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Abstract
Mycotoxins, toxins produced by fungi that commonly contaminate food crops, remain an important global
food safety concern. Aflatoxins and fumonisins mainly pose a cancer risk, whereas deoxynivalenol poses a risk
to gastrointestinal and immune function. Ochratoxin A poses a risk for kidney disease. Grains and some
legumes are the predominant sources of these toxins, but they vary in the range of foods that they
contaminate. For example, fumonisins occur mainly in corn, whereas deoxynivalenol is mainly found in
wheat, barley and corn. Aflatoxins are mainly found in peanuts and corn. The nature of the fungi that produce
each toxin seems to be the main determinant of which crop species will be the main sources of the
mycotoxins.
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18.1 INTRODUCTION 11 

Mycotoxins, toxins produced by fungi that commonly contaminate food crops, remain an 12 

important global food safety concern. Aflatoxins and fumonisins mainly pose a cancer risk, 13 

whereas deoxynivalenol poses a risk to gastrointestinal and immune function. Ochratoxin A poses 14 

a risk for kidney disease.  Grains and some legumes are the predominant sources of these toxins, 15 

but they vary in the range of foods that they contaminate.  For example, fumonisins occur mainly 16 

in corn, whereas deoxynivalenol is mainly found in wheat, barley and corn. Aflatoxins are mainly 17 

found in peanuts and corn.  The nature of the fungi that produce each toxin seems to be the main 18 

determinant of which crop species will be the main sources of the mycotoxins.   19 

Aflatoxins, most importantly aflatoxin B1 (AFB1), are produced, and named for Aspergillus 20 

flavus, but other Aspergillus species also produce aflatoxins, especially A. parasiticus. Crosses of 21 

these two fungi produce greater amounts of aflatoxins than do either parent species, but the two 22 

species are typically isolated from each other, with A. flavus infecting peanuts, corn, cottonseed 23 

and tree nuts and A. parasiticus infecting mainly peanuts 1. Aflatoxin B1 is a human liver 24 

carcinogen, and is also involved in impairing growth, development and immune function of 25 

children in regions with significant aflatoxin contamination of staple foods 2. 26 



www.manaraa.com

2 
 

Fumonisins are produced by at least 15 Fusarium species, especially F. verticillioides, F. 27 

proliferatum and F. subglutinans.  These fungi are corn pathogens, causing stalk rot as well as 28 

potentially harmful levels of the predominant fumonisin, B1 in corn kernels 3.  Fumonisin B1 has 29 

been associated with human esophageal cancer and neural tube defects 3, especially in regions 30 

where corn is a staple food and where contamination of corn by this toxin is not well-recognized 31 

and managed.  In vivo studies of Fusarium mycotoxins have been reviewed recently, showing a 32 

broad array of effects across many species4. 33 

Deoxynivalenol (DON) is mainly produced by Fusarium graminearum, and also by F. culmorum 34 
5.  These fungi cause Fusarium head blight in wheat, a main source of this toxin.  Other cereals 35 

such as barley and corn, can also be significant DON sources.  DON is linked with immune 36 

dysfunction and gastroenteritis, hence its prior common name, vomitoxin6. 37 

Ochratoxins are produced by Aspergillus ochraceus, A. carbonarius and Penicillium verrucosum.  38 

A. ochraceus grows and produces ochratoxin mainly in stored grains under dry conditions and in 39 

moderate temperatures.  A. carbonarius grows in grapes, so ochratoxins may be found in wines 40 

and other grape-derived foods. P. verrucosum grows well in cooler climates, so Northern 41 

European and North American grains, especially wheat, experience ochratoxin contamination 42 

mainly  from this source 7. Ochratoxin A (OTA) is the main ochratoxin important to human 43 

health, and is associated with nephritic syndrome, but only in regions with very high exposure to 44 

OTA, such as in parts of Egypt and Sierra Leone 6. 45 

A recent casual survey of scientific literature through Pubmed indicates significant research 46 

activity, especially focused on mechanisms and mitigation of toxicity of aflatoxins and 47 

deoxynivalenol, fungal biology associated with fumonisin production, and novel detection 48 

methods for ochratoxins (Table 1).  How this pattern of research activity aligns with public health 49 

needs associated with these toxins will be discussed in summarizing key recent studies related to 50 

mycotoxin risk assessment, metabolism and mitigation.  Mycotoxigenic fungi will continue to 51 

evolve, so continual improvement of techniques to identify and assess health risks of emerging 52 

mycotoxins is needed, but is seemingly not being addressed systematically at this time. 53 

 54 

 55 

 56 
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Table 1.  Survey of recent scientific papers published in English on mycotoxins catalogued by 57 

PubMed from Jan-May 2016 58 

Mycotoxin Total 

papers 

Quanti- 

tation 

in 

foods 

Novel 

detection 

methods 

Exposure 

and risk 

assessment 

Mechanisms 

of action 

and 

mitigation 

of toxicity 

Detoxi- 

fication 

in 

foods 

Fungal  

biology 

Aflatoxins 161 26 

(15%) 

35 

(20%) 

15 (9%) 49 (28%) 17 

(10%) 

19 

(11%) 

Deoxynivalenol 91 11 

(12%) 

10 

(11%) 

4 (4%) 35 (37%) 5 (5%) 28 

(30%) 

Fumonisins 64 7 

(11%) 

13 

(20%) 

4 (6%) 16 (25%) 4 (6%) 20 

(31%) 

Ochratoxin 110 12 

(11%) 

40 

(36%) 

7 (6%) 26 (24%) 9 (8%) 16 

(15%) 

 59 

18.2 MYCOTOXIN RISK ASSESSMENT  60 

Connecting human health risks with dietary exposure to mycotoxins poses severe challenges. 61 

Outbreaks of acute illness are associated with aflatoxin B1 (aflatoxicosis causing hepatic 62 

toxicity), DON (gastroenteritis) and OTA (nephritic syndrome).  Verification of mycotoxin 63 

outbreaks requires mycotoxin analysis of grain samples verified to be of the same lot or source as 64 

ingested immediately prior to the onset of illness. Blood or urinary mycotoxin analysis and 65 

assessment of disease symptoms is also required, concomitantly.  Although numerous methods 66 

are available for mycotoxin analysis, most such methods require expensive instrumentation such 67 

as LC/MS.  Medical personnel with appropriate diagnostic expertise are also required.  Public 68 

health systems coordinating such efforts are largely lacking worldwide.  To assess cancer risk 69 

from aflatoxins and fumonisins, much longer term exposure surveillance is required.  For a 70 

genotoxic agent such as aflatoxin, exposure in early life causing genetic damage may result in 71 

much later development of cancer.  For fumonisins, chronic exposure seems to be required for its 72 

carcinogenic effects.  There is yet an incomplete understanding of human dietary exposure 73 

patterns for mycotoxins in regions where mycotoxin-related health concerns exist.  It may be that 74 

OTA causes kidney impairment at lower doses than seen in nephritic syndrome, but establishing 75 
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this as a solid connection requires multivariate analysis coordinated across human populations.  76 

Likewise, DON may impair immune and intestinal function in important but relatively subtle 77 

ways that are difficult to discern.  Increased global scientific cooperation and coordination are 78 

crucial to address these needs.  It is unfortunate that disease presence rather than disease 79 

prevention seems to drive investment in such endeavors.  Mycotoxin prevention systems that are 80 

sustainable will need to include permanent investment in agricultural practices, health 81 

surveillance, and basic and translational research.  Mitigation of human health risks from 82 

mycotoxins is ethically and practically important.  Global burden from mycotoxin-associated 83 

diseases was estimated recently at ~200,000 excess liver cancer cases per year attributable to 84 

aflatoxin. Disease burdens from fumonisin, DON and OTA remain uncertain, however likely, 85 

especially for fumonisins 6.  Effects of ingestion of combinations of mycotoxins also needs 86 

greater attention. 87 

Recent studies of dietary exposure to aflatoxin modeling intake of 3 maize foods based on 88 

aflatoxin analysis of these foods in regions of Kenya.  Eating whole kernel maize would result in 89 

a 5- to 10-fold greater exposure to aflatoxin than eating maize meal or muthokoi (dehulled and 90 

processed maize), about 300 ng aflatoxin/kg body weight.  This exposure is 1000-fold greater 91 

than noted in the US 8.  92 

In a study in Lebanon, mean aflatoxin B1 exposure was 0.63 ng/kg/d, extrapolating to an 93 

increased risk of cancer of ~ 0.05 cases/100,000 individuals9, a relatively low additional risk.  In a 94 

survey of aflatoxin intake from foods in Malaysia, mean aflatoxin intake was much greater, about 95 

30 ng/kg/d, contributing ~0.7 liver cancer cases/100,000 individuals.  With the current maximum 96 

limit for aflatoxin of 15 ppb in Malaysia, this finding indicates some need for continued vigilance 97 

in limiting intake of foods contaminated with aflatoxin above that maximum10. 98 

From the most recent French Total Diet Study, only DON exposure and not exposure to aflatoxin, 99 

fumonisin or OTA exceeded the health-based guidance value (HBGV) of estimated intake of 100 

1000 ng DON/kg/d. Only 0.5% of adults and 5% of children exceeded this estimated DON intake.  101 

Mean DON exposures were estimated at ~400 ng/kg/d for adults and ~550 ng/kg/d for children 102 

from this study 11.  This study should be seen as a model for other countries to better assess health 103 

risks from mycotoxins.   104 

A total diet study of urban Lebanese showed that mean DON intake exceeded the European Food 105 

Safety Authority’s (EFSA) HBGV (1000 ng/kg/d), at 1560 ng/kg/d, whereas mean OTA intake of 106 

4.3 ng/kg/d was 80% of EFSA’s HBGV9.  When exposure to DON was combined with exposures 107 
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to 3- and 15-Acetyl DON in a case study of 1269 individuals in Shanghai, China, mean DON 108 

exposure from these 3 forms slightly exceeded the HBGV at 1085 ng/kg/d 12.  More work on 109 

public health effects of such findings related to DON are needed. 110 

A Tunisian case control study of 69 women with breast cancer and 41 controls showed 111 

significantly greater urinary α-zearalenol in women with breast cancer, with mean concentration 112 

of 4.6 ng/mL, 3-fold greater than in controls 13.  This estrogenic metabolite of zearalenone might 113 

enhance growth of estrogen-responsive breast cancer cells.  This study suggests that it would be 114 

worth studying the extent to which urinary α-zearalenol might predict breast cancer risk.  115 

However, a recent study biomonitoring mycotoxins in Belgium showed that only one adult out of 116 

239 studied had any urinary content of α-zearalenol, and this metabolite was not detected in 117 

children (n = 155)14. The study in Belgium implies that in countries with more highly developed 118 

food safety systems, zearalenone would not pose a human breast cancer risk.  A study associating 119 

zearalenone exposure with reproductive development in 163 9-10 year old girls in New Jersey 120 

showed mean urinary α-zearalenol ten-fold less than seen in Tunisian women, and lesser breast 121 

development in girls with greater zearalenone exposure 15, suggesting an anti-estrogenic effect of 122 

the mycotoxin at these exposure levels.  It is intriguing to consider further work to investigate 123 

possible breast cancer protective effects of zearalenone at exposures similar to those noted above 124 

in Belgium or the US. 125 

18.3 MYCOTOXIN METABOLISM 126 

The metabolism of mycotoxins, by animals, bacteria associated with the gut, and by plants, may 127 

be a significant factor in mitigating health risks of these compounds, but this aspect of 128 

mycotoxins has not been incorporated directly into risk assessment or mitigation strategies.  It 129 

may be that dietary and other health habits of populations either enhance or inhibit mycotoxin 130 

detoxification.  Such possibilities will be explored in this chapter section. 131 

Among the 4 major mycotoxins, aflatoxin is known to undergo significant mammalian 132 

metabolism, both in activation to its proximate carcinogenic (mutagenic) form, aflatoxin 8,9-133 

epoxide, by cytochromes P-450 (P450) 16, and its detoxification, especially by glutathione S-134 

transferases (GSTs) to transform the epoxide site’s to a hydroxyl and a glutathione adduct 17.   135 

P450s are inducible by dietary components including flavonoids 18 and cruciferous vegetables 136 

such as broccoli and cabbage 19.  Chronic food restriction also may induce P450s 20, suggesting 137 

enhanced susceptibility to AFB1 toxicity in regions where food shortages and undernutrition are 138 

more common. Paradoxically, P450s may also be inhibited by flavonoids 21.  Some flavonoids 139 
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such as apigenin, a flavonoid in parsley, inhibited AFB1 mutagenicity in vitro mediated by the 140 

human P450 enzyme thought to be important for AFB1 activation, hCYP1A2 22. The significance 141 

of this finding for prevention of AFB1-associated human cancers remains to be determined.  142 

Several studies have shown in animal models the possible mitigation of aflatoxin toxicity and 143 

carcinogenesis by dietary alterations of its metabolism.  Marked inhibition of AFB1 144 

carcinogenesis in rainbow trout, the most sensitive species to AFB1, was shown for beta-145 

naphthoflavone (BNF) and indole-3-carbinole (a component of cruciferous vegetables) but only 146 

BNF induced P450 in this model 23. This early study illustrated the complexity of attempting to 147 

prevent AFB1 carcinogenicity by dietary components, as mediated by modulation of P450.  148 

Chickens fed 100 ppb AFB1 showed induction of P450, which was prevented by supplementation 149 

with 0.5 mg selenium (Se)/kg diet compared with 0.2 mg Se/kg, suggesting that diets containing 150 

this moderately greater amount of Se might mitigate the activation of AFB1.  This approach may 151 

be feasible to investigate as a human intervention in regions where AFB1 contamination is 152 

common.  Dietary induction of GSTs as a strategy to mitigate AFB1 carcinogenicity has been 153 

shown using a model antioxidant, oltipraz, in rats 24. Oltipraz increased production of AFB-154 

glutathione metabolites in a human clinical trial, demonstrating the feasibility of this approach 25. 155 

The identification of effective dietary inducers of GSTs that can mitigation AFB1 toxicity in 156 

humans remains to be accomplished. It has been recently proposed that strategies not involving 157 

AFB1 metabolism, such as increasing dietary chlorophyllin content, which binds to and inhibits 158 

absorption of AFB1, may be more useful to consider because altering P450s and GSTs is likely to 159 

alter metabolism of many drugs, thus making public policy recommendations about such dietary 160 

constituents highly problematic 26.     161 

DON is also metabolized by inducible biotransformation in animals.  In particular, the hydroxyls 162 

of DON are sites for addition of sulfate (by sulfotransferases, STs) or glucuronide.  163 

Glucuronidation by UDP-glucuronosyltransferases (UGTs) is favored in species possessing both 164 

types of biotransformation enzymes, based on limited data 27.  Human UGTs have less capability 165 

to form DON glucuronides than do rat UGTs in vitro, but such metabolites are the predominant 166 

urinary excretion products across species 28.  DON-3-glucuronide was shown to have negligible 167 

toxicity compared with DON in human K562 cells, consistent with the general idea in toxicology 168 

that such metabolites are detoxification products 29.  Because UGTs are highly inducible by some 169 

dietary constituents, such induction may mitigate DON toxicity in humans. Neither the extent of 170 

UGT induction nor the effect of this phenomenon on DON toxicity has been established yet in 171 

humans. 172 
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 173 

The biotransformation of DON in plants to DON glucosides, especially DON-3-glucoside (D3G) 174 

has been observed 30. Many hydroxylated secondary plant metabolites are also stored in plants in 175 

glucoside form.  This conversion of DON initially was shown to “mask” DON to its detection. 176 

Since then, D3G has been recognized as a minor but not insignificant form of DON in DON-177 

contaminated grains, constituting as much as 25% of total DON in wheat and maize 31.  D3G can 178 

be readily converted back to DON by bacterial β-glucosidases in the mammalian gut. D3G per se 179 

is practically unabsorbed, so the absorption of DON from dietary D3G would occur mainly in the 180 

ileum and colon which contain most of the bacteria in the intestine.  Enhanced presence of D3G 181 

in the diet could alter the site of intestinal toxicity.  The development of grains that have 182 

increased ability to convert DON to D3G would not be advisable unless DON de-epoxidation 183 

capacity, and hence DON detoxification were also commonly occurring.  This has been 184 

demonstrated in rats, in which the urinary excretion of D3G was 5-fold less than that seen for 185 

DON; most D3G was excreted as DON or de-epoxy DON (DOM-1) in rat feces 32.  When DON 186 

was fed to pigs as D3G, its apparent bioavailability was about two-fold less 33.  DON de-187 

epoxidation in the rumen is the main fate of DON in cattle 34, which seems to be why ruminants 188 

are relatively protected from DON toxicity.  De-epoxidation in the lower intestine of pigs is also 189 

common, but this has no protective benefit from DON toxicity because DON seems to be 190 

absorbed in the small intestine before the DON de-epoxidating bacteria can be effective 35.  191 

Likewise, in one study of French farmers, about 30% of the humans tested had DON de-192 

epoxidating activity in fecal bacteria 36. A lesser extent of this metabolism was observed in 193 

individuals from the UK 37.  De-epoxidation of DON in humans would not be expected to 194 

mitigate DON toxicity appreciably unless DON were present mainly as D3G which is not 195 

currently the case.  If we presume that DON can be rapidly and extensively converted to DON 196 

glucuronides, the DON glucuronides would be expected to be eliminated mainly in bile.  These 197 

metabolites would not be reabsorbed until they were converted back to DON by bacterial 198 

glucuronidases in the lower intestines.  At that point in DON metabolism DON might be 199 

detoxified by gut bacterial DON de-epoxidases.  It may be worth exploring the feasibility of 200 

modifying the human gut microbiome to include DON de-epoxidating bacteria in individuals who 201 

do not naturally carry such bacterial species.  Some such species have been identified and might 202 

be seen as a new class of probiotics, potentially beneficial bacteria that might be introduced into 203 

the food supply.  The need for such alteration of human gut bacteria remains to be established, 204 

and would not be a trivial process.  But if such a need were confirmed (in humans who do not 205 
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already have this metabolic capability in their gut microbiomes), standards exist for assuring the 206 

efficacy and safety of probiotic bacteria 38. 207 

Ochratoxin A (OTA) is the main ochratoxin of concern to human health.  It can be hydrolyzed by 208 

proteases to form an apparently non-toxic form, ochratoxin-alpha, and phenylalanine.  The lack of 209 

toxicity of OTA-alpha has been demonstrated in zebrafish recently 39.  The percentage of 210 

ochratoxin absorbed in humans has not been directly determined, presumably due to ethical 211 

concerns about deliberately exposing humans to this presumed carcinogen, but across several 212 

species, uptake has been estimated at ~50% of ingested dose 40.  In limited human studies, OTA-213 

alpha seemed to be the predominant urinary form of OTA. In one study, human urinary contents 214 

of OTA and OTA-alpha were about equal 41.  Pregnant women showed about 10-fold greater 215 

urinary OTA-alpha  than OTA 42, indicating seemingly greater OTA detoxification ability of 216 

pregnant women than of non-pregnant women.  Hydrolysis of OTA by microbial enzymes may 217 

be a strategy for mitigation of the mycotoxin 43, but the capability of enhancing such hydrolysis in 218 

vivo in humans remains to be determined. 219 

The metabolism of fumonisins has been shown to be virtually nil in vivo, as might be expected for 220 

these highly water-soluble, relatively large and therefore, poorly absorbable toxins.  Seemingly 221 

their water-solubility facilitates their rapid excretion and poor retention in body tissues, as has 222 

been demonstrated by studies of the fate of radio-labeled FB1 in a rodent model 44.  These 223 

compounds may be altered during some food processing reactions (e.g., addition of reducing 224 

sugars to the primary amine of FB1) and by microbial enzymes (e.g., carboxylesterase FumD) 225 

that are potentially useful in mitigating the toxins 45.  226 

In summary, it may be worth considering incorporating alteration of human/gut microbial 227 

metabolism of some mycotoxins in future mitigation strategies.  Insofar as the future may hold 228 

the ability for genetic characterization of individual biotransformation enzyme genetics and 229 

polymorphisms, and thus the prospect of tailoring diet to contain the right mix of 230 

biotransformation enzyme inducers or inhibitors depending on dietary circumstances, metabolism 231 

modification may need to be part of the defense arsenal against these toxins. 232 

18.4 MYCOTOXIN MITIGATION 233 

Mitigating the presence of mycotoxins in the human food supply is mostly about reducing 234 

mycotoxin burden in grain crops used for human food.  Significant attention is also directed 235 

toward reducing mycotoxins in the feed of livestock, for example, in the case of aflatoxin, due to 236 
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carry over of the aflatoxin metabolite AFM1 into dairy milk.  Mitigation strategies involve 237 

improving mycotoxin detection and regulation, which currently means removing from the food 238 

supply foods that exceed action, advisory or guidance levels developed by the United States (US) 239 

Food and Drug Administration (FDA). Analogous standards that may be somewhat more or less 240 

stringent exist in many countries, including the European Union (EU). An action level is 241 

mandated by FDA only for aflatoxins in the US, currently set at 20 ppb for foods for human 242 

consumption.  FDA advisory levels are set at 1 ppm for deoxynivalenol in foods for human 243 

consumption, and FDA has also provide guidance levels for fumonisins of 2-4 ppm for foods for 244 

human consumption 46.   245 

A strong research publication focus has been on innovative detection methods, but this research 246 

does not seem to be well-aligned with the needs, especially in low income countries, for rapid, 247 

accurate and inexpensive mycotoxin detection.  Mycotoxin analytical methods have been recently 248 

reviewed 47 and major constraints in this field were noted, including the varied chemistries of the 249 

mycotoxins, the need to assess multiple mycotoxins in food samples and to assure that samples 250 

are appropriately representative of the scope of possible contamination, and the need for speed 251 

and economy.  QuEChERs (quick, easy, cheap, effective, rugged and safe) technologies were also 252 

noted to be especially important in the realm of mycotoxin analysis.  Portability of analytical 253 

methods is improving, with a number of promising advances coming from the realm of 254 

nanotechnology coupled with alternatives to antibody-based mycotoxin detection.  Such 255 

alternatives include aptamers (RNA-binding) and molecular imprint polymers (MIPs).  256 

Nanomaterial sensors for mycotoxins including AFB1, DON, FB1 and OTA have been developed 257 
48.  Because many nanomaterials do not occur in nature, particular caution in assessing safety 258 

related to disposal, environmental persistence, and potential health effects on humans and 259 

ecosystems is warranted.  Spectroscopic detection coupled with chromatographic separation 260 

methods of varying types and expense remain the state-of-the-art in terms of reliability, but 261 

portability of spectroscopy is also improving 47. A few recent studies on mycotoxin detection 262 

show promise.  An aptamer-based dipstick for AFB1 was shown to have comparable detectability 263 

compared with a standard ELISA method in the ppb range, as needed for food samples.  The 264 

method took 30 min to complete, with simple solvent extraction (20% methanol) of grain samples 265 

including maize 49. An antibody-based microarray system for simultaneous detection of AFB1 266 

and FB1 was shown to be feasible and comparable to standard ELISAs in detection levels.  This 267 

method will require further validation for food samples 50.  A portable evanescent wave optical 268 

aptasensor with a reversible ligand-grafted biosensing surface was demonstrated for OTA, with 269 
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detection limit of 0.4 ppb, and OTA recoveries from powdered wheat of 89—106%, with ~15% 270 

CV.  This detection limit is sufficient to meet current regulatory policies 51, but this seemingly 271 

relatively cost-effective and reusable method will need further validation across food sources of 272 

OTA.  DON-specific nanobodies (single domain antibodies) that can mimic DON have been 273 

recently discovered and might be useful in further optimizing DON detection 52.  The adoption of 274 

the Food Safety Modernization Act (FSMA) in the US in 2011 emphasizes prevention of food 275 

contamination.  It remains to be seen how FSMA will affect mycotoxin detection, but rapid, 276 

reliable and inexpensive methods available to farmers are likely to be needed, thus promising 277 

emerging technologies such as these will be crucial. 278 

Preventing mycotoxins in the field is a burden for grain producers that currently relies on their 279 

ability to identify fungal contamination and insofar as feasible and permissible to apply 280 

appropriate fungicides. Fungicide resistance is an ongoing concern, as well as general 281 

environmental and human health concern about use of synthetic chemical fungicides, so 282 

potentially toxigenic fungi-inhibiting plants and their extracts are under investigation as 283 

alternatives 53.  Commercialization remains to be achieved; significant technical and economic 284 

barriers exist in this field of “green chemicals”.   285 

Identification and development of mycotoxin-resistant crop varieties has shown particular promise 286 

in maize, a species for which at least a few naturally occurring variants are resistant to AFB1 54.  287 

AFB1 Resistance associated proteins have been identified, and current genomic technologies may 288 

permit engineering of such proteins into other crop species.  But no commercially available AFB1-289 

resistant maize lines are yet available 54. Several cross bred maize lines were recently identified as 290 

resisting both AFB1 and FB1 contamination in field trials in South Africa, in which at least a few 291 

crosses were developed that did not accumulate AFB1 above 5 ppb or FB1 above 4 ppm (current 292 

regulatory levels) 55.  For DON in wheat, the quantitative trait locus Fhb1 permitted conjugation of 293 

DON with glucose and several glucose derivatives as well as glutathione conjugates, significantly 294 

increasing D3G/DON ratio 56. As noted in the above section on DON metabolism, this conversion 295 

would not be expected to significantly detoxify DON unless DON-de-epoxidating capability was 296 

also present in individuals ingesting this grain.  It might be presumed that any DON conjugate, 297 

whether with glucose, glutathione or other glucose derivatives would likely be deconjugated by gut 298 

bacteria, but that remains to be proven. Barley is another major source of DON; it has been 299 

discovered recently that black barley showed about half the DON contamination of yellow barley, 300 

so switching to this barley type might be a feasible mitigation approach 57.  A yeast species, 301 

Kluyveromyces thermotolerans was capable of decreasing OTA in grapes 58, which may be a 302 
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significant source of this toxin, so some types of biocontrol may be feasible, but will certainly need 303 

to be developed on a crop-specific basis. No work on OTA resistance in grain crop species was 304 

uncovered for this review.  But progress is being made, seemingly especially for AFB1 and FB1 305 

resistance in maize.    306 

A number of potential strategies to decrease mycotoxins during food processing have been 307 

demonstrated in the literature. Current US regulatory policies do not permit blending of a crop 308 

contaminated above key limits with non-contaminated crop; exceptions may be made when a 309 

severe mycotoxin contamination epidemic occurs. Diversion of mycotoxin contaminated crops 310 

into animal feeds may occur where regulatory levels permit46.   Regulators, scientists and citizens 311 

should engage in effective global discourse about the problem of mycotoxin contamination of 312 

crops used to feed humans.  It is important to determine a rational future for feeding a world in 313 

which mycotoxin contamination is likely to be a problem of increasing severity due to 314 

increasingly extreme weather and climate conditions that have been occurring and are predicted.  315 

More attention to development of low cost and effective means of decreasing mycotoxins in 316 

human foods as a part of food processing is warranted.   317 

Aflatoxin decontamination methods have been developed.  Screening grain kernels under UV 318 

light which can recognize grain grossly contaminated with aflatoxins and mechanical sorting to 319 

cull contaminated kernels is permitted in the US to achieve grain batches compliant with the 320 

action level for aflatoxin.  Ammoniation of cottonseed is permitted by FDA.  Although this 321 

method has been established to effectively detoxify maize containing aflatoxins59, with several 322 

trials across livestock and laboratory animals showing a reduction in aflatoxin content to 1% or 323 

less than in the starting contaminated grain59, this method is not approved for grains in the US.  324 

As summarized in a recent review focused on an African perspective on mycotoxin remediation 325 
60, sorting and cleaning before storage, and keeping stored grain dry may be quite effective in 326 

reducing aflatoxin contamination of grains and peanuts.  In a study using visibly moldy maize in 327 

Malawi, hand sorting to remove obviously damaged or shriveled seeds and seed fragments 328 

removed ~95% of AFB1 or FB1. Floating the kernels in water before sorting only removed about 329 

60% of either type of contamination; adding flotation to hand sorting showed no additional 330 

benefit61.  Thus, simple but labor intensive methods may be beneficial where farmers and 331 

consumers are educated about the health benefits of removing aflatoxins from foods. A novel 332 

method of treating hazelnuts with cold atmospheric plasma in a controlled pressure chamber 333 

using power of 1000 W decreased AFB1 content of the nuts by two-thirds after 12 min62.  This 334 

technique should not interfere with food quality and might be useful for many other AFB-335 
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containing foods.  The wider feasibility, mainly cost-effectiveness, of such technologies remains 336 

for future work. 337 

For DON, as might be expected from its hydrophilicity, processing foods in water such that the 338 

water is removed from the final product can remove significant amounts of DON.  This is 339 

pertinent but probably not practical for pasta. Boiling of 310 g pasta from 0-10 min showed 340 

progressive loss of DON from 0.62 ppm to 0.16 ppm (75% loss of DON)63, but as this was 341 

“fresh” pasta, eating quality would not be acceptable to many consumers after the longer boiling 342 

times that were more effective. Wheat flour bread making and baking did not diminish DON 343 

concentrations63.   Treatment of DON-contaminated dried distillers grain solids for nursery swine 344 

feed with 5% sodium metabisulfite,(SMB) autoclaving and drying decreased DON concentration 345 

in this feed by more than 80%.  Heating DON with SMB causes formation of a DON-10-346 

sulfonate, which was non-toxic to the pigs.  Average daily gain was restored to control levels by 347 

this treatment 64.  Practically, such treatments of grain flours for human intake might be feasible, 348 

but prevention of toxic effects to workers from sulfur dioxide gas release during processing 349 

would be important.  Also, some individuals may have allergic-like reactions to sulfites as food 350 

additives, and warning labels would be needed.  Heat processing per se, such as during extrusion 351 

of corn flour65 may remove DON by as much as 98%, but results from another lab with wheat 352 

flour did not show this ability of heat processing 66.  It seems prudent to conduct additional 353 

studies on SMB using human foods because this may be a cost-effective approach that could be 354 

necessary depending on the extent of DON contamination that may emerge in some regions.  355 

Additional investigations as to the potential of SMB treatment of DON contaminated grain flours 356 

to adversely affect sulfite sensitive individuals, and appropriate additional food labeling may be 357 

needed as well. 358 

Regulatory limits for ochratoxins in foods range from 2-10 ppb in the EU.  Pre-harvest control by 359 

good agricultural practices, careful use of fungicides and biocontrol agents (e.g., yeasts, 360 

natamycin) are thought to be most effective against OTA 67, as well as low-moisture storage.  361 

Adsorption of OTA from beverages may be feasible but must be evaluated carefully for effects on 362 

nutritional quality and taste; modified zeolites may be particularly useful67.  Quaternary 363 

ammonium beta-cyclodextrin was shown in vitro to have 200-fold stronger affinity for OTA than 364 

beta-cyclodextrin, as measured by fluorescent spectroscopic changes; this cyclodextrin derivative 365 

may be a good candidate for pass-through adsorption of OTA from beverages68.  More practical 366 

conditions will need to be investigated for such an adsorbent, as well as determination of any 367 

significant adverse effects on beverage quality from use of the adsorbent.  368 
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The prospect that human metabolic capabilities may also mitigate health risks from mycotoxins 369 

also deserves greater attention, based on the theoretical framework developed above (see section 370 

on mycotoxin metabolism).  371 

18.5 RECOMMENDATIONS 372 

Human risk assessment of mycotoxins that includes better recognition of disease and cost burdens 373 

of these food borne toxins is a primary need.  Such risk assessment should move toward 374 

incorporating the assessment of dietary and other health habits in addition to mycotoxin exposure 375 

assessment.  A number of dietary constituents, as discussed previously, might mitigate adverse 376 

effects of mycotoxins.  Exercise is increasingly recognized as a strong factor in mitigation of 377 

cancer risk69, but taking a global perspective, does intensive physical activity in the case of 378 

subsistence farmers confer benefits or add health stress? 379 

Discovery and development of mycotoxin resistant crop species is progressing.  This work will 380 

need to continue permanently as it is reasonable to consider that mycotoxigenic species will 381 

continue to evolve.  Integrated pest management systems that employ “green” technologies of 382 

biocontrol against mycotoxins must become feasible and affordable in the future. 383 

The recognition of the potential of microbes to degrade and detoxify mycotoxins may extend 384 

from the field to the fork, in that anti-mycotoxin microbes might be developed into a new 385 

generation of probiotics that could be incorporated into an array of ready-to-eat food products. 386 

Such a recommendation should be approached with great caution and respect for the many 387 

unknowns that need careful testing as fundamental discoveries move into product development.  388 

Engineering or manipulation of the human gut microbiome to contain microbes beyond what are 389 

naturally present across diverse human populations seems unwise without a great deal more 390 

understanding of gut microbial populations and interactions between these microbes and complex 391 

food constituents. 392 

A focus on extending adequate resources for mycotoxin management and mitigation to low 393 

income world regions must be the greatest priority.  Advances in the ability of human populations 394 

to effectively govern themselves and abide by fair rules of law will be needed to accomplish the 395 

needed eradication of excess liver cancer due to aflatoxin.  Humanity deserves better assurance of 396 

food safety; mycotoxins remain an important global consideration in that regard.   397 
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