from the bat’s sweet area.

The overhand fastball shown in Figure 16.5 has a predominate backspin,
which gives it lift, thereby decreasing its fall due to gravity. But when the
fastball is thrown with a three-quarter arm delivery (as in Figure 16.4), the
lift is reduced, but it introduces lateral deflection (to the right for a right-
handed pitcher). A sidearm fastball (from a lefty or a righty) tends to have
some topspin, because the fingers put pressure on the top half of the ball
during the pitcher’s release. The resulting deflection augments the effects of
gravity and the pitch ‘‘sinks.’’

The slider is thrown somewhat like a football. Unlike the fastball and
curveball, the spin axis of the slider is not perpendicular to the direction of
forward motion (although the direction of deflection is still perpendicular to
the cross product of the spin axis and the direction of motion). As the angle
between the spin axis and the direction of motion decreases, the magnitude
of deflection decreases, but the direction of deflection remains the same. If
the spin axis is coincident with the direction of motion, as for the backup
slider, the ball spins like a bullet and undergoes no deflection. Therefore, a
right-handed pitcher usually throws the slider so that he or she sees the axis
of rotation pointed up and to the left. This causes the ball to drop and curve
from the right to the left. Rotation about this axis allows some batters to see a
red dot at the spin axis on the top right side of the ball (see Figure 16.6).
Baldwin et al. [14] and Bahill et al. [15] show pictures of this spinning red
dot. Seeing this red dot is important, because if the batter can see this red

 (a) Fastball (b) Curveball

(d) Screwball(c) Slider

The backside
of the red dot

The left-handed pitcher’s view

FIGURE 16.5 (See color insert following page 266.)
The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand (a)
fastball, (b) curveball, (c) slider, and (d) screwball from the perspective of a left-handed pitcher,
meaning the ball is moving into the page. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2004.)
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dot, then he or she will know the pitch is a slider and he or she can better
predict its trajectory. We questioned 15 former major league hitters; 8
remembered seeing this dot, but 2 said it was black or dark gray rather
than red. For the backup slider, the spin causes no horizontal deflection and
the batter might see a red dot in the middle of the ball.

16.1.4 Forces Acting on a Ball in Flight

A ball in flight is influenced by three forces as shown in Figure 16.7: gravity
pulling downward, air resistance or drag operating in the opposite direction
of the ball’s motion, and, if it is spinning, a force perpendicular to the
direction of motion. The force of gravity is downward, Fgravity¼mg, where
m is the mass of the ball and g is the gravitation constant: its magnitude is the
ball’s weight. The magnitude of the force opposite to the direction of flight is

Fdrag ¼ 0:5 rpr2ballCdv
2
ball (16:1)

where
r is air mass density
vball is the ball speed
rball is the radius of the ball [10, p. 161]

Typical values for these parameters are given in Table 16.1. Of course SI
units can be used in this equation, but if English units are to be used in
Equations 16.1 through 16.7, then r is measured in lb-s2=ft4, vball is measured
in feet per second (ft=s), rball is measured in feet (ft), Fdrag is measured in

Slider

FIGURE 16.6
The batter’s view of a slider thrown by a right-handed pitcher:
the ball is coming out of the page. The red dot reveals that the
pitch is a slider. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2004.)

Ball
direction

Gravity
force Drag

force

Magnus
force

Spin

Ball

FIGURE 16.7
The forces acting on a spinning ball moving in a
fluid. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright
2007.)
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pounds (lb), and in later equations v is measured in radians per second
(rad=s). For the drag coefficient, Cd, we use a value of 0.5. This drag
coefficient is discussed in Section 16.1.7.

Table 16.2 shows typical parameters for major league pitches. We estimate
that 90% of major league pitches fall into these ranges, except for a few
pitchers that have consistently slower fastballs. The pitch speed is the speed
at the release point: the ball will be going 10% slower when it crosses the

TABLE 16.1

Typical Baseball and Softball Parameters for Line Drives

Major League

Baseball

Little

League

NCAA

Softball

Ball Baseball Baseball Softball
Ball weight (oz) 5.125 5.125 6.75
Ball weight, Fgravity (lb) 0.32 0.32 0.42
Ball radius (in.) 1.45 1.45 1.9
Ball radius, rball (ft) 0.12 0.12 0.16
Pitch speed (mph) 85 50 65
Pitch speed, vball (ft=s) 125 73 95
Distance from front of rubber to tip of plate (ft) 60.5 46 43
Pitcher’s release point: (distance from tip

of plate, height) (ft)
(55.5, 6) (42.5, 5) (40.5, 2.5)

Bat–ball collision point: (distance from tip
of plate, height) (ft)

(3, 3) (3, 3) (3, 3)

Bat type Wooden C243 Aluminum Aluminum
Typical bat weight (oz) 32 23 25
Maximum bat radius (in.) 1.375 1.125 1.125
Speed of sweet spot (mph) 60 45 50
Coefficient of restitution (CoR) 0.54 0.53 0.52
Backspin of batted ball (rps) 10–70 10–70 10–70
Backspin of batted ball, v (rad=s) 63–440 63–440 63–440
Desired ground contact point from the plate (ft) 120–240 80–140 80–150
Air weight density (lbm=ft

3) 0.075 0.075 0.075
Air mass density r (lb-s2=ft4) 0.0023 0.0023 0.0023

Note: Air density is inversely related to temperature, altitude, and humidity.

TABLE 16.2

Typical Values for Major League Pitches

Type of

Pitch

Initial

Speed

(mph)

Initial

Speed

(m=s)

Spin

Rate

(rpm)

Spin

Rate

(rps)

Rotations between

Pitcher’s Release

and the Point of

Bat–Ball Contact

Fastball 85–95 38–42 1200 20 8
Slider 80–85 36–38 1400 23 10
Curveball 70–80 31–36 2000 33 17
Changeup 60–70 27–31 400 7 4
Knuckleball 60–70 27–31 30 ½ ¼
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plate. In this chapter, the equations are general and should apply to many
types of spinning balls. However, whenever we give specific numerical
values they are (unless otherwise stated) for major league baseball.

The earliest empirical equation for the transverse force on a spinning
object moving in a fluid is the Kutta–Joukowski lift theorem

L ¼ rU� G (16:2)

where
L is the lift force per unit length of cylinder
r is the fluid density
U is the fluid velocity
G is the circulation around the cylinder
L, U, and G are vectors

When this equation is tailored for a baseball [10, pp. 77–81], we get the
magnitude of the spin-induced force acting perpendicular to the direction of
flight

Fperpendicular ¼ FMagnus ¼ 0:5 rpr3ballv vball (16:3)

where v is the spin rate. This is usually called the Magnus force. This force
can be decomposed into a force lifting the ball up and a lateral force pushing
it sideways.

Fupward ¼ 0:5 rpr3ballv vball sinVaSa (16:4)

where VaSa is the angle between the vertical axis and the spin axis (Figures
16.4 and 16.8). The magnitude of the lateral force is

Fsideways ¼ 0:5 rpr3ballv vball cosVaSa (16:5)

z

y y y

z z

x x x

(a) Curveball (b) Fastball (c) Slider

VaSa
VaSa

VaSaSpin
axis

Spin
axis

Spin axisSaD

The spin
axis is in the

y–z plane

The spin
axis is in the

y–z plane

y–z plane
component
of spin axis

x–z plane
component

of spin
axis

FIGURE 16.8 (See color insert following page 266.)
Rectangular coordinate system and illustration of the angles VaSa and SaD for (a) curveball,
(b) three-quarter arm fastball, and (c) slider all thrown by a right-handed pitcher. The origin is
the pitcher’s release point. For the curveball, the spin axis is in the y–z plane. For the fastball, the
spin axis is also in the y–z plane, but it is below the y-axis. For the slider, the spin axis has
components in both the y–z and x–z planes. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2006.)
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Finally, if the spin axis is not perpendicular to the direction of motion (as
in the case of the slider), the magnitude of the cross product of these two
vectors will depend on the angle between the spin axis and direction of
motion; this angle is called SaD (Figures 16.8 and 16.9). In aeronautics, it is
called the angle of attack.

Flift ¼ 0:5 rpr3ballv vball sinVaSa sin SaD (16:6)

Flateral ¼ 0:5 rpr3ballv vball cosVaSa sin SaD (16:7)

During the pitch, gravity is continuously pulling the ball downward, which
changes the direction of motion of the ball by 58 to 108 during its flight.
However, the ball acts like a gyroscope, so the spin axis does not change.
Thismeans that, for a slider, the angle SaD increases andpartially compensates
for the drop in ball speed in Equations 16.6 and 16.7.

16.1.5 Comparison of the Slider and Curveball

Let us now compare the magnitude of this lateral spin-induced deflection
force (Equation 16.7) for two specific pitches, namely the slider and the
curveball. The magnitude of the lateral spin-induced deflection of the slider
is less than that of a curveball for the following four reasons:

1. For the curveball, the angle between the spin axis and the direction
of motion (SaD) is around 858. For the slider, it is around 608. The
magnitude of the cross product is proportional to the sine of this
angle. Therefore, the slider’s deflection force is less than the curve-
ball’s by the ratio sin 60

sin 85: the slider force equals 0.87 times the
curveball force. The angle between the vertical axis and the spin
axis (VaSa) has no effect because it is about the same for the slider
and the curveball.

FIGURE 16.9 (See color insert following page 266.)
The first-base coach’s view of a slider thrown by a
right-handed pitcher. This illustrates the defin-
ition of the angle SaD. (From Bahill, A.T., http:==
www.sie.arizona.edu=sysengr=slides. With per-
mission. Copyright 2007.)

SaD

Direction of
 movement

First-base coach’s
view of the slider
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2. Curveball spins at up to 33 revolutions per second (rps) and the
slider probably spins around 23 rps [16], and hence the slider’s
deflection force is smaller because of its slower rotation. Thus, the
slider force equals 0.7 times the curveball force.

3. Deflection force also depends on the speed of the pitch. Assume a
75 mph (34 m=s) curveball and an 85 mph (38 m=s) slider: the
slider force equals 1.13 times the curveball force.

Therefore, for the three effects of this example, the total slider
force equals 0.69 times the curveball force.

4. Furthermore, the curveball is slower, so it is in the air longer.
Therefore, the deflection force has longer to operate and the total
deflection due to this effect is greater. An 85 mph (38 m=s) slider
travels from the pitcher’s release point, 5 ft (1.5 m) in front of the
rubber, to the point of bat–ball collision, 1.5 ft (0.5 m) in front of
the plate, in 453 ms, whereas a 75 mph (34 m=s) curveball is in the
air for 513 ms: squaring these durations gives a ratio of 0.78. The
total deflection is proportional to total force times duration
squared: therefore, the ratio deflection of the slider with respect
to the curveball is

(ratio-forcespin axis)(ratio-forcespin rate)(ratio-forcespeed)

(ratio-durations squared) ¼ (0:87)(0:7)(1:13)(0:78) ¼ 0:54

In summary, the magnitude of the lateral spin-induced deflection of the
slider is about half that of the curveball.

The screwball (sometimes called a ‘‘fadeaway’’ or ‘‘in-shoot’’) was made
popular in the early 1900s by Christy Mathewson and Mordecai ‘‘Three
Fingered’’ Brown and was repopularized by the left-hander Carl Hubbell in
the 1930s. Therefore, we show it from the left-hander’s perspective in Figure
16.5. Of the pitches shown in Figures 16.4 and 16.5, it is the least used, in
part, because the required extended pronation of the hand strains the
forearm and elbow. At release, the fingers are on the inside and top of the
ball. The deflection of the left-hander’s screwball is the same as the deflec-
tion of a right-hander’s slider. The spin of the screwball is basically like that
of a slider, so its deflection will be less than that of a curveball for the
reasons given above.

The direction of deflection of these pitches is variable depending on the
direction of the spin axis. The direction of this axis varies with the angle of
the arm during delivery and the position of the fingers on the ball at the time
of release. By controlling his or her arm angle and finger positions, the
pitcher controls the direction of deflection.

16.1.6 Vertical Deflection

Tables 16.3 and 16.4 show the magnitude of the spin-induced drop for three
kinds of pitches at various speeds, as determined by our simulations. Our
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baseball trajectory simulator includes the effects of lift and drag due to spin
on the ball [10,11,17,18]. Looking at one particular row, a 90 mph (40.2 m=s)
fastball is in the air for 426 ms, so it drops 2.92 ft (0.89 m) due to gravity
(12 gt

2, where the gravitational constant g is 32.2 ft=s2 (9.8 m=s2) and t is the
time from release until the point of bat–ball collision). But the backspin lifts
this pitch 0.98 ft (0.3 m), producing a total drop of 1.94 ft (0.59 m) as shown
in Tables 16.3 and 16.4. In the spin rate column, negative numbers are
backspin and positive numbers are topspin. In the spin-induced vertical
drop column, negative numbers mean the ball is being lifted up by the
Magnus force. All of the pitches in Tables 16.3 and 16.4 were launched
horizontally—that is, with a launch angle of zero. The angle VaSa was also
set to zero (simulating an overhand delivery): therefore, pitches thrown
with a three-quarter arm delivery would have smaller spin-induced deflec-
tions than given in Tables 16.3 and 16.4.

Vertical misjudgment of the potential bat–ball impact point is a common
cause of batters’ failure to hit safely [3,13]. The vertical differences between
the curveballs and fastballs in Tables 16.3 and 16.4 are greater than 3 ft (1 m),
whereas the difference between the two speeds of fastballs is around 3 in.
(7 cm) and the difference between the two speeds of curveballs is around
7 in. (18 cm). However, the batter is more likely to make a vertical error
because speed has been misjudged than because the kind of pitch has been
misjudged [3,13]. A vertical error of as little as one-third of an inch (8 mm) in
the batter’s swing will generally result in a failure to hit safely [3,13], as is
shown in Section 16.3.

TABLE 16.3

Gravity- and Spin-Induced Drop (with English Units)

Pitch Speed

and Type

Spin

Rate

(rpm)

Duration

of Flight

(ms)

Drop

due to

Gravity (ft)

Spin-Induced

Vertical

Drop (ft)

Total

Drop

(ft)

95 mph fastball �1200 404 2.63 �0.91 1.72
90 mph fastball �1200 426 2.92 �0.98 1.94
85 mph slider þ1400 452 3.29 þ0.74 4.03
80 mph curveball þ2000 480 3.71 þ1.40 5.11
75 mph curveball þ2000 513 4.24 þ1.46 5.70

TABLE 16.4

Gravity- and Spin-Induced Drop (with SI Units)

Pitch Speed

and Type

Spin

Rate

(rad=s)

Duration

of Flight

(ms)

Drop

due to

Gravity (m)

Spin-Induced

Vertical

Drop (m)

Total

Drop

(m)

42.5 m=s fastball �126 404 0.80 �0.28 0.52
40.2 m=s fastball �126 426 0.89 �0.30 0.59
38.0 m=s slider þ147 452 0.95 þ0.23 1.23
35.8 m=s curveball þ209 480 1.13 þ0.43 1.56
33.5 m=s curveball þ209 513 1.29 þ0.45 1.74
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The spin on the pitch also causes a horizontal deflection of the ball. In
‘‘deciding’’ whether to swing, the horizontal deflection is more important
than the vertical, because the umpire’s judgment with respect to the corners
of the plate has more precision than his or her judgment regarding the top
and bottom of the strike zone. However, after the batter has decided to
swing and is trying to ‘‘track and hit’’ the ball, the vertical deflection
becomes more important.

The right-hand rules for the lateral deflection of a spinning ball also apply
to the batted ball, except it is harder to make predictions about the magni-
tude of deflection because we have no data about the spin on a batted ball.
The right-hand rules can be applied to tennis, where deflections are similar
to baseball, but not to American football, because spin-induced deflections
of a football are small [19]. A professional quarterback throws a pass at
around 80 mph with 12 rps spin.

16.1.7 Modeling Philosophy

Although our equations and discussion might imply great confidence and
precision in our numbers, it is important to note that our equations are only
models. The Kutta–Joukowski equation and subsequent derivations are not
theoretical equations, they are only approximations fit to experimental data.
There are more complicated equations for the forces on a baseball (e.g., see
[20–25]). Furthermore, there ismuch thatwedid not include in ourmodel.We
ignored the possibility that air flowing around certain areas of the ball might
change from turbulent to laminar flow en route to the plate. Our equations
did not include effects of shifting thewake of turbulent air behind the ball. En
route to the plate, the ball loses 10% of its linear velocity and 2% of its angular
velocity:wedidnot include this reduction in angular velocity.We ignored the
difference between the center of gravity and the geometrical center of the
baseball [9]. We ignored possible differences in the moments of inertia of
different balls. We ignored the precession of the spin axis. In computing
velocities due to bat–ball collisions, we ignored deformation of the ball and
energy dissipated when the ball slips across the bat surface. Finally, as we
have already stated, we treated the drag coefficient as a constant.

We used a value of 0.5 for the drag coefficient, Cd. However, for speeds
over 80 mph this drag coefficient may be smaller [10, p. 157; 20,23,24]. There
are no wind-tunnel data showing the drag coefficient of a spinning baseball
over the range of velocities and spin rates that characterize a major league
pitch. Sawicki et al. [22] summarize data from a half-dozen studies of
spinning baseballs, nonspinning baseballs, and other balls and showed Cd

between 0.15 and 0.5. In most of these studies, the value of Cd depended on
the speed of the airflow. In the data of Ref. [25], the drag coefficient can be fit
with a straight line of Cd¼ 0.45, although there is considerable scatter in
these data. The drag force causes the ball to lose about 10% of its speed en
route to the plate. The simulations of Ref. [26] also studied this loss in speed.
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Data shown in Figure 9 of Ref. [26] for the speed lost en route to the plate
can be nicely fitted with PercentSpeedLost¼ 20 Cd, which implies Cd¼ 0.5.

It is somewhat surprising that given the multitude of modern computer
camera pitch-tracking devices such as the QuesTec system, the best-
published experimental data for the spin rate of different pitched baseballs
come from Selin’s cinematic measurements of baseball pitches [16]. And we
have no experimental data for the spin on the batted ball. Table 16.2
summarizes our best estimates of speed and spin rates for most popular
major league pitches.

There is uncertainty in the numerical values used for the parameters in
our equations. However, the predictions of the equations match baseball
trajectories quite well. When better experimental data become available for
parameters such as Cd and spin rate, then values of other parameters will
have to be adjusted to maintain the match between the equations and actual
baseball trajectories.

The value of this present study lies in comparisons rather than absolute
numbers. Our model emphasizes that the right-hand rules show the direc-
tion of the spin-induced deflections of a pitch. The model provides predict-
ive power and comparative evaluations relative to the behavior of all kinds
of pitches.

Stark [27] explained that models are ephemeral: they are created, they
explain a phenomenon, they stimulate discussion, they foment alternatives,
and then they are replaced by new models. When there are better wind-
tunnel data for the forces on a spinning baseball, then our equations for the
lift and drag forces on a baseball will be supplanted by newer parameters
and equations. But we think our models, based on the right-hand rules
showing the direction of the spin-induced deflections, will have perman-
ence: they are not likely to be superseded.

16.1.8 Somatic Metaphors of Pitchers

A pitcher uses his or her hand as a metaphor for the ball when asked to
demonstrate the trajectory of a particular kind of pitch (such as a screwball).
But he or she derives a mental model of a specific pitch from the feelings of
arm angle and his or her fingers on the ball as the pitch is being released. By
imagining slight shifts in these sensations, the pitcher can create subtly
differing models that can provide pitch variability to his or her repertoire.
For example, he or she might model the screwball with fingers on top of the
ball when it is released (resulting in a downward deflection) or with fingers
on the side of the ball (resulting in a flatter deflection).

The batter finds it hard to distinguish subtle differences in the spin
direction of a specific kind of pitch. For example, a 95 mph (42.5 m=s)
fastball thrown directly overhand looks much like a 95 mph fastball thrown
with the arm angle lowered by 208. The vertical difference in the potential
bat–ball contact point, however, is significant. For the 95 mph fastball with a
1200 rpm backspin shown in Tables 16.3 and 16.4, the pitch thrown with the
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lower arm angle would drop about three-quarters of an inch (2 cm) farther
than the overhand pitch. Three-quarters of an inch is bigger than the vertical
sweet spot. Mental models of pitch differences allow the pitcher to take
advantage of the batter’s difficulty in recognizing a wide variety of spin
directions and detecting small shifts in arm angle.

16.1.9 Summary

Somatic metaphors are pervasive in everyday life, so it is not surprising to
find that baseball pitchers make use of these modeling devices in their work.
We have shown how a pair of widely used engineering metaphors, the
right-hand rules, provides a formalized approach to describing the pitchers’
mental models, allowing prediction of the deflection direction of each pitch.
Besides describing the behavior of the pitched ball, these rules can also be
used in describing the deflection direction of the batted ball. To determine
the direction of deflection of the pitched or the batted ball, point the thumb
of your right hand in the direction of the Spin axis and your index finger in
the Direction of motion of the ball; your middle finger will indicate the
direction of the Spin-induced deflection (SaD Sid).

16.2 Bat–Ball Collisions

16.2.1 Sweet Spot of the Bat

For skilled batters, we assume that most bat–ball collisions occur near
the sweet spot of the bat, which is, however, difficult to define precisely.
The horizontal sweet spot has been defined as the center of percussion
(CoP), the node of the fundamental bending vibrational mode, the antinode
of the hoop mode, the maximum energy transfer area, the maximum batted-
ball speed area, the maximum CoR area, the minimum energy loss area, the
minimum sensation area, and the joy spot [2,28]. Let us now examine each
of these definitions.

1. Center of percussion. For most collision points, when the ball hits
the bat it produces a translation of the bat and a rotation of the bat.
However, if the ball hits the bat at the center of mass there will be a
translation but no rotation. Whereas, if the bat is fixed at a pivot
point and the ball hits the bat at the CoP for that pivot point, then
there will be a rotation about that pivot point but no translation
(and therefore no sting on the hands). The pivot point and the CoP
for that pivot point are conjugate points, because if instead the bat
is fixed at the CoP and the ball hits the pivot point then there will
be a pure rotation about the CoP. The CoP and its pivot point are
related by the following equation derived by Sears et al. [29],
where the variables are defined in Figure 16.10:
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dpivot�cop ¼ Ipivot

mbatdpivot�cm
(16:8)

The CoP is not one fixed point on the bat. There is a different CoP
for every pivot point. If the batter chokes up on the bat, the pivot
point (and consequently the CoP) will change. In fact, the pivot
point might even change during an individual swing. In this chap-
ter, we assume that the pivot point is 6 in. (15 cm) from the knob.

There are three common experimental methods for determining
the CoP.

Method 1: Pendular motion: Hang a bat at a point 6 in. (15 cm) from
the knob with 2 or 3 ft (1 m) of string. Hit the bat with an impact
hammer. Hitting it off the CoP will make it flop like a fish out of
water, because there is a translational force and a rotational force
at the pivot point. Hitting it near the CoP will make it swing like a
pendulum (as shown in Figures 12 and 13 of Ref. [29]).

Method 2: Toothpick pivot: Alternatively, you can pivot the bat on
a toothpick through a hole at the pivot point 6 in. from the knob
and strike the bat at various places. When struck near the CoP for
that pivot point the toothpick will not break. At other places, the
translational forces will break the toothpick.

Method 3: Equivalent pendulum: A third method for measuring
the distance between the pivot point and the CoP is to make a
pendulum by putting a mass equal to the bat’s mass on a string
and adjusting its length until the pendulum’s period and the bat’s
period are the same. This method has the smallest variability.

2. Node of the fundamental mode. The node of the fundamental
bending vibrational mode is the area where this vibrational mode
(roughly between 150 and 200 Hz for a wooden bat) of the bat has
a null point [20,30–33]. To find this node, grip a bat about 6 in.
from the knob with your fingers and thumb. Lightly tap the barrel
at various points with an impact hammer. The area where you
feel no vibration and hear almost nothing (except the secondary

Knob Pivot

dknob–pivot dpivot–cm dcm–cop

cm CoP

dpivot–cop

FIGURE 16.10
Definition of distances on a bat. (From Bahill, A.T., http:==www.sie.arizona.edu=sysengr=slides.
With permission. Copyright 2001.)
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vibration crack or ping at 500 to 800 Hz) is the node. A rubber
mallet could be used in place of an impact hammer: the point is,
the hammer itself should not produce any noise. The antinode of
the third bending vibrational mode may also be important [34].

3. Antinode of the hoop mode. For hollow metal and composite
baseball and softball bats, there is another type of vibration, called
a hoop vibration. The walls of a hollow bat deform during a bat–
ball collision. The walls are crushed in and then bounce back out.
This vibration can be modeled as a hoop or a ring around the bat;
this ring deforms like the vertical cross-sectional area of a water
drop falling from a faucet; first the water drop is tall and skinny, in
free fall it is round, and when it hits the ground it becomes short
and fat. The location of the antinode of the first hoop mode is
another definition of the sweet spot [34,35].

4. Maximum energy transfer area. A collision at the maximum
energy transfer area transfers the most energy to the ball [36].
This derivation is reproduced in Ref. [10]. This definition says
that the best contact area on the bat is that which loses the least
amount of energy to bat translation, rotation, vibration, etc.
This would be a more useful definition if it specified maximum
‘‘useful’’ energy transfer—the useful energy is that which moves
the ball in the same direction as the trajectory of the bat. In this
definition, energy stored in the spin of the ball is not useful.

5. Maximum batted-ball speed area. There is an area of the bat that
produces the maximum batted-ball speed [32,33,37,38]. This area
is about 5 or 6 in. from the end of the barrel for wooden bats and
about 7 in. from the end of the barrel for aluminum bats [32,33].
This would be a more useful definition if it specified ball velocity
rather than ball speed (since the bat is a three-dimensional object).

6. Maximum coefficient of restitution area. The CoR is commonly
defined as the ratio of the relative speed after a collision to the
relative speed before the collision. In our studies, the CoR is used
to model the energy transferred to the ball in a collision with a bat.
If the CoR were 1, then all the original energy would be recovered
in the motion of the system after impact. But if there were losses
due to energy dissipation or energy storage, then the CoR would
be less than 1. For example, in a bat–ball collision there is energy
dissipation: both the bat and the ball increase slightly in temperature.
Duris and Smith [46] said in their presentation that 100 bat–ball
collisions in rapid succession raised the temperature of a softball
by 108F. Also both the bat and the ball store energy in vibrations.
Not all of this energy will be transferred to the ball. (For now, we
ignore the kinetic energy stored in the ball’s spin.) The maximum
CoR area is the area that produces the maximum CoR for a bat–ball
collision [32,36].
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7. Minimum energy loss area. There is an area that minimizes the
total (translation plus rotation plus vibration) energy lost in
the handle. This area depends on the fundamental bending
mode, the second mode, and the CoP [39].

8. Minimum sensation area. For most humans, the sense of touch is
most sensitive to vibrations between 200 and 400 Hz. For each
person there is a collision area on the bat that would minimize
these sensations in the hands [40].

9. Joy spot. Finally, Williams and Underwood [41] stated that hitting
the ball at the joy spot makes you the happiest. The joy spot was
centered 5 in. (13 cm) from the end of the barrel.

These nine areas are different, but they are close together. We group them
together and refer to this region as the sweet spot. We measured a large
number of bats (youth, adult, wood, aluminum, ceramic, titanium, etc.) and
found that the sweet spot was 15%–20% of the bat length from the barrel end
of the bat. This finding is in accord with Refs. [20,30–32,39–42] as well as
Worth Sports Co. (personal communication) and Easton Aluminum Inc.
(personal communication). In our ideal bat weight experiments [4,43] and
our variable moment of inertia experiments [2] for adult bats, the center of
the sweet spot was defined to be 5 in. (13 cm) from the barrel end of the bat.

It does not make sense to try getting greater precision in the definition of
the sweet spot, because the concept of a sweet spot is a human concept, and
it probably changes from human to human. For one example, in calculating
the CoP, the pivot point of the bat must be known and this changes from
batter to batter, and it may even change during the swing of an individual
batter.

Table 16.5 shows general properties for a standard Hillerich and
Bradsbury Louisville Slugger wooden C243 pro stock 34 in. (86 cm) bat

TABLE 16.5

Parameters for a C243 Wooden Bat

Stated Length (in.) 34

Period (s) 1.634
Mass (kg) 0.905
Iknob (kg m2) 0.342
Ipivot (kg m2) 0.208
Icm (kg m2) 0.048
Measured dknob–cm (cm) 57
Measured dknob–cop (cm) 69
Calculated dknob–cop (cm) 69
Measured dpivot–cop (cm) 55
Calculated dpivot–cop (cm) 54
Measured dknob–firstNode (cm) 67

Ghista/Applied Biomedical Engineering Mechanics DK8315_C016 Final Proof page 462 29.5.2008 1:28am Compositor Name: MSubramanian

462 Applied Biomedical Engineering Mechanics



with the barrel end cupped out to reduce weight. Table 16.6 shows sweet
spot parameters for this and similar 34 in. wooden bats. These modern
scientific methods of calculating the center of the sweet spot of the bat are
all only a few centimeters above the true value given by Williams a quarter
century ago. Table 16.7 shows several other parameters for a variety of
commercially available bats.

There is no sweet spot of the bat: however, there is a sweet area and for a
34 in. wooden bat, it is 5 to 7 in. (13 to 18 cm) from the barrel end of the bat.We
presented nine definitions for the sweet spot of the bat. Some of these defini-
tions had a small range of experimentally measured values (e.g., 1 cm for the
node of the fundamental vibrationmode),whereas others had a large range of
experimentally measured values (e.g., 10 cm for the maximum batted-ball
speed area). But of course, none of these definitions have square sides. They
are all bowl shaped. So the width depends on how far you allow the param-
eter to decline before you say that you are out of the sweet area. In general, the
sweet area is about 2 in. wide. Our survey of retired major league batters
confirmed that the sweet spot of the bat is about 2 in. (5 cm) wide. Therefore,
most of the sweet spot definitions of this chapter fall within this region. In
summary, recent scientific analyses have validated William’s statement that
the sweet spot of the bat is an area 5 to 7 in. from the end of the barrel.

TABLE 16.6

Distance in Centimeters from the Barrel End to the Center of the Sweet Spot
for a 34 in. Wooden Bat

Definition of Sweet Spot

This Study of a C243

Wooden Bat References

Center of percussion for a 15 cm pivot pointa 16 calculated 16.5 [38]b

18 experimental method 1: More than 15 [47]
15 experimental method 2: 17 [36]
14 experimental method 3:

Maximum energy transfer area 20 [36]
Maximum batted-ball speed area 14 [32,33]

17 [38]
Maximum coefficient of restitution area 15 [32]
Node of fundamental vibration modec 18 measured 17 [33]

17 [38]
17 [39]

Minimum sensation area 17 [40]
Minimum energy area 15 [39]

15–18 [31]
Joy spot 13 [41]

a The center of percussion for a uniform rod would be 15 cm from the end [48]. This is a lower
limit for a bat.

b Ref. [38] used a 33 in. bat and their CoP was 16=84¼ 19% from the barrel end: scaling for a 34
in. bat yields 16.5 cm.

c The node of the fundamental vibration mode of an open-ended pipe is 0.224 times the length.
For a 34 in. pipe, it would be 19 cm from the end. This is an upper limit for a bat.
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16.2.2 Coefficient of Restitution

The CoR is commonly defined as the ratio of the relative speed after a
collision to the relative speed before the collision [10,29,32]. In our studies,
the CoR is used to model the energy transferred to the ball in a collision with
a bat. If the CoR were 1.0, then all the original energy would be recovered in
the motion of the system after impact. But if there were losses due to energy
dissipation or energy storage, then the CoR would be less than 1.0. For
example, in a bat–ball collision there is energy dissipation: both the bat
and the ball increase slightly in temperature. Also both the bat and the
ball store energy in vibrations. This energy is not available to be transferred
to the ball and therefore the ball velocity is smaller. (We ignore the kinetic
energy stored in the ball’s spin.)

The CoR depends on many things including the shape of the object that is
colliding with the ball. When a baseball is shot out of an air cannon onto a
flat wooden wall, most of the ball’s deformation is restricted to the outer
layers: the cowhide cover and the four yarn shells. However, in a high-
speed collision between a baseball and a cylindrical bat, the deformation
penetrates into the cushioned cork center. This allows more energy to
be stored and released in the ball and the CoR is higher. In our model, the
CoR for a baseball–bat collision is 1.17 times the CoR of a baseball–wall
collision. The CoR also depends on the speed of the collision. Our computer
programs use the following equations for the CoR: for an aluminum bat and
a softball:

CoR ¼ 1:17 (0:56� 0:001 CollisionSpeed) (16:9)

TABLE 16.7

Properties of Typical Commercially Available Bats

League

Stated

Weight

(oz)

Length

(in.)

Period

(s)

Mass

(kg)

Distance

from the

Knob to

Center of

Mass,

dknob–cm (m)

Moment of

Inertia with

Respect to

the Knob,

Iknob (kg m2)

Moment of

Inertia with

Respect to

the Center

of Mass,

Icm (kg m2)

Tee ball 17 25 1.420 0.478 0.346 0.083 0.026
Little League 22 31 1.570 0.634 0.448 0.174 0.047
High school 26 32 1.669 0.764 0.510 0.269 0.070
Softball 23 33 1.584 0.651 0.477 0.193 0.045
Softball, end

loaded
26 34 1.667 0.731 0.505 0.255 0.069

Softball, end
loaded

29 34 1.674 0.810 0.506 0.285 0.078

Major league,
R161 (wood)

32 34 1.654 0.920 0.571 0.356 0.056

Major league,
C243 (wood)

32 34 1.634 0.905 0.570 0.342 0.048
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for a wooden bat and a baseball

CoR ¼ 1:17 (0:61� 0:001 CollisionSpeed) (16:10)

where CollisionSpeed (the sum of the magnitudes of the pitch speed and the
bat speed) is in miles per hour. These equations come from unpublished
data provided by Jess Heald of Worth Sports Co. and they assume a
collision at the sweet spot. Our baseball CoR equation is in concordance
with data from six studies summarized in a report to the NCAA [44]:
CoR¼ 1.17 (0.57� 0.0013 CollisionSpeed).

The CoR also depends on where the ball hits the bat, because different
locations produce different vibrations in the bat [20,30,32,33]. Increasing the
humidity of the ball from 10% to 90% decreases the CoR by roughly 15%.
Ball temperature affects the CoR [20,45]. Bat temperature also affects the
CoR: so bat warmers in the dugout would increase the CoR. But we will not
consider these complexities in this chapter.

In the past, the CoR of a baseball–bat collision was mostly a property of
the ball, because a wooden bat does not deform during a bat–ball collision.
But hollow metal and composite baseball and softball bats do deform
during the collision; thus, they play an important part in determining
the CoR. During a collision, energy is stored in the ball and in the bat.
Most of the energy stored in the ball is lost. This energy loss is modeled
with the CoR. If the CoR is half, then three-fourth of the energy is lost
(because kinetic energy is proportional to velocity squared). Most of the
energy stored in the bat is not lost, but is transferred to the ball. This
increases the batted-ball speed. This matching of the bat to the ball to
increase batted-ball speed is called the trampoline effect [34]. Because most
of the energy stored in the ball is lost and most of the energy stored in the
bat is returned, the batter would prefer to have energy stored in the bat
rather than in the ball. A hard (or stiff) ball will deform the bat more and
therefore store more energy in the bat, which, by the above argument, will
increase batted-ball speed. Therefore, the hardness (or stiffness) of the ball
becomes another regulated parameter. Today, softballs are typically
marked with a CoR number and a stiffness number. The stiffness is the
amount of slowly applied force that is required to deform a softball by ¼
inch (0.64 cm) [46].

16.2.3 Performance Criterion

In most engineering studies, the most important decision is choosing the
performance criterion. For a batter hitting a ball, what is the most important
performance criterion? Kinetic energy imparted to the ball? Momentum
imparted to the ball? Batted-ball speed? Accuracy? Launch angle?
Batted-ball spin rate? Batted-ball spin axis? Efficiency of energy transfer?
or Distance from the plate where the ball hits the ground? For most
studies in the baseball literature, the performance criterion was maximizing
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batted-ball speed. Where in baseball would other performance criteria be
more appropriate?

In calculating knockdown power, kinetic energy would be appropriate.
The Colt 0.45 automatic pistol was designed for battles in the Philippines in
the early years of the twentieth century, with the performance criterion of
‘‘Knock down the charging warrior before he or she can chop off your head
with a machete.’’ The existing 0.38 would kill him, but he or she would chop
off your head before he or she would die. A solution for this problem was
the 0.45 caliber munition with a muzzle kinetic energy of 370 ft-lbm (502 J).
(The kinetic energy of bullets is given in units of foot-pounds, but the pounds
are not pounds-force, rather they are pounds-mass.) So 1 ft-lbm¼ 1.36 J.
In contrast, a baseball traveling at 97 mph (43 m=s) has 100 ft-lbm (136 J) of
kinetic energy. This explains why a hit-batter can be hurt, but not knocked
down by a pitch.

As an aside, the energy stored in the spin of a baseball is KEspin ¼ Iv2

2 ¼
mr2

ball
v2

5 . Substituting in nominal values for a baseball spinning at 1200 rpm

yields KEspin ¼ 0:145�0:0014�15:791
5 ¼ 0:6 J (0:5 ft-lbm), which is much lesser

than the translational energy.
Here are some potential performance criteria for a pitcher: (1) minimize

the number of pitches per inning, by getting the hitter to hit an early pitch
for a grounder (this would reduce the batter’s opportunities to learn the
pitches and lessen pitcher fatigue), (2) minimize the number of runs, (3)
maximize batter intimidation, and (4) generate impressive statistics (e.g.,
strikeouts, wins, ERA, saves) that would generate high salaries.

16.2.4 Vertical Size of the Sweet Spot

We need a model for batting success that shows the relative importance of
bat weight, bat speed, launch angle, bat shape, and coefficient of friction.
These are all under the batter’s control. We [3,13] developed a new per-
formance criterion: the probability of getting a hit. The old performance
criterion of maximizing batted-ball speed works well for home runs, but
only 4% of batted balls in play are home runs.

We now introduce a new criterion for the batted ball, the distance from
the plate where the ball first hits the ground. Assume that the batter wants
to hit a line drive. He or she wants the ball to clear the infielders without
bouncing, and to hit the grass in front of the outfielders. Thus, a major
league baseball player wants the ball to hit the ground between 120 and
240 ft (37 to 73 m) from the plate. These numbers were given in Table 16.1.

We now make the following assumptions. The batter is using a Louis-
ville Slugger C243 wooden bat and is hitting a regulation baseball.
The pitch speed is 85 mph (38 m=s). The speed of the sweet spot of the bat
is 60 mph (27 m=s): this is the average value for the San Francisco Giants
measured by Bahill and Karnavas [43]. These speeds would produce a
CoR of 0.54. The bat weighs 32 oz (0.91 kg) and the ball weighs 5.125 oz
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(0.145 kg). We can put these data into the following equation from Ref. [2] to
get a batted-ball speed of 106 mph (47 m=s), which is a reasonable value:

vball-after ¼ vball-before þ (1þ CoR) vbat-before � vball-beforeð Þ
1þmball

mbat
þmballd

2
cm�ss

Icm

(16:11)

This performance criterion is used in the next section to define the vertical
sweet spot of the bat.

16.3 Model for Bat–Ball Collisions

Baseball and softball batters swing a narrow cylinder with the axis more or
less parallel with the ground. Thus, the transverse curvature of the bat’s face
(hitting surface) is a vertical curvature. In combination with the vertical
offset of the bat and ball trajectories, this vertical curvature strongly influ-
ences the ball’s vertical launch velocity, angle, and spin rate. These launch
characteristics can be included in a vector describing a specific point on
the bat’s face; a vector field can specify the launch characteristics of all the
points on the face. Each vector determines the batted ball’s behavior—
the distance it travels in the air until it first strikes the ground (range),
how long it stays in the air (hang time), and, for ground balls, the time
taken for the ball to reach the positional arc of infielders (ground time).

The set of success probabilities associated with a specific vertical arc on
the bat’s face is called the vertical sweetness gradient of that arc. The face’s
vector field represents sweetness gradients in both the longitudinal (hori-
zontal) and transverse (vertical) dimensions of the bat. However, we restrict
our current discussion to vertical collision considerations and the radial
placement of the ball in play in fair territory.

We integrated many models as shown in Figure 16.11. One of the input
parameters in the overall model is the offset between the bat and the ball.
This offset is defined in Figure 16.12. The basic principle of this model is that
we break up the bat and ball velocities into normal and tangential compon-
ents. We apply conservation of energy. And then we apply conservation of
linear and angular momentum. This technique is suggested in Figure 16.13.

Finally, Figure 16.14 shows the full model. It illustrates the initial vertical
configuration of the bat and ball at the instant of collision. The initial
parameters of the collision are:

1. Initial velocity vector of bat’s contact point (vbat,0)

2. Initial normal component of the bat’s velocity vector (vbat,0,n)

3. Initial tangential component of the bat’s velocity vector (vbat,0,t)

4. Initial velocity vector of ball (vball,0)
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5. Initial normal component of the ball’s velocity vector (vball,0,n)

6. Initial tangential component of the ball’s velocity vector (vball,0,t)

7. Bat–ball offset distance (D) from the ball’s center perpendicular to
the trajectory plane of the bat’s transverse center

8. Vertical angle (u) between the line connecting ball and bat centers
(line of centers) and the horizontal plane (z¼ 0)

9. Vertical angle (g) between the horizontal plane and the ball’s
trajectory plane

Initial ball velocity

Initial ball spin

Initial bat velocity

Bat–ball offset

Collision model based on
Nathan; Watts and Bahill;

Sawicki, Hubbard,
 and Stronge

Batted-ball launch parameters

Performance
criterion and

probability model

Probability
of success

Batted-ball model of
Karnavas and Bahill

Speed Range

Hang time

Spin

Angle

FIGURE 16.11
Our model used components from several other models. (From Bahill, A.T., http:==www.sie.
arizona.edu=sysengr=slides. With permission. Copyright 2004.)

Postcollision
ball direction

Ball

Precollision ball direction

Bat–ball
offset

Contact
offset

Precollision bat direction

Bat

q
rball

rbat

FIGURE 16.12
Definition of the bat–ball offset. (This figure does not show the effect that pitch spin has on the
postcollision ball direction. For most collisions, the ball is going down at a 108 angle and the bat
is going up at a 108 angle. These angles are not shown in this figure.) (From Bahill, A.T., http:==
www.sie.arizona.edu=sysengr=slides. With permission. Copyright 2004.)
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10. Vertical angle (c) between the horizontal plane and the bat’s
trajectory plane

11. Mass of bat (mbat)

12. Mass of ball (mball)

13. Radius of bat at contact point (rbat)

14. Radius of ball (rball)

Postcollision
ball direction

Ball

Bat

Precollision ball direction

Precollision bat direction

Vball-before,tangent

Vball-before,normal

Vball-before

FIGURE 16.13
The bat and ball velocities are decomposed into normal and tangential components. (This figure
ignores the spin of the ball.) (From Bahill, A.T., http:==www.sie.arizona.edu=sysengr=slides.
With permission. Copyright 2004.)

Z� X�X

Z

Ball

Vbat,0

Bat

D

Y

q

y

wball,0

Vball,R

Vball,0

j

l

FIGURE 16.14
Initial vertical configuration of the bat–ball collision. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2004.)
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15. Coefficient of restitution (CoR) of the bat–ball impact

16. Coefficient of friction (m) during bat–ball impact

17. Angular velocity (vball,0) of the pitch

The characteristics mball, rball, CoR, and m will be considered constants. The
values of CoR and m must be derived empirically.

The resultant vectors and angles used to calculate launch velocity and
angle are:

1. Resultant velocity vector of bat’s contact point (vbat,R)

2. Resultant normal component of the bat’s velocity vector (vbat,R,n)

3. Resultant tangential component of the bat’s velocity vector (vbat,R,t)

4. Resultant velocity vector of ball (vball,R). This is called the ‘‘launch
velocity’’

5. Resultant normal component of the ball’s velocity vector (vball,R,n)

6. Resultant tangential component of the ball’s velocity vector (vball,R,t)

7. Vertical angle (w) between the line of centers and vball,R

8. Vertical angle (l) between the horizontal plane (z¼ 0) and vball,R.
This is called the ‘‘launch angle’’

We also calculate the vertical launch spin rate (vball,R) and specify air
density (r).

The model is set in the x–z plane of a coordinate system with origin at the
contact point, 3 ft in front of the vertex of home plate and at a height of 3 ft.
The positive z-axis points upward, positive x-axis points toward the pitcher,
and positive y-axis points out of the plane [22]. In Figure 16.14, the x–z plane
is reoriented so the x0 axis lies along the bat–ball line of centers and the z0

axis is tangential to the bat–ball contact point. Angular velocity is positive
for pitch topspin and for batted-ball backspin. D is positive if the bat
undercuts the ball.

The pitch does not fly horizontally. It is dropping downward at an angle
between 48 and 128, depending on the speed and type of pitch. The angle of
descent (g) of an average fastball is about 108 [10,20]. Batters generally
uppercut the ball (c) with a 58 to 108 upward angle, which means the ball
and bat are actually traveling in opposite directions, as shown in Figure
16.14. For Tables 16.8 through 16.10 we set g¼c¼ 108.

16.3.1 Ball’s Launch Velocity, Angle, and Spin Rate

The ball’s launch parameters are calculated by decomposing the initial
velocities of the bat and ball into their normal and tangential components
at the point of contact. These velocities are used with the principles of
conservation of momentum and conservation of energy to yield resultant
normal and tangential velocities for the ball, which are then used to calcu-
late the launch velocity of the ball and the angles w and l. The batted-ball
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angular velocity is calculated from the normal and tangential linear veloci-
ties of the ball and bat and the ball’s initial angular velocity.

The collision of two partially elastic bodies with friction is described
by numerous authors [48]. The first step in building the model is to calculate
u and, from this, the normal and tangential components of the initial velocity
vectors. The vertical angle of the line of centers, u¼cþ sin�1 (D=(rbatþ rball)).
The initial velocity components of the ball are vball,0,n¼ vball,0 cos u
and vball,0,t¼ vball,0 sin u. The initial velocity components of the bat are
vbat,0,n¼ vbat,0 cos u and vbat,0,t¼ vbat,0 sin u.

The resultant normal velocity of the ball [10] is

vball,R,n ¼ vball,0,n � (1þ CoR)[(mbatvball,0,n �mbatvbat,0,n)=(mball þmbat)]

(16:12)

Calculation of relative tangential velocity, resultant angular velocity of the
ball, and final launch angle, l, is described by Refs. [22,49]. In these models,

TABLE 16.8

Launch Parameters and Contact Offset for Various
Bat–Ball Offsets

Bat–Ball

Offset

(in.)

Launch

Velocity

(mph)

Launch

Angle (8)

Backspin

Rate

(rpm)

Contact

Offset (in.)

1.50 82 58 4924 0.73
1.25 85 48 3991 0.61
1.00 88 39 3059 0.49
0.75 90 31 2127 0.37
0.50 91 23 1195 0.24
0.25 92 15 263 0.12
0.00 93 8 �669 0

TABLE 16.9

Range and Hang Time for the Launch Parameters
of Table 16.8

Bat–Ball

Offset (in.)

Launch

Velocity

(mph)

Launch

Angle (8)

Backspin

Rate

(rpm)

Range

(ft)

Hang

Time (s)

1.50 82 58 4924 129 6.4
1.25 85 48 3991 236 6.7
1.00 88 39 3059 306 6.1
0.75 90 31 2127 321 5.0
0.50 91 23 1195 285 3.6
0.25 92 15 263 213 2.2
0.00 93 8 �669 122 1.1
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friction acts in the direction opposite to the slip of the ball. If friction is large
enough, it halts the relative tangential velocity (the combined velocities of
bat and ball surfaces relative to the contact point). When this occurs, slip-
page ceases, the ball sticks to the bat, and the ball begins to roll, contributing
to the launch angular velocity. These models account for bat recoil and
assume conservation of linear and angular momentum for tangential ball
and bat motions. Both models ignore deformation of the ball during colli-
sion (they assume it remains a perfect sphere).

The launch velocity, launch angle, and backspin rate for various bat–ball
offsets are shown in Table 16.8 and Figure 16.15.

Figure 16.15 indicates the launch angle and the center of the ball’s area of
the contact with the bat. The distance of this contact point from the center
axis of the bat can be derived from Figure 16.12. sin u ¼ bat�ball offset

rballþrbat
¼

contact offset
rbat

which gives

TABLE 16.10

Launch Parameters, Range, Hang Time, and the Probability of Batter’s Success
for Nonnegative Offsets

Bat–Ball

Offset (in.)

Launch

Velocity (mph)

Launch

Angle (8)

Backspin

Rate (rpm)

Range

(ft)

Hang

Time (s)

Probability

of Success

1.50 82 58 4924 129 6.4 0.00
1.25 85 48 3991 236 6.7 0.00
1.00 88 39 3059 306 6.1 0.00
0.75 90 31 2127 321 5.0 0.00
0.50 91 23 1195 285 3.6 0.09
0.25 92 15 263 213 2.2 1.00
0.00 93 8 �669 122 1.1 0.63

Foul tip Pop-up

Bat
direction

9.25�

–22.72�

58
.2

5�
48

.7
7�

39.31�

31.39�

23.04�

15.2�

8.37�

1.38�

10.04�

Bat

The vertical
sweet spot
of the bat

High fly

Fly out

Fly ball

Line drive

Low liner

One hop

Groundout

FIGURE 16.15
Common outcomes for some particular launch angles and bat–ball offsets from Table 16.8. The
indicated vertical sweet spot of the bat is about one-third of an inch (8 mm) high. (From Bahill,
A.T., http:==www.sie.arizona.edu=sysengr=slides. With permission. Copyright 2004.)
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Contact offset ¼ bat---ball offset� rbat
rball þ rbat

(16:13)

This distance is inserted as an additional column in Table 16.8.

16.3.2 Range, Hang Time, and Ground Time

The launch velocity, launch angle, and spin rate are the input data into the
equations of Ref. [10] to calculate the batted ball’s range and hang time. The
vertical distance traveled by the batted ball (without regard to lift or drag) is
z¼ vz0 t� 0.5 gt2, where vz0 is the vertical velocity of the ball, t is the hang
time, and g is the acceleration rate of gravity at the surface of the Earth (32.17
ft=s2, 9.8 m=s2). The horizontal distance traveled (again ignoring lift
and drag) is x¼ vx0 t, where vx0 is the horizontal velocity component.
However, the rotation of the ball creates a Magnus force acting vertically
perpendicular to the trajectory. This force tends to lift the ball (if backspin)
or depress the ball (if topspin). It is calculated as Flift ¼ 0:5 rpr3ball
vvball sinVaSa, where r is the air density. Friction of the ball passing
through the air is a drag force acting directly counter to the trajectory.
This force is calculated as Fdrag ¼ 0:5 rpr2ball Cd v2ball. In our model, the
drag and lift coefficients are constants. Table 16.8 shows the ranges and
hang times that result from various offsets.

Ground time is not calculated for this chapter. It will be modeled by using
the launch angle to find the angle of incidence on the first bounce. The
incidental horizontal and vertical velocity components and launch spin rate
will then be used to generate the bounce velocity, angle, and spin rate. An
aerodynamics model will be used to find the flight characteristics between
bounces, including the incidental angle on the subsequent bounce. Note that
here CoR and m will have values different from those for the bat–ball
collision. As v usually represents topspin on ground balls, angular velocity
contributes to linear horizontal velocity and vice versa. If m is large enough
to overcome the combined angular and horizontal velocities, slippage stops
and rolling begins.

16.3.3 Batting Success Probability Function

The characteristics of a batted ball can be associated with probability of
success through a step function based on the potential of defensive players
to prevent a base hit. Four kinds of batted-ball behavior are represented in
the model:

1. Fly balls (range> 130 ft (40 m), hang time> 2 s)

2. Pop-ups (range<¼ 130 ft (40 m), hang time> 2 s)

3. Line drives (range>¼ 115 ft (35 m), hang time<¼ 2 s)

4. Grounders (range< 115 ft (35 m), hang time<¼ 1 s)
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Our model incorporates several simplifying assumptions. Either an infielder
or outfielder might catch a fly ball, depending on range and hang time. All
pop-ups are caught by an infielder or a catcher so the probability of success
is zero. Only infielders catch line drives and grounders.

Each batted ball is associated with defensive coverage formulated as a
function of time. A defensive player prevents a base hit if he or she can reach
the ball during hang time or ground time. To determine coverage, we
positioned outfielders and infielders on two arcs—the outfield arc with a
radius of 300 ft (91 m) and the infield arc with a radius of 115 ft (35 m). The
outfield arc is divided into thirds and the infield arc into quarters, with a
player positioned at the center of each arc segment. For example, the
outfield arc has a length of 471.3 ft (300� 1.571); thus, it is divided into
three segments each of which is 157.1 ft long. The right fielder, then, is
positioned 300 ft from home, 78.55 ft from the right field foul line, and 157.1
ft from the center fielder. The batted ball’s range (from the range column of
Table 16.10) yields a ‘‘range arc’’ with length equal to 1.571 times range
(angle in radians times radius).

On fly balls, each player’s position is the center of an ellipse representing
defensive coverage by the player (a fly ball is illustrated in Figure 16.16).
Hang time determines the dimensions of the ellipse for a specific batted ball.
Probability of a base hit is the proportion of the range arc that is not
overlapped by ellipses.

In Figure 16.16, the outfielders are positioned on the outfield arc. The
dashed line shows the range arc for a low fly ball that is in the air for 3 s and
travels 250 ft. Three-fourth of this range arc is overlapped by the 3 s fielder
ellipses. Therefore, the probability of success is 0.25.

If a line drive or grounder passes the infield arc without encountering
an infielder, it is considered a base hit. Therefore, only infielders’ lateral

FIGURE 16.16
Range arc, outfield arc, and
defensive coverage of each out-
fielder for batted balls that
would be in the air for 2, 3, and
4 s. (From Bahill, A.T., http:==
www.sie.arizona.edu=sysengr=
slides. With permission. Copy-
right 2004.)
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movements provide coverage. Success is the proportion of range arc (on line
drives) or infield arc (on grounders) not covered by infielders. In this model,
batters do not beat out infield hits and pitchers do not catch line drives or
grounders.

The model assumes the speed of outfielders and infielders is 23 ft=s
(7 m=s). Outfielders’ reaction delays are 8 ft (2.4 m) (0.35 s) forward, 12 ft
(3.7 m) (0.52 s) sideward, and 15 ft (4.6 m) (0.65 s) backward. Infielders’
reaction times are 12 ft sideward and 15 ft backward. These values were
selected as ‘‘reasonable’’ and are not based on empirical data.

16.3.4 Example of Varying Offsets

For an example of collision evaluation, the model is solved at offset incre-
ments of 0.25 in. upward from zero offset. Pitch backspin is �1800 rpm and
pitch speed is 85 mph (38 m=s). Contact occurs at the bat’s area of max-
imum horizontal sweetness and the speed of the bat’s contact point is 60
mph (27 m=s) the average value for the San Francisco Giants [43]. These
speeds produce a CoR of 0.54. We measured the coefficient of friction, m, to
be 0.5 (see also Ref. [22]). The angles g and c of ball and bat are both 108.
Other test values are rbat¼ 1.375 in., rball¼ 1.452 in., mbat¼ 32.0 oz (effective
bat mass¼ 20.0 oz [33]), mball¼ 5.125 oz, and r at standard sea level
conditions. These numbers are given in Tables 16.2 and 16.11. Ranges
and hang times were found using a Pascal aerodynamics program. Launch

TABLE 16.11

Parameter Values Used to Compute the Vertical Size of the Sweet Spot SI Units

Major League

Baseball

Little

League

NCAA

Softball

Bat type Wooden C243 Aluminum Aluminum
Ball type Baseball Baseball Softball
Pitch speed (m=s) 38 22 29
Speed of sweet spot (m=s) 27 20 22
CoR 0.54 0.53 0.52
Typical bat mass (kg) 0.9 0.6 0.7
Ball mass (kg) 0.145 0.145 0.191
Maximum bat radius (m) 0.035 0.029 0.029
Ball radius (m) 0.037 0.037 0.048
Distance from front of rubber to tip of plate (m) 18.4 14.0 13.1
Pitcher’s release point: distance from tip of 17 m out 13 m out 12 m out
plate and height 2 m up 1.5 m up 0.8 m up

Bat–ball collision point: distance from tip of 1 m out 1 m out 1 m out
plate and height 1 m up 1 m up 1 m up

Backspin of batted ball (rad=s) 100–500 100–500 100–500
Desired ground contact point:

distance from the plate (m)
37–73 24–43 24–46

Air density, r (kg=m3) 1.04 1.04 1.04

Note: Air density is inversely related to temperature, altitude, and humidity.
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values were computed using spreadsheets developed by A. Nathan
(personal communication).

16.3.5 Results

Test results are given in Table 16.10. As hang time increases, probability of
success decreases rapidly. Pop-ups are produced by offsets greater than 1.5 in.
(3.8 cm). These are assigned a success probability of zero. Note the model
assumes no outfield barriers. In most major league stadiums, long fly balls
have a chance of clearing the wall (the average distances are 330 ft (100 m)
down the foul lines and 400 ft (122 m) in center field). Thus, the model
underestimates success for any range with a chance to be a home run.

The example shows how the model might be used to analyze collision
parameters (e.g., offsets, bat velocity) or bat properties (e.g., bat radius).
Relating initial conditions to sweetness provides a valuable criterion for
these analyses.

16.3.6 Discussion

From this collision model, we get the launch velocity, the launch angle, and
the backspin rate. We put these into our simulation for the batted ball that
uses the following equations from Ref. [10, p. 80]:

Fdrag ¼ 0:25 rpr2ballv
2
ball-after (16:14)

FMagnus ¼ 0:5 rpr3ballvvball-after (16:15)

where
r is air density
vball-after is the ball speed after its collision with the bat
v is the rotation rate
rball is the radius of the ball

Values for these parameters are provided in Tables 16.1 and 16.11.
Some physicists (see Equation 1 in Ref. [25] ) model the Magnus force with

FL ¼ 1
2CLrAv

2, where A is the cross-sectional area of the ball and CL is not a
constant, but rather it is a nonlinear parameter that depends on the Rey-
nolds number, the spin rate, the ball velocity, and, perhaps, CD. However,
we prefer the simpler formulation of Equation 16.15.

To show how Equations 16.14 and 16.15 work, let us now present a simple
numerical example. Assume a 95 mph (42.5 m=s) fastball has 20 rps of pure
backspin. Near the beginning of the pitch, the Magnus force will be straight
up in the air, i.e., pure lift. Using English units and Table 16.1, we get

Fdrag ¼ 0:25 rpr2ballv
2
ball

¼ (0:25)(0:0023)(3:14)(0:12)2(139)2 ¼ 0:5 lb
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and

FMagnus ¼ 0:5 rpr3ballvvball-after

¼ (0:5)(0:0023)(3:14)(0:12)3(126)(139) ¼ 0:11 lb

which is about one-third the force of gravity given in Table 16.1. This is
consistent with Tables 16.3 and 16.4.

Using SI units and Table 16.11, we get

Fdrag ¼ 0:25 rpr2ballv
2
ball

¼ (0:25)(1:2)(3:14)(0:037)2(42:5)2 ¼ 2:3 n

and

FMagnus ¼ 0:5 rpr3ballvvball-after

¼ (0:5)(1:2)(3:14)(0:037)3(126)(42:5) ¼ 0:51 n

which is about one-third the force of gravity, which is

Fgravity ¼ mg ¼ 0:145� 9:8 ¼ 1:42 n (16:16)

This simulator allows us to calculate the trajectory of the batted ball. From
the ball’s trajectorywe can computewhere it will first hit the ground.Assume
that the batter wants to hit a line drive that first hits the ground between
120 and 240 ft (37 to 73 m) from the plate. (The performance criterion is to
maximize the probability that the batted ball will be a line drive that first
hits the ground 120 to 240 ft from the plate.) From our simulations, the
vertical offset between the ball and the bat should be between 0.15 and
0.45 in. (0.38 to 1.1 cm). Therefore, the vertical size of the sweet spot of the
bat is one-third of an inch (8 mm). For the Little League the vertical size of
the sweet spot is about the same. However, because the softball is bigger,
for NCAA softball the vertical size of the sweet spot is a little less than half
an inch.

This discussion is suggesting another performance criterion: efficiency.
The batter wants to swing the bat so that as much energy as possible is
transferred from the bat to the ball in a particular direction, namely 58 to 108
upward. Momentum in a perpendicular direction is not helpful (pop-ups
and grounders). This performance criterion wants the batted-ball direction
to be the same as the bat’s direction before the collision, i.e., it wants a 58
to 108 uppercut and zero offset. A lot of previously used performance
criteria were appropriate for home runs. This new performance criterion is
designed for line drive singles or doubles.

At this point it is appropriate to caution young players; we are not
advising that they ignore their coaches’ advice to ‘‘swing level.’’ Coaches
and parents have difficulty differentiating between level horizontal swings
and those with a 58 to 108 upward angle. The coach’s admonition means
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do not swing with a 308 upward angle, because you do not want to launch
the ball at 308. In this context, swing level means swing with a 58 to 108
upward angle.

16.4 Swing of the Bat

Williams and Underwood [41] said that hitting a baseball is the hardest act
in all of sports. This act is easier if the right bat is used, but it is difficult to
determine the right bat for each individual. Therefore, we developed the Bat
Chooser* to measure the swings of an individual, make a model for that
person, and compute his or her Ideal Bat Weight [4,43]. The Bat Chooser
uses individual swing speeds, CoR data, and the laws of conservation of
momentum, and then it computes the ideal bat weight for each individual,
trading off maximum batted-ball speed with accuracy. However, with the
advent of lightweight aluminum bats, it is now possible for bat manufac-
turers to vary not only the weight but also the weight distribution. They can
start with a lightweight aluminum shell, and add a weight inside the barrel
to bring the bat up to its specified weight. This internal weight can be placed
anywhere inside the barrel. When the weight is placed at the tip of the bat,
the bat is said to be ‘‘end loaded.’’ So now, there is a need to determine the
best weight distribution in general, for certain classes of players and for
individual players. These are the topics of this section.

16.4.1 Ideal Bat Weight and the Bat Chooser

Our instrument for measuring bat speeds, the Bat Chooser, has two vertical
laser beams, each with an associated light detector. The subjects were posi-
tioned so that when they swung the bats, the sweet spot (which we defined
to be an area on the bat that is centered 5 in. from the barrel end) of each bat
passed through the laser beams. A computer (sampling once every 16 ms)
recorded the time between interruptions of the laser beams. Knowing the
distance between the laser beams (15 cm, 6 in.) and the time required for the
bat to travel that distance, the computer calculated the horizontal speed of
the bat’s sweet spot for each swing. This is a simple model, because the
motion of the bat is very complex, being comprised of a horizontal transla-
tion, a rotation about the batter’s spine, a rotation about a point between the
two hands (which may be moving), and a vertical motion.

In our variable moment of inertia experiments, to be described in the next
section, and in our ideal bat weight experiments, each player was positioned
so that bat speed was measured at the place where the subject’s front foot hit
the ground. We believe that this is the place where most players reach
maximum bat speed. The batters were told to swing each of six bats as

* Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.
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fast as possible, while still maintaining control. They were told to ‘‘Pretend
you are trying to hit a Randy Johnson fastball.’’ In a 20 min interval of time,
each subject swung each bat through the instrument five times. The order
of presentation was randomized. A speech synthesizer announced the
selected bat; for example, ‘‘Please swing bat Babe Ruth; that is bat B.’’ For
each swing, the name of the bat and the speed of the sweet spot were
recorded.

To reduce bat swing variability we gave the batters a visual target to
swing at. It was a knot on the end of a string hanging from the ceiling.
Typically, this knot was 3 ft (1 m) off the floor. The height of this knot was
very important for some batters. For one batter, bat speed increased 20%
when the knot was lowered 1 ft (0.3 m).

16.4.2 Principles of Physics Applied to Bat Weight Selection

The speed of a baseball after its collision with a bat depends on many
factors, not the least of which is the weight of the bat. In this section,
we present data to help an individual player to decide if his or her prefer-
ence is the most effective bat weight. Knowing the ideal bat weight can
eliminate time-consuming and possibly misleading experimentation by
ball players.

To find the best bat weight we must first examine the conservation of
momentum equations for bat–ball collisions.

mbatvbat-before þmballvball-before ¼ mbatvbat-after þmballvball-after (16:17)

We want to solve for the ball’s speed after its collision with the bat, called
the ‘‘batted-ball speed,’’ but first we should eliminate the bat’s speed after
the collision, because it is not easily measured. The CoR for a bat–ball
collision can be modeled with

CoR ¼ � vbat-after � vball-after
vbat-before � vball-before

(16:18)

The negative signs are there because vball-before is in the direction from the
pitching rubber to the plate, whereas the other three velocities go from
the plate toward the rubber. Therefore, we define vball-before to have a
negative magnitude.

We can use the equation for the CoR to solve for vball-after, substitute the
result into the equation for the conservation of momentum, and solve for the
ball’s speed after its collision with the bat. The result is

vball-after ¼
�vball-before CoR�mball

mbat

� �
þ (1þ CoR)vbat-before

1þmball

mbat

(16:19)
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This means that the ball’s speed after the collision will depend on the mass
of the ball, the mass of the bat, the CoR, and the precollision speeds of the
ball and bat.

16.4.3 Coupling Physics to Physiology

Physiologists have long known that muscle speed decreases with increasing
load. This is why bicycles have gears. The rider can keep muscle speed in its
optimal range while bicycle speed varies greatly. Therefore, to discover how
muscle properties of individual ball players affect their best bat weights, we
measured the bat speeds of many batters swinging bats of various weights.
We plotted the data of bat speed versus bat weight, and used this to help
calculate the best bat weight for each batter.

Over the last half century, physiologists have used three equations to
describe the force–velocity relationship of muscles: that for the straight
line (y¼AxþB), that for the rectangular hyperbola ( (xþA) (yþB)¼C),
and that for the exponential (y¼Ae�Bx þ C). Each of these equations has
been best for some experimenters, under some conditions, with certain
muscles, but usually the one for the hyperbola fits the data best. In our
experiments, we fit all three and chose the equation that gave the best fit to
the data of each subject’s 30 swings. For example, for batters where the
straight line fit was the best

vbat-before ¼ slope mbat þ intercept (16:20)

where
slope is the slope of the line
intercept is the y-axis intercept.

Now to couple physiology to physics, we substituted this relationship into
the previous equation to yield

vball-after ¼
�vball-before CoR�mball

mbat

� �
þ (1þ CoR)(slope mbat þ intercept)

1þmball

mbat

(16:21)

Next, you can either take the derivative with respect to the bat weight, set
this equal to zero, and solve for the maximum batted-ball speed bat weight
or you can get this result graphically, as suggested in Figure 16.17.

16.4.4 Ideal Bat Weight

The maximum batted-ball speed bat weight is probably not the best bat
weight for any player. A lighter bat will give a player better control and
more accuracy. Obviously, a trade-off must be made between maximum
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batted-ball speed and controllability. Because the batted-ball speed curve
is so flat around the point of the maximum batted-ball speed bat weight,
we believe there is little advantage in using a bat as heavy as the maximum
batted-ball speed bat weight. Therefore, we have defined the ideal bat
weight to be the weight at which the ball speed curve drops 2% below
the speed of the maximum batted-ball speed bat weight. We believe this
gives a reasonable trade-off between distance and accuracy.* Of course, this
is subjective and each player might want to weigh the two factors differently.
It does, however, give a quantitative basis for comparison. For the
player whose data are shown in Figure 16.17, the ideal bat weight was 28 oz
(0.8 kg).

Not only is the ideal bat weight specific for each player, but it also
depends on whether the player is swinging right or left handed. We meas-
ured two switch-hitters (one professional and one university ball player
who later had a long professional career). One player’s ideal bat weights
were 1 oz (0.03 kg) different and the other’s were 5 oz (0.14 kg) different.
Switch-hitters were so different when hitting right and left handed that we
treated them as different players.

It is difficult for most batters to determine the best bat for themselves.
Therefore, we developed a system to measure the swings of an individual,
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FIGURE 16.17
Bat speed (straight line) and batted-ball speed (curved line) for a typical member of
the University of Arizona softball team. Her ideal bat weight is 28 oz. (From Bahill, A.T.,
http:==www.sie.arizona.edu=sysengr=slides. With permission. Copyright 2007.)

* We used 1% for major league baseball players and NCAA softball champions.
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make a model for that person, and recommend a specific bat weight for that
person. However, this system is not conveniently available to most people.
So we used our database of the 200 people who had been measured with our
system and created simple equations that can be used to recommend a bat
for an individual using common parameters such as age, height, and
weight. These recommendations are given in Table 16.12. These rules of
thumb were derived from our 200 subject database, with constraints of
commercial availability and integer numbers, from Ref. [28].

16.4.5 Ideal Moment of Inertia

Bahill [2] presented the variable moment of inertia data that his group has
gathered over the last two decades. In these studies, the subjects swung bats
of the same weight, but different weight distribution (inertia). The bat
speeds were measured and recorded. Then the data for each player were
fit with a line of the form

vbat-before ¼ slope Iknob þ intercept (16:22)

where

slope is the slope of the line
Iknob is the moment of inertia of the bat with respect to the knob
intercept is the y-axis intercept

We model the swing of a bat as a translation and two rotations: one
centered in the batter’s body and the other between the batter’s hands.
Next, we compute the batted-ball speed (the speed of the ball after its
collision with the bat). We use conservation of linear and angular momen-
tum and the definition of the CoR to get the following equation, which has
been previously derived [10,36]:

TABLE 16.12

Rules of Thumb for Recommending Bats

Group Recommended Bat Weight

Baseball, major league Height=3þ 7
Baseball, amateur Height=3þ 6
Softball, fast-pitch Height=7þ 16
Softball, slow-pitch Weight=115þ 24
Junior league (13 and 15 years) Height=3þ 1
Little League (11 and 12 years) Weight=18þ 16
Little League (9 and 10 years) Height=3þ 4
Little League (7 and 8 years) 2�Ageþ 4

Note: Recommended bat weight is in ounces, age is in years, height
is in inches, and body weight is in pounds.
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vball-after ¼
�vball-before CoR�mball

mbat
�mball d

2
cm�ss

Icm

� �
þ (1þ CoR)vbat-before

1þmball

mbat
þmball d

2
cm�ss

Icm
(16:23)

where
CoR is the coefficient of restitution of the bat–ball collision
dcm–ss is the distance between the center of mass and the sweet spot,
which is assumed to be the point of collision

Icm is the moment of inertia about the center of mass.

The term vbat-before is simply the velocity of the sweet spot. vball-before
is a negative number, because its direction is the opposite of vball-after.

The subjects swung bats composed of wooden bat handles with ¼ inch
threaded rods attached to the end and brass disks fixed at various points on
the rods. These bats had similar lengths and masses, but a wide range for
moments of inertia. The moment of inertia of a bat is given with

Iknob ¼ Ihandle þmdiskd
2
knob�disk (16:24)

where
Iknob is the inertia of the total bat with respect to the knob
Ihandle is the inertia of the handle part of the bat with respect to the knob
mdisk is the mass of the disk on the end of the rod
dknob–disk is the distance from the knob to the disk

After a little bit of algebra, Bahill [2] derived the following equation for the
batted-ball speed:

vball-after ¼vball-before

þ (1þCoR)[slope(Ihandleþmdiskd
2
knob�disk)þ intercept�vball-before]

1þmball

mbat
þ

mball dk-ss�mdiskdknob�disk

mhandleþmdisk
�mhandledknob�cm(handle)

mhandleþmdisk

� �2

Ihandleþd2knob�disk mdisk� mdiskdknob�disk

mhandleþmdisk

� �2
mbat

 !
�2mdiskdknob�disk

mhandleþmdisk

mhandledknob�cm(handle)

mhandleþmdisk

� mhandledknob�cm(handle)

mhandleþmdisk

� �2

mbat

This equation is plotted in Figure 16.18 for a typical subject.
All of the batters in this study would profit (meaning would have higher

batted-ball speeds) from using end-loaded bats.
At this point, it may be useful to reiterate that an end-loaded bat is not a

normal bat with a weight attached to its end. Adding a weight to the end
of a normal bat would increase both the weight and the moment of inertia.
This is unlikely to help anyone. In the design and manufacture of an
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end-loaded bat, the weight is distributed so that the bat has a normal
weight, but a larger than normal moment of inertia.

16.5 Summary

This chapter presented the right-hand rules that can be used to show the
direction of spin-induced deflection for a spinning ball in any sport. They
were summarized with the acronym SaD Sid. Then, we discussed the sweet
spot of the bat. Nine different definitions were given for the horizontal
sweet spot of a bat: most of them were in an area 5 to 7 in. (13 to 18 cm)
from the end of the barrel. Next, this chapter presented a newmodel for bat–
ball collisions and used it along with a new performance criterion, namely
the probability of getting a hit. Previous models were designed for analyz-
ing home runs, which constitute less than 4% of the batted balls in play. This
new model was used to describe the vertical gradients of the sweet spot of
the bat. The vertical size of the sweet spot is one-third of an inch (8 mm).
Then the chapter showed that there is an ideal bat weight for each batter.
A simple table gave rules of thumb for recommending bat weights. Finally,
this chapter gave a recommendation that all batters would profit from using
end-loaded bats. For nonmathematical aspects of baseball see Baldwin’s
autobiography, Snake Jazz [50].
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FIGURE 16.18
Batted-ball speed as a function of dknob–disk for one batter showing an optimal value at 0.9.
(From Bahill, A.T., http:==www.sie.arizona.edu=sysengr=slides. With permission. Copyright
2003.)

Ghista/Applied Biomedical Engineering Mechanics DK8315_C016 Final Proof page 484 29.5.2008 1:28am Compositor Name: MSubramanian

484 Applied Biomedical Engineering Mechanics



List of Variables

CoP Center of percussion of a bat
CoR Coefficient of restitution of a bat–ball collision
CollisionSpeed Sumof pitch speed and speed of the bat at the collision point
Cd Coefficient of drag
dcm–cop Distance from the center of mass to the center of percussion
dcm–ss Distance from the center of mass to the sweet spot
dknob–cm Distance from the center of the knob to the center of mass
dpivot–ss Distance from the pivot point to the sweet spot
dpivot–cm Distance from the pivot point to the center of mass
dpivot–cop Distance from the pivot point to the center of percussion
g Earth’s gravitational constant
Icm Momentof inertia of thebatwith respect to the center ofmass
Iknob Moment of inertia of the bat with respect to the knob
Ipivot Moment of inertia of the bat with respect to the pivot point
mball Mass of the ball
mbat Mass of the bat
rball Radius of the ball
rbat Radius of the bat
vball-after Speed of the ball after the bat–ball collision
vball-before Speed of the ball before the bat–ball collision
vbat-after Speed of the bat after the bat–ball collision
vbat-before Speed of the bat before the bat–ball collision
v Ball rotation rate
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17.1 Introduction

Sports biomechanists typically provide the scientific basis that enable
coaches to teach sports techniques and injury prevention by means of
analyzing and reviewing movement performance data. The usual approach
is to identify key performance variables by means of statistical methods or
inductive analysis. Cinematographic studies have provided insights into
the performance of a variety of gymnastics vaults. However, this under-
standing is limited only to the examples analyzed and cannot be generalized
to understand the effects of technique variations beyond observed perform-
ances. In other words, they cannot answer the ‘‘what if?’’ questions.
Although a well controlled experiment can provide an explanation for the
observed outcome, the power of such experiments is also limited, as
changes in one aspect of technique may inadvertently result in other
changes in the movement that may influence the final outcome [1].

Ghista/Applied Biomedical Engineering Mechanics DK8315_C017 Final Proof page 489 28.4.2008 1:48pm Compositor Name: JGanesan

489



Computer simulation can be effectively employed by applying a valid-
ated mathematical (also known as biomechanical) model of a system
being investigated, to evaluate its response to changes in the input para-
meters. The application of simulation models to sports movements ensure
that the results are due to the interventions (changes in the input para-
meters) introduced [1]. Consequently, such applications yield valuable
insights into how some of the training interventions may potentially
alter athletic performance. These interventions may be investigated indi-
vidually or in combination with several other training factors, and it is a
matter of transcribing such factors into model parameters to be included
in the simulation. While it may not be feasible to incorporate all move-
ments’ kinematic–kinetic relationships into the model, depending on the
complexity of the model, the advantage in computer simulation studies
is that the model used in the simulation is free from the physical limita-
tions commonly associated with experimental research. In particular, the
safety of the performer will not be compromised, as no further perform-
ance will be required once the data have been collected based on present
performance capabilities. There will also be savings in time as many
different simulations can be performed quickly and accurately by powerful
computers.

However, computer simulation is not without its limitation. One of the
most important of these is the trade-off between simplicity and accuracy.
The construction of a computer model to represent a particular biomecha-
nical system often incorporates simplifying assumptions. The complexity of
a model can range from the simple two-segment model of Alexander [2],
optimizing the plant angle and takeoff velocity of the high and the long
jumps, to the very complex 17-segment model incorporating 46 muscle
groups used by Hatze [3], to simulate the long jump takeoff. Therefore,
the complexity of a model should depend on its objective [4]. Even though
high-speed computers now enable complex mathematical expressions to be
solved rapidly and accurately, thus affording greater flexibility in model
construction, some researchers [4,5] recommend that the creation of a com-
puter model should be as simple as possibly required for the simulation
objective. In fact, some very compelling implications can be derived from
quite simplistic models [6,7,8]. However, there are others [1] who hold the
view that a complex model be created and subsequently simplified by
adding constraints to the model.

Since the human body, and its motion, is far too complex to be perfectly
duplicated on the computer [9], computer models should therefore be
evaluated for their level of accuracy so as to give confidence in its predic-
tions [10]. Typically, model evaluation involves determining if the perform-
ance data collected (e.g., linear and angular displacement histories) can be
reproduced by matching the model output to the data. Such a comparison
will provide some evidence for the appropriateness of the findings derived
from the model and to lend support for the confidence in the use of the
model, for that particular athlete.
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17.2 Biomechanical Simulation Studies

of Gymnastics Vaulting

Traditionally, studies of gymnastics vaulting have relied on the statistical
analysis of data digitized from film, to understand the mechanics and
techniques involved [11,12]. Description of mechanical variables derived
from these analyses, such as the angle-of-takeoff and speed-of-rotation,
frequently form the basis of instruction to other performers, regardless
of their anthropometric structure, physiological capacity, and skill level.
Kinematic data, while explicitly dependent on technique, are simultaneously
implicitly dependent on the strength, flexibility, and somatotype of the
particular athlete. Therefore, it would be most appropriate that definitive
instruction to any participant should be based on an individual biomecha-
nical assessment of the performance used in conjunction with computer
simulation of a customized biomechanical model.

In surveying the literature on theoretical analysis of gymnastics vaulting,
it is noted that the horse-impact phase and the kinematics of the preflight for
the handspring vault have been studied [13]. For instance, the horse-impact
phase has been modeled to comprise two distinct stages of compression
and repulsion; the springboard takeoff velocity and the initial distance from
the horse are seemingly the principal variables affecting the outcome of the
handspring vault. However, the force exerted by the performer during
the horse repulsion (push-off) phase is deemed to have only a minimal
effect on the postflight characteristics of the vault as the gymnast has little
control over the duration of the repulsion phase.

Other theoretical studies on the contribution of preflight characteristics to
successful vaulting have concentrated on the counter rotational Hecht vault
[6,14]. For instance, a two-segment simulation model has been used to show
that the preflight requirements of the Hecht vault are different from those
for the handspring somersault vaults [6]. A successful Hecht vault is largely
due to a good preflight and a passive impact, where no shoulder torque is
involved. As regards the role of preflight trajectory, in the reversal of total
body rotation at horse impact in the Hecht vault, optimized simulations
based on the mean preflight data of 27 competitive Hecht vaults indicate
that more than 70% of the reversal of rotation could be produced from a
suitable preflight trajectory [14]. The simulations also show that preflight
impact angle contributes more significantly than horse elasticity and shoul-
der torques during the horse contact phase. Also, the takeoff speed is
important to successful vaulting with the effect that any increase in hori-
zontal takeoff velocity on the performance of the Hecht vault increases
landing distance of the vault.

In summary, while it may appear that the variables used as input into
computer simulation studies on gymnastics vaulting are typically the linear
velocities of the center of mass just before horse impact, or the body angle
of attack with the vaulting horse (Figure 17.1), in practice the variables
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measured and used as input into such models will depend on the research
questions asked. An example using the Yurchenko layout vault will be
detailed in a later section.

Optimization studies: The application of simulation models to sports move-
ments has definitely provided a means of determining optimum techniques
[15] to maximize a performance. Optimization involves the iterative use of a
computer simulation to determine the parameters’ values or control vari-
ables that minimize or maximize an objective function representing
some performance criterion. If a critical factor in a problem can be isolated
and characterized by an objective function that quantifies the performance,
then optimizations may provide a suitable framework for analysis.
Although, it is rarely possible to fully represent all the complexities of
variable interactions, constraints and appropriate objectives for a complex
problem, nevertheless, optimization formulation should be regarded as a
good approximation [16]. For instance, the objective function for gymnastics
vaulting can be put into a tractable analytical expression based on the
primary objectives of vaulting, namely postflight height and distance [17].
Appendix 1 provides details of how the center of mass position or displace-
ments of body segments can be expressed in a mathematical form. It has
been shown that the performance of a male individual’s handspring front
somersault vault can be optimized, using postflight height and distance as
the optimization criteria and angular momentum as a penalty function [17].
The approach involves a static optimization technique. Ideally, the formu-
lation of the system dynamics and the use of dynamic optimization tech-
niques, through an application of optimal control theory, should be more
appropriate for the optimization of sports performance. The implications of
such simulation studies are of significance for developing coaching methods
that would bring about optimal performance. For instance, insights gained
from optimized simulations of sports performances can offer coachers an

FIGURE 17.1
An example of typical variables used as input
into computer simulation models of gymnas-
tics vaulting. In this example, the linear vel-
ocities of the center of mass (CM) and the
body angle of attack relative to the horizontal
are illustrated.

Direction of vault

Vertical velocity

Horizontal velocity

Vaulting
horse

Y

X

CM

q2
Body angle of attack
relative to horizontal,
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understanding of joint torque contributions that result in optimal technique
[18]. Coaches may then use these insights to introduce training interventions
that would facilitate the optimal technique performance.

Questions: Simulation studies suggest that the success of a vault can be
attributed primarily to the preflight characteristics, namely linear and angu-
lar velocities of the whole body center of mass and preflight trajectory. It
appears that there exists an optimum combination of linear and angular
velocities, along with individualized inertial characteristics, that will pro-
duce the best performance for each vault type. Clearly, the combination of
mechanical factors would vary from one movement to another and between
athletes performing the same skill due to their different physique and
strengths. Consequently, the answer to the question of how a gymnast
modifies technique to improve performance can best be provided by com-
puter simulation.

Here, our vault of interest is known as the Yurchenko layout vault. The
Yurchenko layout vault was pioneered by Natalia Yurchenko in the 1982
World Cup gymnastics competition. It comprises a forward running
approach that finishes with a cartwheel half-turn (round-off skill) to orien-
tate the body, so that the back faces the vaulting horse at the point of takeoff
from the springboard. This is immediately followed by the gymnast taking
off from the springboard using a back-flip action to impact the horse, and
finally completing a one and a half somersault rotation with the body fully
extended (layout) before landing. Figure 17.2 illustrates the vaulting
sequence.

At present, there is a paucity of information (from an optimized simula-
tion perspective) on the effect of initial conditions at horse contact on
the postflight characteristics of continuous rotation vaults. Specifically,
few theoretical studies have investigated the Yurchenko layout vault, to
answer the following questions:

FIGURE 17.2
Vault sequence of the Yurchenko layout vault beginning with a backflip onto the horse during
preflight; followed by a dynamic push-off (blocking action) during horse impact; and finally
performing a 112 layout somersault rotation to land in the postflight.
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. What is an optimal technique for the Yurchenko layout vault, for a
given performance ability?

. Is there a ‘‘blocking’’ technique at contact with the horse, charac-
terized by a decrease in horse impact time, and positive changes to
the linear velocities at the end of impact?

17.3 Model Development

The optimization of a vault performance requires the development of a
computer model that adequately represents the gymnast. As the validity
of the simulation study will only be as good as the model itself, accurate
measures of segment masses, center of mass, and the moment of inertia
values are required to customize the model to the gymnast by using the
elliptical zone modeling technique of Jensen [19]. The method yielded an
error of less than 2% when the estimated total body weight was compared
against the actual body weight of the subject. The data were used to cus-
tomize the model.

We present, herein, a five segment rigid-linked model consisting of the
hand, whole arm, upper and lower trunk and whole leg. Symmetry is
assumed as the motion is essentially planar in nature. Figure 17.3 illustrates
the equivalence between the rigid body model at the impact phase of the
vault and the anatomical representation. The following assumptions are
made in the model:

. Each segment is represented by a point mass located along the
rigid body known as its center of mass (CM), the position of which
is fixed throughout the motion.

. Segments are linked by revolute (hinge) joints.

. Inertial characteristics remain constant throughout the motion.

. Gravitational force acts downward through the each segment’s
CM, and is equal to the mass and gravitational acceleration
(9.8 m=s2).

. External force (ground reaction force, GRF) acting on the seg-
ments are considered to act at a point known as the center of
pressure (COP).

. Net effect of muscle and ligament activity at any joint is
represented in terms of net muscle moments at the joint.

From the original link-segment model, a free-body diagram of each segment
is obtained, and this is typically done by ‘‘breaking’’ the model up at the
joints. The internal forces that act across each joint are represented in the
free-body diagram. Figure 17.4 depicts a free-body segment and the accom-
panying reaction forces and moments of force acting at the proximal and
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distal ends of the segment in the generic case. Consider the planar move-
ment of a single segment. Applying Newton’s laws of motion yields the
following equations:

X
Fx ¼ max ) FPx þ FDx ¼ max

and X
Fy ¼ may ) FPy þ FDy �mg ¼ may (17:1)

where ax, ay, and g represent the horizontal and vertical acceleration of the
segment CM and gravitational acceleration, respectively. The angular
motion equivalent of Newton’s law about the CM is given by

Direction of vault

Segment 3

Segment 4

Segment 5

F4Y
P

M4
P

m5gM5
P

m4
g

F5X
P

F5Y
P

(x6,y6)

(x5,y5)
F4Y

D

F4X
D

F4X
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D

Segment 2

Segment 1

Y

X

q1

q2

q3
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q5

a4
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Vaulting
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FIGURE 17.3
The multilinked rigid body model of the Yurchenko layout vault, depicted at horse impact. The
model comprises of the hand (segment 1), whole arm (segment 2), upper trunk (segment 3),
lower trunk (segment 4), and whole leg segments (segment 5). Symmetry is assumed due to the
planar nature of the movement. Note that the segments 4 and 5 have been disjointed in order to
illustrate the internal joint reaction forces at the proximal and distal ends of each segment and
also the angular displacements, acceleration, and joint torques. The illustration holds true for all
segments depicted. The coordinates (x5, y5) and (x6, y6) denote the digitized (x, y) coordinates of
the whole leg segment at time, t.
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X
M ¼ I0a ) MP þMD þ FPx r sin uþ FDy d cos u

� FPy r cos u� FDx d sin u ¼ I0a
(17:2)

where
u is the angle the segment makes with the horizontal
a the angular acceleration of the segment about its CM
I0 is the transverse moment of inertia of the segment about its CM

Knowledge of the anthropometrics, kinematic data, and ground reaction
forces will enable a systematic resolution of the equations to yield solutions
for the net muscle moments at a joint (joint torques) and joint reaction forces
of the free-body diagrams. Kinematic data are typically obtained from
digitizing video images. Where ground reaction forces are not available,
the equations are resolved systematically using kinematic data; beginning
from the free end (most distal to contact point) of the multilinked rigid body
system, and progressing toward the end in contact with the ground; each

+ve counter-clockwise moment

+ve Y

+ve X

Fx
P

Fy
P

Fy
D

Fx
D

MP

MD

mg

CM

d

a

q

r

FIGURE 17.4
Free-body diagram of a single segment showing proximal and distal reaction forces in the
horizontal and vertical directions represented by Fx

P, Fx
D, Fy

P, Fy
D, respectively. The mass of

the segment is lumped at its center of mass (CM). The segment rotates with angular acceleration
a about its CM and possesses horizontal and vertical linear acceleration ax and ay. The netmuscle
moments about the proximal and distal ends (joints) are denoted by MP and MD, respectively
(also known as joint torques). The proximal distance of the segment CM is given by r, and its
distal length, d. The segment subtends an angle uwith the horizontal.
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time substituting the results of the prior analysis of a more distal segment
into the next set of equations of a more proximal segment to the point of
contact. This approach, to obtain the ground reaction force, is known as the
conventional inverse dynamics method [20].

For the example of the vault model described previously, the equations of
motion to represent the vault can be formulated using a Newtonian
approach [21] and are given by Equations 17.3 through 17.8. Note that
there are alternative formulations which relates the segment CM’s kinemat-
ics to the kinematics of the digitized points [10]. Refer to Figure 17.3 for a
depiction of the variables used in these equations.
Segment 1 (hand),

FP1x þ FD1x ¼ m1a
CM
1x

and

FP1y þ FD1y �m1g ¼ maCM1y (17:3a)

MP
1 þMD

1 þFP1xr1 sin u1þFD1yd1 cos u1�FP1yr1 cos u1�FD1xd1 sin u1¼ I1a1 (17:3b)

Segment 2 (upper limb),

FP2x þ FD2x ¼ m2a
CM
2x

and

FP2y þ FD2y �m2g ¼ m2a
CM
2y (17:4a)

MP
2 þMD

2 þ FP2xr2 sin u2 þ FD2yd2 cos u2 � FP2yr2 cos u2 � FD2xd2 sin u2 ¼ I2a2

(17:4b)

Segment 3 (upper trunk),

FP3x þ FD3x ¼ m3a
CM
3x

and

FP3y þ FD3y �m3g ¼ m3a
CM
3y (17:5a)

MP
3 þMD

3 þ FP3xr3 sin u3 þ FD3yd3 cos u3 � FP3yr3 cos u3 � FD3xd3 sin u3 ¼ I3a3

(17:5b)

Segment 4 (lower trunk),

FP4x þ FD4x ¼ m4a
CM
4x

and

FP4y þ FD4y �m4g ¼ m4a
CM
4y (17:6a)

MP
4 þMD

4 þFP4xr4 sin u4þFD4yd4 cos u4�FP4yr4 cosu4�FD4xd4 sinu4¼ I4a4 (17:6b)
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Segment 5 (lower limb),

FP5x þ FD5x ¼ maCM5x

and

FP5y þ FD5y �m5g ¼ m5a
CM
5y

(17:7a)

MP
5 þMD

5 þFP5xr5 sin u5þFD5yd5 cos u5�FP5yr5 cos u5�FD5xd5 sin u5¼ I5a5 (17:7b)

However, the distal end of the fifth segment is free and Equations 17.7a and
17.7b simplify to,

FP5x ¼ m5a
CM
5x

and

FP5y �m5g ¼ m5a
CM
5y (17:8a)

MP
5 þ FP5xr5 sin u5 � FP5yr5 cos u5 ¼ I5a5 (17:8b)

As an example, consider the following set of data which will be used as
input to resolve the inverse dynamics problem at an instance of time.

The segment CM displacements are obtained by digitizing the ends of a
segment and using appropriate scaling methods based on anthropometric
models [19], to determine each segment’s CM location. Consider for example,
such a method applied to obtain the segment CM position for the whole
lower limb (seen as segment 5 in Figure 17.3) at one instance in time, t. Let us
suppose that the digitized coordinates of this segment be (x5, y5) and (x6, y6)
for the proximal and distal ends of the segment, respectively, at this particu-
lar instant, t. Applying the ratio theorem, the x-coordinate of the whole lower
limb segment CM at this one instance in time is simply:

x-coordinate CM ¼ 0:34

0:78
x5 þ 0:78� 0:34

0:78

� �
x6

where the anthropometric dimensions of 0.34 and 0.78 m are obtained from
Table 17.1. By repeating this process iteratively to the (x, y) coordinates of
the whole lower limb segment corresponding to every instant of time, ti
(where i is the number of data points), the whole lower limb segment
CM x-coordinate trajectory can be obtained. The process is similar for the
y-coordinate of the whole lower limb segment CM, namely, applying
the ratio theorem throughout the displacement history with the same
anthropometric dimensions of the whole lower limb taken from Table 17.1
for the purpose of this discussion. The data are then smoothed with quintic
splines [22] whose derivatives yield the respective segments CM velocity
and acceleration time histories.
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The proximal forces F5x
P, F5y

P in Equation 17.9 and shown in Figure 17.3 are
obtained by directly substituting the values of m5, a5x

CM, a5x
CM, and the inertial

parameters obtained from Table 17.1.
Solving for Equation 17.8a yields:

FP5x ¼ 20:237� 15:68 ¼ 317:32 N

and

FP5y ¼ 20:237� (9:81þ 5:73) ¼ 314:48 N (17:9)

Solving for Equation 17.8b by substituting for F5x
P and F5y

P, and using data
from Table 17.1, yields the net muscle moment=joint torque (M5

P) for the
proximal joint of the lower limb segment (Segment 5):

MP
5 ¼ 317:32� 0:34 sin (�0:56)� 314:48� 0:34 cos (�0:56)� 1:069 (0:908)

¼ 108:95 Nm (17:10)

The solutions for Equation 17.8, together with the corresponding parameter
values for the lower trunk segment, are substituted into Equation 17.6, to
resolve for the joint forces and net muscle moments accordingly for the
lower trunk segment (Segment 4).

Note that at the joints where segment kþ 1 and k are linked (with segment
kþ 1 assumed to be superior in position to segment k), the distal joint
forces and net joint torque of segment k, are of the same magnitude
but opposite in sign to the proximal joint forces and net torque of segment
kþ 1 (see Figure 17.3). This means that

MP
5 ¼ �MD

4 , FP5x ¼ �FD4x and FP5y ¼ �FD4y

In general, MP
iþ1 ¼ �MD

i , FPiþ1x,y
¼ �FDix,y (17:11)

Subsequent backward substitution into Equations 17.5 through 17.3 will
resolve the set of equations to obtain the set of joint forces and net muscle
moments corresponding to the segments. These computations to resolve the

TABLE 17.1

Subject Leg Segment Anthropometric Data and Kinematics at an Instance
of Horse Impact

Segment

Mass

(kg)

ICM
(kgm2)

Proximal

Radius

of CM (m)

Length

(m) ax
CM ay

CM u (rad)

Angular

Acceleration

(rad=s)

Whole lower
limb

20.237 1.069 0.340 0.779 15.68 5.73 �0.560 0.908
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sets of equations can be facilitated using matrix manipulation [23]. The joint
torque histories are used as input into the simulation, together with the initial
values comprising body-segment orientation, segment angular velocities and
the CM displacements and linear velocities at impact with the horse. The
computational steps to be carried out can be summarized as follows:

1. Establish link-segment model and equations of motions for model.

2. Substitute kinematic data, in conjunction with appropriate body-
segment parameters (BSP) to solve for equations of motion for
distal most segment of model.

3. Use these solutions, together with the BSP values and kinematic
data, to solve the equations of motions of the preceding segment.

4. Repeat step (c), until all equations are resolved.

Many models have been created in gait studies [24] that are based on inverse
dynamics approaches. The approach is computationally efficient and prac-
tical, albeit highly dependent on the accuracy of experimental data collec-
tion and processing; and, is limited by the assumptions of the model. In the
case of normal gait analysis, research [24] has indicated that the inverse
dynamics approach is an appropriate method to obtain gait kinetics.

17.4 Model Evaluation

To make use of the model for subsequent optimizations to determine, say,
ideal states for sports performance, it is necessary to first evaluate the model.
A common approach is to compare the angular displacement trajectories
from the output data of the model against the kinematic data for the vault
in question. Itmust be noted here thatmathematical formulations ofmodeled
situations are generally of standard methods, although some are more ele-
gant than others. However, the different methods used should not influence
the outcome of the results. Evaluation of a model is thus important, as it
provides evidence for the appropriateness of the outcome of the model.

The presentmodel is driven by the joint torques at thewrist, shoulder,mid-
trunk, and hip. These are obtained from the conventional inverse dynamics
approach [20] outlined previously. However, it is possible that the joint
torques used as input to drive the model may not be able to reproduce the
experimental motion precisely [25], even though its derivation is based on
the same experimental data. As a consequence, a dynamic optimization
technique is used to improve the precision of the joint torques [25,26]. This
is not to suggest that the inverse dynamics approach is comprehensively
inadequate. The question to ask is whether the computational expense of a
dynamic optimization technique is justified for the analysis to be pursued.
Dynamic optimization techniques are generally preferred and sometimes
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even necessary in the absence of accurate experimental data. In the event
of predicting novel movements, it is certainly a desirable technique to be
employed as it is able to integrate the influences of musculo-skeletal
structures on biomechanical performance through the enforcement of the
system dynamics into the solution process.

The MISER3 [27] constrained optimal control software, which computes
constrained optimal control problems, is used in this experiment. In the
algorithm (Table 17.2), we set up 14 states (five segment angles, whole body
CM coordinates, and their first derivatives), 12 system parameters (initial
segment orientations, angular velocities, vault duration and body lean), and
4 controls (joint torques).

The MISER3 algorithm integrates the ordinary differential equations to an
accuracy of 10�9, using a variable step, variable order, and Adam’s method
[5]. Readers are directed to the manual for greater detail in the setup of
MISER3 [27]. The basic idea of the dynamic optimization method presented
here is to alter the magnitude of the joint torque histories (wrist, shoulder,
mid-trunk, and hip) continuously and systematically, until the displace-
ment solutions of the differential equations governing the system closely
matches the experimental data [25,26]. Once this is achieved, the set of
segment angular accelerations are obtained; and, thence segment velocities
and displacements. These are substituted into equations governing the
geometry of the system, to produce the simulation.

TABLE 17.2

Model Parameters Used in MISER3

MISER3

States

Model

Parameters

System

Parameters

Initial

Value Controls

Joint

Torques

X1 (Hand) u1 Z1 u1 (0) U1 Wrist
X2 (Arm) u2 Z2 u2 (0) U2 Shoulder
X3 (Upper trunk) u3 Z3 u3 (0) U3 Mid-trunk
X4 (Lower trunk) u4 Z4 u4 (0) U4 Hip
X5 (Leg) u5 Z5 u5 (0)
X6 v1 Z6 v1 (0)
X7 v2 Z7 v2 (0)
X8 v3 Z8 v3 (0)
X9 v4 Z9 v4 (0)
X10 v5 Z10 v5 (0)
X11

iCMX or fxE Z11 Duration of vault
X12

iCMy or
fyE Z12 Body lean

X13
ivelocity CMx

or fvelocity xE
X14

ivelocity CMx

or fvelocity yE

Note: i denotes impact phase, f denotes postflight phase, (xE, yE) coordinates of the proximal
end of segment 1, (CMX, CMY) denotes coordinates of system CM; ui (i¼ 1, . . . , 5)
denotes segment angle with respect to the horizontal axis, and vj (j¼ 1, . . . , 5) denotes
segment angular velocity.
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Figure 17.5 depicts the results of the model evaluation for the Yurchenko
layout vault model, based on the dynamic optimization technique used. The
model is able to reproduce the movement closely throughout the vault
duration, in terms of the segment angular trajectories. However, there
exist some minor fluctuations of the reproduced hand segment angular
displacement trajectory between 0.2–0.4 s, which are not deemed to be
significant. Overall confidence in the use of the model for subsequent
optimization studies is therefore good.

17.5 Defining an Optimization Criteria

To define an optimization criterion, it is important to first establish the
outcomes or the research questions. To answer these questions, an objective
function is formulated analytically. In general, the objective function of
the optimal control problem consists of two parts [28]: (1) a terminal

Segment
angles (rad) Impact with horse

Hand

Postflight

5

0

5

5

10

0

0

5

10

0

10
15

5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arm

Upper trunk

Lower trunk

Whole leg

Time (s)

FIGURE 17.5
A common approach in model evaluation is to compare the angular displacement trajectories
from the output data of the model against the kinematic data for the performance in question.
Model evaluation of the Yurchenko layout vault is performed by comparing the closeness-of-fit
between the segment angular displacement trajectories of the model (broken line) and the
experimental data (solid line). The reproduced segment angular trajectories were a good fit to
the experimental data. This closeness-of-fit enables the researcher to have greater confidence in
the model. Evaluation of a model is thus important, as it provides evidence for the appropri-
ateness of the outcome of the model.
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cost that exacts a penalty according to the final state of the system, which is
defined by the position and alignment of the body segments at the end of
postflight and (2) a cost that depends on the state of the system given by
the dynamics equations and the controls (joint torques) used to arrive at the
final solution of the problem. The optimization proceeds to find the set of
joint torques that will produce the optimum technique (optimized para-
meters) at a minimal cost, based on the optimization criteria.

For this study, let us recall that the optimization problem is to determine
an optimum technique for the Yurchenko layout vault, based on a given
performance ability. For this purpose, performance ability refers to the level
or standard achieved at the present time. The optimum technique may be
characterized perhaps by changes at contact with the horse, such as a
decrease in horse impact time, changes to the linear velocities at the end
of impact, as well as horse impact body-segment configuration. The deriv-
ation of the objective function is thus based on the international judging
criteria for the vault, in which a gymnast starts with a base score, from
which deductions are made for performance faults such as a ‘‘break’’ in the
form or poor dynamics of the vault (Figure 17.6).

Evaluation criteria
(points awarded )

Start value

Preflight
poor form (0.30)

Impact with horse
poor form (0.30)

poor technique (0.50)

Postflight

Penalty points deductions

Lack of height
(0.30)

Lack of layout
during flight

(0.30)

Deviation from
straight line

(0.30)

Lack of landing
distance from horse

(0.30)

Lack of stretch
before landing

(0.30)

Unstable landing
(1.00)

Bonus points awarded
(for postflight amplitude)

FIGURE 17.6
Evaluation scheme of vault summarized from the 1997 Judging Criteria of the Federation of
International Gymnastics. Note that the greatest possibility of points deductions is in the
postflight. This evaluation scheme has a direct bearing on the optimization criteria used in
the simulation.
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However, the performance may be awarded bonus points for good flight
amplitude that is a high flight height after horse impact. Since the likelihood
of points deduction is greater in the flight phase than during impact or
preflight (flight phase prior to horse impact), the optimization criteria con-
sist of an objective function that sufficiently represents the aim of maximiz-
ing the performance score during postflight while adhering to the
movement constraints of the skill. Poor form (interpreted as flexed limbs)
in the impact phase is excluded in the objective function, as the model uses
rigid limb segments instead of two-segment limbs.

The objective function (G0) given by Equation 17.12 consists of a terminal
cost (f0, Equation 17.13) for meeting the 2 m postflight distance requirement
(1st term of Equation 17.13), while attaining a landing angle of the legs (2nd
term of Equation 17.13) represented by the system parameter (z12) at the end
of postflight. The landing angle (z12) is defined by the angle of inclination of
the legs, with respect to the horizontal.

G0(t) ¼f0 u(tterm), xe(tterm), z½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} þ

Terminal cost(f0),

comprising body position

and alignment at terminal

time(tterm), also known as

end of flight phase after

horse impact: Elaborated

further in Equation 17:13:

ðtterm
timp

X4
i¼1

(ui � uiþ1)
2dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cost for maintenance

of straight body form

during flight, where

the respective

segment angles is

denoted by (ui)

(17:12)

f0(u(tterm), xe(tterm), z) ¼ [min {0, xe(tterm)þ
X5
i¼1

li cos ui(tterm)� 1:55}]2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ

The point on the ground that meets the 2 m

distance requirement has an x-coordinate

of 1:55 m obtained from digitization:

This expression calculates, by geometry

(see Appendix), the x-coordinate of the

distal end of the leg segment at terminal

time (tterm): It uses the x-coordinate of the

distal end of the hand segment (xe) and

the respective segment angles (ui): This

calculation of the distal end of the leg

segment is checked against the coordinate

of the point on the ground the cost value

is obtained when the distance

is attained:

X5
i¼3

(ui(tterm)� z12)
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
To keep the upper

body segments

aligned with the

legs, the parameter

z12 which represents

the angle of

inclination the body

makes with the

ground at the end

of flight, is used:

(17:13)
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where
ui represents the segment angles
timp and tterm are initial impact time and terminal time
f0 is a function of u, xe, and z at terminal time tterm
xe is the x-coordinate of the distal end of the hand segment

The optimization proceeds to find the set of optimum parameters (zi), in
Table 17.2, that characterizes the optimum technique and the set of joint
torque histories required to produce the prescribed motion at a minimum
cost based on the objective function defined. For this analysis, the system
parameters would be the segment angles, angular velocities, and the
body lean at the end of postflight. Note that the inverse dynamics
approach is used to compute a set of joint torques (Mi), in Equations
17.3b through 17.8b, that will serve as initial guesstimates to drive the
optimization. The symbol t (see Equation 17.12) is used in the optimiza-
tion algorithm to distinguish from Mi. Preliminary work in testing the
model indicated that the optimized vault meets the height requirements
even without its inclusion in the objective function. Thus, to reduce
computation time, height requirements are excluded from the objective
function of the optimized simulations. However, the results of the opti-
mizations were always checked graphically, to determine if the height
requirements are satisfied.

Equal weightings for each variable in the objective function namely the
terminal cost and the integrand (see Equation 17.12) are given, as it is
equally important to meet the height and distance requirements spelt out
in the evaluation scheme. A good height is one in which the hips are at least
1 m above the horse at the peak height of the vault. The distance require-
ment must be at least 2 m away from the far side of the horse at landing.
Undoubtedly, the choice of weightings will affect the optimum solution.
For instance, if a greater weight is placed on Equation 17.12 than on
Equation 17.13, then the outcome of the optimization will be different to
that where a greater weight is placed on Equation 17.13. It is a matter of
balancing the priority of the layout in flight to achieving the horizontal
distance at landing. It is possible to achieve a good layout at the expense of
meeting the landing distance requirement. Thus, the experience of the
researcher and knowledge of the skill demands of the movement contribute
to making an accurate assessment of the appropriate weights in the object-
ive function.

Subject-specific kinematic performance data and anthropometric meas-
urements are input into the computer model. The optimization software
MISER3 [27] is used to investigate the dynamics from impact with the
horse until just before landing. The vault is optimized for: (1) the set of
joint torques (t); namely, wrist, shoulder, mid-trunk, and hip joint torques
and (2) parameters (z), namely segment angles and angular velocities at
impact, vault duration and landing angle (z12). Details are provided in
Table 17.2.
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17.6 Technique of the Optimized Vault

The whole body CM trajectory from the optimized results of the simulation
is illustrated in Figure 17.7. A comparison is made with the data CM
trajectory. For the optimized vault, the CM trajectory demonstrates greater
flight amplitude. In terms of judging, this should culminate in bonus points
for the vault (Figure 17.6) because of the perceived increased flight time due
to greater flight trajectory (also known as flight amplitude).

In addition to greater flight amplitude after horse impact, the simulation
of the vault (dark model in Figure 17.7), also demonstrates a fully extended
body (layout) throughout the flight right up to the instant before landing,
compared with the actual vault performed (fair model Figure 17.7). This
would translate to less point deduction under the penalty category of ‘‘lack
of stretch before landing’’ and ‘‘insufficient layout.’’ The simulation also
depicts clearly that the height and distance requirements are satisfied. This
means no points deductions under the penalty category of ‘‘insufficient
height and distance.’’ Overall, the optimized vault produces a superior
technique compared with the actual performance in terms of flight

Optimized vaulting

Experimental data

Height required 
for vaulting

Distance required for landing

FIGURE 17.7
Comparison of whole body center of mass (CM) trajectory between the optimized vault (dark
line) and actual vault performed. In terms of judging, this should culminate in bonus points for
the vault because of the perceived increased flight time due to greater flight trajectory. Note that
the CM is displaced higher and further for the optimized vault (dark model) compared to the
physical performance (fair model). The vault is performed from a left to right direction with the
vaulting horse at a height of 1.2 m. The actual performance demonstrates hip-flexion during
the flight specifically near the instant before landing, compared with the optimized vault. On
the other hand, the optimized simulation demonstrates a fully extended body (layout) through-
out the flight right up to the instant before landing.
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amplitude and body extension because of fewer penalty points deductions
based on the judging criteria (Figure 17.6).

The optimization has produced a better flight trajectory than the data on
two counts: (1) the criteria dictates a need to keep a good layout, as a result,
the optimization sees to the attainment of this goal; (2) since a layout (fully
extended body) is maintained during flight, it results in an increase in the
transverse moment of inertia (Iyy). Therefore, to complete the same number
of somersaults with an increased Iyy, it would be necessary to either increase
the angular momentum or allow greater flight time to complete the motion.
Figure 17.7 would suggest that the optimization results opted for greater
flight time by increasing flight amplitude.

The impact technique also differs between the optimized solution and the
data. The result of the optimization indicates that at initial impact, shoulder
flexion increased by 98 and hip flexion by 88. The shoulder angle (pþ u2� u3)
is defined as the included angle between the trunk and the arm segments,
while the hip angle (p� u4þ u5) is the included angle between the lower
trunk and the leg segments. The increased shoulder flexion is consistent
with the other experimental observations [29] that better Yurchenko layout
vaults are performed by gymnasts who contact the horse with a larger
shoulder joint flexion, as a result of reaching early for the horse, than those
who did not. Table 17.3 compares the body configuration of the optimized
vault at impact with the horse against the actual performance. A consequence
of the optimized body configuration is that the body angle of attack
[tan�1(x11=x12)], determined by the angle subtended by the line joining the
total body CM to the point of horse impact, and the horizontal axis, is
increased by 98.

The optimized simulation also produced a higher angular velocity
(z6� z10) at impact with the horse than the actual performance recorded.
The implication is that to perform the optimal vault, the total angular
momentum of the system must be increased during the flight phase prior
to impact with the horse. This is consistent with the angular demands of the
optimized vault. The larger total body moment of inertia, due to its fully
extended body shape, would thus require a greater amount of angular
momentum than the recorded vault.

TABLE 17.3

Comparison of Shoulder, Hip, and Body Angle
between Actual Performance and the Optimized Vault

Parameter

Actual

Performance (8)
Optimized

Vault (8)

Shoulder angle 164 173
Hip angle 148 156
Body angle 32 41
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A ‘‘blocking’’ (push-off) technique is also observed. This is manifested
by an increase in vertical takeoff velocity of the CM (x14) and a reduction
in horse contact time (z11) by 0.003 s compared with the data. However,
the reduction in impact duration (z11) of the optimized vault is not
regarded as significant as it fell within one frame of the capture rate of
the video recorder. More importantly, there is a marked increase in the
vertical horse takeoff velocity of the CM (x14) for the optimized vault
compared to the actual performance (Table 17.4). This result suggests that
the vertical velocity component (x14) is a key component to altering the
flight trajectory of the vault. The finding is consistent with the mechanics
of projectile motion. The reduction in the horizontal velocity (x13) is
similar between the two vaults. The result thus indicates that there is a
trade-off between linear and horizontal velocities as a consequence of
horse impact. However, the change in the magnitude of the horizontal
velocity must not prevent the gymnast from meeting the distance require-
ments of the vault. It would appear, from the simulation, that the hori-
zontal component velocity (x13) of the actual vault is close to the optimal
level and does not need further intervention. Table 17.4 illustrates the
change in the CM linear velocities between the two vaults—actual and
optimized.

17.7 Other Considerations

Sensitivity analyses show how sensitive an optimum solution is, with
respect to the calculated parameters. It is a powerful tool that can be applied
to simulation models in order to increase the level of confidence in the
results obtained. The sensitivity analysis can be used on the parameters
such as the inertial characteristics of the model, as well as on the variables

TABLE 17.4

Comparison of Center of Mass (CM) Linear Velocities
between Actual Performance and the Optimized Vault
during the Horse Impact Phase of the Vault

Horizontal

Velocity

Start of

Impact (m=s)

End of

Impact (m=s)

Actual vault 3.29 2.32
Optimized vault As above 2.34

Vertical

Velocity

Start of

Impact (m=s)

End of

Impact (m=s)

Actual vault 2.40 2.27
Optimized vault As above 2.61
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such as input data. For instance, Alexander [2] found that the optimum
techniques for high and long jumps were not sensitive to the muscle para-
meters used in his single torque generator model. As such, he was able to
place more credence in his results.

The current vault model can be tested for sensitivity to small changes in
the initial segment angles, initial segment angular velocities, and for
changes in the inertial characteristics of the model. To test for sensitivity
of the model output to small changes in the initial segment configuration,
each segment’s initial angle is reduced by 18 while maintaining the initial
respective segmental angular velocities. The change in each of the para-
meters, as a result of the perturbation, is reported as a root-mean-square
error from the original values. In this analysis, the model was found to be
insensitive to small changes in the initial segment configuration, with a
similar result for a small increase of 18. Likewise, to assess the sensitivity
of the model output to the initial segment angular velocities, each of the
latter is decreased by 18s�1 while keeping the initial segmental configuration
constant. This is repeated for a small increase in the parameters by the same
magnitude. The results of the perturbation also indicated that the model
output is insensitive to such changes except for the hand segment. Overall,
the results imply that the model is generally robust to these measurement
errors and this increases the confidence level in the optimized parameters.

17.8 Conclusion

Computer simulation entails the use of a validated mathematical model, to
evaluate the response of the model to changes in the input parameters of a
system being investigated. The application of simulation models to sports
movements can ensure that the results are due to the interventions intro-
duced. When used iteratively to determine parameter values or control
variables against some performance criterion, it enables the incorporation
of some optimum techniques. Mathematical formulations of modeled situ-
ations are generally of standard methods, although some are more elegant
than others. However, the different methods used should not influence the
outcome of the results. Evaluation of a model is thus important, as it
provides evidence for the appropriateness of the outcome of the model.
Evaluation is typically done by comparing the output of the model from
some appropriate input data, against data collected experimentally or
derived hypothetically.

Sensitivity analyses show how sensitive an optimum solution is to the
calculated parameters. It is a powerful tool that can be applied to simulation
models, in order to increase the level of confidence in the results obtained. It
is done by perturbing the optimized results via introducing small changes to
the values, and determining if the optimization process returns the para-
meters to the optimized value.
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We have illustrated a dynamic optimization technique applied to deter-
mine an optimal Yurchenko layout vault technique for an individual gym-
nast, based on current performance capabilities [30,31]. The outcome of the
optimization is a superior technique to the actual vault performed based on
the judging criteria used in international competitions. The optimized vault
has a greater flight height after horse impact as well as a more extended
body than the actual performance. However, the technique requires a higher
angular velocity at impact with the horse and thus greater angular momen-
tum at impact. In addition, increased shoulder flexion is reported, and a
‘‘blocking’’ technique during horse impact has been identified that pro-
duces greater the vertical horse takeoff velocity than the data. The observa-
tions suggest that an effective blocking technique, a high flight angular
velocity prior to horse impact, and an appropriate body-segment configur-
ation at horse impact are key ingredients for a high scoring Yurchenko
layout vault.

Appendix

With reference to Figure 17.3 and the conventions used, if the distal end of a
segment’s coordinate is known, say (xe, ye), as indicated in Equation 17.10 of
the text, then the segment CM position can be expressed geometrically as
follows:

For the x-coordinate,

CMx ¼ xe þ l1 cos u1 þ � � � þ ln�1 cos un�1 þ rn cos un

Similarly, for the y-coordinate,

CMy ¼ ye þ l1 sin u1 þ � � � þ ln�1 sin un�1 þ rn sin un

For the distal end of the leg segment, the expression simplifies to

[(xe þ l1 cos u1 þ � � � þ ln cos un,ye þ l1 sin u1 þ � � � þ ln sin un)]
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A

ABAQUS finite element package, 315
Actin filaments, 87
Actin–Myosin filaments, 73, 88, 107
Active elastance (Ea), of LV, 51–52

as contractility index, 59–60
Airflow flow rate curve, 148
Airflow resistance (Ra), 205–206
Alveolar air composition, 179–180
Alveolar-wall displacement, 157
Alveoli, 153, 155, 174–177, 180,

183, 202
Angiography, 52
Angle of attack, 454, 491–492, 507
Angular velocity, 425–427, 429–430,

433, 435–436, 438–442,
446–448, 457, 470–473,
507, 510

Annulus fibrosus (AF), 381–382
Anterior fixation

dynamic compression plate of,
375–376

requirements for, 376–378
Anthropometric measurements

investigating dynamics of joint
torque for, 505

models for, 498
Antinodal points, 136–137, 139
Aorta

blood flow and volume
input during ejection phase,

116–117
diastolic and systolic pressure

expression, 13
elasticity, 12
inflow rate I(t), 116
NDI, 12
peripheral resistance, 12

pressure response, 12
resistance to flow in, 115
schematic variation of pressure

during cardiac cycle, 117
volume elasticity of, 12

Aortic number, 14
Aortic pressure–time profile

determination, 113–123
application, 122
coefficients a and b, determination of,

119–120
diastolic pressure Pd(t) and systolic

pressure Ps(t) analysis,
117–118

model parameters m and l,
determination of, 119–121

pressure P2, determination of, 118
validation of, 122–123

Aortic stiffness (arteriosclerosis)
measurement

clinical measure of, 124
elasticmodulus (E) vs. wall

stress (s), 124
pulse-wave velocity (PWV=Vp),

124–125
Aortic valve biomechanical model,

32–39
Arterial bifurcation, 130–133
Arterial branching, 132–133, 140
Arterial compliance, defined, 125
Arterial impedance, concept and

implication of, 124–129
Arterial wall stress and elasticity, 11
Arteriosclerotic nondimensional

index, 11
Asthma, 8, 153
Auscultation process, 29, 119
Automatic neuropathy, 223
Ayurvedic medicine, 114
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B

Back pain
percutaneous nucleotomy in, 392
treatment by denucleation, 382

Ball’s launch parameters
range, hang time, and ground

time, 473
velocity, angle, and spin rate, 470–473

Baseball
batting, mechanics of (see Bat–ball

collisions)
pitching, mechanics of

deflection, 448–449, 454–457
forces acting, 451–454
somatic metaphors of pitchers,

458–459
spin-induced deflection force,

454–455
spinning ball, right-hand rule and,

447–448
Baseball Bat–ball collisions

bat–ball offset
backspin rate, 471–472, 476
definition, 467–468
range and hang time for,

471, 473–474
coefficient of restitution, 464–465
model for

bat–ball offset, 468–478
batted-ball behavior, 473–475
components, 467–468
ground time, 473–474
launch parameters, 470–472
launch velocity, 467, 470–473, 476
performance criterion, 477–478

performance criterion, 465–466
probability of, 466
sweet spot, 459–464

vertical size of, 466–467
Basketball foul throw analysis,

439–441
motion trajectory, 439
trajectories for different throw

parameters, 441
trajectory parameters, 440–441

Bat Chooser, 478
Bat swing, see Swing of bat
Batting success probability function,

473–475

Bending analysis of bone
composite beam theory and, 310–312
plate assembly, 312–315

Bending experiments, of straight plate
and fractured bone fixation
assembly, 330–334

Bending strength (BS), 359–360
Bernoulli theorem equation, 24, 28, 46
Bessel function, 36
BGCS model, see Blood glucose-insulin

control system model
BGIRS, see Blood-glucose
Biomechanical model of gymnastics

vaulting
computer simulation of, 490–491
influence of musculo-skeletal

structures on performance
of, 501

Biomechanical simulation, of gymnastics
vaulting, 491–494

Biomechanics, 24
Blood-gas concentrations, in pulmonary

capillary, 181
Blood-glucose

concentrations
diabetic patients, 10
hysteresis-type loop, 259
normal and hypertensive subjects,

254, 256–258
normal patient’s data, 9
oral glucose tolerance test

(OGTT), 9
overdamped glucose

concentration response
function, 10

underdamped glucose
concentration response
function, 9

and insulin regulatory system
block diagram of, 224–225, 228,

231–232, 279–280
differential equations governing,

280–281
regulation of, 220–222

Blood glucose control system model for
OGTT simulation

parameter identification
diabetic subject for, 267, 272–273
normal subject for, 265–267,

270–272
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simulation
damped response model for

OGTT simulation, 261–265
of response curve, 259–261

Blood glucose regulation (proportional
þ derivative) feedback control
system model, 263–264

Blood-pool compartment (BPC), 239,
259, 283

Blood sugar level, 224
Body-segment parameters (BSP)

center of mass
position=displacements of, 492

orientation of, 500
position and alignment of, 503

Bone–plate assembly
in fracture fixation, 336
in internal fixation, 311

Breathing rate, 7
Bronchi, 174
Budget index for hospital, 19
Bullets, kinetic energy of, 466
Burst fractures

fixation technique for, 374–376
surgical treatment goal in, 374
vertebral body of, 373

C

Cane stool, 370–371
Carbon dioxide

dissociation curve for, 185, 189–190
production rate for, 174, 176–184

Carbon fiber reinforced polymer (CFRP),
313–314, 329

Cardiac-fitness index (CFI), 6
applications of, for fitness

evaluation, 402
fitness assessment model

DEq model of, 400
sample response in, 401

HR responses in, 401–402
Cardiac-fitness model, 4–5
Cardiology logic, 24
Cardiomyopathy, 223
Cardiovascular fluid-flow regime,

Reynold’s number of, 2
CE force and shortening-velocity,

106, 108

Center of mass (CM)
linear velocities, 492, 500, 508
position, 492, 494, 498, 510

Center of percussion (CoP), 463
definition of, 459
determination methods, 460

pivot point of bat, 459–460, 462
Center of pressure (COP), 494
Cineventriculography, 69–70, 78, 86
Circumferential wall stress in LV

models, 26, 71
Coefficient of restitution (CoR), 446, 452,

464–465
baseball–wall collision of, 464–465
bat–ball collision of, 465, 473,

479, 483
definition of, 461, 464–465
trampoline effect, 465

Composite arterial flow pulsewave
oscillation, 138–139

Composite arterial pressure wave,
135–139

Composite beam theory, 306
Computed stride frequency (CSF)

expression for, 413
vs. PSF, 413–414

Computer model of gymnastics
vaulting, 490, 494, 505

Computer simulation of gymnastics
vaulting, 490–493, 509

Conservation of momentum, 447, 470,
478–479

Contractility of left ventricle, 45, 68–69,
71, 76–77, 82, 84, 100, 105, 108,
110, 122

index, 59–61, 68–110, 117
Conventional inverse dynamics

method, 497
COPD patients, lung ventilation

response to assess lung status
lung compliance (Ca) and airflow

resistance (Ra), 205–206
lung ventilatory index, 207–213
scope and methodology, 200–201
variation in Ca and Ra of SEPs and

UEPs, 211–212
ventilatory mechanics, 201–205

Cuff auscultatory method, 118
Cuff sphygmomanometry,

119–122, 123
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Curveball
spin direction of, 449–450
vertical and spin axis, 453–454
vertical deflection, 455–457
vs. slider

spin axis and direction of motion,
angle between, 454

spinning, 453–454
Curving soccer kick, mechanism of, 425

D

Damping parameter (in free-swinging
leg motion model),
414, 419–421

DBI, see Nondimensional diabetes
index

Dead space air composition, see expired
air composition

Diabetes mellitus
blood glucose regulation, 220–222
classification, 222–223

Diastolic pressure Pd(t) analysis, 117–118
Differential equation model (DEq

model)
BGIRS of, 279–280
clinical applications

critically damped category,
288–290

overdamped category, 288
underdamped category, 286–288

glucose-insulin system, 224–229
glucose–insulin system model

equations
Laplace transform of, 281–283
parameter evaluation of, 286–288
regulatory coefficients of, 280–281

for glucose response to glucose bolus
ingestion, 283–285

HR response for excercise on
treadmill, 400–402

Diffusion coefficients DO2
and DCO2

,
determination, 192–193

Disc height (h), 388
Disc herniation, 391–392
Disc (stress–displacement) model

analysis
boundary conditions in, 386–388
stress–strain relations of, 384–388

Distal ends of segments, 495, 498
Distal joint forces, 499
Doppler echocardiography, 29
Double-compound pendulum model

(of jogging simulation)
lower limb

computed stride frequency of, 413
free body diagrams of, 411
natural frequencies of, 410, 412

Drag coefficient (Cd), of spinning
baseball, 452, 457

Drag force, on spinning baseball, 451,
458, 473

Dual compression contourable plate
(DCCP), 335

Dual-photon absorptiometry, 16
Dynamic compression plate (DCP),

330, 375
Dynamic optimization technique,

500, 510
precision of joint torques for, 500
use of, 492

E

Ea,max, as Contractility Index, 60
Echocardiography, 14, 29–30,

33, 120, 123
Echo-intensity profiles

(of myocardium), 40
Echo-intensity values, for anatomic

regions of normal pediatric
hearts, 42

Ejection phase
aortic pressure during, 114–115
MSU dynamics, 94–95

Elastances, concepts of, 49, 54
Elasticity disc model, 384
Elasticmodulus (E) and wall stress (s) of

aorta, 124
Elliptical zone modeling technique, 494
Emphysema, 8, 153–154
Expired air composition, 176–177, 179

F

Fastball
and curve ball, 454–455
major league pitches, 452
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overhand, 449–450, 458
spin axis direction of, 449–450
vertical and spin axis, 449, 453

Fdrag, see Drag force, on spinning
baseball

Fiber pitch angle (a) of LV myocardium,
90–91

Fick’s law of diffusion, 176
Finite element analysis, of bone fracture

fixation
by helical plates, 329–353
by straight plates, 315–329

First heart sound (FHS), 14, 29–32
Fitness assessment model

HR response
definition of, 400
treadmill exercise for, 400–401
workloads, 402

Fitness evaluation, 402; see also Cardiac-
fitness index (CFI)

Flexural stiffness (EI) of ulna bone, 16
Flexure-bending moment equations,

313, 354
Forces, on ball in flight

drag, 451
lateral, 453

Fractured bone
attachment by screws, 310
fixation by helical plate, modeling of,

329–353
fixation by straight plates, 315–329

Fracture-fixed bone
plate assembly, 306–307
with stiffness-graded plate, 319–329

Fracture gap movement (in bone
fracture-fixation), 330,
340, 344, 348

Free-body diagram, 494, 496
Free-swinging leg motion model (to

evaluate hip joint status)
free damped oscillatory motion

amplitude of oscillation of, 418
damped angular frequency in, 417
damped oscillations period of, 417
damped oscillatory response

in, 419
damping parameter in, 420
hip joint parameters in, 421
phase angle in, 418–419

undamped angular frequency
in, 414

underdamped harmonic motion
in, 419

overdamped oscillatory motion of,
422–424

simple–compound pendulum model
of, 404–406, 414

simulation as cylindrical simple–
compound pendulum, 404–405

Functionally graded materials
(FGMs), 316

Functionally graded plate stiffness, role
in bone-fracture fixation,
315–316

G

Galerkin-weighted residual
procedure, 45

Gas transfer, between lung alveoli and
pulmonary capillaries, 174–176

Gastrointestinal tract
and blood-pool system

glucose response, 260–261,
282–283

Laplace transform format of
governing equations, 263,
281–282

intestinal glucose absorption rate,
259, 282

mechanisms of, 259
model to simulate

OGTT data, 260–265, 283–285
model governing equations,

261–262, 282–283
model solutions, 264

motility disorders, 223
Gaussian elimination method, 45
Generated wall stress (GWS), 70–71
Glucagon, 221
Glucose and insulin responses

concentration–time profiles, 277–279
differential equation model

blood glucose-insulin control
system (BGIRS), 280–281

critically damped patients,
288–290
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glucose bolus ingestion response,
283–285

Laplace transform format of
governing differential
equation, 281–283

oral glucose tolerance test, 280
overdamped category patients,

288
system parameter estimation of,

285–286
underdamped category patients,

286–288
nondimensional index

GNDI, INDI and NDI, 290–296
patient characterization, 292–294

Glucose Bolus ingestion response
(in OGTT), 283–285

damped oscillation frequency in, 283
solutions for, 284–285

Glucose concentration, see Blood-glucose
Glucose-insulin dynamics modeling

background
blood glucose regulation,

220–222
classification of diabetes, 222–223
history and prevalence

of diabetes, 220
block diagrams

blood glucose-insulin regulatory
control system (BGCS) model,
231–232

control-system derivation and
representation, 232–234

glucose responses to
glucose input functions, 234–240
rectangular-pulse glucose input,

238–240
step function glucose input,

234–236
unit-impulse glucose input,

236–238
hydraulic analog of insulin-glucose

regulation, 232
insulin responses to

impulse glucose input, 242–243
rectangular-pulse glucose

input, 243
unit-step glucose input, 240

intravenous and oral glucose
tolerance tests, 223–224

linearized biomathematical model of
Bolie, 223–224

model characteristics, 243–247
normal glucose level, importance of,

223–224
physiological model of, 228
physiological significance, 243–247
regulation model

differential-equations, 224–229
Laplace transform equations,

229–231
transfer functions, 249–250

Glucose regulatory models, 254
Glucose response solution

overdamped response, diabetic
subject, 264–265, 267

underdamped system, normal
subjects, 264–267

GNDI
formulation of, 291, 295
patient categorization of, 292–294

Ground reaction force (GRF),
494, 496–497

Ground time, 467, 473–474
Gymnastics vaulting, biomechanical

simulation studies of, 491–494

H

Handspring vault, kinematics of
preflight for, 491

Hazony and Riley rules, on residues, 239
Healthy disc deformations

mechanism and computation of,
390–391

stress analysis, 388–390
Heart rate (HR), 397

response to oxygen-consumption
rate, 5–6

Heart-sound power-spectral frequency
profile, 33

Hecht vault, preflight requirements
of, 491

Helical plate fixation (of fractured bone),
335, 342, 344, 348, 351, 355

Hemihelical plate (HHP)
fractured bone assembly, 334
internal bone fracture fixation,

features of, 329
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straight plate bone fracture fixation
experimental observations of,

334–339
finite element analysis of, 339–353

Hip joint characteristics evaluation
application of

leg oscillation frequency, 421–422
oscillation period in, 421
overdamped oscillatory motion in,

422–424
patient’s hip status in, 424
simple–compound pendulum

(plus viscous damping) model
of free-swinging leg analysis,
414–421

free-swinging leg, free damped
oscillatory motion of (to assess
hip joint status), 414–421

amplitude of oscillation of, 418
damped angular frequency in, 416
damped oscillations period of, 417
damped oscillatory response

in, 419
damping parameter in, 420
hip joint parameters in, 421
natural oscillatory frequency

in, 421
oscillatory displacement and

period for, 419
phase angle in, 418–419
undamped angular frequency

in, 414
underdamped harmonic motion

in, 419
Hip joint torques, 505
Hospital Budget Index, 19
Horse-impact phase, of gymnastics

vaulting, 491
Hydroxyapatite (HA), 378
Hyperboloid (HP) shell model of

vertebral body
construction of, 361–362
membrane equation for, 363
stress analysis of, under

bending moment, 366–368
torsional loading, 368–370
uniaxial compressive force,

364–366
stresses acting on, 362–364

Hyper-reflectile echoes (HREs), 40

I

ICU cost-effectiveness index (CEI),
18–19

ICU performance indicator, 17–18
Impedance load, arterial tree, 126
Incident and reflected (arterial pressure

pulse) waves, in a phase,
135–139

INDI
formulation of, 291–296
patient categorization for, 292–294

Indices
for characterization of aortic stiffness

(arteriosclerosis), 11
determination of osteoporosis, 16–17
ICU performance, 18
left-ventricular (LV) pumping

efficiency for, 3–4
lung ventilatory performance index

(LVPI), 7–8
LV contractile power, 100
mitral valve (MV) characterization,

14–16
monitoring of cardiac fitness and

conditioning, 4–6
noninvasive determination

aortic elasticity (m), peripheral
resistance (R), and aortic NDI
of, 12–14

oral glucose tolerance test
(OGTT), 9–10

Inspired air composition and partial
pressures, 177

Insulin-dependent diabetes mellitus
(IDDM), 222–223

Insulin vs. glucose concentration
hysteresis-type loop, 257–259
normal and hypertensive

subjects, 259
Insulin sensitivity parameter, normal

and diabetic patients, 254–255
INTEGRIS Allura 9 system, 53, 78
Interfragmentary compression, internal

fracture fixation by, 306
Intervertebral disc (IVD)

annulus fibrosus and nucleus
pulposus, 382

axial stress (sz), 384–385
deformation determination
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under compressive loading, 385,
388–390

healthy disc, 388–390
mechanism and computation of,

390–391
in nucleotomized disc, 394

denucleated, 382
disc model analysis of

boundary conditions in, 386–388
strain–displacement relations in,

385–386
as thick-walled internally-

pressurised cylinder under
compression loading, 388

displacements, 384–388
equilibrium equations, 385–386

nucleotomized disc model of
determination of, 394
elasticity model of, 384
Hook’s law in, 393–394

optimal structure
radial displacements in, 393
spinal model of, 383

as an optimal structure, 383–384
stresses

normal, 388
radial, hoop, and axial, 385–387,

390, 393
torsion of, 383

Intra-LV flow velocities
analysis of, 46–47
during diastolic filling, 47–49

Intra-LV pressure distribution, analysis,
46–47

Intramyocardial stress (in LV),
(ds*=dt) max, 69

Intra-venous glucose tolerance test
(IVGTT), 221, 254–259

methods of performing, 254
patient data, BGCS model parametric

determination from, 254–259
hypertensive patient, 255–259
normal subject, 255

Inverse dynamics (gymnastics vaulting),
497–498, 500, 505

Ischemic and infarcted LV myocardial
segments, detection of, 40–44

Isoamplitude curves, of aortic valve
sector membrane, 33–35

Isovolumic contraction and ejection
phases, of left-ventricle, 3–4,
95–96

J

Joint reaction forces (gymnastics
vaulting), 496

K

Kinematic–kinetic relationships
(gymnastics vaulting), 490

Kinematic performance data
(gymnastics vaulting), 505

Kinks, 223
Knuckleball, 446, 452
Kutta–Joukowski law, 427
Kutta–Joukowski lift theorem, 453

L

Laplace law, for (LV spherical model)
wall stress, 25

Laplace transform
GI tract and blood-pool system, 263,

282–283
glucose and insulin response

modeling, 281–283
glucose-insulin system, 229–231

Lateral acceleration and lateral force on
spinning soccer ball, 430

Lateral=transverse force on spinning
soccer ball, 427

Left-footer kick, geometry of, 435–436
Left-propagating arterial pulse waves,

127–128
Left-ventricle cylindrical model, 85–87
Left-ventricular cavity, estimation of,

69–70
Left-ventricular cycle four stages, 4
Left-ventricular (LV) mechanics

myocardial infarction, 25–29, 41
pressure-drop across a stenotic AV,

analysis, 24–27
pressure dynamics, in terms of LV

passive and active elastances
clinical applications, 52–59

Ghista/Applied Biomedical Engineering Mechanics DK8315_C018 Final Proof page 520 29.5.2008 5:49pm Compositor Name: TSuresh

520 Applied Biomedical Engineering Mechanics



concepts of elastances, 50–52
contractility index, 59–62
LV suction phenomena, 60–62
pressure variation phenomena, 62
scope, 49–50

valve disease, noninvasive diagnosis
analysis of intra-LV flow

velocities, 46–47
aortic valve biomechanical model,

32–39
background, 29
detection of ischemic and

infarcted LV myocardial
segments, 40–44

finite-element analysis of blood
flow in the LV, 45–46

heart-sound spectral frequencies,
32–33

intra-LV flow during diastolic
filling, 47–49

mitral valve biomechanical model,
29–32

valve leaflet pathology, 39
vibration analysis of aortic valve

leaflet, 35–37
Left-ventricular (LV) pumping

efficiency (e), 3
Left ventricular pumping role, 68
Leg model, damped oscillatory response

of, see Free-swinging leg
motion model (to evaluate hip
joint status)

Leg (swinging motion) oscillation
frequency ( f ), 421–422

Linear velocity vector, 446–448
Locking compression plate (LCP), 353
Locking-screw mechanism, for holding

bone during loading, 341
Lower limb, natural frequency analysis

of, see Double-compound
pendulum model

Lumbar VB, see Vertebral body (VB)
Lung compliance, 7, 199, 201–202,

205–207, 213
Lung cyclic pressure profile, 7
Lung fibrosis, 153–154
Lung gas composition and transfer

analysis
alveolar air composition and partial

pressures, 179–180

case studies, 194–196
diffusion coefficients DO2

and DCO2
,

determination, 192–193
expired air composition, 179–180
gas transfer between lung alveoli and

pulmonary capillaries,
174–176

nondimensional gas-transfer index
(NDGTI), 197

O2 and CO2 exchange capacities
190–192

differential partial pressure
expressions, 190–192

diffusion coefficients, 180–186
partial pressure expressions,

186–190
O2 consumption and CO2 production

rates, 176–180
respiratory system, 174

Lung improvement index (LII), 201, 208
Lung inspiration–expiration cycle,

149–151
Lung pressure, 148–149
Lung ventilation modeling

COPD patients
lung compliance (Ca) and airflow

resistance (Ra), 205–206
lung improvement index (LII) and

rate of lung improvement (m),
213–215

lung ventilatory index, 207–213
scope and methodology,

200–201
ventilatory mechanics,

201–205
first-order differential equation

model
clinical data, 147–148
lung volume (V) response to

driving pressure, 148–149
linear first-order differential equation

model, 149–153, 165–167
second-order model for single-

compartment lung model,
157–162

two-compartmental first-order
ventilatory model

analysis, 162
governing equations, 160–162
model parameters, 161–165
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right lung with flow-rate
resistance problems, simulation
of a, 164

stiff right lung (with compliance
problems), simulation of a,
162–163

ventilatory index, 153–154
work of breathing (WOB), 155–157

Lung ventilatory cycle, 149
natural frequency of, 158

Lung ventilatory index
characteristics of, 208–210
comparing the efficacies of Ra and Ca

with, 210–212
as reliable predictor of ventilator

discontinuation, 212–213
Lung ventilatory index variation

(LVIV), 208
Lung ventilatory performance index

(LVPI), 7–9
Lung volume (LV)

and driving pressure, 148–149, 152,
165–171, 201–202

ventilatory-response and lung
inflation pressure, 7

LV contractility (CONT), 45, 76
LV normalized wall-stress based

contractility index, 71
LV sarcomere contractile characteristics

and power index, 85–110;
see also LV shape-based
contractility index; myocardial
structural unit (MSU) model

CE performance characteristics,
computation of, 105–106

clinical applications and results
evaluation of model parameters,

101–103
FCE and x2 and suction effect,

determination, 103–104
TMSP and MSPI, computation of,

100, 104–107
FCE and x2 and physiological

implications
contractile power index, 100
determination, 98–99
power generated, 99–100

LV shape-based contractility index
clinical applications

clinically monitored data and
computed parameters for, 80

comparison of EF, MV (wall
volume), and V(se), V(ee),
81–82

comparison of S at end systole,
(dP=dt)max, SFI1, SFI2, 83

contractility index based on
normalized wall stress, 70–71

ellipsoidal model, 71
measurements, 78
model wall stress, 70–71
normalized wall stress

(s*¼s=P), 69
results, 78–84

determination of LV model wall
stress, 70–71

model geometry development, 69–70
optimally LV(s) vs. abnormal LV(s),

77–78
optimal shape factor and shape factor

index 2, 73–77
shape-factor index, 71–73

comparison with traditional
invasive LV (dP=dt)max, 84

LV suction phenomena, 60–61

M

Magnus force, 451, 453, 456, 473
definition of, 446–447
model, 447, 476

Michaelis–Menten equation, 259–260
MISER3, 501, 505
Mitral valve (MV)

biomechanical model, 29–32
leaflet membrane model

modulus, 15, 32
stress analysis, 14, 30
vibrational model analyses, 30–32

property characterization, 14–16
Model evaluation, 490, 500–502
Moment of Inertia

bat with respect to knob, 462, 464,
482–483

center of mass, 483
ideal, 482–484

Moments of force, 494
Motor protein II, 88
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Multilinked rigid body system, 496
MV membrane

nondimensional constitutive
parameter (m) of, 15

primary-mode vibrating frequency of
the semicircular, 31

MV primary-mode vibrational
frequency ( fmv), 30–32

MV vibrational equation, 31
Myocardial fibers

axial pitch (u) between, 90,
determination

fiber density, length, and force,
88–89

fiber pitch angle a, 90–91
torque imparted to the LV by fiber

contraction, 91–92
development of active force

(FCE), 89
equilibrium of fiber force and LV

pressure, 90–91
instantaneous length (lt) of, 89
during systole, 73, 88–89
torque imparted to the LV by

contraction, 91–92
wall stress (s) generated, during

contraction, 73–75
Myocardial infarct (MI)

due to valvular disorders, 25–27
and hydraulic load on the LV, 140
influence on stroke volume and

cardiac output, 28–29
O2 supply–demand mismatch

and, 26
Myocardial ischemia and infarct,

26, 40–43
Myocardial sarcomere instantaneous

power (MSP), 99
Myocardial structural unit (MSU)

model, 87–88
dynamics

equation for ejection phase,
96–97

equation for isovolumic
contraction phase, 95–96

evaluation of model
parameters, 98

governing differential equation,
92–95

N

Nephropathy, 223
Net joint torque, 499
Net muscle moments, 494, 496, 499
Neuropathy, 223
Neutral axis (NA), at fracture

interface, 310
Newton’s laws of motion, angular

motion equivalent of, 495
Nitroglycerin, 46–49, 62, 140
Nodal points, 136–139
Nondimensional constitutive parameter

(m), of MV, 15
Nondimensional diabetes index, 10
Nondimensional gas-transfer index

(NDGTI), 197
Nondimensional index (NDI)

blood glucose response for,
291, 295

insulin response for, 295
patient classification for

diabetic, 293
normal, 292
at risk of becoming diabetic, 294

Nondimensional physiological indices
(NDPIs)

concept, 2
formulation for physiological systems

characterization of aortic stiffness
or arteriosclerosis, 11

determination of osteoporosis,
16–17

for left-ventricular (LV) pumping
efficiency, 3–4

lung ventilatory performance
index (LVPI), 7–8

mitral valve (MV)
characterization, 14–16

monitoring of cardiac fitness and
conditioning, 4–6

noninvasive determination of
aortic elasticity (m), peripheral
resistance (R), and aortic NDI,
12–14

oral glucose tolerance test (OGTT),
9–10

Nondimensional physiological
number, 2
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Noninsulin-dependent diabetes mellitus
(NIDDM), 222–223

Nucleotomized disc model analysis
deformation determination of, 394
geometry of, 392–393
stress analysis of, 393–394

Nucleotomy, 392
Nucleus pulposus (NP), 382, 390

O

O2 and CO2 exchange capacities
alveolar to capillary differential

partial pressure expressions,
190–192

diffusion coefficients, 180–186
partial pressure expressions, 186–190

Objective function
control variables that minimize or

maximize, 492
derivation of, 503
of optimal control problem, 502–503

Obstructive lung disease, 153–154
O2 consumption and CO2 production

rates, 176–180
Optimal jogging frequency

analysis of double-compound
pendulum model of the leg,
410–413

least tiring–jogging mode in, 409
methodology for, 409–410
natural frequency analysis in, 410

computed natural frequency
in, 413

CSF vs. PSF in, 413–414
frequency equation of, 412
modeling in, 410–411

natural oscillation frequency in, 409
PSF in, 409

Optimal-S line, 75
Optimal walking modality

SF analysis
cylindrical simple–compound

pendulummodel of the leg, 405
natural angular frequency of

oscillation of, 405–406
optimal, 406
simple–compound pendulum

model of, 404–405

SL analysis
legs orientation in, 407
optimal SL determination in,

407–408
Optimization criteria (gymnastics

vaulting)
definition of, 492–493, 502–505
postflight height and distance, 492

Optimization studies (applied to
gymnastics vaulting)

computer model, 494
definition of criterion for, 502
ideal states for sports

performance, 500
optimum technique for Yurchenko

layout vault, 503, 510
simulation models to sports

movements, 490, 492
vault performance for, 494

Optimized vault, technique of, 506–508
Optimum natural design

of femur cortical bone, 359–360
of inter-vertebral disc, 383–384
of vertebral body shape, 370–372

Optimum techniques, 492, 509
Oral glucose regulatory model, 263
Oral glucose test protocol, 254–259, 276
Oral glucose tolerance test (OGTT), 9–11,

221, 223–224, 259–268, 283–285
diabetic patient, model simulation

for, 267, 272–273
glucose-insulin regulation modeling,

280
glucose response simulation of

normal patient, 265–267,
270–272

model equation, 268–270
model-simulation of glucose

response curve
damped response, 261–265
glucose dose, impulse and

ingested, 260–261
parameter identification

BGC, diabetic patients and normal
patients, 266–267

Oscillating alveolar volume, 157
Oscillating pressure profile, 202
Oscillation displacement, 419
Oscillometric measurement

methods, 114
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Osteoporosis, 16–17, 310
Osteoporosis index (OI), 16–17
Osteosynthesis using hemihelical plates,

mechanics of, 329–330
Overdamped glucose response

function, 10
Overhand fastball, 450
Oxygen dissociation curves, 184, 189
Oxygen uptake, by the pulmonary

capillary blood, 191

P

Pancreas, 220–222, 224–226, 232, 257,
264, 279

Paraplegic patient, 377
Passive elastance (Ep), of the LV,

50–51
Peak pressure (Pk), 203, 205–207
Penalty function, 492
Peripheral resistance, 126
Physiological health improvement index

(PHII), 17
Physiological health indices (PHIs), 2
Pitcher, performance criteria for, 466
Pitches, deflection of fastball, curveball,

and slider, 448–451
Pitch speed, 446, 452, 456, 465–466, 475
Pivot point, of bat, 459–460, 462–463
Plane-strain elements, 318
Plate–bone interface, 310, 314,

318, 351, 354
Plate-reinforced fractured bone under

bending, 310
Plate screws of internally fixed bone,

analysis of forces in, 307
Pleural pressure, 7, 147–148, 155, 201
Poisson’s ratio, of the valve leaflet

material, 31
Polymethylmethacrylate (PMMA)

cement, 378
Postflight height and distance, as

primary objectives of
vaulting, 492

Prandtl stress function, 34
Preferred stride frequency (PSF), 409,

413, 415, 421
Preflight trajectory (applied to

gymnastics vaulting), 491

Pressure-drop across stenotic AV,
analysis, 24–27

Pressure dynamics in LV
ejection phase, 58–59
filling phase, 56–58

Pressure expressions
in aorta, 13
in lung during respiration, 145–149

Pressure variation phenomena in LV, 62
Proximal distance, 496
Proximal joint forces, 499
Pulsatile flow phenomenon, 124
Pulse-wave velocity (PWV=Vp), 11, 124

R

Range, 209, 214, 446, 468,
471–476, 483

Rapid shallow breathing index
(RSBI), 200

Reaction forces, 494–496
Reflected pulse-wave

amplitude, 133
Reflection coefficient (Rf), 128, 130
Respiratory dysrhythmias, 223
Respiratory system, 174
Retinopathy, 223
Reynold’s number of cardiovascular

fluid-flow regime, 2
Rezaian spinal fixator

biomechanics of, 377
disadvantages of, 377

Right-hand rules (for spinning baseball
pitching)

angular, 447–448
coordinate, 447, 449
for lateral deflection, 457
spin-induced deflection, 458
and vector product, 447

Right-propagating arterial pulse
waves, 127

Rigid-linked model, 494
Ronaldinho goal in 2002 World Cup,

analysis of, 436–439

S

Sarcomere actin–myosin filaments, 88
Sarcomere shortening, 88, 104
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Screwball, 450, 455, 458
Second heart sounds (SHSs),

32–33, 38–39
Sensitivity analyses, 508–509
SF analysis, see Stride frequency analysis
Shape factor index, 71–73

optimal, 73–77
Simple–compound leg pendulum

model, 404–406, 414, 416; see
also Free-swinging leg motion

Single-photon absorptiometry, 16
SL analysis, see Stride length analysis
Slider

angle SaD, 454
vs. curveball, 454–455
major league pitches, 452
spin axis direction of, 449–451
vertical and spin axis, 453–454

Soccer kick
analysis of, 429–439
case study, 436–439
exemplification of theory, 432–436

corner-kick, 432–434
free-kick from top of the box,

434–436
lateral force expression, 427
lateral force on spinning ball, 426–428
spinning ball of, 426–428
trajectory of, 429–432

Spectral phonocardiography, 14, 44
Spinal disc model, 383
Spinal vertebral body

as intrinsically optimal structure,
358–360

Spine functions, 357–358
Spin induced deflection, 447–449,

454–459
Spinning ball trajectory

computation of, 432–436
lateral force on, 426–428
mechanics of, 425
motion of, 439

Spin rate, 446, 452–453, 456–458, 467,
470, 473

Spontaneous breathing trial (SBT), 200
Springboard takeoff velocity, 491
Stark, L., 458
Statham P23Eb pressure transducer,

52, 78

Static deformation, of AV membrane
sectors, 33

Stenotic AV, pressure-drop changes
across, 24–25

Stiffness-graded plate, 315–320,
329, 354,

Stimulation model, of HR(t) response to
VO2(t), 5–6

Straight plate fractured bone
assembly, 334

Stress analysis
healthy disc deformations

applied force (F), 388
axial stress (sz), 389–390

Stresses
arterial wall, 11
in mitral valve leaflet membrane,

14, 31
on plate and screws, 348
shielding, 306–307, 310, 315,

318, 320, 325, 327–329,
348–351, 354

strain relation, of myocardial muscle
strip, 50

wall (s), in a pressurized sphere, 26
variations for the LV spherical thick-

walled model, 27
Stride frequency analysis, 404–406;

see also Optimal walking
modality

Stride length analysis, 406–408; see also
Optimal walking modality

Stroke volume (SV), 12, 29, 89,
110, 125, 193

Sweet spot
coefficient of restitution area, 461
C243 wooden bat, 462–463
energy loss area, 462
energy transfer area, 461
hoop mode antinode, 461
Joy spot, 462–463
launch angle, 466, 470–473
minimum sensation area, 462
node of the fundamental mode,

460–461
typical bat properties, 464
vertical size of, 466–467

Swing of bat
ideal bat weight, 478–482
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moment of inertia, 462, 464,
478, 482–484

weight selection, 479–480
Synchronized intermittent mandatory

ventilation (SIMV), 200
Systole and myocardial fibers, 73, 88–89
Systolic pressure Ps(t) analysis, 118

T

Takeoff speed, 491
Terminal cost, 504–505
Tidal volume (TV), 152, 203, 207
Tiring–jogging mode, 409
Titanium cage, VB, 378
Torque, to LV by fiber contraction, 91–92
Total myocardial sarcomere power

(TMSP), 100, 108
Trachea, 174–175
Traditional Chinese medicine, 114
Transfer function, of the governing

glucose-insulin system,
249–250

Translatory flow, circulatory flow
superimposed effect on, 426

Transverse force on the ball, 426
Transverse moment of inertia, of

segment about its CM, 496, 507
Two-dimensional B-scan

echocardiographic images,
of heart, 40

Type 1 and type 2 diabetes, 222–223

U

Ulna vibrations, natural frequency
( f ) of, 16

Ultrasonic echo-intensity, 40
Ultrasonic echotexture,

of myocardium, 40
Ultrasound, 16

V

Valve disease, noninvasive diagnosis
aortic valve biomechanical model,

32–39
background, 29

detection of ischemic and infarcted
LV myocardial segments,
40–44

diastolic filling, 47–49
finite-element analysis of blood flow

in the LV, 45–46
heart-sound spectral frequencies,

32–33
intra-LV flow velocities, 47–49
mitral valve biomechanical model,

29–32
valve leaflet pathology, 39

Valvular constitutive E(s) property, 32
Valvular disorders, 25–27
Valvular stenosis, 29, 44
Vascular biomechanics

aortic pressure–time profile
aortic diastolic and systolic

pressure, 115–117
application of, 122
coefficients a and b, determination

of, 119–120
diastolic pressure Pd(t) analysis,

117–118
model parameters m and l,

determination of, 120–121
pressure P2, determination

of, 119
systolic pressure Ps(t)

analysis, 118
validation of, 122–123

aortic stiffness (arteriosclerosis),
measure of

clinical measure of, 124
elasticmodulus (E) vs. wall stress

(s), 124
arterial bifurcation, 130–133
arterial branching, 133–135
arterial impedance and implication,

125–129
composite (integrated) arterial

pressure wave impacts, 135
peripheral resistance, 126–127
pulse-wave velocity in artery (aorta)

(PWV=Vp), 124
wave reflection of aortic pressure,

phenomenon of, 129–130
Vaulting (gymnastics), 491–494
Ventilator discontinuation, 199–201

LVI as predictor of, 212–213
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Ventilatory index, 153–154, 165
Vertebral body (VB)

burst fracture of
anterior fixation in, 375–378
characteristics of, 373
lateral and anterior fixator used in,

377–378
posterior fixators used in, 374
treatment goals of, 374

cortex, membrane stresses in, 362
membrane equation for stresses in

the cortex, 363–364
wall thickness of, 363

hyperboloid geometry of
generators in, 361–362
HP VB geometrical

parameters, 361
optimization of, 371–372
shell membrane theory in, 360

as intrinsically optimal structure,
358–360

optimal design
HB shape optimization of, 371–372
HP cane stool structure, 370–371

shape of, 360–363
stress analysis of

axial compression, 364–366
bending moment, 366–368
torsional loading, 368–370

Vibration analysis, of aortic valve leaflet,
35–37

W

Wall stress (s), in pressurized thick-
walled sphere
(LV model), 26

variations for LV spherical thick-
walled model, 27

Wall volumes, estimation, 69–70
Wave reflection phenomenon in artery,

129–130
influence on composite pressure

wave, 135–139
Work exertion (WE), measurement

of, 5
Work of breathing (WOB),

155–157

Y

Young’s modulus, of AV leaflet
material, 37

Yurchenko layout vault, 490–495, 500,
502–503, 505, 507–508, 510

Z

Zachman framework, 446
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P (t) Ventricular
pressure

P(t) Ventricular
pressure

LV power output
= (Psy– Ped)Vs/Ts

LV contractile power
=(Psy– Ped)Ved/(2Tisv)

Isovolumic
contraction

4

3

2

W

0
1, 6

5 Psy

Tisv

Te

4

3

5

Filling
stage

2 6 (1)

Pressure in the
left ventricular

chamber

Pressure in
aorta

Isovolumic
relaxation

The four stages of the left ventricular cycle

Ped

Ved

Vs
V(t)

4

3

2

E

0
1, 6

5 Psy

Ped

Ved

Vs
V(t)

FIGURE 1.2
Left-ventricular work (W), energy input (E), power output and input, and efficiency («).
(Adopted from Ghista, D.N., J. Mech. Med. Biol., 4, 401, 2004.)
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 yfx 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

 98 79 78 88 90 99 96 102 108 91 77 92 86 135 122 73 55

 99 114 115 101 114 126 128 114 116 119 126 82 68 84 103 78 57

 100 151 137 125 128 136 135 133 134 149 137 91 75 74 73 82 83

 101 175 177 171 151 144 143 154 147 138 142 139 139 126 64 76 71

 102 202 196 174 125 192 193 183 164 131 131 125 132 92 89 81 116

 103 139 143 183 193 206 217 233 248 209 146 116 102 111 113 117 116

 104 147 136 143 178 203 251 250 255 229 201 75 71 92 82 88 95

 105 108 110 132 151 210 223 227 249 255 255 230 210 104 87 81 112

 106 84 104 88 121 147 184 227 239 255 255 252 247 220 125 76 70

 107 83 110 108 122 135 175 194 183 206 228 211 255 255 184 141 131

 108 68 92 122 131 145 147 149 151 217 181 189 222 241 178 190 167

 109 56 76 81 122 132 137 145 143 154 150 156 156 195 190 206 190

110 76 63 96 96 82 83 103 120 142 128 133 141 153 181 192 194

 111 59 57 63 66 70 103 106 118 96 94 86 110 129 150 95 66

 112 58 60 59 57 58 61 71 77 106 89 91 92 110 147 97 85

 113 74 71 78 60 56 58 57 62 71 70 79 83 78 92 67 76

 114 57 57 65 63 57 56 63 56 51 56 58 80 85 78 67 55

 115 51 60 63 63 58 57 56 57 54 59 57 58 59 76 68 81

(a)

(b)

FIGURE 2.6
(a) Long axis 2-D ultrasonic view of a pediatric patient’s heart, showing highly echoreflectile
regions 1 and 2 and a healthy region 3. (b) Echocardiographic texture analysis, showing echo-
intensity levels from myocardial region 1. (Adopted from Figure 2 of Kamath, M.V., Way, R.C.,
Ghista, D.N., Srinivasan, T.M., Wu, C., Smeenk, S., Marning, C., and Cannon, J., Eng. in Med., 15,
137, 1986.)
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(a)

MSU MSU

Actin filament

Myosin
filament

FCE

m

k

Bv

m

k

SE

CE CE

VE VE

SE

x2
xT

x1=x2− xT

FSE

Bv

FCE FCE

FSE

Ft
Ft

(b)

Sarcomere

Myosin

Cross bridge Actin

FIGURE 3.12
(a) The actin and myosin filaments constituting the contractile components of the myocardial
fibril; (b) Myocardial fibril model composed of two symmetrical myocardial structural units
(MSUs), which are mirror images of each other. Each MSU is composed of (i) an effective mass
(m) that is accelerated; (ii) connective-tissue series element having parameter k (elastic modulus
of the series element) and the force FSE; (iii) the parallel viscous element of the sarcolemma
having viscous damping parameter Bv and force FVE; (iv) the contractile element (CE), which
generates contractile force FCE between the myosin (thick) and actin (thin) filaments. When the
contractile element shortens (by amount x2), the series element lengthens (i.e., x1 increases).
During ejection, the MSU xT decreases, and during filling the MSU xT increases. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T.,Mol. Cell. Biomech., 2,
217, 2005.)
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P

Ft

P Ft

a
a

aa Ft

2Ri

L

(a) (b)

Two fibers across the thickness; there 
are N /2 pairs of fibers oriented clockwise
and N /2 pairs of fibers oriented counter-

clockwise within the LV wall

 

(c)

FIGURE 3.14
(a) Equilibrium of fiber force and LV pressure on the top circular plane of the LV cylindrical
model. (b) Equilibrium of fiber force and LV pressure in the circumferential direction.
(c) Location of two sets of fibers across the LV wall thickness. (Adopted from Ghista, D.N.,
Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

m
k

Bv

x2xT
Center-line

x1 = x2− xT

Myosin
Actin

Ft FVE

FSE

FCE

FIGURE 3.15
Dynamic model of MSU having effective massm; k is the elastic modulus of series element; Bv is
the viscous-damping parameter of parallel viscous element; Ft denotes the total generated
force caused by the contractile stress FCE; FSE is the force in the series element [¼ k(x1þ x1ed)],
where x1ed is the deformation of the SE at end diastole; FVE is the force in the viscous element
(¼Bv _x2); x1 then represents the added deformation of the SE during systole (over and above
its deformation during the filling phase) due to the development of FCE. (Adopted from
Ghista, D.N., Zhong, L., Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech.,
2, 217, 2005.)
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0.5

0.4
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0.2

0.1

Time (s) from the start-of-ejection phase

x
T
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)

xT versus t for subject HEL
Curve fit
Prediction bounds

xT0 = 10.28 ± 1.71

ze = 6.50 ± 1.83

FIGURE 3.18
Computed xT(t) during the ejection phase (t¼ 0 corresponds to start-of-ejection): From the data
shown in Figure 3.17, we calculate the model xT during the ejection phase by using Equation
3.39, as shown by the round points in the figure. This data is now fitted with Equation 3.41. The
resulting values of the parameters (xT0 and ze) are shown in the figure and also listed in Table
3.4. Here t¼ 0 corresponds to the start-of-ejection. (Adopted from Ghista, D.N., Zhong, L.,
Eddie, Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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FIGURE 3.20
Computed results ofMSUmodel-dynamics terms x1, x2, xT, _x2, and FCE, for subjectHEL.Diastolic
phase: 0–0.32 s; isovolumic contraction phase: 0.32–0.4 s; ejection phase: 0.4–0.64 s; isovolumic
relaxation phase: 0.64–0.72 s. Here t¼ 0 corresponds to the start-of-filling. Note that FCE and x2
extend into the filling phase; t0¼ 0.04 s. (Adopted from Ghista, D.N., Zhong, L., Eddie, Y.K.Ng.,
Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)
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FIGURE 3.24
CE force (FCE)–velocity ( _x2) relationships for subjects HEL, DDM, and TPS. Of the three
subjects, the subject TPS has the biggest area encircled within the FCE versus _x2 curve, and
hence has the bigger contractile power input. (Adopted from Ghista, D.N., Zhong, L., Eddie,
Y.K.Ng., Lim, S.T., Tan, R.S., and Chua, T., Mol. Cell. Biomech., 2, 217, 2005.)

Data and fits

150

100

50

0

0

0

10

– 10

– 20
0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 0.05 0.1 0.15 0.2
Time (s)

Residuals

V
ol

um
e 

(m
L)

0.25 0.3

Data measured
Best-fit curve
Pred bnds

0.35

FIGURE 4.5
Plot of computed aortic volume versus time during the systolic phase of the aorta. The round
points represent the measured data, while the solid line represents the filled computed
volume curve for values of a and b given in Table 4.1. The prediction bounds define the
width of the interval with a level of 95%. The values of these parameters and the RMS 1
(root-mean-square error) are given in Table 4.1.
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FIGURE 4.9
Schematic of a typical arterial pressure waveform.

Airflow resistance is
higher during inspiration 

than expiration

The alveolar pressure (Pa)
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FIGURE 5.2
Lung ventilatory model and lung-volume and pleural-pressure data. In the bottom figure,
graph 1 represents (Pp � Pa) ¼ �Pel (the pressure required to overcome lung elastance
plus lung elastic recoil pressure at the end of expiration ¼V=C þ Pel0); graph 2 represents Pp,
obtained by adding (Pa � Pm) to graph 1. The driving pressure PN(t) in Equation 5.1 equals Pp

minus Pel0 at the end of expiration. (Adopted from Ghista, D.N., Loh, K.M., Damodaran, M., in
Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and
Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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FIGURE 5.5
Results of Second-order Single-compartment model (based on differential equation formula-
tion), compared with the First-order model. (Adopted from Ghista, D.N., Loh, K.M., and
Damodaran, M., in Human Respiration; Anatomy and Physiology, Mathematical Modeling, Numer-
ical Simulation and Applications, V. Kulish (Ed), WIT Press, Southampton, U.K., 2006.)
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FIGURE 6.1
Respiratory passages. (Adopted from Guyton, A.C., Text Book of Medical Physiology, Saunders,
Philadelphia, 1991. With permission from Elsevier.)

FIGURE 6.2
Trachea, bronchi, and alveoli.
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FIGURE 6.3
Exchange of carbon dioxide and oxygen.
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FIGURE 7.2
Lung ventilatory model data showing airflow (V

�
), volume (V), and net pressure (PN). Pause

pressure (Ptm ) occurs at tm, at which the volume is maximum (TV¼ tidal volume). Dt is the phase
difference between the time of maximum volume and peak pressure (Pk). It is also the time lag
between the peak andpause pressures.B is the amplitude of the net pressurewaveformPN applied
by the ventilator. This PN oscillates about Pe with amplitude of B. The difference between peak
pressure Pk and pause pressure Ptm is DP. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and Physiology, Mathematical Modeling,

Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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FIGURE 7.4
Lung ventilatory index (LVI) (showing lung status) in fourmechanically ventilated COPDpatients
in acute respiratory failure. Note that patients 1, 2, and 3 were successfully discontinued, and
patient 4 had failed discontinuation. (Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B.,
Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and Physiology, Mathematical Modeling,
Numerical Simulation and Applications, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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FIGURE 7.5
The variations in Ra for four mechanically ventilated patients, showing that patients 1, 2, and 3
are all discontinued at lower airflow resistance (Ra) values of 8–10 cm H2O s=L, i.e., closer to
outpatient COPD values of Ra; for these patients, the Ra values decreased with mechanical
ventilation. For patient 4 (who could not be weaned off), the Ra values remained at a high level.
(Adopted from Ghista, D.N., Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human
Respiration: Anatomy and Physiology, Mathematical Modeling, Numerical Simulation and Applica-

tions, V. Kulish (Ed), WIT press, Southampton, U.K., 2006.)
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FIGURE 7.7
The variations in Ca for four mechanically ventilated patients, indicating that the Ca values for
patients 1, 2, and 4 were all in the lower values and did not change significantly from the time
of intubation; incidentally, the lung status for patients 1 and 2 improved and they were
successfully discontinued, while patient 4 failed discontinuation. (Adopted from Ghista, D.N.,
Pasam, R., Vasudev, S.B., Bandi, P., and Kumar, R.V., in Human Respiration: Anatomy and

Physiology, Mathematical Modeling, Numerical Simulation and Applications, V. Kulish (Ed), WIT
press, Southampton, U.K., 2006.)
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FIGURE 8.1
Effects of insulin andglucagons releasedby the pancreas in achievingnormal bloodglucose level.
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 Glucose and insulin concentrations of the normal
 subject whose data are provided in Table 9.1
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FIGURE 9.1
Blood glucose and insulin concentration dynamics. The symbol m denotes milli units.
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FIGURE 10.1
When glucose bolus is administered to a normal person, a typical response of blood glucose and
insulin correlation (normalized) with respect to their fasting or initial concentration values.
Blood glucose concentration is measured in g=L and insulin concentration is measured in U=L.
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FIGURE 10.5
The glucose–insulin response of a sample normal (nondiabetic) subject response.
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FIGURE 10.7
The glucose–insulin response of N03 is a good example of a ‘‘missed’’ clinical diagnosis.
Even though the subject was diagnosed as normal, clinically (i.e., pronounced to be nondia-
betic), the subject in fact is at-risk of becoming diabetic, based on this subject’s data being
best fitted by ‘‘critically damped response’’ Equation 10.18, as well as based on the value of the
nondimensional diabetes index (Equation 10.28) and as indicated by Table 10.6.
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subject was diagnosed to be diabetic; however, based on our diabetes index DNDI, this subject
is at risk of being diabetic, as indicated by Table 10.6.
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FIGURE 11.22
Terminology for a helical plate. Inset shows the side view of the helical plate, depicting the half
pitch of the plate.
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Pullout strength test: Load (N) versus extension of the load cell (mm)
Load versus extension for CSO
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FIGURE 11.25
Pullout tests: load versus extension curves for all the configurations of fixations shown in
Figure 11.22. An inset depicts the four peaks in the curve that represent the screw pullout for
the CSO (convergent) configuration. Similar screw pullout patterns were observed for PSO
(perpendicular), ASO (alternating), and DSO (divergent) configurations. The stiffness of the
assembly is the slope of the load versus extension curve and the area under the load versus
extension curve till the initiation of pullout represents the energy to pullout.
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Load direction 

(a)

(b) (c)

Load direction Load direction 

FIGURE 11.26
(a) Sequential pullout of straight plate PSO (perpendicular), CSO (convergent), DSO (diver-
gent), and ASO (alternating) configurations. (b) The holding power of hemihelical plate (HHP)
is high, such that sequential screw pullout is not observed. (c) However, the bone failed before
screw pullout, indicating that the fixation is stiff enough so that screw loosening does not occur.
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FIGURE 11.27
Finite element models in ABA-
QUS: (a) straight plate model,
(b) 908 helical plate model, (c)
1808 helical plate model, and
(d) oblique fracture fixed by a
helical plate. The bone axis
(depicted in the figure) is
along coordinate 3.
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FIGURE 11.28
Loading and boundary conditions applied on the 1808 helical plate fixation on the simulated
fractured bone (with 458 oblique fracture): (a) compressive load, (b) bending load, and (c)
torsional load. Similar loading conditions are applied on the straight plate and the 908 helical
plate fixations. Here U1, U2, and U3 represent displacements along axes 1, 2, and 3, respect-
ively; UR1, UR2, and UR3 represent rotations about axes 1, 2, and 3, respectively.
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FIGURE 11.30
Different locations considered in the finite element analyses (FEA), for computing fracture gap
movement. Location A is on the bone on the fracture gap and underneath the plate. Location D
is on the bone at fracture gap but on the opposite side of the plate. Locations B and C are on the
bone on the fracture gap and between locations A and D. Note: For better presentation of the
fracture gap, the left bone fragment was made invisible.
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FIGURE 11.34
Locations of the neutral axis (NA) on the bone cross section at different places along the length
of the bone for straight plate, 908 helical plate, and 1808 helical plate fixations subjected to
bending moment. The change of color from grey to black represents the NA. (a) Locations
considered for the NA along the length of the bone; (b) cross sections of bone showing NA at
different locations along the length of the bone fixed by the straight plate; (c) cross sections of
bone showing NA at different locations along the length of the bone fixed by the 908 helical
plate; and (d) cross sections of bone showing NA at different locations along the length of the
bone fixed by the 1808 helical plate.
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FIGURE 12.2
(a) Shows a typical vertebral body (VB) where the cortical VB is shaped as a hyperboloid (HP)
shell formed of two sets of generators. The height of the HP can be expanded or reduced by the
inclination of the generators. (b) Depicts geometry of HP shells. (Adopted from Ghista, D.N.,
Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)
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Ramakrishna, K., and Sridhar, I., Int. J. Des. Nat., 1, 34, 2006.)
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FIGURE 12.4
Stresses acting on an element of the vertebral body (VB) hyperboloid (HP) shell: (a) HP shell
element in equilibrium, (b) sf and su equilibrating internal pressure pr, (c) orientation of sf,
and (d) orientation of su. (Adopted fromGhista, D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I.,
Int. J. Des. Nat., 1, 34, 2006.)
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FIGURE 12.8
(a) Stress resultants at the waist section of vertebral body (VB) hyperboloid (HP) shell under
bending, (b) equilibrium of forces on a shell segment, and (c) equivalent diagonal forces in the
intersecting bars to take up the stresses around a shell element on the compression side of the
VB HP shell. (Adopted from Ghista, D.N., Fan, S.C., Ramakrishna, K., and Sridhar, I., Int. J. Des.

Nat., 1, 34, 2006.)
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FIGURE 12.16
Rezaian spinal fixator is placed along the loading axis of the spine. (From Rezaian, S.M. and
Ghista, D.N., IEEE Eng. Med. Biol., 13, 525, 1994. Copyright 1994.)
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FIGURE 13.3
Normal stresses sf and sz under the applied
force compressive F. (Adopted from Ghista,
D.N., Fan, S.C., Sridhar, I., and Ramakrishna,
K., Int. J. Des. Nat., 1, 146, 2007.)
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FIGURE 13.5
Normal stress sz,nu equilibrating the applied
force F in a nucleotomized disc. (Adopted from
Ghista, D.N., Fan, S.C., Sridhar, I., and Rama-
krishna, K., Int. J. Des. Nat., 1, 146, 2007.)
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FIGURE 14.4
Depiction of the orientation of left and right legs, and their centers of mass (CMi

L, CMi
R) at times

t1 to t5; H1: hip joint locations. The right leg is in stance phase from t2 to t4; the left leg is in swing
phase from t2 to t4. Note, that SL (stride length)¼ 2d¼ 2l sinu; H2 is at l cosu above the ground,
while H3 is at l above the ground; hence CMB is raised by l(1� cosu) from t2 to t3.
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FIGURE 15.2
Analytical simulation of the trajectory of Ronaldinho’s famous free kick in the quarter-final
match against England in the 2002 World Cup (won by Brazil). The top figure shows the 3-D
trajectories of the ball, with and without spin. The bottom figure shows the top view (or the
horizontal projection) of the ball trajectory to its final location B into the goal. In doing so, to
the goalkeeper Seaman, the ball must have actually appeared to be sailing over the bar, only
to see it curve back to dip below the bar into the goal. In the figure, BC represents the goal bar,
k is the unit vector making an angle u with the x-axis, and b is the angle that the initial velocity
vector (v0) makes with Ok (in the xOy plane). The initial velocity vector v0 lies in the zOk plane.
The lateral deviation of the ball along the goal bar is 6.10 m, as shown in the figure.
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FIGURE 15.3
Notations for soccer-ball kick-velocity and trajectory. The orthogonal lines (or axes) Ok and Oj

are in the horizontal plane xOy, and make angles uwith the Ox and Oy axes, respectively. ED is
the total horizontal deviation (d) of the ball when it lands on the ground at D. The curve ORD
is the horizontal projection of the trajectory of OPD.

OE = k, EF = k sinq
Also, OE = x(D) cosq + y(D) sinq
d = y(D) cosq –x(D) sinq
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FIGURE 15.4
Ball displacements in the horizontal plane. The ball is kicked in the zOk vertical plane.
However, because of the counter-clockwise angular velocity (v) imparted to it, it has deviated
by an amount ‘‘d’’ (¼ED) perpendicular to Ok (i.e., parallel to Oj axis) when it lands on the
ground.
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Corner kick by a right footer, straight into the goal. The player kicks the ball in the zOk plane,
with a counter-clockwise angular velocity v. The ball curves along OL0N0Q0 to C into the far-top
corner. The deviations of the ball trajectory projected on the horizontal plane are HL, GN, FQ,
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FIGURE 15.7
Left-footer kick (OB) and right-footer kick (OC) around the players’ wall into the goalpost. The
ball is kicked in the vertical planes zOs and zOk.
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FIGURE 15.8
Geometry of the left-footer kick in the horizontal xOy plane: zOs is the vertical plane in which
the ball is kicked, TA (d) is the horizontal deviation of the ball trajectory, A is the horizontal
projection of the ball-location B (into the net).
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Brazil won a free kick when Scholes tackled Kleberson from
behind, 30 m out on the right flank. Five Brazilians
lined up across the edge of the penalty area, seemingly
ready for the ball to be crossed towards the far-post.
 Goalkeeper David Seaman obviously expected this too.
He was only 3 m off his line and took a small step
forward when Ronaldinho struck the free kick.
 But Ronaldinho’s shot was aimed at the far-top corner and dipped just under
the bar with Seaman flapping helplessly. In a few short minutes, Ronaldinho had
turned the game on its head.

50th minute
ENGLAND 1
BRAZIL  2

Seaman

RivaldoSinclair
Campbell

Ferdinand

Mills
Butt

JuniorRoque

Gilberto
Lucio

Edmilson

Beckham Kleberson

Scholes

Ronaldinho

Cafu

Cole

FIGURE 15.9
Ronaldinho’s wonder goal, the famous right-foot free kick, that made the ball curve into the far-
top corner of the goalpost and won the game for Brazil in the 2002 World-cup quarter-finals.

FIGURE 15.10
Seaman tried to reach the ball but failed, and the ball just dipped below the bar into the top
corner of the goal-net.
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The backside
 of the 
red dot

FIGURE 16.4
The direction of spin (circular arrows) and the spin axes (straight arrows) of a three-quarter arm
(a) fastball, (b) curveball, and (c) slider from the perspective of a right-handed pitcher,
meaning the ball is moving into the page. VaSa is the angle between the vertical axis and the
spin axis. (From Bahill, A.T., http:==www.sie.arizona.edu=sysengr=slides. With permission.
Copyright 2005.)

 (a) Fastball (b) Curveball

(d) Screwball(c) Slider

The backside
of the red dot

The left-handed pitcher’s view

FIGURE 16.5
The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand (a)
fastball, (b) curveball, (c) slider, and (d) screwball from the perspective of a left-handed pitcher,
meaning the ball is moving into the page. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2004.)
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FIGURE 16.8
Rectangular coordinate system and illustration of the angles VaSa and SaD for (a) curveball,
(b) three-quarter arm fastball, and (c) slider all thrown by a right-handed pitcher. The origin is
the pitcher’s release point. For the curveball, the spin axis is in the y–z plane. For the fastball, the
spin axis is also in the y–z plane, but it is below the y-axis. For the slider, the spin axis has
components in both the y–z and x–z planes. (From Bahill, A.T., http:==www.sie.arizona.
edu=sysengr=slides. With permission. Copyright 2006.)

FIGURE 16.9
The first-base coach’s view of a slider
thrown by a right-handed pitcher. This
illustrates the definition of the angle
SaD. (From Bahill, A.T., http:==www.
sie.arizona.edu=sysengr=slides. With
permission. Copyright 2007.)
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Direction of
 movement
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