
www.manaraa.com

Volume 7 • Issue 5 • 1000217J Inform Tech Softw Eng, an open access journal
ISSN: 2175-7866

Echard, J Inform Tech Softw Eng 2017, 7:5
DOI: 10.4172/2175-7866.1000217

Review Article Open Access

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Keywords: IoT; Internet of Things; TOC; TOU; Chain of trust; Code 
integrity

Introduction
IoT is defined as the Internet of Things. The Internet of Things 

refers to the ever-growing network of physical objects that feature an IP 
address for internet connectivity, and the communication that occurs 
between these objects and other Internet-enabled devices and systems 
[1]. According to Electronic Design, a recent report by Gartner predicts 
that there will be 20.4 billion connected Internet of Things (IoT) 
devices by 2020, with 5.5 million new things getting connected every 
day. Furthermore, more than half of major new business processes and 
systems will include an IoT component by 2020 [2]. With so many 
devices currently in service, and many more expected to come online, 
it seems a little late to be discussing the security aspect of the design 
lifecycle. Yet, that is exactly what is happening. Manufacturers are 
rushing products to market with little or no thought to security, often 
including hardcoded passwords or known vulnerable software libraries. 
While this problem is most obvious in the consumer space (which gets 
the most news coverage), vulnerable IoT devices are present in every 
business sector as well. This paper will review the available literature on 
the subject of ensuring software integrity for IoT devices, focusing on 
detecting and preventing modification of the original software, so that 
the device cannot be used for unintended purposes.

Review of Literature
Secure boot

The startup of every device begins with powering on, verifying 
hardware components, then loading one or more software modules. 
NIST special publication 800-147 defines “booting” as a 5 step process: 
1) Execute Core Root of Trust, 2) Initialize and Test Low-Level 
Hardware, 3) Load and Execute Additional Firmware Modules, 4) 
Select Boot Device, and 5) Load Operating System. Each of these steps 
is an opportunity to introduce new code by an attacker. For example, 
the system BIOS is a potentially attractive target for attack. Malicious 
code running at the BIOS level could have a great deal of control over 
a computer system. It could be used to compromise any components 
that are loaded later in the boot process, including the SMM code, boot 
loader, hypervisor, and operating system [3]. Therefore, code at each 
step of the boot process must be verified, beginning with the integrity 
of the platform itself. The trusted computing approach to solving this 
issue entails adding a separate chip called the trusted platform module 
(TPM) to the system. A trusted platform module enhances the security 
of general purpose computer systems by authenticating the platform 
at boot time. The TPM is the root of trust for a computing system. 
It manages the three roots of trust that lie at the core of a trusted 
platform: (i) A root of trust for measurement (RTM) to measure the 
platform integrity; (ii) a root of trust for storage (RTS) to securely 

Ensuring Software Integrity in IoT Devices
Chris Echard* 
Department of Computer Science, East Carolina University, Greenville, North Carolina, USA 

Abstract
This paper will review the available literature covering topics relevant to ensuring software integrity of the boot 

image and running code in networked devices. The paper will focus on hardware devices defined as IoT (Internet of 
Things) in the consumer space. Software-only (virtual) devices will also be discussed. Topics reviewed will include 
trusted anchor concepts and technologies, chain of trust and validation of code integrity, as well as the technologies 
which support them, such as PKI (public key infrastructure), secure storage and mutable and immutable identities.

*Corresponding author: Chris Echard, Department of Computer Science, East 
Carolina University, Greenville, NC 27858, USA, Tel: +1 252-328-6131; E-mail: 
echardc16@students.ecu.edu

Received November 15, 2017; Accepted November 30, 2017; Published 
December 08, 2017

Citation: Echard C (2017) Ensuring Software Integrity in IoT Devices. J Inform 
Tech Softw Eng 7: 217. doi: 10.4172/2175-7866.1000217

Copyright: © 2017 Echard C. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

store different integrity measurements, secrets, and keys; and (iii) 
a root of trust for reporting (RTR) that reliably and securely reports 
the platform information stored in the RTS [4]. The TPM stores secret 
keys, passwords, and digital certificates in its secure internal storage 
protecting them from software and physical attacks. The TPM acts 
as a root of trust for checking platform integrity at boot time (i.e., 
check against any malicious change). A cryptographic hash value 
of the platform configuration is calculated and compared against 
the precomputed hash value of the platform. Access to the platform 
is denied if the integrity check fails [4]. This is the beginning of the 
“chain-of-trust” for software modules that are subsequently initiated. 
This transitive trust mechanism is one of the important security 
features in trust computing. It uses the trust root as a starting point to 
establish a chain of trust model, in the order of trust root, boot loader, 
OS, and Application. The verification is taken step by step, to extend the 
trust boundary to the entire platform [5]. Also, since the TPM can store 
multiple hashes, software modules can authenticate themselves during 
the boot process. Secure boot provides the foundation for Trusted Boot, 
which extends the trust boundary to the boot process and eventually 
the operating system. 

Using a TPM chip to verify system integrity is an example of 
hardware attestation. For devices that are constrained (usually because 
of price) and do not have hardware security capabilities, software 
attestation methods are available. Software attestation is a trust 
establishment mechanism that allows a system, the verifier, to check the 
integrity of the program memory content of another system, the prover, 
against modification, e.g., by malicious code.

Software attestation follows a radically different approach than most 
conventional security mechanisms: It exploits the intrinsic physical 
constraints of the underlying hardware and side-channel information, 
typically the computation time required by the prover to complete the 
attestation protocol [6]. Put another way, software attestation attempts 
to achieve a dynamic root of trust without specific hardware support. 
This method has the advantage of not requiring any stored secrets 
(cryptographic keys or passwords) and allows applications or modules 



www.manaraa.com

Volume 7 • Issue 5 • 1000217J Inform Tech Softw Eng, an open access journal
ISSN: 2175-7866

Citation: Echard C (2017) Ensuring Software Integrity in IoT Devices. J Inform Tech Softw Eng 7: 217. doi: 10.4172/2175-7866.1000217

Page 2 of 3

to be updated, which may not be possible if hash values are stored in 
immutable formats, such as a TPM chip [7]. 

There are several methods available for computing and verifying 
hash values with software based attestation. For example, a simple hash 
of all stored memory could be computed and then compared with a 
stored value. The disadvantage of this approach is that malicious code 
could have run this function and stored the result before making its 
own modifications to the system. Only the stored result would be 
returned to the verifier. A slightly better approach would be to include 
other variables, such as computation time, into the verifiable result. 
This approach can work if an attacker cannot modify the verification 
code and the stored values. Also, the verification routine must be data 
dependent; running a data independent function such as a checksum 
will always give the same time result. This approach is also useful for 
software only devices (software in virtual environments, abstracted 
from underlying hardware) assuming that an adequately precise time 
source is available.

Trusted boot

While Secure Boot validates the platform and firmware, Trusted 
Boot is generally defined as verifying each software module before 
execution and extending the chain-of-trust to the entire operating 
system. During the boot sequence, the digest of each executing program 
is recorded before it executes. A TPM (Trusted Platform Module) is 
used to store all these records and then report on them securely. For 
example, before the BIOS hands over control to a boot loader, it hashes 
the boot loader and extends the resultant values into a PCR (platform 
Configuration Registers) in a TPM. However, the TPM itself does not 
prohibit booting into an insecure OS or using an insecure boot loader 
[8]. If the values stored in the TPM do not match the calculated values, 
the BIOS has the option to give or deny control to the boot loader, 
depending on its level of configurability. It is important to note that 
Trusted Boot requires a TPM chip so the operating system can see the 
chain of execution, thus it may not be an option for some IoT devices. 
Lack of trusted boot support would allow an attacker with physical 
access, or using a software vulnerability during run time, to potentially 
modify the stored code and compromise the device. Software only TPM 
implementations based on the public domain TPM emulator have been 
explored, but have limitations. Although not completely equivalent 
to a conventional TPM chip in terms of protection against physical 
and hardware attacks, SW-TPM can be executed within protected or 
isolated execution domains that are increasingly provided by embedded 
CPUs (e.g., ARM TrustZone) and can utilize on-chip storage in order to 
provide a reasonable degree of tamper-resistance [9]. Implementation 
of the TPM registers and the trust anchor code are stored in the 
processors’ on-board memory, providing some physical security to 
these important functions.

Runtime integrity

There are many other attack possibilities to consider with IoT 
devices. For example, existing TPM architectures do not support 
runtime integrity checking and this allows attackers to exploit 
vulnerabilities to modify the program after it has been verified (at 
time of check or TOC) but before the time of its use (at time of use or 
TOU) to trigger unintended program behavior, such as the execution 
of malicious code or the leaking of sensitive data [4]. Since Iot devices 
are designed to run continuously, barring power outages or other 
unpredictable events, code may be compromised at run time through 
a vulnerability and never be discovered. A good example of this is the 
Mirai malware. Mirai finds devices with known vulnerabilities, infects 
the device, but does not modify stored code. The device can be “fixed” 

simply by rebooting, but since most IoT devices are designed for little 
or no management, there is no indication of compromise unless the 
unwanted behavior is noticed. 

Physical attack is a viable method of compromising the integrity 
of a device. Modifying and replacing firmware by an attacker may be 
worth the effort, depending on the perceived value of the device or the 
data it may access (such as a video camera or ATM). Attackers can go 
as far as removing memory and reading its contents. In 2008, a team of 
researchers demonstrated that disk encryption keys could be recovered 
from DDR and DDR2 DRAMs by transferring memory modules from 
a locked machine into an attacker’s machines [10]. A hard or flash 
drive, if present, is an easy target for physical removal and cloning. 
If the operating system and data are not encrypted in some way, the 
entire system can be read or modified. Encryption is the easiest way to 
mitigate this risk, but does require hardware storage of keys.

Side channel attacks, which take advantage of information leakage 
from a device, present a credible threat to any physical computing 
device. Information can be leaked by detecting changes in processing 
behavior (usually by monitoring power usage) to determine specific 
processing routines, such as encryption or decryption. For example, in 
low-end microcontrollers common in IoT devices, during processing 
of an algorithm such as RSA decryption, a multiplication will only 
be performed if the exponent bit being processed is 1. The attacker 
can simply measure changes in current to derive the key one bit at a 
time [11]. Mitigation methods addressing side channel attacks can 
include randomizing execution of routines, coding routines to ensure 
the timing differences are small for the different paths a routine may 
take, and reducing the effects of cache hit and miss speed differences. 
Leakage can also be classified as responding to invalid login attempts by 
informing the attacker if a username is or isn't in the device's database.

Conclusion
A quote from an IoT security whitepaper written by WindRiver 

sums up the issue nicely: “Knowing no one single control is going to 
adequately protect a device, how do we apply what we have learned over 
the past 25 years to implement security in a variety of scenarios? We do so 
through a multi-layered approach to security that starts at the beginning 
when power is applied, establishes a trusted computing baseline, and 
anchors that trust in something immutable that cannot be tampered 
with.” But security is also an evolution [12]. Software in IoT devices 
may have been declared “bug-free” when they were manufactured, but 
flaws could be discovered years later which could be easily exploited. 
Coupled with poor security design, (e.g., hardcoded passwords) and no 
patching capabilities, a device built today can become a major problem 
tomorrow. And, given that these devices (especially in the consumer 
world) are “set and forget”, the internet will have literally billions of 
obsolete hosts in the coming years. Some researchers are looking ahead 
to a possible scenario of “losing the war” of security versus hacking, 
and are investigating how to change the game to mitigate the damage 
or economic value of breaching new systems by asking questions such 
as ‘Can we even in the presence of a malicious attacker - offer some 
limited form of security for the most valuable transactions (such as 
e-banking) or assets?’ and ‘Can we make the ‘business’ of the attackers 
less attractive by applying security technologies that are particularly 
tailored towards destroying the business model of the attackers?’ [13]. 

References

1.	 https://www.webopedia.com/TERM/I/internet_of_things.html

2.	 Blyler J (2017) 8 Critical IoT Security Technologies. Electronic Design.

3.	 Cooper D, Polk T, Regenscheid A, Souppaya M (2011) BIOS Protection 

https://www.webopedia.com/TERM/I/internet_of_things.html
http://www.electronicdesign.com/industrial-automation/8-critical-iot-security-technologies
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf


www.manaraa.com

Volume 7 • Issue 5 • 1000217J Inform Tech Softw Eng, an open access journal
ISSN: 2175-7866

Citation: Echard C (2017) Ensuring Software Integrity in IoT Devices. J Inform Tech Softw Eng 7: 217. doi: 10.4172/2175-7866.1000217

Page 3 of 3

Guidelines. National Institute of Standards and Technology, USA.

4.	 Kanuparthi A, Zahran M, Karri R (2012) Architecture Support for Dynamic 
Integrity Checking. IEEE Trans Inf Forensics Security 7: 321-332. 

5.	 Kai T, Xin X, Guo C (2012) The Secure Boot of Embedded System Based on 
Mobile Trusted Module. Second International Conference on Intelligent System 
Design and Engineering Application. 

6.	 Armknecht F, Sadeghi AR, Schulz S, Wachsmann C (2013) A Security 
Framework for the Analysis and Design of Software Attestation. Proceedings of 
the ACM SIGSAC conference on Computer & Communications Security.

7.	 Perrig (2012) A Software Based Attestation Software Root of Trust. Carnegie 
Mellon University, USA.

8.	 Lin KJ, Wang CY (2012) Using TPM to improve boot security at BIOS layer. 
IEEE International Conference on Consumer Electronics. 

9.	 Aaraj N, Raghunathan A, Ravi S, Jha N (2007) Energy and execution time 
analysis of a software-based trusted platform module. DATE '07 Proceedings 
of the conference on Design, automation and test in Europe, Nice, France. pp: 
1128-1133.

10.	Yitbarek SF, Aga MT, Das R, Austin T (2017) Cold Boot Attacks are Still 
Hot: Security Analysis of Memory Scramblers in Modern Processors. IEEE 
International Symposium on High Performance Computer Architecture (HPCA). 
pp: 313-324. 

11.	http://www.techdesignforums.com/practice/guides/side-channel-analysis-
attacks/ 

12.	https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_
security-in-the-internet-of-things.pdf

13.	Kursawe K, Katzenbeisser S (2007) Computing under occupation. NSPW '07 
Proceedings of the Workshop on New Security Paradigms, New Hampshire. 
pp: 81-88.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-147.pdf
https://doi.org/10.1109/TIFS.2011.2166960
https://doi.org/10.1109/TIFS.2011.2166960
http://dx.doi.org/10.1109/ISdea.2012.646
http://dx.doi.org/10.1109/ISdea.2012.646
http://dx.doi.org/10.1109/ISdea.2012.646
https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1145/2508859.2516650
https://www.cylab.cmu.edu/tiw/slides/perrig-attestation.pdf
https://www.cylab.cmu.edu/tiw/slides/perrig-attestation.pdf
https://doi.org/10.1109/ICCE.2012.6161909
https://doi.org/10.1109/ICCE.2012.6161909
https://doi.org/10.1109/DATE.2007.364446
https://doi.org/10.1109/DATE.2007.364446
https://doi.org/10.1109/DATE.2007.364446
https://doi.org/10.1109/DATE.2007.364446
https://10.1109/HPCA.2017.10
https://10.1109/HPCA.2017.10
https://10.1109/HPCA.2017.10
https://10.1109/HPCA.2017.10
http://www.techdesignforums.com/practice/guides/side-channel-analysis-attacks/
http://www.techdesignforums.com/practice/guides/side-channel-analysis-attacks/
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://doi.org/10.1145/1600176.1600191
https://doi.org/10.1145/1600176.1600191
https://doi.org/10.1145/1600176.1600191

	Abstract
	Keywords
	Introduction
	Review of Literature
	Secure boot
	Trusted boot
	Runtime integrity

	Conclusion
	References

