
www.manaraa.com

Generative Adversarial Nets

Ian J. Goodfellow∗, Jean Pouget-Abadie†, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair‡, Aaron Courville, Yoshua Bengio§

Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1

2 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 20]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[17, 8, 9] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. 1

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.
∗Ian Goodfellow is now a research scientist at Google, but did this work earlier as a UdeM student
†Jean Pouget-Abadie did this work while visiting Université de Montréal from Ecole Polytechnique.
‡Sherjil Ozair is visiting Université de Montréal from Indian Institute of Technology Delhi
§Yoshua Bengio is a CIFAR Senior Fellow.
1All code and hyperparameters available at http://www.github.com/goodfeli/adversarial

1



www.manaraa.com

This framework can yield specific training algorithms for many kinds of model and optimization
algorithm. In this article, we explore the special case when the generative model generates samples
by passing random noise through a multilayer perceptron, and the discriminative model is also a
multilayer perceptron. We refer to this special case as adversarial nets. In this case, we can train
both models using only the highly successful backpropagation and dropout algorithms [16] and
sample from the generative model using only forward propagation. No approximate inference or
Markov chains are necessary.

2 Related work

Until recently, most work on deep generative models focused on models that provided a parametric
specification of a probability distribution function. The model can then be trained by maximiz-
ing the log likelihood. In this family of model, perhaps the most succesful is the deep Boltzmann
machine [25]. Such models generally have intractable likelihood functions and therefore require
numerous approximations to the likelihood gradient. These difficulties motivated the development
of “generative machines”–models that do not explicitly represent the likelihood, yet are able to gen-
erate samples from the desired distribution. Generative stochastic networks [4] are an example of
a generative machine that can be trained with exact backpropagation rather than the numerous ap-
proximations required for Boltzmann machines. This work extends the idea of a generative machine
by eliminating the Markov chains used in generative stochastic networks.

Our work backpropagates derivatives through generative processes by using the observation that

lim
σ→0
∇xEε∼N (0,σ2I)f(x+ ε) = ∇xf(x).

We were unaware at the time we developed this work that Kingma and Welling [18] and Rezende
et al. [23] had developed more general stochastic backpropagation rules, allowing one to backprop-
agate through Gaussian distributions with finite variance, and to backpropagate to the covariance
parameter as well as the mean. These backpropagation rules could allow one to learn the condi-
tional variance of the generator, which we treated as a hyperparameter in this work. Kingma and
Welling [18] and Rezende et al. [23] use stochastic backpropagation to train variational autoen-
coders (VAEs). Like generative adversarial networks, variational autoencoders pair a differentiable
generator network with a second neural network. Unlike generative adversarial networks, the sec-
ond network in a VAE is a recognition model that performs approximate inference. GANs require
differentiation through the visible units, and thus cannot model discrete data, while VAEs require
differentiation through the hidden units, and thus cannot have discrete latent variables. Other VAE-
like approaches exist [12, 22] but are less closely related to our method.

Previous work has also taken the approach of using a discriminative criterion to train a generative
model [29, 13]. These approaches use criteria that are intractable for deep generative models. These
methods are difficult even to approximate for deep models because they involve ratios of probabili-
ties which cannot be approximated using variational approximations that lower bound the probabil-
ity. Noise-contrastive estimation (NCE) [13] involves training a generative model by learning the
weights that make the model useful for discriminating data from a fixed noise distribution. Using a
previously trained model as the noise distribution allows training a sequence of models of increasing
quality. This can be seen as an informal competition mechanism similar in spirit to the formal com-
petition used in the adversarial networks game. The key limitation of NCE is that its “discriminator”
is defined by the ratio of the probability densities of the noise distribution and the model distribution,
and thus requires the ability to evaluate and backpropagate through both densities.

Some previous work has used the general concept of having two neural networks compete. The most
relevant work is predictability minimization [26]. In predictability minimization, each hidden unit
in a neural network is trained to be different from the output of a second network, which predicts
the value of that hidden unit given the value of all of the other hidden units. This work differs from
predictability minimization in three important ways: 1) in this work, the competition between the
networks is the sole training criterion, and is sufficient on its own to train the network. Predictability
minimization is only a regularizer that encourages the hidden units of a neural network to be sta-
tistically independent while they accomplish some other task; it is not a primary training criterion.
2) The nature of the competition is different. In predictability minimization, two networks’ outputs
are compared, with one network trying to make the outputs similar and the other trying to make the

2



www.manaraa.com

outputs different. The output in question is a single scalar. In GANs, one network produces a rich,
high dimensional vector that is used as the input to another network, and attempts to choose an input
that the other network does not know how to process. 3) The specification of the learning process
is different. Predictability minimization is described as an optimization problem with an objective
function to be minimized, and learning approaches the minimum of the objective function. GANs
are based on a minimax game rather than an optimization problem, and have a value function that
one agent seeks to maximize and the other seeks to minimize. The game terminates at a saddle point
that is a minimum with respect to one player’s strategy and a maximum with respect to the other
player’s strategy.

Generative adversarial networks has been sometimes confused with the related concept of “adversar-
ial examples” [28]. Adversarial examples are examples found by using gradient-based optimization
directly on the input to a classification network, in order to find examples that are similar to the
data yet misclassified. This is different from the present work because adversarial examples are
not a mechanism for training a generative model. Instead, adversarial examples are primarily an
analysis tool for showing that neural networks behave in intriguing ways, often confidently clas-
sifying two images differently with high confidence even though the difference between them is
imperceptible to a human observer. The existence of such adversarial examples does suggest that
generative adversarial network training could be inefficient, because they show that it is possible to
make modern discriminative networks confidently recognize a class without emulating any of the
human-perceptible attributes of that class.

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; θg), where G is a
differentiable function represented by a multilayer perceptron with parameters θg . We also define a
second multilayer perceptron D(x; θd) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples fromG. We simultaneously trainG to minimize
log(1 − D(G(z))). In other words, D and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. The procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 − D(G(z))) saturates. Rather than training G to minimize
log(1−D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics ofG andD but provides much stronger gradients early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ∼ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3



www.manaraa.com

x

z

X

Z

X

Z

. . .

X

Z

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D∗(x) =

pdata(x)
pdata(x)+pg(x)

. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2
.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

.

end for
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

.

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(2)

4



www.manaraa.com

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

∫
x

pdata(x) log(D(x))dx+

∫
z

pz(z) log(1−D(g(z)))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1−D(x))dx (3)

For any (a, b) ∈ R2 \ {0, 0}, the function y → a log(y) + b log(1 − y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) ∪ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex∼pdata [logD
∗
G(x)] + Ez∼pz [log(1−D∗G(G(z)))] (4)

=Ex∼pdata [logD
∗
G(x)] + Ex∼pg [log(1−D∗G(x))]

=Ex∼pdata

[
log

pdata(x)

Pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

]
Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value − log 4.

Proof. For pg = pdata, D∗G(x) =
1
2 , (consider Eq. 2). Hence, by inspecting Eq. 4 atD∗G(x) =

1
2 , we

find C(G) = log 1
2 + log 1

2 = − log 4. To see that this is the best possible value of C(G), reached
only for pg = pdata, observe that

Ex∼pdata [− log 2] + Ex∼pg [− log 2] = − log 4

and that by subtracting this expression from C(G) = V (D∗G, G), we obtain:

C(G) = − log(4) +KL

(
pdata

∥∥∥∥pdata + pg
2

)
+KL

(
pg

∥∥∥∥pdata + pg
2

)
(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution and the data generating process:

C(G) = − log(4) + 2 · JSD (pdata ‖pg ) (6)
Since the Jensen–Shannon divergence between two distributions is always non-negative, and zero
iff they are equal, we have shown that C∗ = − log(4) is the global minimum of C(G) and that the
only solution is pg = pdata, i.e., the generative model perfectly replicating the data distribution.

4.2 Convergence of Algorithm 1

Proposition 2. IfG andD have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ex∼pdata [logD
∗
G(x)] + Ex∼pg [log(1−D∗G(x))]

then pg converges to pdata

Proof. Consider V (G,D) = U(pg, D) as a function of pg as done in the above criterion. Note
that U(pg, D) is convex in pg . The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(x) =
supα∈A fα(x) and fα(x) is convex in x for every α, then ∂fβ(x) ∈ ∂f if β = arg supα∈A fα(x).
This is equivalent to computing a gradient descent update for pg at the optimal D given the cor-
responding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg , pg converges to px, concluding the proof.

In practice, adversarial nets represent a limited family of pg distributions via the function G(z; θg),
and we optimize θg rather than pg itself, so the proofs do not apply. However, the excellent perfor-
mance of multilayer perceptrons in practice suggests that they are a reasonable model to use despite
their lack of theoretical guarantees.

5



www.manaraa.com

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [5] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different σ chosen using the validation set of
each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

5 Experiments

We trained adversarial nets an a range of datasets including MNIST[21], the Toronto Face Database
(TFD) [27], and CIFAR-10 [19]. The generator nets used a mixture of rectifier linear activations [17,
8] and sigmoid activations, while the discriminator net used maxout [9] activations. Dropout [16]
was applied in training the discriminator net. While our theoretical framework permits the use of
dropout and other noise at intermediate layers of the generator, we used noise as the input to only
the bottommost layer of the generator network.

We estimate probability of the test set data under pg by fitting a Gaussian Parzen window to the
samples generated with G and reporting the log-likelihood under this distribution. The σ parameter
of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [7] and used for various generative models for which the exact likelihood
is not tractable [24, 3, 4]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models. In Figures 2 and 3
we show samples drawn from the generator net after training. While we make no claim that these
samples are better than samples generated by existing methods, we believe that these samples are at
least competitive with the better generative models in the literature and highlight the potential of the
adversarial framework.

6 Advantages and disadvantages

This new framework comes with advantages and disadvantages relative to previous modeling frame-
works. The disadvantages are primarily that there is no explicit representation of pg(x), and that D
must be synchronized well with G during training (in particular, G must not be trained too much
without updatingD, in order to avoid “the Helvetica scenario” in whichG collapses too many values
of z to the same value of x to have enough diversity to model pdata), much as the negative chains of a
Boltzmann machine must be kept up to date between learning steps. The advantages are that Markov
chains are never needed, only backprop is used to obtain gradients, no inference is needed during
learning, and a wide variety of functions can be incorporated into the model. Table 2 summarizes
the comparison of generative adversarial nets with other generative modeling approaches.

The aforementioned advantages are primarily computational. Adversarial models may also gain
some statistical advantage from the generator network not being updated directly with data exam-
ples, but only with gradients flowing through the discriminator. This means that components of the
input are not copied directly into the generator’s parameters. Another advantage of adversarial net-
works is that they can represent very sharp, even degenerate distributions, while methods based on
Markov chains require that the distribution be somewhat blurry in order for the chains to be able to
mix between modes.

7 Conclusions and future work

This framework admits many straightforward extensions:

6



www.manaraa.com

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7



www.manaraa.com

Deep directed
graphical models

Deep undirected
graphical models

Generative
autoencoders Adversarial models

Training Inference needed
during training.

Inference needed
during training.
MCMC needed to
approximate
partition function
gradient.

Enforced tradeoff
between mixing
and power of
reconstruction
generation

Synchronizing the
discriminator with
the generator.
Helvetica.

Inference
Learned
approximate
inference

Variational
inference

MCMC-based
inference

Learned
approximate
inference

Sampling No difficulties Requires Markov
chain

Requires Markov
chain No difficulties

Evaluating p(x)
Intractable, may be
approximated with
AIS

Intractable, may be
approximated with
AIS

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Model design

Models need to be
designed to work
with the desired
inference scheme
— some inference
schemes support
similar model
families as GANs

Careful design
needed to ensure
multiple properties

Any differentiable
function is
theoretically
permitted

Any differentiable
function is
theoretically
permitted

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches
to deep generative modeling for each of the major operations involving a model.

Acknowledgments

We would like to acknowledge Patrice Marcotte, Olivier Delalleau, Kyunghyun Cho, Guillaume
Alain and Jason Yosinski for helpful discussions. Yann Dauphin shared his Parzen window eval-
uation code with us. We would like to thank the developers of Pylearn2 [11] and Theano [6, 1],
particularly Frédéric Bastien who rushed a Theano feature specifically to benefit this project. Ar-
naud Bergeron provided much-needed support with LATEX typesetting. We would also like to thank
CIFAR, and Canada Research Chairs for funding, and Compute Canada, and Calcul Québec for
providing computational resources. Ian Goodfellow is supported by the 2013 Google Fellowship in
Deep Learning. Finally, we would like to thank Les Trois Brasseurs for stimulating our creativity.

References
[1] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and

Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop.

[2] Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers.

[3] Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). Better mixing via deep representations. In
ICML’13.

[4] Bengio, Y., Thibodeau-Laufer, E., and Yosinski, J. (2014a). Deep generative stochastic networks trainable
by backprop. In ICML’14.

[5] Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014b). Deep generative stochastic net-
works trainable by backprop. In Proceedings of the 30th International Conference on Machine Learning
(ICML’14).

[6] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley,
D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy). Oral Presentation.

[7] Breuleux, O., Bengio, Y., and Vincent, P. (2011). Quickly generating representative samples from an
RBM-derived process. Neural Computation, 23(8), 2053–2073.

[8] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In AISTATS’2011.

8



www.manaraa.com

[9] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout networks.
In ICML’2013.

[10] Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013b). Multi-prediction deep Boltzmann
machines. In NIPS’2013.

[11] Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra,
J., Bastien, F., and Bengio, Y. (2013c). Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214.

[12] Gregor, K., Danihelka, I., Mnih, A., Blundell, C., and Wierstra, D. (2014). Deep autoregressive networks.
In ICML’2014.

[13] Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of The Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS’10).

[14] Hinton, G., Deng, L., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech recognition.
IEEE Signal Processing Magazine, 29(6), 82–97.

[15] Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised
neural networks. Science, 268, 1558–1161.

[16] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012b). Improving
neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580.

[17] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage architecture
for object recognition? In Proc. International Conference on Computer Vision (ICCV’09), pages 2146–2153.
IEEE.

[18] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

[19] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

[20] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolutional
neural networks. In NIPS’2012.

[21] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

[22] Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks. Technical
report, arXiv preprint arXiv:1402.0030.

[23] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. Technical report, arXiv:1401.4082.

[24] Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive
auto-encoders. In ICML’12.

[25] Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann machines. In AISTATS’2009, pages 448–
455.

[26] Schmidhuber, J. (1992). Learning factorial codes by predictability minimization. Neural Computation,
4(6), 863–879.

[27] Susskind, J., Anderson, A., and Hinton, G. E. (2010). The Toronto face dataset. Technical Report UTML
TR 2010-001, U. Toronto.

[28] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014).
Intriguing properties of neural networks. ICLR, abs/1312.6199.

[29] Tu, Z. (2007). Learning generative models via discriminative approaches. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE.

9


