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Introduction
Graphene film is a monolayer of carbon atoms packed into a dense 

honeycomb crystal structure that can be viewed as an individual atomic 
plane extracted from graphite [1,2]. Graphene has high mobility 
and optical transparency, in addition to flexibility, robustness and 
environmental stability. It is remarkably strong for its very low weight 
(100 times stronger than steel), and it conducts heat and electricity. 
Because it is virtually two-dimensional, it interacts oddly with light and 
with other materials [3]. While scientists had theorized about graphene 
for decades, it was first produced in the lab in 2004 [4]. Despite its short 
history, graphene has already revealed a cornucopia of new physics and 
potential applications [5-8]. Andre Geim and Konstantin Nevoselov at 
the university of Manchester won the Nobel prize in physics in 2010 
“for groundbreaking experiments regarding the two-dimensional 
material graphene” [9].

Researches on graphene-based structures have been developed 
quickly in both theoretical and experimental applications. Lee et al. 
[10] have investigated dynamic behavior of multilayer grapheme via
supersonic projectile penetration. Liu et al. [11] have shown that an 
enhancement of graphene absorption is observed when the graphene 
monolayer is placed on the top or within dielectric mirrors. Zhu et 
al. [12] have studied optical transmittance of multilayer graphene. 
Singh et al. [13] have reviewed optomechanical coupling between a 
multilayer graphene mechanical resonator and a superconducting 
microwave cavity. Khan et al. [14] have demonstrated that, the 
optimized mixture of graphene and multilayer graphene, produced 
by the high-yield inexpensive liquid-phase-exfoliation technique, can 
lead to an extremely strong enhancement of the cross-plane thermal 
conductivity of the compsite. Iorsh et al. [15] have proposed a new class 
of hyperbolic metamaterials for THz frequencies based on multilayer 
graphene structures. Min et al. [16] have shown the electronic structure 
of multilayer graphene. Rast et al. [17] have numerically analyzed a 
composite layered structure for, tunable, low-loss plasmon resonators, 
which consists of a noble metal thin film coated in graphene and 
supported on a hexagonal boron nitride substrate.

This paper is interested in transmission and reflection of 
electromagnetic waves by a graphene/dielectric periodic structure 
consisting of N periods. We consider the structure is embedded in 
vacuum and a monochromatic s-polarized plane electromagnetic 
wave is obliquely incident on it. The electric and magnetic fields are 
determined in each region using Maxwell’s equations. Then Snell’s law 

is applied and the boundary conditions are imposed at each interface 
to obtain the reflection and transmission coefficients. The reflected and 
transmitted powers of the structure are presented in terms of these 
coefficients. In the numerical analysis a recursive method [18,19] is 
used to calculate the mentioned powers as a function of wavelength, 
angle of incidence and the slab thickness when the graphene thickness 
changes. To check the results of the analysis used in these calculations, 
the conservation law of energy given in [20,21] is checked and it is clear 
that it is satisfied for all examples.

Theory
The considered waveguide structure consists of a pair of graphene 

(ε2, μ0) and dielectric (ε3, μ0) materials bounded by two half free spaces 
(ε0, μ0). The letter ε stands for permittivity of the related materials and 
the subscripts 2, 3 refer to region 2 and 3 and μ0 is the permeability 
of free space. A perpendicular polarized plane wave in region 1 is 
incident on the plane z = 0 at some angle θ  relative to the normal to 
the boundary (Figure 1).

 The electric field in each region is [22, 23]:      
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Where 


A  and 


B  are the amplitude of forward and backward 
traveling waves (



= 1, 2, 3, 4), cnk ω


=  is the wave number inside 
the material and 



n  is the refractive index of it. Also the subscripts x 
and z represent the x- and z-components of the related wave number, 
respectively. 
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Matching the boundary conditions for E
  and H

  fields at each 
layer interface, that is at z=0, yy EE 21 =  and xx HH 21 =  and so on. 
This yields six equations with six unknown parameters [22,23]:

A1 + B1 = A2 + B2                                                                                   (3)

( ) ( )22
2

2
11

1

1 BAkBAk zz −=−
µµ

                                                                        (4)

2 2 2 2 3 2 3 22 2 3 3z z z zik d ik d ik d ik dA e B e A e B e− −+ = +                                             (5)                         

( ) ( )2 2 2 2 3 2 3 22 3
2 2 3 3

2 3
z z z zik d ik d ik d ik dz zk k

A e B e A e B e
µ µ

− −− = −                                            (6)                 

( ) ( ) ( )3 2 3 3 2 3 4 2 3
3 3 4

z z zik d d ik d d ik d dA e B e A e+ − + ++ =                                          (7)                              

 ( ) ( ) ( )3 2 3 3 2 3 4 2 33 4
3 3 4

3 4
z z zik d d ik d d ik d dz zk k

A e B e A e
µ µ

+ − + + − = 
 

                                       (8)

Where ≡=== xxxx kkkk 4321  Snell’s law and:

θω 22
1

2 sinnn
c

k z −=


                                                                       (9)

Fresnel coefficients (interface reflection and transmission 
coefficients r, t respectively) for perpendicular polarized light are given 
by [24]:
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Where i, j correspond to any two adjacent media.

The reflection and transmission coefficients R and T respectively of 
the structure are given by [25,26]:
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The reflectance R’ and transmittance T’ of the structure are given by:

*R RR′ = , *4

1
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Where *R  and *T  are the complex conjugate of R and T 
respectively. The law of conservation of energy is given by [20,21]:

lossPTR −=′+′ 1                                                                                       (15)

where lossP  is the loss power due to losses in the graphene slab.  

For n’-layers structure shown in Figure 2 R and T are calculated as 
follows [26,27]:
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Continue on the same procedure until 2R  is reached which is the 

reflectance of the structure as a whole.

2 2

2 2

2
12 3

2 2
12 31

z

z

i k d

i k d
r R e

R
r R e

+
=

+
                                                                (19)

The same procedure is performed for 2T :
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Where d2, dn’–1 and dn’–2 are thicknesses of layers 2, n’-1and n’-2, 
respectively.

For graphene in regions 2, 4, 6 …, the complex refractive index is 
given by [28-30]:

 ( )4 3 3
iCn λλ = +                                                    	                                (24)

where C is 5.446 μm–1, λ is the incident wavelength and 1−=i .  

Numerical results and applications

In this section, the reflected, transmitted and loss powers of the 
strucure described in Figure 2 are calculated numerically as a function 
of wavelength, angle of incidence and dielectric thickness for changing 
graphene layer thickness. We have used the graphene described in 
eq. (24) and Fluorite (CaF2) of refractive index 1.434 as a dielectric in 
each period. Three values the graphene thickness are considered [dg = 
.34 nm, .68 nm (2 x .34 nm), .68 nm (3 x .34 nm)]. These thicknesses 
are reported in [31]. The central wavelength is assumed to be λ0 = 600 
nm, the thickness of Fluorite is λ0/2 and the number of periods N = 

θ 
A1 

B1 

A2 

A3 

A4 B2 

B3 

x 

Y 
Z �  

Region 1 Region 2 Region 3 Region 4 
graphene Dielectric Vacuum Vacuum 

Z = 0 Z = dg Z = dg + dD 

Figure 1: Wave propagation through a structure consisting of a pair 
of graphene and dielectric embedded between two half free spaces.
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7. Regions 3, 5, 7 … given in Figure 2 are assumed to be loss-less and 
the permeabilities of them are equal to the permeability of free space, 
μ0. These materials do not affected by the magnetic field of incident 
radiations. 

Figure 3 shows the reflected (reflectance), transmitted 
(transmittance) and loss powers as a function of the wavelength at 
the incidence angle of 30˚ when the graphene thickness changes. 
The wavelength is changed between 100 nm and 1700 nm, this 
range includes ultraviolet, visible and near infrared. We can see that, 

the powers generally have oscillatory characteristics in the given 
wavelength range. The degree of ripples decreases with wavelength 
for all values of the graphene thicknesses. Moreover, the reflected and 
transmitted powers decrease while the loss power increases with the 
graphene thickness.

Figure 4 illustrates the variation of the reflected, transmitted, and 
loss powers with the angle of incidence for 600 nm wavelength under 
three values of the graphene thickness. The angle of incidence is changed 
between 0˚ and 90˚ to realize all possible angles of incidence. Clearly the 
reflected power behaves as an oscillatory increasing function while the 
transmitted and loss powers show an oscillatory decreasing behavior 
with the angle of incidence. At 90˚ the reflected (the transmitted and 
loss) powers is maximum (minimum) at that angle for any value of the 
graphene thickness. The role of the graphene is clear at angles below 
90˚. The reflected and transmitted powers decrease while the loss 
power increases with the graphene thickness for any angle below 90˚.

Figure 5 presents the reflected, transmitted and loss powers against 
the dielectric thickness at the incident angle of 30˚. The dielectric 
thickness is changed from 0 nm to 400 nm. As it is confirmed from 

3 
  dielectric 

2 
graphene    
 

     n'-1 
  dielectric 

                 n'-2 
              graphene 

1 n' 

. . . θ 

vacuum vacuum 

Figure 2: Oblique incidence of electromagnetic waves on graphene/
dielectric periodic structure embedded in vacuum.
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Figure 3: The reflected, transmitted and loss powers as a function 
of wavelength.
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the figure, the powers change periodically with thickness for any value 
of graphene thickness. The reflected and transmitted powers decrease 
while the loss power increases with graphene thickness.

Conclusions
In this paper, the reflection and transmission characteristics of the 

electromagnetic radiation propagation through a graphene/dielectric 
(Fluorite-CaF2) periodic structure are studied in detail with the effect 
of the graphene material. The required equations for the electric and 
magnetic fields in each region are derived by Maxwell’s equations. 
Then Snell’s law is applied and the boundary conditions are imposed to 
calculate the reflection and transmission coefficients of the structure. 
Recursive method is used to solve the problem of electromagnetic wave 
propagation through the structure to obtain the reflected, transmitted, 
and loss powers.  Finally, the mentioned powers as a function of 
wavelength, angle of incidence and the dielectric thickness etc. are 
studied numerically to observe the effect of the graphene on them. 
As it can be seen from the theoretical and the numerical results, if the 
grapheme thickness changes, the characteristic of the powers will be 
affected by this change. Numerical examples are already presented to 

illustrate the paper idea and to prove the validity of the obtained results. 
Moreover the law of conservation of energy is satisfied throughout the 
performed computations for all examples.

The results obtained could lead to design new devices, apparatus, 
components at the millimeter wave, optical, and microwave regimes. 
Furthermore, these results open a way to think how the availability of 
the graphene will change the functionality of future devices through 
the graphene/dielectric structure. 
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