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Introduction
Estimation of the emitters’ directions with an antenna array, 

or Direction-of-Arrival (DOA) estimation, is an essential problem 
in a large variety of applications such as radar, sonar, mobile 
communications, and seismic exploration, because it is a major 
method for location determination. In wireless communications, DOA 
estimation may significantly improve communication efficiency and 
network capacity, support and enhance location-aided routing, dynamic 
network planning and different types of location-related services 
and applications. In radar and sonar, accurate target localization is a 
fundamental objective. The problem has been an active research area 
for decades, and many high resolution methods have been investigated, 
such as Multiple Signal Classification (MUSIC), Estimation of Signal 
Parameters via Rotational Invariance Technique (ESPRIT), Minimum 
Variance Distortionless Response (MVDR), and Model of Direction 
Estimation (MODE). An introduction to DOA estimation and array 
processing can be found, e.g., in Li, et al. [1] and the references therein.

Maximum Likelihood (ML) represents an important category of 
DOA estimators that determines source DOAs by maximizing the log-
likelihood function, which signifies that signals from those directions 
are most likely to cause occurrence of the given samples. ML produces 
superior estimates compared to other methods, especially in unfavorable 
conditions involving low SNR, short data samples, highly correlated or 
coherent sources, and small array apertures, and thus is of practical 
interest. It can be used as a caliber to evaluate the performance of other 
methods. ML DOA estimation has received considerable attention in 
literature [2-39]. GA-ML is presented in the study of Li and Lu [2], 
which utilizes an enhanced Genetic Algorithm (GA) to find the exact 
solutions to the highly nonlinear and multi-modal likelihood function. 
With the newly introduced features, carefully selected operators and 
fine-tuned parameters, GA-ML achieves fast global convergence. 
In order to accurately resolve closely spaced sources, a resampling 
scheme is investigated in [3], where a single data set is resampled to 
create multiple snapshots in parallel. The computational burden of 
DOA estimation with large arrays is often prohibitively extensive. To 
address this challenge, a robust solution for data reduction (and thus 
computation reduction) in array processing is presented in the study of 
Li and Lu [4,5]. In many practical scenarios, the antenna arrays are not 
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well calibrated, due to amplitude and phase mismatch of the receivers, 
inaccurate sensor locations, and imperfect sensor gain or phase 
characteristics, or a combination of these effects; DOA estimation 
using partially calibrated arrays is addressed in in the study of Li and 
Lu [6,7]. In real radar or communication systems, the noise often 
tends to become correlated along the array if the external noise and 
the coupling between antenna elements cannot be ignored. As a result, 
the noise covariance is generally unknown and may change slowly with 
time. Algorithms for DOA estimation without the statistical knowledge 
of the noise environment are discussed in the study of Li and Lu [8]. 
The DOA processing techniques have been investigated in a variety 
of applications including radar [9-11], mobile communications [12-
14], wireless sensor networks [15-18], and ultrasound non-destructive 
evaluation and imaging [19-24].

In this paper, we focus on maximum likelihood DOA estimation. 
Section 2 presents the general array data model. Section 3 and 4 discuss 
in details the techniques for DOA estimation in white Gaussian noise 
and colored noise fields, respectively. Simulation results are given in 
Section 5.

Data Model and Problem Formulation
Consider a general scenario of an array of M elements arranged 

in an arbitrary geometry immersed in the far field (planar wave) of N 
point sources at unknown locations. To simplify the exposition, our 
discussion is confined to azimuth-only systems, i.e., the sensors and 
signals are assumed to be co-planar. However, the data model and 
algorithms presented here are general and the extension to azimuth-
and-elevation systems is straightforward.
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A standard data model for the problem of DOA estimation is:

y(t)=A(θ)s(t)+n(t), t =1,2,…,L,                  (1)

where y(t) is the array output, s(t) is the unknown vector of signal 
waveforms, n(t) is an immeasurable noise process, L denotes the 
number of data samples (snapshots). The matrix A(θ) has the following 
special structure:

A(θ)=[a(θ1)…a(θN)],                     (2)

where a(θ) is the so-called steering vector that describes a mapping 
between DOA and array response, and θ={θ1,…, θN} are parameters 
of interest or DOAs. The exact form of a(θ) depends on the array 
geometry, and is not specified in this section.

In most literature, the number of sources N is assumed to be known 
(given or estimated). We also assume that the number of sensors is 
greater than the number of sources, M>N, to guarantee the uniqueness 
of DOA estimation [28]. Assuming that the noise and signals are 
independent in (1), the data covariance matrix is given by

R=E{y(t)yH(t)}=APAH+Q.                        (3)

where E[•] stands for the expectation operator, (•)H denotes the 
conjugate transpose, P=E{s(t)sH(s)}, and Q=E{n(t)nH(s)}. When only 
L data samples are available, an unbiased estimate of the covariance 
matrix can be obtained using an averaging scheme

1

1R̂ y( )y ( )
=

= ∑
L

H

t
t t

L
.                      (4)

The problem addressed herein is the estimation of θ (and if 
necessary, along with the parameters in P and Q), from a batch of L 
measurements y(1), …, y(L).

DOA Estimation in White Gaussian Noise
The noise in most receiving systems consists of internal noise and 

external noise. The internal noise is produced by the electronic device 
and includes thermal noise and weak versions of other signals in the 
system, such as clocks and local oscillators. The external noise is defined 
as an unwanted random signal that is intercepted by the sensors. If 
the system is designed well, so that there is no coupling between the 
antennas, and it is assumed that the thermal noise is dominant, a good 
model for the noise is white Gaussian noise with covariance being a 
scaled identity matrix in (3), 

2Q I= nσ                         (5)

where 2
nσ  is the noise power, and I is an identity matrix. This 

model assumes that the noise intensity is the same in all sensors and 
that there is no correlation between the noises at any two elements. 
Regarding the source signals, there are two types of models in current 
use: conditional model, which assumes the signals to be deterministic 
and unknown sequences; and unconditional model, which assumes the 
signals to be random. These two models lead to different ML methods, 
termed CML and UML respectively [29].

Conditional Maximum Likelihood (CML) estimator

Assume the signals s(t) to be deterministic and unknown sequences, 
and the noise n(t) to be stationary zero-mean white Gaussian process, 

( ) ( ){ } 2n n I=H
nE t t σ , therefore ( ) ( )( )2y ~ As , Int G t σ , where G(•) 

denotes Gaussian distribution.

The likelihood function of the snapshots y(1), … ,y(L) is given by

( ) ( )( ) ( ) ( ) 2

2 2
1

1 1y 1 , , y exp y As
det[ I]=

 
= − − 

 
∏

L

t n n

L L t t
π σ σ

,    (6)

where det[•] stands for the determinant. Thus, the log-likelihood 
function is

( ) ( ) 22
2

1

1ln ln ln y As
=

= − − − −∑
L

n
tn

L L ML t tπ σ
σ

.                             (7)

In (7), 2
nσ , θ (in A(θ)) and s(t) are unknown parameters.

Firstly, we fix θ and s(t), and calculate the derivatives of (7) with 
respect to 2

nσ ,

( ) ( ) 2

2 2 4
1

ln 1 y As
=

∂
= − + −

∂ ∑
L

tn n n

L ML t t
σ σ σ

.                                                 (8)

We then get,

( ) ( ) 22

1

1 y As
=

= −∑
L

n
t

t t
ML

σ .                                                               (9)

Secondly, fixing 2
nσ  and θ, we calculate the derivatives of (7) with 

respect to s(t),

( ) ( ) ( )2

ln 2 A y As
s
∂

=  −  ∂
H

n

L t t
t σ

,                                                        (10)

it arrives at

s(t)=(AHA)-1AHy(t).                  (11)

Finally, substituting (9) and (11) back into (7), we obtain the 
following maximization problem,

( ) ( ) ( )
21

1

1arg max ln y A A A A y
−

θ =

 
− − 
 

∑
L

H H

t
ML t t

ML
,                    (12)

which is equivalent to the following minimization problem

( ) ( )
21

1
arg min I A A A A y

−

θ
=

  −    
∑

L
H H

t
t ,                                        (13)

or in a different form,

( ) ( ){ }1 ˆarg min (I A A A A )R
−

θ

 θ = −  
H H

CMLf tr  ,                           (14)

where [ ]tr  denotes the trace, and R̂ is the sample covariance matrix 
as in (4).

Unconditional Maximum Likelihood (UML) estimator
If we assume that both the signals and the noise are stationary, 

temporally white, zero-mean complex Gaussian random processes 
with second-order moments satisfying (3) and (5), following a similar 
derivation procedure, we may conclude that the UML estimator is 
given by minimizing (15)

( ) ln det APA I θ = + 




H
UMLf q ,                                                            (15)

where

( ) ( ) ( )1 1 1ˆP A A A RA A A A A
− − −

= −



H H H Hq ,

( ){ }11 ˆI A A A A R
− = −  −



H Hq tr
M N

,

and [ ]ln   denotes the natural logarithm.

Literature [29] demonstrates that for uncorrelated sources, the 
statistical performances of CML and UML are similar; while for highly 
correlated or coherent sources, UML is significantly superior. For 
UML, the stochastic Cramer-Rao Bound (CRB) can be achieved as 
N→∞, or SNR→∞; while for CML, the corresponding bound cannot be 
attained if M<∞, even though N→∞, or SNR→∞.



www.manaraa.com

Citation: Li M, Lu Y, He B (2013) Array Signal Processing for Maximum Likelihood Direction-of-Arrival Estimation. J Electr Electron Syst 3: 117. 
doi:10.4172/2332-0796.1000117

Page 3 of 5

Volume 3 • Issue 1 • 1000117
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

The optimization of the likelihood functions (14) and (15) is a 
nonlinear optimization problem. In the absence of a closed form 
solution, it requires iterative schemes for solutions. A couple of 
such schemes have been proposed for solving this problem, such as 
alternating projection [30], simulated annealing [31], expectation 
maximization [32], and data supported grid search [33]. A rapid 
technique [2] using an enhanced genetic algorithm is presented for 
solutions in general cases.

DOA Estimation in Unknown Noise Environment
In this section, we assume the noise covariance Q to be completely 

unknown, except for the fact that it is a Hermitian positive definite 
matrix. Under the assumption of additive Gaussian noise and Gaussian 
distributed signals, the normalized (with L) negative log-likelihood 
function of the data vectors takes the form (ignoring the parameter 
independent terms) [34]

( ) [ ] 1 ˆ,P,Q ln det R R R− θ = +  f tr ,                  (16)

where [ ]ln det   denotes the natural logarithm of the determinant.

ML estimation based on parametric noise covariance
Based on a Fourier series expansion of the spatial noise power 

density function, the noise covariance Q is assumed to be modeled by 
the following linear parameterization:

1

Q( )=
=

η η Σ∑
J

j j
j               

(17)

where η=[η1,…, ηJ]
T is a vector of unknown noise Fourier 

coefficients, Σj is a known function of the array geometry given by

( 1)/2

/2

odd

even
−ΣΣ = 

Σ


j
j

j

j

j
                   (18)

where

( ) ( ) ( )a a cos
−

Σ ∫ H
l l d

π

π
θ θ θ θ

( ) ( ) ( )a a sin
−

Σ ∫ H
l l d

π

π
θ θ θ θ

0,1,2,= l . Similar noise models have appeared in the literature 
[35-37]. We assume that the number of signals N and the number of 
noise parameters J are known or have been estimated [36].

By solving for P in terms of θ and Q(η) and then substituting back 
to (16), similar to the derivation in Section 3.1, we get an Exact ML 
(EML) function that depends on both θ and η [8]

( ) [ ], ln det Q ln det GRG+H HR   θ η = + +   EMLf tr ,                  (19)

Where

( )

1/ 2

1

1/ 2 1/ 2

A Q A

G A A A A

ˆR Q RQ
H I G

−

−

− −

=

=

=
= −

H H

The ML estimates of θ and η are obtained by minimizing (19). 
Further derivation of a function merely depending on the DOAs seems 
impossible. However, using the large sample assumption and least 
square criteria, we can get the following approximation of (19) [8]

( ) ( )( )
21

I B B B B d
−

θ = Π − Π ΠH H
AMLf ,              (20)

where 
{ }

*

ˆd vec R

B A A

=

= ⊗
Γ=[vec{Σ1},…vec{ΣJ}]

∏=I– Γ(ΓH Γ)–1 ΓH

vec{•} is a concatenation of the columns of the bracketed matrix, 
⊗  denotes Kronecker product, and   stands for Euclidean norm. 

ML estimation based on parameterized signals

In this method, the signals are assumed to be linear combinations 
of p known basis functions:

s(t)=THb(t),                      (21)

where T is an unknown p×N matrix, and the p-vector b(t) contains 
the basic functions that are uncorrelated with the noise. Possible 
applications where this assumption is reasonable include active radar 
or sonar, and mobile communications [38].

The exact ML estimates of source parameters are the minimizing 
argument of the following function [8]

fEML(θ,φ)=ln det[I+∆0],                   (22)

where
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φ contains the unknown parameters in basis functions b(t). 
Provided b(t) is completely known and the samples are large enough, 
(22) can be simplified. Since ∆0 is small (of order O(1/L)) for large L 
and near the true θ, we may approximate ln det[I+∆0] by the first term 
of the Taylor series expansion

[ ] [ ] 2
0 0 0

1ln det I
2

 + ∆ = ∆ − ∆ +  tr tr .                  (23)

Hence, the approximate ML (AML) function merely depending on 
θ can be obtained as follows [8]:

( ) 1/ 2 1 1/ 2ˆ ˆ ˆ ˆ ˆˆ W R R R W⊥ − − − θ = Π 
H

AML yb bb ybf tr .                   (24)

It should be noted that, the AML estimator has the form of 
a standard signal subspace fitting structure, for which several 
minimization techniques have been proposed, for instance alternating 
projection [30] and the modified Newton technique [39].

Simulation Studies
The main performance indices for a DOA estimator include bias, 

variance, and resolution probability, which are complicated functions 
of source SNR, the number of snapshots, number and directions of 
sources, and the array geometry. A poor estimate generally results from 
using shorter snapshots and sources with lower SNR. Even though bias 
and variance both play important roles in direction estimation, the 
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effect of bias is more critical in the threshold region. The variance is 
often evaluated against the CRB, which provides a lower bound on the 
covariance matrix of any unbiased estimators, and is expected to be a 
good performance predictor for large samples.

In the follows, we present two numerical examples to compare 
the performances of ML estimators with other popular techniques 
including MUSIC, ESPRIT and MVDR, and evaluate them against the 
CRB. Each simulated point is calculated from 500 independent Monte-
Carlo trials. The performances of those methods are compared at two 
aspects: 1) DOA estimation Root-Mean-Squared Error (RMSE), and 2) 
resolution probability.

An 8-element Uniform Linear Array (ULA) with half-wavelength 
element spacing is considered in Example 1. Two equal-power 
correlated signals with the correlation factor γ=0.8 are assumed to 
illuminate the array from 61° and 64° relative to the end-fire. The 
number of snapshots is 40, and the SNR is varied. The noise is assumed 
to be white Gaussian noise.

Figure 1 depicts the DOA estimation RMSE obtained by UML, 
ESPRIT, MUSIC and MVDR, and compares them with the CRB. 
Figure 2 shows the resolution probabilities for the same methods. As 
can be seen from Figure 1 and Figure 2, UML demonstrates much 
better performance than the other techniques as a whole, producing 
more accurate estimates in terms of RMSE, and better source resolving 

power in terms of resolution probabilities. UML asymptotically attains 
the CRB when SNR gets higher. ESPRIT performs better than MUSIC 
and MVDR in the cases of correlated sources, and MVDR demonstrates 
the strongest threshold effect when SNR is low.

Example 2 is provided to demonstrate the performance of the ML 
estimator in correlated noise fields, and evaluate it against MUSIC and 
UML. We consider the data model with the noise covariance being a 
linear combination of known matrices as in (17). J=3, and the noise 
parameters are η=[1,1/4,1/9]. Assume that two equal-power correlated 
signals with the correlation factor r=0.95 impinge on a four-element 
ULA from 90° and 95°relative to the end-fire. The number of snapshots 
is 80.

Figure 3 depicts the DOA estimation RMSE obtained using EML 
(19), MUSIC and UML as a function of SNR, and compares them with 
the corresponding CRB. Figure 4 shows the resolution probabilities 
for the same methods. As can be seen from Figure 3 and Figure 4, 
the EML technique that takes the noise correlation into account 
yields significantly superior performance over MUSIC and UML 
as a whole, by demonstrating lower estimation RMSE and higher 
resolution probabilities. EML produces excellent estimates with RMSE 
approaching and asymptotically attaining the theoretic lower bound. 
On the other hand, as a standard high-resolution method in white 
Gaussian noise, MUSIC fails almost in the whole SNR range. Although 

Figure 1: DOA estimation RMSE versus SNR.

Figure 2: DOA resolution probability versus SNR.

Figure 3: DOA estimation RMSE versus SNR.

Figure 4: DOA resolution probability versus SNR.
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UML is an optimal technique in white noise, it completely fails when 
SNR is lower than 15dB and only produces acceptable estimates in high 
SNR region. The results can be explained by the fact that UML and 
MUSIC are sensitive to modeling errors due to noise correlation. It is 
worth noting that the advantages of EML over the other techniques are 
more prominent when SNR is low, and the benefits can be extended to 
other unfavorable scenarios involving short samples, clustered sources, 
and small array apertures.

Conclusions
This paper explains how DOA estimation can be obtained using 

antenna arrays, and discusses the data model and various signal 
processing algorithms. ML DOA estimation is a nearly optimal 
technique, which produces superior estimates compared to other 
methods. A detailed treatment of the ML algorithms for DOA 
estimation in white Gaussian noise and colored noise environment has 
been provided by including the description, analysis and performance 
evaluation with numerical simulations.
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