
www.manaraa.com

Volume 1 • Issue 1 • 1000103J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Feng et al. J Inform Tech Soft Engg 2011, 1:1
DOI: 10.4172/2165-7866.1000103

Research Article Open Access

A Parallelized Binary Search Tree
Jian Feng1, Daniel Q. Naiman2 and Bret Cooper3*
1Snoqualmie, WA 98065
2Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA
3Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA

Abstract
PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein

sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR
performs complex mathematical computations, and its processing time increases when input texts become large. To
achieve better speed performance, several strategies were applied in the implementation of the program, including
parallel operations of binary search trees. A standard binary search tree is not thread-safe due to its dynamic insertions
and deletions. Here, we adjusted the standard binary search tree for parallelized operations to achieve improved
performance of the PTTRNFNDR algorithm. The method can be applied to other software platforms to quicken data
searching through parallel operations of binary search trees when several conditions are met.

*Corresponding author: Bret Cooper, Soybean Genomics and Improvement
Laboratory, USDA-ARS, Beltsville, MD 20705, USA, E-mail: bret.cooper@ars.
usda.gov

Received November 03, 2011; Accepted November 17, 2011; Published
November 19, 2011

Citation: Feng J, Naiman DQ, Cooper B (2011) A Parallelized Binary Search Tree.
J Inform Tech Soft Engg 1:103. doi:10.4172/2165-7866.1000103

Copyright: © 2011 Feng J, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Computational speed; Data structure; Parallel processing.

Introduction
The binary search tree is one of the most fundamental data

structures for dynamic datasets that is used in computer programming.
In a binary search tree, every node has a value called a key. The values
of all the nodes in a node’s left sub tree are less than (or ≤) the node’s
value, and the values of all the nodes in its right sub tree are greater than
the node’s value. The binary search tree can support numerical data,
character strings, and any other data types for which an order can be
defined. It provides an efficient way to store a dataset the size of which
is unknown beforehand or changes dynamically. The binary search tree
usually provides insertion, searching and deletion as basic operations,
which take O(logn) in general (O(n) at worst) for each operation.
Some forms of binary search trees such as AVL [1] and Red-Black
[2] trees can improve searching performance speed by automatically
maintaining the balance of the trees as nodes are inserted or deleted.

Parallel computing allows time cost savings. For standard binary
trees, however, operations cannot be parallelized directly because race
conditions exist when different threads try to insert different children
nodes to the same parent node, or when some thread tries to read
one node that another thread tries to delete. Researchers have tried
to add parallel capability to the binary search trees through changes
to the data structure and the corresponding algorithm. For example,
the parallel construction of a multidimensional binary search tree
was implemented on distributed memory parallel computers to solve
applications requiring multidimensional values as keys for the nodes
[3]. The overhead of finding the medians of all the nodes could be eased
by using “sorting once” or bucket-based strategies. Unfortunately, this
solution was designed for distributed memory parallel computers;
most current computers are “shared memory” systems. In that
light, Solworth and Reagan have performed research to determine
the amount of achievable parallelism in operations of a generic tree
structure in a shared memory environment [4,5]. To achieve full tree
potential, these advances require leveraging arbitrarily large numbers
of threads, which can be associated with high computational costs,
especially on small processor systems.

A few years ago, we developed PTTRNFNDR, a statistical analysis
tool that extracts patterns in biological sequence data files [6]. To
ease its calculation burdens, the program uses specially designed data
structures and algorithms including a modified binary search tree.
The tree allows the program to store fixed length character strings
being examined as patterns and account for the number of times

they appear in the dataset. The number of different character strings
under consideration can be very large. For example, when examining
the strings that are only 6 letters long in a genome-derived protein
sequence dataset, there could be as many as 64 million different strings
that need to be taken into account because each of the 6 positions in
the string can be any one of 20 amino acid characters. Thus, the tree
can become very large and searching over the tree can consume more
computational time as data files grow or as pattern series become more
complex.

Implementation of the PTTRNFNDR algorithm required a
strategy for shared memory computers having the best performance
for storing and searching the string patterns dynamically. Because
different operations on the strings occur during different running
stages of the program, we were able to design a technique to operate
a binary search tree in parallel, which includes parallel operations of
insertion, searching, scanning and deletion. Herein, we describe this
binary search tree and demonstrate how it improves the speed of the
particular biology application. While the technique is applicable to our
specific problem, under various conditions the method can be extended
to other binary search tree applications with minimal modification.

Materials and Methods
Message Passing Interface (MPI), Open Multi-Processing

(OpenMP) and POSIX threads (Pthreads) are the three major parallel
programming tools currently available. MPI standard defines a set
of library routines to write process-based parallel programs that rely
on message-passing to synchronize different processes and transfer
data among them. Not depending on shared memory, MPI is most
useful in computer clusters instead of single computer servers. By
comparison, OpenMP and Pthreads are both threaded, shared-memory
programming tools. OpenMP is an API standard design that relies on
the compiler to support its preprocessor directives for the threading

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

www.manaraa.com

Volume 1 • Issue 1 • 1000103J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Feng J, Naiman DQ, Cooper B (2011) A Parallelized Binary Search Tree. J Inform Tech Soft Engg 1:103. doi:10.4172/2165-7866.1000103

Page 2 of 5

marks added in the normal C or Fortran source files. Pthreads, on the
other hand, is a standard on the API libraries provided by the operating
systems that implement threading. With today’s popularity of multi-
core computers, the current trend is to combine MPI with OpenMP
or Pthreads to develop high performance applications running on
computer clusters. Although OpenMP is easy to code and amendable
to task-based applications, we chose Pthreads because parallelization
in the data-driven PTTRNFNDR can occur inside the data structure
(shown below), and therefore requires fine control on thread
synchronization.

In PTTRNFNDR, the first step of the algorithm is to scan the
sequence database to find all of the character strings of a prescribed
length and their numbers of appearances in the sequence database. To
efficiently count the number of appearances for each string, we build
a generic binary search tree, the nodes of which are associated with
the strings found as the database is scanned. Thus, the data structure
of the node consists of a string and the number of occurrences of that
string. Alphabetical ordering of the strings is encoded in the tree by
requiring that the string associated with any parent node’s left child
precede the parent’s string in alphabetical order, and any parent’s
string also precede the string associated with its right child. The tree we
build is not self-balanced like AVL or Red-Black trees; we allow for the
possibility of a parent node with only one child. Still, due to the nature
of the protein sequence data we deal with, such nodes are not common.

The tree-building algorithm is initialized with the first string in the
database as the root node, with an occurrence count of one. As the
database is scanned, each string found is searched for in the current
tree. If found, the count at its corresponding node is incremented. If
not found, a new node is added in such a way that alphabetic ordering
is preserved, and its count is initialized at one. The final tree is obtained
once the entire sequence database has been scanned. The algorithm
then sweeps through all of the nodes in the second step, and calculates
the probability that the each string would appear randomly according
to a predetermined probability model. A comparison is made between
each string’s empirical and expected counts, and a string is chosen as
a pattern candidate if it appears significantly more frequently than its
probability suggests. When this step is completed, the algorithm will
delete the whole tree because all the needed information has been
extracted and because the memory occupied needs to be released to
generate a new tree for the next sized character strings to be examined.
The time costs for insertion, searching, and deleting a binary search tree
are usually low. However, the performance of PTTRNFNDR can be
improved by parallel processing because the mathematical computing
involved in the probability calculations is complex and the datasets are
very large.

Our parallelized binary search tree leverages the special features of
the PTTRNFNDR algorithm which are clear separations of the tree-
building stage, the scanning-computing stage and the tree-deletion
stage. Node insertion only happens in the first stage and node deletion
only happens in tree-deletion stage while scanning only happens
between these two stages. The algorithm for implementing the parallel
binary search tree used in PTTRNFNDR consists of the following
definition, initialization, insertion, scanning and deletion steps. We
also added a searching function below for other applications that might
need it when utilizing this parallelized binary search tree structure.
Specific details follow.

Data structure definitions and initialization

The parallel operations in PTTRNFNDR are implemented using
Linux threads which have little overhead (compared to processes).

Mutexes are used to synchronize the threads that might race for the
same resource. “Mutex” stands for “Mutual Exclusion” [7]. A mutex
is a lock that only one thread may lock at a time. A thread will be
blocked (put-on-hold) if it tries to lock a mutex that another thread
has already locked. The blocked thread can only continue its execution
when the mutex is unlocked. The number of mutexes that can be
created is subject to the limit of operating system (OS) and hardware
resources. Creating more mutexes usually can reduce the chance of
mutex blockings (therefore improving the efficiency of the program),
but will also increase the OS cost of managing mutexes. In the
published version of PTTRNFNDR, the version we typically use in the
laboratory, the number of mutexes that is created is slightly larger than
the number of threads. However, for the purpose of this article, in all
cases the experimental PTTRNFNDR versions have the same number
of mutexes as the number of threads.

All the memory that stores the tree nodes and link information
is dynamically allocated using the technology called “obstack” (see
http://www.gnu.org/software/hello/manual/libc/Obstacks.html). Each
obstack is exclusively used by one thread. The goal is to make the
memory allocation in the obstacks thread-safe.

The C code that defines the mutexes, obstack variables, initializations
and data structures for tree nodes and linked list nodes is:
/*		 obstack section.	 */
struct obstack 	 threadObstack[THREADCOUNT];

/*	 type definition section	 */
struct	 ParTreeST
{
	 struct ParTreeST	 *left;
	 struct ParTreeST	 *right;
	 char			 *key;
	 int			 count;
};

struct	 ParNodesLinkST
{
	 struct ParNodesLinkST	 *next;
	 struct ParTreeST	 *node;
};

typedef	 struct ParTreeST	 ParTree;
typedef	 struct ParNodesLinkST	 ParNodesLink;

/*	 static or ordinary global variable definition section.	
*/
static	 ParTree		 *root = (void *)0;
static	 ParNodesLink	 *head[THREADCOUNT];

static	 pthread_mutex_t	 mutex[THREADCOUNT];

void	 tree_initialize()
{
	 int	 ii;

	 for(ii = 0; ii < THREADCOUNT; ii++)
	 {
		 pthread_mutex_init(mutex + ii, (void *)0);
		 head[ii] = (ParNodesLink *)0;
	 }
	 return;

www.manaraa.com

Volume 1 • Issue 1 • 1000103J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Feng J, Naiman DQ, Cooper B (2011) A Parallelized Binary Search Tree. J Inform Tech Soft Engg 1:103. doi:10.4172/2165-7866.1000103

Page 3 of 5

}

void	 initObstack(int count)
{
	 int	 ii;

	 for(ii = 0; ii < count; ii++)
	 {
		 obstack_init(threadObstack + ii);
		 obstack_chunk_size(threadObstack + ii) =
1024*1024;
	 }
}

Parallel insertion
The insertion operation causes the dynamic set represented by

the binary search tree to change. The binary-search-tree property
must continue to hold when the tree structure is modified. When the
insertions are operated in parallel by several threads, additional care
should be taken to guarantee that two or more new nodes will not be
attached at the same position of the tree. Otherwise, the conflicts can
cause data loss and memory leak. A proper synchronization strategy
for the parallel insertions from different threads has to be adopted to
prevent any potential conflicts.

A function called TreeParInsert is defined to insert a new node
v into a binary search tree T. The arguments of the function are the
address of the node and the ID of the thread that calls the function. The
C code of the function TreeParInsert is:

void	 treeInsertPar(ParTree *v, int len, int threadid)
{
	 ParTree 	*ptr, *y;
	 int	 	 flag;

	 for(ptr = root, y = (ParTree *)0;;)
	 {
		 if(ptr == (void *)0)	
		 {
			 pthread_mutex_t 	*mutexPtr =
mutex +
	 	 	 (int)((((unsigned long long)y)/
sizeof(ParTree)) % THREADCOUNT) ;

			 pthread_mutex_lock(mutexPtr);

	 	 	 if (y == (void *)0)	 /*	
empty tree	 */
			 {
				 if(root != (void *)0)	
/* still empty 	 */
				 {
					 root = v;
					 pthread_mutex_
unlock(mutexPtr);
					
addLinkedNode(v, threadid);
					 return;
				 }

				 else			
/* not empty anymore */
				 {
					 pthread_mutex_
unlock(mutexPtr);
					 ptr = root;
				 }
			 }
	 	 	 else if (flag < 0)	 /*	 left child	
*/
			 {
	 	 	 	 if(y->left == (void *)0) /* 	
add a new node here */
				 {
					 y->left = v;
					 pthread_mutex_
unlock(mutexPtr);
					
addLinkedNode(v, threadid);
					 return;
				 }
				 else			
/*	 occupied */
				 {
					 ptr = y->left;
					 pthread_mutex_
unlock(mutexPtr);
				 }
			 }
	 	 	 else	 	 	 /* right
child	 */
			 {
	 	 	 	 if(y->right == (void *)0)
/* 	 add a new node here */
				 {
	 	 	 	 	 y->right = v;
					 pthread_mutex_
unlock(mutexPtr);
					
addLinkedNode(v, threadid);
					 return;
				 }
	 	 	 	 else	 	 /*	
occupied */
				 {
	 	 	 	 	 ptr = y->right;
					 pthread_mutex_
unlock(mutexPtr);
				 }
			 }
		 }

		 y = ptr;
	 	 flag = memcmp(v->key, ptr->key, len);
	 	 if(flag == 0)	 /* already in the tree */

www.manaraa.com

Volume 1 • Issue 1 • 1000103J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Feng J, Naiman DQ, Cooper B (2011) A Parallelized Binary Search Tree. J Inform Tech Soft Engg 1:103. doi:10.4172/2165-7866.1000103

Page 4 of 5

		 {
	 	 	 /*	 need to lock this node
before increasing its count	*/
			 pthread_mutex_t 	*mutexPtr =
mutex +
	 	 	 (int)((((unsigned long long)ptr)/
sizeof(ParTree)) % THREADCOUNT) ;

			 pthread_mutex_lock(mutexPtr);
			 ptr->count ++;
			 pthread_mutex_unlock(mutexPtr);
			 return;
		 }

	 	 if(flag < 0)	 ptr = ptr->left;
	 	 else	 	 ptr = ptr->right;
	 }
}

void	 addLinkedNode(ParTree *v, int threadid)
{
	 ParNodesLink	 *ptr;

	 ptr = (ParNodesLink *) obstack_alloc(threadObstack
+ threadid, sizeof(ParNodesLink));

	 ptr->node = v;
	 ptr->next = head[threadid];
	 head[threadid] = ptr;
}

Like the insertion operation in non-parallel versions of binary
search trees, the function TreeParInsert runs in O(h) time on a tree of
height h excluding the time for possible mutex-blocking. The chance for
a thread to be blocked on a mutex is smaller than 1/n (n is the number
of mutexes) since threads perform other computations in addition to
inserting new nodes.

After the insertion of the new node to the tree, the address of
the new node is recorded in a linked list which only takes time O(1).
This operation is necessary for the scanning of the whole tree, since
otherwise the nodes in the tree have to be scanned through a tree scan
algorithm such as DFS (Depth-first Search, such as pre-order, in-order
and post-order) or BFS (Breadth-first Search) which cannot be done
efficiently in parallel.

Parallel searching

Efficient searching for a given value is the reason to use a binary search
tree. This operation does not change any data. Therefore the standard
searching procedure can be used directly by the threads. The C code
for searching is:
ParTree	 *treeParSearch(char *key, int len)
{
	 ParTree	 *ptr;
	 int	 flag;

	 for(ptr = root; ptr != (void *)0;)
	 {
		 flag = memcmp(key, ptr->key, len);

		 if(flag == 0) return ptr;
		 else if(flag < 0) ptr = ptr->left;
		 else ptr = ptr->right;
	 }
	 return ptr;
}
The time cost of a searching operation is O(h)time on a tree of height
h.

Parallel scanning
Scanning a whole set of data is a common operation in many

applications. This operation on the binary search tree, which is usually
performed using a recursive procedure, could have an expensive
time cost when the dataset is large or when complex computation is
involved to process each node during the scan. For standard binary
trees, parallel operation is difficult to implement (if possible at all) due
to the tree’s special structure. However, since a linked list structure for
each thread has already been constructed in the insertion operation,
the scan operation can be simply implemented as:

void	 linkListScanPar(int threadid)

{

	 ParNodesLink	 *ptr;

	 for(ptr = head[threadid]; ptr != (void *)0; ptr = ptr->next)

	 printf(“Node linked to value [%s] [%d]\n”, ptr->node->key,
ptr->node->count);

}

The time cost for scanning the whole tree is simply O(n) where n is
the number of nodes in the tree.

Tree deletion
In our application the deletion operations are only to delete the

whole binary search tree. Therefore, we can use the following O(1) cost
method:

/*	 all the obstacks will be in an “uninitialized” state after the
cleanup. 	 */

void	 cleanUp(int count)

{

	 int	 ii;

	 for(ii = 0; ii < count; ii++)

	 obstack_free(threadObstack + ii, (void *)0);

}

Results
To analyze the performance of the parallelized binary search

tree algorithm, we created three versions of PTTRNFNDR, which ran
as one thread, two threads, and four threads implemented using the
standard multiple thread programming in the GNU C library. There
is no other difference among the three versions of PTTRNFNDR. The
program was executed in our Dell PowerEdge 2800 server which runs
Redhat Enterprise AS 3.0, a 32-bit operating system. There were two
dual core CPUs (3.4 GHz) and 6 GB main memory.

The protein sequence databases that we used as input in these
experiments were derived from the MSDB database (http://proteomics.
leeds.ac.uk/bioinf/msdb.html). The 4 GB memory limit of our 32-

www.manaraa.com

Volume 1 • Issue 1 • 1000103J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Feng J, Naiman DQ, Cooper B (2011) A Parallelized Binary Search Tree. J Inform Tech Soft Engg 1:103. doi:10.4172/2165-7866.1000103

Page 5 of 5

bit operating system made PTTRNFNDR unable to analyze longer
character strings in this database in its full size, so we split the MSDB
database into 5 smaller files (Table 1). The smallest and largest files
contained approximately 49,000 and 395,000 protein sequences
comprising approximately 19,000,000 and 147,000,000 amino acid
characters, respectively.

The different sized data files required PTTRNFNDR to utilize
different amounts of memory which, in effect, cost time and allowed us
to evaluate the cost savings advantage of threading on the parallelized
binary search trees (Table 1). The two thread version executed in less
time than the one thread version—a 30.7% difference on average.
Similarly, the 4 thread version performed faster than the 2 thread
version by 22.1%. This clearly shows that the parallel operations of our
algorithm on the binary search tree conserved processing time. The
Figure shows that the performance was maintained in the 4 thread
version even as the size of the input database increased (Figure 1).

Discussion
A fundamental data structure, the binary search tree, was

redesigned in this research for possible parallel operations to reduce
the time cost of computation in PTTRNFNDR, a statistical pattern
detection algorithm. The proposed technique can be regarded as a
combination of a binary search tree and several linked lists. The fast
searching operation is achieved using the binary search tree structure,
fast scanning of the tree is achieved through the linked lists, and the fast
deletion of the whole tree is achieved using a special feature of obstack.
If the obstack library is not available in an OS, a general memory
allocation method (such as malloc) can be used instead. The only
difference is that the deletion of the tree will be done by going over all
the linked list nodes, which takes O(n) time when the tree has n nodes.

Ideally, speed should increase proportionally with increasing
numbers of threads. This, however, is not the case as can be seen in
the Table and Figure. There are multiple reasons for this. First, the
main memory bandwidth is shared by the 4 processors of the server,
which is standard for all shared memory multiple processor computers.

Although each processor has its own cache, the low locality nature
of the computing in PTTRNFNDR makes the cache ineffective.
For example, when it analyzes 6-letter sequences, the binary search
tree created in the algorithm has more than 3 million nodes, which
means there are more than 3 million unique 6-letter sequences in the
searched database. Each node has three pointers: left child, right child
and the sequence address. Each node also has a counter to register
the number of times each sequence appears in the database. There is
also a linked list of nodes, where each node has two pointers, the next
node and the corresponding binary search tree node. Together, each
unique sequence costs 6 * 4 = 24 bytes in a 32-bit machine. Therefore,
the entire data structure requires approximately 80M bytes memory.
Yet, the processors cannot store this amount inside their caches. Thus,
each insertion or inquiry of the tree causes data transfer from main
memory to the processor, and memory bandwidth can easily become
the bottleneck of the algorithm. Another reason is the synchronization.
When the number of threads increases, the algorithm uses more
mutexes to avoid race conditions. The mutexes rely on the services
from OS kernel and hardware. These services (system calls) have much
higher costs than the normal function calls in the threads. A third cause
is that other portions of the program, such as data input, output and
word dictionary analysis, were not parallelized. Thus, proving that ideal
speed to cost ratios occurred through parallelization would necessitate
testing in a perfect computational environment. Since that is beyond
the scope of this article, we deem that the results satisfactorily illustrate
a relative gain in performance of PTTRNFNDR through the use of a
parallelized binary search tree.

The method was successfully implemented in PTTRNFNDR.
It most likely can be generalized for other processing applications
which build a tree, then search through or scan the whole tree, and
finally delete the tree. This unique implementation will allow others
to take advantage of multiple processors or multiple core processing
capabilities that are common in new computers. This time savings
advantage will be meaningful as informational datasets continue to
grow in size.

References

1.	 Adelson-Velskii G, Landis EM (1962) An algorithm for the organization of
information. Doklady Akademii Nauk SSSR 146: 263–266.

2.	 Bayer R (1972) Symmetric binary b-trees: Data structures and maintenance
algorithms. Acta Informatica 1: 290-306.

3.	 Al-Furajh I, Aluru S, Goil S, Ranka S (2000) Parallel construction of
multidimensional binary search trees. IEEE Trans Parallel Distrib Syst 11: 136-
148.

4.	 Solworth JA, Reagan BB (1994) Arbitrary order operations on trees. Springer,
Berlin / Heidelberg.

5.	 Solworth JA, Reagan BB (1995) Parallelizing tree algorithms: Overhead vs.
Parallelism. Springer, Berlin / Heidelberg.

6.	 Feng J, Naiman DQ, Cooper B (2007) Probability-based pattern recognition
and statistical framework for randomization: Modeling tandem mass spectrum/
peptide sequence false match frequencies. Bioinformatics 23: 2210-2217.

7.	 Mitchell M, Oldham J, Samuel A (2001) Advanced linux programming. New
Riders Publishing, Indianapolis, IN.

Protein sequences in datafile Amino acid characters in datafile 1 thread PTTRNFNDR
execution time (sec)

2 thread PTTRNFNDR
execution time (sec)

4 thread PTTRNFNDR
execution time (sec)

48,972 19,106,841 3,101 2,099 1,681
97,809 34,613,670 6,260 4,373 3,322
196,471 66,295,729 11,210 7,800 6,258
295,537 100,137,700 17,645 12,003 9,420
394,898 146,580,372 27,409 19,594 15,589

Table 1: PTTRNFNDR execution time on different protein sequence datafiles. The versions of PTTRNFNDR differed only in the threading of the binary search tree
executions.

Figure 1: Time cost for executing datafiles of different sizes using different
threads for the binary search tree executions in PTTRNFNDR.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=841750
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=841750
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=841750
http://www.ncbi.nlm.nih.gov/pubmed/17510167
http://www.ncbi.nlm.nih.gov/pubmed/17510167
http://www.ncbi.nlm.nih.gov/pubmed/17510167

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Materials and Methods
	Data structure definitions and initialization
	Parallel insertion
	Parallel searching
	Parallel scanning
	Tree deletion

	Results
	Discussion
	Table 1
	Figure 1
	Referances

