
www.manaraa.com

M A N N I N G

Sau Sheong Chang

SAMPLE CHAPTER

www.manaraa.com

Go Web Programming
by Sau Sheong Chang

Sample Chapter 2

Copyright 2016 Manning Publications

www.manaraa.com

brief contents
PART 1 GO AND WEB APPLICATIONS ... 1

1 ■ Go and web applications 3
2 ■ Go ChitChat 22

PART 2 BASIC WEB APPLICATIONS .. 45

3 ■ Handling requests 47
4 ■ Processing requests 69
5 ■ Displaying content 96
6 ■ Storing data 125

PART 3 BEING REAL .. 153

7 ■ Go web services 155
8 ■ Testing your application 190
9 ■ Leveraging Go concurrency 223

10 ■ Deploying Go 256

Go ChitChat
Toward the end of chapter 1, we went through the simplest possible Go web appli-
cation. That simple web application, I admit, is pretty useless and is nothing more
than the equivalent of a Hello World application. In this chapter, we’ll explore
another basic but more useful web application. We’ll be building a simple internet
forum web application—one that allows users to log in and create conversations
and respond to conversation topics.

 By the end of the chapter, you might not have the skills to write a full-fledged
web application but you’ll be able to appreciate how one can be structured and
developed. Throughout this chapter you’ll see the bigger picture of how web appli-
cations can be written in Go.

 If you find this chapter a bit too intimidating—especially with the rush of Go
code—don’t be too alarmed. Work through the next few chapters and then revisit
this one and you’ll find that things become a lot clearer!

This chapter covers
■ Introducing Go web programming
■ Designing a typical Go web application
■ Writing a complete Go web application
■ Understanding the parts of a Go web application
www.manaraa.com

22

23Let’s ChitChat
2.1 Let’s ChitChat
Internet forums are everywhere. They’re one of the most popular uses of the internet,
related to the older bulletin board systems (BBS), Usenet, and electronic mailing lists.
Yahoo! and Google Groups are very popular (see figure 2.1), with Yahoo! reporting 10
million groups (each group is a forum on its own) and 115 million group members.
One of the biggest internet forums around, Gaia Online, has 23 million registered
users and a million posts made every day, with close to 2 billion posts and counting.
Despite the introduction of social networks like Facebook, internet forums remain
one of the most widely used means of communications on the internet.

Essentially, internet forums are the equivalent of a giant bulletin board where anyone
(either registered or anonymous users) can hold conversations by posting messages
on the forum. These conversations, called threads, usually start off as a topic that a user
wants to talk about, and other users add to the conversation by posting their replies to
the original topic. More sophisticated forums are hierarchical, with forums having
subforums with specific categories of topics that are being discussed. Most forums are
moderated by one or more users, called moderators, who have special permissions.

 In this chapter, we’ll develop a simple internet forum called ChitChat. Because this
is a simple example, we’ll be implementing only the key features of an internet forum.
Users will only be able to sign up for an account and log in to create a thread or post a

Figure 2.1 Google Groups Go programming language forum, an example of an internet forum
www.manaraa.com

24 CHAPTER 2 Go ChitChat
reply to an existing thread. A nonregistered user will be able to read the threads but not
add new threads or post to existing ones. Let’s start off with the application design.

2.2 Application design
ChitChat’s application design is typical of any web application. As mentioned in chap-
ter 1, web applications have the general flow of the client sending a request to a
server, and a server responding to that request (figure 2.2).

ChitChat’s application logic is coded in the server. While the client triggers the
requests and provides the data to the server, the format and the data requested are
suggested by the server, provided in hyperlinks on the HTML pages that the server
serves to the client (figure 2.3).

Code for this chapter

Unlike with the other chapters in this book, you won’t see all the code that’s written
for ChitChat here (that would be too much!). But you can check out the entire appli-
cation on GitHub at https://github.com/sausheong/gwp. If you’re planning to run
through the exercises while you read this chapter, you’ll have an easier time if you
get the code from the repository first.

Client Server

Request

1. Sends HTTP request

Response

3. Returns HTTP response

2. Processes HTTP request

Figure 2.2 How a web
application generally
works, with a client
sending a request to the
server and waiting to
receive a response

Client Server

Request

http://<servername>/<handlername>?<parameters>

Response

Format of request is suggested by the web app,
in hyperlinks on HTML pages provided to client by server.

Figure 2.3 The URL
format of an HTTP request
www.manaraa.com

https://github.com/sausheong/gwp

25Application design
The format for the request is normally the prerogative of the application itself. For
ChitChat, we’ll be using the following format: http://<servername>/<handler-
name>?<parameters>

 The server name is the name of the ChitChat server; the handler name is the name of
the handler that’s being called. The handler name is hierarchical: the root of the han-
dler name is the module that’s being called, the second part the submodule, and so
on, until it hits the leaf, which is the handler of the request within that submodule. If
we have a module called thread and we need to have a handler to read the thread, the
handler name is /thread/read.

 The parameters of the application, which are URL queries, are whatever we need to
pass to the handler to process the request. In this example, we need to provide the
unique identifier (ID) of the thread to the handler, so the parameters will be id=123,
where 123 is the unique ID.

 Let’s recap the request; this is how the URL being sent into the ChitChat server will
look (assuming chitchat is the server name): http://chitchat/thread/read?id=123.

 When the request reaches the server, a multiplexer will inspect the URL being
requested and redirect the request to the correct handler. Once the request reaches
a handler, the handler will retrieve information from the request and process it
accordingly (figure 2.4). When the processing is complete, the handler passes the
data to the template engine, which will use templates to generate HTML to be
returned to the client.

Client Multiplexer Handler

Handler

Handler

Template engine

Templates

Server

Request

Response

Multiplexer inspects
URL request, redirects
to correct handler

Handler provides
data to template
engine

Figure 2.4 How the server works in a typical web application
www.manaraa.com

http://chitchat/thread/read?id=123

26 CHAPTER 2 Go ChitChat
2.3 Data model
Most applications need to work on data, in one form or another. In ChitChat, we store
the data in a relational database (we use PostgreSQL in this book) and use SQL to
interact with the database.

 ChitChat’s data model is simple and consists of only four data structures, which in
turn map to a relational database. The four data structures are

■ User—Representing the forum user’s information
■ Session—Representing a user’s current login session
■ Thread—Representing a forum thread (a conversation among forum users)
■ Post—Representing a post (a message added by a forum user) within a thread

We’ll have users who can log into the system to create and post to threads. Anonymous
users can read but won’t be able to create threads or posts. To simplify the application,
we’ll have only one type of user—there are no moderators to approve new threads or
posts (figure 2.5).

With our application design firmly in mind, let’s move on to code. A bit of caution
before we begin: there will be code in this chapter that might seem puzzling. If you’re
a new Go programmer, it might be worth your while to refresh your memory going
through an introductory Go programming book like Go in Action by William Kennedy
with Brian Ketelsen and Erik St. Martin (Manning, 2015).

 Otherwise, please hang on; this chapter provides an overall picture of how a Go
web application will look but is thin on details. The details will come in the later chap-
ters. Where possible, I’ll mention which chapters explore those details as we move
along.

Handler

Model: User

Model: Session

Model: Thread
Database

Model: Post

Template engine

Templates

Server

Figure 2.5 How a web application can access the data store
www.manaraa.com

27Receiving and processing requests
2.4 Receiving and processing requests
Receiving and processing requests is the heart of any web application. Let’s recap
what you’ve learned so far:

1 A client sends a request to a URL at the server.
2 The server has a multiplexer, which redirects the request to the correct handler

to process the request.
3 The handler processes the request and performs the necessary work.
4 The handler calls the template engine to generate the correct HTML to send

back to the client.

Let’s begin at the beginning, which is the root URL (/). When you type http://
localhost, this is where the application will take you. In the next few subsections, we’ll
discuss how to handle a request to this URL and respond with dynamically generated
HTML.

2.4.1 The multiplexer

We start all Go applications with a main source code file, which is the file that contains
the main function and is the starting point where the compiled binary executes. In
ChitChat we call this file main.go.

package main

import (
 "net/http"
)

func main() {

 mux := http.NewServeMux()
 files := http.FileServer(http.Dir("/public"))
 mux.Handle("/static/", http.StripPrefix("/static/", files))

 mux.HandleFunc("/", index)

 server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
 }
 server.ListenAndServe()
}

In main.go, you first create a multiplexer, the piece of code that redirects a request to a
handler. The net/http standard library provides a default multiplexer that can be cre-
ated by calling the NewServeMux function:

mux := http.NewServeMux()

Listing 2.1 A simple main function in main.go
www.manaraa.com

28 CHAPTER 2 Go ChitChat
To redirect the root URL to a handler function, you use the HandleFunc function:

mux.HandleFunc("/", index)

HandleFunc takes the URL as the first parameter, and the name of the handler func-
tion as the second parameter, so when a request comes for the root URL (/), it’s redi-
rected to a handler function named index. You don’t need to provide the parameters
to the handler function because all handler functions take ResponseWriter as the first
parameter and a pointer to Request as the second parameter.

 Notice that I’ve done some sleight-of-hand when talking about handlers. I started
off talking about handlers and then switched to talking about handler functions. This
is intentional; handlers and handler functions are not the same, though they provide
the same results in the end. We’ll talk more about them in chapter 3, but for now let’s
move on.

2.4.2 Serving static files

Besides redirecting to the appropriate handler, you can use the multiplexer to serve
static files. To do this, you use the FileServer function to create a handler that will
serve files from a given directory. Then you pass the handler to the Handle function of
the multiplexer. You use the StripPrefix function to remove the given prefix from
the request URL’s path.

files := http.FileServer(http.Dir("/public"))
mux.Handle("/static/", http.StripPrefix("/static/", files))

In this code, you’re telling the server that for all request URLs starting with /static/,
strip off the string /static/ from the URL, and then look for a file with the name
starting at the public directory. For example, if there’s a request for the file http://
localhost/static/css/bootstrap.min.css the server will look for the file

<application root>/css/bootstrap.min.css

When it’s found, the server will serve it as it is, without processing it first.

2.4.3 Creating the handler function

In a previous section you used HandleFunc to redirect the request to a handler func-
tion. Handler functions are nothing more than Go functions that take a Response-
Writer as the first parameter and a pointer to a Request as the second, shown next.

func index(w http.ResponseWriter, r *http.Request) {
 files := []string{"templates/layout.html",
 "templates/navbar.html",
 "templates/index.html",}
 templates := template.Must(template.ParseFiles(files...))
 threads, err := data.Threads(); if err == nil {

Listing 2.2 The index handler function in main.go
www.manaraa.com

29Receiving and processing requests
 templates.ExecuteTemplate(w, "layout", threads)
 }
}

Notice that you’re using the Template struct from the html/template standard library
so you need to add that in the list of imported libraries. The index handler function
doesn’t do anything except generate the HTML and write it to the ResponseWriter.
We’ll cover generating HTML in the upcoming section.

 We’ve talked about handler functions that handle requests for the root URL (/),
but there are a number of other handler functions. Let’s look at the rest of them in
the following listing, also in the main.go file.

package main

import (
 "net/http"
)

func main() {

 mux := http.NewServeMux()
 files := http.FileServer(http.Dir(config.Static))
 mux.Handle("/static/", http.StripPrefix("/static/", files))

 mux.HandleFunc("/", index)
 mux.HandleFunc("/err", err)

 mux.HandleFunc("/login", login)
 mux.HandleFunc("/logout", logout)
 mux.HandleFunc("/signup", signup)
 mux.HandleFunc("/signup_account", signupAccount)
 mux.HandleFunc("/authenticate", authenticate)

 mux.HandleFunc("/thread/new", newThread)
 mux.HandleFunc("/thread/create", createThread)
 mux.HandleFunc("/thread/post", postThread)
 mux.HandleFunc("/thread/read", readThread)

 server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
 }
 server.ListenAndServe()
}

You might notice that the various handler functions aren’t defined in the same
main.go file. Instead, I split the definition of the handler functions in other files
(please refer to the code in the GitHub repository). So how do you link these files? Do
you write code to include the other files like in PHP, Ruby, or Python? Or do you run a
special command to link them during compile time?

Listing 2.3 ChitChat main.go source file
www.manaraa.com

30 CHAPTER 2 Go ChitChat
 In Go, you simply make every file in the same directory part of the main package and
they’ll be included. Alternatively, you can place them in a separate package and import
them. We’ll use this strategy when connecting with the database, as you’ll see later.

2.4.4 Access control using cookies

As in many web applications, ChitChat has public pages that are available to anyone
browsing to those pages, as well as private pages that require users to log into their
account first.

 Once the user logs in, you need to indicate in subsequent requests that the user
has already logged in. To do this, you write a cookie to the response header, which
goes back to the client and is saved at the browser. Let’s look at the authenticate han-
dler function, which authenticates the user and returns a cookie to the client. The
authenticate handler function is in the route_auth.go file, shown next.

func authenticate(w http.ResponseWriter, r *http.Request) {
 r.ParseForm()
 user, _ := data.UserByEmail(r.PostFormValue("email"))
 if user.Password == data.Encrypt(r.PostFormValue("password")) {
 session := user.CreateSession()
 cookie := http.Cookie{
 Name: "_cookie",
 Value: session.Uuid,
 HttpOnly: true,
 }
 http.SetCookie(w, &cookie)
 http.Redirect(w, r, "/", 302)
 } else {
 http.Redirect(w, r, "/login", 302)
 }
}

Note that in the source code in the previous listing that we haven’t yet discussed
data.Encrypt and data.UserbyEmail. In order to keep with the flow, I won’t explain
these functions in detail; their names make them self-explanatory. For example,
data.UserByEmail retrieves a User struct given the email; data.Encrypt encrypts a
given string. We’ll get into the data package later in this chapter. For now let’s return
to the authentication handler flow.

 First, you need to authenticate the user. You must make sure the user exists and the
user’s encrypted password in the database is the same as the encrypted password
posted to the handler. Once the user is authenticated, you create a Session struct
using user.CreateSession, a method on the User struct. Session looks like this:

type Session struct {
 Id int
 Uuid string
 Email string

Listing 2.4 The authenticate handler function in route_auth.go
www.manaraa.com

31Receiving and processing requests
 UserId int
 CreatedAt time.Time
}

The Email named field stores the email of the user who is logged in; the UserId
named field contains the ID of the user table row with the user information. The most
important information is the Uuid, which is a randomly generated unique ID. Uuid is
the value you want to store at the browser. The session record itself is stored in the
database.

 Once you have the session record created, you create the Cookie struct:

cookie := http.Cookie{
 Name: "_cookie",
 Value: session.Uuid,
 HttpOnly: true,
}

The name is arbitrary and the value is the unique data that’s stored at the browser. You
don’t set the expiry date so that the cookie becomes a session cookie and it’s automat-
ically removed when the browser shuts down. You set HttpOnly to only allow HTTP or
HTTPS to access the cookie (and not other non-HTTP APIs like JavaScript).

 To add the cookie to the response header, use this code:

http.SetCookie(writer, &cookie)

Now that we have the cookie in the browser, you want to be able to check in the han-
dler function whether or not the user is logged in. You create a utility function called
session that you’ll be able to reuse in other handler functions. The session func-
tion, shown in the next listing, and all other utility functions are written to the util.go
file. Note that even though you placed the function in a separate file, it’s still part of
the main package, so you can use it directly without mentioning the package name,
unlike in data.Encrypt.

func session(w http.ResponseWriter, r *http.Request)(sess data.Session, err
error){

 cookie, err := r.Cookie("_cookie")
 if err == nil {
 sess = data.Session{Uuid: cookie.Value}
 if ok, _ := sess.Check(); !ok {
 err = errors.New("Invalid session")
 }
 }
 return
}

The session function retrieves the cookie from the request:

cookie, err := r.Cookie("_cookie")

Listing 2.5 session utility function in util.go
www.manaraa.com

32 CHAPTER 2 Go ChitChat
If the cookie doesn’t exist, then obviously the user hasn’t logged in yet. If it exists, the
session function performs a second check and checks the database to see if the ses-
sion’s unique ID exists. It does this by using the data.Session function (that you’ll cre-
ate in a bit) to retrieve the session and then calling the Check method on that session:

sess = data.Session{Uuid: cookie.Value}
if ok, _ := sess.Check(); !ok {
 err = errors.New("Invalid session")
}

Now that you’re able to check and differentiate between a user who has logged in and
a user who hasn’t, let’s revisit our index handler function, shown in the following list-
ing, and see how you can use this session function (code shown in bold).

func index(w http.ResponseWriter, r *http.Request) {
 threads, err := data.Threads(); if err == nil {
 _, err := session(w, r)
 public_tmpl_files := []string{"templates/layout.html",
 "templates/public.navbar.html",
 "templates/index.html"}
 private_tmpl_files := []string{"templates/layout.html",
 "templates/private.navbar.html",
 "templates/index.html"}
 var templates *template.Template
 if err != nil {
 templates = template.Must(template.Parse-

Files(private_tmpl_files...))
 } else {
 templates = template.Must(template.ParseFiles(public_tmpl_files...))
 }
 templates.ExecuteTemplate(w, "layout", threads)
 }
}

The session function returns a Session struct, which you can use to extract user
information, but we aren’t interested in that right now, so assign it to the blank identi-
fier (_). What we are interested in is err, which you can use to determine whether the
user is logged in and specify that the public navigation bar or the private navigation
bar should be shown.

 That’s all there is to it. We’re done with the quick overview of processing requests;
we’ll get on with generating HTML for the client next, and continue where we left off
earlier.

2.5 Generating HTML responses with templates
The logic in the index handler function was mainly about generating HTML for the
client. Let’s start by defining a list of template files that you’ll be using in a Go slice
(I’ll show private_tmpl_files here; public_tmpl_files is exactly the same).

Listing 2.6 The index handler function
www.manaraa.com

33Generating HTML responses with templates
private_tmpl_files := []string{"templates/layout.html",
 "templates/private.navbar.html",
 "templates/index.html"}

The three files are HTML files with certain embedded commands, called actions, very
similar to other template engines like Mustache or CTemplate. Actions are annota-
tions added to the HTML between {{ and }}.

 You parse these template files and create a set of templates using the ParseFiles
function. After parsing, you wrap the Must function around the results. This is to catch
errors (the Must function panics when a ParseFiles returns an error).

templates := template.Must(template.ParseFiles(private_tmpl_files...))

We’ve talked a lot about these template files; let’s look at them now.
 Each template file defines a template (templates are described in detail in chapter

5). This is not mandatory—you don’t need to define templates for every file—but
doing so is useful, as you’ll see later. In the layout.html template file, you begin with
the define action, which indicates that the chunk of text starting with {{ define

"layout" }} and ending with {{ end }} is part of the layout template, as shown next.

{{ define "layout" }}

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=9">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>ChitChat</title>
 <link href="/static/css/bootstrap.min.css" rel="stylesheet">
 <link href="/static/css/font-awesome.min.css" rel="stylesheet">
 </head>
 <body>
 {{ template "navbar" . }}

 <div class="container">

 {{ template "content" . }}

 </div> <!-- /container -->

 <script src="/static/js/jquery-2.1.1.min.js"></script>
 <script src="/static/js/bootstrap.min.js"></script>
 </body>
</html>

{{ end }}

Within the layout template, we have two other actions, both of which indicate posi-
tions where another template can be included. The dot (.) that follows the name of

Listing 2.7 layout.html template file
www.manaraa.com

34 CHAPTER 2 Go ChitChat
the template to be included is the data passed into the template. For example, listing
2.7 has {{ template "navbar" . }}, which indicates that the template named navbar
should be included at that position, and the data passed into the layout template
should be passed on to the navbar template too.

 The navbar template in the public.navbar.html template file is shown next. The
navbar template doesn’t have any actions other than defining the template itself
(actions aren’t strictly necessary in template files).

{{ define "navbar" }}

<div class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"

 ➥ data-toggle="collapse" data-target=".navbar-collapse">
 Toggle navigation

 </button>

 <i class="fa fa-comments-o"></i>
 ChitChat

 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 Home

 <ul class="nav navbar-nav navbar-right">
 Login

 </div>
 </div>
</div>

{{ end }}

Let’s look at the content template in last template file, index.html, in the following
listing. Notice that the name of the template doesn’t necessary need to match the
name of the template file, even though that has been the case for the past two files.

{{ define "content" }}

<p class="lead">
 Start a thread or join one below!
</p>

Listing 2.8 navbar.html template file

Listing 2.9 index.html template
www.manaraa.com

35Generating HTML responses with templates
{{ range . }}
 <div class="panel panel-default">
 <div class="panel-heading">
 <i class="fa fa-comment-o"></i> {{ .Topic }}
 </div>
 <div class="panel-body">
 Started by {{ .User.Name }} - {{ .CreatedAtDate }} - {{ .NumReplies }}

posts.
 <div class="pull-right">
 Read more
 </div>
 </div>
 </div>
{{ end }}

{{ end }}

The code in index.html is interesting. You’ll notice a number of actions within the
content template that start with a dot (.), such as {{ .User.Name }} and {{
.CreatedAtDate }}. To understand where this comes from, we need to go back to the
index handler function.

 threads, err := data.Threads(); if err == nil {
 templates.ExecuteTemplate(writer, "layout", threads)
 }

Let’s start off with this:

templates.ExecuteTemplate(writer, "layout", threads)

We take the set of templates we parsed earlier, and execute the layout template using
ExecuteTemplate. Executing the template means we take the content from the tem-
plate files, combine it with data from another source, and generate the final HTML
content, shown in figure 2.6.

 Why the layout template and not the other two templates? This should be obvious:
the layout template includes the other two templates, so if we execute the layout tem-
plate, the other two templates will also be executed and the intended HTML will be

Template engine

Templates

Data
HMTL

Figure 2.6 The template engine combines the data and template to produce HTML.
www.manaraa.com

36 CHAPTER 2 Go ChitChat
generated. If we executed either one of the other two templates, we would only get
part of the HTML we want.

 As you might realize by now, the dot (.) represents the data that’s passed into the
template (and a bit more, which is explained in the next section). Figure 2.7 shows
what we end up with.

2.5.1 Tidying up

HTML generation will be used over and over again, so let’s do some tidying up and
move those steps into a function called generateHTML, shown next.

func generateHTML(w http.ResponseWriter, data interface{}, fn ...string) {
 var files []string
 for _, file := range fn {
 files = append(files, fmt.Sprintf("templates/%s.html", file))
 }
 templates := template.Must(template.ParseFiles(files...))
 templates.ExecuteTemplate(writer, "layout", data)
}

generateHTML takes a ResponseWriter, some data, and a list of template files to be
parsed. The data parameter is the empty interface type, which means it can take in any
type. This might come as a surprise if you’re a new Go programmer; isn’t Go a statically
typed programming language? What’s this about accepting any types in as a parameter?

 As it turns out, Go has an interesting way of getting around being a statically typed
programming language and it provides the flexibility of accepting different types,
using interfaces. Interfaces in Go are constructs that are sets of methods and are also

Listing 2.10 The generateHTML function

Figure 2.7 The index page of the example ChitChat web application
www.manaraa.com

37Installing PostgreSQL
types. An empty interface is then an empty set, meaning any type can be an empty
interface; you can pass any type into this function as the data.

 The last parameter in the function starts with … (three dots). This indicates that
the generateHTML function is a variadic function, meaning it can take zero or more
parameters in that last variadic parameter. This allows you to pass any number of tem-
plate files to the function. Variadic parameters need to be the last parameter for the
variadic function.

 Now that we have the generateHTML function, let’s go back and clean up the
index handler function. The new index handler function, shown here, now looks a
lot neater.

func index(writer http.ResponseWriter, request *http.Request) {
 threads, err := data.Threads(); if err == nil {
 _, err := session(writer, request)
 if err != nil {
 generateHTML(writer, threads, "layout", "public.navbar", "index")
 } else {
 generateHTML(writer, threads, "layout", "private.navbar", "index")
 }
 }
}

We sort of glossed over the data source and what we used to combine with the tem-
plates to get the final HTML. Let’s get to that now.

2.6 Installing PostgreSQL
In this chapter as well as for any remaining chapters in the book that require access to
a relational database, we’ll be using PostgreSQL. Before we start any code, I’ll run
through how to install and start up PostgreSQL, and also create the database that we
need for this chapter.

2.6.1 Linux/FreeBSD

Prebuilt binaries are available for many variants of Linux and FreeBSD from
www.postgresql.org/download. Download any one of them from the site and follow
the instructions. For example, you can install Postgres on Ubuntu by executing this
command on the console:

sudo apt-get install postgresql postgresql-contrib

This will install both the postgres package and an additional package of utilities, and
also start it up.

 By default Postgres creates a postgres user and that’s the only user who can con-
nect to the server. For convenience you can create another Postgres account with your
username. First, you need to log in to the Postgres account:

sudo su postgres

Listing 2.11 The final index handler function
www.manaraa.com

www.postgresql.org/download

38 CHAPTER 2 Go ChitChat
Next, use createuser to create your postgreSQL account:

createuser –interactive

Finally, use createdb to create your database:

createdb <YOUR ACCOUNT NAME>

2.6.2 Mac OS X

One of the easiest ways to install PostgreSQL on Mac OS X is to use the Postgres appli-
cation. Download the zip file and unpack it. Then drag and drop the Postgres.app file
into your Applications folder and you’re done. You can start the application just like you
start any Mac OS X application. The first time you start the application, Postgres will ini-
tialize a new database cluster and create a database for you. The command-line tool psql
is part of the package, so you’ll be able to access the database using psql once you set
the correct path. Open up Terminal and add this line your ~/.profile or ~/.bashrc file:

export PATH=$PATH:/Applications/Postgres.app/Contents/Versions/9.4/bin

2.6.3 Windows

Installing PostgreSQL on Windows is fairly straightforward too. There are a number of
graphical installers on Windows that do all the heavy lifting for you; you simply need
to provide the settings accordingly. A popular installer is one from Enterprise DB at
www.enterprisedb.com/products-services-training/pgdownload.

 A number of tools, including pgAdmin III, are installed along with the package,
which allows you to set up the rest of the configuration.

2.7 Interfacing with the database
In the design section earlier in this chapter, we talked about the four data structures
used in ChitChat. Although you can place the data structures in the same main file,
it’s neater if you store all data-related code in another package, aptly named data.

 To create a package, create a subdirectory called data and create a file named
thread.go to store all thread-related code (you’ll create a user.go file to store all user-
related code). Then, whenever you need to use the data package (for example, in the
handlers that need to access the database), you import the package:

import (
 "github.com/sausheong/gwp/Chapter_2_Go_ChitChat/chitchat/data"
)

Within the thread.go file, define a Thread struct, shown in the following listing, to
contain the data.

package data

import(
 "time"
)

Listing 2.12 The Thread struct
www.manaraa.com

www.enterprisedb.com/products-services-training/pgdownload

39Interfacing with the database
type Thread struct {
 Id int
 Uuid string
 Topic string
 UserId int
 CreatedAt time.Time
}

Notice that the package name is no longer main but data (in bold). When you use
anything in this package later (functions or structs or anything else), you need to pro-
vide the package name along with it. If you want to use the Thread struct you must use
data.Thread instead of just Thread alone. This is the data package you used earlier in
the chapter. Besides containing the structs and code that interact with the database,
the package contains other functions that are closely associated.

 The Thread struct should correspond to the DDL (Data Definition Language, the
subset of SQL) that’s used to create the relational database table called threads. You
don’t have these tables yet so let’s create them first. Of course, before you create the
database tables, you should create the database itself. Let’s create a database called
chitchat. Execute this command at the console:

createdb chitchat

Once you have the database, you can use setup.sql to create the database tables for
ChitChat, shown next.

create table users (
 id serial primary key,
 uuid varchar(64) not null unique,
 name varchar(255),
 email varchar(255) not null unique,
 password varchar(255) not null,
 created_at timestamp not null
);

create table sessions (
 id serial primary key,
 uuid varchar(64) not null unique,
 email varchar(255),
 user_id integer references users(id),
 created_at timestamp not null
);

create table threads (
 id serial primary key,
 uuid varchar(64) not null unique,
 topic text,
 user_id integer references users(id),
 created_at timestamp not null
);

create table posts (
 id serial primary key,

Listing 2.13 setup.sql used to create database tables in PostgreSQL
www.manaraa.com

40 CHAPTER 2 Go ChitChat
 uuid varchar(64) not null unique,
 body text,
 user_id integer references users(id),
 thread_id integer references threads(id),
 created_at timestamp not null
);

To run the script, use the psql tool that’s usually installed as part of your PostgreSQL
installation (see the previous section). Go to the console and run this command:

psql –f setup.sql –d chitchat

This command should create the necessary database tables in your database. Once
you have your database tables, you must be able to connect to the database and do
stuff with the tables. So you’ll create a global variable, Db, which is a pointer to
sql.DB, a representation of a pool of database connections. You’ll define Db in the
data.go file, as shown in the following listing. Note that this listing also contains a
function named init that initializes Db upon startup of your web application. You’ll
use Db to execute your queries.

Var Db *sql.DB

func init() {
 var err error
 Db, err = sql.Open("postgres", "dbname=chitchat sslmode=disable")
 if err != nil {
 log.Fatal(err)
 }
 return
}

Now that you have the struct, the tables, and a database connection pool, how do you
connect the Thread struct with the threads table? There’s no particular magic to it. As
with everything else in ChitChat, you simply create a function every time you want inter-
action between the struct and the database. To extract all threads in the database for the
index handler function, create a Threads function in thread.go, as shown next.

func Threads() (threads []Thread, err error){
 rows, err := Db.Query("SELECT id, uuid, topic, user_id, created_at FROM

threads ORDER BY created_at DESC")
 if err != nil {
 return
 }
 for rows.Next() {
 th := Thread{}
 if err = rows.Scan(&th.Id, &th.Uuid, &th.Topic, &th.UserId,
 ➥ &th.CreatedAt); err != nil {

Listing 2.14 The Db global variable and the init function in data.go

Listing 2.15 The Threads function in thread.go
www.manaraa.com

41Interfacing with the database
 return
 }
 threads = append(threads, th)
 }
 rows.Close()
 return
}

Without getting into the details (which will be covered in chapter 6), these are the
general steps:

1 Connect to the database using the database connection pool.
2 Send an SQL query to the database, which will return one or more rows.
3 Create a struct.
4 Iterate through the rows and scan them into the struct.

In the Threads function, you return a slice of the Thread struct, so you need to create
the slice and then continually append to it until you’re done with all the rows.

 Now that you can get the data from the database into the struct, how do you get
the data in the struct to the templates? Let’s return to the index.html template file
(listing 2.9), where you find this code:

{{ range . }}
 <div class="panel panel-default">
 <div class="panel-heading">
 <i class="fa fa-comment-o"></i> {{ .Topic }}
 </div>
 <div class="panel-body">
 Started by {{ .User.Name }} - {{ .CreatedAtDate }} - {{ .NumReplies }}

posts.
 <div class="pull-right">
 Read more
 </div>
 </div>
 </div>
{{ end }}

As you’ll recall, a dot (.) in an action represents the data that’s passed into the
template to be combined to generate the final output. The dot here, as part of
{{ range . }}, is the threads variable extracted earlier using the Threads function,
which is a slice of Thread structs.

 The range action assumes that the data passed in is either a slice or an array of
structs. The range action allows you to iterate through and access the structs using
their named fields. For example, {{ .Topic }} allows you to access the Topic field of
the Thread struct. Note that the field must start with a dot and the name of the field is
capitalized.

 What about {{ .User.Name }} and {{ .CreatedAtDate }} and {{ .NumReplies
}}? The Thread struct doesn’t have these as named fields, so where do they come
from? Let’s look at {{ .NumReplies }}. While using the name of a field after the dot
accesses the data in the struct, you can do the same with a special type of function
called methods.
www.manaraa.com

42 CHAPTER 2 Go ChitChat
 Methods are functions that are attached to any named types (except a pointer or
an interface), including structs. By attaching a function to a pointer to a Thread
struct, you allow the function to access the thread. The Thread struct, also called the
receiver, is normally changed after calling the method.

 The NumReplies method is shown here.

func (thread *Thread) NumReplies() (count int) {
 rows, err := Db.Query("SELECT count(*) FROM posts where thread_id = $1",

thread.Id)
 if err != nil {
 return
 }
 for rows.Next() {
 if err = rows.Scan(&count); err != nil {
 return
 }
 }
 rows.Close()
 return
}

The NumReplies method opens a connection to the database, gets the count of
threads using an SQL query, and scans it into the count parameter passed into the
method. The NumReplies method returns this count, which is then used to replace
.NumReplies in the HTML, by the template engine, shown in figure 2.8.

 By providing a combination of functions and methods on the data structs (User,
Session, Thread, and Post), you create a data layer that shields you from directly
accessing the database in the handler functions. Although there are plenty of libraries
that provide this functionality, it’s good to understand that the underlying basis of
accessing the database is quite easy, with no magic involved. Just simple, straight-
forward code.

Listing 2.16 NumReplies method in thread.go

Handler Database

Model

Server

Method

Field

Method

Field
Figure 2.8 Connecting the struct
model with the database and the
handler
www.manaraa.com

43Wrapping up
2.8 Starting the server
Let’s round out this chapter by showing code that starts up the server and attaches the
multiplexer to the server. This is part of the main function, so it will be in main.go.

server := &http.Server{
 Addr: "0.0.0.0:8080",
 Handler: mux,
}
server.ListenAndServe()

The code is simple; you create a Server struct and call the ListenAndServe function
on it and you get your server.

 Now let’s get it up and running. Compile this from the console:

go build

This command will create a binary executable file named chitchat in the same direc-
tory (and also in in your $GOPATH/bin directory). This is our ChitChat server. Let’s
start the server:

./chitchat

This command will start the server. Assuming that you’ve created the necessary data-
base tables, go to http://localhost:8080 and registered for an account; then log in and
start creating your own forum threads.

2.9 Wrapping up
We went through a 20,000-foot overview of the various building blocks of a Go web
application. Figure 2.9 shows a final recap of the entire flow. As illustrated,

1 The client sends a request to the server.
2 This is received by the multiplexer, which redirects it to the correct handler.

Client Multiplexer Handler

Handler

Handler

Template engine

Templates

Server

Request

Response

Model

Model

Model
Database

Model

Figure 2.9 The web application big picture
www.manaraa.com

44 CHAPTER 2 Go ChitChat
3 The handler processes the request.
4 When data is needed, it will use one or more data structs that model the data in

the database.
5 The model connects with the database, triggered by functions or methods on

the data struct.
6 When processing is complete, the handler triggers the template engine, some-

times sending in data from the model.
7 The template engine parses template files to create templates, which in turn are

combined with data to produce HTML.
8 The generated HTML is sent back to the client as part of the response.

And we’re done! In the next few chapters, we will dive in deeper into this flow and get
into the details of each component.

2.10 Summary
■ Receiving and processing requests are the heart of any web application.
■ The multiplexer redirects HTTP requests to the correct handler for processing,

including static files.
■ Handler functions are nothing more than Go functions that take a Response-

Writer as the first parameter and a pointer to a Request as the second.
■ Cookies can be used as a mechanism for access control.
■ HTML responses can be generated by parsing template files together with data

to provide the final HTML data that is returned to the calling browser.
■ Persisting data to a relational database can be done through direct SQL using

the sql package.
www.manaraa.com

www.manaraa.com

Sau Sheong Chang

T
he Go language handles the demands of scalable, high-
performance web applications by providing clean and fast
compiled code, garbage collection, a simple concurrency

model, and a fantastic standard library. It’s perfect for writing
microservices or building scalable, maintainable systems.

Go Web Programming teaches you how to build web applica-
tions in Go using modern design principles. You’ll learn how
to implement the dependency injection design pattern for
writing test doubles, use concurrency in web applications, and
create and consume JSON and XML in web services. Along
the way, you’ll discover how to minimize your dependence on
external frameworks, and you’ll pick up valuable productivity
techniques for testing and deploying your applications.

What’s Inside
● Basics
● Testing and benchmarking
● Using concurrency
● Deploying to standalone servers, PaaS, and Docker
● Dozens of tips, tricks, and techniques

This book assumes you’re familiar with Go language basics
and the general concepts of web development.

Sau Sheong Chang is Managing Director of Digital Technology
at Singapore Power and an active contributor to the Ruby and
Go communities.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/go-web-programming

$44.99 / Can $51.99 [INCLUDING eBOOK]

Go Web Programming

GO/PROGRAMMING

M A N N I N G

“As the importance of the
Go language grows, the need
for a great tutorial grows with
 it. This book fi lls this need.”

—Shaun Lippy
Oracle Corporation

“An excellent book, whether
you are an experienced
gopher, or you know
web development but

are new to Go.”
—Benoit Benedetti
University of Nice

“Everything you need to get
started writing and deploying

web apps in Go.”—Brian Cooksey, Zapier

“Defi nitive how-to guide for
web development in Go.”
—Gualtiero Testa, Factor-y S.r.l.

SEE INSERT

	Chang-GWP-SC
	SampleChapterPages-2
	Ch-02SC
	Chang-GWP-ebook-back

