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Abstract
PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein 

sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR 
performs complex mathematical computations, and its processing time increases when input texts become large. To 
achieve better speed performance, several strategies were applied in the implementation of the program, including 
parallel operations of binary search trees. A standard binary search tree is not thread-safe due to its dynamic insertions 
and deletions. Here, we adjusted the standard binary search tree for parallelized operations to achieve improved 
performance of the PTTRNFNDR algorithm. The method can be applied to other software platforms to quicken data 
searching through parallel operations of binary search trees when several conditions are met.
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Introduction
The binary search tree is one of the most fundamental data 

structures for dynamic datasets that is used in computer programming. 
In a binary search tree, every node has a value called a key. The values 
of all the nodes in a node’s left sub tree are less than (or ≤) the node’s 
value, and the values of all the nodes in its right sub tree are greater than 
the node’s value. The binary search tree can support numerical data, 
character strings, and any other data types for which an order can be 
defined. It provides an efficient way to store a dataset the size of which 
is unknown beforehand or changes dynamically. The binary search tree 
usually provides insertion, searching and deletion as basic operations, 
which take O(logn) in general (O(n) at worst) for each operation. 
Some forms of binary search trees such as AVL [1] and Red-Black 
[2] trees can improve searching performance speed by automatically
maintaining the balance of the trees as nodes are inserted or deleted.

Parallel computing allows time cost savings.  For standard binary 
trees, however, operations cannot be parallelized directly because race 
conditions exist when different threads try to insert different children 
nodes to the same parent node, or when some thread tries to read 
one node that another thread tries to delete. Researchers have tried 
to add parallel capability to the binary search trees through changes 
to the data structure and the corresponding algorithm. For example, 
the parallel construction of a multidimensional binary search tree 
was implemented on distributed memory parallel computers to solve 
applications requiring multidimensional values as keys for the nodes 
[3]. The overhead of finding the medians of all the nodes could be eased 
by using “sorting once” or bucket-based strategies. Unfortunately, this 
solution was designed for distributed memory parallel computers; 
most current computers are “shared memory” systems. In that 
light, Solworth and Reagan have performed research to determine 
the amount of achievable parallelism in operations of a generic tree 
structure in a shared memory environment [4,5].  To achieve full tree 
potential, these advances require leveraging arbitrarily large numbers 
of threads, which can be associated with high computational costs, 
especially on small processor systems. 

A few years ago, we developed PTTRNFNDR, a statistical analysis 
tool that extracts patterns in biological sequence data files [6].  To 
ease its calculation burdens, the program uses specially designed data 
structures and algorithms including a modified binary search tree.  
The tree allows the program to store fixed length character strings 
being examined as patterns and account for the number of times 

they appear in the dataset.  The number of different character strings 
under consideration can be very large. For example, when examining 
the strings that are only 6 letters long in a genome-derived protein 
sequence dataset, there could be as many as 64 million different strings 
that need to be taken into account because each of the 6 positions in 
the string can be any one of 20 amino acid characters.  Thus, the tree 
can become very large and searching over the tree can consume more 
computational time as data files grow or as pattern series become more 
complex.

Implementation of the PTTRNFNDR algorithm required a 
strategy for shared memory computers having the best performance 
for storing and searching the string patterns dynamically. Because 
different operations on the strings occur during different running 
stages of the program, we were able to design a technique to operate 
a binary search tree in parallel, which includes parallel operations of 
insertion, searching, scanning and deletion.  Herein, we describe this 
binary search tree and demonstrate how it improves the speed of the 
particular biology application. While the technique is applicable to our 
specific problem, under various conditions the method can be extended 
to other binary search tree applications with minimal modification.

Materials and Methods
Message Passing Interface (MPI), Open Multi-Processing 

(OpenMP) and POSIX threads (Pthreads) are the three major parallel 
programming tools currently available.  MPI standard defines a set 
of library routines to write process-based parallel programs that rely 
on message-passing to synchronize different processes and transfer 
data among them. Not depending on shared memory, MPI is most 
useful in computer clusters instead of single computer servers. By 
comparison, OpenMP and Pthreads are both threaded, shared-memory 
programming tools. OpenMP is an API standard design that relies on 
the compiler to support its preprocessor directives for the threading 
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marks added in the normal C or Fortran source files. Pthreads, on the 
other hand, is a standard on the API libraries provided by the operating 
systems that implement threading. With today’s popularity of multi-
core computers, the current trend is to combine MPI with OpenMP 
or Pthreads to develop high performance applications running on 
computer clusters. Although OpenMP is easy to code and amendable 
to task-based applications, we chose Pthreads because parallelization 
in the data-driven PTTRNFNDR can occur inside the data structure 
(shown below), and therefore requires fine control on thread 
synchronization.   

In PTTRNFNDR, the first step of the algorithm is to scan the 
sequence database to find all of the character strings of a prescribed 
length and their numbers of appearances in the sequence database.  To 
efficiently count the number of appearances for each string, we build 
a generic binary search tree, the nodes of which are associated with 
the strings found as the database is scanned. Thus, the data structure 
of the node consists of a string and the number of occurrences of that 
string.  Alphabetical ordering of the strings is encoded in the tree by 
requiring that the string associated with any parent node’s left child 
precede the parent’s string in alphabetical order, and any parent’s 
string also precede the string associated with its right child.  The tree we 
build is not self-balanced like AVL or Red-Black trees; we allow for the 
possibility of a parent node with only one child.  Still, due to the nature 
of the protein sequence data we deal with, such nodes are not common.  

The tree-building algorithm is initialized with the first string in the 
database as the root node, with an occurrence count of one.  As the 
database is scanned, each string found is searched for in the current 
tree.  If found, the count at its corresponding node is incremented.  If 
not found, a new node is added in such a way that alphabetic ordering 
is preserved, and its count is initialized at one.  The final tree is obtained 
once the entire sequence database has been scanned. The algorithm 
then sweeps through all of the nodes in the second step, and calculates 
the probability that the each string would appear randomly according 
to a predetermined probability model.  A comparison is made between 
each string’s empirical and expected counts, and a string is chosen as 
a pattern candidate if it appears significantly more frequently than its 
probability suggests. When this step is completed, the algorithm will 
delete the whole tree because all the needed information has been 
extracted and because the memory occupied needs to be released to 
generate a new tree for the next sized character strings to be examined.  
The time costs for insertion, searching, and deleting a binary search tree 
are usually low.  However, the performance of PTTRNFNDR can be 
improved by parallel processing because the mathematical computing 
involved in the probability calculations is complex and the datasets are 
very large.  

Our parallelized binary search tree leverages the special features of 
the PTTRNFNDR algorithm which are clear separations of the tree-
building stage, the scanning-computing stage and the tree-deletion 
stage. Node insertion only happens in the first stage and node deletion 
only happens in tree-deletion stage while scanning only happens 
between these two stages. The algorithm for implementing the parallel 
binary search tree used in PTTRNFNDR consists of the following 
definition, initialization, insertion, scanning and deletion steps. We 
also added a searching function below for other applications that might 
need it when utilizing this parallelized binary search tree structure.  
Specific details follow.

Data structure definitions and initialization

The parallel operations in PTTRNFNDR are implemented using 
Linux threads which have little overhead (compared to processes). 

Mutexes are used to synchronize the threads that might race for the 
same resource. “Mutex” stands for “Mutual Exclusion” [7]. A mutex 
is a lock that only one thread may lock at a time. A thread will be 
blocked (put-on-hold) if it tries to lock a mutex that another thread 
has already locked. The blocked thread can only continue its execution 
when the mutex is unlocked. The number of mutexes that can be 
created is subject to the limit of operating system (OS) and hardware 
resources. Creating more mutexes usually can reduce the chance of 
mutex blockings (therefore improving the efficiency of the program), 
but will also increase the OS cost of managing mutexes. In the 
published version of PTTRNFNDR, the version we typically use in the 
laboratory, the number of mutexes that is created is slightly larger than 
the number of threads.  However, for the purpose of this article, in all 
cases the experimental PTTRNFNDR versions have the same number 
of mutexes as the number of threads. 

All the memory that stores the tree nodes and link information 
is dynamically allocated using the technology called “obstack” (see 
http://www.gnu.org/software/hello/manual/libc/Obstacks.html).  Each 
obstack is exclusively used by one thread. The goal is to make the 
memory allocation in the obstacks thread-safe.

The C code that defines the mutexes, obstack variables, initializations 
and data structures for tree nodes and linked list nodes is: 
/*		  obstack section.	 */
struct obstack 	 threadObstack[THREADCOUNT];

/*	 type definition section	 */
struct	 ParTreeST
{
	 struct ParTreeST	 *left;
	 struct ParTreeST	 *right;
	 char			   *key;
	 int			   count;
};

struct	 ParNodesLinkST
{
	 struct ParNodesLinkST	 *next;
	 struct ParTreeST	 *node;
};

typedef	 struct ParTreeST	 ParTree;
typedef	 struct ParNodesLinkST	 ParNodesLink;

/*	 static or ordinary global variable definition section.	
*/
static	 ParTree		  *root = (void *)0;
static	 ParNodesLink	 *head[THREADCOUNT];

static	 pthread_mutex_t	 mutex[THREADCOUNT];

void	 tree_initialize()
{
	 int	 ii;

	 for( ii = 0; ii < THREADCOUNT; ii++ )
	 {
		  pthread_mutex_init( mutex + ii, (void *)0 );
		  head[ii] = (ParNodesLink *)0;
	 }
	 return;
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}

void	 initObstack(int count)
{
	 int	 ii;

	 for( ii = 0; ii < count; ii++ )
	 {
		  obstack_init( threadObstack + ii );
		  obstack_chunk_size( threadObstack + ii ) = 
1024*1024; 
	 }
}

Parallel insertion
The insertion operation causes the dynamic set represented by 

the binary search tree to change. The binary-search-tree property 
must continue to hold when the tree structure is modified. When the 
insertions are operated in parallel by several threads, additional care 
should be taken to guarantee that two or more new nodes will not be 
attached at the same position of the tree. Otherwise, the conflicts can 
cause data loss and memory leak. A proper synchronization strategy 
for the parallel insertions from different threads has to be adopted to 
prevent any potential conflicts. 

A function called TreeParInsert is defined to insert a new node 
v into a binary search tree T. The arguments of the function are the 
address of the node and the ID of the thread that calls the function. The 
C code of the function TreeParInsert is: 

void	 treeInsertPar(ParTree *v, int len, int threadid)
{
	 ParTree 	*ptr, *y;
	 int	 	 flag;

	 for( ptr = root, y = (ParTree *)0;;)
	 {
		  if( ptr == (void *)0)	
		  {
			   pthread_mutex_t 	*mutexPtr = 
mutex + 
	 	 	 (int)((((unsigned long long)y)/
sizeof(ParTree)) % THREADCOUNT) ;

			   pthread_mutex_lock( mutexPtr );

	 	 	 if (y == (void *)0)	 /*	
empty tree	 */
			   {
				    if(root != (void *)0)	
/* still empty 	 */
				    {
					     root = v;
					     pthread_mutex_
unlock( mutexPtr );
					   
addLinkedNode(v, threadid);
					     return;
				    }

				    else			 
/* not empty anymore */
				    {
					     pthread_mutex_
unlock( mutexPtr );
					     ptr = root;
				    }
			   }
	 	 	 else if (flag < 0)	 /*	 left child	
*/
			   {
	 	 	 	 if( y->left == (void *)0 ) /* 	
add a new node here */
				    {
					     y->left = v;
					     pthread_mutex_
unlock( mutexPtr );
					   
addLinkedNode(v, threadid);
					     return;
				    }
				    else			 
/*	 occupied */
				    {
					     ptr = y->left;
					     pthread_mutex_
unlock( mutexPtr );
				    }
			   }
	 	 	 else	 	 	 /* right 
child	 */
			   {
	 	 	 	 if( y->right == (void *)0 ) 
/* 	 add a new node here */
				    {
	 	 	 	 	 y->right = v;
					     pthread_mutex_
unlock( mutexPtr );
					   
addLinkedNode(v, threadid);
					     return;
				    }
	 	 	 	 else	 	 /*	
occupied */
				    {
	 	 	 	 	 ptr = y->right;
					     pthread_mutex_
unlock( mutexPtr );
				    }
			   }
		  }

		  y = ptr; 
	 	 flag = memcmp( v->key, ptr->key, len );
	 	 if( flag == 0 )	 /* already in the tree */
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		  {
	 	 	 /*	 need to lock this node 
before increasing its count	*/
			   pthread_mutex_t 	*mutexPtr = 
mutex + 
	 	 	 (int)((((unsigned long long)ptr)/
sizeof(ParTree)) % THREADCOUNT) ;

			   pthread_mutex_lock( mutexPtr );
			   ptr->count ++;
			   pthread_mutex_unlock( mutexPtr );
			   return;
		  }

	 	 if( flag < 0 )	 ptr = ptr->left;
	 	 else	 	 ptr = ptr->right;
	 }
}

void	 addLinkedNode(ParTree *v, int threadid)
{
	 ParNodesLink	 *ptr;

	 ptr = (ParNodesLink *) obstack_alloc( threadObstack 
+ threadid, sizeof(ParNodesLink) );

	 ptr->node = v;
	 ptr->next = head[threadid];
	 head[threadid] = ptr;
}

Like the insertion operation in non-parallel versions of binary 
search trees, the function TreeParInsert runs in O(h) time on a tree of 
height h excluding the time for possible mutex-blocking. The chance for 
a thread to be blocked on a mutex is smaller than 1/n (n is the number 
of mutexes) since threads perform other computations in addition to 
inserting new nodes. 

After the insertion of the new node to the tree, the address of 
the new node is recorded in a linked list which only takes time O(1). 
This operation is necessary for the scanning of the whole tree, since 
otherwise the nodes in the tree have to be scanned through a tree scan 
algorithm such as DFS (Depth-first Search, such as pre-order, in-order 
and post-order) or BFS (Breadth-first Search) which cannot be done 
efficiently in parallel. 

Parallel searching

Efficient searching for a given value is the reason to use a binary search 
tree.  This operation does not change any data. Therefore the standard 
searching procedure can be used directly by the threads. The C code 
for searching is:
ParTree	 *treeParSearch(char *key, int len) 
{ 
	 ParTree	 *ptr; 
	 int	 flag; 

	 for( ptr = root; ptr != (void *)0; ) 
	 { 
		  flag = memcmp(key, ptr->key, len); 

		  if( flag == 0 ) return ptr; 
		  else if( flag < 0) ptr = ptr->left; 
		  else ptr = ptr->right; 
	 } 
	 return ptr; 
} 
The time cost of a searching operation is O(h)time on a tree of height 
h. 

Parallel scanning
Scanning a whole set of data is a common operation in many 

applications. This operation on the binary search tree, which is usually 
performed using a recursive procedure, could have an expensive 
time cost when the dataset is large or when complex computation is 
involved to process each node during the scan. For standard binary 
trees, parallel operation is difficult to implement (if possible at all) due 
to the tree’s special structure. However, since a linked list structure for 
each thread has already been constructed in the insertion operation, 
the scan operation can be simply implemented as:

void	 linkListScanPar(int threadid)

{

	 ParNodesLink	 *ptr;

	 for( ptr = head[threadid]; ptr != (void *)0; ptr = ptr->next )

	 printf(“Node linked to value [%s] [%d]\n”, ptr->node->key, 
ptr->node->count);

}

The time cost for scanning the whole tree is simply O(n) where n is 
the number of nodes in the tree. 

Tree deletion
In our application the deletion operations are only to delete the 

whole binary search tree. Therefore, we can use the following O(1) cost 
method: 

/*	 all the obstacks will be in an “uninitialized” state after the 
cleanup. 	 */

void	 cleanUp(int count)

{

	 int	 ii;

	 for( ii = 0; ii < count; ii++ )

	 obstack_free( threadObstack + ii, (void *)0 );

}

Results 
To analyze the performance of the parallelized binary search 

tree algorithm, we created three versions of PTTRNFNDR, which ran 
as one thread, two threads, and four threads implemented using the 
standard multiple thread programming in the GNU C library.  There 
is no other difference among the three versions of PTTRNFNDR. The 
program was executed in our Dell PowerEdge 2800 server which runs 
Redhat Enterprise AS 3.0, a 32-bit operating system. There were two 
dual core CPUs (3.4 GHz) and 6 GB main memory. 

The protein sequence databases that we used as input in these 
experiments were derived from the MSDB database (http://proteomics.
leeds.ac.uk/bioinf/msdb.html). The 4 GB memory limit of our 32-
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bit operating system made PTTRNFNDR unable to analyze longer 
character strings in this database in its full size, so we split the MSDB 
database into 5 smaller files (Table 1). The smallest and largest files 
contained approximately 49,000 and 395,000 protein sequences 
comprising approximately 19,000,000 and 147,000,000 amino acid 
characters, respectively. 

The different sized data files required PTTRNFNDR to utilize 
different amounts of memory which, in effect, cost time and allowed us 
to evaluate the cost savings advantage of threading on the parallelized 
binary search trees (Table 1).  The two thread version executed in less 
time than the one thread version—a 30.7% difference on average. 
Similarly, the 4 thread version performed faster than the 2 thread 
version by 22.1%. This clearly shows that the parallel operations of our 
algorithm on the binary search tree conserved processing time.  The 
Figure shows that the performance was maintained in the 4 thread 
version even as the size of the input database increased (Figure 1).

Discussion
A fundamental data structure, the binary search tree, was 

redesigned in this research for possible parallel operations to reduce 
the time cost of computation in PTTRNFNDR, a statistical pattern 
detection algorithm. The proposed technique can be regarded as a 
combination of a binary search tree and several linked lists. The fast 
searching operation is achieved using the binary search tree structure, 
fast scanning of the tree is achieved through the linked lists, and the fast 
deletion of the whole tree is achieved using a special feature of obstack. 
If the obstack library is not available in an OS, a general memory 
allocation method (such as malloc) can be used instead. The only 
difference is that the deletion of the tree will be done by going over all 
the linked list nodes, which takes O(n) time when the tree has n nodes.

Ideally, speed should increase proportionally with increasing 
numbers of threads. This, however, is not the case as can be seen in 
the Table and Figure. There are multiple reasons for this. First, the 
main memory bandwidth is shared by the 4 processors of the server, 
which is standard for all shared memory multiple processor computers. 

Although each processor has its own cache, the low locality nature 
of the computing in PTTRNFNDR makes the cache ineffective. 
For example, when it analyzes 6-letter sequences, the binary search 
tree created in the algorithm has more than 3 million nodes, which 
means there are more than 3 million unique 6-letter sequences in the 
searched database. Each node has three pointers: left child, right child 
and the sequence address. Each node also has a counter to register 
the number of times each sequence appears in the database. There is 
also a linked list of nodes, where each node has two pointers, the next 
node and the corresponding binary search tree node. Together, each 
unique sequence costs 6 * 4 = 24 bytes in a 32-bit machine. Therefore, 
the entire data structure requires approximately 80M bytes memory. 
Yet, the processors cannot store this amount inside their caches. Thus, 
each insertion or inquiry of the tree causes data transfer from main 
memory to the processor, and memory bandwidth can easily become 
the bottleneck of the algorithm. Another reason is the synchronization. 
When the number of threads increases, the algorithm uses more 
mutexes to avoid race conditions. The mutexes rely on the services 
from OS kernel and hardware. These services (system calls) have much 
higher costs than the normal function calls in the threads. A third cause 
is that other portions of the program, such as data input, output and 
word dictionary analysis, were not parallelized. Thus, proving that ideal 
speed to cost ratios occurred through parallelization would necessitate 
testing in a perfect computational environment. Since that is beyond 
the scope of this article, we deem that the results satisfactorily illustrate 
a relative gain in performance of PTTRNFNDR through the use of a 
parallelized binary search tree.

The method was successfully implemented in PTTRNFNDR.  
It most likely can be generalized for other processing applications 
which build a tree, then search through or scan the whole tree, and 
finally delete the tree. This unique implementation will allow others 
to take advantage of multiple processors or multiple core processing 
capabilities that are common in new computers. This time savings 
advantage will be meaningful as informational datasets continue to 
grow in size.
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