
www.manaraa.com

A web-based programming environment for
introductory programming courses in

higher education

Győző Horváth

Eötvös Loránd University, Faculty of Informatics
gyozo.horvath@inf.elte.com

Submitted March 5, 2018 — Accepted September 13, 2018

Abstract

Choosing the right programming environment has a great influence on the
efficiency of the educational, learning and problem solving processes. While
there are many good examples for such environments for the younger genera-
tion, which involve block-based programming, gamified learning, appropriate
language of the tasks and user interface design, introductory programming
courses in higher education rarely take into account the role of the program-
ming environment. In this article we have analyzed a typical problem solving
process in an introductory programming course with a special focus on the
programming environment. We have found that many distracting factors may
make the learning process difficult.

Based on our investigation we introduce a web-based programming en-
vironment which takes into account the special needs of newcomers to the
programming land. This environment tries to exclude the distracting factors
and support the problem solving process in a right way. Beside our method-
ological considerations, the technical background of supporting traditional
programming languages, such as C++, in the web browser is also presented.
Finally we make methodological recommendations how this tool can be a
part of the teaching and learning process through different types of tasks and
learning organizing methods.

Keywords: web, teaching, programming, development environment, higher
education

MSC: 97Q60, 97B40, 97U70

Annales Mathematicae et Informaticae
48 (2018) pp. 23–32
http://ami.uni-eszterhazy.hu

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EKE Repository of Publications

https://core.ac.uk/display/189170107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


www.manaraa.com

1. Introduction

Choosing the right programming environment has a great influence on the efficiency
of the educational, learning and problem solving processes. There are many good
examples for such environments mainly for the younger generation, taking into
account the specific needs of users of these ages. The user interface design is ap-
propriate: nice and colourful for the youngest ones, or comes in different thematic
flavours from toys, computer games or films (e.g. [1]) for teenagers. The task de-
scriptions are usually simple and straightforward according to age of the students.
The chosen programming language is mainly block-based (like [2]) for the intro-
ductory lessons, because it hides the syntactic difficulties behind the blocks, and
beginner students only have to deal with the semantic meanings of the blocks, and
how to place them one after another or inside to achieve the task. And finally, task
solving is often wrapped in a gamified clothes, making the learning process fun and
challenging (e.g. [3]).

Introductory programming courses in higher education, however, often consid-
ers novice programmer students, as if they have a lot of experience in handling
complex processes, but usually this is not the case, no matter how much this would
be expected. Treating them as “mature” programmers involves: using code-based
programming language from the very beginning, giving them mathematical prob-
lems to solve, and using professional or professional-like integrated development
environments (IDE), while students need to cope with the more essential mental
model of programming. It is hard for the students without any former programming
experience to take such big steps in many areas of the programming field. Curricu-
lum should pay attention to gradually introduce newer and newer topics, in order
to evenly distribute the cognitive load and thus make the knowledge processing
much more effective by students.

Programming, however, is not just coding, it is part of a more general task,
problem solving. Problem solving begins with the interpretation of the task de-
scription, continues with abstracting out and describing the data and their rela-
tions contained therein (specification), then it provides a solution as a sequence of
elementary steps in an abstract language (pseudo-code, algorithm), which is finally
implemented in the given or chosen programming language (coding). Problem solv-
ing, however, does not end with this latter step even in a narrower scope, as we
have to make sure that the program works correctly by testing it, and the detected
errors need to be corrected. For smaller programs and tasks, the problem solving
may end here. Introductory courses require such programming environments that
support both the basic steps and skills of problem solving and the coding phase at
the same time.

In this article first we analyse a typical problem solving process in an introduc-
tory programming course with a special focus on the programming environment.
After this and based on our investigation, we look for better alternatives than using
the traditional IDEs, and propose a programming environment which tries to meet
the required expectations.

24 Gy. Horváth



www.manaraa.com

2. Analysing traditional programming environments

In this chapter a typical problem solving process will be analysed, assuming that
it takes place in an introductory programming lesson in higher education with
students with different preconceptions about programming and problems solving.
In order to serve this kind of heterogeneity, the course needs to introduce every
concept from the basics to build a systematic knowledge common for everyone.
Accordingly, the tasks are relatively small, even at the end of the course there are
no tasks that need to be disassembled into several files.

Let us review the problem solving process from the aspect of the tools and
development environments. The first step is to get to know the task. This can be
done verbally, written on a board, or projected to the wall. The task description
can be paper-based or digital. Digital material may be published on a general
website or in a dedicated task library. Its format can be any of the well-known
document formats (HTML, PDF, docx, etc.). Typically, the task description can
be accessed in a different software environment from the one where implementation
would take place.

The next two steps, specification and algorithm, are designed for planning. Plan-
ning is traditionally done on paper or on a board. As a new phenomenon, however,
it is increasingly common for students to write notes on their digital devices and,
on the one hand, they do not have an exercise book or pen, and on the other hand,
performing the above two design steps with traditional editors (e.g. text or image
editors) is a much larger task than doing it manually. Thus, students are prone
to skip this planning step more and more frequently. However, this article does
not want to address this issue. The message of this part of problem solving is that
planning considerations are implemented in a different environment or tool than
coding.

The spectacular and creative part of problem solving is the implementation
phase, when the plan (pseudo-code) turns into code. This step often occurs in a
development environment. These specific environments are chosen because they
contain all the whistles and bells needed for convenient development in the chosen
programming language, as opposed to a generic code editor, where setting up a
basic programming session is a time-consuming task and often the user interface
does not support simple usage scenarios.

Integrated Development Environments (IDEs) are prepared with tools for edit-
ing, compiling, and running certain types of programs (such as CodeBlocks, Visual
Studio, Netbeans). They are convenient to use and the default settings are often
sufficient. Their big disadvantage, however, is that they are designed to write much
more complex programs than an initial course needs. Usually a single file is enough
for solving a simpler task, but IDEs generally think in the concept of projects with
many files. Their interface is often very complicated, as they provide many func-
tionalities through menus, toolbars, panels, and settings. They give much more
than is needed, and this may distract the attention.

Another thing that can make the usage of any kind of desktop environment

A web-based programming environment. . . 25



www.manaraa.com

problematic is the installation process. Editors should be installed in classrooms,
and they need to be installed at home computers by the student. Desktop appli-
cations may have other dependencies, and they need to run on different operating
systems. This complexity may lead to errors.

One of the final steps after coding is testing (followed by detecting and correct-
ing errors), consisting of two steps: syntax and semantic checking. Syntax errors
are revealed during compilation: the error list usually appears in a separate panel,
and in better environments the error is indicated in the source code as well.

Semantic testing has two important parts: preparing the test cases and the
executing the tests. In worse scenarios test cases are announced only verbally, but in
better cases they are written to the board or to the exercise book. Testing is initially
made manually: the students enter the input data manually in the command line
window and monitor the response of the program. The command line usually
appears in a separate window independently of the developer environment. For
longer inputs, tests are written to a file, which are redirected to the standard input
of the running program. Creating these test files can be done in the development
environment or in another program. Redirection is often not possible in IDEs, so
testing requires the opening of a command line window, which adds complexity to
this step.

Development in a traditional environment is often supplemented with online
judging systems (e.g. [4, 5]), which verify the code objectively. These systems
usually contain only the task descriptions and the batched, automated verification
services, the development is still performed in separate IDEs.

Analysing this process, several problems can be identified in the relation of
programming environments and introductory courses, beginner students:

• IDEs are too general: they are general-purpose development environments,
and are not intended to support specific, methodologically-based problem
solving processes, which would be better for beginner students. They are
only focus on the implementation part of this process.

• IDEs can not guide the student, it is left for the teacher or the students
themselves.

• Other knowledges are also needed, e.g. using the command line, redirecting,
uploading and downloading files.

• Considering the available number of lessons per week, teaching the different
tools and the whole toolchain proportionally takes much more time than
teaching the essentials of problem solving, compared to their importance.

• If students come from a gamified environment, using professional IDEs is big
gap to leap through.

Looking at the number of supporting programs, the whole workflow is too com-
plex: in order to achieve their goals, students need to focus on eight different
sources of information on seven different platforms:

1. Task description (separate window)

26 Gy. Horváth



www.manaraa.com

2. Design (board or exercise book)
3. Coding (IDE)
4. Compilation (IDE, separate panel)
5. Running (separate console)
6. Writing test files (separate window)
7. Testing with files (separate console)
8. Automated testing (separate web application)

Considering the heterogeneity of these introductory courses, mainly coming
from the previous knowledges of students, and the complex workflow that tra-
ditional programming environments provide, some demands can be formulated
against a programming environment:

• Support beginners: complex processes should be made easier or left out.
• Be specific for introductory courses: it is not needed to be prepared for

solving complex tasks. Introductory courses has simple tasks. Support these
and support them well.

• Support simple programs: programs consist of one file, they need to read
from standard input and write to standard output.

• Support the steps of task solving process: programming environment should
lead the students’ hand during the process, and should support all of the
important steps of task solving process.

• Support methodology: what is important methodologically, it should be sup-
ported by the environment, if it is possible.

• Support curriculum: be flexible enough to support different introductory
curriculum.

• User-friendly interface: ignore every distracting element from the user inter-
face.

• Monitor students’ performance: support monitoring of the progression, and
make room for further personalization (e.g. giving different tasks for different
students based on their results).

• Stand-alone usage, practice mode: the programming environment should be
used with or without the teacher’s direction.

• No installation: be platform-independent avoiding errors during installation.

3. Existing alternatives as solutions

Beside the traditional development environments there are other programming plat-
forms that can provide an alternative solution for the problematic aspects of in-
troductory programming courses introduced above. Every alternative environment
tries to operate with a simplified user interface, where all the necessary information
is available in the same program. It is common in every environment that they
are web-based which provides all the features that the web platform can bring:
ubiquity, no-installation set-up for the user, easier maintenance. Of course, these
environments are different according to their specific needs.

A web-based programming environment. . . 27



www.manaraa.com

The first group of these programming environments consists of the online learn-
ing platforms, like CodeAcademy [6] or Khan Academy [7]. They are designed to
be used alone without any external guidance; they proceed forward in small steps,
introducing small amount of new knowledge at one time. They are using textual
descriptions or video tutorials to introduce a topic, and an online editor with au-
tomatic tests for practising. It would be hard to use them in a certain curriculum
or in a lesson, and they do not support some parts of the task solving procedure,
like planning, manually testing and debugging.

The members of the second group are the online code editor environments, such
as CodingGround [8], Rextester [9], jDoodle [10], or Ideone [11]. They are web-
based IDEs, with single or multiple file support, and sometimes with a built-in
console (CodingGround). Usually standard input can be specified, and they give
back the result of the compilation and the text of the standard output. They try
to be general, so they can not support many of the demands that were formu-
lated against an introductory programming environment: there is no place to give
or collect task descriptions (or at least in comments), they do not support the
methodologically formed steps, they do not support testing. However, these envi-
ronments are great examples, that the development of command line applications
can be achieved in browsers with the help of the web-platform.

A variation of the latter group is the online programming contest platforms or
code training platforms such as CodeChef [12] or Codewars [13]. They are more
than the previous group in a sense that they provide task description, automated
tests for checking the solution, and sometimes manual tests can be given also. But
they are lack of flexibility, activity monitoring can not be fulfilled, and teachers
can not give their own tasks to the system. From this point of view they operate
as a combination of an online IDE and judge system.

The last group of alternative environments is consist of those online editors
which try to focus on educational problems. One of those web-based platform is
repl.it [14]. It started as an online IDE with a built-in console, but later it was
extended with some very useful educational tools, like classroom management,
creating assignments, automated tests, monitoring student activities, giving task
descriptions. These features are great and comes handy in certain situations, but
manual testing is missing among those features, and thus some methodology-based
requirements are not fulfilled.

4. The proposed programming environment

Our proposed programming environment tries to solve those issues which come from
the scattered nature of the traditional programming environments along with some
methodological considerations to help beginner students in learning programming.
The first version of our in-browser programming environment [15] eliminated the
distracting elements, pulled together the different type of tasks, except for the
planning phase, into one user interface, where the task description, the coding area,
the input and outputs of manual tests, and automatic tests took place. With these

28 Gy. Horváth



www.manaraa.com

it kept the attention in one place, it supported the steps of the problem solving
process, and code editing had all the features a beginner needed in a comfortable,
user-friendly environment. One of the main features of the first version was that
it worked in an isolated environment without internet connection (offline). But
this latter feature was this environment main drawback: it narrowed the potential
programming languages into JavaScript and TypeScript (or, strictly speaking, any
language that can be compiled in the browser), it did not give any chance to monitor
students activities, only one user test could be given.

Learning from the drawbacks of the first version, the new version of the pro-
posed programming environment was rewritten from ground up around similar user
interface design principles, but with very different operations in the background.
The user interface of the new environment can be seen in Figure 1. It is divided
into two parts. Task description, manual and automatic tests are available in a
tabbed panel on the left, while an easy-to-use and feature-rich code editor fills
the right side of the browser window with the necessary buttons and informations.
The workflow is the following: students can choose among the available tasks in
the drop-down menu beside the logo; can read the task description; can make the
planning outside of the environment; can implement the solution in the code edi-
tor; can make multiple manual tests to determine the correctness of the solution
by themselves; can verify the solution with the help of automatic test prepared by
the teacher.

Figure 1: The user interface of the proposed programming envi-
ronment

The heart of the application, the background mechanism was moved to server

A web-based programming environment. . . 29



www.manaraa.com

side, where far more opportunities are available. The new architecture can be seen
in Figure 2. Every operation that needs some language-specific feature (syntax
checking, compilation, testing) sends a request to a REST API (Representational
State Transfer Application Programming Interface) on the server side. Due to
security reasons compilation and execution needs to be run in a sandboxed envi-
ronment. The HTTP response contains the results of the requested operation, and
this information is displayed on the interface.

Figure 2: The schematic architecture of the proposed programming
environment

This version of the environment follows the concept of single-page applications.
The technologies that were used involves React, React-router, MobX, Monaco ed-
itor, Flexbox, Markdown on the client side, and node.js, express.js, Docker on the
server.

5. Discussion and summary

The main advantage of the proposed programming environment that it keeps the
problem solving process in focus (instead of the environment). It gains time both on
the students’ and the teacher’s side. With different tasks and monitoring it opens
up possibilities towards personalization and differentiated works. The web platform
makes it possible to get rid of the installation process, to learn independently
of time and place, and with sufficient automations it can offer off-class learning

30 Gy. Horváth



www.manaraa.com

opportunities [16, 17].
The following type of tasks can be used in this environment:

• implementing a solution from scratch (or with minimal initial code);
• implementing one or more specific functions, the other part of the code is

written already;
• correcting errors in a pre-made, but wrong program; it develops code reading.

Summarizing, the proposed web-based programming environment can help the
learning processes of beginner students in an introductory programming course.
The environment is comfortable, has a non-distracting user interface, supports
methodology, workflow and curriculum, and its flexible, language-agnostic archi-
tecture opens up new way towards personalisation and user monitoring. In this
form it could support in-class and stand-alone usage as well.

There are many ideas for further development. User management is still miss-
ing, there should be pages where new tasks can be prepared, where task and user
assignment could be achieved. User activity monitoring and personalisation would
be great, and it could serve as a potential assignment platform as well. Debugging
is still an issue.

References

[1] Code Studio, https://studio.code.org/ [cited 2017 May 22]

[2] Scratch, https://scratch.mit.edu/ [cited 2017 May 22]

[3] CodeCombat, https://codecombat.com/ [cited 2017 May 22]

[4] “Bíró” judging system on the Faculty of Informatics, Eötvös University,
http://biro.inf.elte.hu/ [cited 2017 May 22]

[5] “Mester” judging system in Hungary, http://mester.inf.elte.hu/ [cited 2017 May
22]

[6] Codecademy, https://www.codecademy.com/ [cited 2017 May 22]

[7] Khan Academy, https://www.khanacademy.org/ [cited 2017 May 22]

[8] CodingGround, https://www.tutorialspoint.com/codingground.htm [cited 2017
May 22]

[9] Rextester, http://rextester.com/ [cited 2017 May 22]

[10] jDoodle, https://www.jdoodle.com/ [cited 2017 May 22]

[11] Ideone, https://ideone.com/ [cited 2017 May 22]

[12] CodeChef, https://www.codechef.com/ide [cited 2017 May 22]

[13] Codewars, http://codewars.com/ [cited 2017 May 22]

[14] Repl.it, https://repl.it/ [cited 2017 May 22]

[15] Horváth, Gy., Menyhárt, L. Webböngészőben futó programozási környezet meg-
valósíthatósági vizsgálata, INFODIDACT 2016 Paper 3. (2016)

A web-based programming environment. . . 31



www.manaraa.com

[16] Horváth, Gy., Menyhárt L. Oktatási környezetek vizsgálata a programozás
tanításához, INFODIDACT 2014 Paper 7. (2014)

[17] Horváth, Gy., Menyhárt, L., Zsakó, L. Egy webes játék készítésének
programozás-didaktikai szempontjai, INFODIDACT 2015 Paper 2. (2015)

32 Gy. Horváth


