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Figure 4.5 Experimental setup for dataset2/3: (left) DAQPC and (right) TPC; oscilloscope
below DAQPC (partial view).

packet loss or affect the transmitting circuitry of the TPC.

Upon detection of an Ethernet frame (a simple slope-based threshold was used) the oscil-

loscope began to sample the signal at a rate of 1 Gigasamples/s for dataset1 and 2.5 Gigasam-

ples/s for dataset2/3. For the first dataset, the signal was sampled 10,000 times, for a total of 10

micro-seconds, while for the second and third datasets the signal was sampled 1,000,000 times,

for a total of 400 micro-seconds. Both oscilloscopes had 8-bits of resolution; however, because

of the DSO could store relatively fewer sample points than the DPO, dataset1 contained only

the synchronisation signal and the beginning of the MAC destination address, while dataset2/3

retained the entire Ethernet frame. Practically, this meant that more of the Ethernet frame

could be used in the construction of matched filters and more tests run on datasets two and

three than on dataset one.

Finally, the data collected during sampling was sent to the DAQPC via an IEEE 448 or

USB interface, where a custom Labview or MATLAB routine monitoring the interface accepted

the data and stored the values in a vector called a record, which was subsequently written to

disc. Each captured frame was stored in its own record; all of the records collected for a device
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Figure 4.6 Oscilloscope connected to DAQPC for dataset2/3: (top) DAQPC and (bottom)
Tektronix 4032 DPO oscilloscope. The oscilloscope is connected to the receive pins
on the secondary side of the DAQPC’s transformer; the ground clip of each probe
is connected to the common ground of the transformer IC.
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during a session are said to encompass its dataset.

The technical and procedural aspects of this process, for dataset1 (though the procedure is

much the same, differing where noted above, for dataset2/3), are covered in greater detail by

Jackson [20]. In what follows, unless explicitly stated, references to the data apply to all three

datasets.

4.3.2 Filter application

Having acquired several thousand signal samples from each device over a number of hours,

a filter was then created for each of the devices using the procedure outlined in Section 4.2.2.1.

The reference signal for each device was selected from, and the operation appropriate to the

variation performed upon, the first valid record of the device’s dataset. In the case of the

generic matched filter, for example, the reference signal had a period of roughly 6,000 ns

and spanned roughly the length of the synchronisation signal. Following this, the reference

signal was convolved with each record of its dataset, each of which may or may not have had

the same variational operation performed upon it, using an FFT-based convolution algorithm.

Convolving a reference signal with a record performs the matched filter operation for all possible

time-shifts; consequently, an output is created that is equal in length to that of the length of

the record. This operation was necessary, as opposed to the simpler one given by (4.4), because

the t0 of the reference signal may not in fact provide optimal alignment between the reference

and test signals—and hence not produce the maximum filter output—due to the fact that

an oscilloscope is not guaranteed to always trigger at the same point of the Ethernet frame.

This might occur due to triggering error or, indeed, signal variation, and is unavoidable as the

setup lacked an external trigger—i.e. the synchronised clock mentioned in Section 4.1—and

instead relied on simple level-slope triggering. Thus, the filter output at the point of actual

best alignment, γ(ta), was taken to correspond to the maximum of the convolution operation,

which should have occurred at or near the original t0
1. Having determined the filter output for

each record of its own dataset, the filter is then applied, again using convolution, to each record
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Figure 4.7 Control filter output, cj
i (ta), for 10,000 records of an Ethernet device (cve 0.0011).

of the other device’s datasets in order to determine the alikeness of their respective signals.

More precisely, allowing fi(t) to represent the reference signal for the ith device and rj
i (t)

the jth record of its dataset, the filter output, cj
i (ta), is

cj
i (ta) = max(fi(t) ? rj

i (t)) for j = 1 · · ·n (4.9)

where n is the number of records in the device’s dataset (Figure 4.7). This procedure was

followed for each device (i = 1 · · ·m, where m is the number of devices) in order to obtain the

filter response of each record in its dataset—the so-called control response.

The filter output or subject response, sj
i,k(ta), of the kth device using the ith device’s filter

is

sj
i,k(ta) = max(fi(t) ? rj

k(t)) for j = 1 · · ·n (4.10)

Equation 4.10 is used for devices k = 1 · · ·m, k 6= i in order to find which devices could be

differentiated from device i. For example, Figure 4.8 gives the filter outputs of two devices

(Device 1, the control, and Device 2, the subject) using a filter derived form the first device’s

dataset. Following the explanation set forth in Section 4.2.2.2, as the filter outputs do not

overlap, the matched filter PLIS is therefore able to discriminate between Device 1 and Device

2.
1In point of fact, the triggering of the oscilloscope proved reliable enough—i.e. either signal did not vary

significantly or trigger jitter was sufficiently low—for dataset2/3 that the area of the signal considered for taking
the maximum between was reduced to ±50 samples around t0 (on average the maximum filter output occurred
within 1.563 sample points of t0, in the case of dataset2). As such, Equations 4.9, 4.10, found below, should be
reinterpreted accordingly.
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Figure 4.8 Filter output for 10,000 records of two different Ethernet devices using the same
filter.

Comment on time complexity

Using an FFT-based convolution in applying the matched filter to an input signal requires

two FFTs and one inverse-FFT, to wit

γ(ta) = max
(
F−1 {F{α(t0 − t)} ·F{β(t)}}

)
(4.11)

where α(t0 − t) and β(t) are defined as in Section 4.1. Each of these three transforms is of

O(n lg n) complexity. It becomes readily apparent that using such an approach with the pre-

processing techniques outlined in Section 4.2.3, which require multiple applications of the filter,

will become computationally infeasible in anything close to real-time. It is possible, however,

to reduce the matched filter operation to O(n) complexity for subsequent applications of the

filter after a single, initial use of the convolution approach.

Returning to the discussion of the definition of the matched filter in Section 4.1, it is seen

that by (4.4) the matched filter operation is reduced to an inner-product of two signals, and thus

linear complexity, if the signals are aligned. Letting ∆ = ta − t0 be the difference between the

actual sample point of maximum alignment (determined through convolution) and the sample

point (stipulated by the filter transfer function) that should produce maximum alignment. The

filter output is then determined by

γ(ta) =
ta∫

ta−T

α(τ −∆)β(τ)dτ (4.12)
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which is simply to say that the reference signal must be shifted forwards or backwards according

to the difference between the expected alignment point, t0, and the actual alignment point, ta,

before the inner-product is taken.

4.3.3 Threshold calculation

To summarise the discussion on the imposition of limits for, and tracking of, the filter

output in Section 4.2.2.3: in order to account for changes in signal characteristics over time,

the affects of which correspond to the variability in filter output seen in Figure 4.7, thresholds

were introduced for the maximum amount of deviation in filter response acceptable before a

signal is deemed too different from the original. Past behaviour must also be considered when

setting these thresholds, and so it is required that the next m-frames resemble the previous

n-frames, with an allowance for some variability.

If the distribution (along with its location and scale) of the filter output is known, it is

trivial to calculate arbitrary confidence intervals with statistical rigour to bound future outputs.

However, as all of these parameters must be estimated, prediction intervals must be used to

build thresholds with any statistical basis [51]. By the use of a two-sided prediction interval,

it is possible to state, with 100(1 − α)% confidence, that all m future outputs will fall within

the range of

th+/−(cj · · · cj+m−1) = µ(cj−n · · · cj−1)± r(1−α;m,n) × σ(cj−n · · · cj−1) (4.13)

where cj is the filter output for jth record of the control device, and µ and σ are the mean and

standard deviation, respectively, of that output. A ’conservative approximation’ for r is given

by

r(1−α;m,n) ≈
(

1 +
1
n

) 1
2

t(1−α/(2m);n−1) (4.14)

where t is the Student’s t-distribution. For the experiments performed the filter output for the

first 25 frames of a device were used as training data to predict the output of the next 20 (n = 25,

m = 20); specifying α = 0.05 to achieve 95% certainty estimates yields r = 3.397. It was found

that large, sporadic deviations do occur for all Ethernet devices, so a perfect acceptance rate

cannot be obtained unless one is willing to allow a certain number of significant deviations
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every m-frames or set r unreasonably high. As with any system with statistical variation, a

balance must be found for α that results in acceptable false positives and false negatives.

While (4.13, 4.14) are meant for normal data, and, strictly speaking, by use of the Lilliefors

test, it was observed that the filter output is not consistently normal (it exhibits a marked

tendency towards the extreme value distribution), as a practical matter it is sufficiently close

to a normal distribution as to obviate the need to apply a normal-transform (the Box-Cox

transformation, e.g.) or make use of alternate prediction methods (such as ARMA modelling

[54]).

4.3.4 Classifying filter output

The methodology used to evaluate the efficacy—i.e., the false positive and false negative

counts—of the matched filter approach is set forth. For ease of interpretation, in what follows

’false reject’ (a device not recognised as itself) and ’false accept’ (a device misidentified as

another) are occasionally made use of to mean ’false positive’ and ’false negative’, respectively.

4.3.4.1 Type I Errors

To determine the number of false positives for the ith control device, the first 25 of its filter

responses, c1···25
i (ta), were used in conjunction with the procedure set forth in the previous

section to establish thresholds, which were expected to provide a false reject rate of 1% or less,

for the next 20 outputs. If the filter response for one of the next 20 records lay outside of the

bounds set by these thresholds, its corresponding record was marked as rejected and was not

used in determining the thresholds for the next 20 outputs. It should be noted that the last five

filter outputs used to calculate thresholds for the preceding 20 were used again for the next 20,

as 25 outputs are needed for training while only 20 are accepted per iteration. This procedure

was followed for the remainder of the filter responses in the device’s dataset. The false positive

count was then simply FP = nc − n− nr, where nr is the total number of rejected records, n

the number of records used for training, and nc the total number of records for the device.
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4.3.4.2 Type II Errors

Whereas it was possible to determine false rejects by sequentially applying (4.13) to each of

the next 20 filter outputs, false accepts cannot be determined in such a sequential manner, as

it cannot be known where to begin comparing the output of the ith device’s filter applied to the

kth device’s dataset and the ith device’s own output in order to find their intersection. Simply

comparing the distributions of the filter outputs for the two cases—by use of the overlapping

coefficient, say—would also produce an inaccurate false negative count, as the filter output for

each device was non-stationary and therefore not amenable to distribution fitting over the long

term.

Therefore, to calculate the number of false accepts accurately, it was assumed that the filter

response for each record of the kth subject device’s dataset using the ith control device’s filter,

s1···ns
i,k (ta), where ns is the number of records in the subject’s dataset, was equally likely at all

points in time. More familiarly, an attacker had the presumed ability to select an arbitrary

record from the subject dataset and substitute it for a control record at will. The question,

then, is how many records, on average, would an attacker be able to pass off as the control

device during any 20 record period? To determine this, threshold values were calculated for

c26···45
i (ta) (the first 25 records of ci(ta) as training data and consequently have no thresholds)

to check how many filter outputs of s1···ns
i,k (ta) were erroneously accepted as the filter responses

for records 26–45 of the control device. This procedure was followed for each subsequent 20

response segment of c46···nc
i (ta), leading to an average false negative count of

FN =
m

nc

nc/m∑
l=1

nl
a (4.15)

where nl
a is the number of records accepted per 20 output threshold period. Thus, if a prepon-

derance of subject outputs were consistently misidentified as control outputs, the false negative

count will be correspondingly high.

4.3.5 Combining tests

When coupled with the matched filter operation, each of the pre-processing techniques

outlined in Section 4.2.3 produced an individual filter output, which could then be tracked



www.manaraa.com

41

according to the threshold regime described above. By combining the results of the these

filters, a multitude of what may be thought of as tests, which cover a broad feature set, could

be used to establish the verisimilitude of the subject record. However, if multiple tests are to be

utilised when deciding whether to accept or reject a record, a classifier combination technique

must be used to reconcile divergent test results.

While many approaches to the problem of classifier combination are available [55], most

were inappropriate for use in this context, as they required assumptions about the a priori

probabilities of the inputs, which cannot be known or even estimated. Instead, the chosen

approach for fixing upon a decision to accept or reject relied upon a bipartite approach: use

statistical methods to set a lower bound on the number of tests a given record must pass—i.e.,

be inside the thresholds established for the individual filter output—before being accepted or,

when the number of tests utilised was small, make use of a simple logical AND operation for

their combination. While the former technique was not needed in the present case to produce

good results, it is believed that the rationale for it, and the technique itself, might be of interest

to other researchers working in this area.

The statistical bounds approach differs from the one set forth in Section 4.3.3 in that,

whereas the distribution of the individual outputs is approximately normal, the distribution of

the number of test failures per record could not be satisfactorily characterised using common

distributions (due to the fact that the tests put forth above are self-evidently not independent,

and would thus be expected to, and indeed did, exhibit complex, correlated relationships). As a

consequence of this, one-sided distribution-free confidence bounds [51] are used. These bounds

require greater amounts of training data to produce an acceptably high confidence bound and

are not adaptive. Nevertheless, the technique could be used to calculate a conservative lower

bound on the number of tests passed per record, with 100(1 − α)% confidence, that at least

100p% of future control records should exceed.

Allowing k to be a sorted list, from least to greatest, of the number of tests passed by the

control records c1 · · · cn. The lower bound for the number of tests each future record must pass
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in order to be accepted is then k(l), where ’l is chosen as the largest integer such that’

1− B(l − 1;n, p) ≥ 1− α (4.16)

with B representing the Binomial distribution. It should be noted that while the number of

records used as training data, n, should generally be as large as possible, a certain minimum

does exist for which no value of l, for a given p and α, may be found to satisfy (4.16). This

is actually slightly advantageous in that it obviates the need to make discretionary decisions

about the size of the training data, as the minimum number of training records necessary to

ensure that at least 100p% of future records meet the lower bound for a certain confidence level

can be exactly calculated by increasing n until a solution to (4.16) is found.

Having established the threshold for the minimum number of tests to be passed by the

control device, type I errors and type II errors could then be determined by applying the

methodology of Section 4.3.4 to each of the individual tests, with the added step of ensuring

that the total number of tests passed per record exceeds said threshold. Which is to say, accept

a record as originating from the control device so long as np ≥ k(l), where np is the number of

filter outputs within the thresholds given by (4.13).

4.4 Analysis of results

The results of the matched filter methodology for signal profiling are presented for dataset1

(16 devices) and dataset2/3 (27 devices), with approximately 10, 000 records per dataset, con-

sisting of a combination of three different models (Table 4.1). The naming convention mXcY is

used to denote card Y of model X. Testing parameters are discussed and metrics indicating the

overall effectiveness of both the individual and combined approaches are given. Any mention

of sample points used in a test are made with reference to Figure 4.1 for dataset1 and Figure

4.2 for dataset2/3.

4.4.1 Variety and scope of tests

The aim of this work was two fold: to establish the value of a generic matched filter approach

to device identification and to measure the usefulness of the variations set forth in Section 4.2.3.
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Table 4.1 Details of Ethernet cards used for experiments (dataset1: m4c1–3, m5c1–10,
m6c1–3; dataset2/3: all).

Manufacturer/Model Identifier MAC Address Serial Chipset Markings Dataset

D-Link/DFE-530TX+ (Rev. E1)

m4c1 00:40:05:34:a0:31 B229237077076 DL10038D, 33098Q1, 315F 1,2,3
m4c2 00:40:05:36:01:15 B229237077139 DL10038D, 33246Q1, 316F 1,2,3
m4c3 00:40:05:36:01:19 B229237077140 DL10038D, 33246Q1, 316F 1,2,3
m4c4 00:40:05:35:75:40 B229237077075 DL10038D, 33098Q1, 315F 2,3
m4c5 00:40:05:34:a0:30 B229237077074 DL10038D, 33098Q1, 315F 2,3
m4c6 00:40:05:36:01:1a B229237077133 DL10038D, 33246Q1, 316F 2,3

Genica/GN-788

m5c1 00:00:e8:12:65:36 DB0211105319 0206TABEDC2736.00 1,2,3
m5c2 00:00:e8:12:17:db DB0211105339 “ 1,2,3
m5c3 00:00:e8:12:2c:85 DB0211105358 “ 1,2,3
m5c4 00:00:e8:12:61:53 DB0211105396 “ 1,2,3
m5c5 00:00:e8:12:6d:77 DB0211105389 “ 1,2,3
m5c6 00:00:e8:12:61:47 DB0211105364 “ 1,2,3
m5c7 00:00:e8:12:65:2e DB0211105349 “ 1,2,3
m5c8 00:00:e8:12:c4:a0 DB0211105317 “ 1,2,3
m5c9 00:00:e8:12:61:09 DB0211105326 “ 1,2,3
m5c10 00:00:e8:12:32:4a DB0211105404 “ 1,2,3
m5c11 00:00:e8:12:65:3e DB0211105394 “ 2,3

Netronix/37NB-12290-311 (Rev. 1.1)
m6c1 00:08:54:0c:37:5f 122901133CF05938 VT6105, 0325cd, 23B4002200 1,2,3
m6c2 00:08:54:0c:37:13 122901133CF05997 VT6105, 0325cd, 23B4001100 1,2,3
m6c3 00:08:54:0c:37:4c 122901133CF05948 VT6105, 0326cd, 23B4401200 1,2,3
m6c4 00:08:54:0c:37:42 122901133CD05949 VT6105, 0325cd, 23B4401100 2,3
m6c5 00:08:54:0c:37:10 122901133CF06000 VT6105, 0326cd, 23B4401200 2,3
m6c6 00:08:54:0c:37:55 122901133CF05939 VT6105, 0326cd, 23B4401200 2,3
m6c7 00:08:54:0c:37:54 122901133CF05940 VT6105, 0325cd, 23B4002200 2,3
m6c8 00:08:54:0c:37:0f 122901133CF05999 VT6105, 0326cd, 23B4401200 2,3
m6c9 00:08:54:0c:4c:bf 122901133CF06650 VT6105, 0325cd, 23B4001100 2,3
m6c10 00:08:54:0c:37:4d 122901133CF05947 VT6105, 0325cd, 23B4002200 2,3

To this end, a total of 526 tests were devised, the precise nature of which will be described

shortly, and then applied to the datasets. A complete analysis of the available data required

that each test be carried out on every one of the ∼10, 000 records in each device’s datasets

and that each device be tested against every other device using itself as a reference. Unless

specified otherwise, each test used the same portion of the synchronisation signal (475–6650

ns for dataset1 and 1310–7315 ns for dataset2/3) as a reference signal before the requisite

processing occurred.

4.4.1.1 Bandpass filtering

A total of 210 filters were used to exhaustively test the bandwidth of 0–20 MHz at 1 MHz

increments (Table 4.2). As the power of the frequency components of the synchronisation

signal beyond 20 MHz were slight (due to the presence of a 17 ± 1 MHz low-pass filter on

the DAQPC’s Ethernet card), it was decided that extending the bandwidth beyond this range

would contribute little as these small contributions to the filter output would be necessarily

overshadowed by the inner product operation. Both the reference signal and test signal were

filtered.
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Table 4.2 Bandwidths of filters used in BPF pre-processing.

High-pass freq. (MHz) Low-pass freq. (MHz)
19 20
18 19 20
...

...
...

. . .
1 2 3 · · · 20
0 1 2 3 · · · 20

4.4.1.2 An ensemble of filters

It was hypothesised that when a signal undergoes significant change so too does the cir-

cuitry used to produce the signal; this in turn may produce unique transients. As such, ad-

ditional filters were used to examine areas of abrupt change in the synchronisation signal (all

times approximate): the transient and synchronisation signal (300–6650 ns for dataset1 and

1200–7315 ns for dataset2/3), the transient only (300–475 ns for dataset1 and 1200–1310 ns

for dataset2/3), the transition from the synchronisation signal to destination MAC address

(6650–6830 ns for dataset1 and 7315–7500 ns for dataset2/3), and the transient with the syn-

chronisation signal and transition to the MAC address (300–6830 ns for dataset1 and 1200–7500

ns for dataset2/3). For dataset2/3 the synchronisation signal with the transition to the MAC

address was also tested (1310–7500 ns). Because the entire frame was captured for dataset2/3,

it was possible to extend this analysis to several other areas of the signal: the entirety of the

destination MAC address and part of the source address (7500–21515 ns), the transition to the

MAC addresses with the destination and source addresses (7315–21515 ns), the synchronisa-

tion signal and the transition to the MAC addresses with the destination and source addresses

(1310–21515 ns), and the entirety of the data from the transient to the end of the portion of

the source address (1200–21515 ns).

4.4.1.3 Normalisation

The Euclidean norm was applied to the aligned test and reference signals in each test. As

such, there were only 263 unique tests; the remainder were simply the output of the original

test divided by the product of the norm of the reference and aligned test signals.
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4.4.1.4 Trimming

Amplitude trimming, using increments of 0.25 volts from zero to three volts, was used

in two ways. Lower -trimming set the data values below a give level to zero, while upper -

trimming set the values above said level to zero. More precisely, for an input signal, x(t), and

l = 0.25, 0.50, . . . , 3.0 volts, lower-trimming was defined as

x(t) =


0, |x(t)| ≤ l

x(t), otherwise
(4.17)

while for upper-trimming

x(t) =


0, |x(t)| ≥ l

x(t), otherwise
(4.18)

These trimming procedures were applied to the test signal individually in one instance and

both the reference and test signals in another.

4.4.2 Results

Several metrics common to machine learning and data mining [56], as well as confusion

matrices, are used to present the results of the matched filter approach to device differentiation.

Both forms of presentation are necessary, as metrics provide only an overall picture of the

performance for a single device, while confusion matrices show the degree (the amount of overlap

between two devices) and direction (whether one device was being confused with another and

vice versa) of specific instances of misclassification.

Before proceeding with an explanation of the metrics used and the format of the confusion

matrices, it should be noted that, in the context of this work, a true positive (TP) is understood

to be a record rightly rejected as not having originated from the control device, while a false

positive (FP) is a control record wrongly rejected as not having originated from the control.

A true negative (TN) is then a rightly accepted record that originated from the control, while

a false negative (FN) is a wrongly accepted record that did not originate from the control.

Additionally, the false negatives and true positives for a given control were calculated with

respect to all of the subject devices; i.e. the individual FN and TP counts of the subject
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devices against a particular control were summed to determine the overall false-negative and

true-positive counts for each control.

The accuracy (A = (TP +TN)/(TP +TN +FP +FN)) precision (P = TP/(TP +FP )),

recall (R = TP/(TP + FN)), and specificity (S = TN/(TN + FP )) metrics are used to give

a reasonable account—at least when the metrics are interpreted collectively—of the overall

effectiveness of the classification system. Note: specificity is equivalent to the true-negative

rate of the confusion matrix.

Confusion matrices, on the other hand, are employed to provide a finer view of how well

the methodology performed in distinguishing control devices from individual subject devices by

juxtaposing the true-negative rates for each of the controls against the false-negative rates of

the subjects. In the matrices, control devices occupy the rows and subject devices the columns

so that true-negative rates appear along the diagonal with false-negative rates in off-diagonal

elements. Each row thus shows the percentage of the time the method was able to correctly

identify the control and differentiate it from the subjects. A perfect classifier would produce a

matrix where diagonal elements are one and off-diagonal ones are zero.

4.4.2.1 Generic matched filter

The confusion matrix and APRS values for the generic matched filter are presented in Tables

4.3–4.5 and 4.6–4.8, respectively. Thresholds based on (4.13) produce overly wide intervals for

the filter output, and as such were established for at most a 5% FPR (α = 0.05 results in

r = 3.397; see Equation 4.14) to achieve the desired FPR of less than 1%. As can be seen from

Tables 4.3–4.5, the TNR was sufficiently high (greater than 99%) while, at least for different

model cards, the FNR was nearly 0% for dataset1 and 0% for dataset2/3, though some cards of

the same model were difficult to differentiate. We attribute 0% inter-model FNR for dataset2/3

to the fact the time at which the oscilloscope triggered on the signal was used to constrain the

search for the maximum filter output (see the footnote in Section 4.3.2) for these datasets.

While the method failed to discriminate between devices of the same model in all cases

(as evidenced by the individual recall rates; especially for the m4 cards), the overall accuracy

(∼90% for dataset1 and ∼94%/∼93% for dataset2/3) was satisfactory considering that all of
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the cards used in the analysis were purchased in bulk, at the same time, with the majority most

likely originating from the same manufacturing lot (the serial numbers and chipset markings

given in Table 4.1 would seem to support this).

The choice to use such a sample was a conscious one, in that we were attempting to examine

a worst-case scenario. Even so, we would like to note that the lack of overlap between different

model cards results in a matrix that is relatively sparse. Combined with the fact that a

very large number of records were used in the analysis, almost perfect APRS values would be

produced if inter-model results were used; however, these would also be perfectly irrelevant

in our scenario. Accordingly, we have calculated APRS values for the intra-model case only.

The results and their method of calculation, when taken together, imply that in a diverse

environment—i.e., one in which a great number of differing model devices are present—the

generic matched filter would perform well at differentiating devices from one another.

It may not even be strictly necessary for a network to be composed of heterogeneous devices:

so long as the cards are sufficiently different from each other for the approach to work, the

device population could consist of same-model cards. We had hoped that distances between

MAC addresses and/or serial numbers would correlate negatively to the FNR, in which case

we might then be able to establish a minimum distance between these identifiers to guarantee

distinguishability. While this is possibly the case for the m4 cards (the sample size is too small

to draw definite conclusions), it does not hold for either of the m5 or m6 cards, as can be seen

by comparing the FNRs of these cards with the information found in Table 4.1. Perhaps cards

not examined in this work do, in fact, correlate in such a way. In any case, without assistance

from manufacturers, we must attempt to infer differences in manufacture time (and implicitly

behaviour) from the cards themselves. Also, we have, admittedly, not carried out a proper

sample survey, so these results should be regarded as preliminary at best. Note, however, that

an effective survey would likely require an auxiliary variable that is correlated with the FNR

to decrease the variance of the population parameter [57].

Changes to the data collection regime for dataset2/3 improved the performance of the

generic matched filter. Comparing Tables 4.7, 4.8 to 4.6 shows that increasing the rate at

which the synchronisation signal is sampled to 2.5 Gigasamples/s reduces the collisions of the
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m4 cards (1–3) and m6 cards (1–3) used in dataset1 to zero, though other collisions do arise

for the remaining devices in these model classes in dataset2/3.

[ RESULTS FOLLOW ]
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Table 4.6 Intra-model APRS values for the generic matched filter (dataset1)

Tested Card A P R S
m4c1 1.000 0.999 1.000 0.999
m4c2 0.702 0.999 0.554 0.999
m4c3 0.681 0.998 0.522 0.998
m5c1 0.890 1.000 0.877 0.999
m5c2 0.890 1.000 0.878 0.999
m5c3 0.900 1.000 0.890 0.999
m5c4 1.000 1.000 1.000 0.998
m5c5 1.000 1.000 1.000 0.999
m5c6 0.836 1.000 0.818 0.998
m5c7 0.901 1.000 0.890 0.998
m5c8 0.852 1.000 0.835 0.999
m5c9 1.000 1.000 1.000 0.998
m5c10 0.919 1.000 0.910 0.998
m6c1 0.888 0.998 0.834 0.997
m6c2 0.874 0.998 0.813 0.997
m6c3 0.980 0.998 0.971 0.997
mean 0.895 0.999 0.862 0.998

Table 4.7 Intra-model APRS values for the generic matched filter (dataset2)

Tested Card A P R S
m4c1 0.918 1.000 0.902 0.999
m4c2 0.872 1.000 0.846 0.999
m4c3 0.974 0.999 0.969 0.996
m4c4 0.876 1.000 0.852 0.999
m4c5 1.000 1.000 1.000 0.999
m4c6 0.663 1.000 0.597 1.000
m5c1 0.916 1.000 0.908 0.996
m5c2 0.910 1.000 0.901 0.998
m5c3 0.970 1.000 0.967 0.999
m5c4 1.000 1.000 1.000 0.996
m5c5 1.000 1.000 1.000 0.999
m5c6 0.917 1.000 0.909 0.996
m5c7 0.912 1.000 0.903 0.998
m5c8 0.913 1.000 0.905 0.998
m5c9 1.000 1.000 1.000 0.997
m5c10 1.000 1.000 1.000 0.997
m5c11 0.908 1.000 0.899 0.999
m6c1 0.898 1.000 0.887 0.997
m6c2 1.000 1.000 1.000 0.998
m6c3 1.000 1.000 1.000 0.996
m6c4 1.000 1.000 1.000 0.996
m6c5 1.000 1.000 1.000 0.997
m6c6 0.915 1.000 0.905 0.999
m6c7 0.966 1.000 0.963 0.996
m6c8 0.882 1.000 0.869 0.999
m6c9 1.000 1.000 1.000 0.999
m6c10 0.837 1.000 0.819 0.999
mean 0.935 1.000 0.926 0.998
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Table 4.8 Intra-model APRS values for the generic matched filter (dataset3)

Tested Card A P R S
m4c1 0.917 1.000 0.901 0.999
m4c2 0.879 1.000 0.855 0.999
m4c3 0.808 0.998 0.771 0.992
m4c4 0.875 1.000 0.850 1.000
m4c5 1.000 1.000 1.000 0.999
m4c6 0.663 1.000 0.597 1.000
m5c1 0.914 1.000 0.906 0.997
m5c2 0.911 1.000 0.902 0.998
m5c3 0.959 1.000 0.955 0.999
m5c4 1.000 1.000 1.000 0.997
m5c5 1.000 1.000 1.000 0.999
m5c6 0.916 1.000 0.908 0.996
m5c7 0.913 1.000 0.904 0.998
m5c8 0.917 1.000 0.908 0.998
m5c9 1.000 1.000 1.000 1.000
m5c10 1.000 1.000 1.000 0.997
m5c11 0.867 1.000 0.854 0.999
m6c1 0.899 1.000 0.888 0.997
m6c2 1.000 1.000 1.000 0.998
m6c3 1.000 1.000 1.000 0.996
m6c4 1.000 1.000 1.000 0.996
m6c5 1.000 1.000 1.000 0.997
m6c6 0.915 1.000 0.905 0.999
m6c7 0.965 1.000 0.962 0.996
m6c8 0.884 1.000 0.871 0.999
m6c9 1.000 1.000 1.000 0.999
m6c10 0.837 1.000 0.819 0.999
mean 0.927 1.000 0.917 0.998
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4.4.2.2 Combined approach

Though initially devised to provide increased efficacy over the generic matched filter, most

of the tests proposed in Section 4.2.3 were unable to better our ability to distinguish between

devices. Even so, the actual work of carrying out an analysis of all the tests was useful in

that it identified the areas of the signal common to all devices—with respect to the matched

filter—and made apparent those techniques and domains which should be explored further.

Exempting those tests that were effective for a single pair of cards, only the bandpass filters

(usually using non-normalised records) provided some advantage over the generic matched

filter. Interestingly, the bandwidth of the these filters differed by model; i.e., while a particular

bandpass filter may have been effective for, say, the m5 cards it could not be depended upon

to give good results for the other models. This would seem to imply, in the best case, that

different model cards exhibit model-specific deviations, with tendencies towards variation being

roughly constant across the model. Of course, this hypothesis should be tested by carrying out

a proper survey to ensure that the tests deemed effective are not merely artefacts of ex post

facto selection.

While the number of effective tests proved few, their use in combination—i.e., each record

was required to pass all of the tests to be accepted (a.k.a unanimous voting [55])—showed

a marked improvement over the results obtained in Section 4.4.2.1, with average accuracies

of ∼95% for dataset1, and ∼100% for dataset2/3 (Tables 4.9–4.11 and 4.12–4.14); specificity

declined slightly but still averaged over 98% for all datasets. It should be noted that the

increased accuracy for dataset1 is largely due to the m5 cards, while for dataset2/3 cards of all

models showed improvement.

dataset1

With the exception of the m6 cards, multiple bandpass filters were found to be at least

partially effective for each model—though the bandwidths of the filters overlapped in each case.

We utilised non-normalised and normalised filters (in the 6–16 MHz and 10–16 MHz ranges,

respectively) for the m5 cards but made use of only one normalised filter for the m4 cards (0–12
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MHz). It is significant that each of the m5 filters—and indeed all of the effective bandpass

filters for this model—excluded the fundamental frequency of the 5 MHz synchronisation signal,

where the majority of the power lies, but contained the frequencies near to, and including, 15

MHz, which is where the first harmonic of a 5 MHz square wave resides. This suggests that the

greatest signal deviations are to be found at the higher harmonics; however, as noted earlier,

due to the presence of a low-pass filter on the DAQPC, it was not possible for us to examine

these harmonics. The Ethernet card in the DAQPC is a 10Mb one, so it is possible that 100Mb

cards do not use filters with such a low cut-off frequencies, even in 10Mb mode. If this is the

case, we may be able to improve our results by examining the harmonics, individually or in

combination, past 15 MHz.

dataset2/3

We hypothesised that, considering that the synchronisation signal is short in duration,

relative to the rest of the frame, and as the performance of the filter generally increases as

the signal it operates on is lengthened, the portion of the frame containing the source and

destination MAC addresses could be used, along with the synchronisation signal, to eliminate

overlap between devices. To this end the source address was set (spoofed) to be the same for

each device in dataset2/3. Unfortunately, neither of the MAC addresses when used singly, in

combination, or with the synchronisation signal—normalised or not—were able to differentiate

more devices than the generic matched filter. While it is possible that a completely passive

implementation of the matched filter PLIS could also utilise the source IP, these experiments

with the MAC addresses indicate that individual device behaviour is expressed primarily in the

synchronisation signal. It is of course possible that tests other than an ensemble of filters (e.g.

bandpass filtering) would reveal differences in other parts of the frame.

The effective tests for dataset2/3, much like dataset1, proved to be bandpass filters. For

models m4 and m6 normalised and non-normalised filters with bandwidths of 0–10MHz proved

efficacious, while for m5 a 15–16MHz non-normalised filter worked best—these results conform

broadly to those for dataset1, at least with respect to the bandwidths of the filters if not

their normalisation or non-normalisation. For the 0–10MHz filters, the only component visibly
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different over the bandwidth was the DC component. We take this to mean that the amplitudes

of the differential signal differ by a consistent amount for each sample point; i.e. it is almost

as though one channel or the other were an exact copy of the other but attenuated/amplified.

Finally, we speculate that the reason the 6–16 MHz filter was ineffective for dataset2/3 (the

effective filters of dataset2/3 otherwise overlap to some extent with those of dataset1) is due to

a difference between the data analysis routines used on dataset1 and dataset2/3. For dataset1

the filter analysis was carried out using the entire record, which meant that a portion of the 10

MHz MAC address portion of the Ethernet frame was tested, while for dataset2/3 only that

portion of the synchronisation signal, which contains very little power near 10 MHz, aligned to

the purported device’s matched filter was used.

[ RESULTS FOLLOW ]
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Table 4.12 Intra-model APRS values for combined matched filters (dataset1)

Tested Card A P R S
m4c1 0.996 0.993 1.000 0.987
m4c2 0.706 0.994 0.562 0.994
m4c3 0.767 0.992 0.655 0.990
m5c1 0.994 0.999 0.994 0.993
m5c2 0.998 0.999 0.999 0.993
m5c3 0.998 0.999 0.999 0.991
m5c4 0.999 0.999 1.000 0.993
m5c5 0.999 0.999 1.000 0.990
m5c6 0.995 0.999 0.995 0.989
m5c7 0.998 0.999 0.999 0.991
m5c8 0.999 0.999 1.000 0.991
m5c9 0.999 0.999 1.000 0.990
m5c10 0.990 0.999 0.990 0.992
m6c1 0.894 0.997 0.843 0.995
m6c2 0.880 0.998 0.822 0.996
m6c3 0.981 0.998 0.974 0.996
mean 0.950 0.998 0.927 0.992

Table 4.13 Intra-model APRS values for combined matched filters (dataset2)

Tested Card A P R S
m4c1 0.998 0.998 0.999 0.991
m4c2 0.999 0.998 1.000 0.991
m4c3 0.998 0.997 1.000 0.987
m4c4 0.997 0.997 1.000 0.983
m4c5 0.997 0.997 1.000 0.984
m4c6 0.999 0.998 1.000 0.992
m5c1 0.999 0.999 1.000 0.989
m5c2 0.999 0.999 1.000 0.988
m5c3 0.999 0.999 1.000 0.993
m5c4 0.999 0.999 1.000 0.989
m5c5 0.999 0.999 1.000 0.989
m5c6 0.999 0.999 1.000 0.985
m5c7 0.999 0.999 1.000 0.990
m5c8 0.999 0.999 1.000 0.991
m5c9 0.998 0.998 1.000 0.983
m5c10 0.999 0.999 1.000 0.988
m5c11 0.999 0.999 1.000 0.991
m6c1 0.998 0.997 1.000 0.976
m6c2 0.998 0.998 1.000 0.982
m6c3 0.998 0.997 1.000 0.975
m6c4 0.997 0.997 1.000 0.974
m6c5 0.998 0.997 1.000 0.976
m6c6 0.995 0.998 0.997 0.978
m6c7 0.996 0.997 0.998 0.974
m6c8 0.998 0.997 1.000 0.977
m6c9 0.998 0.997 1.000 0.976
m6c10 0.998 0.998 1.000 0.980
mean 0.998 0.998 1.000 0.984
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Table 4.14 Intra-model APRS values for combined matched filters (dataset3)

Tested Card A P R S
m4c1 0.998 0.998 0.999 0.990
m4c2 0.999 0.998 1.000 0.991
m4c3 0.960 0.998 0.954 0.988
m4c4 0.997 0.997 1.000 0.984
m4c5 0.997 0.997 1.000 0.984
m4c6 0.999 0.998 1.000 0.992
m5c1 0.999 0.999 1.000 0.992
m5c2 0.999 0.999 1.000 0.989
m5c3 0.999 0.999 1.000 0.991
m5c4 0.999 0.999 1.000 0.990
m5c5 0.999 0.999 1.000 0.990
m5c6 0.999 0.999 1.000 0.985
m5c7 0.999 0.999 1.000 0.991
m5c8 0.999 0.999 1.000 0.991
m5c9 0.998 0.998 1.000 0.983
m5c10 0.999 0.999 1.000 0.988
m5c11 0.999 0.999 1.000 0.989
m6c1 0.998 0.998 1.000 0.978
m6c2 0.998 0.998 1.000 0.981
m6c3 0.997 0.997 1.000 0.975
m6c4 0.997 0.997 1.000 0.974
m6c5 0.998 0.997 1.000 0.976
m6c6 0.995 0.998 0.997 0.978
m6c7 0.996 0.997 0.998 0.976
m6c8 0.997 0.997 1.000 0.977
m6c9 0.998 0.998 1.000 0.978
m6c10 0.998 0.998 1.000 0.980
mean 0.997 0.998 0.998 0.984
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4.4.2.3 Stability and forensics

In comparing dataset2 and dataset3 (Tables 4.4, 4.5 and 4.10, 4.5) we see that devices

that were difficult to differentiate in one dataset showed similar overlap in the other. As

dataset2/3 were taken one month apart, this suggests that, at least over the short term, device

behaviour is stable. With regards to differences in collisions between dataset1 and dataset2/3:

it may be that the device behaviour changed enough in the years between when the data were

acquired to shift the incidences of collision (e.g., from m5c6 vs. m5c8 in dataset1 to m5c6

vs. m5c7 in dataset2/3); however, sufficient documentation about dataset1 does not exist to

conclusively state that the card labels of dataset1 actually refer to the cards with the same

labels in dataset2/3 (that is, card m5c8 in dataset1 might not be the same as card m5c8 in

dataset2/3, for example).

The preceding should not be taken to imply that device identity can be established in the

present using past behaviour (i.e. thresholds for a device’s filter output the next day or week

cannot be calculated using present outputs), but merely that devices that were distinguishable

in the recent past will continue to be so in the near term.

Determining whether or not device identity is consistent in the long term or, for example,

whether a device can be reauthenticated after having lost and reestablished its connection to the

network, is not only essential if PLI is to be utilised for network authentication and/or intrusion

detection, but is of particular importance for forensic applications as well. For instance, if the

Ethernet frames related to an attack on a network are captured, and a suspected device later

obtained, the frames could be compared to test frames generated by the device using the PLIS

to determine whether or not it was likely that the device perpetrated the attack (of course we

would have to know something about the uniqueness of device behaviour for the population of

such devices, with respect to the PLI being used in the comparison, so that some qualifier, like

there is a 1 in 1000 chance that another device shares the same fingerprint, could be given).

With this application in mind, we used the generic filters created for each device of dataset2

against all of the devices in dataset3. Tables 4.15 and 4.16 present the results of this analysis.

The ’control’ response given along the diagonal was calculated in the same way as the subject
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response (see Section 4.3.4.2). With reference to the APRS metrics, we are first concerned with

specificity: for if a device can’t be identified as itself nothing can actually be known about how

well a PLI does in differentiating other devices from it. Specificity varied by model, and even

greatly within a model class. The m4 cards proved more difficult to re-identify than cards from

the other models, m5 cards were re-identified over 94% of the time, on average, while the m6

cards showed mixed results with five devices over 87% but three devices less than 50%. Because

of the low TNR rates for m4 devices, the average accuracy was only ∼90%. Taken together, this

implies that, at least for certain models (e.g., the m5 model, which had an average specificity

and accuracy of over 94%), forensic analysis could be effected legitimately.

Forensics and long-term tracking of devices are an open problem in PLI. For the matched

filter two possible approaches would be: increased retention of past filter outputs and sub-

profiles based upon different operating environments/conditions. In the first case, a device’s

signal profile could be endowed with a type of memory so that filter outputs could be put into

a historical context; i.e. given what we have seen recently from the device—taking into account

the last time we heard from the device—does the current filter output fit the profile? For the

second, profiles could be built for how a device behaves at different times of of day or under

varying CPU loads, etc. Filter outputs for newly arrived frames could be compared against

these different profiles to see if a match is found and if it’s a likely match, given the device’s

reported load and the time of day, etc.

[ RESULTS FOLLOW ]
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Table 4.16 Intra-model APRS values for for dataset2 generic matched filters used on dataset3

Tested Card A P R S
m4c1 0.706 0.809 0.847 0.000
m4c2 0.684 0.804 0.820 0.000
m4c3 0.785 0.825 0.941 0.003
m4c4 0.995 0.994 1.000 0.971
m4c5 0.877 0.871 1.000 0.259
m4c6 0.670 1.000 0.604 1.000
m5c1 0.898 0.975 0.911 0.768
m5c2 0.923 0.999 0.916 0.991
m5c3 0.965 0.997 0.965 0.968
m5c4 0.998 0.998 1.000 0.979
m5c5 1.000 1.000 1.000 1.000
m5c6 0.938 0.997 0.934 0.975
m5c7 0.906 0.993 0.902 0.939
m5c8 0.916 0.999 0.909 0.986
m5c9 0.998 0.998 1.000 0.980
m5c10 0.983 0.983 0.999 0.824
m5c11 0.902 0.999 0.893 0.991
m6c1 0.930 0.940 0.986 0.431
m6c2 0.991 0.993 0.998 0.934
m6c3 0.963 0.960 1.000 0.628
m6c4 0.973 0.971 1.000 0.727
m6c5 0.920 0.918 1.000 0.197
m6c6 0.938 1.000 0.932 0.999
m6c7 0.943 0.985 0.951 0.874
m6c8 0.709 0.882 0.781 0.062
m6c9 0.998 0.997 1.000 0.976
m6c10 0.889 0.985 0.891 0.877
mean 0.904 0.958 0.933 0.716
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4.5 Conclusion

We presented a methodology capable of identifying Ethernet cards based upon minute vari-

ations in their network signalling resulting from hardware and manufacturing inconsistencies,

using an optimal detector, the matched filter. Several non-traditional applications of the filter

were presented in order to improve its ability to discriminate between signals from seemingly

identical devices of the same manufacturing lot. The experimental results of applying these

filters to three different models of Ethernet cards, totalling 27 devices, and over three different

datasets, were presented and discussed. Our results indicate that a matched filter can easily

discriminate between Ethernet cards of different models and, with sufficient pre-processing of

data, cards of the same model to an acceptable degree of accuracy, and that device behaviour

is stable enough for some models of devices to justify further research into forensic applications

for PLI.
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CHAPTER 5. DIFFERENCE SENSITIVITY

The entire basis of PLI rests upon the assertion that slight variations [of devices] are difficult,

if not impossible, to control and duplicate (Section 1.2. In light of recent work [47, 48], which

shows that wireless signals can be successfully forged, it is no longer sufficient to merely assert

the inherent security of PLIS. A brief overview of these works is instructive as it provides

information on not only how PLI can be attacked but also the hardware necessary to do so—

both of these pieces of information are necessary when considering ways to determine the

security of a PLIS.

Both [47, 48] consider two types of attacks against the PLIS proposed in [35], which utilised

the demodulation characteristics of 802.11b signals; in addition, a transient-based approach

for sensor nodes is examined in [47]. [35] was compromised in both works by creating signals

with the features of known devices and through replay of observed frames. For the former

attack, false-accept rates (FAR) of 98% and 75% were reported for [47, 48], respectively; in the

latter attack, the FAR for [48] was 55% while the replay attack met with similar success as the

generation attack for [47]. The difference in attack success rates can probably be attributed

to not only the threat models but the vastly different hardware used to model the PLI system

and carry out the attacks.

In [47] universal software radio peripherals (USRP) operating at 128 Megasamples/s and

controlled with the GNU Radio library were used for both the genuine and attacker devices,

with the attacker device being programmed to produce the features of the genuine devices as

measured by, and at, the PLI system (which consisted of an Agilent Digital Signal Analyzer

operating at 40Gigasamples/s with 8000MHz of bandwidth). The replay attack was carried

out using a Tektronix AWG 7000 (20 Gigasamples/s); the frames used for the replay were

captured at the attacker’s location using the PLI system. In [48] both the PLI system and
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the attacking device were built using the same USRP (14-bit analogue-to-digital converter

operating at 100 Megasamples/s and dual 16-bit digital-to-analogue converter operating at

400MHz). The attacker sought to reproduce or generate signals, which it captured, from one

of three laptops used to represent legitimate users.

In their analysis of [32], Danev et al. were able to successfully replay frames captured by

the PLI system over a wired channel; however, when a wireless channel was used the system

could only be defeated if the attacker assumed the genuine device’s physical location.

Based upon the character of these attacks, we proposed a general framework for determining

the theoretical limits of a given classification technique to distinguish between signals from

different devices. Having found the maximum and minimum waveform voltage values necessary

to distinguish two signals, it was shown that it is possible to define the characteristics of an

arbitrary waveform generator (AWG) necessary to produce a forged signal that is acceptable to

the PLIS. The work focused on studying the limits of the matched filter, though the framework

is general enough to apply to other classification techniques (although its application may be

more complicated).

5.1 Limitations of analysis

In what follows, all analysis and calculations are carried out with respect to a differential, or

reconstructed, 10Mb Ethernet waveform (depicted in Figure 4.1), which is found by taking the

difference of the signals captured at the receive pins on secondary side of the DAQPC’s trans-

former. While this is unimportant in determining how different the signals from two devices

must be before they are distinguishable, it does result in a loosening of the constraints placed

on an attacker. In the former case this simplification is unimportant because the matched filter

methodology assumes the reconstructed signal (we needn’t be concerned with the constituent

signals as only their difference is considered). However, for the latter case, the analysis ignores

the fact that in actuality an attacker would be required to forge two signals. We have made this

assumption not only because it simplifies the analysis by not requiring that we consider two

signals and also their difference, but also because the only data available to us is the differential

waveform and that acquiring the signals the attacker need forge would require that we take



www.manaraa.com

69

measurements on the primary side of the DAQPC transformer.

In addition, we also ignore problems of alignment and the affects of the channel, from the

perspective of an attacker. In the former case, this means that we take for granted that the

attacker is able to create a signal that results in the correct alignment; while the latter implies

that a measurement made at one point along the wire, or even a tap connected to the wire,

would yield the same results as a measurement made at any other point at the same time.

Again, this downplays the complexity of carrying out an attack but it also provides a worst

case analysis of the PLIS. We have also only performed a first-order analysis; i.e., we do not

comment on the interdependence of the AWG characteristics given in section 5.3.3. Finally, a

note about notation: a record is taken to mean a sampled waveform from an Ethernet frame.

When we speak of forging records, we mean that the waveform represented by the record would

be forged.

5.2 Constraint on signal differences

As laid out in section 4.3, for device k to be accepted as device i the maximum of the

convolution between the reference signal for the ith device, fi(t), and the records of the kth

device, rk(t), must fall between the thresholds th+ and th−. To simplify the analysis, we will

make use of discrete notation and view the matched filter in terms of correlation; i.e. we will

dispense with defining the filtering operation in terms of convolution and instead use the dot

product. As such, it is no longer necessary for the reference signal to be time-reversed.

In the most general case then—one that assumes no prior restrictions about signal alignment—

a record from device k must satisfy the following constraint to be accepted by the matched

filter PLIS as originating from device i

th− ≤ max

 n∑
j=1

fi[j]× rk[j + ∆]

 ≤ th+ (5.1)

where n is the length of the reference signal for device i, m is the length of the record from

device k, and ∆ may vary from 0 · · ·m− n.

Equation 5.1 tells us how different two signals must be until they are distinguishable. While

this may be seen as merely another way of formulating the matched filter PLIS, it is done to
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make explicit the relationship of the levels of the original signals to the thresholds used to

decide whether two signals originated from the same device (this is necessary for the analysis

that follows). In the case of other PLIS, similar work would need to be carried out, with the

difference that signal levels would first need to be connected to feature sets and then those

features to thresholds (in the matched filter PLIS the signal levels serve as the feature set).

From the perspective of an attacker, (5.1) can be satisfied in one of two ways: by attempting

to create a high fidelity copy of the waveform from device i used to create th+/−, which would

guarantee that the attacker’s frames fall with the thresholds (Type I attack), or by manipulating

an existing signal so that its filter output, using fi, falls with th+/− (Type II attack). Having

formulated the signal-level constraint under which two devices may be considered identical, we

can ask what sort of signal generation or manipulation capabilities, and information about the

PLIS, an attacker would need to produce signals for each attack.

5.3 Type I attack

Allowing ra to represent the attacker’s records and rg the records of the device the attacker

is targeting (the genuine device), both sampled at the PLI system, in a type one attack an

attempt is made to generate forged frames based upon genuine frames. Because the thresholds

for the genuine device allow for the variation of the genuine device’s filter output an attacker

needn’t produce perfect copies of the genuine device’s waveform. Our task then is to determine

how different the signal levels of ra can be from rg and still have the filter output of ra fall

within the thresholds established for rg.

5.3.1 Threat model

For the type one attack forged frames could be passed off in one of two ways: having

observed a frame the attacker could attempt to replay the synchronisation portion of the

original waveform but with a different payload, or they could construct a single frame based

upon the average of multiple observed waveforms and transmit it with a custom payload. If

the attacker wants to maximise the amount of allowable error between the forged signals and

the authentic signals they will choose the latter case. The proof follows.
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Following the procedure set out in Section 4.3.3, the thresholds for the next m records are

determined by taking the mean of filter outputs for the previous n records and adding, for

the upper threshold, or subtracting, for the lower threshold, the standard deviation of those

same outputs times some constant (see Equation 4.13). As the filter is the sum of products,

forging a signal that produces the mean filter output allows for the maximum, equal amount of

deviation for each sample point in either direction. The average of the signals used to calculate

the thresholds is just such a signal.

Allowing sg to represent those portions of ri−n,··· ,i−1
g aligned to the reference signal fg and

l to be the length of fg, the filter output for the jth record (j = i− n, · · · , i− 1) is

cj
g =

l∑
k=1

fg[k]× sj
g[k] (5.2a)

= fg · sj
g (5.2b)

The mean of the filter output for the n training records

µ(cg) =
ci−n
g + ci−n−1

g +, . . . ,+ci−1
g

n
(5.3a)

=
fg · si−n

g + fg · si−n−1
g +, . . . ,+fg · si−1

g

n
(5.3b)

=
fg ·

(
si−n
g + si−n−1

g +, . . . ,+si−1
g

)
n

(5.3c)

= fg · µ (sg) (5.3d)

It is worth noting that although an infinite number of arbitrary signals (though not an

infinite number of signals falling within the guidelines set by the 802.3 standard [58]) could

be generated to produce a filter output equal to the mean of the previous n records, finding

the average signal only requires that an attacker observe n waveforms, align, and then average

them. Of course an attacker could not know the which frames would exactly constitute the n

training records; nonetheless a sort of moving average using more than n waveforms could be

employed to approximate the true mean as the filter output does not change quickly over time.

(The exact limits of such an approximation could be at least partially estimated by calculating

the rate of change of the width of the thresholds determined during the data analysis covered

in Chapter 4.) Finally, while the attacker can align and average observed waveforms, there is
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no guarantee that the resulting signal, even if reproduced perfectly, would be aligned to the

genuine device’s reference in such a way as to produce a filter output of (th+ − th−) /2.

Having determined the optimum signal an attacker would attempt to forge, we now turn

to the question of much the attacker could deviate from the signal and still make it acceptable

to the matched filter PLIS.

5.3.2 Signal deviation

In order to simplify the analysis, let us ignore for the moment the problem of alignment; i.e.

following the triggering of the sampler used in the system, the next l samples are automatically

used in the matched filter operation instead of trying to find that those sample points that result

in maximum alignment. All of the above concerning the optimum signal to forge still holds as

the average of these signals would still yield the average filter output. This simplification is

really not so exceptional as it may seem because, as mentioned in Section 4.3.2, trigger jitter

and signal variation proved so small in dataset2/3 that the maximum filter output was only

sought within 50 sample points of the expected maximum point of alignment. (In point of

fact, average deviation between the expected alignment, t0, and the actual alignment, ta, for a

device tested against itself for dataset2 was only 1.563 sample points.) Allowing ttrg to denote

the sample point in the at which the oscilloscope triggered, (5.1) may be rewritten as

th− ≤
n∑

j=1

fi[j]× rk[j + ttrg] ≤ th+ (5.4)

The practical consequence of this, from the attacker’s standpoint, is that the discrepancy

between the attacker’s average signal and the genuine average signal is greatly reduced, if not

eliminated, as finding the average signal no longer requires pre-alignment to some reference

signal but is instead carried out merely by an averaging of the records (this of course presumes

comparable sampling equipment for the attacker and the identification system). In what follows

we assume that the average signal computed (but not reproduced) by the attacker would be

equal to that seen at the PLIS.

Allowing savg = µ (sg), where sg are the next l sample points following the trigger point of
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rg, the constraint equation the attacker needs to satisfy is then reduced to

th− ≤
l∑

k=1

fg[k]× (savg[k] + A[k]) ≤ th+ (5.5)

where A[k] is the per sample point deviation of the attacker’s reproduced averaged signal, sa,

from the genuine averaged signal (i.e. A = sa − savg).

The maximum and minimum allowable values for A[k] are found by increasing or decreasing

the signal level for each sample point until the dot product of the modified signal and the

reference signal equal the thresholds. Using an additive model for changes in signal levels leads

to the following system of equations

th+/− =
l∑

k=1


fg[k]×

(
savg[k] + A+/−

)
for savg[k] ≥ 0

fg[k]×
(
savg[k]−A+/−

)
for savg[k] < 0

(5.6)

where A+ ≥ 0 and A− ≤ 0. An additive model was chosen because it allows for an equal

amount deviation for each sample point, no matter the signal level.

Another possible model is a multiplicative one in which more deviation is allowed for higher

signal levels than lower ones

th− ≤
l∑

k=1

fg[k]×
(
savg[k]×A+/−

)
≤ th+ (5.7)

where 0 ≤ A− ≤ A+. This latter model would be more appropriate if an attacker’s equipment

had greater accuracy in producing smaller signal levels than higher ones. We assume that the

attacker’s capabilities are agnostic to signal level and therefore use the former model. This is

in keeping with our conservative approach regarding the capabilities of an attacker’s hardware

(i.e. we want to provide an upper bound on AWG performance) and also accords with the

characterisation of waveform generating equipment by manufacturers as their metrics are given

so as to provide, if not uniform, then at least worst case indications of performance.

The solutions to (5.6) are given by

A+/− =
th+/− − fg · savg∑l

k=1 |fg[k]|
(5.8)

Thus, for the attacker so long as A− ≤ A[k] ≤ A+ the forged signal is guaranteed to be accepted

as the genuine device by the matched filter PLIS. Because the thresholds th+/− are symmetric

about the mean, |A+| = |A−|.
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Having determined not only the signal an attacker should attempt to produce to have a

forged record accepted, but also the how much the forged signal can vary from the ideal and

still be accepted by the matched filter PLIS, we must ask what kind of AWG would be able

to produce the ideal signal with an acceptable degree of accuracy (i.e. find the minimum

performance required of an arbitrary waveform generator to produce the target signal within

the boundaries established by (5.8).

5.3.3 Arbitrary waveform generator characterisation

An arbitrary waveform generator creates an analogue version of a digitized waveform. The

three core components of an AWG are the waveform source memory, digital-to-analogue con-

verter (DAC), and low-pass filter; optional components include scaling circuits, DC offset cir-

cuits, and differential outputs [59]. An analogue signal is created by feeding the binary values

of the digitized waveform (known as codes) to the DAC, where a stepped, or discrete, output

is generated; the stepped output is smoothed by the low-pass filter.

5.3.3.1 Parameters of interest

Because of the central role of the DAC in recreating the digital signal, we will concentrate

our performance analysis exclusively on it and assume the other components of the AWG to

be ideal. In any case, the parameters related to the DAC we will be discussing are always

given with respect to the output of the AWG, so we are merely overestimating the minimum

performance of the AWG. Additionally, for simplicity sake, we have not included the error

bands associated with the waveform generator’s output; an exact and full analysis of AWG

performance would require that these bands be incorporated.

According to [60], the most important specifications used to evaluate the dynamic perfor-

mance of a DAC are settling time, glitch impulse area, distortion, spurious free dynamic range

(SFDR), and signal-to-noise ratio (SNR). Not all of these parameters are relevant or their

impact calculable in the present case; in particular, glitch area will be subsumed under our dis-

cussion of settling time. In addition to these parameters, we will also discuss the impact of the

resolution of the DAC. Finally, the algorithms described below are documented in Appendix
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B.

Resolution

DAC resolution refers to the number of discrete outputs a converter is capable of generating

[61]. A DAC with a resolution of n-bits is able to produce 2n outputs within the range V+ and

V− volts. Assuming linearly-spaced outputs, the voltage difference between two neighbouring

outputs, which we shall refer to as the increment voltage, is VFS/(2n − 1), where VFS =

V+ − V− (the full-scale voltage). Analogue-to-digital converters used in sampling devices such

as oscilloscopes also have a resolution, but in this case resolution refers to the number of signals

levels they are capable of measuring.

Because savg is the average of n discrete signals, it may not be an exact multiple of the

increment voltage of either the attacker’s AWG or the PLIS system’s sampling device. In

actuality then the averaged signal an attacker would attempt to forge, sact, would be made

up of the closest multiples of the PLIS’s increment voltage to the ideal savg. Allowing m[i] to

represent the multiple of the PLIS sampler’s increment voltage leading to the smallest difference

for the ith point of savg, that is

arg min
m

(∣∣∣∣savg[i]−m
VFS

2n − 1

∣∣∣∣) for i = 1, . . . , l (5.9)

where VFS and n are the full-scale voltage and resolution, respectively, of the sampler, then

sact = m[i]× VFS

(2n − 1)
(5.10)

The average signal measured at the PLI system would not necessarily give rise to a filter output

equal to the mean of the previous n filter outputs, though it would approximate it.

An attacker need not actually require an AWG with a resolution equal to that of the PLI

system’s sampler to carry out a type one attack, as the attacker needn’t actually generate

sact but merely a signal that when sampled satisfies Equation 5.6 (where sact is substituted for

savg). Allowing s− to be the minimum signal and s+ the maximum signal, calculated according

to (5.8), that produces a filter output equal to th− and th+, respectively, the resolution, na,

and full scale voltage, V a
FS , of the attacker’s must find some m between 0, . . . , 2na − 1 for each
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i = 1, . . . , l such that

s−[i] ≤ m× V a
FS

2na − 1
≤ s+[i] (5.11)

In the analysis that follows, we assume that savg = sact.

Setting time and glitch area

The settling time, τs, of a DAC refers to the time it takes the DAC to switch its output

from one code and reach the steady-state value, within the error bands, of the new code [62].

As can be seen from Figure 5.1, the settling time can be further divided into: dead time (time

it takes for the DAC to register the code change and begin changing output); slew time (time it

takes for the DAC to first cross the error band of the new output); recovery time (time in which

the DAC is acting in a non-linear manner—characterised as under- and over-shooting—that

may cause the output to fall outside the error bands for the new output); and linear settling

time (the time in which the DAC output approaches the error bands of the output in a linear

fashion). Glitch area refers to the time integral of the signal falling outside the error bands

during the recovery time (commonly defined for the worst-case code change).

Assuming that an attacker is attempting to reproduce savg, it may seem at first glance
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Figure 5.2 Settling time: optimal signal to use for attack, savg (green) with maximum, s+,
and minimum values, s−, of attack signal (red). In moving from savg[3396] to
savg[3397] an attacker only need reach s−[3397] by the next sampling period.

that an attacker’s AWG must be able to change from to savg[i] to savg[i + 1] before the PLIS

samples the i + 1 point; i.e. τs ≤ 1/fs, where fs is the sampling frequency of the PLIS

oscilloscope. However, according to (5.6) an attacker need only reach an output that is within

savg[i + 1]±A+/− to ensure acceptance of the forged frame (Figure 5.2).

Specifically, allowing s− to be defined as above, an attacker need only make sure that at

each sampling point (i.e. every 1/fs seconds) the output of the AWG be more than s−[j]/savg[j]

of savg[j] for the signal to be accepted as genuine (Figure 5.3).

In order to simplify the calculation that gives the settling time which satisfies this condition,

we have linearised the slew and recovery times (see Figure 5.4). While this simplification

provides a very conservative estimate of the minimum settling time, again in keeping with our

general approach, it also obviates the need to consider the affects of glitch area in our analysis.
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Figure 5.3 Calculating minimum settling time: at time t1 attacker DAC is alerted to change
output from savg[1] = V1 to savg[2] = V2; DAC output begins to change at t2 and
achieves steady state by t3; at t = 1/f r

s , the inverse of the PLI system’s sampler,
the output of the DAC must be at least s−[2] (red) to guarantee acceptance by
the system (Source: [63]).

Allowing τr to equal the slew time plus the recovery time and τd the dead time, the minimum

settling time for an attacker’s AWG is τs = τd + τr, where τd < 1/fs and τr is given by

τr =
1/fs − τd

max (|s−[j]/savg[j]|)
(5.12)

for j = 1, . . . , l.

Signal-to-noise ratio (SNR)

SNR specifies the power of the generated signal to the total amount of noise produced by the

DAC [61]. Distortion is excluded from the noise measurement by ignoring a specified number of

harmonics from the generated signal. Allowing s to be the signal to be generated by the DAC,

sgen the actual signal generated signal (minus distortion), the noise is then N s = s− sgen. Let

P (·) be the measure of the power, the SNR is then

SNR =
P (s)

P (N s)
(5.13)
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Figure 5.4 Linearisation of slew and recovery times to calculate settling time. Output of DAC
is guaranteed to always be greater than purple line.

By definition savg is free of noise and distortion as it is the signal the attacker is trying to

reproduce. To determine the maximum amount of noise an attacker’s AWG may generate and

still produce a signal within th+/−, it is then necessary to add noise to savg until one or the

other of the thresholds is exceeded.

Allowing N to be of a vector of Gaussian noise of length l, the power of N should be

increased until

l∑
k=1

fg[k]× (savg[k] + N [k])


> th+

or

< th−

(5.14)

The minimum SNR an attacker need maintain is then P (savg) /P (N).

Distortion

Three distortion measurements are commonly used to characterise the performance of a

DAC: total harmonic distortion (THD), total harmonic distortion plus noise (THD+N), and

signal-to-noise plus distortion ratio (SINAD) [61]. For a DAC the THD is a ratio of the power of

the first n harmonics of a generated sine-wave signal to the power of the signal itself. Allowing
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Hs
i to denote the ith harmonic of the signal s, the THD is given by

THD =
∑n

i=1 P (Hs
i )

P (Hs
0)

(5.15)

where Hs
0 is the fundamental frequency of s and P (·) is as above. According to [64] the first

nine harmonics should be used; i.e. n = 9.

For the THD+N calculation a similar ratio of the harmonics-to-signal power is taken but

with the total power of the noise of the generated signal, N s, added to the harmonic noise (the

bandwidth over which the noise is measured must be specified)

THD+N =
∑n

i=1 P (Hs
i ) + P (N s)

P (Hs
0)

(5.16)

SINAD then is the ratio of signal, noise, and distortion powers to the noise and distortion

powers (over a given bandwidth SINAD is equivalent to THD+N)

SINAD =
P (Hs

0) +
∑n

i=1 P (Hs
i ) + P (N s)∑n

i=1 P (Hs
i ) + P (N s)

(5.17)

To calculate the maximum distortion allowed by the PLIS, we must first define what consti-

tutes distortion of the signal savg. Linear distortion of this signal would be of the form κ×savg,

where κ represents an arbitrary constant [52]. As the attacker may deviate from each sample

point of savg by as much as A+/−, we are dealing with non-linear distortion; specifically ampli-

tude distortion. The distortion of the signal is then simply the difference between savg and the

attacker’s signal, or A[i] as defined in Section 5.3.2. The maximum amount of distortion, D+/−,

the signal savg may experience and still be accepted as genuine is then simply the difference

between the signals, s+/−, that produce filter outputs equal to th+/− and savg, that is

D+/− = s+/− − savg (5.18)

To relate this to our distortion parameters we note that an attacker is actually attempting

to generate a signal made-up of a combination of sine waves of varying amplitudes and phases.

We must therefore calculate the allowable distortion with respect to each of the individual

frequency components of the signal. Allowing S = FFT {savg} and D+/− = FFT
{
D+/−

}
, the

maximum allowable THD of the attacker’s AWG for each frequency bin i within the bandwidth
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B of the (sampled) signal savg, is given by

THD[i] = min

(∑9
j=1 P (D+[i× j])

P (S[i])
,

∑9
j=1 P (D−[i× j])

P (S[i])

)
(5.19)

Calculating the THD+N and SINAD are not so simple as adding noise to the signal in a

manner similar to that used in the SNR calculation outlined above, for it cannot be known the

proportion of noise and distortion to use to bring the signal above or below the thresholds as

each may affect the PLIS differently (i.e. the PLIS may be more or less resistant to distortion

than noise, or vice-versa). An estimate of the THD+N and SINAD must then be specified

according to both the level of distortion and noise.

For simplicity’s sake, let us consider only the case of D+, that is the distortion necessary to

produce a filter output equal to th+, as the same procedure is followed for D− (the THD+N

and SINAD being the maximum result of the two). Allowing D = κD+, where κ is a scalar

between [0 : 1], to denote the amount of distortion applied to the signal savg, and D and S

their Fourier transforms, respectively. To calculate the THD+N and SINAD for the ith bin

over the bandwidth B, combine each bin of S, except for the ith bin, with the bins of D that

constitute the harmonics of the ith bin, and take the inverse Fourier transform of the resulting

signal. Using the procedure set forth above for SNR, add noise to this signal until th+/− is

crossed. The power of this noise is used in (5.16–5.17) with the distortion portions of the

equations calculated using the combined signal. This procedure is followed for as many levels

of distortion (i.e. values of κ) as are deemed necessary.

Spurious Free Dynamic Range (SFDR)

SFDR is a narrow-band measure of distortion/noise in that it is the ratio of the power of

the generated signal to the largest spurious frequency component produced by the DAC during

generation of the signal [61].

Because the signal the attacker is attempting to reproduce is composed of many frequencies,

we must consider a spurious signal for each. Since SFDR is given as the worst case across the

AWG’s bandwidth, we will assume that recreating a signal with n frequency components creates

n spurious signals with a constant SFDR (i.e. the ratio between the frequency component
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generated and the spurious signal is the same for each component).

In analysing the affects of SFDR on an attackers ability to forge savg we must determine

how great the SFDR for each of the frequency components used to generate the signal need

be for the signal to fall outside of the thresholds for the genuine signal. How these spurious

signals are distributed among the bandwidth of the signal has a bearing on the magnitude of

their affect. Are they for instance randomly distributed or are they a multiple (harmonic) of

the generated frequency component? Our analysis must then consider the number of frequency

bins used in recreating savg, where the spurious components are placed, and how strong they

need to be for the generated signal to fall outside th+/−.

Allowing S be an ordered list, from greatest to least power, of the frequency bins of the

signal savg and m the number of bins over the bandwidth of interest, B, select the first n bins

from S, for n = 1, . . . ,m, to create the frequency content of the attacker’s signal, Sa. Generate

complex noise, N , for each of these components such that the ratio N [i]/S[i] is the same for

i = 1, . . . , n. This noise should then be distributed randomly across the bandwidth of Sa. The

inverse Fourier transform of Sa is then taken to determine the attacker’s time-domain signal,

sa. The SFDR is found by increasing the ratio N [i]/S[i] until the resulting sa produces a filter

output outside the thresholds of the genuine device. Each time the number of components used

to create is Sa increased, the N [i]/S[i] ratio should begin at zero to ensure that the number of

components used to recreate savg produces a signal that results in a filter output within th+/−

(if not, the resulting SFDR would be −∞). This procedure could also be used to place the

noise on arbitrary harmonics of the generated signal to see which configuration results in the

largest SFDR. This then is the SFDR an attacker’s AWG must meet.

5.3.4 Results for Type I attack

Using the approaches set out above for each of the parameters of interest, we performed

an analysis using the device m5c1 from dataset2 (both randomly selected) to determine the

characteristics of an AWG necessary to successfully carry out a type one attack on the matched

filter methodology. Records 1001–1026 were used to ensure that the device was operating

outside the warming-up period noticeable in each device’s filter output. A matched filter was
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Table 5.1 AWG Characteristics for Type I Attack.

Parameter Value
Resolution 12 bits
Settling time 0.40025 ns

(2498465616 Hz)
SNR 28.025 dB
THD -75.279 dBc
THD+N -24.867 dBc
SFDR 14.727 dB

created using sample points 2925–1794 from record 1001 (the same span used for dataset2/3 in

Section 4.4.1), with the remaining records used to calculate thresholds. The attacker’s signal,

sa, was found by aligning records 1002–1026 to the reference signal and then averaging. A

summary of the resulting AWG characteristics is given in Table 5.1; the code used to arrive at

these values may be found in Appendix B. A discussion of the calculations for each parameter

follows.

Resolution

For dataset2/3 a two channel oscilloscope with 8 bits of resolution was used to capture

the differential signals used in 10Mb Ethernet; however, as mentioned in Section 5.1, we have

performed the matched filter operation on the reconstructed waveform; i.e. we have subtracted

the data obtained on one channel from the other and used the resulting signal for analysis.

As such the data used for the AWG characterisation study should actually be considered 9-bit

data: the maximum of the absolute value of any of the binary sample points that make up the

waveforms was greater than 127 but less than 255; 8 bits, plus another bit for the sign, are

required to represent this data then. The y-scale, or voltage, increment used in the capturing

routine was 0.02 volts, which leads to an effective full-scale voltage of -5.12 to +5.10 V (binary

values for the sample points range from -256 to 255).

Using the method outlined in Section 5.3.3.1 would require an AWG with 12 bits of resolu-

tion and the above full-scale voltage to realise an approximation of the signal savg (i.e. a signal

within the bounds of s+/− [Figure 5.5]). The resolution of the attacker’s AWG must be higher

than the sampler of the PLIS (9 bits) because of the constraints of the type one attack, which
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Figure 5.5 Optimal signal to use for attack (green), 12-bit realisation thereof (black), and
maximum and minimum values of attack signal (red).

requires that the attacker produce a signal between s+/−. Reducing the full-scale voltage of

the AWG to better match the minimum and maximum values of the actual waveform (down

to say -3.5 to +3.5 V) would decrease the required resolution because, though the difference

between s+ and s− would not change, the voltage difference between each consecutive binary

value would decrease. Another consequence of the model is that increasing the sampling rate,

or including more of the Ethernet frame in the filter, reduces the amount of allowable deviation

per sample point (i.e., the difference between s+ and s− decreases), which in turn necessitates

an increase in resolution.

If the restraints of the attack model are lessened so that levels of savg are instead the nearest

multiples of ±Vfs/(2n−1), assuming Vfs = 5.10V , we find that the minimum resolution needed

to produce a signal with a filter output between th+/− for the matched filter methodology is
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Figure 5.6 Optimal signal to use for attack (green), 5-bit realisation thereof (black), and
maximum and minimum values of attack signal (red).

only n = 5 bits (Figure 5.6).

In any case, no matter the resolution of the attacker’s AWG the final values of the savg

will be determined by the sampler of the PLIS. To ensure that the signal is acceptable to the

system it may be necessary to decrease/increase the resolution of the signal to that of the PLIS

and modify the resulting levels accordingly.

Settling time

Due to the slight difference between s− and savg at the waveform maximum and minimum,

the required settling time of the attacker’s AWG is very nearly equal to the sampling time of

our PLIS (they differ by only 0.0614%).
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Figure 5.7 Close view of optimal signal to use for attack (green), optimal signal with SNR of
∼28 dB (black), and maximum and minimum values of attack signal (red).

SNR

It was necessary to repeat the procedure given in Section 5.3.3.1 several times (1000 in

our calculations) and then average the results to arrive at an accurate estimate for the SNR,

as for any individual iteration the additive white gaussian noise generated could decrease or

increase the amplitude of particularly consequential or inconsequential (i.e. of greater or lesser

amplitude) sample points in a non-uniform fashion.

The maximum estimated SNR necessary to successfully carry out the attack is quite high

and results in a signal visibly different from savg (black lines, Figures 5.7 and 5.8). This

is actually to be expected as the matched filter is an optimal detector in the presence of

AWGN. This immunity from noise derives from its origins in communications systems, where

this behaviour is counted as a strength; in a PLIS must be counted as a deficiency.
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∼28 dB (black) to highlight extent of visible differences.
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THD and THD+N

Both THD and THD+N calculations were carried out over the bandwidth of 20.013 MHz

using nine harmonics, as per IEEE standard 1241-2010 [64]. Figure 5.9 gives the maximum

allowable THD per frequency bin to produce savg within s+/−. For an AWG the stated THD is

usually taken as the maximum THD across the given bandwidth; thus the THD of the attacker’s

AWG should be no greater than the minimum THD shown in Figure 5.9. To calculate THD+N

ten levels of distortion were used; i.e. κ = 0.1, 0.2, . . . , 1. Using the same reasoning as for the

THD estimate, the maximum amount of allowable THD+N was determined by taking the

minimum value for each distortion level and then averaging. As can be seen from Figure 5.10,

which shows the maximum THD+N as a function of distortion level and frequency bin, the

estimated THD+N is roughly constant across distortion levels. This merely reinforces the point

that the matched filter is insensitive to noise.

SFDR

In our SFDR estimation we assumed that any frequency components used to produce the

signal savg would result in a spurious signal placed at random across the bandwidth of the

AWG. The number of components needed to generate the signal under the restrictions of the

type one attack are substantially fewer than would be need to be produced in an actual attack,

as using too few components would result in misalignment (in our construction of an attack

perfect alignment is assumed). As such, the SFDR given is an average of signals produced using

n components, where n varied from a single component to every component in the bandwidth

of the sampled waveforms used to create savg. Even then the reported SFDR, which being

positive indicates that any spurious signal produced during the generation of an individual

frequency component can actually be of greater power than the component itself, results in a

signal that is clearly different from savg and would be distinguishable from a genuine signal

using one of the tests discussed in Section 4.2.3 (using the norm test, for instance, decreases

the SFDR to -28 dB).
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Figure 5.9 Minimum THD, measured with respect to carrier, necessary to produce attack
signal guaranteed to be accepted by PLIS.
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10MHz)and distortion level (front-to-back, scale is [0:1]), necessary to produce
attack signal guaranteed to be accepted by PLIS.
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5.4 Type II attack

In a type two attack an attacker is not seeking to produce a high-fidelity copy of a signal

from a valid device but rather, in the case of the matched filter, attempts to manipulate the

signal generated by their device to produce an output within the thresholds for a device already

enrolled in the PLIS system. The only limitation the attacker faces is that the manipulated

signal must behave according to the standard; i.e. the voltage levels, signal transitions, etc are

in accordance with those specified in [58].

To carry out such an attack, however, requires more knowledge of the PLIS and associated

target device than a type one attack. Whereas a type one attack can be carried out simply

by observing frames from the targeted device, in a type two attack the attacker must possess

both the device’s reference signal and thresholds for future outputs to be able to construct

their signal. By knowing these, an attacker can manipulate their signal, in whole or in part, to

produce a filter output falling within the thresholds for the device.

While the character of the manipulation is specific to the PLIS and its underlying clas-

sification technique, for the matched filter methodology, knowing that it is a sum-of-squares

operation and as a simple demonstration, an attacker would simply need to amplify or attenuate

their signal, sa, to such a degree as to satisfy

th− ≤
l∑

k=1

ft[k]× (sa[k]×A) ≤ th+ (5.20)

where ft is the reference signal for the targeted device, th+/th− the thresholds for its filter

outputs for the next m records, and A is the amount of amplification/attenuation applied to

the signal.

As a practical matter, which follows the reasoning set forth in Section 5.3.1, an attacker

would seek to produce a filter output of (th+ − th−) /2. The amount of amplification/attenu-

ation needed to satisfy (5.20) is then given by

A =
(th+ − th−) /2

ft · sa
(5.21)

As no amplifier or attenuator can be made to have a flat response over all frequencies,

an analysis similar to that carried out in Section 5.3.3, involving the maximum amount of



www.manaraa.com

92

allowable deviation of the constant A for each sample point, say, would need to be carried out

to determine the type of technology an attacker need employ to perpetrate the attack.

5.5 Conclusion

We have delineated, and described the information necessary to carry out, two types of

attacks against PLIS. For the first type of attack, in addition to having proved the optimal

signal for the attacker to construct, we provided the parameters needed to define the type

of hardware necessary to produce this signal and a methodology for determining the values

of those parameters. These parameters characterise the performance of an AWG needed to

successfully defeat a PLIS, and can be taken as a sort of metric indicating the security of

a given PLIS: if the parameters indicate that very high-end equipment is required then the

number of attackers will be constrained by economics; it may even be possible that no such

equipment that satisfies the parameters exists at the present time, in which case it may be

concluded that the PLIS under examination is at least temporarily secure against the type one

attack.

When designing a PLIS system, then, the classification technique should be chosen so as to

be as sensitive as possible to these parameters, so that it may be resistant to forged signals, as

well as its ability to differentiate between a population of devices. It is also possible,though,

that while a classifier is theoretically sensitive enough to distinguish between an actual signal

and the most high fidelity forgery, all Ethernet devices may exhibit an inherent amount of

variation in their signals, from frame-to-frame, that is greater than the minimal difference that

can be produced between authentic and forged signals. Such an occurrence would render a

high sensitivity to the parameters laid out above inconsequential.

Having applied the methodology to the matched filter, we find that the threat model is

biased too much towards the attacker and that the analytical portion of the methodology

should be replaced by simulations. The main deficiency of the model is that optimum alignment

between the attacker’s signal and the matched filter is assumed. This makes the PLIS appear

much weaker than it actually is, as heavily distorted and noisy signals can be created, given a

priori alignment, that satisfy the thresholds but would actually align properly.
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The boundaries for the maximum amount of deviation per sample point discussed in Section

5.3.2 are too strict, in that signals having an equal number of sample points of the same

magnitude above and below these boundaries, for example, would be accepted by a PLIS, as

illustrated by our discussion of resolution in Section 5.3.4. A more accurate estimation of the

parameters could be obtained by first selecting a realisable sa—e.g. having calculated savg

determine the minimum bit resolution for it to be accepted by the PLIS—and then performing

simulations using this signal to determine the remaining parameters. By replacing an analytical

approach with one based mostly on simulation, we would also be able to relax the requirement

of perfect alignment. This would, however, require that modelling for the different types of

noise and distortion be specified. For example, should the distortion used in THD calculations

be random (i.e. the magnitude and signs of the real and imaginary components are randomly

generated) or is there a more exact between the harmonics?
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CHAPTER 6. POPULATION SENSITIVITY

The population sensitivity of a classifier sets a theoretical upper bound on the number

of devices it is capable of distinguishing between. Should that bound be substantially lower

than the total device population, the classifier would be unsuitable for deployment as collisions

between cards would be inevitable. In this chapter we show how the population sensitivity of

the matched filter methodology can be estimated using theoretical maximum and minimum

filter outputs derived from the 802.3 standard and the measured variance of filter outputs.

6.1 Matched filter population sensitivity

From the discussion of the matched filter methodology in Section 4.2.2, we know that for two

devices to be distinguished the thresholds computed for their filter outputs must not overlap

(this is illustrated in Figure 4.8). Let us assume the difference, denoted by δ, between the

upper and lower thresholds, thi
+/−, for all i = 1 . . . n devices are identical. This is not to say

that thi
+/− are the same for every devices but only that the difference, thi

+− thi
−, is. (Which is

to say, in reference to Equation 4.13, the filter outputs for each device, while having a different

mean, would share the same standard deviation.) Furthermore, assume that c+ and c− are,

respectively, the maximum and minimum filter outputs possible. The number of devices we

would be able to distinguish would then depend on how many times the difference between c+

and c− was divisible by δ, i.e.

number of devices =
c+ − c−

δ
(6.1)

In graphical terms, we wish to know how many times the space between c+ and c− may be

partitioned into non-overlapping areas of the width δ (Figure 6.1).
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Figure 6.1 Graphical representation of population sensitivity estimation. Partitioning space
between c+ (blue) and c− (red) by thresholds of width δ (green-to-green) allows
the classifier to distinguish up to five devices.

In the determination of th+/− and c+/−, we must take into account that the output of the

matched filter and the thresholds used to identify devices are functions of the sample frequency

and bit resolution of the oscilloscope used to capture signals and the underlying variability of

that signal.

The IEEE 802.3 standard [58] sets forth the minimum voltage, V−, and maximum voltage,

V+, values of the waveform for each bit value, which in Manchester encoding consists of a

transition or lack thereof (Figure 6.2). Thus a continuous-time representation of the upper

(lower) limits of, say, the synchronisation signal can be constructed from V+ (V−) by appending

copies of V+ (V−), or its inversion, to signify a lack of transition, to itself in the correct pattern

to produce the 56-bit sequence of alternating ones and zeros, followed by 10101011, that makes

up the signal.

These synthesized continuous-time synchronisation signals need to be made discrete in

voltage and time according to the resolution and sampling frequency of the oscilloscope used in

the PLI system. Allowing s+ and s− to denote the maximum and minimum discretized versions

of the synchronization signals, we then construct matched filters for the upper and lower voltage

ranges. If spf and spl give the first and last sample points of the span of the synchronisation

signal used to create these matched filters, the maximum and minimum filter outputs possible
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Figure 6.2 Voltage and timing limits of 10Mb Ethernet signal; differential output, half of a
bit period (Source: [58]).

are given by c+ = s+[spf : spl] · s+[spf : spl] and c− = s−[spf : spl] · s−[spf : spl], respectively.

For the second part of (6.1), the difference between the thresholds, δ, is calculated by first

creating matched filters for each of the devices in our dataset(s) using sample points spf through

spl of their reference records (these may need to be adjusted slightly on a per-device basis to

correspond to the voltage levels given by s+[spf : spl] and s−[spf : spl]). Having applied these

filters to each device to determine its control response, we take the average of the difference

between thresholds calculated for each 20 record interval (which are found by following the

procedure set forth in Section 4.3.3) for each device. By selecting the smallest and largest

average difference, δmax and δmin, respectively, from all the devices, we are able to establish a

range for the number of cards the matched filter is capable of distinguishing between

c+ − c−
δmax

≤ number of devices ≤ c+ − c−
δmin

(6.2)

We should note that the 802.3 standard actually sets limits (pictured above) on the dif-

ferential signal at the output (secondary side of transformer) of the transmitter but that our

experimental setup currently measures the signal on the secondary side of the receiver’s trans-

former. Therefore, the records in our datasets would need to scaled appropriately (amplification

or attenuation of the signal would depend on the ratio of the transformer windings at the re-
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ceiver) before δ could be calculated.

6.2 Conclusion

We have outlined a method by which it is possible to estimate an upper bound for the

number of devices the matched filter methodology, or indeed any PLIS making use of two-

sided thresholds and operating on a signal(s) with constraints set on its electrical behaviour,

is capable of distinguishing between. We say that we have provided an upper bound for two

reasons. The first being that devices in practice devices may operate within bounds much

narrower than the standard prescribes or perhaps only a multitude of sub-ranges. Secondly,

our method implicitly assumes that any signal within s+ and s− is realisable; this allows for

signals of arbitrary bandwidth and resolution.

The first of these points could be investigated empirically by studying a statistically sig-

nificant quantity of devices—of different models, date of manufacture, and under varying

conditions—to determine how manufactured devices behave. The second requires that only

signals within a limited bandwidth and resolution be considered (i.e. the intervening signals

should sampled at the PLI system’s sampling frequency and resolution). Having calculated the

number signals possible within PLI system’s bandwidth and resolution, (6.2) could be scaled

appropriately.



www.manaraa.com

98

CHAPTER 7. ORIGIN OF VARIATION

In this chapter we set forth a methodology that allows one to determine whether or not a

particular device component causes, or contributes significantly to, the differences in signalling

behaviour between cards that allow for their identification.

7.1 Modelling components

When we speak of modelling a component or components of a device, we mean that we wish

to determine what the output—either the voltage, current, or both—of said component(s) will

be given a certain input voltage or current. Component behaviour may be captured in one of

two ways: using a lumped, or discrete, circuit model or by viewing the component of as a kind

of black box, wherein an input simply produces an output without explanation.

A discrete model consists of resistors, inductors, and capacitors arranged in such a way

so as to mimic the response of the component to an input. Each of these discrete elements

accounts for how energy is accounted for in the component; electrical energy is represented

by capacitance, magnetic energy by inductors, and dissipated power by resistors [65]. Having

constructed such a model, measurements of the component being modelled must be carried out

in such a way as to reveal the values of elements used in the model. These types of models

are advantageous in that not only can they provide closed form solutions for the output, but

they also allow us to think about the inner-workings of the component using well understood

processes (i.e. how the different circuit elements used to model the component interact, etc).

The black box, or port, model of a component specifies only the port characteristics of

the device—i.e. it only indicates what the voltage/current will be at one port given a volt-

age/current applied at another—but not why this is so. While this model may not explain the
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Figure 7.1 Depiction of a two-port model for a component (input voltage/current denoted
by V 1/I 1 and output voltage/current by V 2/I 2). Note: it is assumed that
voltage/current measurements are carried out at device terminals.

behaviour of a component, it does capture the behaviour of a component precisely, within the

limits of the measured inputs/outputs and under the assumption of linearity.

In a two-port model (Figure 7.1) an input voltage, V1, and current, I1 are related to the

output voltage, V2, and current, I2 via linear combination. Given four variables, there are

six ways to choose two dependent and two independent variables; these six choices represent

the possible two-port models (also called parameters) we must choose from. (It is actually

slightly more complicated than this as we must choose which dependent variable is be written

first. Furthermore, linear combinations of independent variables with linear combinations of

dependent variables further increases the number of possible equations to infinity. Refer to

[65] for a detailed discussion.) The parameter type chosen usually depends on how multiple

two-port models are to be connected [66].

Before proceeding with our discussion of how a two-port model of a component can be

constructed in order to determine the influence the component has on the unique behaviour

of the device, it should be noted that if the operating frequency of the component being

modelled is is high, as it is in networking technologies beyond 10Mb Ethernet, then it may be

necessary to use two-port models where the independent/dependent variables are themselves

linear combinations of independent/dependent variables (see Section 7.2). In addition, a two-

port model of a device is only valid if a true ground plane exists; i.e. the ground is of zero

potential, zero resistance, and is continuous [65].
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7.1.1 ABCD parameters

For our analysis we chose ABCD parameters because of the ease of combining ABCD models

for multiple components in a cascaded or chained fashion (when using ABCD parameters with

multiple components connected in a cascaded configuration, it is only necessary to perform

simple matrix multiplication to determine their combined response). This allows us to build

more complicated models, in which additional component models are added to the chain, to

see how different components affect a device’s signal in combination with ease.

ABCD parameters treat V1 and I1 as dependent variables and V2 and I2 as independent

ones; the input voltage/current and output voltage/current are related viaV1

I1

 =

A B

C D


 V2

−I2

 (7.1)

where each of A, B, C, and D are defined as [66]

A =
V1

V2

∣∣∣∣
I2=0

(7.2a)

B =
V1

−I2

∣∣∣∣
V2=0

(7.2b)

C =
I1

V2

∣∣∣∣
I2=0

(7.2c)

D =
I1

−I2

∣∣∣∣
V2=0

(7.2d)

In characterising a device that operates over a bandwidth, it is necessary to determine ABCD

parameters at multiple frequencies. The question of how ABCD parameters for a component

may be obtained is discussed in Section 7.2.

7.1.2 Proposed model

To determine the affect of an arbitrary device component on the voltage signal Vs, we

propose the following model where ZS represents the impedance of the source generating

VS , ZL is an arbitrary load with ABCD parameters of
[

1 0
1/ZL 1

]
, and the box M represents

the ABCD parameters, denoted by
[

a b
c d

]
, at the frequency of VS for the component under

consideration. The voltage across ZL is then the modified signal VS , which is found by solving
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Figure 7.2 Model to examine how an input signal (V S) is affected by a component with
ABCD parameters of M (Z S is the impedance of the source generating V S and
Z L is the impedance of a test load).

the following set of equations V1

I1

 =

a b

c d


 1 0

YL 1


 V2

−I2

 (7.3a)

=

a + bYL b

c + dYL d


 V2

−I2

 (7.3b)

where YL = 1/ZL. As the output port is an open circuit, I2 = 0; furthermore, we need only

consider the output voltage, V2, so (7.3b) reduces to a single equation, which after rearranging

V2 =
V1

a + bYL
(7.4)

The input voltage, V1, may be found by means of a voltage divider

V1 =
ZIN

ZIN + ZS
VS (7.5)

where ZIN is the input impedance of the cascade (the component plus the shunt load). As per

the definition of ABCD parameters, dividing (7.2a) by (7.2c) gives ZIN = A/C. The input

impedance needed for (7.5) is then

ZIN =
a + bYL

c + dYL
(7.6)

Allowing the source impedance to equal the load impedance, ZS = ZL, substituting (7.6) into

(7.5), and then using the result with (7.4) leads to the following expression for the output
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voltage

V2 =
VS

a + d + bYL + c/YL
(7.7)

Equation 7.7 thus describes how the signal Vs would be affected by passing through an arbitrary

component with measured ABCD parameters of
[

a b
c d

]
.

7.2 Measuring parameters

As the operating frequency of a component increases, the wave-nature of input/output

signals is manifested; i.e. wires are better thought of as transmission lines and signals take on

the form of travelling waves. For this reason high-speed devices are often characterised using

scattering parameters (S-parameters), which can be defined in terms of travelling waves, instead

of ABCD parameters. As scattering parameters consist of linear combinations of voltages and

currents at the input and output terminals of a component—again, depending on whether or

not a measurements can be taken directly at the terminals, these may or may not be defined

in terms of travelling waves—and are thus convertible to ABCD parameters.

For illustrative purposes, we shall assume that voltage and current are measured at the

terminals of the component; i.e. wave phenomena may be ignored. While this simplification is

acceptable for 10Mb devices (attenuation on the transmit pins of a 10/100 Ethernet card is at

least 5 dB at 20MHz and 35 dB at 40MHz [67]), high-speed networking devices would require

S-parameters defined in terms of travelling waves (see chapter three of [65]).

In reference to Figure 7.1, voltage-referenced S-parameters for a two-port component are

defined as [65]

S11 =
V1 − I1Z

∗
1

V1 + I1Z1

∣∣∣∣
V2=−I2Z2

(7.8a)

S21 =
V2 − I2Z

∗
2

V1 + I1Z1

√
|Re (Z1)|
|Re (Z2)|

∣∣∣∣∣
V2=−I2Z2

(7.8b)

S12 =
V1 − I1Z

∗
1

V2 + I2Z2

√
|Re (Z2)|
|Re (Z1)|

∣∣∣∣∣
V1=−I1Z1

(7.8c)

S22 =
V2 − I2Z

∗
2

V2 + I2Z2

∣∣∣∣
V1=−I1Z1

(7.8d)
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where Z1 and Z2 are the impedances of the source and load, respectively, causing the excitation

of the component. Under the assumption that Z0 = Z1 = Z2 and that the source and load

impedances used in Figure 7.2 are equivalent to Z1 and Z2, respectively, the equivalent ABCD

parameters are [65]

A =
(1 + S11) (1− S22) + S12S21

2S21
(7.9a)

B =
(1 + S11) (1 + S22)− S12S21

2S21
Z0 (7.9b)

C =
(1− S11) (1− S22)− S12S21

2S21

1
Z0

(7.9c)

D =
(1− S11) (1 + S22) + S12S21

2S21
(7.9d)

S-parameters can be measured using an oscilloscope and a phase meter; however, this

approach becomes tedious when it is necessary to measure the parameters across a range

of frequencies. Thus, network analysers are more commonly employed to determine how a

component will respond to an arbitrary input, within a given bandwidth. Both vector and

scalar network analysers exist; the former provides complex S-parameters, which tell how the

magnitude and phase of a signal would be affected by the component, while the latter gives

information only about how the magnitude of a signal would be altered. For the matched filter

methodology, both the magnitude and phase of the signal are important for device identification,

as, while the phase of the fundamental frequency is irrelevant (the filter will be aligned to it),

if the phase of the harmonics is modified destructive interference may result. Similarly, if the

magnitude of any of the frequency bins is affected the signal amplitude may be attenuated or

amplified, depending on the character of the component, either of which might produce a signal

with a filter output outside of the thresholds set for the device.

7.3 Determining component significance

In order to discover whether a particular component plays a significant role in device vari-

ation, models of the component drawn from several Ethernet cards, based on their measured

S-parameters, would need to be constructed. An idealised signal, derived by averaging the

waveforms from each of the devices, for each model of card, would serve as the input to the
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model. Matched filters for each device would be built using the output of the model and

applied to each devices output in turn. If signal variation originates at the component, we

would expect to see differences in filter outputs, though even stronger evidence of this affect

would come in the form of collisions between the simulated signals from devices known to have

shown significant overlap from the experiments. The extent to which a particular component

contributes to the uniqueness of a device could be estimated using a quantity of information

calculation.

7.3.1 Constructing model input

As the cards studied in Section 4.4 were easily differentiable across model type, an idealised

signal (i.e. a signal composed of attributes unique only to the model of the cards), Ai, for each

of the i models of Ethernet cards could be constructed by taking n records, selected at random,

from each of the device’s datasets, aligning, and then averaging. This signal, Ai serves as the

input, VS , to the model depicted in Figure 7.2.

7.3.2 Producing model output

The output of the model constructed for the jth device, V j
2 , is found by using (7.7) with

VS = Ai

V j
2 =

Ai

aj + dj + bjYL + cj/YL
(7.10)

where device j is a member of model i and aj , bj , cj , dj are the ABCD parameters derived from

the S-parameter measurements, for the jth device, of the component being tested. The value of

ZS , and hence ZL, according to the assumptions laid out above, should be equal to the source

impedance used in the S-parameter measurements.

It must be remembered that ABCD parameters are defined as a function of frequency.

Thus, it is necessary that ABCD parameters be found for each frequency bin of Ai and then

be applied only to the corresponding bin. More explicitly, allowing A = F {A}, the output for

the kth bin is

Vj
2(k) =

Ai(k)
aj(k) + dj(k) + bj(k)YL + cj(k)/YL

(7.11)
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where aj(k), bj(k), cj(k), dj(k) are the ABCD parameters measured at the frequency of the

kth bin. The time-domain output of the model for the jth device’s component is then V j
2 =

F−1
{
Vj

2

}
. As each bin is of finite width, it is not possible to have exact ABCD parameters;

interpolation between measured parameters, to fill in for unmeasured frequencies, and/or the

addition of multiple frequencies, to account for the frequencies contained within a bin, must

therefore be used.

7.3.3 Evaluating model output

In seeking to determine the affects a particular component has on a signal, we are actually

asking two questions: how much of an affect does the component have (i.e. how significant

is the component: is it enough to explain the differences we see between cards?) and does it

actually produce the unique characteristics our classifier uses to differentiate devices?

Significance

To calculate the significance a component has in determining device identity, we can calcu-

late how much information is added to the ideal signal by the device model and check whether

it is enough to make up the difference between the information of the ideal signal and the actual

measured waveforms of the device. Specifically, allowing uA = I (Ai) to be some measure of

the information of Ai, we then measure the average information, uj , contained in n of device

j’s records (these records must be aligned to Ai). The ratio

I
(
V j

2

)
− uA

uj − uA
× 100 (7.12)

then tells us what percentage of unique information the component is responsible for.

Identity

Even if a component can be shown to add a great deal of information to a signal, we must

still find out whether it is information that develops a device’s identity. To do this, we generate

m test signals, based upon the appropriate Ai, for each device, pass them through the device’s

model, select one of the modified signals to act as the device’s matched filter, and, following
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the procedure laid out in Section 4.3, produce filter outputs for each device against itself and

all the other devices.

To simulate the natural variability observed in the captured waveforms, a small amount of

additive white gaussian noise should be added to each test signal. So long as the variances

of the devices’ actual filter outputs are approximately equal, this will produce an equivalent

overlap between the filter outputs, should any exist. If the filter outputs diverge, we can infer

that the component does in fact contribute to a devices identify; significantly, if any collisions

occur and happen to correspond with the collisions identified in Tables 4.3–4.5, we can infer

an even stronger relationship between the device’s identity and the component.

7.4 Conclusion

We have proposed a methodology, based upon an empirical two-port model, capable of

determining the extent to which an arbitrary component of a device contributes to its unique

behaviour, as manifested by a PLIS. The methodology describes how a component should be

measured to create a model that captures component behaviour over the entire bandwidth of

its operation, as well as how an input signal that represents a generic device can be used with

the model to evaluate the component’s affect on creating device identity.

For future work, we suggest that the methods outlined above be applied to the transformer

found on all 10/100 Ethernet cards. More specifically, for the devices available to us each

transmit/receive pair is connected to an IC that houses a transformer in addition to a low-

pass filter (the cutoff frequency and filter order differs between the transmit and receive pins

[67]). We believe that the transformer likely contributes to the uniqueness of a device’s signal

because of the degree to which the transformer and low-pass filter must affect the signal (the

transformer increases or decreases the amplitude of the signal while the low-pass filter shapes

it).

As this transformer is actually a four-port component our methodology would require some

slight modification. The ABCD parameter model would have to be reworked to account for

the increase in variables from four to sixteen. Specifically, the derivation for the component’s

output would need to be altered to reflect the fact that the component produces two outputs
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instead of one. As the transformer is employed in the transmission of a differential signal,

it should be measured using a setup appropriate for differential four-port S-parameters. If a

proper four-port analysis is infeasible, an approximate analysis could be effected by performing

two-port measurements, wherein the two ports not being measured are terminated using a

load impedance equal to the output impedance of the network analyser, and then combining

the resulting S-parameters to form a four-port matrix. The drawback of this simplification

is that the influence the disconnected ports have on the measured ports would not be taken

into account. Finally, evaluating the model output for a four-port device necessitates that the

idealised signal be composed of the unreconstructed differential signals.
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CHAPTER 8. FUTURE WORK

Specific avenues of future work for each of the areas discussed in this work have been

proposed in the conclusion sections of each chapter: the longterm tracking of devices and

forensics applications (Section 4.5); evaluation of the security of PLIS (Section 5.5); determining

how many devices a PLIS is capable of distinguishing between (Section 6.2); and where and

how device identity originates (Section 7.4).

In what follows we outline specific courses of research to investigate: 1) whether our ability

to differentiate between a small sample of devices implies the ability to differentiate the entire

device population (extent of variation); and 2) how multiple features of a device’s signal can

be used in combination to come to a decision regarding its identity for high-speed networking

technologies and to thwart type one and two attacks (increasing difference sensitivity).

8.1 Extent of variation

Up until this point, all experimental work (including our own) concerning proposed PLIS

have lacked the necessary statistical rigour and proper design to be able to draw conclusions

about the efficacy of either the specific approach or PLI in general. Samples of devices used

in experiments range from fewer than five to slightly more than 100, and appear to have been

selected mainly due to their ready availability. Certainly preliminary experimentation, carried

out on a small scale, should be performed before embarking on larger scale experiments. PLI

has matured to the point (both in techniques and methodology), however, to warrant a proper

investigation into whether or not large numbers of devices can in fact be distinguished. The

only way to achieve this is through sample surveying. We therefore propose to perform a, or

devise a framework for, proper sample survey of devices to measure the anticipated real world
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performance of a PLIS.

Outline of proposed research

The simplest, though not the most widely used, form of sample survey is simple random

sample without replacement (SI) [57]. Under SI we assume that the probability of picking the

sample s, of size n, from a population U , of size N , is p(s) = 1/
(

N
n

)
, while the probability

of selecting any particular member k of the population U is πk = n/N and the probability of

selecting any two members, k and l (k 6= l), is πkl = n(n−1)
N(N−1) . To determine the mean of some

population parameter, denoted by ˆ̄yUπ , we select a sample and sum over all members of the

sample, dividing by n

ˆ̄yUπ =
∑

s yk/πk

N
=
∑

s yk

n
= ȳs

The 95% confidence interval for ȳs is given by ȳs ± 1.96
[
V̂ (ȳs)

]
where V̂ (ȳs) is the estimate

of the variance of ȳs, given by

V̂ (ȳs) =
1− n/N

n

1
n− 1

∑
s

(yk − ȳs)
2

It is important to note that increasing n results in a smaller variance estimate and hence a

tighter interval, so it is always better to have as large as sample size as possible.

For our sample survey, estimating the population mean of the APRS metrics set out above

would be used to determine the performance of a PLIS in a real world deployment. There are,

however, several parameters and design considerations that must be defined before a survey

can be carried out. For instance, while the SI surveys are easy to formulate they often require a

large number of samples to produce a reasonable estimate (the confidence interval tends to be

too wide due to a small n). In practice, auxiliary variables that correlate with the population

parameter being measured are used reduce the variance estimate [57]. Thus far, we have failed

to correlate filter overlap, in the case of the matched filter, to either distances between MAC

address or chipset markings. As the number of elements in the sample, n, will be limited by

the number of cards donated/purchased by the researchers or lab computers made available to

them, a sufficiently large n may not be forthcoming. The way in which the cards are procured

may also have an impact on p(s) (this probability is of equal importance to the attacker) and it
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must be determined how large the population N is to be (while 248 MAC address are possible,

using this number for N would render a rather wide estimate for the APRS metrics).

8.2 Increasing difference sensitivity

Preliminary work, undertaken using data records that consist of 10, 000 samples points

acquired at 1 Gigasamples/s, indicates that the matched filter is unable to distinguish between

Ethernet devices operating in 100Mb mode, though this may be due to the hardware used in

capturing 100Mb data. As the signalling behaviour of 100Mb Ethernet is dramatically different

from 10Mb, it is difficult to acquire accurate samples suitable for use in PLI (i.e. to find a

portion of the signal that is recurrent and ubiquitous).

Furthermore, as the matched filter is a sum-of-squares operation it is vulnerable to a simple

amplitude modulation attack (Section 5.4). Though this type of attack could be defined as

outside any realistic threat model, it nonetheless is at least theoretically possible. We therefore

propose to make use of a multi-dimensional change detection framework (ChDF) [68] to increase

our ability to distinguish between Ethernet devices operating in 100Mb mode and improve upon

weaknesses in the matched filter PLIS.

Outline of proposed research

Allow S to represent a N × k (observation-by-variable) multi-dimensional data set derived

from the distribution S. A generic formulation of the ChDF allows us to answer the question of

whether another set of data, T = M ×k (M < N) also originates from S (the null hypothesis).

To do so, we first partition S = S1 ∪ S2, then select M samples at random from S2 (denote

these samples as R), we then calculate whether d (S1, R) < d (S1, T ), where

d (S1, X) = −
|X|∑
j=1

log
|S1|∑
i=1

1
|S1|

G (Σi, X(j)− S1(i))

and Σi is the bandwidth of the multiplicative Gaussian kernel

G (Σi, X(j)− S1(i)) =
1√

|Σi2πk
exp

[
−1

2
(X(j)− S1(i))Σ−1

i (X(j)− S1(i))
T
]
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The bandwidth for the individual kernels is calculated from S1 using an expectation maximi-

sation algorithm described in [68].

The distances between the S1 and the distributions R and T are carried out in a Monte

Carlo fashion (at each iteration another M samples are selected at random, using replacement,

from S2) until the null hypothesis can or cannot be rejected at significance p. Details of the

Monte Carlo approach are given in [68].

To make use of the ChDF in a PLIS, we allow each record to serve as an observation

and each sample point, or alternatively frequency bin, as a variable; S would represent the

set of signals from a known device and T signals from a test device. It may prove necessary

to use the frequency domain exclusively if the signals cannot be adequately aligned (while

alignment is always possible, the voltage at a particular sample point may vary due to triggering

errors). In any case, as the number of sample points is large (being proportional to the sample

rate) and the ChDF algorithm has runtime O
(
|S1|k2

)
, it will be necessary to either perform

dimension reduction (using statistical techniques or by trading-off a higher sampling rate for

higher resolution) or by randomly selecting a subset of variables from S1 to use with the distance

metric each time a new T is tested. It must also be decided how the size of T affects proper

identification; i.e., is it necessary to use one frame or many to determine the identity of a card?
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CHAPTER 9. CONTRIBUTIONS

In this work we have: 1) delineated the major areas of study in physical layer identification

and laid out a course of future work for researchers in these areas; 2) examined the body of

literature that comprises the field of physical layer identification; 3) proposed a theoretically

secure methodology for device identification and compared it with existing methodologies; 4)

shown how the matched filter can be used to differentiate devices of the same model oper-

ating under the same channel conditions; 5) identified those portions of the 10Mb Ethernet

signal most useful for device identification under a matched filter PLIS; 6) provided evidence

that further research into PLI forensics is justified; 7) defined two types of attacks on PLIS;

8) proposed a framework to measure the resistance of a PLIS to an attack using an arbitrary

waveform generator; 9) provided a way to estimate how many devices a PLIS is theoretically ca-

pable of distinguishing between; and 10) shown how an arbitrary component can be empirically

modelled to determine how much it contributes to device variation.
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APPENDIX A. MATLAB data acquisition routine

1 % NOTE: we assume t ha t the scope has been c o r r e c t l y con f i gured to capture

2 % 10Mb data ; furthermore , t h i s c on f i g u r a t i on has been saved to ’ Setup 1 ’

3 % on the scope . I f ’ Setup 1 ’ does not conta in the appropr ia t e s e t t i n g s

4 % f i l e , i t may r e t r i e v e d from the compact f l a s h card accompanying the

5 % scope−− i t has been saved as ’ d i lon10mb 2 5gs . se t ’ . Having loaded the

6 % s e t t i n g s f i l e , the se tup shou ld then be resaved to ’ Setup 1 ’ .

7

8 %

9 % CONNECTION VAR

10 %

11 % se t hw address f o r connect ion to scope ( i f hw address has changed−−i . e . ,

12 % the scope i s p lugged in t o a d i f f e r e n t USB port−−then r e f e r to

13 % ’ mat l a b v i s a connec t i on . t x t ’ to determine por t s e t t i n g s

14 vu = v i s a ( ’ n i ’ , ’USB0 : : 0 x0699 : : 0 x0401 : : C010098 : : INSTR ’ ) ;

15 % se t t r a n s f e r b u f f e r to record l en g t h :

16 % d i f f e r e n c e o f query ( vu , ’DATA:START? ’) and query ( vu , ’DATA:STOP? ’)

17 % ASIDE: shou ld t r y to make t h i s a mu l t i p l e o f bus width . . .

18 vu . InputBu f f e rS i z e =280000;

19

20 %

21 % SESSION VAR

22 %

23 % number o f records to capture

24 n = 10%10010;

25 % leng t h o f record

26 l = 280000;

27 % sample ra t e

28 s = 2 .50∗10ˆ9 ;
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29 % save d i r e c t o r y ( remember t r a i l i n g s l a s h )

30 recDi r = ’D:\ DILON\new recs \ ’ ;

31

32 % open connect ion to scope

33 fopen ( vu ) ;

34 % con f i gu r e scope f o r 10Mb capture ( r e c a l l ’ Setup 1 ’) ; may need to r e c a l l

35 % manually . . . p robab l y s a f e r to load manual ly

36 % f p r i n t f ( vu , ’∗RCL 1 ’) ;

37 % determine y−increment ( v o l t a g e s c a l e )

38 y inc = str2num( query (vu , ’WFMP:YMULT? ’ ) ) ;

39 % se t data c o l l e c t i o n po in t s

40 fpr intf (vu , ’DATA:START 340001 ’ ) ; %beg inn ing o f record , in b u f f e r o f 1∗10ˆ6

41 fpr intf (vu , ’DATA:STOP 620000 ’ ) ; %end o f record , in b u f f e r

42

43 rec = zeros (1 , l ) ;

44 ch1 = zeros (1 , l ) ;

45 ch2 = zeros (1 , l ) ;

46 i = 1 ; %curren t rec cnt

47 badRecs = 0 ;

48

49 % beg in t imer

50 t ic ;

51 % in s t r u c t scope to take s i n g l e measurement

52 fpr intf (vu , ’ACQ:STATE ON’ ) ;

53 while ( i <= n)

54 t = round( toc ) ; % ge t current running time

55 disp ( [ ’ Record : ’ num2str( i ) ’ / ’ num2str(n) . . .

56 ’ (% ’ num2str( i /n∗100) . . .

57 ’ , num. bad : ’ num2str( badRecs ) ’ ) ; ’ . . .

58 ’ Elapsed time : ’ num2str( f loor ( t /3600) ) ’ hr . ’ . . .

59 num2str(mod( f loor ( t /60) ,60) ) ’ min . ’ . . .

60 num2str(mod( t , 6 0 ) ) ’ s e c . ’ ] ) ;

61

62 % wait f o r scope to f i n i s h measurement ( check scope s t a t e every 1/10

63 % of a second )
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64 while str2num( query (vu , ’ACQ:STATE? ’ ) ) == 1

65 pause ( . 1 0 ) ;

66 end

67

68 % ge t channel one data

69 fpr intf (vu , ’DATA:SOURCE CH1 ’ ) ;

70 fpr intf (vu , ’CURVE? ’ ) ;

71 ch1 = binb lockread (vu , ’ i n t8 ’ ) ’ ;

72 % ge t channel two data

73 fpr intf (vu , ’DATA:SOURCE CH2 ’ ) ;

74 fpr intf (vu , ’CURVE? ’ ) ;

75 ch2 = binb lockread (vu , ’ i n t8 ’ ) ’ ;

76

77 % to save time , t r i g g e r new measurement on scope

78 fpr intf (vu , ’ACQ:STATE ON’ ) ;

79

80 % ensure t ha t rec i s good ( l i n k pu l s e s do not f a l l much be low 0V, so we

81 % check t ha t sampled s i g n a l i s very nega t i v e )

82 i f min( ch1 (6000 :8000) ) < −80 %shou ld be w e l l i n t o sync s i g n a l by here

83 % recover d i f f e r e n t i a l s i g n a l

84 rec = yinc ∗( ch1 − ch2 ) ;

85

86 % wr i t e record to f i l e

87 i s = num2str( i ) ;

88 f = [ recDi r ’ sample ’ . . .

89 strrep (num2str( zeros (1 ,5− length ( i s ) ) ) , ’ ’ , ’ ’ ) i s ’ . mat ’ ] ;

90 save ( f , ’ s ’ , ’ r e c ’ ) ;

91

92 % increment good rec s counter

93 i = i + 1 ;

94

95 else % we have a bad record , save i t and modify counters

96 badRecs = badRecs + 1 ;

97

98 % wr i t e raw channel data to f i l e
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99 badRecStr = num2str( badRecs ) ;

100 f = [ recDi r ’ bsample ’ badRecStr ’ . mat ’ ] ;

101 save ( f , ’ ch1 ’ , ’ ch2 ’ , ’ s ’ , ’ y inc ’ ) ;

102 end

103

104 % zero channel data to ensure we don ’ t wr i t e d u p l i c a t e records

105 ch1 = zeros (1 , l ) ;

106 ch2 = zeros (1 , l ) ;

107 end

108

109 % c l o s e connect ion to scope

110 fc lose ( vu ) ;
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APPENDIX B. Code for type one attack

Resolution

1 function [ n , s avg2 ] = getReso lu t i on2 ( s avg , r e f S i g , th p , th n , V fs )

2 % f ind minimum number o f b i t s (n) necessary to r ep re s en t s avg and s t i l l

3 % have f i l t e r output w i th in th p / th n f o r an AWG with g iven V FS

4 % n : r e s o l u t i o n o f AWG

5 % s avg2 : v a l i d r e p r e s en t a t i on o f s avg us ing f ewe s t number o f b i t s

6

7 n = 14 ; %won ’ t cons ider AWG with r e s o l u t i o n s above 14 b i t s

8

9 % f ind p o s s i b l e v o l t a g e va l u e s g i ven n and V fs and round s avg towards i t

10 s avg2 = s avg ;

11 while dot ( r e f S i g , s avg2 ) >= th n && dot ( r e f S i g , s avg2 ) <= th p

12 % ca l c y inc based upon n and V fs

13 y inc = V fs /(2ˆn−1) ;

14 % po s s i b l e v o l t a g e va l u e s g i ven n and V fs

15 v = yinc ∗(−2ˆn : 1 : 2 ˆ n−1) ’ ;

16 % f ind which new vo l t a g e l e v e l each sample po in t o f s avg i s c l o s e s t to

17 [ ˜ , I ] = min(abs ( bsxfun (@minus , s avg ’ , v ) ) ) ;

18

19 s avg o l d = s avg2 ; %won ’ t know i f we shou ld s top u n t i l a f t e r we ’ ve

20 %ove rwr i t t en v a l i d s avg2

21 s avg2 = v( I ) ;

22 n = n − 1 ;

23 end

24

25 % re s t o r e f a l s e l y decremented b i t and need a d d i t i o n a l b i t f o r s i gn

26 n = n + 2 ;
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27 s avg2 = s avg o l d ;

Settling time

1 function [ ts , tr , td ] = getTs ( s avg , s n , f s )

2 % f ind s e t t i n g l i n g time ( t s ) necessary to c r ea t e s i g n a l between s +/−

3 % assuming PLIS sampler wi th g iven f s

4 % t s : s e t t l i n g time o f AWG

5 % tr : r i s e time o f AWG

6 % td : dead time o f AWG

7

8 l = length ( s avg ) ;

9 T = 1/ f s ;

10

11 % se t td . . . r e a l l y i s immater ia l as we care about sum of t r and td

12 td = 0.01∗T;

13 % percentage o f s avg AWG must reach at each sample po in t

14 p s avg = abs ( s n ) . / abs ( s avg ) ;

15 % only care about max percentage ( shou ld always be l e s s than one . . . doesn ’ t

16 % make sense f o r i t to be g r ea t e r than one−−−an a r t i f a c t o f sampl ing )

17 m p s avg = max( p s avg ( p s avg < 1) ) ;

18

19 % max r i s e time f o r s n

20 t r = (T−td ) /( m p s avg ) ;

21 % s e t t l i n g time

22 t s = td + t r ;

SNR

1 function [ snr , sn r s , N s avg ] = getSnr ( r e f S i g , s avg , th p , th n )

2 % f ind SNR necessary to c r ea t e s i g n a l wi th f i l t e r output ou t s i d e o f t h +/−

3 % snr : SNR of AWG in dB

4

5 % since we ’ re genera t ing random noise , we run t h i s many t imes to be sure o f
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6 % the c a l c u l a t e d snr

7 n = 1000 ;

8 % snr per i t e r a t i o n ; average to f i nd snr

9 SNR = zeros (n , 1 ) ;

10

11 for i = 1 : n

12 s n r i = 30 ; %max SNR in dB

13 snr dec = 0 . 0 1 ; %amount to decrease SNR by u n t i l s i g n a l ou t s i d e o f t h +/−

14

15 N s avg = s avg ; %our noisy s i g n a l

16 m0 = dot ( r e f S i g , N s avg ) ;

17

18 while m0 >= th n && m0 <= th p

19 s n r i = s n r i − sn r dec ;

20 N s avg = awgn( s avg , s n r i , ’ measured ’ ) ;

21 m0 = dot ( r e f S i g , N s avg ) ;

22 end

23

24 SNR( i ) = s n r i ;

25 end

26

27 snr = mean(SNR) ;

28 s n r s = std (SNR) ;

THD

1 function [THD] = getThd ( s avg , s p , s n )

2 % f ind max THD tha t keeps s i g n a l w i th in bounds s e t by A +/−

3 % THD: THD in dB fo r each f r e q b in

4

5 S avg = f f t ( s avg ) ;

6 D p = f f t ( s p−s avg ) ; %f f t o f d i s t o r t i o n

7 D n = f f t ( s avg−s n ) ;

8
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9 bw = 121 ; %index o f maximum frequency f o r THD ca l c s ; i . e . bandwidth over which

THD i s c a l c u l a t e d

10 THD = zeros (bw−1 ,2) ; %THD i s c a l c u l a t e d on bin−by−b in b a s i s

11 n har = 9 ; %num of harmonics to use when c a l c u l a t i n g THD; s i x or ten depending

upon standard ( those inc l ude fundamenta )

12 n b ins = s ize ( S avg , 1 ) ; %num of b in s

13

14 for i = 2 :bw %S avg (1) i s DC, which i s exc luded in THD ca l c s

15 h ind = ( i −1) ∗ [ 2 : n har +1]+1; %in d i c i e s o f our harmonics

16

17 % ignore denominator as we ’ re t a k ing r a t i o s be low

18 P = (2∗abs ( S avg ( i ) ) . ˆ 2 ) ; %power o f und i s t o r t e d fundamental f r e q

19 P p = 2∗sum(abs (D p( h ind ) ) . ˆ 2 ) ; %power o f d i s t o r t e d harmonic

20 P n = 2∗sum(abs (D n( h ind ) ) . ˆ 2 ) ;

21

22 THD( i −1 ,1) = 10∗ log10 (P p/P) ;

23 THD( i −1 ,2) = 10∗ log10 (P n/P) ;

24 end

THD+N

1 function [THDN] = getThdN( r e f S i g , s avg , s p , th p , th n )

2

3 % de f i n e (max) d i s t o r t i o n

4 d p = s p−s avg ;

5

6 % d = d inc ∗d p

7 d inc = 0 . 1 ;

8

9 S avg = f f t ( s avg ) ;

10 D p = f f t ( d p ) ; %f f t o f d i s t o r t i o n

11

12 bw = 121 ; %index o f maximum frequency f o r THD ca l c s ; i . e . bandwidth over which

THD i s c a l c u l a t e d

13 THDN = zeros (bw−1 ,1/ d inc ) ; %THD i s c a l c u l a t e d on bin−by−b in b a s i s
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14 n har = 9 ; %num of harmonics to use when c a l c u l a t i n g THD; s i x or ten depending

upon standard ( those inc l ude fundamenta )

15 n b ins = s ize ( S avg , 1 ) ; %num of b in s

16

17

18 for k = d inc : d inc : 1

19 k ind = round (1/( d inc /k ) ) ;

20 d = k∗d p ;

21 D = f f t (d) ;

22

23 pa r f o r i = 2 :bw %S avg (1) i s DC, which i s exc luded in THD ca l c s

24 i 2 = i −2; %fundamental f r e q on r i g h t s i d e

25 h ind = ( i −1) ∗ [ 2 : n har +1]+1; %in d i c i e s o f our harmonics ; l e f t s i d e

26 h ind2 = h ind −2; %in d i c i e s o f our harmonics ; r i g h t s i d e

27 h = [ h ind h ind2 ] ; %harmonics , both s i d e s

28

29 %s i g n a l we ’ l l add d i s t o r t i o n to

30 SD = S avg ;

31 % only add in d i s t o r t i o n components f o r b in under cons i d e ra t i on

32 SD(h) = SD(h) + D(h) ; %s i g n a l p l u s d i s t o r t i o n

33 sd = i f f t (SD) ; %need time−domain f o r no i se c a l c s

34 % add noi se to d i s t o r t e d s i g n a l u n t i l o u t s i d e o f t h +/− (bw o f

35 % noise i s f s /2)

36 [ snr , sn r s , n sd ] = getSnr ( r e f S i g , sd , th p , th n ) ;

37 % need j u s t the no i se f o r c a l c s ( f f t , a c t u a l l y )

38 N = f f t ( n sd − sd ) ;

39

40 % ignore denominator as we ’ re t a k ing r a t i o s be low

41 P = 2∗abs ( S avg ( i ) ) ˆ2 ; %power o f und i s t o r t e d fundamental f r e q

42 P p = 2∗sum(abs (D p( h ind ) ) . ˆ 2 ) ; %power o f d i s t o r t e d harmonics

43 P N = sum(abs (N) . ˆ 2 ) ; %noise over bw=f s /2

44

45 THDN( i −1, k ind ) = 10∗ log10 ( ( P p+P N)/P) ;

46 end

47 end
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SFDR

1 function s f d r = getS fdr2 ( s avg , r e f S i g , th p , th n )

2 % f ind SFDR ra t i o necessary to produce f i l t e r output f o r s avg ou t s i d e o f

3 % thp / thn ; b in s inc luded based on power

4 % s avg : average o f a l i gn ed records ; a t t acke r ’ s s i g n a l cons t ruc t ed from

5 % t h i s on a per b in b a s i s

6 % re f S i g : r e f s i g o f genuine dev i c e

7 % th p / th n : t h r e s h o l d s f o r f i l t e r output

8 % s f d r : n−by−1 vec t o r o f s f d r necessary to put s avg ou t s i d e o f t h r e s h o l d s ;

9 % each row corresponds to number o f components used to cons t ruc t a t t acke r ’ s

10 % s i g n a l

11

12 % num of components to cons ider

13 n = f loor ( s ize ( s avg , 1 ) /2) ;

14 % s f d r : r a t i o o f noise−to−s i g n a l f o r each o f the i−components used in c r ea t i n g

15 % at tacke r ’ s s i g n a l ; 0 denotes t ha t number o f components used wasn ’ t

16 % s u f f i c i e n t to c r ea t e a t t a c k e r s i g n a l w i th in t h r e s h o l d s

17 s f d r = zeros (n , 1 ) ;

18

19 S avg = f f t ( s avg ) ;

20 l = s ize ( S avg , 1 ) ;

21

22 % obta in i n d i c e s o f b in power so r t ed from g r e a t e s t to l e a s t

23 [B, IX ] = sort (abs ( S avg ( 1 : f loor ( l /2) ) ) , ’ descend ’ ) ; IX=IX ’ ;

24

25 % inc l ude i b in s in a t t a c k e r s i g n a l cons t ruc t i on

26 pa r f o r i = 1 : f loor ( l /2)

27 % at tacke r ’ s s i gna l , f r e q . domain

28 S at t = zeros ( l , 1 ) ;

29

30 % add i n d i v i d u a l components to a t tacker ’ s s i g n a l

31 i f isempty ( find ( IX ( 1 : i ) == 1 ,1) ) %i f DC component i s absent

32 S at t ( [ IX ( 1 : i ) end−IX ( 1 : i ) +2]) = S avg ( [ IX ( 1 : i ) end−IX ( 1 : i ) +2]) ;

33 else %dc component pre sen t
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34 %remove dc component index so i t doesn ’ t mess up r i g h t hand s i d e index

c a l c s

35 IX2 = IX( IX ( 1 : i ) ˜= 1) ; %dc always at index one

36 S at t ( [ 1 IX2 ( 1 : i −1) end−IX2 ( 1 : i −1)+2]) = . . .

37 S avg ( [ 1 IX2 ( 1 : i −1) end−IX2 ( 1 : i −1)+2]) ;

38 end

39

40 % at tacke r ’ s time domain s i g n a l us ing i most power fu l b in s

41 s a t t = i f f t ( S a t t ) ;

42

43 % prepare to add no i se to s a t t

44 s n o i = s a t t ; %s a t t wi th no i se added to i t

45 r = −100; %noise−to−s i g n a l component r a t i o ( s f d r ) ; s t a r t a t −100 dB and

inc rea se

46

47 % check to see i f a t t acker ’ s s i g n a l f a l l s w i th in t h r e sho l d s , i f so then

48 % genera te no i se f o r each component and add i t to a t t acke r ’ s s i g n a l

49 while dot ( r e f S i g , s n o i ) >= th n && dot ( r e f S i g , s n o i ) <= th p

50 S no i = S at t ;

51

52 % add noi se to S a t t f o r j t h component

53 for j = 1 : i

54 % power o f j t h component o f S a t t

55 i f IX( j ) == 1 %dc component on ly uses one b in

56 p j = abs ( S a t t ( IX( j ) ) ) ˆ2/ l ˆ2 ;

57 else

58 p j = 2∗abs ( S a t t ( IX( j ) ) ) ˆ2/ l ˆ2 ;

59 end

60 % gen noi se o f s u f f i c i e n t power so t ha t we reach r a t i o o f r=n/s

61 noi = genNoise (10ˆ( r /10) ∗p j , l ) ;

62 % where we ’ l l put the no i se ( p laced randomly )

63 no i i nd = randi ( [ 1 f loor ( l /2) ] ) ;

64 % add noi se to s a t t

65 S no i ( no i i nd +1) = S no i ( no i i nd +1) + noi ; %l e f t s i d e

66 S no i (end−no i i nd +1) = S no i (end−no i i nd +1) + noi ’ ; %r i g h t s i d e
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67 end

68

69 s n o i = i f f t ( S no i ) ;

70 r = r + 1 ;

71 end

72

73 s f d r ( i ) = r−1;

74 end

75

76

77 function n = genNoise (p , l )

78 % genera te complex no i se o f power p

79

80 x = sqrt (p∗ l ˆ2/2) ∗rand (1 ) ; %rea l par t o f no i se

81 y = sqrt (p∗ l ˆ2/2−xˆ2) ; %complex par t o f no i se

82

83 % determine s i gn o f each component

84 i f rand (1 ) < 0 .5

85 x = −1∗x ;

86 end

87

88 i f rand (1 ) < 0 .5

89 y = −1∗y ;

90 end

91

92 n = x + 1 j ∗y ;
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