
www.manaraa.com

Advanced Web Programming
1 Advanced Web Programming

what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

MCS 275 Lecture 33
Programming Tools and File Management

Jan Verschelde, 3 April 2017

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 1 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 2 / 36



www.manaraa.com

Plan of the Course
since the first midterm

In the four weeks after the midterm exam
we covered:

1 CGI programming: handling forms
2 database programming: MySQL and MySQLdb
3 network programming: using sockets
4 multithreaded programming

Anything left to cover?

Advanced Web Programming
→ gluing various programming tools

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 3 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 4 / 36



www.manaraa.com

The SocketServer Module
simplified development of network servers

With the SocketServermodule we do not need to import the
socket module for the server script.

Follow these steps:
1 from socketserver import StreamRequestHandler
from socketserver import TCPServer

2 Inheriting from StreamRequestHandler
define a request handler class. Override handle().
→ handle() processes incoming requests

3 Instantiate TCPServer with (address, port)
and an instance of the request handler class.
→ this returns a server object

4 Apply the method handle_request() or serve_forever()
to the server object.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 5 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 6 / 36



www.manaraa.com

a server to tell the time with SocketServer

In the window running the server:

$ python clockserver.py
server is listening to 12091
connected at (’127.0.0.1’, 49142)
read "What is the time? " from client

writing "Sun Apr 4 18:16:14 2010" to client

In the window running the client:

$ python clockclient.py
client is connected
Sun Apr 4 18:16:14 2010

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 7 / 36



www.manaraa.com

code for the client in file clockclient.py
from socket import socket as Socket
from socket import AF_INET, SOCK_STREAM

HOSTNAME = ’localhost’ # on same host
PORTNUMBER = 12091 # same port number
BUFFER = 25 # size of the buffer

SERVER_ADDRESS = (HOSTNAME, PORTNUMBER)
CLIENT = Socket(AF_INET, SOCK_STREAM)
CLIENT.connect(SERVER_ADDRESS)

print(’client is connected’)
QUESTION = ’What is the time?’
DATA = QUESTION + (BUFFER-len(QUESTION))*’ ’
CLIENT.send(DATA.encode())
DATA = CLIENT.recv(BUFFER)
print(DATA.decode())

CLIENT.close()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 8 / 36



www.manaraa.com

code for the server in the file clockserver.py
from socketserver import StreamRequestHandler
from socketserver import TCPServer
from time import ctime

PORT = 12091

class ServerClock(StreamRequestHandler):
"""
The server tells the clients the time.
"""
def handle(self):

"""
Handler sends time to client.
"""

def main():
"""
Starts the server and serves requests.
"""

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 9 / 36



www.manaraa.com

code for the handler

def handle(self):
"""
Handler sends time to client.
"""
print("connected at", self.client_address)
message = self.rfile.read(25)
data = message.decode()
print(’read \"’ + data + ’\" from client’)
now = ctime()
print(’writing \"’ + now + ’\" to client’)
self.wfile.write(now.encode())

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 10 / 36



www.manaraa.com

code for the main function

def main():
"""
Starts the server and serves requests.
"""
ss = TCPServer((’’, PORT), ServerClock)
print(’server is listening to’, PORT)
try:

print(’press ctrl c to stop server’)
ss.serve_forever()

except KeyboardInterrupt:
print(’ ctrl c pressed, closing server’)
ss.socket.close()

if __name__ == "__main__":
main()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 11 / 36



www.manaraa.com

About rfile and wfile
attributes in the class StreamRequestHandler

rfile contains input stream to read data from client

example: data = self.rfile.read(25)
client must send exactly 25 characters!

wfile contains output stream to write data to client

example: self.wfile.write(data)
all data are strings of characters!

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 12 / 36



www.manaraa.com

alternatives to the simple example

Instead of StreamRequestHandler,
we can use DatagramRequestHandler.

Instead of TCPServer, we can use UDPServer,
if we want UDP instead of TCP protocol.
On Unix (instead of TCPServer): UnixStreamServer or
UnixDatagramServer.

Choice between
1 handle_request(): handle one single request, or
2 serve_forever(): indefinitely many requests.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 13 / 36



www.manaraa.com

using serve_forever()

With serve_forever(), we can
1 serve indefinitely many requests,
2 simultaneously from multiple clients.

ss = TCPServer((’’,port),ServerClock)
print ’server is listening to’, port

try:
print ’press ctrl c to stop server’
ss.serve_forever()

except KeyboardInterrupt:
print ’ ctrl c pressed, closing server’
ss.socket.close()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 14 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 15 / 36



www.manaraa.com

a forking server

Threads in Python are not mapped to cores.

For computationally intensive request,
we want to spawn a new process.

>>> import os
>>> help(os.fork)
Help on built-in function fork in module posix:

fork(...)
fork() -> pid

Fork a child process.
Return 0 to child process

and PID of child to parent process.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 16 / 36



www.manaraa.com

illustration of a fork

The child process will just print hello.

import os

def child():
"""
The code executed by the forked process.
"""
print(’hello from child’, os.getpid())
os._exit(0) # go back to parent loop

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 17 / 36



www.manaraa.com

code for the parent() function

def parent():
"""
Code executed by the forking process.
Type q to quit this process.
"""
while True:

newpid = os.fork()
if newpid == 0:

child()
else:

print(’hello from parent’,\
os.getpid(), newpid)

if input() == ’q’:
break

parent()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 18 / 36



www.manaraa.com

running fork.py

$ python fork.py
hello from parent 854 855
hello from child 855

In another terminal window:

$ ps -e | grep "Python"
854 ttys000 0:00.03 /Library/Frameworks/Python.fr
855 ttys000 0:00.00 (Python)
895 ttys001 0:00.00 grep Python

Then we type q in the first terminal window
to quit the parent process.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 19 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 20 / 36



www.manaraa.com

Are we there yet?

Consider the following simulation:

Any number of clients connect from time to time
and they ask for the current time.

Are we there yet?!

For every request, the server forks a process.
The child process exits when the client stops.

Two advantage of forking processes over threads:
1 We have parallelism, as long as there are enough cores.
2 Unlike threads, processes can be killed explicitly.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 21 / 36



www.manaraa.com

clockforkclient.py

We have the same start as in clockclient.py

print(’client is connected’)
data = ’What is the time?’

while True:
message = data + (buffer-len(data))*’ ’
client.send(message.encode())
data = client.recv(buffer).decode()
print(data)
nbr = randint(3, 10)
print(’client sleeps for %d seconds’ % nbr)
sleep(nbr)

client.close()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 22 / 36



www.manaraa.com

process handling a client

def handle_client(sck):
"""
Handling a client via the socket sck.
"""
print("client is blocked for ten seconds ...")
sleep(10)
print("handling a client ...")
while True:

data = sck.recv(buffer).decode()
if not data:

break
print(’received \"’ + data + ’\" from client’)
now = ctime()
print(’sending \"’ + now + ’\" to client’)
sck.send(now.encode())

print(’closing client socket, exiting child process’)
sck.close()
os._exit(0)

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 23 / 36



www.manaraa.com

killing the handling child processes

With the os module, we can kill a process,
once with have its process id.

import os

active_processes = []

def kill_processes():
"""
kills handler processes
"""
while len(active_processes) > 0:

pid = active_processes.pop(0)
print(’-> killing process %d’ % pid)
os.system(’kill -9 %d’ % pid)

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 24 / 36



www.manaraa.com

the main() in the server

def main():
"""
Listen for connecting clients.
"""
try:

print(’press ctrl c to stop server’)
while True:

client, address = server.accept()
print(’server connected at’, address)
child_pid = os.fork()
if child_pid == 0:

handle_client(client)
else:

print(’appending PID’, child_pid)
active_processes.append(child_pid)

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 25 / 36



www.manaraa.com

shutting down the server

Before closing the server socket,
all active child processes are killed.

except:
print(’ctrl c pressed, closing server’)
print(’active processes :’, active_processes)
kill_processes()
server.close()

if __name__ == "__main__":
main()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 26 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 27 / 36



www.manaraa.com

Client Accesses the HTTP Server

The client is the web browser.

Working offline, with URL http://localhost:8000/

This is the default page displayed
in response to a GET request.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 28 / 36



www.manaraa.com

Not Serving Files

For now, our server does not make files available.

If a user requests a file, e.g.: test,
then the server answers:

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 29 / 36



www.manaraa.com

running the web server in ourwebserver.py

Recall the script myserver.py which allowed us to
do server side Python scripting without Apache.

We can also serve html pages without Apache:

$ python3 ourwebserver.py
welcome to our web server
press ctrl c to stop server
127.0.0.1 - - [04/Apr/2016 09:20:55] "GET / HTTP/1.1"
^C ctrl c pressed, shutting down
$

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 30 / 36



www.manaraa.com

Advanced Web Programming

1 Advanced Web Programming
what we have covered so far

2 The SocketServer Module
simplified development of network servers
a server tells clients the time

3 A Forking Server
instead of threads use processes
process to handle a client

4 The BaseHTTPServer Module
creating a very simple HTTP server
code for the simple HTTP web server

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 31 / 36



www.manaraa.com

The BaseHTTPServer Module
writing code for a web server

Using the BaseHTTPServermodule
is similar to using SocketServer.

Execute these steps:
1 Import the following:
from BaseHTTPServer import BaseHTTPRequestHandler
from BaseHTTPServer import HTTPServer

2 Inheriting from BaseHTTPRequestHandler
define request handler class. Override do_GET().
→ do_GET() defines how to serve GET requests

3 Instantiate HTTPServer with (address, port)
and an instance of the request handler class.
→ this returns a server object

4 Apply serve_forever() to server object.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 32 / 36



www.manaraa.com

part I of ourwebserver.py

from http.server import BaseHTTPRequestHandler
from http.server import HTTPServer

dynhtml = """
<HTML>
<HEAD><TITLE>My Home Page</TITLE></HEAD>
<BODY> <CENTER>
<H1> hello client </H1>
</CENTER> </BODY>
</HTML>"""

This defines the HTML code we display.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 33 / 36



www.manaraa.com

part II of ourwebserver.py

class WebServer(BaseHTTPRequestHandler):
"""
Illustration to set up a web server.
"""
def do_GET(self):

"""
Defines what server must do when
it receives a GET request.
"""
if self.path == ’/’:

self.send_response(200)
self.send_header(’Content-type’,’text/html’)
self.end_headers()
self.wfile.write(dynhtml.encode())

else:
message = self.path + ’ not found’
self.wfile.write(message.encode())

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 34 / 36



www.manaraa.com

the main() in ourwebserver.py

def main():
"""
a simple web server
"""
try:

ws = HTTPServer((’’, 8000), WebServer)
print(’welcome to our web server’)
print(’press ctrl c to stop server’)
ws.serve_forever()

except KeyboardInterrupt:
print(’ ctrl c pressed, shutting down’)
ws.socket.close()

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 35 / 36



www.manaraa.com

Summary + Assignments

Assignments:

1 Use the SocketServer module to implement a server to swap
one data string between two clients. Clients A and B send a string
to the server, client B receives what A sent and A receives what B
sent.

2 Implement a server which generates a secret number. Clients
connect to the server sending their guess for the secret. In
response, the server sends one of these three messages: (1)
wrong, (2) right, or (3) secret found. If a client has sent the right
answer, all future clients must get reply (3).

3 Consider the previous exercise and set up a simple web server to
guess a secret word. The word is the name typed in after
localhost:8000/ in the URL.

Programming Tools (MCS 275) advanced web programming L-33 3 April 2017 36 / 36


