
www.manaraa.com

Chapter 8

Data Structure: Arrays

8.1 Why We Need Arrays

8.2 Collecting Input Data in Arrays

8.3 Translation Tables

8.4 Internal Structure of One-Dimensional Arrays

8.5 Arrays of Objects

8.6 Case Study: Databases

8.6.1 Behaviors

8.6.2 Architecture

8.6.3 Specifications

8.6.4 Implementation

8.6.5 Forms of Records and Keys

8.7 Case Study: Playing Pieces for Card Games

8.8 Two-Dimensional Arrays

8.9 Internal Structure of Two-Dimensional Arrays

8.10 Case Study: Slide-Puzzle Game

8.11 Testing Programs with Arrays

8.12 Summary

8.13 Programming Projects

8.14 Beyond the Basics

Computer programs often manage many objects of the same type, e.g., a bank’s
accounting program must manage hundreds of customer accounts. It is inconvenient
and usually impossible to declare distinctly named variables for each of the customer
accounts; instead, one constructs a new form of object—a data structure—to collec-
tively hold and name the customer accounts.
The most popular form of data structure is the array, and this chapter introduces

standard uses of arrays. After studying this chapter, the reader should be able to



www.manaraa.com

392

• use arrays to model real-life collections like a library’s catalog, a company’s
database of customer records, or the playing pieces of a game.

• understand when to use one-dimensional arrays to model sequences and when to
use two-dimensional arrays to model grids.

8.1 Why We Need Arrays

When a program manipulates many variables that contain “similar” forms of data,
organizational problems quickly arise. Here is an example: In an ice-skaking compe-
tition, each skater’s performance is judged by six judges, who assign fractional scores.
The six scores must be collected and manipulated in various ways, e.g., printed from
highest to lowest, averaged, multiplied by weighting factors, and so on.
Say that the six scores are saved in these variables,

double score0; double score1; double score2;

double score3; double score4; double score5;

and say that you must write a method that locates and prints the highest score of
the six. How will you do this? Alas, the method you write almost certainly will use
a sequence of conditional statements, like this:

double high_score = score0;

if ( score1 > high_score ) { high_score = score1; }

if ( score2 > high_score ) { high_score = score2; }

if ( score3 > high_score ) { high_score = score3; }

if ( score4 > high_score ) { high_score = score4; }

if ( score5 > high_score ) { high_score = score5; }

System.out.println(high_score);

This unpleasant approach becomes even more unpleasant if there are more even scores
to compare or if a more difficult task, such as ordering the scores from highest to
lowest, must be performed. Some other approach is required.
Can we employ a loop to examine each of score0 through score6? But the six

variables have distinct names, and a loop has no way of changing from name to name.
Ideally, we wish to use “subscripts” or “indexes,” so that we may refer to score0 as
score0, score1 as score1, and so on. The notation would be exploited by this for-loop,

double high score = score0;

for ( int i = 1; i <= 5; i = i + 1 )

{ if ( scorei > high score )

{ high score = scorei; }

}

System.out.println(high score);



www.manaraa.com

8.1. WHY WE NEED ARRAYS 393

which would examine all six variables.
Java uses array variables, for indexing like this. An array variable names a collec-

tion of individual variables, each of which possesses the same data type. For example,
we can declare and initialize an array variable that holds six doubles by stating the
following:

double[] score = new double[6];

The name of this variable is score, and its declared data type is double[] (read this
as “double array”). The data type indicates that score is the name of a collection
of doubles, and the doubles named by the array variable are score[0], score[1], ...,
score[5].

The initialization statement’s right-hand side, new double[6], constructs a new
form of object that holds six elements, each of which is a double variable.

It is traditional to draw an array like this:

0 1 2 3 4 5

0.0 0.0 0.0 0.0 0.0 0.0score

The diagram shows that a newly constructed array that holds numbers starts with
zeros in all the elements.
When we wish to refer to one of the elements in the array named score, we use

an index (also known as subscript) to identify the element. The elements are indexed
as score[0], score[1], and so on, up to score[5]. For example, we can print the
number held in element 3 of score by writing,

System.out.println(score[3]);

Java requires that an array’s indexes must be integers starting with zero.

It is helpful to think of variable score as the name of a “hotel” that has six
“rooms,” where the rooms are labelled 0 through 5. By stating score[3], we specify
the precise address of one of the hotel’s rooms, where we locate the room’s “occupant.”
Of course, each of the elements of an array is itself a variable that can be assigned.

For example, say that the leading judge gives the score, 5.9, to a skater. We insert
the number into the array with this assignment:

score[0] = 5.9;

If the skater’s next score is 4.4, then we might write,

score[1] = 4.4;



www.manaraa.com

394

Here is a picture that shows what we have accomplished:

0 1 2 3 4 5

4.4 0.0 0.0 0.0 0.0score 5.9

We can insert values into all the array’s elements in this fashion.
But most importantly, the index contained within the square brackets may be a

variable or even an integer-valued arithmetic expression. For example,

int i = 3;

System.out.println(score[i]);

System.out.println(score[i + 1]);

locates and prints the doubles held in elements 3 and 4 of score. By using variables
and expressions as indexes, we can write intelligent loops, such the one that locates
and prints a skater’s highest score:

double high_score = score[0];

for ( int i = 1; i <= 5; i = i + 1 )

// invariant: high_score holds the highest score in the range,

// score[0] ..upto.. score[i-1]

{ if ( score[i] > high_score )

{ high_score = score[i]; }

}

System.out.println(high_score);

By changing the value of i at each iteration, the loop’s body examines all the array’s
elements, solving the problem we faced at the beginning of this section.
As noted above, we can use integer-valued arithmetic expressions as indexes. For

example, perhaps variable i remembers an array index; if we wish to exchange the
number in score[i] with that of its predecessor element, we can write

int temp = score[i];

score[i - 1] = score[i];

score[i] = temp;

The phrase, score[i - 1], refers to the element that immediately precedes element
score[i]. For example, for the array pictured earlier and when i holds 2, the result
of executing the above assignments produces this array:

0 1 2 3 4 5

0.0 4.4 0.0 0.0 0.0score 5.9

If variable i held 0 (or a negative number), then score[i - 1] would be a nonsen-
sical reference, and the execution would halt with a run-time exception, called an
ArrayIndexOutOfBoundsException.



www.manaraa.com

8.1. WHY WE NEED ARRAYS 395

The above example showed how an array might hold a set of numbers. But arrays
can hold characters, booleans, strings, and indeed, any form of object whatsoever. For
example, the words of a sentence might be stored into an array like this:

String[] word = new String[3];

word[0] = "Hello";

word[1] = "to";

word{2] = "you";

Array word is declared so that it keeps strings in its elements.
Second, if we have written a class, say, class BankAccount, then we can declare

an array to hold objects constructed from the class:

BankAccount[] r = new BankAccount[10];

r[3] = new BankAccount();

BankAccount x = new BankAccount();

r[0] = x;

The previous sequence of statements constructs two BankAccount objects and assigns
them to array r.
Because they can hold numbers, booleans, characters, and objects, arrays are

heavily used in computer programming to model sets or collections. The collection of
skating scores seen at the beginning of this section is one simple example, but there
are many others:

• a bank’s customer accounts

• a library’s books

• playing pieces or players for an interactive game

• a table of logarithms or solutions to an algebraic equation

• indeed, any “data bank,” where multiple objects are held for reference

The sections that follow show how to use arrays to model these and other examples.

Exercises

1. Say that we declare this array:

int r = new int[4];

What do each of these loops print? (Hint: It will be helpful to draw a picture
of array r, like the ones seen in this section, and update the picture while you
trace the execution of each loop.)



www.manaraa.com

396

(a) for ( int i = 0; i < 4; i = i + 1 )

{ System.out.println(r[i]); }

(b) int i = 1;

r[i] = 10;

r[i + 2] = r[i] + 2;

for ( int i = 0; i < 4; i = i + 1 )

{ System.out.println(r[i]); }

(c) for ( int i = 3; i >= 0; i = i - 1 )

{ r[i] = i * 2; }

for ( int i = 0; i < 4; i = i + 1 )

{ System.out.println(r[i]); }

(d) r[0] = 10;

for ( int i = 1; i != 4; i = i + 1 )

{ r[i] = r[i - 1] * 2; }

for ( int i = 0; i < 4; i = i + 1 )

{ System.out.println(r[i]); }

2. Declare an array, powers of two, that holds 10 integers; write a for-loop that
places into powers of two[i] the value of 2i, for all values of i in the range, 0
to 9.

3. Declare an array, letter, that holds 26 characters. Write a for-loop that ini-
tializes the array with the characters, ’a’ through ’z’. Next, write a loop that
reads the contents of letter and prints it, that is, the letters in the alphabet,
all on one line, in reverse order.

4. Declare an array, reciprocals, that holds 10 doubles; write a for-loop that
places into reciprocals[i] the value of 1.0 / i, for all values of i in the range,
1 to 9. (What value remains in reciprocals[0]?)

8.2 Collecting Input Data in Arrays

Arrays are particularly useful for collecting input data that arrive in random order.
A good example is vote counting: Perhaps you must write a program that tallies the
votes of a four-candidate election. (For simplicity, we will say that the candidates’
“names” are Candidate 0, Candidate 1, Candidate 2, and Candidate 3. ) Votes arrive
one at a time, where a vote for Candidate i is denoted by the number, i. For example,
two votes for Candidate 3 followed by one vote for Candidate 0 would appear:

3

3

0



www.manaraa.com

8.2. COLLECTING INPUT DATA IN ARRAYS 397

and so on.
Vote counting will go smoothly with an array that holds the tallies for the four

candidates: We construct an array whose elements are integers,

int[] votes = new int[4];

where votes[0] holds Candidate 0’s votes, and so on. When a vote arrives, it must
be added to the appropriate element:

int v = ...read the next vote from the input...

votes[v] = votes[v] + 1;

The algorithm for vote counting follows the “input processing pattern” from Chapter
7:

boolean processing = true;

while ( processing )

{ int v = ...read the next vote from the input...

if ( v is a legal vote, that is, in the range, 0..3 )

{ votes[v] = votes[v] + 1; }

else { processing = false; }

}

Once all the votes are tallied, they must be printed. There is a standard way of
printing the contents of an array like votes:

for ( int i = 0; i != votes.length; i = i + 1 )

// invariant: values of votes[0]..votes[i-1] have been printed

{ System.out.println( ... votes[i] ... ); }

A for-loop works with a loop-counter variable, i, to print all the array’s elements.
Notice the phrase, votes.length, which is new and appears in the loop’s termination
test: The phrase is a built-in Java convenience that denotes the length of array votes
(here, 4). It is always better to use votes.length, rather than 4, in the coding, because
the former need not be changed if array votes is changed in a later version of the
program.
Figure 1 presents the resulting vote counting program. For example, if the elec-

tion’s votes arrived in the order, 3, 3, 0, 2, 3, followed by a terminating number,
e.g., -1, the program prints



www.manaraa.com

398

Figure 8.1: vote counting

import javax.swing.*;

/** VoteCount tallies the votes for election candidates.

* input: a sequence of votes, terminated by a -1

* output: the listing of the candidates and their tallied votes */

public class VoteCount

{ public static void main(String[] args)

{ int num candidates = 4; // how many candidates

int[] votes = new int[num candidates]; // holds the votes;

// recall that each element is initialized to 0

// collect the votes:

boolean processing = true;

while ( processing )

// invariant: all votes read have been tallied in array votes

{ int v = new Integer(JOptionPane.showInputDialog

("Vote for (0,1,2,3):")).intValue();

if ( v >= 0 && v < votes.length ) // is it a legal vote?

{ votes[v] = votes[v] + 1; }

else { processing = false; } // quit if there is an illegal vote

}

// print the totals:

for ( int i = 0; i != votes.length; i = i + 1 )

// totals for votes[0]..votes[i-1] have been printed

{ System.out.println("Candidate" + i + " has " + votes[i] + " votes"); }

}

}

Perhaps the key statement in the program is the conditional statement,

if ( v >= 0 && v < votes.length )

{ votes[v] = votes[v] + 1; }

else { ... }

The conditional adds the vote to the array only if the vote falls within the range
0..3. If an improperly valued v, say, 7, was used with votes[v] = votes[v] + 1, then
execution would halt with this exception,

java.lang.ArrayIndexOutOfBoundsException: 7

at Test.main(VoteCount.java:...)

because there is no element, votes[7]. It is always best to include conditional state-
ments that help a program defend itself against possible invalid array indexes.



www.manaraa.com

8.3. TRANSLATION TABLES 399

Exercises

1. Modify class VoteCount in Figure 1 so that it prints the total number of votes
cast and the winning candidate’s “name.”

2. Modify class VoteCount so that the application first asks for the number of
candidates in the election. After the number is typed, then votes are cast as
usual and the results are printed.

3. Modify class VoteCount so that the application first requests the names of the
candidates. After the names are typed, the votes are cast as as usual and the
results are printed with each candidate’s name and votes. (Hint: Use an array
of type String[] to hold the names.)

4. Write an application that reads a series of integers in the range 1 to 20. The
input is terminated by an integer that does not fall in this range. For its output,
the application prints the integer(s) that appeared most often in the input, the
integer(s) that appeared least often, and the average of all the inputs.

8.3 Translation Tables

Arrays are useful for representing tables of information that must be frequently con-
sulted. Here is an example: A simple form of coding is a substitution code, which
systematically substitutes individual letters by integer codes. For example, if we re-
place every blank space by 0, every ’a’ by 1, every ’b’ by 2, and so on, we are using
a substitution code. A sentence like,

a bed is read

is encoded into this sequence of integers:

1 0 2 5 4 0 9 19 0 18 5 1 4

This simple substitution code is all too easy for outsiders to decipher.
Here is a slightly more challenging substitution code: Starting with a “seed”

integer, k, we encode a blank space by k. Call this value code(’ ’). Next, we encode
the alphabet in this pattern, where each character’s code is the twice as large as its
precedessor’s, plus one:

code(’ ’) = k;

code(’a’) = (code(’ ’) * 2) + 1

code(’b’) = (code(’a’) * 2) + 1

...

code(’z’) = (code(’y’) * 2) + 1

For example, with a starting seed of 7, a bed is read encodes to



www.manaraa.com

400

15 7 31 255 127 7 4095 4194303 7 2097151 255 15 127

The encoding program will work most efficiently if it first calculates the integer
codes for all the letters and saves them in a translation table—an array. Then, the
letters in the input words are quickly encoded by consulting the table for the codes.
We build the table as follows. First we declare the array:

int[] code = new int[27]; // this is the translation table:

// code[0] holds the code for ’ ’,

// code[1] holds the code for ’a’,

// code[2] holds the code for ’b’, and so on

Next, we systematically compute the codes to store in array code: the value of code[i]
is defined in terms of its predecessor, code[i - 1], when i is positive:

code[i] = (code[i - 1] * 2) + 1;

The arithmetic expression, i - 1, can be used, because Java allows integer-valued
expressions as indexes.
We now write this loop to compute the codes:

int seed = ... ;

code[0] = seed;

for ( int i = 1; i != code.length; i = i + 1 )

{ code[i] = (code[i - 1] * 2) + 1; }

We are now ready to read a string and translate its characters one by one into
integer codes: Java treats characters like they are integers, which makes it easy to
check if a character, c, is a lower-case letter (c >= ’a’ && c <= ’z’ does this) and to
convert the character into the correct index for array code ((c - ’a’) + 1 does this):

String input_line = JOptionPane.showInputDialog("type sentence to encode: ");

for ( int j = 0; j != input_line.length(); j = j + 1 )

{ char c = input_line.charAt(j);

if ( c == ’ ’ )

{ System.out.println(code[0]); }

else if ( c >= ’a’ && c <= ’z’ )

{ int index = (c - ’a’) + 1;

System.out.println(code[index]);

}

else { System.out.println("error: bad input character"); }

}

(Recall that S.length() returns the length of string S and that S.charAt(j) extracts
the jth character from S.)
When we build a translation table, we compute each possible translation exactly

once, and we save and reuse the answers when we read the inputs. For this reason,
translation tables are most useful when it is expensive to compute translations and
there are many inputs to translate.



www.manaraa.com

8.3. TRANSLATION TABLES 401

Exercises

1. Write the complete application which takes a seed integer and a line of words
as input and produces a series of integer codes as output.

2. Write the corresponding decoder program, which takes the seed integer as its
first input and then reads a sequence of integers, which are decoded into char-
acters and printed.

3. Write statements that construct a translation table, powers of two, and assign
to the table the powers of two, namely,

powers_of_two[i] = 2^i

for all values of i in the range, 0 to 9.

4. Translation tables have a special connection to recursively defined equations,
like the ones we saw in Chapter 7. For example, this recursive definition of
summation:

summation(0) = 0

summation(n) = n + summation(n-1), if n > 0

“defines” the following translation table:

int[] summation = new int[...];

summation[0] = 0;

for ( int n = 1; n != summation.length; n = n + 1 )

{ summation[n] = n + summation[n-1]; }

Write applications that build tables (arrays of 20 elements) for the following
recursive definitions; make the applications print the contents of each table, in
reverse order.

(a) The factorial function:

0! = 1

n! = n * (n-1)!, when n is positive

(b) The Fibonacci function:

Fib(0) = 1

Fib(1) = 1

Fib(n) = Fib(n-1) + Fib(n-2), when n >= 2

This example is especially interesting, because it is far more efficient to
compute the entire translation table for a range of Fibonnaci values and
consult the table just once, than it is to compute a single Fibonnaci value
with a recursively defined method. Why is this so?



www.manaraa.com

402

8.4 Internal Structure of One-Dimensional Arrays

Now that we have some experience with arrays, we should learn about their internal
structure. The story starts innocently enough: A Java array variable is declared like
any Java variable, e.g.,

int[] r;

This declares variable r with data type int[] (“int array”). But variable r is meant
to hold the address of an array object; it is not itself the array. We use assignment to
place an address in r’s cell:

r = new int[6];

As noted earlier, the phrase, new int[6], constructs an array object of six integer
elements. We can do the two previous two steps in a single initialization statement:

int[] r = new int[6];

As a result of the initialization to r, computer storage looks like this:

0 1 2 3 4 5

0 0 0 0 0 0

a1 : int[6]

a1int[ ] r ==

The address, a1, of the array object, new int[6], is saved in variable r. Notice that
the run-time data type of the object at address a1 is int[6]—the data type includes
the arrays’s length and its elements’ data type.
Many programmers fail to understand the difference between an array variable

and an array object and try to duplicate an array like this:

int[] s = r;

This statement duplicates the address of the array object and not the object itself!
When we examine computer storage, we see that variable s holds the same address
held by r—the two variables share the same array object:

a1int[ ] r == 0 1 2 3 4 5

0 0 0 0 0 0

a1 : int[6]

a1int[ ] s ==

This means assignments to s’s elements alter r’s elements as well: For example, s[0]
= 3 will make r[0] == 3 as well.



www.manaraa.com

8.4. INTERNAL STRUCTURE OF ONE-DIMENSIONAL ARRAYS 403

Once constructed, an array object’s length cannot change. The length of an
array, like r, can be obtained by the phrase, r.length. Note that r.length lacks a
parentheses set, (). For whatever reason, the Java designers made length a “public
field” of an array object, rather than a “public method.”
The array named r is called one dimensional because one index (subscript) is

required to identify a specific element in the array. Some programming languages
permit construction of a two-dimensional array (also known as a matrix or grid),
where two indexes are required to identify an element. Two dimensional arrays are
studied later in this Chapter.
We can construct arrays of integers, doubles, booleans, strings, and indeed, of any

legal data type. Here are some examples:

• double[] score = new double[6] constructs an array of six elements, each of
which holds doubles. Each element is initialized to 0.0.

• boolean[] safety check = new boolean[i + 2] constructs an array whose length
is the value of integer variable i plus 2. The example shows that an integer-
valued arithmetic expression states the length of the array object. (The value
must be nonnegative.) Each element of a boolean array is initialized to false

• BankAccount[] account = BankAccount[100] constructs an array that can hold
100 distinct BankAccount objects. (See Figure 11, Chapter 6, for class BankAccount.)
Each element is initialized to null, which means, “no value.”

The last statement of the last example is crucial to understanding Java arrays:
When you construct an array whose elements hold objects, the array’s elements are
initialized to null values—there is only a “container” but no objects in it. Therefore,
you must explicitly construct new objects and assign them to the elements. For the
last example, we might write a loop that constructs and inserts objects into array
account:

BankAccont[] account = new BankAccount[100];

for ( int i = 0; i != account.length; i = i + 1 )

{ account[i] = new BankAccount( ... ); } // see Figure 11, Chapter 6

An array can be partially filled with objects, just like an hotel can have some occu-
pied rooms and some vacancies. We can test if an element is occupied by comparing
the element’s value to null. For example, here is a loop that prints the balances of
all accounts in array account, skipping over those elements that are empty:

for ( int i = 0; i != account.length; i = i + 1 )

{ if ( account[i] != null )

{ System.out.println( "Balance of account " + i

+ " is " + account[i].balanceOf() );

}

}



www.manaraa.com

404

As noted in the previous section, integer-valued arithmetic expressions are used to
index an array’s elements. For example, these statements make short work of building
a lookup table of powers of two:

int[] r = new int[6];

r[0] = 1;

for ( int i = 1; i < r.length; i = i + 1 )

{ r[i] = r[i - 1] * 2; }

Now, r[j] holds the value of 2j:

0 1 2 3 4 5

1 2 4 8 16 32

A numeric or boolean array can be constructed and initialized with a set-like
notation, which looks like this:

int[] r = {1, 2, 4, 8, 16, 32};

Because they are objects, array objects can be parameters to methods and can be
results from methods. Here is an example: Method reverse accepts (the address of)
an array object as its argument and returns as its result a newly constructed array
object whose elements are arranged in reverse order of those in its argument:

public double[] reverse(double[] r)

{ double[] answer = new double[r.length];

for ( int i = 0; i != r.length; i = i+1 )

{ answer[(r.length - 1) - i] = r[i]; }

return answer;

}

When this method is invoked, for example,

double[] numbers d = {2.3, -4.6, 8, 3.14};

double[] e = reverse(d);

it is the address of the four-element array named by d that is bound to the formal
parameter, r. Inside the method, a second array is constructed, and the numbers held
in the array named d are copied into the new array object. When the method finishes,
it returns the address of the second array—variables d and e hold the addresses of
distinct array objects.
The main method that comes with every Java application uses an array parameter,

args:

public static void main(String[] args)

{ ... args[0] ... args[1] ... }



www.manaraa.com

8.4. INTERNAL STRUCTURE OF ONE-DIMENSIONAL ARRAYS 405

When an application is started, whatever program arguments supplied in the appli-
cation’s start-up command are packaged into an array object, and the address of the
array is bound to args. This explains why the leading program argument is referred
to as args[0], the next argument is args[1], and so on. The number of program
arguments supplied is of course args.length.

Exercises

Create the following arrays and assign to their elements as directed.

1. An array, r, of 15 integers, such that r[0] = 0, and the value of all the other
r[i]s, i in 1..14, is the summation of i. (Hint: Use the algorithm underlying
Figure 1, Chapter 7, to calculate summations.)

2. An array, d, of 30 doubles, such that value of each d[i] is the square root of i.
(Hint: Use Math.sqrt.) For i ranging from 0 to 29, print i and its square root.

3. An array, b, of 4 booleans, such that the value of b[0] is true, the value of b[1]
is the negation of b[0], and the value of b[2] is the conjunction of the previous
two elements. (The value of b[3] does not matter.) Print the values of b[3]
through b[1].

4. Write this method:

/** maxElement returns the largest integer in its array parameter.

* @param r - an array of 1 or more integers

* @return the largest integer in the array */

public int maxElement(int[] r)

5. Write this method:

/** add adds the elements of two arrays, element-wise

* @param r1 - an array

* @param r2 - an array. Note: the two arrays’ lengths must be the same

* @return a newly constructed array, s, such that s[i] = r1[i] + r2[i],

* for all i; return null, if r1 and r2 have different lengths. */

public double[] add (double[] r1, double[] r2)

6. Given this declaration,

BankAccount[] bank = new BankAccount[100];



www.manaraa.com

406

(a) Write a for-loop that creates one hundred distinct bank accounts, each
with starting balance of 0, and assigns the accounts to the elements of
bank.

(b) Write a statement that adds 50 to the account at element 12; write state-
ments that transfer all the money in the account at element 12 to the
account at element 45.

(c) Write a for-loop that prints the index numbers and balances for all accounts
that have nonzero balances.

(d) Write an assignment statement that makes the account at element 12 van-
ish.

(e) Explain what happens when this assignment is executed: bank[15] = bank[10];

8.5 Arrays of Objects

The previous section pointed out that an array can hold objects. Arrays of objects
can collect together bank accounts or library books or tax records into a single “data
base.” Here is a small example.
Recall once more, class BankAccount, from Figure 11, Chapter 6. When we

construct a new BankAccount(N), we construct an object with an initial balance of N
that can receive deposits and withdrawals. For example,

BankAccount x = new BankAccount(70);

... x.withdraw(50) ...

constructs an account named x with an initial balance of 70 and performs a withdrawal
of 50 upon it.
A bank has hundreds, if not thousands, of customers, so a program that maintains

the bank’s accounts must construct many BankAccount objects. An array is a good
structure for saving the objects. Here is one simple modelling: Say that a bank is able
to maintain at most 100 accounts. Each account is given an identification number
in the range of 0 to 99. The program that does accounting for the bank will use an
array like this:

BankAccount[] bank = new BankAccount[100];

This constructs an array that has 100 elements, such that each element holds the
initial value, null. (There are no accounts yet, just a structure to hold the accounts.)
Now, say that a customer opens an account at the bank with an initial desposit of

200, and the customer wants her account to have the identification number, 75. The
programming statements that enact this request might read,

BankAccount new_account = new BankAccount(200);

bank[75] = new_account;



www.manaraa.com

8.5. ARRAYS OF OBJECTS 407

Or, more directly stated,

bank[75] = new BankAccount(200);

Here is a diagram of the array and the newly constructed object whose address is
saved within the array:

0 1

a1 : BankAccount[100]

null

. . .

. . . a2null null

9975 . . .

. . .

a1BankAccount[] bank ==

. . .

int balance == 20

a2 : BankAccount

If the customer wishes to withdraw 60 from the account, this invocation,

bank[75].withdraw(60)

will preform the action. Note that bank[75] names the bank account object whose
withdraw method is invoked. This example emphasizes that the array, bank, holds
objects that are indexed by integers.
Next, say that the customer closes her account, so that it is no longer needed by

the bank. The bank “erases” the account by stating,

bank[75] = null;

Since null means “no value,” this means another customer might open an account
and choose 75 for its identification number.
As just noted, an array can be partially filled with objects; we can test if an array

element is occupied by comparing the element’s value to null. For example, here
is a loop that prints the balances of all accounts in array bank, skipping over those
elements that are empty:

for ( int i = 0; i != bank.length; i = i + 1 )

{ if ( bank[i] != null )

{ System.out.println( "Balance of account " + i

+ " is " + bank[i].getBalance() );

}

}

With these basic ideas in mind, we can write a simple bank-accounting application
that lets customers open bank accounts, make deposits and withdrawals, check the
balances, and close the accounts when they are no longer needed—we use an array to
hold the accounts, and we use the array’s indexes as the identification numbers for
the accounts.



www.manaraa.com

408

Of course, it is overly simplistic to use simple integers as identification numbers
for bank accounts—we should use a more general notion of a key to identify an
account. The key might be a word, or a sequence of numerals and letters, or even an
object itself. The case study in the next section develops a more realistic approach
to maintaining databases of objects where objects are identified by keys.

Exercises

1. Here is a class, Counter, that can remember a count:

public class Counter

{ private int c;

public Counter(int v) { c = v; }

public void increment() { c = c + 1; }

public int getCount() { return c; }

}

Say that we change the declaration of votes in the vote-counting application in
Figure 1 to be

Counter[] votes = new Counter[num_candidates];

Revise the vote-counting application to operate with this array.

2. Let’s write a class that “models” the bank described in this section:

/** Bank models a collection of bank accounts */

public class Bank

{ BankAccount[] bank; // the array that holds the account

int max_account; // the maximum account number

/** Constructor Bank initialize the bank

* @param how_many - the maximum number of bank accounts */

public Bank(int how_many)

{ max_account = how_many;

bank = new BankAccount[how_many];

}

/** addNewAccount adds a new account to the bank

* @param id_number - the account’s identification number; must be in

* the range, 0..maximum_account_number - 1

* @param account - the new bank account object

* @return true, if the account is succesfully added;



www.manaraa.com

8.6. CASE STUDY: DATABASES 409

* return false, if the id_number is illegal */

public boolean addNewAccount(int id_number, BankAccount account)

{ boolean result = false;

if ( id_number >= 0 && id_number < max_account

&& bank[id_number] == null ) // is id_number legal?

{ bank[id_number] = account;

result = true;

}

return result;

}

/** getAccount finds a bank account

* @param id_number - the identification number of the desired account

* @return the bank account whose identification is id_number;

* if there is no account with the id_number, return null */

public BankAccount getAccount(int id_number)

{ ... }

/** deleteAccount removes a bank account

* @param id_number - the identification number of the account to be removed

* @return true, if the deletion was successful;

* return false, if no account has the id_number */

public boolean deleteAccount(int id_number)

{ ... }

}

We might use the class as follows:

Bank b = new Bank(500);

b.addNewAccount(155, new BankAccount(100));

...

BankAccount a = b.getAccount(155);

... a.deposit(200) ...

Write the two missing methods for class Bank.

3. Use class Bank in the previous exercise to write an application that lets a user
construct new bank accounts, do deposits and withdrawals, and print balances.

8.6 Case Study: Databases

A large collection of information, such as a company’s sales records or its customer
accounts or its payroll information, is called a database. An important programming
challenge is determining the proper structure for a database.



www.manaraa.com

410

In simplest terms, a database is a “container” into which objects are inserted,
located, and removed; the objects that are stored in a database are called records.
An important feature about a record is that it is uniquely identified by its key, which
is held within the record itself. Here are some examples of records:

• A bank’s database holds records of accounts. Each account record is uniquely
identified by a multi-letter-and-digit account number. A typical record would
contain information such as

1. its key, the multi-digit integer, which identifies the account

2. the name (or some other identification) of the account’s owner

3. the amount of money held in the account

• A library’s database holds records of books. Each record has for its key the
book’s catalog number. For example, the U.S. Library of Congress catalog
number is a pair: an alphabetic string and a fractional number, such as QA

76.8. The records held in a library’s database would have these attributes:

1. the key, which is the book’s catalog number

2. the book’s title, author, publisher, and publication date

3. whether or not the book is borrowed, and if so, by which patron

• The U.S. Internal Revenue Service database hold records of taxpayers. Each
record is identified by a nine-digit social-security number. The record holds the
number as its key and also holds the taxpayer’s name, address, and copies of
the person’s tax reports for the past five years.

Although the example records just listed differ markedly in their contents, they share
the common feature of possessing a key. This crucial feature helps us understand the
function of a database:

A database is a container that locates records by using the records’ keys as indices.

Compare this concept to that of an array: An array is a container that locates
objects by using integer indices numbered 0, 1, 2, ..., and so on. A database is like a
“smart array” that uses a record’s key to save and locate the record.
How can we model and build a general-purpose database in Java? Here are some

crucial concepts:

1. keys are objects

2. records are objects, and a record holds as one of its attributes (the address of)
its key object



www.manaraa.com

8.6. CASE STUDY: DATABASES 411

3. a database is a kind of “array” of record objects; it must have methods for
inserting a record, finding a record, and deleting a record

4. when the database’s user wishes to insert a record into the database, she calls
the databases’ insert method, supplying the record as the argument; when she
wishes to find a record, she calls the find method, supplying a key object as
an argument; when she wishes to delete a record, the calls the delete method,
supplying a key object as an argument

For example, if we build a database to hold library books, the key objects will be
Library of Congress catalog numbers, and each record object will hold (the address
of) a key object and information about a book. Such records are inserted, one by
one, into the database. When a user wishes to find a book in the database, she must
supply a key object to the database’s find method and she will receive in return (the
address of) the desired book object; an informal picture of this situation looks like
this:

QA

76.9

a1 : Key

a3. . .

a3 : Database

. . .

a1

a2 : Record

”Charles Dickens”

”A Tale of Two Cities”

borrowed

...

QA

76.9

a4 : Key

insert(a2)

find(a4)

The picture suggests that the database will operate the same, regardless of whether
books, bank accounts, and so on, are saved. As long as the records—whatever they
are—hold keys, the database can do its insertions, lookups, and deletions, by manip-
ulating the records’ keys and not the records themselves. This is strongly reminiscent
of arrays, which can hold a variety of objects without manipulating the objects them-
selves.
So, how does a database manipulate a key? Regardless of whether keys are num-

bers or strings or pairs of items, keys are manipulated by comparing them for equality.
Consider a lookup operation: The database receives a key object, and the database
searches its collection of records, asking each record to tell its key, so that each key
can be compared for equality to the desired key. When an equality is found true, the
corresponding record is returned. This algorithm operates the same whether integers,
strings, or whatever else is used for keys.
In summary,

1. The Database holds a collection of Record objects, where each Record holds a Key



www.manaraa.com

412

object. The remaining structure of the Records is unimportant and unknown
to the database.

2. The Database will possess insert, find, and delete methods.

3. Records, regardless of their internal structure, will possess a getKey method that
returns the Record’s Key object when asked.

4. Key objects, regardless of their internal structure, will have an equals method
that compares two Keys for equality and returns true or false as the answer.

We are now ready to design and build a database subassembly in Java. We
will build a subassembly—not an entire program—such that the subassembly can be
inserted as the model into a complete application. We follow the usual stages for
design and construction:

1. State the subassembly’s desired behaviors.

2. Select an architecture for the subassembly.

3. For each of the architecture’s components, specify classes with appropriate at-
tributes and methods.

4. Write and test the individual classes.

5. Integrate the classes into a complete subassembly.

8.6.1 Behaviors

Regardless of whether a database holds bank accounts, tax records, or payroll infor-
mation, its behaviors are the same: a database must be able to insert, locate, and
delete records based on the records’ keys. We plan to write a class Database so that
an application can construct a database object by stating,

Database db = new Database(...);

Then, the application might insert a record—call it r0—into db with a method invo-
cation like this:

db.insert(r0);

As stated earlier, each record possesses its own key. Say that record r0 holds object
k0 as its key. To retrieve record r0 from the database, we use a command like this:

Record r = db.find(k0);

This places the address of record r0 into variable r for later use. We can delete the
record from the database by stating:



www.manaraa.com

8.6. CASE STUDY: DATABASES 413

Figure 8.2: architecture for a database

insert
find
delete

Database
Record

getKey(): Key

Key

equals(Key y): boolean

1 *

db.delete(k0);

Notice that variable r still holds the address of the record, but the record no longer
lives in the database.
The above behaviors imply nothing about the techniques that the database uses

to store and retrieve records; these activities are internal to class Database and are
best left unknown to the database’s users.

8.6.2 Architecture

The previous examples suggest there are at least three components to the database’s
design: the Database itself, the Records that are inserted into it, and the Keys that
are kept within records and are used to do insertions, lookups, and deletions. The
class diagram in Figure 2 lists these components and their dependencies. There
is a new notation in the Figure’s class diagram: The annotation, 1 --> *, on the
arrow emphasizes that one Database collaborates with (or collects) multiple Records,
suggesting that an array will be useful in the coding of class Database. As noted
earlier, whatever a Record or Key might be, the methods getKey and equals are
required. (The format of the equals method will be explained momentarily.)

8.6.3 Specifications

To keep its design as general as possible, we will not commit class Database to saving
any particular form of Record—the only requirement that a database will make of a
record is that a record can be asked for its key. Similarly, the only requirement a
database will make of a key is that the key can be compared to another key for an
equality check.
Since class Database must hold multiple records, its primary attribute will be

an array of records, and the database will have at least the three methods listed in
Figure 2.



www.manaraa.com

414

Figure 8.3: specifications for database building

Database a container for data items, called Records

Attribute

private Record[] base Holds the records inserted into the database.

Methods

insert(Record r): boolean Attempts to insert the record, r, into the database.
Returns true if the record is successfully added,
false otherwise.

find(Key k): Record Attempts to locate the record whose key has value
k. If successful, the address of the record is re-
turned, otherwise, null is returned.

delete(Key k): boolean Deletes the record whose key has value k. If suc-
cessful, true is returned; if no record has key k,
false is returned.

Record a data item that can be stored in a database

Methods

getKey(): Key Returns the key that uniquely identifies the record.

Key an identification, or “key,” value

Methods

equals(Key m): boolean Compares itself to another key, m, for equality. If
this key and m are same key value, then true is
returned; if m is a different key value, then false is
returned.

The specification for Record is kept as minimal as possible: whatever a record
object might be, it has a function, getKey, that returns the key that uniquely identifies
the record. Similarly, it is unimportant whether a key is a number or a string or
whatever else; therefore, we require only that a key possesses a method, equals, that
checks the equality of itself to another key.

Table 3 presents the specifications that summarize our assumptions about databases,
records, and keys. Because we have provided partial (incomplete) specifications for
Record and Key, many different classes might implement the two specifications. For
example, we might write class Book to implement a Record so that we can build a
database of books, or we might write class BankAccount to implement a database of
bank accounts. Different classes of keys might also be written, if only because books
use different keys than do bank accounts.

Key’s specification deserves a close look: the specification is written as if keys are
objects (and not mere ints). For this reason, given two Key objects, K1 and K2, we



www.manaraa.com

8.6. CASE STUDY: DATABASES 415

must write K1.equals(K2) to ask if the two keys have the same value. (This is similar
to writing S1.equals(s2) when comparing two strings, S1 and S2, for equality.) We
exploit this generality in the next section.

8.6.4 Implementation

The specifications for Record and Key make it possible to write a complete coding for
class Database without knowing any details about the codings for the records and
keys. Let’s consider the implementation of class Database.
The database’s primary attribute is an array that will hold the inserted records.

class Database must contain this field declaration:

private Record[] base;

The constructor method for the class will initialize the field to an array:

base = new Record[HOW_MANY_RECORDS];

where all the array’s elements have value null, because the array is empty. Records
will be inserted into the database one by one. To do an insert(Record r), follow this
algorithm:

1. Search array base to see if r is present. (More precisely, search base to see if a
record with the same key as r’s key is already present.)

2. If r is not in base, then search for the first element in base that is empty (that
is, holds value null).

3. Insert r into the empty element.

Each of the algorithm’s three steps requires more refinement: To fill in details in the
first step, say that we write a helper method, findLocation, which searches the array
for a record whose key equals k. The helper method might be specified like this:

/** findLocation is a helper method that searches base for a record

* whose key is k. If found, the array index of the record within

* base is returned, else -1 is returned. */

private int findLocation(Key k)

Then, Step 1 of the algorithm is merely,

if ( findLocation(r.getKey()) == -1 )

because r.keyOf() extracts the key held within record r, and a result of -1 from
findLocation means that no record with the same key is already present.
Step 2 of the algorithm is clearly a searching loop, and we use the techniques from

Chapter 7 to write this loop, which searches for the first empty element in base where
a new record can be inserted:



www.manaraa.com

416

boolean found_empty_place = false;

int i = 0;

while ( !found_empty_place && i != base.length )

// so far, all of base[0]..base[i-1] are occupied

{ if ( base[i] == null ) // is this element empty?

{ found_empty_place = true; }

else { i = i + 1; }

}

When this loop completes, i holds the index of the first empty element in base,
meaning that Step 3 is just base[i] = r, unless array base is completely filled with
records and there is no available space. What should we do in the latter situation?
Because Java arrays are objects, it is possible to construct a new array object that

is larger than the current array and copy all the elements from the current array to
the new array. Here is a standard technique for doing so:

// This constructs a new array twice as large as base:

Record[] temp = new Record[base.length * 2];

// Copy elements in array named by base into temp:

for ( int j = 0; j != base.length; j = j + 1 )

{ temp[j] = base[j]; }

// Change base to hold address of temp:

base = temp;

The last assignment, base = temp, copies the address of the larger array into array
variable base, meaning that base once again holds the address of an array of records.

BeginFootnote: If you have studied the Java libraries, perhaps you discovered
class Vector, which behaves like an array but automatically expands to a greater
length when full. The technique that a Java Vector uses to expand is exactly the one
presented above. EndFootnote.

Figure 4 displays the completed version of insert.

Next, we consider how to delete an element from the database: The algorithm for
method, delete(Key k), would go,

1. Search array base to see if if a record with the key, k, is present.

2. If such a record is located, say, at element index, then delete it by assigning,
base[index] = null.

We use the helper method, findLocation, to code Step 1. We have this coding:

int index = findLocation(k);

if ( index != -1 )

{ base[index] = null; }



www.manaraa.com

8.6. CASE STUDY: DATABASES 417

See Figure 4 for the completed method.
We can write the lookup method so that it merely asks findLocation to find the

desired record in the array. Again, see Figure 4.
To finish, we must write the findLocation method, which finds the record in

array base whose key is k. The algorithm is a standard searching loop, but there is a
small complication, because array base might have null values appearing in arbitrary
places, due to deletions of previously inserted records:

private int locationOf(Key k)

{ int result = -1; // recall that -1 means ‘‘not found’’

boolean found = false;

int i = 0;

while ( !found && i != base.length )

{ if ( base[i] != null // is this element occupied?

&& base[i].keyOf().equals(k) ) // is it the desired record?

{ found = true;

result = i;

}

else { i = i + 1; }

}

return result; // return array index of the record found

}

Note the conditional statement in the loop’s body:

if ( base[i] != null // is this array element occupied?

&& base[i].keyOf().equals(k) ) // is it the desired record?

{ ... } // we found the record at array element, i

else { i = i + 1; } // the record is not yet found; try i + 1 next

The test expression first asks if there is a record stored in element, base[i], and if
the answer is true, then the element’s key (namely, base[i].keyOf()) is compared for
equality to the desired key, k.
The completed Database class appears in Figure 4. In addition to attribute base,

we define the variable, NOT FOUND, as a memorable name for the -1 answer used to
denote when a search for a record failed.
The coding presents several lessons:

• Although class Database appears to store records based on their keys, a more
primitive structure, an array, is used inside the class to hold the records. The
helper method, findLocation, does the hard work of using records’ keys as if
there were “indices.”

• Aside from the getKey and equals methods, nothing is known about the records
and keys saved in the database. This makes class Database usable in a variety
of applications, we see momentarily.



www.manaraa.com

418

Figure 8.4: class Database

/** Database implements a database of records */

public class Database

{ private Record[] base; // the collection of records

private int NOT FOUND = -1; // int used to denote when a record not found

/** Constructor Database initializes the database

* @param initial size - the size of the database */

public Database(int initial size)

{ if ( initial size > 0 )

{ base = new Record[initial size]; }

else { base = new Record[1]; }

}

/** findLocation is a helper method that searches base for a record

* whose key is k. If found, the index of the record is returned,

* else NOT FOUND is returned. */

private int findLocation(Key k)

{ int result = NOT FOUND;

boolean found = false;

int i = 0;

while ( !found && i != base.length )

{ if ( base[i] != null && base[i].keyOf().equals(k) )

{ found = true;

result = i;

}

else { i = i + 1; }

}

return result;

}

/** find locates a record in the database based on a key

* @param key - the key of the desired record

* @return (the address of) the desired record;

* return null if record not found. */

public Record find(Key k)

{ Record answer = null;

int index = findLocation(k);

if ( index != NOT FOUND )

{ answer = base[index]; }

return answer;

}

...



www.manaraa.com

8.6. CASE STUDY: DATABASES 419

Figure 8.4: class Database (concl.)

/** insert inserts a new record into the database.

* @param r - the record

* @return true, if record added; return false if record not added because

* another record with the same key already exists in the database */

public boolean insert(Record r)

{ boolean success = false;

if ( findLocation(r.keyOf()) == NOT FOUND ) // r not already in base?

{ // find an empty element in base for insertion of r:

boolean found empty place = false;

int i = 0;

while ( !found empty place && i != base.length )

// so far, all of base[0]..base[i-1] are occupied

{ if ( base[i] == null ) // is this element empty?

{ found empty place = true; }

else { i = i + 1; }

}

if ( found empty place )

{ base[i] = r; }

else { // array is full! So, create a new one to hold more records:

Record[] temp = new Record[base.length * 2];

for ( int j = 0; j != base.length; j = j + 1 )

{ temp[j] = base[j]; } // copy base into temp

temp[base.length] = r; // insert r in first free element

base = temp; // change base to hold address of temp

}

success = true;

}

return success;

}

/** delete removes a record in the database based on a key

* @param key - the record’s key (identification)

* @return true, if record is found and deleted; return false otherwise */

public boolean delete(Key k)

{ boolean result = false;

int index = findLocation(k);

if ( index != NOT FOUND )

{ base[index] = null;

result = true;

}

return result;

}

}



www.manaraa.com

420

• Because the array of records can be filled, we use a standard technique within
the insert method to build a new, larger array when needed.

8.6.5 Forms of Records and Keys

When we use class Database to hold records, we must write a class Record and a
class Key. The contents of these classes depends of course on the application that
requires the database, but we know from Table 3 that class Record must include a
getKey method and class Key must include an equals methods. Figure 5 shows one
such implementation: a record that models a simple bank account and a key that is
merely a single integer value.
The Record in Figure 5 has additional methods that let us do deposits and check

balances of a bank account, but the all-important getKey method is present, meaning
that the record can be used with class Database of Figure 4.
In order to conform to the requirements demanded by class Database, the integer

key must be embedded within a class Key. This means the integer is saved as a
private field within class Key and that the equals method must be written so that
it asks another key for its integer attribute, by means of an extra method, getInt.
Here is how we might use the classes in Figure 5 in combination with Figure 4.

Perhaps we are modelling a bank, and we require this database:

Database bank = new Database(1000);

When a customer opens a new account, we might ask the customer to select an integer
key for the account and make an initial deposit:

int i = ...some integer selected by the customer...;

int start_balance = ...some initial deposit by the customer...;

Key k1 = new Key(i);

boolean success = bank.insert( new Record(start_balance, k1) );

System.out.println("account inserted = " + success);

The fourth statement both constructs the new account and inserts it into the database.
Later, if the account must be fetched so that its balance can be checked, we can

find it and print its balance like this:

Record r = bank.find(k1); // recall that k1 is the account’s key

if ( r != null ) // did we successfully fetch the account?

{ System.out.println(r.getBalance()); }

To show that the database can be used in a completely different application, we
find in Figure 6 a new coding of record and key, this time for library books. Now,
class Record holds attributes for a book’s title, author, publication date, and catalog
number; the catalog number serves as the book’s key.



www.manaraa.com

8.6. CASE STUDY: DATABASES 421

Figure 8.5: BankAccount Record and AccountKey

/** Record models a bank account with an identification key */

public class Record

{ private int balance; // the account’s balance

private Key id; // the identification key

/** Constructor Record initializes the account

* @param initial amount - the starting account balance, a nonnegative.

* @param id - the account’s identification key */

public Record(int initial amount, Key id)

{ balance = initial amount;

key = id;

}

/** deposit adds money to the account.

* @param amount - the amount of money to be added, a nonnegative int */

public void deposit(int amount)

{ balance = balance + amount; }

/** getBalance reports the current account balance

* @return the balance */

public int getBalance() { return balance; }

/** getKey returns the account’s key

* @return the key */

public int getKey() { return key; }

}

/** Key models an integer key */

public class Key

{ private int k; // the integer key

/** Constructor Key constructs the Key

* @param i - the integer that uniquely defines the key */

public Key(int i) { k = i; }

/** equals compares this Key to another for equality

* @param c - the other key

* @return true, if this key equals k’s; return false, otherwise */

public boolean equals(Key c)

{ return ( k == c.getInt() ); }

/** getInt returns the integer value held within this key */

public int getInt() { return k; }

}



www.manaraa.com

422

Figure 8.6: Book Record and CatalogNumber Key

/** Record models a Library Book */

public class Record

{ // the names of the fields describe their contents:

private Key catalog number;

private String title;

private String author;

private int publication date;

/** Constructor Record constructs the book.

* @param num - the book’s catalog number

* @param a - the book’s author

* @param t - the book’s title */

public Record(Key num, String a, String t, int date)

{ catalog number = num;

title = t;

author = a;

publication date = date;

is borrowed by someone = false;

}

/** getkey returns the key that identifies the record

* @return the key */

public Key getKey() { return catalog number; }

/** getTitle returns the book’s title

* @return the title */

public String getTitle() { return title; }

/** getAuthor returns the book’s author

* @return the author */

public String getAuthor() { return author; }

/** getDate returns the book’s publication date

* @return the date */

public int getDate() { return publication date; }

}



www.manaraa.com

8.6. CASE STUDY: DATABASES 423

Figure 8.6: CatalogNumber Key (concl.)

/** Key models a Library-of-Congress-style id number,

* consisting of a letter code concatenated to a decimal number */

public class Key

{ private String letter code; // the letter code, e.g., "QA"

private double number code; // the number code, e.g., 76.884

/** Constructor Key constructs a catalog number

* @param letters - the letter code, e.g., "QA"

* @param num - the decimal number code, e.g., 76.884 */

public Key(String letters, double num)

{ letter code = letters;

number code = num;

}

/** equals returns whether the catalog number held within this object

* is identical to the catalog number held within c

* @param c - the other catalog number

* @return true, if this catalog number equals c; return false, otherwise */

public boolean equals(Key c)

{ String s = c.getLetterCode();

double d = c.getNumberCode();

return ( s.equals(letter code) && d == number code );

}

/** getLetterCode returns the letter code part of this catalog number

* @return the letter code, e.g., "QA" */

public String getLetterCode() { return letter code; }

/** getNumberCode returns the number code part of this catalog number

* @return the number code, e.g., "76.884" */

public double getNumberCode() { return number code; }

}



www.manaraa.com

424

The structure of the catalog number is more complex: Its class Key holds a string
and a double, because we are using the U.S. Library of Congress coding for catalog
numbers, which requires a string and a fractional number. The class’s equals method
compares the strings and fractional numbers of two keys.
Here is a short code fragment that constructs a database for a library and inserts

a book into it:

Database library = new Database(50000);

Record book = new Book( new Key("QA", 76.8), "Charles Dickens",

"Great Expectations", 1860 );

library.insert(book);

// We might locate the book this way:

Key lookup_key = new Key("QA", 76.8);

book = library.find(lookup_key);

// We can delete the book, if necessary:

boolean deleted = library.delete(lookup_key);

As noted by the statement, Key lookup key = new Key("QA", 76.8), we can manu-
facture keys as needed to perform lookups and deletions.
It is a bit unfortunate that the bank account record in Figure 5 was named class

Record and that the book record in Figure 6 was also named class Record; more
descriptive names, like class BankAccount and class Book would be far more ap-
propriate and would let us include both classes in the same application if necessary.
(Perhaps a database must store both bank accounts and books together, or perhaps
one single application must construct one database for books and another for bank
accounts.)
Of course, we were forced to use the name, class Record, for both records because

of the coding for class Database demanded it. The Java language lets us repair this
naming problem with a new construction, called a Java interface. We will return
to the database example in the next chapter and show how to use a Java interface

with class Database to resolve this difficulty.

Exercise

Write an application that uses class Database and classes Record and Key in Figure
5 to help users construct new bank accounts and do deposits on them.

8.7 Case Study: Playing Pieces for Card Games

Computerized games must model a game’s playing pieces, the playing board, and even
the game’s players. A classic example of “playing pieces” are playing cards. Even



www.manaraa.com

8.7. CASE STUDY: PLAYING PIECES FOR CARD GAMES 425

if you have no interest in building or playing card games, modelling playing cards is
useful, because it shows how to model a set of pieces that must behave similarly.

Behavior of Cards and Decks

Perhaps we do not think of playing cards as having behaviors, but they are playing
pieces, and a playing piece, whether it be a chess pawn or a queen-of-hearts card, has
abilities or attributes that make it distinct from other playing pieces. A playing card
is a good example: It has a suit (diamonds, hearts, clubs, or spades) and count (ace
through ten, jack, queen, or king), e.g., hearts and queen. A card’s suit and count
are attributes and not behaviors in themselves, but a card game assigns behaviors
based on the attributes, e.g., in the card game, Blackjack, a card that has the count
of queen has the ability to score 10 points for the player who holds it.
In almost every game, playing pieces must be placed onto or into a container or

playing board—cards are collected into a container called a deck. Unlike the database
developed in the previous section, a card deck begins completely filled with cards. The
deck’s primary behavior is to surrender a card from itself whenever asked, until the
deck is finally empty.
Card games often use other forms of containers. For example, each player might

have its own personal container for cards, called a hand (of cards). A hand is initialized
so that it is empty and cards can be added to it, one by one.
For this small case study, we will design a subassembly consisting only of ordinary

playing cards and a deck to hold them. The architecture for the two classes is simple:

newCard(): Card

Deck

suit
count

Card*1

Specification

The specification for a card deck is presented in Table 7. Because it is a container for
cards, class Deck requires an attribute that is an array. The class’s methods include
one that returns a card and one that replies whether or not there are more cards to
return.

CardDeck collaborates with class Card, which we consider next. As noted earlier,
a playing card has two crucial attributes: its suit and its count, as seen in Table 8.
Of course, class Card will be coded to have accessor methods that return a card’s
suit and count.

Implementation

There is a technical issue that we should resolve before we write the two classes:
When people use playing cards, they perfer to use the names of suits and counts,



www.manaraa.com

426

Figure 8.7: specification for class CardDeck

class CardDeck models a deck of
cards

Attribute

private Card[]

deck

container for the
cards left in the
deck

Methods

newCard(): Card return a card from
the deck; if the
deck is empty, re-
turn null

moreCards():

boolean

return true if more
cards remain in the
deck; return false,
otherwise

Figure 8.8: specification of class Card

class Card models a playing card

Attributes

private String suit the card’s suit, e.g., spades, hearts, diamonds, clubs

private int count the card’s count, e.g., ace, 2, 3, ..., king

like “hearts,” “clubs,” “ace,” and “queen.” These are values, just like integers, and
we would like to use such values when we construct the playing cards, e.g., “new
Card(queen, hearts).”
We define values like “queen” and “hearts” in Java by declaring a public static

final variable for each such value, and place the public static final variables within
class Card. We see this in Figure 9, which presents class Card.
The public static final variables declared in class Card are public names that

can be used by the other components of an application; the names are used as if they
are new values. For example, other components can refer to the values, Card.ACE,
Card.DIAMOND, and so on. Now, we can say:

Card c = new Card(Card.HEARTS, Card.QUEEN)

to construct a queen-of-hearts object. And, we can ask,

if ( c.getCount() == Card.QUEEN ) { ... }



www.manaraa.com

8.7. CASE STUDY: PLAYING PIECES FOR CARD GAMES 427

Figure 8.9: playing card

/** Card models a playing card */

public class Card

{ // definitions that one can use to describe the value of a card:

public static final String SPADES = "spades";

public static final String HEARTS = "hearts";

public static final String DIAMONDS = "diamonds";

public static final String CLUBS = "clubs";

public static final int ACE = 1;

public static final int JACK = 11;

public static final int QUEEN = 12;

public static final int KING = 13;

public static final int SIZE OF ONE SUIT = 13; // how many cards in one suit

// These are the card’s attributes:

private String suit;

private int count;

/** Constructor Card sets the suit and count.

* @param s - the suit

* @param c - the count */

public Card(String s, int c)

{ suit = s;

count = c;

}

/** getSuit returns the card’s suit. */

public String getSuit()

{ return suit; }

/** getCount returns the card’s count. */

public int getCount()

{ return count; }

}



www.manaraa.com

428

But remember that the public static final variables are merely names for integers
and strings. For example, since Card.QUEEN is the name of an integer, we can state,

if ( c.getCount() >= Card.QUEEN ) { ... }

because integers can be compared by greater-than.
As always, the keyword, public, means that the variable can be referenced by

other classes; the keyword, final, states that the variable name can not be changed
by an assignment; the value is forever constant. Finally, the keyword, static, ensures
that the variable is not copied as a field into any Card objects that are constructed
from class Card.
It is traditional to declare public static final variables with names that are all

upper-case letters.
We have used public static final variables already when in previous chapters

we used predefined Java-library values like Color.red (to paint on a graphics window)
and Calendar.DAY OF MONTH (to get the date from a Gregorian calendar object).
The remainder of class Card is simple—it contains a constructor method, which

initializes a card object’s suit and count, and two accessor methods, which return the
suit and count.
Next, we consider class CardDeck. Its attributes are

private int card_count; // how many cards remain in the deck

private Card[] deck = new Card[4 * Card.SIZE_OF_ONE_SUIT];

// invariant: elements deck[0]..deck[card_count - 1] hold cards

Array deck is constructed to hold the four suits’s worth of cards, where the quantity
of cards in a suit is the static variable defined in class Card.
The class’s constructor method must fill array deck with a complete collection of

cards. As Figure 8 shows, a helper method, createSuit knows how to generate one
complete suit of cards and insert it into the array; therefore, the constructor can be
written as

createSuit(Card.SPADES);

createSuit(Card.HEARTS);

createSuit(Card.CLUBS);

createSuit(Card.DIAMONDS);

The helper method is written so that it inserts the cards into the array in ascending
order. This is not the ideal state for the deck for playing a typical card game—the
deck’s cards are expected to be randomly mixed, or “shuffled.”
Rather than write a method that randomly mixes the elements in the array, we

can write the newCard method so that when it is asked to remove a card from the
array it randomly calculates an array index from which the card is extracted. The
algorithm might go like this:



www.manaraa.com

8.7. CASE STUDY: PLAYING PIECES FOR CARD GAMES 429

1. Randomly calculate an integer in the range of 0 to card count - 1; call it index.

2. Remove the card at element deck[index]

3. Fill the empty element at index by shifting leftwards one element the cards in
the range, deck[index + 1] up to deck[card count - 1].

4. Decrease card count by one.

Step 1 can be done with the built-in Java method, Math.random(), which computes a
nonnegative pseudo-random fraction less than 1.0:

int index = (int)(Math.random() * card_count);

The computation, Math.random() * card count, generates a nonnegative fractional
number that must be less than card count (why?), and the cast, (int), truncates the
factional part, leaving an integer in the range, 0 to card count - 1.
Step 3 is performed with a simple loop:

for ( int i = index + 1; i != card_count; i = i + 1 )

// so far, cards from index+1 to i-1 have been shifted left

// in the array by one position

{ deck[i - 1] = deck[i]; }

The completed version of the method is in Figure 10.

Exercises

1. Write a test application that creates a new card, the queen of hearts, and then
asks the card what its suit and count are. The program prints the answers it
receives in the command window. Does your program print Queen or 12? What
solution do you propose so that the former is printed?

2. Write an application that creates a new deck of cards and asks the deck to deal
53 cards. (This is one more than the deck holds!) As the deck returns cards
one by one, print in the command window the count and suit of each card.

3. Write an application that lets a user request cards one by one, until the user
says, “stop.”

4. Card decks are used with card games. A typical card game has a dealer and
several players. A dealer owns a card deck and gives cards from the deck to
the players. The following specifications summarize the behavior of dealer and
player:



www.manaraa.com

430

Figure 8.10: class CardDeck

/** CardDeck models a deck of cards. */

public class CardDeck

{

private int card count; // how many cards remain in the deck

private Card[] deck = new Card[4 * Card.SIZE OF ONE SUIT];

// invariant: elements deck[0]..deck[card count - 1] hold cards

/** Constructor CardDeck creates a new card deck with all its cards */

public CardDeck()

{ createSuit(Card.SPADES);

createSuit(Card.HEARTS);

createSuit(Card.CLUBS);

createSuit(Card.DIAMONDS);

}

/** newCard gets a new card from the deck.

* @return a card not used before, or return null, if no cards are left */

public Card newCard()

{ Card next card = null;

if ( card count == 0 )

{ System.out.println("CardDeck error: no more cards"); }

else { int index = (int)(Math.random() * card count); // randomly choose

next card = deck[index];

// once card is extracted from deck, shift other cards to fill gap:

for ( int i = index+1; i != card count; i = i + 1 )

// so far, cards from index+1 to i-1 have been shifted left

// in the array by one position

{ deck[i - 1] = deck[i]; }

card count = card count - 1;

}

return next card;

}

/** moreCards states whether the deck has more cards to give.

* @return whether the deck is nonempty */

public boolean moreCards()

{ return (card count > 0); }

/** createSuit creates a suit of cards for a new card deck. */

private void createSuit(String which suit)

{ for ( int i = 1; i <= Card.SIZE OF ONE SUIT; i = i + 1 )

{ deck[card count] = new Card(which suit, i);

card count = card count + 1;

}

}

}



www.manaraa.com

8.8. TWO-DIMENSIONAL ARRAYS 431

class Dealer models a dealer of
cards

Responsibilities
(methods)
dealTo(Player p) gives cards, one

by one, to player
p, until p no
longer wants a
card

class Player models a player of
a card game

Responsibilities
(methods)
wantsACard():

boolean

replies as to
whether another
card is desired

receiveCard(Card

c)

accepts card c and
adds it to its hand

showCards():

Card[]

returns an array
of the cards that it
holds

Write classes for these two specifications. (Write class Player so that a player
wants cards until it has exactly five cards.) Next, write a controller that creates
a dealer object and a player object. The controller tells the dealer to deal to
the player. Then, the controller asks the player to reveal its cards.

5. Revise the controller in the previous Exercise so that there is an array of 3
players; the dealer deals cards to each player in turn, and then all players show
their cards.

8.8 Two-Dimensional Arrays

Often, we display a collection of names and/or numbers in a table- or grid-like layout;
here is an example. Say that 4 candidates participate in a “national election,” where
the candidates compete for votes in 3 different regions of the country. (In the United
States, for example, there are 50 such regions—the 50 states of the union.) Therefore,
separate vote tallies must be kept for each of the 3 regions, and the votes are recorded



www.manaraa.com

432

in a matrix:

Region
Candidate

election

0 0 0 0

0000

0 0 0 0

0 2 31

2

1

0

The Candidates’ names are listed along the top of the matrix (for simplicity, we call
them Candidate 0, ..., Candidate 3), labelling the columns, and the regions are listed
along the left (they are Regions 0, 1, and 2), labelling the matrix’s rows—We say that
the matrix has three rows and four columns.
Thus, a vote in Region 1 for Candidate 3 would be recorded in the middle row

within its rightmost element:

Region
Candidate

election

0 0 0 0

1000

0 0 0 0

0 2 31

2

1

0

Other votes are recorded this manner. When voting is completed, we can see which
candidate received the most votes overall by adding each of the four columns.
In programming, we use a two-dimensional array to model a matrix like the one

just seen. The above matrix is coded as a two-dimensional array in Java by stating

int[][] election = new int[3][4];

The data type of variable election is int[][] (“int array array”), indicating that
individual integers in the collection named election are uniquely identified by means
of two indexes. For example,

election[1][3]

identifies the integer element that holds the votes in Region 1 for Candidate 3.
The right-hand side of the initialization, new int[3][4], constructs the array ob-

ject that holds the collection of twelve integers, organized into 3 rows of 4 elements,
each—three rows and four columns. It is helpful to visualize the collection as a ma-
trix, like the ones just displayed. As usual for Java, the array’s elements are initialized
with zeros.
Let’s do some small exercises with array election: To add one more vote from

Region 1 for Candidate 3, we write



www.manaraa.com

8.8. TWO-DIMENSIONAL ARRAYS 433

election[1][3] = election[1][3] + 1;

The phrase, election[1][3], indicates the specific element in the matrix.
To give every candidate in Region 2 exactly 100 votes, we would say

for ( int i = 0; i != 4; i = i + 1 )

{ election[2][i] = 100; }

Here, we use election[2][i] to indicate a cell within Row 2 of the matrix—the value
of i determines the specific cell in the row.
Similarly, to give Candidate 3 an additional 200 votes in every region, we would

say

for ( int i = 0; i != 3; i = i + 1 )

{ election[i][3] = election[i][3] + 200; }

To print each candidate’s grand total of votes, we write a nested for-loop that
totals each column of the matrix:

for ( int j = 0; j != 4; j = j + 1 )

{ int votes = 0;

for ( int i = 0; i != 3; i = i + 1 )

{ votes = votes + election[i][j]; }

System.out.println("Candidate " + j + " has " votes + " votes");

}

The previous for loop displays the standard pattern for examining each and every
element of a matrix. Yet another example is printing the total votes cast in each
region of the election, which requires that we total each row of the matrix:

for ( int i = 0; i != 3; i = i + 1 )

{ int total = 0;

for ( int j = 0; j != 4; j = j + 1 )

{ total = total + election[i][j]; }

System.out.println(total + " votes were cast in Region " + i);

}

In the above example, the order of the loops is reversed, because rows are traversed,
rather than columns.

Exercises

1. Create a two-dimensional array of integers, m, with 12 rows and 14 columns and
initialize it so that each m[i][j] holds i*j.

2. Create a two-dimensional array of Strings, m, with 7 rows and 5 columns and
initialize it so that each m[i][j] holds the string "Element " + i + " " + j.



www.manaraa.com

434

3. Given this array, int[][] r = new int[4][4], and given this nested for-loop
that prints r’s contents,

for ( int i = 0; i != 4; i = i + 1 )

{ for ( int j = 0; j != 4; j = j + 1 )

{ System.out.print( r[i][j] + " " ); }

System.out.println();

}

write for-loops that initialize r so that the following patterns are printed:

(a) 1 0 0 0

1 2 0 0

1 2 3 0

1 2 3 4

(b) 1 2 3 4

0 3 4 5

0 0 5 6

0 0 0 7

(c) 1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

4. Modify the application in Figure 1 to use the election array. (Of course, a vote
must be cast with a region number and a candidate number.)

8.9 Internal Structure of Two-Dimensional Arrays

We can imagine that a two-dimensional array is a matrix and draw it as such, but the
array’s true arrangement in computer storage is more complex: A two-dimensional
array is in fact an array of arrays. To see this, reconsider

int[][] election = new int[3][4];



www.manaraa.com

8.9. INTERNAL STRUCTURE OF TWO-DIMENSIONAL ARRAYS 435

Here is its layout in computer storage:

0 a2

a3

a4

a1 : int[3] [ ]

1

2

a1int[ ] [ ] election ==

0 0 00 0

0 1 2 3

a2 : int[4]

0 0 00 0

0 1 2 3

0 0 00 0

0 1 2 3

a3 : int[4] a4 : int[4]

In Java, a two-dimensional array is built in terms of multiple one-dimensional array
objects. The diagram shows that the object at address a1 is a one dimensional array
that holds the addresses of the matrix’s rows.
For example, when we write, election[1][3], this is computed to a1[1][3], that

is, the array object at a1 is the one that will be indexed. Since element 1 within
object a1 is a3, the indexing is computed to a3[3], which identifies element 3 in the
array object at address a3.
Fortunately, this detailed address lookup is performed automatically and is hidden

from the programmer—it is indeed safe to pretend that election is the name of a
matrix of integer elements. But sometimes the knowledge of the matrix’s underlying
structure is exposed in the code that traverses the array, as in these for-loops, which
print the total votes for each region:

for ( int i = 0; i != 3; i = i + 1 )

{ int[] region = election[i]; // region holds the address of a row

int total = 0;

for ( int j = 0; j != 4; j = j + 1 )

{ total = total + region[j]; }

System.out.println(total + " votes were cast in Region " + i);

}

This exposes that each row of matrix election is itself a (one-dimensional) array.
Alas, we cannot treat a matrix’s columns in a similar way.
Another consequence of the storage layout is that the “length” of a matrix is the

number of rows it possesses. For the above example,

election.length

computes to 3. To learn the number of columns in a matrix, we ask for the length of
one of the matrix’s rows. For example,



www.manaraa.com

436

election[0].length

computes to 4.
Finally, some care must be taken when asking for the number of columns of a

two-dimensional array. Consider this odd example:

double[][] ragged = new double[4][];

double[0] = new double[2];

double[2] = new double[1];

double[3] = new double[0];

The first statement constructs an array variable, ragged, that will have four rows and
an undetermined number of columns; it looks like this in storage:

0 null

null

null

a1 : double[4][]

1

2

null3

a1double[][] ragged ==

The following three statements construct one-dimensional array objects and assign
them to ragged’s elements, giving us

0 a2

a3

a1 : double[4][]

1

2

a43

null

a1double[][] ragged ==

0.0

0

a2 : double[2]

0.0

1

a3 : double[1]

0.0

0

a4 : double[0]

This is an example of a “ragged array”—a two-dimensional array whose rows have
different lengths. For example, an election where different candidates are eligible in
different regions of a country might be modelled by a ragged array.
Notice that ragged[0].length equals 2, whereas ragged[2].length equals 1, whereas

ragged[1].length generates an exception (run-time error), because there is no array
of any length at the element. The array at element ragged[3] truly has length 0,
meaning that there are no elements at all that can be indexed in that row.



www.manaraa.com

8.10. CASE STUDY: SLIDE-PUZZLE GAME 437

8.10 Case Study: Slide-Puzzle Game

Two-dimensional arrays prove helpful for modelling game boards in computer games.
As an example, we design and build a slide puzzle, which is a game board that holds
numbered pieces that are moved by the user, one piece at a time.

Behavior

The behavior of the puzzle game goes like this: the puzzle starts in this configuration:

The user instructs the puzzle to move a piece by typing a number (in this configura-
tion, only 1 or 4 would be allowed), and the game responds by moving the requested



www.manaraa.com

438

Figure 8.11: architecture of model for slide puzzle

private int face value

PuzzlePiece

private PuzzlePiece[][] board
move(int w): boolean

SlidePuzzleBoard
1 *

piece:

The user may request similar moves for as long as she wishes.

Architecture, Specification, and Implementation of the Model

The application that implements the puzzle will need a model subassembly that
models the puzzle board and the pieces that move about the board; the model’s
architecture, presented in Figure 11, is simple and includes an initial specification of
the two classes that must be written.
The SlidePuzzleBoard’s sole responsibility is to move a puzzle piece when asked,

e.g., move(4) asks the board to move the piece whose face is labelled by 4.
A PuzzlePiece has only the attribute of the number on its face; it has no respon-

sibilities. For this reason, its coding is simple and appears in Figure 12.
Next, we consider writing class SlidePuzzleBoard. The class’s primary attribute

is the array that holds the (addresses of the) puzzle pieces:

private PuzzlePiece[][] board; // the array that holds the pieces

// one position on the board must be an empty space:

private int empty_row;



www.manaraa.com

8.10. CASE STUDY: SLIDE-PUZZLE GAME 439

Figure 8.12: class PuzzlePiece

/** PuzzlePiece defines a slide-puzzle playing piece */

public class PuzzlePiece

{ private int face value; // the value written on the piece’s face

/** Constructor PuzzlePiece creates a piece

* @param value - the value that appears on the face of the piece */

public PuzzlePiece(int value)

{ face value = value; }

/** valueOf returns the face value of the piece */

public int valueOf()

{ return face value; }

}

private int empty_col;

// representation invariant: board[empty_row][empty_col] == null

Exactly one element within array board must be empty (hold null), and it is conve-
nient to declare two fields, empty row and empty col, to remember the coordinates of
the empty space.
Method move(w) must move the piece labelled by integer w into the empty space.

For the move to succeed, the piece labelled by w must be adjacent to the empty space.
This means the algorithm for move(int w) must perform the appropriate checks:

1. If the playing piece labelled by w is immediately above the empty space (marked
by empty row and empty col), or if it is immediately below the empty space, or
immediately to the left or right of the empty space,

2. Then, move the piece labelled by w to the empty space, and reset the values of
empty row and empty col to be the position formerly occupied by w’s piece.

To write Step 1, we can make good use of this helper function, which looks at position,
row, col, to see if the piece labelled w is there:

/** found returns whether the piece at position row, col is labeled w */

private boolean found(int w, int row, int col)

Then, Step 1 can be coded to ask the helper function to check the four positions
surrounding the empty space whether piece w is there. See Figure 13 for the completed
coding of method move.
The board’s constructor method creates the board array and fills it with newly

created puzzle pieces. Finally, we add a method that returns the contents of the



www.manaraa.com

440

puzzle board. (This will be useful for painting the board on the display) The contents
method returns as its result the value of the board. It is best that contents not return
the address of its array board. (If it did, the client that received the address could
alter the contents of the array!) Instead, a new two-dimensional array is created, and
the addresses of the playing pieces are copied into the new array.

The Application’s Architecture

The model subassembly neatly fits into a standard model-view-controller architecture,
which we see in Figure 14.

Implementing the Controller

Figure 14’s class diagram specifies the methods for the controller and view compo-
nents. Consider the controller first; its play method should let the user repeatedly
enter moves to the slide puzzle. The algorithm is merely a loop, which

1. tells the PuzzleWriter component to paint the current state of the puzzle;

2. reads the next move from the user;

3. tells the SlidePuzzleBoard to attempt the move

The controller and its move method is presented in Figure 15.

Implementing the View

The output-view class, PuzzleWriter, has the responsibility of painting the con-
tents of the puzzle board in a graphics window. Because the controller, class

PuzzleController, sends its repaint requests via method, displayPuzzle, the displayPuzzle
method merely asks the view to repaint itself. The hard work of painting is done by
paintComponent, which must display the puzzle pieces as a grid. A nested for-loop
invokes the helper method, paintPiece, which paints each of the pieces, one by one.
Figure 16 shows the coding.

Exercises

1. Test class SlidePuzzleBoard by creating an object, board, from it and imme-
diately asking its contents method for the the board. Display the board with
these loops:

PuzzlePiece[][] r = board.contents();

for ( int i = 0; i != r.length; i = i+1 )

{ for ( int j = 0; j != r[i].length; j = j+1 )

{ if ( r[i][j] == null )



www.manaraa.com

8.10. CASE STUDY: SLIDE-PUZZLE GAME 441

Figure 8.13: class SlidePuzzleBoard

/** SlidePuzzleBoard models a slide puzzle. */

public class SlidePuzzleBoard

{ private int size; // the board’s size

private PuzzlePiece[][] board; // the array that holds the pieces

// one position on the board must be an empty space:

private int empty row;

private int empty col;

// representation invariant: board[empty row][empty col] == null

/** Constructor SlidePuzzleBoard constructs the initial puzzle, which has

* the pieces arranged in descending numerical order.

* @param s - the size of the puzzle, a positive integer (e.g., s==4 means

* the puzzle is 4 x 4 and will have pieces numbered 15, 14, ..., 1) */

public SlidePuzzleBoard(int s)

{ size = s;

board = new PuzzlePiece[size][size];

// create the individual pieces and place on the board in reverse order:

for ( int num = 1; num != size * size; num = num + 1 )

{ PuzzlePiece p = new PuzzlePiece(num);

int row = num / size;

int col = num % size;

// set p in a ‘‘reversed position’’ on the board:

board[size - 1 - row][size - 1 - col] = p;

}

// remember the location on the board where initially there is no piece:

empty row = size - 1;

empty col = size - 1;

}

/** contents returns the current state of the puzzle

* @return a matrix that contains the addresses of the pieces */

public PuzzlePiece[][] contents()

{ PuzzlePiece[][] answer = new PuzzlePiece[size][size];

for ( int i = 0; i != size; i = i + 1 )

{ for ( int j = 0; j != size; j = j + 1 )

{ answer[i][j] = board[i][j]; }

}

return answer;

}

...



www.manaraa.com

442

Figure 8.13: class SlidePuzzleBoard (concl.)

/** move moves a piece into the blank space, provided it is a legal move.

* @param w - the face value of the piece that one wishes to move

* @return true, if the piece labelled w was moved into the empty space;

* return false if the piece cannot be moved into the empty space */

public boolean move(int w)

{ int NOT FOUND = -1;

int row = NOT FOUND; // row and col will remember where piece w lives

int col = NOT FOUND;

// try to find w adjacent to the empty space on the board:

if ( found(w, empty row - 1, empty col) )

{ row = empty row - 1;

col = empty col;

}

else if ( found(w, empty row + 1, empty col) )

{ row = empty row + 1;

col = empty col;

}

else if ( found(w, empty row, empty col - 1) )

{ row = empty row;

col = empty col - 1;

}

else if ( found(w, empty row, empty col + 1) )

{ row = empty row;

col = empty col + 1;

}

if ( row != NOT FOUND )

{ // move the piece into the empty space:

board[empty row][empty col] = board[row][col];

// mark the new empty space on board:

empty row = row;

empty col = col;

board[empty row][empty col] = null;

}

return row != NOT FOUND;

}

/** found returns whether the piece at position row, col is labeled v */

private boolean found(int v, int row, int col)

{ boolean answer = false;

if ( row >= 0 && row < size && col >= 0 && col < size )

{ answer = ( board[row][col].valueOf() == v ); }

return answer;

}

}



www.manaraa.com

8.10. CASE STUDY: SLIDE-PUZZLE GAME 443

Figure 8.14: class diagram for slide-puzzle program

PuzzleController

play()

JOptionPane
displayPuzzle()
printError(String s)

PuzzleWriter

SlidePuzzleBoard

private PuzzlePiece[][] board
move(int w): boolean

private int face value

PuzzlePiece
1 *

{ System.out.print("X "); }

else { System.out.print( r[i][j].valueOf() + " " ); }

}

System.out.println();

}

Next, use the object’s move method to ask the board to move several numbers.
Display the board resulting from each move.

2. Use the for-loops in the previous Exercise in an alternate implementation of
class PuzzleWriter that displays the puzzle in the console window.

3. Test class PuzzleWriter by creating these objects,

SlidePuzzleBoard board = new SlidePuzzleBoard(3);

PuzzleWriter writer = new PuzzleWriter(board, 3);

writer.displayPuzzle();

where you use this “dummy” class:

public class SlidePuzzleBoard

{ private int size;

public SlidePuzzleBoard(int s) { size = s; }

public PuzzlePiece[][] contents()

{ PuzzlePiece[][] answer = new PuzzlePiece[size][size];

int k = 0;

for ( int i = 0; i != size; i= i+1 )

{ for ( int j = 0; j != size; j = j+1 )

{ answer[i][j] = new PuzzlePiece(k);



www.manaraa.com

444

Figure 8.15: controller for slide puzzle program

import javax.swing.*;

/** PuzzleController controls the moves of a slide puzzle */

public class PuzzleController

{ private SlidePuzzleBoard board; // model

private PuzzleWriter writer; // output view

/** Constructor PuzzleController initializes the controller

* @param b - the model, the puzzle board

* @param w - the output view */

public PuzzleController(SlidePuzzleBoard b, PuzzleWriter w)

{ board = b;

writer = w;

}

/** play lets the user play the puzzle */

public void play()

{ while ( true )

{ writer.displayPuzzle();

int i = new Integer

(JOptionPane.showInputDialog("Your move:")).intValue();

boolean good outcome = board.move(i);

if ( !good outcome )

{ writer.printError("Bad move--puzzle remains the same."); }

}

}

}

/** SlidePuzzle implements a 4 x 4 slide puzzle. Input to the program

* is a sequence of integers between 1..15. The program never terminates. */

public class SlidePuzzle

{ public static void main(String[] args)

{ int size = 4; // a 4 x 4 slide puzzle

SlidePuzzleBoard board = new SlidePuzzleBoard(size);

PuzzleWriter writer = new PuzzleWriter(board, size);

PuzzleController controller = new PuzzleController(board, writer);

controller.play();

}

}



www.manaraa.com

8.10. CASE STUDY: SLIDE-PUZZLE GAME 445

Figure 8.16: output-view class for puzzle game

import java.awt.*; import javax.swing.*;

/** PuzzleWriter displays the contents of a slide puzzle */

public class PuzzleWriter extends JPanel

{ private SlidePuzzleBoard board; // the board that is displayed

private int size; // the board’s size

private int piece size = 30; // the size of one playing piece, in pixels

private int panel width; // the panel’s width and height

private int panel height;

/** Constructor PuzzleWriter builds the graphics window.

* @param b - the slide puzzle that is displayed

* @param s - the size of the slide puzzle, e.g., 4 means 4 x 4 */

public PuzzleWriter(SlidePuzzleBoard b, int s)

{ board = b;

size = s;

panel width = piece size * size + 100;

panel height = piece size * size + 100;

JFrame my frame = new JFrame();

my frame.getContentPane().add(this);

my frame.setTitle("Slide Puzzle");

my frame.setSize(panel width, panel height);

my frame.setVisible(true);

}

/** paintPiece draws piece p at position i,j in the window */

private void paintPiece(Graphics g, PuzzlePiece p, int i, int j)

{ int initial offset = piece size;

int x pos = initial offset + (piece size * j);

int y pos = initial offset + (piece size * i);

if ( p != null )

{ g.setColor(Color.white);

g.fillRect(x pos, y pos, piece size, piece size);

g.setColor(Color.black);

g.drawRect(x pos, y pos, piece size, piece size);

g.drawString(p.valueOf() + "", x pos + 10, y pos + 20);

}

else { g.setColor(Color.black);

g.fillRect(x pos, y pos, piece size, piece size);

}

}

...



www.manaraa.com

446

Figure 8.16: output-view class for puzzle game (concl.)

/** paintComponent displays the puzzle in the frame. */

public void paintComponent(Graphics g)

{ g.setColor(Color.yellow);

g.fillRect(0, 0, panel width, panel height);

PuzzlePiece[][] r = board.contents();

for ( int i = 0; i != size; i= i+1 )

{ for ( int j = 0; j != size; j = j+1 )

{ paintPiece(g, r[i][j], i, j); }

}

}

/** displayPuzzle displays the current state of the slide puzzle. */

public void displayPuzzle()

{ this.repaint(); }

/** printError displays an error message.

* @param s - the error message */

public void printError(String s)

{ JOptionPane.showMessageDialog(null, "PuzzleWriter error: " + s ); }

}

k = k + 1;

}

}

return answer;

}

}

8.11 Testing Programs with Arrays

Programs with arrays prove notoriously difficult to test thoroughly, because we often
use an arithmetic expression as an array index, and the expression might compute to
an unacceptable integer. Here is an example: We have this method, which attempts
to exchange two adjacent array elements:

/** exchange swaps the values in elements r[i] and r[i-1] */

public void exchange(int[] r, int i)

{ int temp = r[i];

r[i] = r[i - 1];

r[i - 1] = temp;

}



www.manaraa.com

8.11. TESTING PROGRAMS WITH ARRAYS 447

We wish to verify that the method behaves properly for all possible arguments. We
have success for simple test cases, like this one,

int[] test0 = new int[10];

test0[3] = 3;

exchange(test0, 4);

But what other tests should we attempt? To answer this, we should list all the
indexings of array r that appear in the method—they are r[i] and r[i - 1]—and
we should predict the range of values that the index expressions, i and i - 1, might
have. Remember that the values must fall in the range, 0 to r.length - 1. Now, do
they?
A bit of thought lets us invent this test,

int[] test1 = new int[10];

test0[0] = 3;

exchange(test0, 0);

which generates an exception, because i - 1 has a value that is invalid for array r.
Another test case,

int[] test1 = new int[10];

test0[9] = 3;

exchange(test0, 10);

shows that the attempted indexing, r[i], leads to an error.
The tests make clear that parameter i must be greater than zero and less than

the length of the array. We modify the method to read,

public void exchange(int[] r, int i)

{ if ( i > 0 && i < r.length )

{ int temp = r[i];

r[i] = r[i - 1];

r[i - 1] = temp;

}

else { ... announce there is a problem ... }

}

There is, alas, one more test that exposes an error that goes beyond index-value
calculation:

int[] test2 = null;

exchange(test2, 1);

This invocation of exchange leads to an exception when the array argument is refer-
enced. If we are uncertain that we can validate that all the method’s invocations are
with proper arrays, then we must add one more test:



www.manaraa.com

448

public void exchange(int[] r, int i)

{ if ( r != null && i > 0 && i < r.length )

{ int temp = r[i];

r[i] = r[i - 1];

r[i - 1] = temp;

}

else { ... announce there is a problem ... }

}

Testing the values of array indexes becomes harder still when loops are used to
examine an array’s elements, because it is crucial that the loop starts and terminates
appropriately. Consider again the first loop we saw in this chapter, which attempts
to select the largest number in an array:

double high_score = score[0];

for ( int i = 1; i <= 5; i = i + 1 )

{ if ( score[i] > high_score )

{ high_score = score[i]; }

}

System.out.println(high_score);

We note that the only array indexing is score[i], and we readily see that the range
of values denoted by index i is 0 to 5. But this range is sensible only if we are certain
that the length of array score is at least 6—indeed, it should equal 6. It is better to
use score.length in the loop’s termination test:

double high_score = score[0];

for ( int i = 1; i < score.length; i = i + 1 )

{ if ( score[i] > high_score )

{ high_score = score[i]; }

}

System.out.println(high_score);

This ensures that the loop correctly examines all the elements of the array to select
the high score.
The general strategy for testing a component that uses arrays goes as follows:

1. Validate that every array-typed variable, r, is indeed assigned an array object as
its value;

2. For every indexing expression, r[e], calculate the range of values to which e

might evaluate, testing these values and especially 0 and r.length.

8.12 Summary

Here are the main points to remember from this chapter:



www.manaraa.com

8.12. SUMMARY 449

New Constructions

• one-dimensional array (from Figure 1):

int num_candidates = 4;

int[] votes = new int[num_candidates];

...

votes[v] = votes[v] + 1;

• array initialization statement:

int[] r = {1, 2, 4, 8, 16, 32};

• array-length attribute:

int[] r = new int[6];

r[0] = 1;

for ( int i = 1; i < r.length; i = i + 1 )

{ r[i] = r[i - 1] * 2; }

• two-dimensional array (from Figure 13):

private PuzzlePiece[][] board;

...

board = new PuzzlePiece[size][size];

..

board[size - 1 - row][size - 1 - col] = p;

• public static final variable (from Figure 9):

public static final int QUEEN = 12;

New Terminology

• array: an object that holds a collection of values, called elements, of the same
data type (e.g., a collection of integers or a collection of JPanel objects). The
elements are named or indexed by nonnegative integers. (See the above exam-
ples.)

• one-dimensional array: an array whose collection is a “sequence” of values, that
is, each element is named by a single integer index, e.g., votes[2] names the
third integer value in the sequence of values held by votes.



www.manaraa.com

450

• database: a large collection of data values that must be maintained by means
of insertions, retrievals, and deletions of the data values.

• key: the identity code used to retrieve a data value saved in a database.

• final variable: a variable whose value cannot be changed after it is initialized.

• two-dimensional arrays: “an array of arrays” that is typically drawn as a
matrix or grid. Each element is named by a pair of integer indexes, e.g.,
election[i][j]. The first index is the row index, and the second index is the
column index, where the terms refer to the depiction of the array as a matrix.

Points to Remember

• In Java, an array is an object that must be constructed with the new keyword,
e.g., int[] r = new int[6], which creates an array that can hold 6 integers,
indexed from 0 to 5.

• Individual array elements are indexed by expressions and are used like ordinary
variables, e.g., r[i + 1] = 2 * r[i].

• The elements of an array can be (the addresses of) objects as well, e.g., Card[]
deck = new Card[52] is an array that can hold 52 Card objects. When the array
is constructed, it holds no objects—all elements have value null. The objects
held in the array must be explicitly constructed and assigned to the array’s
elements, e.g., deck[0] = new Card(Card.HEARTS, Card.QUEEN).

• Arrays can be constructed with multiple dimensions—a one-dimensional array
is a sequence of elements; a two-dimensional array is a matrix—an array of
arrays. The rows of a two-dimensional array can have different lengths.

8.13 Programming Projects

1. Extend the simplistic vote-counting application in Figure 1 in the following
ways:

(a) Each candidate has a name, an address, and an age. The application reads
this information first, saves it in objects, and uses the information to count
votes, which are now submitted by typing the candidates’ names.

(b) The election becomes a national election in 3 regions. Make the application
display the total vote counts for each region as well as the total vote counts
for each candidate.



www.manaraa.com

8.13. PROGRAMMING PROJECTS 451

2. The classic algorithm for calculating the prime numbers in the range 2..n is
due to Eratosthenes:

initialize the set of primes, P, to be all integers in 2..n;

for ( i = 2; 2*i <= n; i = i+1 )

{ remove from P all multiples of i };

print the contents of P;

Implement this algorithm by modelling P as an array of booleans: boolean[] P

= new boolean[n + 1]. (Hint: P[i] == false means that i is definitely not a
prime.)

3. With the help of arrays, we can improve the output views for bar graphs, point
graphs, and pie charts from the Programming Projects in Chapter 5. Reprogram
each of the following.

(a) Here is the new specification for class BarGraphWriter:

class BarGraphWriter helps a user draw bar graphs
Constructor
BarGraphWriter(int x pos,

int y pos, int x length, int

y height, String top label)

draw the x- and y-axes of the graph.
The pair, x pos, y pos, state the coor-
dinates on the window where the two
axes begin. The x-axis extends from
x pos, y pos to the right for x length

pixels; the y-axis extends upwards from
x pos, y pos for y height pixels. The
label placed at the top of the y-axis is
top label. (The label placed at the bot-
tom of the y axis is always 0.)

Method
setBar(String label, int

height, Color c)

draws a new bar in the graph, to the
right of the bars already drawn, where
the label underneath the bar is label,
the height of the bar, in pixels, is
height, and the bar’s color is c.

(b) Here is the new specification for class PointGraphWriter:



www.manaraa.com

452

class PointGraphWriter helps a user draw a graph of plotted
points

Constructor
PointGraphWriter(int x pos,

int y pos, int axis length,

String x label, String

y label)

draw the the vertical and horizontal
axes of the graph, such that the inter-
section point of the axes lies at position
x pos, y pos. Each axis has the length,
axis length pixels. The beginning la-
bels of both the x- and y-axes are 0; the
label at the top of the y-axis is y label,
and the label at the end of the x-axis is
x label.

Method
setPoint(int x increment,

int y height)

plot another point of the graph, so that
its x-position is x increment pixels to
the right of the last point plotted, and
its y-position is y height on the y-axis.

(c) Here is the revised specification for class PieChartWriter:

class PieChartWriter helps a user draw a pie chart
Method
setSlice(String label, int

amount, Color c)

add a new “slice” to the chart, such that
amount indicates the amount of the slice,
and c is the slice’s color. The label is
printed to the right of the pie, and it is
printed in the color, c.

4. Another form of coding words is by means of a transposition code, which encodes
a message by transposing its letters. The simplest form of transposition code
works as follows:

(a) A string, s, is read; say that s has length n.

(b) The smallest square matrix that can hold n characters is created.

(c) The characters in s are copied one by one into the columns of the matrix.

(d) The output is the rows of the matrix.

For example, the input string, abcdefghijklmn, would be stored into a 4-by-4
matrix as follows:

a e i m

b f j n



www.manaraa.com

8.13. PROGRAMMING PROJECTS 453

c g k x

d h l x

The output would be the words, aeim, bfjn, cgkx, dhlx.

Write an application that implements this algorithm. Next, write an application
that decodes words produced by the algorithm.

5. To continue the development of the preceding Project, here is a slightly more
sophisticated transposition code, based on a numeric key:

(a) An integer “key” of m distinct digits is read, and a string, s of length n is
read.

(b) The smallest matrix with m columns that can hold n characters is created.

(c) The characters in s are copied one by one into the columns of the matrix.

(d) The digits in the key are sorted, and the columns of the array are accord-
ingly rearranged.

(e) The output is the rows of the matrix.

For example, for input key 421 and abcdefghijklmn, a 5-by-3 matrix would be
built:

4 2 1

-----

a f k

b g l

c h m

d i n

e j x

Since 421 “sorted” is 124, the columns are rearranged to appear:

1 2 4

-----

k f a

l g b

m h c

n i d

x j e

and the output are the words, kfa, lgb, mhc, nid, and xje.

Write programs to encode and decode messages with this algorithm.



www.manaraa.com

454

6. For each of the following entities, design a class that models the entity. Most
of the entity’s attributes are listed; feel free to add more. Design appropriate
methods.

(a) a library book: the book’s name, its author, its catalog (id) number, and
the id number of the person (if anyone) who has borrowed the book, the
due date for the book to be returned, and the number of times the book
has been borrowed.

(b) a patron’s library information: the patron’s name, address, id number, and
the catalog numbers of all books currently loaned to the person (maximum
of 6).

(c) an appointment record: the appointment’s date, time of day, and topic

(d) an inventory record: the name of a sales item, its id number, its wholesale
price, its retail price, and the quantity in stock.

(e) a purchase record: the id number of the purchaser, the (id numbers of the)
items and quantities ordered of each, and the means of payment/

(f) a purchaser (customer) record: the id number, name, and address of a
customer, the id numbers of the customer’s outstanding orders, and the
customer’s purchase history for the past 12 months

(g) an email message: the address of its sender, the address of its receiver, the
message’s subject, and its body (text)

7. Use the classes you defined in the previous exercise plus class Database from
Figure 4 to build the following applications:

(a) A library application, which maintains a database for the library’s books
and a database for the library’s borrowers. Both databases must be used
when books are borrowed and returned.

(b) A business accounting application, which uses databases of inventory records,
purchases, and purchasers. The databases are used when customers pur-
chase items.

(c) An email postal service, which allows multiple users to login, send, and
receive email messages to/from one another.

8. Here are the rules for a simple card game: A player tries to obtain two cards
that total the highest possible score, where a card’s “score” is its count. (For
simplicity, ace is worth 1, 2 is worth 2, ..., king is worth 13.) The dealer gives
each player 2 cards. A player can surrender at most one card and accept a third
card as a replacement. Then, all players must reveal their hands.



www.manaraa.com

8.13. PROGRAMMING PROJECTS 455

Write an application that lets a computerized dealer and two computerized
players play this game. (Make the computerized player smart enough that it
surrenders a card that has count 6 or less.)

Next, modify the application so that one human player plays against one com-
puterized player.

Finally, modify the application so that two human players play against each
other; only the dealer is computerized.

9. Here are the rules for playing the card game, “21”: A player tries to collect
cards whose total score is 21 or as close as possible. The player with the highest
score not exceeding 21 wins. (If the player’s score is higher than 21, the player
is “busted” and loses.) A card’s has a point value based on its count (e.g., a
four of clubs is valued 4), but face cards are valued 10, and we will say that an
ace is valued 11.

Initially, each player receives two cards from the dealer. Then, each player can
request additional cards, one at a time, from the dealer. After all the players
have received desired additional cards, the players reveal their hands.

Write an application that lets a computerized dealer, a human player, and a
computerized player play 21. The computerized player should be smart enough
to request additional cards as long as the player’s total score is 16 or less.

10. Revise the “21” card game as follows:

(a) The dealer is also a player; therefore, the dealer must deal herself a hand.

(b) An ace has a value of either 1 or 11, based on the discretion of the player
who holds the card.

(c) In some casinos, a dealer deals from two decks of cards. Alter the applica-
tion to deal alternately from two decks.

(d) If a player’s first two cards have identical counts (e.g., two eights or two
queens), the player can “split” the cards into two distinct hands and con-
tinue with two hands.

(e) The game lets the players play multiple rounds. In particular, this means
that the deck of cards must be “reshuffled” with the cards not in the
players’ hands when the deck is emptied of cards in the middle of a round.

11. Write an application that plays tic-tac-toe (noughts and crosses) with the user.

12. Here is a standard memory game, known as “Concentration” or “Husker Du”:
A matrix is filled with pairs of letters, and the letters are covered. Next, two
players take turns trying to discover the letter pairs: A player uncovers two
letters; if the letters match, the letters remain uncovered, the player scores one



www.manaraa.com

456

point, and she is allowed to uncover two more letters. If the letters fail to match,
they are recovered and the next player tries. The players take turns until all
the letter pairs are uncovered. The player with the most points wins.

Build a computerized version of this game.

13. Write an application that lets two human players play checkers.

14. Write an animation that lets the computer play the game of “Life.” The game
goes as follows: the user specifies the size of game board, a matrix, and also
gives the starting positions of where some pebbles (“cells”) live. Every second,
the computer updates the board, creating and removing cells, according to the
following rules:

• an empty board position that is surrounded by exactly three cells gets a
cell placed on it. (The new cell “comes to life.”)

• a board position occupied by a cell retains the cell if the position was sur-
rounded by exactly 2 other cells. (Otherwise the cell disappears—“dies”—
due to “loneliness” or “overcrowding.”)

Here is an example of two seconds of the animation on a 5-by-5 board, where
an X denotes a cell and . denotes an empty space:

.X.XX ...XX ...XX

X...X ....X ....X

XXX.. => X.X.. => ...X.

..X.X X.X.. ..XX.

X...X ...X. .....

15. Write an appointments manager program. The program stores and retrieves
appointments that are listed by date and hour of day for one full week. (For
simplicity, assume that at most one appointment can be scheduled per hour.)
Include input commands for inserting appointments, listing the appointments
for a given day, deleting appointments, and printing appointments.

16. Write an application that reserves seats in an airplane based on input requests
in the following format:

• number of seats desired (should be seated in the same row, next to one
another, if possible)

• first class or economy

• aisle or window seat (if two or more seats requested, one seat should meet
this preference)



www.manaraa.com

8.13. PROGRAMMING PROJECTS 457

17. Write a program that plays the card game, “War”: There are two players; one
is human, the other is computerized. Here are the rules: each player gets a
hand of 10 cards. The players play 10 rounds; each round goes as follows:

(a) A player places one of the cards from her hand face up on the table.

(b) The other player does the same.

(c) The player whose card has the larger value of the two cards takes all the
cards on the table and places them in her “winnings pile.” (Note: the
definition of “value” is given below. A “winnings pile” is a stack of cards
that is not used any more in the game. Each player keeps her own winnings
pile.) The winning player must start the next round.

(d) If the two cards on the table have the same value (and this is called a
“War”) , then all the cards on the table remain there for the next round.
The player who started this round must start the next round.

After all ten rounds are played, the winner is the player with more cards in her
winnings pile.

Here is the definition of “value”: regardless of suit, 2 has the lowest value, then
3, then 4, etc., then 9, then 10, then jack, then queen, then king, then ace.

There is a minimal amount of strategy that a player uses to win at War. Your
strategy for the computerized player must be at least this smart: (1) If the
computerized player plays the first card of a round, then any card remaining in
the computerized player’s hand can be played. (2) If the computerized player
plays the second card of a round, then the computerized player plays a card in
its hand whose value is greater than or equal to the value of the card that the
human just played. If the computerized player has no such card, then it plays
any card in its hand.

18. Choose another card game of your choosing, e.g., “Hearts” or “Crazy Eights”
and model it as a computer game. Or, chose a game that uses dice and imple-
ment it as a computer game.

19. Write an application that performs bin packing: The input consists of a se-
quence of “packages” whose sizes are coded as nonnegative integers along with
a sequence of “bins” whose capacities are are coded also by an integer. (For sim-
plicity, we assume that all bins have the same capacity.) The program assigns
each package to a bin such that no bin’s capacity is exceeded. The objective
is to use the minimum number of bins to hold all the packages. Attempt these
implementations:

(a) Smallest packages first: The packages are sorted by size and smallest pack-
ages are used first.



www.manaraa.com

458

(b) Largest packages first: The packages are sorted by size and largest packages
are used first.

(c) Random filling: The packages are used in the order they appear in the
input.

(Hint: read the Supplement section on sorting.)

After you have implemented all three programs, perform case studies to deter-
mine when one strategy performs better than another. This problem is famous
because there is no efficient algorithm for best filling the bins.

8.14 Beyond the Basics

8.14.1 Sorting

8.14.2 Searching

8.14.3 Time-Complexity Measures

8.14.4 Divide-and-Conquer Algorithms

8.14.5 Formal Description of Arrays

These optional sections expand upon the concepts presented in this chapter. In partic-
ular, we emphasize using arrays to sort collections of numbers and efficiently search
for numbers in a sorted collection.

8.14.1 Sorting

When an array is used as a database, where elements are fetched and updated fre-
quently, there is a distinct advantage to ordering the elements by their keys—it be-
comes far easier to locate an element. The process of ordering an array’s elements is
called sorting.
Algorithms for sorting have a rich history, and we cannot do justice here. Instead,

we focus upon the development of two traditional sorting methods, selection sort and
insertion sort. To simplify the algorithms that follow, we work with arrays of integers,
where we sort the elements so that they are ordered in value from smallest integer
to largest. (Of course, we can use the same techniques to sort elements by their key
values.)
The idea behind selection sort is simple: Locate the least integer in the array, and

move it to the front. Then, find the next least integer, and move it second to the
front. Repeat this process until all integers have been selected in order of size. The
algorithm that sorts array r in this manner goes



www.manaraa.com

8.14. BEYOND THE BASICS 459

for ( i = 0; i != r.length; i = i+1 )

{ Find the least element in r within the range

r[i] to r[r.length-1]; say that it is at r[j].

Exchange r[i] with r[j].

}

Here is the algorithm in action. Say that we have this array, r:

0 1 2 3 4

11 8 -2 7 10r

When selection sorting starts, its loop finds the least element in the range r[0]..r[4]
at index 2 and exchanges the elements at indexes 0 and 2:

0 1 2 3 4

8 7 10r -2 11

The second loop iteration locates the least element in the range r[1]..r[4] at index
3, and the elements at indexes 1 and 3 are exchanged:

0 1 2 3 4

10r -2 117 8

The algorithm next considers the elements in range r[2]..r[4] and so on until it
reaches this end result:

0 1 2 3 4

r -2 7 8 10 11

Figure 15 shows the method.
There is more than one way to sort an array; a second classic approach, called

insertion sort, rearranges elements the way most people sort a hand of playing cards:
Start with the first card (element), then take the second card (element) and insert it
either before or after the first card, so that the two cards are in order; then take the
third card and insert it in its proper position so that the three cards are ordered, and
so on. Eventually, all the cards are inserted where they belong in the ordering.
The algorithm based on this idea is simply stated as:

for ( i=1; i < r.length; i = i+1 )

{ Insert r[i] in its proper place within the already sorted prefix,

r[0]..r[i-1].

}



www.manaraa.com

460

Figure 8.17: selection sort

/** selectionSort sorts the elements of its array parameter

* @param r - the array to be sorted */

public void selectionSort(int[] r)

{ for ( int i = 0; i != r.length; i = i+1 )

// invariant: subarray r[0]..r[i-1] is sorted

{ int j = findLeast(r, i, r.length-1); // get index of least element

int temp = r[i];

r[i] = r[j];

r[j] = temp;

}

}

/** findLeast finds the index of the least element in r[start]..r[end]

* @param r - the array to be searched

* @param start - the starting element for the search

* @param end - the ending element for the search

* @return the index of the smallest element in r[start]..r[end] */

private int findLeast(int[] r, int start, int end)

{ int least = start;

for ( int i = start+1; i <= end; i = i+1 )

// invariant: least is index of least element in range r[start]..r[i-1]

{ if ( r[i] < r[least] ) { least = i; } }

return least; }

If we apply the algorithm to the example array, r, seen above,

0 1 2 3 4

r 811 -2 107

we see that the algorithm first inserts the 8 where it belongs with respect to the 11:

0 1 2 3 4

r -2 1078 11

This makes the prefix, r[0]..r[1], correctly sorted. Next, the -2 must be inserted
in its proper place with respect to the sorted prefix:

0 1 2 3 4

r 107118-2

To make room for -2 at its proper position, r[0], the two elements, 8 and 11, must
be shifted one position to the right. Now, r[0]..r[2] is correctly sorted. The last
two elements are inserted similarly.



www.manaraa.com

8.14. BEYOND THE BASICS 461

Figure 8.18: insertion sort

/** insertionSort sorts the elements of its array parameter

* @param r - the array to be sorted */

public static void insertionSort(int[] r)

{ for ( int i = 1; i < r.length; i = i+1 )

// invariant: prefix r[0]..r[i-1] is sorted

{ int v = r[i]; // v is the next element to insert into the prefix

int j = i;

while ( j != 0 && r[j-1] > v )

// invariants:

// (i) the original prefix, r[0]..r[i-1],

// is now arranged as r[0]..r[j-1], r[j+1]..r[i];

// (ii) all of r[j+1]..r[i] are greater than v

{ r[j] = r[j-1];

j = j-1;

}

r[j] = v;

}

}

Figure 16 show the insertion sorting method. The method’s most delicate step is
searching the sorted prefix to find a space for v—the while-loop searches from right
to left, shifting values one by one, until it encounters a value that is not larger than v.
At all iterations, position r[j] is reserved for v; when the iterations stop, v is inserted
at r[j].

Exercises

1. Try selection sort and insertion sort on these arrays: {4, 3, 2, 2}; {1, 2, 3,

4}; {1}; { } (the array of length 0).

2. Explain which of the two sorting methods might finish faster when the array to
be sorted is already or nearly sorted; when the array’s elements are badly out
of order.

3. Explain why the for-loop in method selectionSort iterates one more time than
it truly needs.

4. Why is the test expression, j != 0, required in the while-loop in method insertionSort?

5. Another sorting technique is bubble sort: over and over, compare pairs of ad-
jacent elements and exchange them if the one on the right is less than the one



www.manaraa.com

462

on the left. In this way, the smaller elements move like “bubbles” to the left
(“top”) of the array. The algorithm goes:

boolean did_exchanges = true;

while ( did_exchanges )

{ did_exchanges = false;

for ( int i = 1; i < r.length; i = i+1 )

{ If r[i] < r[i-1},

then exchange them and assign did_exchanges = true.

}

}

Program this sorting method.

8.14.2 Searching

Once an array is sorted, it becomes simpler to locate an element within it—rather
than examining items one by one, from left to right, we can start searching in the
middle, at approximately where the item might appear in the sorted collection. (This
is what we do when we search for a word in a dictionary.) A standard searching
algorithm, called binary search, exploits this idea.
Given a sorted array of integers, r, we wish to determine where a value, item, lives

in r. We start searching in the middle of r; if item is not exactly the middle element,
we compare what we found to it: If item is less than the middle element, then we
next search the lower half of the array; if item is greater than the element, we search
the upper half of the array. We repeat this strategy until item is found or the range
of search narrows to nothing, which means that item is not present.
The algorithm goes

Set searching = true.

Set the lower bound of the search to be 0 and the upper bound of the

search to be the last index of array, r.

while ( searching && lower bound <= upper bound )

{ index = (lower bound + upper bound) / 2;

if ( item == r[index] ) { found the item---set searching = false; }

else if ( item < r[index] ) { reset upper bound = index-1; }

else { reset lower bound = index+1; }

}

Figure 17 shows the method, which is a standard example of the searching pattern of
iteration.
If we searched for the item 10 in the sorted array r seen in the examples in

the previous section, the first iteration of the loop in binarySearch gives us this



www.manaraa.com

8.14. BEYOND THE BASICS 463

Figure 8.19: binary search

/** binarySearch searches for an item in a sorted array

* @param r - the array to be searched

* @param item - the desired item in array r

* @return the index where item resides in r; if item is not

* found, then return -1 */

public int binarySearch(int[] r, int item)

{ int lower = 0;

int upper = r.length - 1;

int index = -1;

boolean searching = true;

while ( searching && lower <= upper )

// (1) searching == true implies item is in range r[lower]..r[upper],

// if it exists in r at all.

// (2) searching == false implies that r[index] == item.

{ index = (lower + upper) / 2;

if ( r[index] == item )

{ searching = false; }

else if ( r[index] < item )

{ lower = index + 1; }

else { upper = index - 1; }

}

if ( searching )

{ index = -1; } // implies lower > upper, hence item not in r

return index;

}

configuration:
int lower == 0
int upper == 4
int index == 2

0 1 2 3 4

r -2 7 8 10 11

The search starts exactly in the middle, and the loop examines r[2] to see if it is 10.
It is not, and since 10 is larger than 8, the value found at r[2], the search is revised
as follows:

int upper == 4
int index == 3

int lower == 30 1 2 3 4

r -2 7 8 10 11

Searching the upper half of the array, which is just two elements, moves the search
to r[3], which locates the desired item.
Notice that a linear search, that is,

int index = 0;



www.manaraa.com

464

boolean searching = true;

while ( searching && index != r.length )

{ if ( r[index] == item )

{ searching = false; }

else { index = index + 1; }

}

would examine four elements of the array to locate element 10. The binary search
examined just two. Binary search’s speedup for larger arrays is enormous and is
discussed in the next section.
Binary search is a well-known programming challenge because it is easy to for-

mulate incorrect versions. (Although the loop in Figure 17 is small, its invariant
suggests that a lot of thought is embedded within it.) Also, small adjustments lead
to fascinating variations. Here is a clever reformulation, due to N. Wirth:

public int binarySearch(int[] r, int item)

{ int lower = 0;

int upper = r.length-1;

int index = -1;

while ( lower <= upper )

// (1) lower != upper+2 implies that item is in range

// r[lower]..r[upper], if it exists in r at all

// (2) lower == upper+2 implies that r[index] == item

{ index = (lower + upper) / 2;

if ( item <= r[index] )

{ upper = index - 1; };

if ( item >= r[index] )

{ lower = index + 1; };

}

if ( lower != upper+2 )

{ index = -1; }

return index;

}

This algorithm merges variable searching in Figure 17 with the lower and upper
bounds of the search so that the loop’s test becomes simpler. This alters the loop
invariant so that the discovery of item is indicated by lower == upper+2.
Both searching algorithms must terminate, because the expression, upper-lower

decreases in value at each iteration, ensuring that the loop test will eventually go
false.

Exercises

1. Use the binary search method in Figure 17 on the sorted array, {1, 2, 2, 4,

6}: Ask the method to search for 6; for 2; for 3. Write execution traces for these
searches.



www.manaraa.com

8.14. BEYOND THE BASICS 465

2. Here is a binary search method due to R. Howell:

public int search(int[] r, int item)

{ int answer = -1;

if ( r.length > 0 )

{ int lower = 0;

int upper = r.length;

while ( upper - lower > 1 )

// item is in r[lower]..r[upper-1], if it is in r

{ int index = (lower + upper) / 2;

if ( r[index] > item )

{ upper = index; }

else { lower = index; }

}

if ( r[lower]== item ) { answer = lower; }

}

return answer;

}

Explain why the invariant and the termination of the loop ensure that the
method returns a correct answer. Explain why the loop must terminate. (This
is not trivial because the loop makes one extra iteration before it quits.)

8.14.3 Time-Complexity Measures

The previous section stated that binary search computes its answer far faster than
does linear search. We can state how much faster by doing a form of counting analysis
on the respective algorithms. The analysis will introduce us to a standard method
for computing the time complexity of an algorithm. We then apply the method to
analyze the time complexity of selection sort and insertion sort.
To analyze a searching algorithm, one counts the number of elements the algorithm

must examine to find an item (or to report failure). Consider linear search: If array
r has, say, N elements, we know in the very worst case that a linear search must
examine all N elements to find the desired item or report failure. Of course, over
many randomly generated test cases, the number of elements examined will average
to about N/2, but in any case, the number of examinations is directly proportional
to the the array’ length, and we say that the algorithm has performance of order N
(also known as linear) time complexity.
For example, a linear search of an array of 256 elements will require at most 256

examinations and 128 examinations on the average.
Because it halves its range of search at each element examination, binary search

does significantly better than linear time complexity: For example, a worst case
binary search of a 256-element array makes one examination in the middle of the 256



www.manaraa.com

466

elements, then one examination in the middle of the remaining 128 elements, then
one examination in the middle of the remaining 64 elements, and so on—a maximum
of only 9 examinations are required!

We can state this behavior more precisely with a recursive definition. Let E(N)
stand for the number of examinations binary search makes (in worst case) to find an
item in an array of N elements.

Here is the exact number of examinations binary search does:

E(N) = 1 + E(N/2), for N > 1
E(1) = 1

The first equation states that a search of an array with multiple elements requires
an examination of the array’s middle element, and assuming the desired item is not
found in the middle, a subsequent search of an array of half the length. An array of
length 1 requires just one examination to terminate the search.

To simplify our analysis of the above equations, say the array’s length is a power
of 2, that is, N = 2M , for some positive M. (For example, for N = 256, M is 8. Of course,
not all arrays have a length that is exactly a power of 2, but we can always pretend
that an array is “padded” with extra elements to make its length a power of 2.)

Here are the equations again:

E(2M) = 1 + E(2M−1), for M > 0
E(20) = 1

After several calculations with this definition (and a proof by induction—see the
Exercises), we can convince ourselves that

E(2M) =M + 1

a remarkably small answer!

We say that the binary search algorithm has order log N (or logarithmic) time
complexity. (Recall that log N, or more precisely, log2 N, is N’s base-2 logarithm, that
is, the exponent, M, such that 2M equals N. For example, log 256 is 8, and log 100
falls between 6 and 7.) Because we started our analysis with the assumption that N
= 2M , we conclude that

E(N) = (log N) + 1

which shows that binary search has logarithmic time complexity.

It takes only a little experimentation to see, for large values of N, that log N is
significantly less than N itself. This is reflected in the speed of execution of binary
search, which behaves significantly better than linear search for large-sized arrays.



www.manaraa.com

8.14. BEYOND THE BASICS 467

Analysis of Sorting Algorithms

Of course, binary search assumes that the array it searches is sorted, so we should
calculate as well the time complexity of the sorting algorithms we studied. The two
factors in the performance of a sorting algorithm are (i) the number of comparisons
of array elements, and (ii) the number of exchanges of array elements. If either of
these measures is high, this slows the algorithm.
Consider selection sort first (Figure 15); it locates and exchanges the smallest

element, then the next smallest element, and so on. For an array of length N, it
uses N-1 comparisons to find the smallest element, N-2 comparisons to find the next
smallest element, and so on. The total number of comparisons is therefore

(N-1) + (N-2) + ...downto... + 2 + 1

From number theory (and an induction proof), we can discover that this sequence
totals

N * (N - 1)

-------------

2

that is, (1/2)N 2− (1/2)N . When N has a substantial positive value, only the N 2 factor
matters, so we say that the algorithm has order N 2 (quadratic) time complexity.
Algorithms with quadratic time complexity perform significantly slower than log-

arithmic and linear algorithms, and this slowness can be annoying when N is very
large (e.g., for N equals 100, N2 is 10,000).
It is easy to see that selection sort does exactly N-1 exchanges of elements—a

linear time complexity—so the exchanges are not the costly part of the algorithm.
Next, we consider insertion sort (Figure 16); recall that it shifts elements, one

by one, from right to left into their proper places. In worst case, insertion sort
encounters an array whose elements are in reverse order. In this case, the algorithm’s
first iteration makes one comparison and one exchange; the second iteration makes
two comparisons and two exchanges; and so on. The total number of comparisons
and exchanges are the same, namely,

1 + 2 + ... + (N-2) + N-1

This is the same sequence we encountered in our analysis of selection sort, so we
conclude that insertion sort also has quadratic time complexity.
Although selection sort’s time complexity is stable across all possible permutations

of arrays to be sorted, insertion sort executes much faster when it is given an almost
completely sorted array to sort. This is because insertion sort shifts elements only
when they are out of order. For example, if insertion sort is given an array of length
N+1 where only one element is out of order, it will take only order N (linear) time to
shift the element to its proper position. For this reason, insertion sort is preferred for
sorting almost-sorted arrays.



www.manaraa.com

468

In contrast, insertion sort does badly at exchanging elements when sorting an ar-
bitrary array—it makes order N2 exchanges, whereas selection sort limits its exchanges
to at worst order N. Therefore, selection sort is preferred if there is substantial dif-
ficulty in moving elements of the array. (But this is not normally the case for Java
arrays, because the elements of a Java array are either primitive values, like numbers,
or addresses of objects. These values are easy to exchange.)

Exercises

1. To get intuition about time complexities, calculate the values of N, 5*N, log N,
N2, and (1/2)(N2)− (1/2)N for each of the following values of N: 4; 64; 128; 512;
1024; 16384.

Then, reexamine the time complexities of the searching and sorting algorithms
and describe how the algorithms would behave on arrays of size N, for the above
values of N. (To give some perspective to the analysis, pretend that your com-
puter is very slow and takes 0.1 seconds to perform a comparison or exchange
operation.)

2. Modify class Database in Figure 3 so that its insert method sorts the base

array after a new record is added. (Warning—watch for null values in the
array!) Because the contents of base are already sorted when a new element is
inserted, does this simplify the sorting process? What form of sorting is better
for this application—selection sort or insertion sort?

Next, modify locationOf so that it uses binary search.

3. Perform time-complexity analyses of the following methods:

(a) For Figure 1, Chapter 7, measure the time complexity of summation(N),
depending on the value of N. Count the number of assignments the method
makes.

(b) For Figure 3, Chapter 7, measure the time complexity of findChar(c,
s), depending on the lengths of string s. Count the number of charAt
operations the method makes.

(c) For Figure 13, measure the time complexity of paint, depending on the
size of array that must be painted. Count the number of invocations of
paintPiece.

4. Our time-complexity analyses are a bit simplistic: a precise time-complexity
analysis would count every operation that a computer’s processor makes, that
is, every arithmetic operation, every comparison operation, every variable ref-
erence, every assignment, every method invocation, every method return, etc.
Perform such a detailed analysis for the algorithms in the previous Exercise; for



www.manaraa.com

8.14. BEYOND THE BASICS 469

linear search; for binary search. Are your answers significantly different than
before?

5. Use mathematical induction to prove that E(2M ) = M + 1, for all nonnegative
values of M. This requires that you prove these two claims:

• basis step: E(20) = 0 + 1

• induction step: Assume that E(2i) = i + 1 holds true. Use this to prove
E(2i+1) = (i+ 1) + 1.

6. Use mathematical induction to prove that (N-1) + (N-2) + ...downto... +

2 + 1 equals (1/2)(N 2) − (1/2)N , for all values of N that are 2 or larger. This
requires that you prove these two claims:

• basis step: (2-1) + (2-2) + ...downto... + 2 + 1 equals (1/2)(22)−(1/2)2.
(Hint: read the sequence, 1 + ...downto... + 1 as being just the one-
element sequence, 1.)

• induction step: Assume that (i-1) + (i-2) + ...downto... + 2 + 1 equals
(1/2)(i2)−(1/2)i. Use this to prove ((i+1)-1) + ((i+1)-2) + ...downto...

+ 2 + 1 equals (1/2)((i + 1)2)− (1/2)(i + 1).

8.14.4 Divide-and-Conquer Algorithms

In the previous section, we saw that the binary search algorithm has a significantly
better time complexity than the linear search algorithm. The time measurement for
binary search was expressed by a recursive definition, which suggests that a recursion
might be a factor in binary search’s performance. This is indeed the case—binary
search is an example of a style of recursion known as divide and conquer, which we
study in this section.

First, Figure 18 shows binary search written in recursive style. To search an entire
array, a, for a value, v, the method is invoked as binarySearch(a, v, 0, a.length-1).
The method clearly shows that, at each recursive invocation, the segment searched is
divided in half. Eventually, the desired item is found or the segment is divided into
nothing.

The method in the Figure is an example of a divide-and-conquer algorithm, so
called because the algorithm divides its argment, the array, into smaller segments at
each invocation. The divide-and-conquer pattern uses recursion correctly, because
each recursive invocation operates on parameters (the array segments) that grow
smaller until they reach a stopping value (size 0).



www.manaraa.com

470

Figure 8.20: binary search by recursion

/** binarySearch searches for an item within a segment of a sorted array

* @param r - the array to be searched

* @param item - the desired item

* @param lower - the lower bound of the segment

* @param upper - the upper bound of the segment

* @return the index where item resides in r[lower]..r[upper];

* return -1, if item is not present in the segment of r */

public int binarySearch(int[] r, int item, int lower, int upper)

{ int answer = -1;

if ( lower <= upper )

{ int index = (lower + upper) / 2;

if ( r[index] == item )

{ answer = index; }

else if ( r[index] < item )

{ answer = binarySearch(r, item, index + 1, upper); }

else { answer = binarySearch(r, item, lower, index - 1); }

}

return answer;

}

Merge sort

Sorting can be accomplished with a divide-and-conquer algorithm, which proceeds as
follows: To sort a complete array, r,

1. Divide the array into two smaller segments, call them s1 and s2.

2. Sort s1.

3. Sort s2.

4. Merge the two sorted segments to form the completely sorted array.

The merge step goes as follows: Say that you have a deck of cards you wish to sort.
You divide the deck in half and somehow sort each half into its own pile. You merge
the two piles by playing this “game”: Turn over the top card from each pile. (The
top cards represent the lowest-valued cards of the two piles.) Take the lower-valued
of the two cards, form a new pile with it, and turn over the next card from the pile
from which you took the lower-valued card. Repeat the game until all the cards are
moved into the third pile, which will be the entire deck, sorted.
Figure 19 shows the method based on this algorithm, called merge sort. Like

the recursive version of binary search, mergeSort is first invoked as mergeSort(a, 0,



www.manaraa.com

8.14. BEYOND THE BASICS 471

Figure 8.21: merge sort

/** mergeSort builds a sorted array segment

* @param r - the array

* @param lower - the lower bound of the segment to be sorted

* @param upper - the upper bound of the segment to be sorted

* @return a sorted array whose elements are those in r[lower]..r[upper] */

public int[] mergeSort(int[] r, int lower, int upper)

{ int[] answer;

if ( lower > upper ) // is it an empty segment?

{ answer = new int[0]; }

else if ( lower == upper ) // is it a segment of just one element?

{ answer = new int[1];

answer[0] = r[lower];

}

else // it is a segment of length 2 or more, so divide and conquer:

{ int middle = (lower + upper) / 2;

int[] s1 = mergeSort(r, lower, middle);

int[] s2 = mergeSort(r, middle+1, upper);

answer = merge(s1, s2);

}

return answer;

}

/** merge builds a sorted array by merging its two sorted arguments

* @param r1 - the first sorted array

* @param r2 - the second sorted array

* @return a sorted array whose elements are exactly those of r1 and r2 */

private int[] merge(int[] r1, int[] r2)

{ int length = r1.length + r2.length;

int[] answer = new int[length];

int index1 = 0;

int index2 = 0;

for ( int i = 0; i != length; i = i+1 )

// invariant: answer[0]..answer[i-1] is sorted and holds the elements of

// r1[0]..r1[index1-1] and r2[0]..r2[index2-1]

{ if ( index1 == r1.length

|| ( index2 != r2.length && r2[index2] < r1[index1] ) )

{ answer[i] = r2[index2];

index2 = index2 + 1;

}

else { answer[i] = r1[index1];

index1 = index1 + 1;

}

}

return answer;

}



www.manaraa.com

472

a.length-1) to indicate that all the elements in array a should be sorted. The method
returns a new array that contains a’s elements reordered.
Method mergeSort first verifies that the segment of the array it must sort has at

least two elements; if it does, the segment is divided in two, the subsegments are
sorted, and merge combines the two sorted subarrays into the answer.
The time complexity of merge sort is is significantly better than the other sorting

algorithms seen so far; we consider the number of comparisons the algorithm makes.
(The analysis of element exchanges goes the same.)
First, we note that merge(r1, r2) makes as many comparisons as there are ele-

ments in the shorter of its two array parameters, but it will be convenient to over-
estimate and state that no more than r1.length + r2.length comparisons are ever
made.
Next, we define the comparisons made by mergeSort on an array of length N as

the quantity, C(N):

C(N) = C(N / 2) + C(N / 2) + N, if N > 1

C(1) = 0

The first equation states that the total comparisons to sort an array of length 2 or
more is the sum of the comparisons needed to sort the left segment, the comparisons
needed to sort the right segment, and the comparisons needed to merge the two sorted
segments. Of course, an array of length 1 requires no comparisons.
Our analysis of these equations goes simpler if we we pretend the array’s length

is a power of 2, that is N = 2M , for some nonnegative M:

C(2M) = C(2M−1) + C(2M−1) + 2M

C(20) = 0

These equations look like the ones discovered in the analysis of binary search.
Indeed, if we divide both sides of the first equation by 2M , we see the pattern in the
binary search equation:

C(2M)

2M
=

C(2M−1)

2M−1
+ 1

As with the binary search equation, we can conclude that

C(2M)

2M
=M

When we multiply both sides of the above solution by 2M , we see that

C(2M) = 2M ∗ M

and since N = 2M , we have that

C(N) = N ∗ logN



www.manaraa.com

8.14. BEYOND THE BASICS 473

We say that merge sort has order N log N time complexity. Such algorithms perform
almost as well as linear-time algorithms, so our discovery is significant.
Alas, mergeSort suffers from a significant flaw: When it sorts an array, it creates

additional arrays for merging—this will prove expensive when sorting large arrays.
The method in Figure 19 freely created many extra arrays, but if we are careful, we
can write a version of mergeSort that creates no more than one extra array the same
size as the original, unsorted array. For arrays that model large databases, even this
might be unacceptable, unfortunately.

Quicksort

A brilliant solution to the extra-array problem was presented by C.A.R. Hoare in
the guise of the “quicksort” algorithm. Like merge sort, quicksort uses the divide-
and-conquer technique, but it cleverly rebuilds the sorted array segments within the
original array: It replaces the merge step, which occurred after the recursive invoca-
tions, with a partitioning step, which occurs before the recursive invocations.
The idea behind partitioning can be understood this way: Say that you have a

deck of unsorted playing cards. You partition the cards by (i) choosing a card at
random from the deck and (ii) creating two piles from the remaining cards by placing
those cards whose values are less than the chosen card in one pile and placing those
cards whose values are greater than the chosen card in the other.
It is a small step from partitioning to sorting: If you sort the cards in each pile,

then the entire deck is sorted by just concatenating the piles. This is a classic divide-
and-conquer strategy and forms the algorithm for quicksort. Given an array, r, whose
elements are numbered r[lower] to r[upper]:

1. Rearrange (partition) r into two nonempty subarrays so that there is an index,
m, such that all the elements in r[lower]..r[m] are less than or equal to all
elements in r[m+1]..r[upper].

2. Sort the partition r[lower]..r[m].

3. Sort the partition r[m+1]..r[upper].

The end result must be the array entirely sorted.
Figure 20 gives the quickSort method, which is invoked as quickSort(r, 0,

r.length-1), for array r. The hard work is done by partition(r, lower, upper),
which partitions the elements in the range r[lower]..r[upper] into two groups. The
method uses the element at r[lower] as the “pivot” value for partitioning as it scans
the elements from left to right, moving those values less than the pivot to the left
side of the subarray. Once all the elements are scanned, the ones less than the pivot
form the first partition, and the ones greater-or-equal to the pivot form the second
partition.



www.manaraa.com

474

Figure 8.22: quicksort

/** quickSort sorts an array within the indicated bounds

* @param r - the array to be sorted

* @param lower - the lower bound of the elements to be sorted

* @param upper - the upper bound of the elements to be sorted */

public void quickSort(int[] r, int lower, int upper)

{ if ( lower < upper )

{ int middle = partition(r, lower, upper);

quickSort(r, lower, middle);

quickSort(r, middle+1, upper);

}

}

/** partition rearranges an array’s elements into two nonempty partitions

* @param r - an array of length 2 or more

* @param lower - the lower bound of the elements to be partitioned

* @param upper - the upper bound of the elements to be partitioned

* @return the index, m, such that all elements in the nonempty partition,

* r[lower]..r[m], are <= all elements in the nonempty partition,

* r[m+1]..r[upper] */

private int partition(int[] r, int lower, int upper)

{ int v = r[lower]; // the ‘‘pivot’’ value used to make the partitions

int m = lower - 1; // marks the right end of the first partition

int i = lower + 1; // marks the right end of the second partition

while ( i <= upper )

// invariant: (i) all of r[lower]..r[m] are < v

// (ii) all of r[m+1]..r[i-1] are >= v,

// and the partition is nonempty

{ if ( r[i] < v )

{ // insert r[i] at the end of the first partition

// by exchanging it with r[m+1]:

m = m + 1;

int temp = r[i];

r[i] = r[m];

r[m] = temp;

}

i = i + 1;

}

if ( m == lower - 1 ) // after all the work, is the first partition empty?

{ m = m + 1; } // then place r[lower], which is v, into it

return m;

}



www.manaraa.com

8.14. BEYOND THE BASICS 475

It is essential that both of the partitions created by partition are nonempty. For
this reason, a conditional statement after the while-loop asks whether the partition
of elements less than the pivot is empty. If it is, this means the pivot is the smallest
value in the subarray, no exchanges were made, and the pivot remains at r[lower].
In this case, the pivot value itself becomes the first partition.
We can see partitioning at work in an example. Say that we invoke quickSort(r,

0 ,6), which immediately invokes partition(r, 0, 6) for the array r shown below.
The variables in partition are initialized as follows:

int v == 5
int i == 0
int m == -1

0 1 2 3 4

r

5 6

5 8 4 1 7 3 9

m i

We position m and i under the array to indicate the variables’ values. The pivot value
is r[0]—5. Values less than the pivot will be moved to the left; the other values will
move to the right.
Within partition’s while-loop, i moves right, searching for a value less than 5; it

finds one at element 2. This causes r[2] to be moved to the end of the first partition—
it is exchanged with r[m+1], and both m and i are incremented. Here is the resulting
situation:

0 1 2 3 4

r

5 6

8 1 7 3 9

i

4 5

m

A check of the loop invariant verifies that the elements in the range r[0] to r[m] are
less than the pivot, and the values in the range r[m+1] to r[i-1] are greater-or-equal
to the pivot.
Immediately, i has located another value to be moved to the first partition. An

exchange is undertaken between r[1] and r[3], producing the following:

0 1 2 3 4

r

5 6

7 3 94 51 8

im

The process continues; one more exchange is made. When the method finishes, here
is the partitioned array:

0 1 2 3 4

r

5 6

7 94 1 8

m

3 5

Since m is 2, the partitions are r[0]..r[2] and r[3]..r[6].
Once a partitioning step is complete, quickSort recursively sorts the two parti-

tions. This causes each subarray, r[0]..r[2] and r[3]..r[6], to be partitioned and



www.manaraa.com

476

recursively sorted. (That is, the invocation, quicksort(r, 0, 2) invokes partition(r,
0, 2), and quicksort(r, 3, 6) invokes partition(r, 3, 6), and so on.) Eventually,
partitions of size 1 are reached, stopping the recursive invocations.
For quickSort to perform at its best, the partition method must generate par-

titions that are equally sized. In such a case, each recursive invocation of quickSort
operates on an array segment half the size of the previous one, and the time complex-
ity is the same as mergesort—order N log N. But there is no guarantee that partition
will always break an array into two equally sized partitions—if the pivot value, v, is
the largest (or smallest) value in an array segment of size N, then partition creates
one partition of size 1 and one of size N-1. For example, if array r was already sorted

0 1 2 3 4

r

5 6

7 91 3 4 5 8

and we invoked partition(r, 0, 6), then partition would choose the pivot to be 1
and would create the partitions r[0] and r[1]..r[6]. The subsequent recursive invo-
cation to quickSort(r, 1, 6) causes another such partitioning: r[1] and r[2]..r[6].
This behavior repeats for all the recursive calls.
In a case as the above, quickSort degenerates into a variation of insertion sort

and operates with order N2 time complexity. Obviously, if quickSort is applied often
to sorted or almost-sorted arrays, then partition should choose a pivot value from
the middle of the array rather than from the end (see the Exercises below). Studies of
randomly generated arrays shows that quicksort behaves, on the average, with order
N log N time complexity.

Exercises

1. To gain understanding, apply iterative binarySearch in Figure 17 and recursive
binarySearch in Figure 18 to locate the value, 9, in the array, int[] r = {-2,

5, 8, 9, 11, 14}. Write execution traces.

2. Write an execution trace of mergeSort applied to the array int[] r = {5, 8,

-2, 11, 9}.

3. Rewrite mergeSort in Figure 19 so that it does not create multiple new arrays.
Instead, use this variant:

/** mergeSort sorts a segment of an array, r

* @param r - the array whose elements must be sorted

* @param scratch - an extra array that is the same length as r

* @param lower - the lower bound of the segment to be sorted

* @param upper - the upper bound of the segment to be sorted */

public void mergeSort(int[] r, int[] scratch, int lower, int upper)



www.manaraa.com

8.14. BEYOND THE BASICS 477

{ ...

mergeSort(r, scratch, lower, middle);

mergeSort(r, scratch, middle+1, upper);

...

}

The method is initially invoked as follows: mergeSort(a, new int[a.length],

0, a.length-1).

4. Finish the execution traces for the example in this section that uses quickSort.

5. Write a partition algorithm for use by quickSort that chooses a pivot value in
the middle of the subarray to be partitioned.

6. Because quickSort’s partition method is sensitive to the pivot value it chooses
for partitioning, a standard improvement is to revise partition so that, when it
partitions a subarray of size 3 or larger, partition chooses 3 array elements from
the subarray and picks the median (the “middle value”) as the pivot. Revise
partition in this way.

8.14.5 Formal Description of Arrays

Arrays cause us to augment the syntax of data types, object construction, and vari-
ables to our Java subset. First, for every data type, T, T[] is the data type of
“T-arrays.” The precise syntax of data types now reads

TYPE ::= PRIMITIVE_TYPE | REFERENCE_TYPE

PRIMITIVE_TYPE ::= boolean | ... | int | ...

REFERENCE_TYPE ::= IDENTIFIER | TYPE[]

The syntax allows one- and multi-dimensional array types, e.g., int[] as well as
GregorianCalendar[][].

Array Constructors

Array variables are declared like ordinary variables; within the initialization state-
ment, we can construct an array object explicitly, e.g., int[] r = new int[4] or by
means of a set-like initialization expression, e.g., int[] r = {1, 2, 4, 8}. Here is a
syntax definition that includes the two formats:

DECLARATION ::= TYPE IDENTIFIER [[ = INITIAL_EXPRESSION ]]? ;

INITIAL_EXPRESSION ::= EXPRESSION

| { [[ INITIAL_EXPRESSION_LIST ]]? }

INITIAL_EXPRESSION_LIST ::= INITIAL_EXPRESSION [[ , INITIAL_EXPRESSION ]]*



www.manaraa.com

478

(Recall that [[ E ]]? means that a phrase, E, is optional and [[ E ]]* means that
phrase E can be repeated zero or more times.)
The syntax, { [[ INITIAL EXPRESSION LIST ]]? } defines the set notation for ar-

ray object construction. The syntax makes clear that multi-dimensional arrays can
be constructed from nested set expressions:

double[][] d = { {0.1, 0.2}, {}, {2.3, 2.4, 2.6}};

This constructs an array with three rows of varying lengths and assigns it to d.
An array object can be constructed by a set expression only within an initialization

statement. The compiler verifies that the dimensions of the set expression and the
data types of the individual elements in the set expression are compatible with the
data type listed with the variable declared. Only elements of primitive type can be
listed.
An array constructed with the new keyword is defined by means of an OBJECT CONSTRUCTION

of the form, new ARRAY ELEMENT TYPE DIMENSIONS:

EXPRESSION ::= ... | STATEMENT_EXPRESSION

STATEMENT_EXPRESSION ::= OBJECT_CONSTRUCTION | ...

OBJECT_CONSTRUCTION ::= ... | new ARRAY_ELEMENT_TYPE DIMENSIONS

ARRAY_ELEMENT_TYPE ::= PRIMITIVE_TYPE | IDENTIFIER

DIMENSIONS ::= [ EXPRESSION ] [[ [ EXPRESSION ] ]]* [[ [] ]]*

That is, ARRAY ELEMENT TYPE, the data type of the array’s individual elements, is
listed first, followed by the all the array’s dimensions. The quantity of at least the
first dimension must be given; the quantities of the dimensions that follow can be
omitted. For example, new int[4][] constructs a two-dimensional array object with
4 rows and an unspecified number of columns per row, and new int[4][3] constructs
a two-dimensional array object with 4 rows and 3 columns. The phrase, new int[],
is unacceptable.
An array construction, new ARRAY ELEMENT TYPE DIMENSIONS, is type checked to

validate that all expressions embedded in the DIMENSIONS have data types that are sub-
types of int. The compiler calculates the data type of the phrase as ARRAY ELEMENT TYPE

followed by the number of dimensions in DIMENSIONS.
The execution semantics of an array construction goes as follows: For simplicity,

consider just a one-dimensional object, new ARRAY ELEMENT TYPE[EXPRESSSION]:

1. EXPRESSION is computed to an integer value, v. (If v is negative, an exception
results.)

2. An object is constructed with v distinct elements. The data type, ARRAY ELEMENT TYPE[v],
is saved within the object. Say that the object has storage address, a.



www.manaraa.com

8.14. BEYOND THE BASICS 479

3. If ARRAY ELEMENT TYPE is a numeric type, the elements in the object are initialized
to 0. If it is boolean, the elements are initialized to false. Otherwise, the
elements are initialized to null.

4. The object’s address, a, is returned as the result.

When an array variable is initialized with an array object, as in int[] r = new

int[3], data-type checking and execution semantics proceed the same as with any
other variable initialization: The data type of the right-hand-side expression must
be a subtype of the left-hand-side type, and the address of the constructed object is
assigned to the left-hand-side variable’s cell.

References and Assignments

Elements of arrays are referenced with bracket notation, e.g., r[i + 1] = r[0]. Here
is the syntax for expressions and assignments extended to arrays:

ASSIGNMENT := VARIABLE = EXPRESSION

VARIABLE ::= IDENTIFIER | ... | RECEIVER [ EXPRESSION ]

EXPRESSION ::= ... | VARIABLE

RECEIVER ::= IDENTIFIER | ... | RECEIVER [ EXPRESSION ]

Recall that VARIABLE phrases must compute to addresses of storage cells (to which
are assigned values); RECEIVERs must compute to addresses of objects that can receive
messages; and EXPRESSIONs must compute to values that can be stored in cells.
The syntax allows an array to use multiple indexes, e.g., d[3][2] = 4.5. More

importantly, since an array is an object, it is a “receiver” of messages that ask for
indexings, e.g., r[0] sends a “message” to the object named r, asking it to index itself
at element 0 and return the value in that cell.
For an indexing expression, RECEIVER[EXPRESSION], the compiler verifies that the

data type of EXPRESSION is a subtype of int, and it verifies that the data type of
RECEIVER is an array type. When the indexing expression appears as a VARIABLE on
the left-hand side of an assignment, the compiler verifies, as usual, that the data type
of the right-hand side expression is a subtype of the left-hand side variable’s type.
When used as a VARIABLE on the left-hand side of an assignment, the semantics

of the phrase, RECEIVER[EXPRESSION], computes an address:

1. RECEIVER is computed to its result, which will be an address, a, of an array
object.

2. EXPRESSION is computed to its result, which must be an integer, v.

3. If v is nonnegative and is less than the length of the array at address a, then
the address, a[v], is returned as the result; otherwise, an exception is thrown.



www.manaraa.com

480

For example, say that r holds the address, a1, of an array object. Then, the assign-
ment, r[1 + 2] = 4, causes r[1 + 2] to compute to the address, a1[3], and inserts
4 into the cell at that address.
When the phrase, RECEIVER[EXPRESSION], is used as a RECEIVER or as an EXPRESSION,

then of course the addressed cell is dereferenced and the value in the cell is returned
as the result. For example, System.out.println(r[3]) prints the value found in the
cell addressed by r[3].
Here is a more complex example. For the arrays,

int[ ] r == a1 0 1 2 3

0 2 0 7

a2 : int[4]

0 1

a1 : int[2][ ]

nulla2
int[ ] s == a2

the assignment, r[0][2] = r[0][s[1] + 1], would execute these steps:

1. The variable part, r[0][2], computes to an address:

(a) The leftmost r computes to a1.

(b) r[0] computes to the address, a1[0], but this phrase is used as a receiver
(of the message, [2]), so a1[0] is dereferenced, producing a2.

(c) The address, a2[2], is formed as the address of the left-hand side variable.
This is the target of the assignment.

2. The right-hand side, r[0][s[1] + 1], computes to an integer:

(a) Since r has value a1, and r[0] is the receiver of the message, [s[1] + 1],
the address, a1[0] is dereferenced to the value a2.

(b) The expression, s[1] + 1, computes to 3, because s has value a2, s[1]
appears as an expression, hence the address a2[1] is dereferenced to 2 and
1 is added to it.

(c) Because r[0] computed to a2 and s[1] + 1 computed to 3, the address
a2[3] is formed. Since this appears as an expression, it is dereferenced to
produce 7.

3. 7 is assigned to address a2[2].

The above description of array assignment omits an important subtlety that is
specific to the Java language: When this assignment is executed,

RECEIVER [ EXPRESSION1 ] = EXPRESSSION2

The complete listing of execution steps goes as follows:



www.manaraa.com

8.14. BEYOND THE BASICS 481

1. RECEIVER is computed to its value, which will be an address, a, of an array
object. The run-time type information is extracted from a; say that it is
element type[size].

2. EXPRESSION1 is computed to an integer, v. If v is nonnegative and less than
size, then the address, a[v], is formed as the target of the assignment.

3. EXPRESSSION2 is computed to its result, w.

4. This is the surprising, additional step: If w is not a primitive value, then it is an
address of an object—the run-time type, t, is fetched from the object at address
w and is compared to element type to verify that t is a subtype of element type.

5. If the types are compatible, w is assigned to the cell at a[v]; otherwise, an
exception is thrown.

In most programming languages, Step 4 is not required, because the type checking
already performed by the compiler suffices. But the additional type checking at
execution is forced upon Java because of Java’s subtyping laws for object (reference)
types.
To see this, here is an example. Perhaps we write this method:

public void assignPanel(JPanel[] r, JPanel f)

{ r[0] = f; }

The Java compiler examines the method and judges it acceptable. Next, we write
this class:

public class MyPanel extends JPanel

{ public MyPanel() { }

public void paintComponent(Graphics g) { }

public void newMethod() { }

}

This class is also acceptable to the Java compiler. But now, we play a trick:

MyPanel[] panels = new MyPanels[2];

JPanel x = new JPanel();

assignPanel(panels, x);

panels[0].newMethod();

Because MyPanel is a subtype of JPanel, panels is an acceptable actual parameter to
assignPanel, which apparently assigns a JPanel object into an array that is meant
to hold only MyPanel objects. If the assignment is allowed to proceed, then disaster



www.manaraa.com

482

strikes at panels[0].newMethod(), which sends a message to an object that has no
newMethod.
This is the reason why every assignment to an array element must be type checked

at execution even though it was type checked previously by the Java compiler.


