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ABSTRACT 

The substantial growth in the use of automated in-process sensing technologies 

creates great opportunities for manufacturers to detect abnormal manufacturing processes 

and identify the root causes quickly. It is critical to locate and distinguish two types of 

faults – process faults and sensor faults. The procedures to monitor and diagnose process 

and sensor mean shift faults are presented with the assumption that the manufacturing 

processes can be modeled by a linear fault-quality model. 

A W control chart is developed to monitor the manufacturing process and quickly 

detect the occurrence of the sensor faults. Since the W chart is insensitive to process 

faults, when it is combined with U chart, both process faults and sensor faults can be 

detected and distinguished.  A unit-free index referred to as the sensitivity ratio (SR) is 

defined to measure the sensitivity of the W chart. It shows that the sensitivity of the W 

chart is affected by the potential influence of the sensor measurement. 

A Bayesian variable selection based fault diagnosis approach is presented to 

locate the root causes of the abnormal processes. A Minimal Coupled Pattern (MCP) and 

its degree are defined to denote the coupled structure of a system. When less than half of 

the faults within an MCP occur, which is defined as sparse faults, the proposed fault 

diagnosis procedure can identify the correct root causes with high probability. Guidelines 

are provided for the hyperparameters selection in the Bayesian hierarchical model. An 

alternative CML method for hyperparameters selection is also discussed. With the large 

number of potential process faults and sensor faults, an MCMC method, e.g. Metropolis-

Hastings algorithm can be applied to approximate the posterior probabilities of candidate 

models. 

The monitor and diagnosis procedures are demonstrated and evaluate through an 

autobody assembly example. 
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ABSTRACT 

The substantial growth in the use of automated in-process sensing technologies 

creates great opportunities for manufacturers to detect abnormal manufacturing processes 

and identify the root causes quickly. It is critical to locate and distinguish two types of 

faults – process faults and sensor faults. The procedures to monitor and diagnose process 

and sensor mean shift faults are presented with the assumption that the manufacturing 

processes can be modeled by a linear fault-quality model.  

A W control chart is developed to monitor the manufacturing process and quickly 

detect the occurrence of the sensor faults. Since the W chart is insensitive to process 

faults, when it is combined with U chart, both process faults and sensor faults can be 

detected and distinguished.  A unit-free index referred to as the sensitivity ratio (SR) is 

defined to measure the sensitivity of the W chart. It shows that the sensitivity of the W 

chart is affected by the potential influence of the sensor measurement. 

A Bayesian variable selection based fault diagnosis approach is presented to 

locate the root causes of the abnormal processes. A Minimal Coupled Pattern (MCP) and 

its degree are defined to denote the coupled structure of a system. When less than half of 

the faults within an MCP occur, which is defined as sparse faults, the proposed fault 

diagnosis procedure can identify the correct root causes with high probability. Guidelines 

are provided for the hyperparameters selection in the Bayesian hierarchical model. An 

alternative CML method for hyperparameters selection is also discussed. With the large 

number of potential process faults and sensor faults, an MCMC method, e.g. Metropolis-

Hastings algorithm can be applied to approximate the posterior probabilities of candidate 

models. 

The monitor and diagnosis procedures are demonstrated and evaluate through an 

autobody assembly example. 
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CHAPTER 1. INTRODUCTION 

In recent years, there has been substantial growth in the use of automated in-

process sensing and data-capture technologies such as the in-line Optical Coordinate 

Measurement Machine (OCMM) used in manufacturing process as automotive body 

assembly processes. These technologies provide 100 percent inspection of the product 

quality characteristics and create opportunities for manufacturers to monitor the processes 

and diagnose faults in real time. 

Two types of root causes in manufacturing processes may cause abnormal 

measurements of product quality variables. One type of root cause is process fault, which 

is defined as the malfunction of tooling elements (such as fixture, cutting tool, and 

welding gun) in manufacturing processes. The other type of root cause is the malfunction 

of the sensors used to take the measurements, which are referred to as sensor faults 

occurred in the in-process sensing system. For example, Figure 1.1 demonstrates a 

simplified fixture layout of the flat rigid body panel in x-z plane. A four-way pin P1 and a 

two way pin P2 constrain the motion of the panel. Three points M1, M2 and M3 are 

measured by the sensors installed in the system in both x and z directions. Figure 1.1 (a) 

shows the nominal position of the panel under normal condition. If a displacement occurs 

on pin P2, which might be the result of tool element worn, loose or broken, there will be a 

motion/deviation of the panel as shown in Figure 1.1(b), resulting in the displacements of 

the three measurements. We call this type of root cause as process faults.  Suppose there 

is no process fault as shown in Figure 1.1(a), we may still observe measurement of point 

displacements because of the malfunction of the sensing system – the occurrence of 

sensor faults.  

The effect of process faults and sensor faults can also be shown in machining 

process. Figure 1.3 demonstrates fixture locating schemes of an automotive engine head 

in three machining processes. The features are the cover face (M) (Figure 1.3(a)), joint 
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face (Figure 1.3(b)), and the slot (S) (Figure 1.3(c)).  The cover face, joint face, and the 

slot are milled at the 1st , the 2nd , and the 3rd stages as shown in Figure 1.4.  

 

 

 

Figure 1.1 Illustration of the effects of process fault and sensor fault in single-stage 
assemble process 

 

(a) Locator P2(1) malfunction in assembly station 1 

 

(b) Manifestation of process fault propagation in assembly station 2 

Figure 1.2 Illustration of process fault propagation in multistage assembly process 

(a) Part locators and  
measurements layout  

(b) Manifestation of pin P2 
failure 
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It can be seen that the errors of fixture and cutting tool-path at stage k (k =1, 2, 3) 

will cause the deviation of the quality features from their nominal positions. In addition, 

the sensor faults will also cause the false deviation alarm of the quality features.  

 

 

 

 

(a)                                (b)       (c) 

Figure 1.3 Fixture locating schemes of an automotive engine head and its quality features 

 

Figure 1.4 Operation sequence 

1.1 Fault-Quality Model and Assumptions 

We describe the relationship between processes faults, sensor faults and 

measurements deviation as a linear model which has been studied in the literature. We 

call this linear model as fault-quality model in our study. Specifically, the fault-quality 
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model can be written as follows: let an n×1 vector [ ]Tjnjjj yyy L21=y denote the 

sensor measurements on n product quality characteristics of the jth product unit with 

sample size N :   

      jj wCuy += ,     j=1, …, N (1.1) 

where the p×1 vector ܝ ൌ ሾݑଵ ଶݑ ڮ  ௣ሿ் represents p potential process faults. Theݑ

process faults ܝ will affect the quality characteristics ܡ௝ linearly through an n×p matrix ۱, 

which can be usually obtained through engineering analysis (for details, see Ceglarek and 

Shi, 1996; Jin and Shi, 1999; Zhou and Huang, 2003). The n×1 vector ܟ௝ denotes the 

aggregated effects of sensor noise and any inherent unmodeled variation in the 

manufacturing process for product j.  

Our research is based on the fault-quality model. We consider the following 

assumptions in our studies: 

(A1) The p-dimensional vector u, which represents the deviations/errors caused 

by the process faults, remains constant but unknown. If no process fault exists, ܝ ൌ

 .଴≡૙ܝ

(A2) The noise term ܟ௝’s are independent random variables and identically follow 

a Gaussian distribution with mean ૄܟand covariance matrix ۹ܟ ൌ ઱, i.e., 

.௝݅ܟ ݅. ݀ ~ܰሺૄܟ, ઱ሻ, where ઱ is a positive definite matrix. The mean ૄܟ is caused by 

sensor mean shift fault. If all the sensors are working properly, ૄܟ ൌ ૙. σ2 include the 

variances of the sensors and other process noises. We assume that the covariance matrix 

   .௝ is known or can be estimated from historical dataܟ of noise term ܟ۹

1.2 Literature Review 

1.2.1 SPC Technique 

One widely applied technique to detect out-of-control conditions of a 

manufacturing process is Statistical Process Control (SPC) (Woodall and Montgomery, 
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1999). A variety of multivariate control charts in SPC can be used to monitor the 

collected measurements on product quality characteristics in real time to detect the 

presence of assignable causes and reduce process variation. Specifically, let ܡ௝ denote the 

n× 1 vector of product quality variables observed from the jth manufactured unit. ܡ௝ has 

mean vector ૄ௬଴ and covariance matrix ઱ when the process is in control. In order to 

monitor in-control mean vector ૄ௬଴, a standard approach is to monitor the observations 

on ܡ௝ with a control chart such as Hotelling T2 control chart, the multivariate cumulative 

sum of Crosier (1988) and Pignatiello and Runger (1990), or the multivariate 

exponentially-weighted moving average (MEWMA) of Lowry et al. (1992). Prabhu and 

Runger (1997) provided the recommendation of the parameter choice to improve the 

performance of the MEWMA control chart. Runger et al (1999) suggested that the 

MEWMA control chart can be significantly improved by transforming the original 

process variables to a lower-dimensional subspace through the use of a U-transformation. 

Alt (1984) and Montgomery (1991) presented phase I and phase II multivariate control 

charts to monitor the process variability. Chen, Cheng and Xie (2005) proposed a 

MEWMA control chart to monitor the process mean shift and variability simultaneously.  

Some diagnosis approaches are studied to identify which variables are responsible 

for the out-of-control signal. Alt (1985) suggested applying univariate ݔҧ chart on 

individual variables with Bonferroni-type control limits. Hayter and Tsui (1994) revised 

this method by producing exact individual confidence intervals such that the ‘faulty’ 

variable can be identified. Runger, Alt and Montgomery (1996) decomposed T2 into 

components that reflect the contribution of each individual variable and focused on the 

variables highly contributing to the out-of-control signal. Mason, Tracy and Young 

(1995) introduced an approach to interpret the T2 control chart based on decomposing the 

T2 statistics into orthogonal components. 

Two limitations exist, however, in the traditional control charts: first, the 

performance of the control charts will be affected by the dimension of the product quality 
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variables. For example, Apley and Shi (1998, 2001) noted that optical coordinate 

measurement machines (OCMM) installed in autobody assembly operations may obtain 

observations on as many as 150 product quality characteristics from each subassembly. 

The large number of product quality variables would create it difficulty in  detecting 

quality change. Second, the control charts are used to monitor the manufacturing process, 

rather than directly identifying the root causes. Although some diagnostic methods have 

been studied, they are not efficient for our specific problem.  

1.2.2 Linear Model and Related Monitor and Diagnosis Approaches 

In recent years, the linear models, as we have described in Section 1.1, that link 

abnormal measurements with the potential process faults and sensor noises have been 

studied by several researchers. Apley and Shi’s (1998) model is derived analytically from 

the geometry of the panel and fixture layout in assembly systems. Later on, several 

articles have proposed state-space models to describe the propagation of dimensional 

variation in discrete multi-station manufacturing processes. Such models have been 

developed for assembly and machining processes by Jin and Shi (1999), Ding, Ceglarek, 

and Shi (2002), Zhou, Huang, and Shi (2003), and others.  

Based on the above fault-quality model, researchers have come up with many 

techniques in process fault diagnosis. Ceglarek and Shi (1996) developed a PCA 

(Principal Component Analysis)-based mapping procedure to diagnose a single fixture-

fault in automotive body assembly processes. Ceglarek and Shi (1999) improved their 

previous method by considering the impact of measurement noise on the diagnostic 

results. They presented a diagnostic index as a function of noise, fixture geometry, and 

sensor location, which helped to identify a single fixture-fault in sheet metal assembly 

processes. Ding, Ceglarek and Shi (2002) applied PCA and pattern recognition methods 

to map the process faults for multistage processes. Ding, Zhou and Chen (2005) studied 
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the properties of a few statistical estimators of process variation sources and compared 

their performances with respect to computational and statistical efficiencies.   

The SPC techniques are also combined with the linear fault-quality model on 

linear profile monitoring in recent literature. Kang and Albin (2000) and Kim, Mahmoud 

and Woodall (2004) studied a simple linear model that is a special case of model (1.1) in 

which the matrix ۱ only has two columns with the first column equal to 1, which is 

corresponding to the intercept term. They applied least squares regression and 

multivariate T2 control chart to monitor mean shifts of the intercept and slope parameters.  

The above fault monitoring and diagnosis research studies, however, only 

consider the malfunction of the manufacturing system and assumed that the sensing 

system is functioning normally. In real processes, this is not always the case. The 

malfunction of sensors may occur, which results in mean shifts in sensor measurements 

as shown in the single stage assembly and manufacturing examples. Both the process 

faults and the sensor faults may cause mean shifts in sensor observations. If a sensor fault 

is overlooked and confused with a process fault, resources will be wasted in trying to 

identify and eliminate process faults which may not really exist. Therefore, it is crucial to 

distinguish sensor faults from process faults in manufacturing quality control 

applications. Process fault detection based on sensor observations is valid only when it is 

assured that all sensors are working properly. 

1.2.3 Sensor Fault Detection 

Some studies in detection and identification of faulty sensor have been done in 

dynamic processes, especially in chemical processes. Fantoni and Mazzola (1996) 

applied a nonlinear principle component analysis (PCA) method to detect and identify 

fault sensors in nuclear power plants. Chou and Varhaegen (1997) developed a subspace 

algorithm to identify multivariable finite dimensional linear time-invariant systems 

assuming that the input and output measurements are contaminated by the white noise 



www.manaraa.com

8 
 

and the measured output might also be affected by the propagated white input noise. 

Based on the subspace identification model, Qin and Li (2001) proposed a dynamic 

structured residual approach to identify faulty sensors in dynamic processes. These 

studies only focus on the occurrence of sensor faults with no process fault involved. 

1.3 Objective and Outline of the Thesis  

The limitations in the literature prompt us to do more research on fault monitoring 

and diagnosis in manufacturing processes. The objective of this thesis is to make the 

following contributions: 

• Develop procedures to improve efficiency of traditional control charts in process 

fault and sensor fault monitoring by reducing the dimension of the monitored 

variables. 

• Develop statistical monitoring methods to effectively differentiate sensor faults 

from process faults. 

• Develop a Bayesian diagnosis approach to identify root causes responsible for the 

mean shift on the quality measurements. 

In Chapter 2, with the assumption that there is no sensor fault, we present a new 

phase II multivariate control chart which can detect the process mean shift faults more 

efficiently by reducing the dimension of the monitored variable. The relationship between 

the proposed control chart procedure and some other control charts studied in the 

literature is also investigated in Chapter 2. In Chapter 3, we consider the occurrence of 

both process mean shift and sensor mean shift and develop a so called W control chart to 

distinguish the sensor faults from the process faults. When the W control chart is 

combined with the multivariate control chart in Chapter 2, the process faults and the 

sensor faults can be detected simultaneously. In Chapter 4, we further propose a 

diagnosis approach based on Bayesian variable selection methods to identify the faulty 

tooling elements and sensors responsible to the detected abnormal quality measurements.  
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CHAPTER 2.   

DETECTING PROCESS FAULT FROM MULTIVARIATE DATA 

In this chapter, we first assume the probability of sensor fault occurrence is 

negligible. Based on this condition, we modify the assumption (A2) as: the noise term 

 . . ~ ( , )j i i d Nw 0 Σ . Then under model (1.1), the product quality vector jy  is multivariate 

normal with mean vector =yμ Cu   and covariance matrix Σ . The process is considered 

to be in control if the parameter vector 0= ≡u u 0 , in which case jy  has mean vector 

0 0= =yμ Cu 0 .  The process is out of control if 0≠u u .  The objective is to detect an out-

of-control process as quickly as possible. Since ܝ has p elements, each of which may 

shift from zero, there are p possible faults.  Any combination of these faults may be 

present simultaneously (i.e., zero, one, or multiple elements of ܝ may be shifted from 

zero); thus, under the model (1.1), the mean vector of jy  may shift along any vector in 

the subspace spanned by columns of ۱.  This allows for a multitude of potential shift 

directions or special causes.  For the time being, assume that n≥p and ۱ has full column 

rank.  In Section 2.4, we consider the case where the columns of ۱ are linearly dependent. 

2.1 Review of MEWMA Control Chart 

As we have mentioned in Chapter 1, the observations jy  are usually directly 

monitored by a control chart such as the multivariate cumulative sums or the multivariate 

exponentially-weighted moving average (MEWMA).  We discuss the MEWMA here 

because it has been shown to perform well and appears to have been studied more 

thoroughly than most multivariate monitoring methods.  To define the MEWMA, we 

form the vector of MEWMA’s 

0 1( ) (1 )j j jθ θ −= − + −yz y μ z     j = 1, 2, …  (2.1) 
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where 0y =μ 0 , the smoothing constant θ  is a scalar such that 0 <θ ≤ 1 and 0z  is a vector 

of all zeros. The MEWMA signals that the mean vector has shifted when (and only when) 

the statistic 

 
2 1

jj j jχ −′≡ zz Σ z  (2.2) 

exceeds a control limit h, where  

 
2{ [1 (1 ) ] (2 )}

j

jθ θ θ= − − −zΣ Σ  (2.3) 

is the covariance matrix of jz . Instead of 
jzΣ  in equation (2.3), it is typically assumed in 

the literature that the asymptotic (as j→∞) covariance matrix 

 { (2 )}θ θ− Σ  (2.4) 

is used to calculate the MEWMA statistic 2
jχ  in equation (2.2). We refer to the MEWMA 

based on the exact covariance matrix in equation (2.3) as well as that based on equation 

(2.4) as direct MEWMA because both of these methods apply MEWMA directly to jy . 

2.2 Proposed Procedure for Process Fault Monitoring 

Instead of using direct MEWMA, we propose to detect shifts in the process vector 

 by monitoring its generalized least squares (GLS) estimator ܝ

ෝ௝ܝ                                              ൌ ሺ۱ᇱ઱ିଵ۱ሻିଵ۱Ԣ઱ିଵܡ௝ (2.5) 

where it is assumed that the error covariance matrix Σ  is known. Under the model (1.1), 

it is known that 1 1~ ( , ( ) )j N − −′u u C Σ C)
  since ju)  is a BLUE of u. To apply a MEWMA to 

ju) , first compute the vector of EWMA’s 

0 1* ( ) (1 ) *j j jθ θ −≡ − + −z u u z)      j = 1, 2,…  ,     (2.6) 

where *0z  is a vector of all zeros and, again, 0 <θ ≤ 1. Since the in control vector 

଴࢛ ؠ ૙, the above equation can be simplified as 

1* (1 ) *j j jθ θ −≡ + −z u z)    j = 1, 2, … (2.7) 

A signal of a shift in ܝ is given when (and only when) the statistic 
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2 1

** * *
jj j jχ −′≡ zz Σ z                                (2.8) 

exceeds a control limit h, where 

2 1 1
* { [1 (1 ) ] (2 )}( )

j

jθ θ θ − −′= − − −zΣ C Σ C  (2.9) 

is the covariance matrix of *jz .  Note that the covariance matrix in equation (2.9)may 

not be obtained directly from Σ  (the covariance matrix of jy ); rather, it is obtained from
1 1( )− −′CΣ C , the covariance matrix of ju) .  We also note that, instead of using *jzΣ  in 

equation (2.9), the asymptotic form of this matrix, given by 1 1{ (2 )}( )θ θ − −′− CΣ C , may 

be used to compute the statistic in equation (2.8). 

The MEWMA of ju)  reduces to a chi-squared chart for ju)  in the special case that  

θ = 1. In this case, the MEWMA statistic 2 *jχ  in equation (2.8) reduces to 

2 1*j j jχ −′ ′= u C Σ Cu) )
 

2.2.1 Run-Length Distribution and Design of the Procedure 

It follows from Lowry et al.’s (1992) results that the run-length (RL) distribution 

of the MEWMA of ju)  depends on E( )ju)  and Cov( )ju)  only through the noncentrality 

parameter 

 
1[E( )] [Cov( )] [E( )]j j jλ −′= u u u) ) )  (2.10) 

where ܧ൫ܝෝ௝൯ and ݒ݋ܥ൫ܝෝ௝൯ are, respectively, the mean vector and covariance matrix of ܝෝ௝. 

Using the results ܧ൫ܝෝ௝൯ ൌ ෝ௝൯ܝ൫ݒ݋ܥ and ܝ ൌ ሺ۱ԢΣିଵ۱ሻିଵ in (2.10) gives 

 
1λ −′ ′= u C Σ Cu  (2.11) 

The MEWMA of ܝෝ௝ will have the RL distribution of a MEWMA applied to any 

p-variate normal vector with noncentrality ߣ. The above properties enable one to use 

existing results for the direct MEWMA to study the MEWMA of ܝෝ௝’s RL distribution 

and select its two design constants ߠ and h. The MEWMA’s RL distribution is studied, 

for example, by Lowry et al. (1992), Rigdon (1995a), Runger and Prabhu (1996), and 
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Prabhu and Runger (1997). Guidance for the selection of the MEWMA’s design 

constants is given in Lowry et al. (1992), Rigdon (1995b), and Prabhu and Runger 

(1997). Prabhu and Runger (1997) find the design constants that minimize the average 

run length (ARL) until detection of a shift. Table 2.1 shows the minimum ARL for 

various values of the number of variables, the noncentrality parameter ߠ, and in-control 

ARL. 

2.2.2 Comparison with Direct MEWMA 

To compare the MEWMA of ju) ’s detection performance to that of direct 

MEWMA, we compare the noncentralities of the two procedures. Under our general 

linear model (1.1), the MEWMA of ju) ’s noncentrality parameter in equation (2.11) may 

be re-expressed as 

 
1 1( ) ( )λ − −′′= = y yCu Σ Cu μ Σ μ  (2.12) 

This result in equation (2.12) shows that the noncentrality of the MEWMA of ju)  

is the same as that of the direct MEWMA. In the MEWMA of ju) , we apply a MEWMA 

to a p-vector, whereas in direct MEWMA a MEWMA is applied to an n-vector. Over a 

wide range of cases considered by Lowry et al. (1992) and Prabhu and Runger (1997), 

the MEWMA’s detection performance always improves (in the sense of having a shorter 

ARL until detection of shifts) with a decrease in the number of variables that are 

monitored in the scheme. This finding is illustrated in Table 2.1 as well as in Table 2.2. 

Given the form of the MEWMA test statistic 2
jχ  in equation (2.3), this finding is to be 

expected from multivariate statistical theory. Based on this finding, we conclude that 

when p<n, the proposed MEWMA of ju)  outperforms direct MEWMA. When p (the 

number of columns in ۱ is substantially less than n (the number of product quality 

variables), we see from Table 2.1 and Table 2.2 that the MEWMA of ju)  offers a much 

shorter ARL until detection of shifts. 
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Table 2.1 Minimal Average Run Length (ARL) of the MEWMA and 
associated design constants 

  In-Control ARL 

  500  1000 

  Number of Variables  Number of Variables 

λ  4 10 20  4 10 20 

0.5 
min ARL 42.22 55.94 70.20  49.86 66.15 83.77 

θ, h 0.04, 13.37 0.03, 22.69 0.03, 37.09  0.03, 14.68 0.025,24.70 0.025,39.63 

1.0 
min ARL 14.60 19.29 24.51  16.52 21.74 27.65 

θ, h 0.105,15.26 0.085,25.42 0.075,40.09  0.09, 16.79 0.075,27.38 0.065,42.47 

1.5 
min ARL 7.65 10.01 12.70  8.50 11.07 14.01 

θ, h 0.18, 16.03 0.16, 26.58 0.14, 41.54  0.18, 17.71 0.14, 28.46 0.12, 43.80 

2.0 
min ARL 4.82 6.25 7.88  5.30 6.84 8.60 

θ, h 0.28, 16.49 0.24, 27.11 0.20, 42.15  0.26, 18.06 0.22, 29.02 0.18, 44.45 

3.0 
min ARL 2.55 3.24 4.04  2.77 3.50 4.35 

θ, h 0.52, 16.84 0.42, 27.55 0.36, 42.80  0.46, 18.37 0.40, 29.45 0.34, 45.08 

Table 2.2 Average Run Length (ARL) of the MEWMA 

  θ = 0.10  θ = 0.40 

  Number of Variables  Number of Variables 

λ      2     4     10    15      2     4     10     15 

0.0  199.98 200.12 199.95 199.89  199.83 199.96 199.98 199.96 

0.5  28.07 35.11 48.52 56.19  53.82 72.43 102.05 115.36 

1.0  10.15 12.17 15.98 18.28  13.26 18.12 29.47 36.96 

1.5  6.11 7.22 9.23 10.41  5.78 7.31 10.91 13.53 

2.0  4.42 5.19 6.57 7.36  3.53 4.24 5.77 6.84 

3.0  2.93 3.41 4.28 4.78  2.05 2.36 2.93 3.29 

Note:  All results in this table are from Prabhu and Runger (1997).  The results are 
zero-state ARL’s of the MEWMA based on the asymptotic covariance matrix 
in(2.4). 
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2.2.3 Example: Autobody Panel Assembly 

Apley and Shi (1998) studied the process fault diagnosis problems for an 

automotive body panel assembly process as shown in Figure 2.1. In this process, a right-

hand automotive bodyside is joined to the underbody and roof at the framing station. A 

four-way locating pin P1 and a two-way locating pin P2, whose positions are shown in 

Figure 2.1, are used to locate the right-hand bodyside in the x-z plane at the framing 

station. Optical coordinate sensors are used to measure deviations at points M1 through 

M4 on the bodyside in the x- and z- directions, the x-direction deviations of points M5 

through M8,and the z-direction deviations of M9 and M10. Therefore there are totally n=14 

sensor measurements in this process. 

 

Figure 2.1 Key points on right-hand bodyside 

The nominal x-z coordinates of P1, P2,and the ten measurement points are shown 

in Table 2.3 Let ݕ௝ ؠ ሾܯଵሺݔሻ ڮ ሻݔሺ଼ܯ ሻݖଵሺܯ ڮ ሻݖସሺܯ ሻݖଽሺܯ  ሻሿݖଵ଴ሺܯ

represent the sensor measurement vector, where Mi(x) and Mi(z) denote the deviations 

from Mi’s (i=1,..,10) nominal position in the x- and z- directions respectively. Assume we 

know pin P2 is working under normal condition, and then there are p=2 potential process 

faults in this process. The mean shift of the process fault in model (1.1) is ܝ=[u1, u2], 
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where u1 and u2 are the deviations caused by errors of the 4-way locating pin P1 in the z- 

and x- directions respectively.  

According to the geometric relationship between locating pins and the 

measurement points, the ۱ matrix as in model (1.1) is obtained as (readers refer to Apley 

and Shi (1998) for the derivation of ۱ matrix): 

0.354 0.057
0.354 0.026
0.354 0
0.354 0.004
0.354 0.046
0.354 0.087
0.354 0.024
0.354 0.043

0 0.187
0 0.361
0 0
0 0.535
0 0.495
0 0.536

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

 
with each column of ۱ normalized. 

In this example, we consider the potential process fault ܝ௝ as an independent 

random variable following a normal distribution rather than a constant, but the mean shift 

of the process faults is ܝൣܧ௝൧ ൌ ௝൧ܝൣݒ݋ܥ and ܝ ൌ ௝ܝ Let .ܝ۹ ൌ ൅ ܝ   ෥௝ is theܝ ෥௝, whereܝ

random term of uj. We still can link the product quality vector jy with the process fault in 

the form of model (1.1)  

௝ܡ  ൌ ܝ۱ ൅  ෥௝      j=1, …,Nܟ

where ܟ෥௝ ൌ ෥௝ܝ۱ ൅ ௝. The error covariance matrix Σ࢝  is equal to 

 
2σ′= +u w wΣ CK C I  (2.13) 
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2σw wI  is the covariance matrix of the measurement errors, where Iw is an n×n identity 

matrix. From Ding, Zhou, and Chen (2005), we obtain 22 )6/1.0(=wσ  and 

2

2

(0.2 / 6) 0
0 (0.2 / 6)

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
uK

 

                                      Table 2.3 Nominal x-z coordinates for 
                                    pins and measurement points 

Point 
Nominal Coordinates (mm) 

x z 

P1 2184 1489 
P2 4680 1428 
M1 3134 1200 
M2 4015 1618.5 
M3 2184 1489 
M4 4895.3 1510.5 
M5 3721 1256.5 
M6 3264 1930 
M7 4895 1608 
M8 4895.5 1273 
M9 4693.8 2228.5 
M10 4899 1214.5 

Table 2.4 Noncentrality parameter λ corresponding  
to various fault mean shift 

Process Mean  
Shift Fault 

Noncentrality 
Parameter λ 

u = (0    0)T         0 
u = (0.039  0)T         1.05 
u = (0  0.039)T         1.05 
u = (0.039  0.039)T         1.48 
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Since in this example p<<n, the MEWMA of ju)  should outperform direct 

MEWMA. The control limit h of the MEWMA of ju)  may be chosen to give the desirable 

in-control ARL by finding the h-value for p = 2 in Table 1 of Rigdon (1995b).  For an in-

control ARL of 200 and  0.10 =ߠ, we obtain h = 8.63. (This is nearly equal to the 8.64 

value in Prabhu and Runger (1997), upon which the first column of ARL’s in our Table 

2.1 is based.) 

If one (or both) of the locator pins is bent or mis-located, the process fault mean 

shift u ≠ 0. For various possible shifts, we report the noncentrality parameter λ of the 

MEWMA of ju) . We see from Table 2.4 that if a single fault shifts in mean by 0.039 (a 

1.17 standard-deviation shift), the noncentrality will be λ = 1.05. The ARL until detection 

of this shift is approximately 10.15 (from the first column of ARL’s in Table 2.2). The 

ARL of a direct MEWMA scheme (with the same smoothing constant λ= 0.10 as the 

MEWMA of ju) ) would (from Table 2.2) approximately be between 15.98 and 18.28 (the 

reasoning is that direct MEWMA is applied to n = 14 variables, and the ARL for such a 

scheme is between those for 10 and 15 variables). Therefore, direct MEWMA would 

require, on average, at least 50% longer than the MEWMA of ju)  to detect the shift. Now, 

if both faults concurrently shift by the amount 0.039, the noncentrality is λ = 1.48 (from 

Table 2.4). The MEWMA of ju) ’s ARL until detection of this concurrent shift is 

approximately 6.11  (from Table 2.2). The ARL of direct MEWMA would approximately 

be between 9.23 and 10.41 (from Table 2.2), which again is more than 50% longer than 

that of the MEWMA ju)  

2.3 Comparison with Other Methods 

Table 2.5 shows how the proposed MEWMA of ju) is related to each of five 

existing methods for monitoring multivariate processes.  



www.manaraa.com

18 
 

2.3.1 Runger’s (1996) U2 Statistic 

It was noted in Section 2.2 that if ܝ shifts from its in-control value ܝ଴ ് ૙, the 

mean vector of jy  will shift to a vector in the subspace spanned by columns of ۱. Runger 

(1996) proposes to monitor the squared length of the orthogonal projection of jyΣ 21−  

onto the subspace spanned by the columns of 1 2−Σ C , where 21−Σ  is a symmetric square 

root of 1−Σ . This squared length is given by 

 
2 1 1 1 1( )j jU − − − −′ ′ ′= y Σ C C Σ C C Σ y  (2.14) 

Table 2.5 Relationship of proposed MEWMA of ju)  to existing methods 

  λ p Columns of C Σ  

1. U2 Statistic (Runger 1996)  1    

2. Healy’s (1987) method  * 1   

3. Direct MEWMA (Lowry et al. 1992)   n   

4. Direct chi-squared control chart  1 n   

5. Linear profile monitoring (Kang & Albin 
2000)  1 2 First column is all 

1’s ߪଶ۷ 

Runger points out that 2U  has a chi-squared distribution with p degrees of 

freedom and proposes to monitor 2U  via a chi-squared chart. As indicated in Table 2.5, 

this proposal is equivalent to the MEWMA of  ju) with θ =1. We prove this statement as 

follows: 

Proof: When θ =1, the vector of EWMA’s in equation (2.7) is 

*)11()ˆ(1* 1−−+−= jjj z0βz  , 

which reduces to jj βz ˆ* =  . The MEWMA test statistic in equation (2.8) then reduces to 

2 1ˆ ˆ* ( )j j jχ −′ ′= β C Σ C β  
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1 1 1 1 1 1 1( ) ( )( )j j

− − − − − − −′ ′ ′ ′ ′= y Σ C C Σ C C Σ C C Σ C C Σ y  

       
1 1 1 1( )j j

− − − −′ ′ ′= y Σ C C Σ C C Σ y  , 

which is the same as Runger’s (1996) 2U  statistic in (2.14). 

The equivalence of the two procedures in this case is perhaps to be expected 

because of the relationship between the GLS estimator ju)  and the projection of jyΣ 21−  

onto the subspace spanned by columns of 1 2−Σ C . 

Now consider the vector of EWMA’s of the original observations 

1(1 )j j jθ θ −≡ + −z y z  in equation (2.1) (we omit term ࢟ࣆ଴ since ࢟ࣆ଴ ൌ ૙).If the parameter 

vector u of our model (1.1) remains at its in-control value u0 = 0, the mean vector of the 

EWMA vector jz  equals zero. If a mean shift fault occurs on ܝ, it can be shown that the 

mean vector of jz  will shift to a vector in the subspace spanned by columns of ۱. Given 

these results, Runger’s (1996) projection method would suggest finding the orthogonal 

projection of the standardized MEWMA vector 1 2
j j

−
zΣ z  onto the subspace spanned by the 

columns of 1 2
j

−
zΣ C , where 1 2

j

−
zΣ  is a symmetric square root of 1

j

−
zΣ .  This projection’s 

squared Euclidean distance from the origin 

2 1 1 1 1( )
j j jj jU − − − −′ ′ ′= z z zz Σ C C Σ C C Σ z

 
would then be used as the control statistic.  It can be shown that this statistic U2 is equal 

to our MEWMA of ju) ’s test statistic 2 *jχ  in equation (2.9). The equivalence allows our 
2 *jχ  statistic to be interpreted as the squared length of the orthogonal projection of 

1 2
j j

−
zΣ z  onto the subspace spanned by the columns of 1 2

j

−
zΣ C . 

2.3.2 Healy’s (1987) Method 

Healy (1987) uses the sequential-probability-ratio argument to derive the optimal 

cumulative sum method for detecting when the mean vector of a multivariate normal 

distribution shifts from ܝ଴ to a known vector ܝଵ. The case considered by Healy (1987) is 

the case where our ۱ matrix has p = 1 column. In this case, ۱ is an n-vector that indicates 
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the only possible direction of a mean shift.  It can be shown as in the proof below that the 

statistic accumulated in the MEWMA of ju)  is proportional to the statistic accumulated in 

Healy’s (1987) cumulative sum.   

 Proof: When ۱ has p = 1 column, the component ˆ
jβ  in equation (2.6) may be 

written as 

1 1
0 1

0 0 01 1

( )ˆ ( )j j
j j yc

− −
−

− −

′ ′ −
′− = − = == −

′ ′
C Σ y C Σ y Cβ

β β β C Σ y μ
C Σ C C Σ C  

where c is some constant and in control 0 ≡β 0 .  C indicates the only possible direction of 

a mean shift, which is 01 μμ − .  Substituting 01 μμ −  for C in the above expression gives 

that  

)()(ˆ
0

1
010 μyΣμμββ −′−=− −

jj c , 

which is a scalar quantity proportional to the statistic accumulated in Healy’s (1987) 

cumulative sum. 

Therefore, the MEWMA of ju)  will be equivalent to Healy’s (1987) method when 

p = 1, if a cumulative sum is applied in place of an EWMA. 

2.3.3 Direct MEWMA and Chi-Squared Control Charts 

It was shown previously that the MEWMA of ju)  outperforms direct MEWMA 

when p<n.  In the case when p = n, the MEWMA of ju)  is equivalent to direct MEWMA. 

This can be proved as follows: 

Proof: Assume the matrix ۱ is positive definite, for the case that p = n in 

MEWMA, jβ̂  in (2.7) may be rewritten as 

1 1 1 1ˆ ( )j j j
− − − −′ ′= =β C Σ C C Σ y C y  

A MEWMA of jj yXβ 1ˆ −=  must be equivalent to a MEWMA of jy  because 

MEWMA is invariant to pre-multiplying jy  by any (conformable) nonsingular matrix 

(for proof of the MEWMA’s invariance, see Lowry et al. (1992)). 
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Direct MEWMA then reduces to the chi-squared control chart in the special case 

that θ = 1, as noted in Lowry et al. (1992). Therefore, the chi-squared chart can be 

obtained from the MEWMA of ju) when θ = 1 and p = n. 

2.3.4 Linear Profile Monitoring 

As noted earlier, this work is also related to recent literature on monitoring linear 

profiles. A review and synthesis of this literature is given by Woodall et al. (2004). Many 

of the articles on linear profile monitoring (e.g., Kang and Albin 2000; Kim, Mahmoud 

and Woodall 2003; Mahmoud and Woodall 2004) assume that, in our notation, the ۱ 

matrix has p = 2 columns, one of which is all ones, and the error covariance matrix Σ  

equals a constant times an identity matrix.  The model considered in our work is more 

general in that it allows (i) ۱ to have any number of columns p≥ 1, (ii) any entries in the 

۱ matrix, and (iii) the error covariance matrix Σ  to be an arbitrary positive definite 

matrix (i.e., Σ  need not be diagonal). 

As indicated in Table 2.5, the Phase II multivariate method in Kang and Albin 

(2000) can be obtained from the MEWMA ju)  by setting θ = 1 and p = 2, with all entries 

in one column of ۱ equal to one, and the error covariance matrix Σ  equal to a constant 

times an identity matrix. 

2.3.5 Regression Adjustment 

Several articles discuss procedures in which regression-adjusted variables are 

monitored.  These procedures, like the MEWMA of ju) , also detect shifts in ju) . Some of 

these monitoring procedures are proposed for model (1.1) with only n = 1 product quality 

variable (see, e.g., Kim, Mahmoud, and Woodall 2003; Wade and Woodall 1993), 

whereas in the current study we consider n> 1. As a result of this difference, these 

regression-adjustment procedures are somewhat different than the MEWMA of ju) . 

For the case n> 1, Hawkins (1991) develops a regression-adjustment procedure 

under the assumption that, at any given time, only one of the n product quality variables 
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in jy  may be shifted from its in-control mean. For the moment, suppose there is a single 

possible fault (i.e., p = 1) whose presence would shift the mean of only jy ’s ith element.  

In this case, the ۱ matrix in model (1.1) would just be an n-vector with the ith element 

equal to one and all other elements equal to zero, denoted as ۱௝. This is a particular 

instance of the case considered in Healy (1987). It can be shown that the component of 

ju) in equation (2.7) of the MEWMA vector *jz  reduces to the scalar quantity 
1

0( )ij i jD c −′= −C Σ y μ , where c is some constant. This statistic ijD  is proportional to (a) 

the residual from the regression of jy ’s ith element on all other elements of jy  , and (b) 

the statistic iZ  in Hawkins (1991). 

Since in practice it may not be known which element of the product quality vector 

jy will shift in mean, the statistic ijD  above may be computed for each product quality 

variable i.  Hawkins’s (1991) proposal is equivalent to monitoring each ijD , i = 1, 2,…,n, 

with a univariate CUSUM scheme.  Since ijD  is proportional to the length of the 

orthogonal projection of 1 2
0( )j

− −Σ y μ  onto the vector 1 2
i

−Σ C , Hawkins’s (1991) 

proposal is to use simultaneous univariate CUSUM schemes to monitor n different 

subspaces that are not necessarily orthogonal.  This monitoring procedure is designed to 

be sensitive to a shift in one of these subspaces (i.e., a shift in the mean of a single 

(arbitrary) product quality variable). It is not, however, sensitive to shifts that are (nearly) 

orthogonal to each of the n subspaces. Such shifts may occur under our general model 

(1.1) when multiple faults are jointly present. The joint presence of multiple faults is not 

a concern if our MEWMA of ju)  procedure is used because our procedure is designed to 

be sensitive to any shift in the subspace spanned by the columns of ۱. Thus, our 

procedure is somewhat different from the regression-adjustment procedure of Hawkins. 

The preceding enables us to categorize the various methods with respect to the 

number of faults they are designed to detect. Healy’s (1987) method is designed for the 

case of p = 1 possible fault. Linear profile monitoring is designed for when there are p = 

2 possible faults.  Direct MEWMA and chi-squared control are obtained when p = n (the 
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number of possible faults equals the number of product quality variables). Runger’s 

(1996) 2U  statistic and our MEWMA of ju)  are more general in that they allow 1 ≤p≤n 

possible faults. Finally, Hawkins’s (1991) regression-adjustment procedure is designed 

for p = n faults, but it assumes that only one of these faults may be present at any given 

time. 

2.4 Singular Structure in C matrix 

The GLS estimator of ܝ in model (1.1)  is obtained by solving the normal 

equation 

1 1ˆ( ) j j
− −′ ′=C Σ C u C Σ y                                             (2.15) 

under the assumption that 1−′CΣ C  has an inverse. In some models, particularly for multi-

station processes where sensors may not be installed at every station (see Section 2.5), the 

columns of the n×p matrix ۱ are linearly dependent; therefore, the p×p matrix 1−′CΣ C  

does not have an inverse. Consequently, there is no unique solution to equation (2.15) 

and (2.5) may not be applied to obtain the GLS estimator ˆ ju . 

One set of solutions for ˆ ju  can be obtained as follows. Denote the column rank of 

۱ by r (note that r <p and r ≤n).  Select r linearly independent columns of ۱, denoted by 

1
, ,

rs sc cK , that form a basis for the column space of ۱, where 1 ≤s1<s2< … <sr≤p.Define 

{ }rsssS L21≡  and the n×r matrix 
1 2

( )
rs s sS ⎡ ⎤≡ ⎣ ⎦C c c cL .  Then, 

1( ) ( )S S−′C Σ C  is an r×r matrix of full rank. Let ˆ ( )j Su  denote the r× 1 sub-vector 

consisting of the s1, s2, …,sr elements of ˆ ju  and ˆ ( )j Su  the (p−r) × 1 sub-vector 

containing the remaining elements of ˆ ju . A solution for ˆ ju  in the normal equation (2.15) 

may be constructed by choosing these sub-vectors as follows: 

 ˆ ( )j S =u 0    and  1 1 1ˆ ( ) [ ( ) ( )] ( )j jS S S S− − −′ ′=u C Σ C C Σ y      (2.16) 

It can be seen that any ˆ ju  constructed from the sub-vectors in equation (2.16) will 

satisfy equation (2.15). Therefore, such a ˆ ju  is a GLS estimator of u and can be used in 
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equation (2.7) to calculate the MEWMA vector *jz . Since the sub-vector ˆ ( )j S =u 0  

does not contribute to *jz  in equation (2.7), we have 

 1ˆ* ( ) (1 ) *j j jSθ θ −= + −z u z   ,    j = 1, 2,…              (2.17) 

The covariance matrix of ˆ ( )j Su  is 1 1[ ( ) ( )]S S− −′C Σ C , and hence the covariance 

matrix of *jz  in equation (2.17) equals 

2 1 1
* { [1 (1 ) ] (2 )}[ ( ) ( )]

j

j S Sθ θ θ − −′= − − −zΣ C Σ C  (2.18) 

The MEWMA of ˆ ju ’s test statistic 2 1
** * *

jj j jχ −′≡ zz Σ z  is now computed from the 

*jz  and *jzΣ  given in equations (2.17) and (2.18), respectively (Alternatively, the test 

statistic 2 *jχ  may be computed from the asymptotic value of *jzΣ , which is 
1 1{ (2 )}[ ( ) ( )]S Sθ θ − −′− X Σ X ).  By replacing ˆ ju and ۱ with ˆ ( )j Su  and ۱ሺSሻ, respectively, 

all results developed in Section 2.2 can be applied for ۱ matrices whose columns are 

linearly dependent. 

When ۱ has linearly dependent columns, it was noted that the MEWMA of ˆ ju  is 

in effect applied to the r-vector ˆ ( )j Su , whereas direct MEWMA is applied to an n-vector.  

Since r (the rank of ۱) cannot exceed the number of rows (n) in ۱, we must have nr ≤ .  

Therefore, the proposed MEWMA of ˆ ju  performs at least as well as direct MEWMA and 

outperforms direct MEWMA whenever r<n (recall from Section 2.2 that a MEWMA 

performs better as the dimension of the vector being monitored decreases).  It should be 

noted that the dimension of the monitored vector cannot be lower than r, the rank of the 

model matrix ۱, in order to satisfy the normal equation in (2.15). Therefore, it is 

impossible to use a monitored vector with dimension lower than r to achieve an even 

better monitoring performance. 

It is also of interest to note that, although different sets of basis vectors S may 

produce different GLS estimators ˆ ju  (via equation (2.15)), the choice of S does not affect 

the results of the MEWMA of ˆ ju  procedure (i.e., the MEWMA of ˆ ju  is invariant to the S 

used). For convenience, we list the proof here: 
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Proof: Suppose ۱ሺSଵሻand ۱ሺSଶሻare two different n×r matrices, each of whose 

columns form a basis for the column space of ۱.  Then, there exists an r×r nonsingular 

matrix ܳ such that 

 ۱ሺSଶሻ ൌ ۱ሺSଵሻ (2.19) 

Using the set of basis vectors in ۱ሺSଵሻ, compute the vector of EWMA’s *jz  via 

(2.18) with ˆ ( )j Sβ  replaced by  

1 1 1
1 1 1 1

ˆ ( ) [ ( ) ( )] ( )j jS S S S− − −′ ′≡β C Σ C C Σ y . 

Now, *jz  has covariance matrix 

2 1 1
* 1 1{ [1 (1 ) ] (2 )}[ ( ) ( )]

j

j S Sθ θ θ − −′= − − −zΣ C Σ C
, 

and it can be verified the MEWMA of jβ̂ ’s test statistic 2 1
** * *

jj j jχ −′≡ zz Σ z   equals 

 
2 1 1 1 1 1 1 1

1 1 1 * 1 1 1* * ( )[ ( ) ( )] [ ( ) ( )] ( ) *
jj j jS S S S S Sχ − − − − − − −′ ′ ′ ′= zt Σ C C Σ C Σ C Σ C C Σ t     (2.20) 

where *)1(* 1−−+≡ jjj tyt θθ . If equation (2.19) is substituted into (2.20), the matrix Q 

vanishes. Therefore, 2 *jχ  does not depend on the set of basis vectors chosen. 

In general, it is impossible to uniquely estimate each element of ܝ when the 

columns of ۱ are linearly dependent (Ding, Shi, and Ceglarek 2002; Zhou, Ding, Chen, 

and Shi 2003). The subvector ˆ ( )j Su  is set equal to zero only for the purpose of 

calculating the MEWMA statistic to detect mean shifts; this practice does not imply that 

the elements of ˆ ju  corresponding to the columns in S  are estimated to be zero. 

2.5 Singular Example: Multi-Station Autobody Panel Assembly 

The singularity problem appears a lot in multi-station processes. Consider the 

multi-station, 2-D, panel-assembly process shown in Figure 2.2.  At Station 1, two panel 

workpieces are assembled.  Eight coordinate sensors, labeled Mi ,i = 1,…, 8, in Figure 

2.2, are employed at Station 2 to measure the product quality variables. Each sensor 

observes two variables (giving a total of n = 16 measurements), corresponding to the x- 

and z-directions of the deviations of a selected point on the workpiece. Each workpiece is 
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restrained by a set of fixtures consisting of a four-way locator, which controls motion in 

both the x- and z-directions, and a two-way locator, which restrains motion in only the z-

direction. The active locating points are labeled Pi , i = 1,..., 6, in Figure 2.2. We consider 

p = 4 potential process faults: a malfunction in the x-direction of four-way locators P1 and 

P3 and a malfunction in the z-direction of two-way locators P2 and P4.  (For ease of 

presentation, we ignore any locator malfunctions at Station 2 as well as any malfunctions 

in the z-direction of Station 1’s four-way locators P1 and P3.) 

A linear model for multi-station panel-assembly processes has been established by 

Jin and Shi (1999).  This model can be rewritten in the form of model (1.1). For our 2-D 

panel-assembly process, the ۱ matrix that links the p = 4 process faults to the n = 16 

sensor measurements is 

0 0.7857 0 0.3846
0 0.1429 0 0.0699
0 0.7857 0 0.3846
0 0.5714 0 0.2797
0 0.0571 0 0.0280
0 0.5714 0 0.2797
0 0.0571 0 0.0280
0 0.1429 0 0.0699
1 0 1 1.0406

0 0 0 0.7804
1 0 1 1.0406

0 0 0 0.0910
1 0 1 0.3772

0 0 0 0.0910
1 0 1 0.3772

0 0 0 0.78

−
−
−

−
−
−
−

−
=

− −
−

− −

−

−
−

C

04

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

This ۱ has linearly-dependent columns and a rank of r = 3.  Following the 

procedure for singularities, we choose the set S corresponding to the basis vectors  

{ }4,2,1=S ; thus, the ۱ሺSሻ matrix is obtained by deleting ۱’s third column. Similar to the 
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previous example, we consider the potential process fault term ܝ௝ as an independent 

random vector follows a normal distribution with mean u and covariance Ku. The error 

covariance matrix Σ  may be obtained by using the formula in equation (2.13) with 

values obtained from the design specifications in Section 2.2.3, in particular 
22 )6/1.0(=wσ  and 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2

2

2

2

)6/2.0(000
0)6/2.0(00
00)6/2.0(0
000)6/2.0(

uK

 
With these calculations, we now have the two constant matrices Σ  and ۱ሺSሻ 

needed to implement the MEWMA of ˆ ju  and study its performance. 

 

Figure 2.2  A multi-station 2-D panel-assembly process 

In the MEWMA of ˆ ju  procedure, a MEWMA is applied to r = 3 variables, 

whereas direct MEWMA is applied to n = 16 variables. ARL’s for these numbers of 

variables are not available from previous articles, but some insight into the MEWMA of

ˆ ju ’s performance advantage is obtained by comparing the ARL’s for four and fifteen 

variables in Table 2.2 (note that the MEWMA of ˆ ju  will have better detection 

performance than a MEWMA applied to four variables and direct MEWMA will have 

worse detection performance than a MEWMA applied to fifteen variables). As in the 



www.manaraa.com

28 
 

previous example (Section 2.2.3), we see from Table 2.2 that the MEWMA of ˆ ju  offers a 

noticeably shorter ARL until detection of shifts. 
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CHAPTER 3.  

SENSOR FAULT DETECTION FOR MANUFACTURING 

QUALITY CONTROL 

In this chapter, we consider both sensor faults in the sensing system and process 

faults in the manufacturing process. In assumption (A2), wμ , the mean of the noise term 

 ௝, may not equal to 0 due to existence of sensor faults. And manufacturers need to beܟ

notified as quickly as possible when ≠wμ 0 . We will introduce a W control chart that can 

effectively distinguish sensor faults from process faults. We first specify the covariance 

of noise term ܟ௝ as ۹ܟ ൌ  will beܟA more general heteroscedastic structure of ۹ .ܟଶ۷ߪ

discussed in Section 3.3. In addition, we assume the columns of ۱ matrix in model (1.1) 

are linear independent. In Section 3.1, we show the procedure to derive the W control 

chart from the fault-quality model. The sensitivity of the W chart to single, double, or 

multiple sensor faults is investigated in Section 3.2. In Section 3.3, the W chart is 

extended for sensors with unequal measurement precisions. Section 3.4 presents an 

example from automotive body assembly processes to demonstrate the performance of 

the W chart.   

3.1 W Control Chart for Sensor Fault Monitoring 

It has been noted that in SPC, people usually monitor the n quality characteristics 

 ௝ directly using a multivariate control chart, e.g. MEWMA, multivariate CUSUM andܡ

chi-squared control chart. The statistic monitored in 2χ  control chart (Montgomery, 

2005) can be specified as 

( ) 12
2[ ]T T

y j
NN Varχ

σ
−

= =y y y y y
 

where  

1

1 N

j
jN =

= ∑y y  



www.manaraa.com

30 
 

The upper control limit is set as 2
,nUCL αχ=  because the statistic 2

yχ  follows a chi-

squared distribution with n degrees of freedom and a noncentrality parameter 

( ) 1

2[ ] [ ] [ ] ( ) ( )T T
j j j

NNE Var Eλ
σ

−
= = + +y w wy y y Cu μ Cu μ

. 

In this chapter, the above 2χ  control chart is referred to as a Y control chart or a 

Y chart because it directly monitors the quality characteristics yj, j=1, …, N. 

From model (1.1) we can see that both the process faults and the sensor faults will 

cause mean shifts in yj. Because the Y chart only detects the out-of-control conditions of 

the observed quality characteristics, one disadvantage of the Y chart is that it cannot 

differentiate between the sensor faults and the process faults.  

To detect a mean shift in sensor measurements caused by a sensor fault, an ideal 

approach is to apply a 2χ  control chart to monitor the sample average of sensor 

measurement errors 

1

1 N

j
jN =

= ∑w w
 

The 2χ  control chart can then generate out-of-control signals if mean shifts occur 

in sensor measurements. But this approach is obviously not practical because the sensor 

measurement errors ܟ௝, j=1, …, N are not directly observable for most applications. 

According to model (1.1), however, we can estimate ܟ௝ by  

1ˆ ˆ [ ( ) ]T T
j j j j

−= − = −ww y Cu I C C C C y  
Let TT CCCCH 1)( −≡ . The above equation can be written as  

 ˆ ( )j j= −ww I H y                           (3.1) 

The matrix ۶ is referred to as the hat matrix in linear regression literature. Based 

on the assumptions (A1) and (A2), the mean of the estimation of ܟ௝ is:  

1ˆ[ ] [ ( ) ]( ) ( )T T
jE −= − + = −w w w ww I C C C C Cu μ I H μ                  (3.2) 

The variance of ܟෝ௝ 
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2ˆ[ ] ( )jVar σ= −ww I H                             (3.3) 

Then we can apply a 2χ  control chart to monitor  

1

1ˆ ˆ
N

j
jN =

= ∑w w
 

the sample average of ˆ jw ,  j=1,2,…,N. This control chart is referred to as a W control 

chart or a W chart in this study. When there is no sensor fault, 0μw =  and we have 

ˆ[ ]jE =w 0 . Therefore we set the in-control mean of ŵ  equal to 0. The test statistic 

plotted on this 2χ  control chart is 

 ( )2 ˆ ˆ ˆ[ ]T
jN Varχ

−
= w w w                                               (3.4) 

Substituting equations (3.2) and (3.3) into (3.4), we have 

 
yHIyyHIHIHIy wwww )()())(( 22

2 −=−−−= − TT NN
σσ

χ
           (3.5) 

where 

1

1 N

j
jN =

= ∑y y
 

and −− )( HI w  denotes the generalized inverse matrix of Iw−H. It can be seen that the 

n×n matrix )( HIw −  is not invertible because its rank is equal to n−p. The 2χ statistic 

plotted on the W control chart has the following property:  

Result 3.1: Provided that there is no sensor fault, i.e. =wμ 0 , 2χ in equation (3.5) 

follows a chi-squared distribution with n−p degrees of freedom. 

Proof: According to model (1.1) and assumptions (A1) and (A2), 

),(~ yy Σμy nN , where wy μCuμ +=  and  

wy IΣ
N

2σ
=

 
Under the normal working condition, we have u=0, µw=0, µy=0. 

To find the distribution of the statistic 
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yHIyμyHIμy wywy )())(()( 22
2 −=−−−= TT NN

σσ
χ

 
Let 

)(2 HIA w −≡
σ
N

 
Because ۷ܟ െ ۶ is an idempotent matrix with ݇݊ܽݎሺ۷ܟ െ ۶ሻ ൌ ݊ െ   ݌

0ΣHIHIΣΣAAAΣΣ ywwyyyy =⎥⎦
⎤

⎢⎣
⎡ −−−=− )()()( 22 σσ

NN     (3.6) 

and 

 pnranktracetrace −=−=−= )()()( HIHIAΣ wwy          (3.7) 

According to Rao (1973, pp. 524), equations (3.6) and (3.7) are the necessary and 

sufficient condition for 

yHIyyAy w )(2
2 −== TT N

σ
χ

 
to follow a chi-squared distribution with degrees of freedom n−p. 

From Result 3.1, we can set 2
, pnUCL −= αχ  as the upper control limit of the W 

control chart, where 2
, pn−αχ denotes the upper a-quantile of the chi-squared distribution 

with n−p degrees of freedom. More generally, when ˆ[ ]jE ≠w 0 , 2χ follows a noncentral 

chi-squared distribution with noncentrality parameter 

 
2 [ ] ( ) [ ]T

j j
N E Eλ

σ
= −w wy I H y                 (3.8) 

It is well-known in control chart literature that the run-length distribution of the W 

chart, which is a 2χ control chart, is determined by this noncentrality parameter 

(Montgomery, 2005). 

In the rest of this section, we will simplify the MEWMA control chart we 

developed in the previous chapter to a 2χ control chart which can detect the mean shift 

caused by the process faults. The W control chart and the following process fault control 
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chart should be used together to detect both sensor faults and process faults. We will see 

that the W chart should be used first in order to effectively distinguish sensor faults from 

process faults. 

When the covariance matrix Σ  of ܟ௝ is specified as 2σ wI , the least squares 

estimator of u in equation (2.5) can be rewritten as  

1ˆ ( )T T
j j

−=u C C C y  
According to assumptions (A1) and (A2), the mean of ˆ ju  is equal to  

1 1ˆ[ ] ( ) ( ) ( )T T T T
jE − −= + = +w wu C C C Cu μ u C C C μ  

The variance of ܝෝ௝ is: 

2 1ˆ[ ] ( )T
jVar σ −=u C C  

Let  

1

1ˆ ˆ
N

j
jN =

= ∑u u
 

we can plot the statistic  

( ) 12
2

ˆ ˆ ˆ[ ]T T
j

NN Varχ
σ

−
= =u u u u y Hy

 
on a control chart, which is called a U control chart or a U chart in this chapter, to 

monitor process faults. The upper control limit of the U chart is 2
, pUCL αχ=  because 2

uχ  

follows a chi-squared distribution with p degrees of freedom (the proof is similar to that 

for the W chart). This U chart is a special case of the MEWMA control chart developed in 

Chapter 2 with θ =1 in equation (2.7). When process faults and/or sensor faults exist, 2
uχ

follows a noncentral chi-squared distribution with p degrees of freedom and the 

noncentrality parameter is given by: 

 
))(())(( 11

2 wwu μCCCuHμCCCu TTTTTN −− ++=
σ

λ  (3.9) 
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From equation (3.9), both process faults u and sensor faults wμ  affect λu, which 

shows that the U chart is sensitive to both process faults and sensor faults. In the 

following section, we will see that, unlike the U chart, the W chart is only sensitive to the 

sensor faults, which is a desired property for distinguishing sensor faults from process 

faults. 

As the W chart is only sensitive to sensor faults, while the U chart is sensitive to 

both sensor faults and process faults, regarding the usage of these two charts, we propose 

to first apply W chart to monitor sensor faults. When no sensor fault is found or each 

detected sensor fault has been fixed, the U chart can be used to detect the process faults. 

Remark: The W chart and U chart are set up based on the assumption that the 

covariance ww IK 2σ= of w(j) is known so that ܸܽܟൣݎෝ௝൧ and ܸܽܝൣݎෝ௝൧ can be calculated. 

In practice, Kw is not always known, in which case W chart and U chart should be 

changed to a Hotelling T2 control chart (Montgomery, 2005).  In the T2 control chart, in-

control means and variances of ܟෝ௝ and ܝෝ௝ are estimated from preliminary samples taken 

when the process is in control. Suppose we have m preliminary samples. The revised U 

chart can be obtained as follows: let )(ˆ , jkpreu   be the least squares estimate of )(, jkpreu , 

where j=1, …, N and k=1, …, m. The sample mean and sample variance for the kth 

sample are  

∑
=

=
N

j
kprekpre j

N 1
,, )(ˆ1ˆ uu  and 

T
kprekpre

N

j
kprekpre

u
kpre jj

N
S )ˆ)(ˆ)(ˆ)(ˆ(

1
1

,,
1

,,, uuuu −−
−

= ∑
=

  

respectively. 

The statistic kpre,û
 
and

 

u
kpreS ,  is then averaged over all m samples to obtain  

∑
=

=
m

k
kprepre m 1

,ˆ1ˆ uu  and ∑
=

=
m

k

u
kpre

u
pre S

m
S

1
,

1
 

which is considered as the estimate of the in-control ܝൣܧෝ௝൧ and ܸܽܝൣݎෝ௝൧. Finally, we plot 

the statistic ( ) ( )pre
u
pre

T

preu SNT uuuu ˆˆ)(ˆˆ 12 −−= −  on the phase 2 Hotelling T2 control chart 

with  
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1,,1
)1)(1(

+−−+−−
−+

= pmmNpF
pmmN

NmpUCL α
 

where 1,, +−− pmmNpFα  denotes the upper a-quantile of the F distribution with p and mN-m-

p+1 degrees of freedom. For the revised W chart to monitor the mean shift of sensors, we 

can use a similar procedure to find the average sample mean preŵ  and sample variance 
w
preS  as the estimation of ܟൣܧෝ௝൧ and ܸܽܟൣݎෝ௝൧ and apply the T2 control chart to detect 

sensor mean shift faults. It can be seen that w
preS , whose rank is n-p, is not a full rank 

matrix and does not have a regular inverse matrix. So generalized inverse of w
preS  should 

be used to calculate the T2 statistics on the revised W chart.  

With a large number of preliminary samples, the Hotelling T2 control chart is 

approximately equal to the χ2 control charts (Montgomery, 2005). For simplicity, we will 

still consider the χ2 control charts in the following discussion. When the number of 

preliminary samples is large, all the results for the χ2 control charts will approximately 

apply for the T2 charts. 

3.2 Sensitivity Analysis for W chart 

In this section we are going to discuss the sensitivity of the W control chart to 

sensor faults and process faults. We have seen that the 2χ statistic in equation (2.5) 

generally follows a noncentral chi-squared distribution. Provided that the degrees-of-

freedom is fixed, the run-length distribution of the W chart depends only on the 

noncentrality parameter wλ  given in equation (3.8). According to equation (3.2) and 

equation (3.8), the noncentrality parameter can be further written as 

 
wwww μHIμ )(2 −= TN

σ
λ                (3.10) 

From equation (3.10) it is obvious that wλ  is not related to process faults ܝ, which 

shows that the run-length of the W chart is not affected by the magnitude of the process 

faults. The insensitivity of the W chart to process faults is a critical property, which 
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assures that sensor faults can be effectively distinguished from process faults using the 

proposed W control chart. 

From equation (3.10), the magnitude of the noncentrality parameter wλ  is 

obviously affected by the selection of the measuring units of the mean shift μw. We prefer 

a unit-free index to measure and compare the sensitivity of the W chart. Dividing 

equation (3.10) by  

wwμμTN
2σ , 

the squared length of μw multiplied by a constant, the following index referred to as the 

sensitivity ratio can be obtained: 

 ww

www

μμ
μHIμ

T

T

SR
)( −

≡ , for 0μw ≠   (3.11) 

The sensitivity ratio defined in equation (3.11) is unit-free and always less than or 

equal to 1 because HIw − ,which is a projection matrix, is symmetric and semi-definite. 

Therefore, the sensitivity ratio always falls in the range of [0, 1]. A sensitivity ratio value 

closer to 1 indicates a better sensitivity of the W chart to the mean shift 0μw ≠ . In the 

following subsections, the sensitivity of the W chart to different types of sensor faults will 

be studied using the sensitivity ratio defined above as the sensitivity index. 

3.2.1 Sensitivity Ratio for Single-Sensor-Faults 

To further study the sensitivity of the W chart, we consider different types of 

sensor mean shifts. The first case is the single-sensor-fault, which is a sensor fault 

causing a mean shift on a single sensor measurement. Under a single-sensor-fault, wμ  

can be written as 

 [ ]T
i 0000 LL μ=wμ         (3.12) 

where the ith entry of wμ  is ߤ௜ ് 0 and the other entries are equal to zero. We denote the 

elements of the matrices H and Iw−H by: 
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Substituting wμ of equation (3.12) into equation (3.11), we have  

 
2

2 )1( iiihN μ
σ

λ −=w                                     (3.13) 

Further from equation (3.13), under the single-sensor-fault scenario, we have 

 SR = 1−hii.                                              (3.14) 

So a smaller value of hii is corresponding to a larger sensitivity ratio SR.  

It is interesting to note a relationship between the sensitivity ratio under the 

single-sensor-fault scenario and the concept of influential points in robust regression. In 

robust regression, an influential point is an observation having a large effect on the least 

squares estimation and prediction. An important indicator of a potential influential point 

is hii, the ith diagonal element of the hat matrix H. For example, an observation with 

hii>2p/n is often considered as a potential influential point, which requires particular 

attention in regression analysis (Rousseeuw and Leroy, 2003, p. 220). In our applications, 

p represents the number of potential process faults and n is the number of sensor 

measurements. From equation (3.14), a highly influential sensor measurement (with a 

large hii) is corresponding to a small sensitivity ratio and in turn a low sensitivity of the W 

chart in detecting the sensor fault that occurs on that influential sensor. So a mean shift on 

a sensor corresponding to a highly influential sensor measurement will be relatively 

difficult to detect using the W chart. However, we can expect that a well-designed 

measurement system with good robustness property should have very few, if any, highly 

influential measurement points. For such measurement systems, the sensitivity of the W 

chart for most single-sensor-faults is high. Particularly, most of hii are expected to be well 
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below 2p/n in a well-designed measurement system, which corresponds to a sensitivity 

ratio greater than 1−2p/n. 

3.2.2 Sensitivity Ratio for Double-Sensor-Faults 

The second case we study is the double-sensor-fault, which is a sensor fault 

causing mean shifts on two of the sensor measurements simultaneously. Specifically, 

under a double-sensor fault, the mean of the sensor noise vector is shifted from 0 to 

[ ]Tji 00 LLL μμ=wμ                                   (3.15) 

where the ith and jth elements of wμ are ߤ௜ ് 0 and ߤ௝ ് 0. Substituting equation (3.15) 

into equation (3.11), we have  

 

[ ] [ ]
[ ][ ]Tjiji
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hh
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⎡
−−
−−

=
1

1

  (3.16) 

The following result is regarding the range of the values of the sensitivity ratio 

under a double-sensor fault: 

Result 3.2: Let ij
Sλ  and ij

Lλ  represent the smallest and the largest eigenvalues of 

the 2×2 matrix  

 
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

jjji

ijii

hh
hh

1
1

 (3.17) 

Depending on different ratios of iμ  and jμ , the sensitivity ratio in equation (3.16) 

ranges between ij
Sλ  and ij

Lλ . That is, 

ij
L

ij
S SR λλ ≤≤ . 

Proof: Let ܆ ؠ ሾߤ௜   ௝ሿ் andߤ

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

≡
jjji

ijii

hh
hh

1
1

A
 

Equation (3.16) can be written as 
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XX
AXX
T

T

SR =
 

Since A is a symmetric matrix, the following results hold 

ij
ST

T
λ=

XX
AXX

x
inf

        
ij
LT

T
λ=

XX
AXX

x
sup

 
The supremum is attained when X is equal to the eigenvector corresponding to 

ij
Lλ , and the infimum is attained when X is equal to the eigenvector corresponding to ij

Sλ . 

See Rao (1973, pp. 46)for proof. Therefore, 

ij
L

ij
S SR λλ ≤≤ . 

From the above proof, when ][ ji μμ  is proportional to one of the eigenvectors 

of the matrix in equation (3.17), the corresponding bounds, ij
Sλ  or ij

Lλ , will be achieved 

by the sensitivity ratio. 

We may define 2/)( ij
L

ij
S λλ +  as the “average” sensitivity ratio of a double-sensor-

fault causing mean shifts of the ith and the jth sensor measurements. From linear algebra, 

we know that ij
L

ij
S λλ + , the summation of the eigenvalues of the matrix in (3.17), is equal 

to the trace of the matrix, which is )1()1( jjii hh −+− . As a result, we can write the 

“average” sensitivity ratio as: 

2
)(

1
2

)1()1(
2

)( jjiijjii
ij
L

ij
S hhhh +

−=
−+−

=
+ λλ

 (3.18) 

From Section 3.2.1, we see that the diagonal elements of H are indicators of 

influential points in robust regression. We may consider  

2
)( jjii hh +

 
as the “average” influential index for sensor measurements i and j. Recall that for single-

sensor-fault on sensor measurement i, we have SR=1-hii. The result in equation (3.18) for 

double-sensor faults is similar to the result for single-sensor-faults. From the above, we 
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conclude that, for both single-sensor-faults and double-sensor-faults, the W chart has a 

higher sensitivity to sensor faults occurred on less influential sensor measurements. 

The corollary below presents a lower bound of the sensitivity ratio satisfied by 

any double-sensor-fault for a well-designed measurement system. 

Corollary 1: Let p and n represent the number of potential process faults and the 

measurement points, respectively. For a well-designed measurement system in which all 

the diagonal elements hii (i=1, …,n) in the hat matrix H are smaller than 2p/n, the lower 

bound of the sensitivity ratio under any double-sensor-fault is  

n
pSR 41 −≥

. 

Proof: Let  

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

≡
jjji

ijii

hh
hh

1
1

A
 

where hij is the (i, j)th element of the matrix H. In the proof of Result 3.2, we showed that 

the sensitivity ratio can attain the values of ij
Sλ  or ij

Lλ  when the nonzero elements of wμ  

are given by the eigenvector of A corresponding to ij
Sλ  or ij

Lλ , respectively. Also we have 

10 ≤≤ ij
Sλ and 10 ≤≤ ij

Lλ because the sensitivity ratio falls in [0, 1]. Since the 

measurement system is well-designed, the ith and jth diagonal elements hii and hjj of the 

hat matrix H satisfy  

 n
phii

2
≤ , 

n
ph jj

2
≤  (3.19) 

According to the property of eigenvalues of a matrix, 

jjiijjii
ij
L

ij
S hhhh −−=−+−=+ 2)1()1(λλ . 

Applying the inequalities of (3.19), it can be seen that λL+λS satisfies  

n
pij

L
ij
S

42 −≥+ λλ               (3.20) 

Equation (3.19) can be further written as  
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ij
L

ij
S n

p λλ −−≥
42                    (3.21) 

Substituting 1≤ij
Lλ  into (3.21), we have 

n
pij

S
41−≥λ

 
Therefore 1−4p/n is a lower bound of the sensitivity ratio for any double sensor 

fault in a well-designed measurement system 

The results for double-sensor-faults can be extended to the more general case of 

m-sensor-faults, which is a sensor fault causing mean shifts on m entries of wμ , 2≤m≤n. 

It can be seen that the sensitivity ratio of the W chart for an m-sensor fault would have a 

similar form to equation (3.16), with the 2×2 matrix in equation (3.17) replaced by an 

appropriate m×m symmetric submatrix Q of Iw−H. Again, the smallest and the largest 

eigenvalues of Q are the smallest and largest values of the sensitivity ratio, respectively. 

3.3 Extension to Heteroscedastic Sensor Measurements 

In many real manufacturing processes, sensors of different precisions may be 

deployed to measure different product quality characteristics. One of the reasons is the 

economical concern: the high precision sensors with small measurement variance are 

typically expensive and therefore only used to measure the most critical quality 

characteristics. While for the less important quality characteristics, the less expensive 

sensors with relatively lower precision are installed. 

To accommodate sensor measurements with unequal variances, also called 

heteroscedastic sensor measurements, the variance-covariance matrix wK  of the sensor 

mean measurement error term ܟ௝ in assumption (A2) of model (1.1) can be specified as:  

⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
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⎢
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where 2
1σ , 2

2σ ,…, 2
nσ  can be different from each other. 

For the heteroscedastic model, we multiply 2/1−
wK  on both sides of model (1.1) as 

 
1/ 2 1/ 2 1/ 2

j j
− − −= +w w wK y K Cu K w  (3.22) 

where 2/1−
wK  is the inverse of the square root of wK . Let 1/ 2

j j
−′ ≡ wy K y , CKC w

2/1−≡′  and 
1/ 2

j j
−′ ≡ ww K w . Equation (3.22) can be written as 

 j j′ ′ ′= +y C u w   (3.23)  

For the transformed sensor measurement error term j′w , it is easy to see that 
1/ 2[ ]jE −′ = w ww K μ  and 1/ 2 1/ 2[ ]jVar − −′ = =w w w ww K K K I . The transformed model in equation 

(3.23) is actually the same as the model in equation (1.1), with the same 

variance/covariance structure for the measurement error term. Therefore, the W chart 

monitoring the least squares estimation of j′w  based on equation (3.23) can be used to 

detect sensor faults. All the methods and the sensitivity results studied in the previous 

sections can be applied to the model in equation (3.23). 

3.4 Automotive Body Assembly Example 

We still use Apley and Shi (1998)’s assembly example studied in Section 2.2.3.  

Assuming both pin P1 and P2 might malfunction, there are p=3 potential process faults in 

this process. The process fault vector as in model (1.1) is denoted by ܝ=[u1, u2, u3], where 

u1 and u2 are the deviations caused by errors of the 4-way locating pin P1 in the z- and x- 

directions respectively, and u3 is the deviation caused by errors of the 2-way locating pin 

P2 in the z- direction. In addition, sensor measurement error term ܟ௝ of this process is a 

14×1 vector. The performance of the W chart in detecting potential sensor faults at the 14 

sensor measurements will be investigated as follows. 

To monitor sensor faults, as well as process faults, based on the W chart and U 

chart, we use a sample size N=40 and the six-sigma range of sensor noise equal to 
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0.2mm, which is corresponding to the variance of each sensor given by 
22 )mm6/2.0(=σ .  

The ۱ matrixis obtained as: 
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08774.000877.1
005529.000055.1
086258.000863.1
100

26643.0073357.0
61939.0038061.0
086538.01086538.0

047676.01047676.0
17668.0117668.0
093149.01093149.0

008614.01008614.0
010

051883.01051883.0
11579.0111579.0

C

 
The columns of ۱ matrix are not normalized in this example. 

To illustrate the usage of the W chart and U chart for sensor and process fault 

detection, we show examples of control charts under process/sensor faults in Figure 3.3. 

Each control chart in Figure 3.3 is used to monitor 100 samples of data simulated from 

the automotive body panel assembly example described above. A mean shift caused by a 

sensor fault, a process fault, or both, is added for the last 50 samples. From Figure 3.3, it 

can be seen that the U chart will signal under either a process fault, or a sensor fault, or 

both. The W chart, however, will signal only if there is a sensor fault. The process fault 

and sensor fault can be distinguished by using the W chart first and then the U chart. For 

example, if an out-of-control signal is detected on the W chart, we know that either a 

sensor fault occurred or both a process fault and a sensor fault occurred, as in Figure 

3.3(d) or Figure 3.3(f). Then we can focus on the sensor fault first. After the root cause of 
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the sensor fault is identified and all sensor faults are eliminated, we should see no out-of-

control signal on the W chart, as in Figure 3.3(b). At this time, the U chart will be 

examined. If there is still an out-of-control signal on the U chart, as shown in Figure 

3.3(a), then a process fault may still exist and should be identified and eliminated. 

Otherwise, the system is in normal working state without either process fault or sensor 

fault. The Y chart, not shown in Figure 3.3, will be sensitive to both process faults and 

sensor faults, similar to the U chart. Therefore, without the development of W chart, 

neither the Y chart nor the U chart can distinguish sensor faults from process faults. 

Next, we conduct analysis of the sensitivity of the W chart under different sensor 

fault scenarios following the discussions in Section 3.3.  Under a single-sensor-fault, in 

which only one of the sensor measurements, the ith measurement, has a mean shift to iμ . 

We set 6/2.0=iμ mm to calculate the noncentrality parameter of the W chart. The 

noncentrality parameters wλ  and the sensitivity ratio SR, which can be calculated by 

equations (3.11)and (3.12) respectively, are listed in Table 3.1 for single-sensor-faults at 

different sensor measurements. For example, when a single-sensor-fault causes a mean 

shift at the sensor measuring M4(x), wλ  and SR are 34.996 and 0.8749, respectively. 

Table 3.1 indicates that the W chart has a sensitivity ratio above 0.7 for most of 

the single-sensor-faults, with the only exception for M3(z). Further examining M3(z), we 

find that the diagonal element of the hat-matrix H corresponding to M3(z) is equal to 

0.6542. It exceeds the threshold for potential influential measurement points given in 

Section 3.2.1, which is 2݌/݊ ൌ 2 ൈ 3/14 ൌ 0.4286 . Consequently, M3(z) is considered 

as a highly influential observation, whose mean shifts are difficult to detect as discussed 

in Section 3.2.1. In addition, the high influence of the sensor measurement M3(z) can also 

be seen from its geometrical location as shown in Figure 2.1. Apparently the location of 

M3 is somewhat isolated from the other sensors in the x- direction, which makes M3(z) a 

highly influential observation. 
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Figure 3.3 Examples of control charts under process/sensor faults 

Table 3.1 Noncentrality parameters and sensitivity ratios of single-sensor-faults 

 M1(x) M2(x) M3(x) M4(x) M5(x) M6(x) M7(x) 

λw 34.501 34.892 35 34.996 34.679 33.793 34.909 
SR (1-hii) 0.8625 0.8723 0.8750 0.8749 0.8670 0.8448 0.8727 

 M8(x) M1(z) M2(z) M3(z) M4(z) M9(z) M10(z) 

λw 34.724 29.059 33.321 13.831 28.102 30.133 28.06 
SR (1-hii) 0.8681 0.7265 0.8330 0.3458 0.7026 0.7533 0.7015 

(a) U chart under a process fault (b) W chart under a process fault

(c) U chart under a sensor fault (d) W chart under a sensor fault

(e) U chart under both process fault and sensor fault (f) W chart under both process fault and sensor fault
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Regarding detection of a sensor fault at a highly influential sensor measurement, 

we suggest periodical inspections of the highly influential points using another gauging 

instrument. For example, in addition to the online optical sensors as shown in Figure 2.1, 

another gauge system called Coordinate Measuring Machine (CMM) are also used in 

most automotive body assembly lines to measure selected quality characteristics for a 

small sample of products. If the influential points are measured periodically by CMM, the 

measurements from CMM can be compared with those from the online optical sensors to 

enhance the detection sensitivity to the sensor faults at influential points. This method is 

feasible because the number of influential points is usually very small for a well-designed 

sensor system. 

To compare the performance of the W chart with that of the Y chart defined in 

Section 3.1, we arbitrarily select three sensor measurements: M1(x), M4(x), and M4(z). 

Table 3.1 lists the noncentrality parameters and average run lengths (ARL) of the W chart 

and the Y chart in detection of various sizes of sensor mean shifts. For the Y chart, the 

noncentrality parameter λy is calculated by  

2
22 iy

T
yy

NN μ
σσ

λ == μμ
 

So for single-sensor-faults, no matter the mean shift occurs in which sensor 

measurement, the values of λy are the same as long as the values of iμ  are the same. This 

is why the Y chart in Table 3.2 has only one column of λy and ARL. From Table 3.2, the 

sensor fault detection performance of the W chart is close to that of the Y chart. The major  

Table 3.2 ARL comparison of W chart and Y chart under single-sensor-faults 

Mean shift  
in single 
sensor 

W chart 
Y chart 

M1(x) M4(x) M4(z) 

λw ARL λw ARL λw ARL λy ARL 
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0 0 370.37 0 370.37 0 370.37 0 370.37

0.2σ 1.38 128.94 1.40 127.29 1.12 153.19 1.598 127.91

0.4σ 5.52 19.26 5.60 18.76 4.50 27.72 6.408 18.03 

0.6σ 12.42 3.98 12.599 3.87 10.12 5.92 14.4 3.60 

0.8σ 22.08 1.56 22.398 1.53 17.98 2.08 25.596 1.44 

σ 34.50 1.08 34.996 1.08 28.10 1.22 39.996 1.05 

advantage of the W chart over the Y chart, however, is that the W chart can be used to 

distinguish sensor faults from process faults, while the Y chart cannot. This can be seen 

clearly from Table 3.2, where the noncentrality parameters and ARL of the W chart, Y 

chart, and U chart are compared for detection of a single process fault causing a mean 

shift of 0.0167mm at each of the three elements of the vector ܝ (corresponding to 

deviations P1(x), P1(z) and P2(z), respectively) .  

Table 3.3 ARL of the W chart, Y chart, and U chart  
in detection of a process fault 

Location of 
process fault 

W chart Y chart U chart 

λw ARL λy ARL λu ARL 

P1(x) 0 370.37 80 1 80 1 

P1(z) 0 370.37 15.36 3.18 15.36 1.51 

P2(z) 0 370.37 41.23 1.04 41.23 1 

 

The results in Table 3.3 show that both the Y chart and the U chart are very 

sensitive to the process faults, while the W chart is completely insensitive to the process 

faults because its ARL for detection a process fault is exactly equal to the in-control 

ARL. Because the Y chart is sensitive to both the sensor faults and the process faults, it 

cannot be used directly to differentiate these two types of faults. The W chart followed by 
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the usage of the U chart, however, can be used to effectively distinguish sensor faults 

from process faults.  

Next we look at the double-sensor-faults investigated in Section 3.2.3. From 

Figure 2.1, it can be seen that some single physical sensors (e.g., M1) are associated with 

two sensor measurements (e.g., M1(x) and M1(z)). Therefore, a failure at such a sensor 

may cause simultaneous faults on those two sensor measurements, which results in a 

double-sensor-fault. In this example, we focus on the double-sensor-faults at sensors Mi, 

i=1, 2, 3, 4, and set the mean shift at each sensor measurement as equal to 0.2/6 mm. For 

example, the double-sensor fault at sensor M1 causes mean shifts of 0.2/6 mm at both 

M1(x) and M1(z). In Table 3.4 we show for each of the double-sensor-faults on sensors 

Mi, i=1, 2, 3, 4, the values of the noncentrality parameter wλ , the sensitivity ratio SR, the 

largest eigenvalue (λL) and the smallest eigenvalue (λS) of the 2-by-2 submatrix given in 

equation (3.17), and the corresponding eigenvectors (e1 and e2). 

Note from Table 3.4 that the sensitivity ratio SR for each of the four double-

sensor-faults is between the largest eigenvalue λL and the smallest eigenvalue λS. In this 

example, the SR is calculated by setting ji μμ / =1. For other ratios of ji μμ / , the values 

of SR will be different from those in the table. But for any ratio of ji μμ / , the value of 

the sensitivity ratios always falls in the range of [λS, λL] based on Result 2. 

Table 3.4 Sensitivity results for double-sensor-faults 

 M1 M2 M3 M4 

λw 66.481 68.286 48.76 63.38 
SR 0.831 0.854 0.609 0.792 
λL 0.872 0.872 0.875 0.875 
λS 0.717 0.833 0.346 0.702 
e1 [0.97 0.24] T [0.9997 0.0231] T [1 0] T [0.9998 0.0203] T 
e2 [-0.24 0.97] T [-0.0231 0.9997] T [0 1] T [-0.0203 0.9998] T 
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Table 3.5 ARL comparison of W chart and Y chart  
in detection of double-sensor-faults 

Mean 
shift  

in two 
sensors 

W chart 
Y chart 

M1 M2 

λw ARL λw ARL λy ARL 

0 0 370.37 0 370.37 0 370.37 

0.2σw 2.66 62.18 2.73 60.03 3.20 57.47 

0.4σw 10.64 5.37 10.93 5.09 12.82 4.51 

0.6σw 23.93 1.42 24.58 1.38 28.80 1.28 

0.8σw 42.55 1.02 43.70 1.02 51.19 1.01 

σw 66.48 1 68.29 1 79.99 1 

In Table 3.5, we compare the noncentrality parameters and ARL of the W chart 

and the Y chart when a double-sensor-fault occurs at sensor M1 or sensor M2. The 

magnitudes of mean shifts in both x- and z- directions are set to be equal. The W chart 

and the Y chart have close performance in detection of sensor faults as for single-sensor-

faults shown in Table 3.5. Again, the advantage of the W chart over the Y chart is that the 

W chart is only sensitive to sensor faults and therefore can be used to distinguish sensor 

faults from process faults, while the Y chart cannot differentiate sensor faults and process 

faults. 
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CHAPTER 4.  

A BAYESIAN METHOD FOR AUTOMATIC DIAGNOSIS OF 

MANUFACTURING PROCESS AND SENSOR FAULTS 

Although the multivariate control charts developed in Chapter 2 and Chapter 3 

can help us detect process faults and sensor faults and differentiate sensor faults from 

process faults, further diagnosis work is needed to identify which tooling elements or 

which sensors are responsible for the abnormal sensor measurements. Automatic fault 

diagnosis can save tremendous costs and resources required to inspect root causes in a 

complex manufacturing process with a great number of tooling elements and sensors. 

Fault diagnosis is usually conducted after faults have already been detected using 

a quality monitor technique, such as a multivariate control chart on measurements yj. 

Therefore, in this chapter, we assume that occurrence of process and/or sensor faults has 

been detected. The goal of the diagnosis procedure is to identify the faulty sensors and/or 

faulty tooling elements. That is, the nonzero elements in u and ૄܟ in model (1.1), which 

are root causes of the out-of-control signal, should be identified. 

First, we combine the potential process faults and sensor faults together as a 

single fault vector ઺ ൌ ሾ்ܝ ܟૄ
் ሿ் and rewrite model (1.1) as 

௝ܡ ൌ ઺כ۱ ൅ ઽ௝,       ݆ ൌ 1, 2, ڮ , ܰ   (4.1) 

where ۱כ ൌ ሾ۱ ۷௡ሿ. For the fault-quality model, the number of potential faults, which is 

the dimension of ઺ , will always exceed the number of measurements yj by p – equivalent 

to the number of process faults, because besides the process faults, one potential sensor 

fault is associated with each measurement point. This causes difficulty in estimating ઺ in 

model (4.1) by applying linear regression algorithm since ۱כ۱்כ is not a full rank matrix 

and the unbiased estimator of ઺ doesn’t exist. 

Typically in moderately reliable systems, just a few process and/or sensor faults 

may occur simultaneously. Consequently, it is reasonable to believe that only a few 
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components of ઺ has nonzero values. Due to this observation, we can treat the fault 

diagnosis as a variable selection problem, or subset selection problem as is often called. 

Many researchers have proposed approaches for variable selection. In this chapter, we 

will investigate a Bayesian variable selection method for diagnosis of both process faults 

and sensor faults.  

4.1 Literature Review of Bayesian Variable Selection 

A variety of variable selection approaches have been studied in statistics 

literature. Some approaches, like AIC, BIC and Cp, select the optimal subset of the 

explanatory variables by comparing the 2n+p possible submodels (here n+p is the total 

number of potential faults as specified in model (4.1). When n+p is large, finding the best 

model among all candidates by exhaustive calculation is impossible. Researchers then 

apply heuristic stepwise selection, like forward selection, backward elimination, etc, to 

focus on a smaller number of potential subsets and identify a promising submodel.  

George and McCulloch (1993) proposed a Bayes procedure called SSVS 

(Stochastic Search Variable Selection) to identify the promising subsets by specifying a 

Bayesian hierarchical model and applying Gibbs sampling algorithm to approximate the 

posterior probability of the submodels. The models showing up with more frequency in 

the simulation are considered as promising subsets. They mentioned that the Bayes 

hierarchical model was based on the work including Lempers (1971), Atkinson (1978), 

Perrichi (1985), Smith and Spiegelhalter (1980), Spiegelhalter and Smith (1982), Zellner 

(1984), Poirier (1985), Stewart (1987), and Mitchell and Beauchamp (1988). Other works 

in the past supporting their approach concern Gibbs sampling,such as Gelfand and Smith 

(1990), Gelfand et al (1990), Tanner and Wong (1987), and Verdinelli and Wasserman 

(1991).  

Further study related to Bayesian variable selection were done by Carlin and Chib 

(1995), Chipman (1995), Clyde, DiSimone, and Parmigiani (1996), George and 
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McCulloch (1995), George, McCulloch and Tsay (1995), Geweke (1996), Hoeting, 

Raftery and Madigan (1997), Kuo and Mallick (1994), Meehan, Dempster and Brown 

(1994), Phillips and Smith (1995), Raftery, Madigan and Hoeting (1993), Raftery, 

Madigan and Volinsky (1995), Smith and Kohn (1995), and Wakefiel and Bennett 

(1996). George and McCulloch (1997) summarize and compared the performance based 

on various prior formulations of Bayesian variable selection. George and Foster (2000) 

showed the equivalence between the variable selection criterion such as AIC, BIC, Cp, 

and RID and specific values of  hyperparamters in a Bayesian hierarchical model, and 

proposed an empirical Bayes variable selection procedure. Yuan and Lin (2005) applied a 

LASSO algorithm to compute the empirical Bayes estimate and provided a new way to 

select the tuning parameters in the LASSO method. 

The Bayesian variable selection procedure has also been applied in the areas of 

experimental design. Chipman, Hamada and Wu (1997) used the Bayesian approach to 

analyze the designed experiments with complex aliasing pattern. Joseph (2006) also 

applied the Bayesian variable selection in experiment design and analysis and presented a 

new way to specify the hyperparameters in the priors of the Bayes model.  

4.2 Bayesian Fault Diagnosis Procedure 

4.2.1 Hierarchical Prior 

To apply the Bayesian variable selection approach to fault diagnosis, we first need 

to determine the prior distributions for the parameters ઺ and σଶ in model (4.1), such that 

a hierarchical Bayes model can be set up. George and McCulloch (1997) presented a set 

of conjugate priors for Bayesian variable selection problem. We apply their hierarchical 

prior setup for model (4.1) as follows: 

Let γi (i=1, 2, …, n+p) be an indicator variable of the ith component of ઺. The 

prior distribution of ઺ is 
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,൫઺઻|઻ߨ ଶ൯ߪ ൌ ௤ܰ઻ ቀܿߪଶ൫۱઻
۱઻்כ

൫઺઻തߨ ൯ିଵቁ andכ ൌ 0|઻, ଶ൯ߪ ؠ 1 

where ઺઻ is the subset of ઺ corresponding to the components of ઻ equal to 1, while ઺઻ത  is 

the subset of ઺ corresponding to the components of ઻ equal to 0. As we have assumed, σ2 

is the variance of noise term in model (4.1); ۱઻
 with its columns כis the sub-matrix of ۱ כ

picked from ۱כ according to ઺઻. c is a hyperparameter that needs to be specified. The 

correlation structure ൫۱઻
۱઻்כ

൯ିଵכ
 is equivalent to the generalization of g prior of Zellner 

(1986). The nonzero components of variable ઻ decide which components of ઺, ߚ௜, i=1, 

…, n+p, should be included in the model.  

The prior distribution for the indicator variable ઻ ൌ ሾߛଵ ଶߛ ڮ  ௡ା௣ሿ் isߛ

assumed to have binomial distribution with parameter wi, which can be written as  

 ௜ሻ              (4.2)ݓሺ݊݅ܤ~௜ሻߛሺߨ

Assume all the components of ઻ are independent and the joint prior of ઻ is 

ሺ઻ሻߨ  ൌ ∏ ௜ݓ
ఊ೔ሺ1 െ ௜ሻଵିఊ೔௣ା௡ݓ

௜ୀଵ    (4.3) 

From the perspective of fault diagnosis, ߛ௜ can be understood as an indicator of 

the occurrence of the ith fault in the system. ߛ௜ ൌ 0 indicates that the ith fault doesn’t 

occur. At the beginning of the fault diagnosis procedure, wi, the probability a fault occurs 

on the ith sensor, is determined based on a subjective evaluation about the reliability of 

ith sensor. In Section 4.2.3, we will give more discussions about how to choose the value 

of wi and other hyperparameters. In addition, George and McCulloch (1997) set the prior 

distribution for ߪଶ as the following inverse gamma distribution: 

ଶሻߪሺߨ  ൌ ܩܫ ቀఔ
ଶ

, ఔఒ
ଶ

ቁ     (4.4) 

where ߥ and ߣ are two hyperparameters. The physical interpretation of ߥ and ߣ will also 

be given in Section 4.2.3.  

A special issue in our fault-diagnosis problem is that, because ۱כ is not of full 

column rank, there will always be some fault combinations causing the same abnormal 

observations. For example, suppose a system can be modeled by equation (4.1) with  
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כ۱ ൌ ൥
1 1 0 0
1 0 1 0
1 0 0 1

൩ 

This matrix indicates one potential process fault (ߚଵ, the component of fault vector ઺ 

corresponding to the first column of ۱כ) and three sensor mean shift faults (ߚଶ, ߚଷ, ߚସ, the 

components of fault vector ઺ corresponding to the last three columns of ۱כ) will affect 

the product quality characteristics y(j) in this system. There would be infinitely many 

number of fault patterns that can cause a mean shift of the measurements ܧሾܡሺ݆ሻሿ ൌ

ሾߜ ߜ  ሿ். Among those fault patterns, one case is the occurrence of only process faultߜ

઺ሺ1ሻ ൌ ሾߜ 0 0 0ሿ். Another one is ઺ሺ2ሻ ൌ ሾ0 ߜ ߜ  ሿ், which indicates noߜ

process fault occurs and the three sensor faults occur simultaneously with all the mean 

shifts equal to ߜ. We call fault {1}, which corresponds to the first column of ۱כ, and the 

set of faults {2, 3, 4} corresponding to the other columns of ۱כ, as coupled faults. 

Essentially, the reason that these faults are coupled is that their corresponding columns of 

 are linearly dependent. It can be seen that the fault index is the same as the index of כ۱

the corresponding columns of ۱כ. 

Before we solve the singularity problem, some definitions are first given:  

A Fault Pattern is defined as ܲܨ ؠ ሼ݅: ௜ߚ ് 0, ݅ ൌ 1, 2, ڮ , ݊ ൅  ሽ. A fault pattern݌

indicates a candidate model with only the variables included in the fault pattern being 

selected into the model while the rest of the variables considered as zeros and excluded 

from the model. There are totally 2௡ା௣ different fault patterns. The model corresponding 

to fault pattern FPm can be denoted based on the indicator vector 

઻ሺܨ ௠ܲሻ ൌ ሾߛଵ ڮ ௜ߛ ڮ ௡ା௣ሿ்ߛ ൌ ൜ߛ௜ ൌ 1 , ݅ א ܨ ௠ܲ
௜ߛ ൌ 0 , ݅ ב ܨ ௠ܲ

 

A Coupled Fault Pattern (CFP) is considered as the fault pattern whose 

corresponding columns of ۱כ are linearly dependent. Correspondingly, we define the set 

of models that includes all the CFPs as Coupled Model Set (CMS), which can be denoted 

as ડCMS ؠ ൛઻ሺܨܥ ଵܲሻ, ઻ሺܲܨܥଶሻ, ڮ , ઻ሺܨܥ ௄ܲሻൟ. 
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The singularity problem can then be solved by artificially adding a constraint that 

coupled fault patterns are not allowed to show up in the Bayes model. For the above 

example, we allow fault pattern {1} occurs and fault pattern {2, 3, 4} occurs, but set the 

chance of the occurrence of the coupled fault pattern {1, 2, 3, 4} as zero. 

The coupling of the faults can be checked easily based on the linear dependence 

of the corresponding columns in ۱כ. Formally, a restriction on the prior of ߨሺ઻ሻ is added 

by revising equation (4.3) as: 

ሺ઻ߨ א ડCMSሻ ൌ 0 

and for ઻ ב   ,ܵܯܥ

ሺ઻ߨ  ב ડCMSሻ ൌ ܽ ∏ ௜ݓ
ఊ೔ሺ1 െ ௜ሻଵିఊ೔௣ା௡ݓ

௜ୀଵ ן ∏ ௜ݓ
ఊ೔ሺ1 െ ௜ሻଵିఊ೔௣ା௡ݓ

௜ୀଵ        (4.5) 

where the notation ∝ means ߨሺ઻ ב ડCMSሻ is proportional to the value of ∏ ௜ݓ
ఊ೔ሺ1 െ௣ା௡

௜ୀଵ

 ௜ሻଵିఊ೔. The constant a is obtained asݓ

ܽ ൌ 1/ ቌ1 െ ෍ ෑ ௜ݓ
ఊ೔ሺ1 െ ௜ሻଵିఊ೔ݓ

௣ା௡

௜ୀଵ઻אડCMS

ቍ 

The conjugate joint prior of ઺ corresponding to ઻ ב ડCMS is: 

π൫઺઻|઻ ב ડCMS, ଶ൯ߪ ൌ ௤ܰ઻ ቀ0, ଶ൫۱઻ߪܿ
T۱઻כ

൫઺઻തߨ ൯ିଵቁ  andכ ൌ 0|઻ ב ડCMS, ଶ൯ߪ ൌ 1  (4.6)          

The prior for ߪଶ is still given by 

ଶሻߪሺߨ ൌ ܩܫ ቀఔ
ଶ

, ఔఒ
ଶ

ቁ. 

We will have a further discussion about the coupled model set CMS and the related 

concepts in Section 4.3.  

4.2.2 Calculation of Posterior ࣊ሺࢅ|ࢽሻ 

We define the vector of quality characteristics measurements from all products as 

܇ ؠ ሾܡଵ ଶܡ ڮ  ேሿT. Given the conjugate priors in Section 4.2.1, the posteriorܡ

probability for ઻|܇ can be derived explicitly as 
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ሺ઻ߨ ב ડCMS|܇ሻ ן ݃ሺ઻ ב ડCMSሻ 

 ൌ ሺ1 ൅ ܿሻି௤઻/ଶ ቀ߭ߣ ൅ ܇்܇ െ ଵ
ଵାଵ/௖

ቁ܅்܅
ିሺே௡ାజሻ/ଶ

ሺ઻ߨ ב  ሻ   (4.7)ܵܯܥ

where ݃ሺ·ሻ is a function proportional to the p.m.f ߨሺ઻ ב ડCMS|܇ሻ and  

܅ ൌ
૚

ࡺ√
ሺۿTሻିଵ۱ࢽ

Tכ ෍ ሺ݆ሻܡ
ே

௝ୀଵ

 

Q is an upper triangular matrix satisfying ۿTۿ ൌ ۱઻
T۱઻כ

 and can be obtained by the כ

Cholesky decomposition. Particularly, when ઻ ൌ ૙ 

ሺ઻ߨ  ൌ ૙|܇ሻ ן ݃ሺࢽ ൌ ૙ሻ ൌ ሺ߭ߣ ൅ ሺ઻ߨሻିሺேሺ௣ା௡ሻାజሻ/ଶ܇்܇ ൌ 0ሻ          (4.8) 

We also have  

ሺ઻ߨ  א ડCMS|܇ሻ ൌ ݃ሺ઻ א ડCMSሻ ؠ 0     (4.9) 

The follows are the derivation of posterior ߨሺ઻|܇ሻ in equations (4.7), (4.1) and (4.9). 

We first assume the sample size of measurements N=1. According to Model (4.2), 

,઺כሺ۱ࡺ~܇ σଶ۷௡ା௣ሻ. This likelihood function can then be written as 

,઺|܇ሺߨ ઻, ଶሻߪ ൌ
1

ሺ2ߨሻ௡/ଶሺߪଶሻ௡/ଶ exp ቆെ
1

ଶߪ2 ሺ܇ െ ܇઺ሻ்ሺכ۱ െ  ઺ሻቇכ۱

For convenience, we rewrite the conjugate priors of parameters γ, β and σ2 as 

follows: 

ሺ઻ߨ א ડCMSሻ ൌ 0 and ߨሺ઻ ב ડCMSሻ ן ∏ ௜ݓ
ఊ೔ሺ1 െ ௜ሻଵିఊ೔௣ା௡ݓ

௜ୀଵ  

ଶሻߪሺߨ ൌ ܩܫ ൬
ߥ
2 ,

ߣߥ
2 ൰ 

,൫઺઻|઻ߨ ଶ൯ߪ ൌ ௤ܰ઻ ቀ0, ଶ൫۱઻ߪܿ
۱઻்כ

൯ିଵቁכ

ൌ
1

ሺ2ߨሻ௤઻/ଶ ቚܿߪଶ൫۱઻
۱઻்כ

൯ିଵቚכ
ଵ/ଶ ݌ݔ݁ ൜െ

1
ଶߪ2ܿ ઺઻

்൫۱઻
۱઻்כ

 ൯઺઻ൠכ

and  

൫઺઻തߨ ൌ ૙|઻, ଶ൯ߪ ؠ 1 
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where CMS is the Coupled Model Set.   

Based on the artificial constraint that the coupled faults cannot occur at the same 

time, it is easy to see that ߨሺ઻ א ડCMSሻ ൌ 0. So we only focus on the probabilities for 

ሺ઻ߨ ב ડCMSሻ. By multiplying the above equations, 

,൫઺઻ߨ ઻, ൯ܡ|ଶߪ ן ൫௡ା௤઻ାఔାଵ൯ିߪ ቚܿ൫۱઻
۱઻்כ

൯ିଵቚכ
ିଵ

ଶ 

          expሾቄെ ଵ
ଶఙమ ቂ൫ܡ െ ۱઻

ܡ઺઻൯்൫כ െ ۱઻
઺઻൯כ ൅ ઺઻

்൫۱઻
۱઻்כ

൯઺઻ቃכ െ ఒఔ
ଶఙమቅ ሺ઻ߨ ב ડCMSሻ 

ൌ ൫௡ା௤઻ାఔାଵ൯ିߪ ቚܿ൫۱઻
۱઻்כ

൯ିଵቚכ
ିభ

మ exp ቀെ ఒఔ
ଶఙమቁ 

    exp ൜െ ଵ
ଶఙమ ቀ઺઻ െ ௖

૚ା௖
൫۱઻

۱઻்כ
൯ିଵ۱઻כ

ቁܡ்כ
் ஼ାଵ

஼
൫۱઻

۱઻்כ
൯כ ቀ઺઻ െ ௖

૚ା௖
൫۱઻

۱઻்כ
൯ିଵ۱઻כ

 ቁൠܡ்כ

   exp ቄെ ଵ
ଶఙమ ൅ ଵ

ଶఙమ
௖

૚ା௖
൫۱઻

۱઻்כ
൯ିଵ۱઻כ

ቅܡ்כ ሺ઻ߨ ב ડCMSሻ  

Integrating out ઺઻ 
and σ2, we can obtain 

ሺ઻ߨ   ב ડCMS|ܡሻ ן ݃ሺ઻ ב ડCMSሻ 

 ൌ ሺ1 ൅ ܿሻି௤઻ ቀߣߥ ൅ ܡ்ܡ െ ଵ
ଵାଵ/௖

۱઻்ܡ
൫۱઻כ

T۱઻כ
൯ିଵ۱઻כ

ቁܡ்כ
ିሺ௡ାఔሻ/ଶ

ሺ઻ߨ ב ડCMSሻ 

Considering sample size N≥1, we replace y, ۱઻
and n by Y, ൣ۱઻ כ

்כ ۱઻
்כ ڮ ۱઻

൧்்כ
and 

Nn respectively. Then, 

 

ሺ઻ߨ ב ડCMS|ܡሻ ן ݃ሺ઻ ב ડCMSሻ 

 ൌ ሺ1 ൅ ܿሻି௤઻ ൬ߣߥ ൅ ܇்܇ െ
1

1 ൅ 1/ܿ ൰܅்܅
ିሺே௡ାఔሻ/ଶ

ሺ઻ߨ ב ડCMSሻ 

where ܅ ൌ ૚
ࡺ√

ᇱି૚۱઻܂
ᇱכ ∑ ሺ݆ሻேܡ

௝ୀଵ  and ܂ᇱ܂ ൌ ۱઻
ᇱ۱઻כ

 for T upper triangular. T can be כ

obtained by the Cholesky decomposition. ࢽݍ is the total number of the nonzero 

components of ઻. 

Based on equation (4.7), exhaustive calculation of ߨሺ઻|ܡሻis feasible for small-

sized problems (e.g., when the total number of potential faults p+n≤25). By calculating 

݃ሺ઻ሻ for each possible value of ઻, the normalization constant can be obtained as 
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ܩ  ൌ ∑ ݃ሺ઻ሻ                (4.10) 

and 

ሻ܇|ሺ઻ߨ  ൌ ݃ሺ઻ሻ/(4.11) ܩ 

Since there are 2p+n possible values of ઻, for large sized problem (p+n>25), it is 

time-consuming or even infeasible to calculate ݃ሺ઻ሻ for each value of ઻ to obtain ߨሺ઻|܇ሻ. 

The major issue in fault diagnosis is to see the first few fault patterns with high posterior 

probability. Therefore, we can apply Markov Chain Monte Carlo (MCMC) simulation 

method to approximateߨሺ઻|܇ሻ. By generating a Markov chain 

,ሺଵሻࢽ ,ሺଶሻࢽ … ,  ሺ௞ሻ (4.12)ࢽ

The values of ઻ corresponding to a relatively large ߨሺ઻|܇ሻ will appear with high 

frequency in the above simulation sequence.   

We apply the Metropolis-Hastings (M-H) algorithm to generate a Markov chain. 

Under the simplest symmetric proposal, the M-H algorithm will move faster than the 

Gibbs sampler. And Liu (1995) showed that the M-H algorithm is superior to the Gibbs 

sampler under the asymptotic variance criterion of Peskun (1995). The details of the M-H 

algorithm can be referred to George and McCulloch (1997). The basic steps of the M-H 

algorithm are presented here for convenience. 

The Metropolis-Hasting algorithm to generate a Markov chain (4.12) from ݃ሺ઻ሻ 

in equations (4.1) and (4.10) is summarized as follows: 

1. Generate ઻ሺ଴ሻ by randomly generating 0 or 1 for each component of ઻ሺ଴ሻ. Set 

݇ ൌ 0. 

2. Generate a candidate ઻כ by randomly changing a component of ઻ሺ௞ሻ. 

3. Let ઻ሺ௞ାଵሻ ൌ ઻כ with the probability 

ߙ ൌ ݉݅݊ ቊ
݃ሺ઻כሻ

݃ሺ઻ሺ௞ሻሻ
, 1ቋ 

Otherwise, ઻ሺ௞ାଵሻ ൌ ઻ሺ௞ሻ. 

4. ݇ ൌ ݇ ൅ 1. Return to step 2. 
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4.2.3 Choice of Additional Hyperparameters 

In this section, we will show how to choose the additional hyperparameters ν, ߣ, 

wi, c in the equations of priors (4.4), (4.5) and (4.6).  

We first consider the prior probability ݓ௜ for ߛ௜ ൌ 1 ( i= 1, 2, …, n+p) in equation 

(4.5). We recommend a way to choose ݓ௜ as: assume all the potential faults would occur 

with equal probability, that is ݓଵ ൌ ଶ ൌݓ ڮ ൌ ௣ା௡ݓ ൌ  Since we assume that a mean .ݓ

shift of sensor measurements has already been detected based on a multivariate control 

chart and such a mean shift is caused by process faults, sensor faults, or both, it is 

reasonable to assume that  

Pr൫ܧଵ ׫ ଶܧ ׫ … ׫ ௡ା௣൯ܧ ൌ 1 

where Pr(·) is the probability of the occurrence of the events in the parenthesis. Event Ei, 

i=1, 2, ڮ, n+p denotes the occurrence of the ith fault (faulty tooling elements or sensors). 

Further applying the first-order inclusion-exclusion approximation, we have 

1 ൌ Pr൫ܧଵ ׫ ଶܧ ׫ ڮ ׫ ௡ା௣൯ܧ ൎ Prሺܧଵሻ ൅ Prሺܧଶሻ ൅ ڮ ൅ Pr൫ܧ௡ା௣൯ 

ൌ ଵݓ ൅ ଶݓ ൅ ڮ ൅ ௡ା௣ݓ ൌ ሺ݊ ൅   ݓሻ݌

By solving the above approximation, we obtain ݓ≈ ଵ
௡ା௣

. In the rest of the study, the 

values of wi (i=1, 2, …, n+p ) are set as discussed above and are substituted by w. 

As for the hyperparameter c used to define the prior distribution of ઺઻ given in 

equation (4.6), we use a fixed value c=100 in all of our examples. We also conduct a 

sensitivity analysis for parameter c in Section 4.3.4. George and Foster (2000) applied 

both marginal and conditional maximum likelihood (CML) method to estimate the 

hyperparameters c and w. We recommend trying out different values of c in pilot 

experiments before the real diagnosis procedure such that a reasonable value can be 

obtained. In addition, CML method, which we will briefly introduce in Section 4.2.4, can 

be applied to calculate c and w. CML provides a nice quantitative guideline in selecting 
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the value of the hyperparameters. But as we can see in Section 4.3.4, it is not necessarily 

optimal in terms of the diagnosis performance.    

The hyperparameter ν  in equation (4.4) can be understood as the number of 

observations used to estimate the prior of σ2. And it is easy to see that the mean of the 

prior distribution of σ2 is νߣ/ሺν െ 2ሻ. Therefore, if historical data is used to estimate σ2, ν 

and λ may be determined as follows: Denote ߪොଶ as the estimation of ߪଶ based on the 

historical data. We can set ν as the number of observations in the historical data and 

νߣ/ሺν െ 2ሻ as equal to ߪොଶ. Therefore, λ can be obtained as νߣ/ሺν െ 2ሻ.   

In summary, the whole diagnosis procedure can be demonstrated in Figure 4.1 : 

Firstly, a fault-quality model as of the form in Model (1.1) needs to be set up, where 

matrix C is obtained based on knowledge of the process and product design knowledge. 

Secondly, the hyperparameters ν, ߣ, w, c used in the prior distributions in equations (4.4), 

(4.5) and (4.6) should be selected. If expertise knowledge or experience is lacking, 

historical data and pilot experiments should be applied to select values of those 

hyperparameters according to the guidelines presented in this section. Thirdly, under the 

hierarchical model setting in Chapter 4, computation is conducted to calculate the 

posterior probabilities for different models based on equations (4.7) and (4.9). 

Essentially, the diagnosis problem can be considered as selecting the model (fault 

pattern) with the largest posterior probability. The exhaustive posterior calculation for 

each model can be done when the total number of potential faults p+n<25. Otherwise, 

MCMC is applied to approximate the posteriors of the models. Finally, inspection ofthe 

tooling elements and sensors should be conducted according to the diagnosis results to fix 

the faulty elements.  

4.2.4 CML Method 

As it can be seen, the guidelines in choosing the values of hyperparameters, such 

as c, given in the previous section still rely on subjective judgments. George and Foster 
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(2000) proposed a quantitative approach to estimate the value of c and w using the 

observed measurement data. Specifically, under the hierarchical model presented in 

Section 4.2.1, the posterior ݌ሺ઻|܇, ܿ,   ሻ isݓ

,܇|ሺ઻݌ ܿ, ሻݓ ן ௤઻ሺ1ݓ െ ሻ௣ି௤઻ሺ1ݓ ൅ ܿሻି௤઻/ଶexp ቄ ௖௦௦઻

ଶఙమሺଵା௖ሻቅ (4.13) 

where 

઻ݏݏ ൌ
1
ܰ ቌ෍ TכTሺ݆ሻ۱ܡ

ே

௝ୀ૚

ቍ ൫۱כT۱כ൯
ିଵ

ቌ෍ ሺ݆ሻܡכ۱
ே

௝ୀ૚

ቍ 

and N is the sample size. 

 

 

Figure 4.1 Bayesian fault diagnosis diagram 

The posterior (4.13) can be considered as a function of c and w. And this function 

is called as the conditional ‘likelihood’ function כܮሺܿ, ,ݓ ઻|܇ሻ ؠ ,܇|ሺ઻݌ ܿ,  ሻ. It is not aݓ

System Modeling Based on 
equation (1.1) 

Bayesian Hierarchical Model 
and Hyperparameter Selection 

Posterior Probabilities for 
Candidate Fault Patterns 

Physical Inspection Based on 
Calculation 

Y 
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strict likelihood function since ઻ is an unknown intermediate vector. Conditioning on ઻, 

the estimators of c and w are obtained as follows by maximizing the conditional 

likelihood function in equation (4.13).   

ܿ̂ఊ ൌ ൫ݏݏ઻/ߪଶݍఊ െ 1൯
ା

 (4.14) 

and 

ෝ઻ݓ ൌ  (4.15) ݌/઻ݍ

whereሺ·ሻା is the positive part function, that is ሺ·ሻା ൌ ሺ·ሻ when ሺ·ሻ is a positive number, 

otherwise, ሺ·ሻା ൌ 0. ܿ̂ఊ and ݓෝ઻ are the estimators of c and w for a specific model 

corresponding to ઻. That is, we may have different estimates of c and w for each 

candidate model and the hyperparameters c and w are estimated in terms of ઻. By 

substituting the two estimates in equations (4.14) and (4.15) into equation (4.13), the 

problem becomes searching for the best model such that the posterior ݌൫઻|܇, ܿ̂઻,   ෝ઻൯ݓ

reaches its maximum. The objective function then is equivalent to the following simpler 

function:  

஼ெ௅ܥ ൌ ଶߪ/઻ݏݏ െ ଶ൯ߪ/઻ݏݏ൫ܤ െ ܴ൫ݍ઻൯ 

where   

ଶ൯ߪ/઻ݏݏ൫ܤ ൌ ఊ൛1ݍ ൅ logା൫ݏݏఊ/ߪଶݍఊ൯ൟ 

log+(·) is the positive part of log(·), that is, log+(·) = log(·) when log(·)>0; log+(·) = 0 

otherwise; and 

ܴ൫ݍ઻൯ ൌ െ2൛൫݌ െ ݌઻൯log൫ݍ െ ઻൯ݍ ൅  .઻ൟݍ઻logݍ

Suppose ઻כ represents the best model that maximizes ܥ஼ெ௅, then the estimates of 

c and w are ܿ̂઻כ and ݓෝ઻כ respectively. To search for the optimal model ઻כ, the exhaustive 

calculation of ݏݏ઻ for every candidate model should be conducted. But with a large 

number of potential root causes, a heuristic strategy such as stepwise search can be 

applied to identify a locally optimal model. From the above discussions, the CML 

method can be considered as an alternative way to estimate the values of c and w.  



www.manaraa.com

63 
 

4.3 Simulation Examples 

Since the potential faults always outnumber the measurement points in our 

studies, even for Bayesian variable selection method, the singularity problem caused by 

coupled faults still exist. In Section 4.2.1, we add an artificial constraint to the prior of ઻ 

to force the coupled faults not to show up simultaneously. This diagnosis procedure turns 

out to work well in the moderately reliable systems with sparse faults. We still conduct 

studies to see how the coupled structure would affect the diagnosis result. Some concepts 

are first introduced.   

Minimal Coupled Pattern (MCP): MCP is a coupled fault pattern (CFP) with the 

following additional property: if any element is excluded from an MCP, the columns of 

 corresponding to the rest of its elements are linearly independent. The degree of MCP כ۱

is the number of elements in an MCP. For instance, for a system with  

כ۱ ൌ ൦

1 4 5 1 0 0 0
3 2 5 0 1 0 0
2 3 5 0 0 1 0
5 1 6 0 0 0 1

൪ 

the first three columns of ۱כ are linearly dependent and any two of the three columns are 

linearly independent. Therefore, one MCP for the system is MCP1={1, 2, 3} and MCP1 

has degree 3. Furthermore, another MCP in the system is MCP2={1, 4, 5, 6, 7} and the 

degree of MCP2 is 5. It can be seen from this example that the degrees may vary for 

different MCPs. 

MCPs and the corresponding degrees describe the coupled fault structure of a 

system. Therefore, we study the influence of coupled fault on the diagnosis accuracy by 

finding the relationship between MCP and diagnosis results through simulated examples. 

The Bayesian variable selection approach to identify the root causes is also illustrated in 

the example. For choosing the values of hyperparameters including c and w in the 

Bayesian hierarchical model, we following the guidelines in Section 4.2.1. The diagnosis 

performance is compared with that of applying CML method in Section 4.3.4. 
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These simulated examples are designed based on a system’s MCP degrees. We 

assume yj are generated from ௡ܰሺ۱כ઺, ଶߪ ଶ۷௡ሻ withߪ ൌ 1 for all the examples without 

loss of generality, where n is the number of measurements obtained from one product and 

is equal to the number of potential sensor faults. While the matrix ۱כ and the fault vectors 

઺ may not be the same for different examples, the hyperparameters are set with the same 

values as listed in Table 4.1, where (n+p) is the total number of faults including both 

process faults and sensor faults. 

Table 4.1 Hyperparameter settings 

Sample Size N C λ ν w 

20 100 1.5 10 1/(n+p)  

4.3.1 Minimal Coupled Pattern of Degree7 

For the first example, assume six product quality characteristics on each product 

need to be measured by six sensors in the system and two potential process faults would 

affect the product quality. So there are totally eight potential faults – two process faults 

and six sensor faults. Correspondingly, the ۱כ matrix in Model (4.2) is ۱כ ൌ

ሾ܋ଵ ଶ܋ ۷଺ሿ. We randomly generate the two columns ܋ଵ and ܋ଶ from normal 

distribution ଺ܰሺ0, ଺ሻ.  The mean shift is set as ઺ࡵ ൌ ሾ1.5 0 0 0 0 1 0 0ሿ், 

which means the mean shift faults occur on the first and the sixth components of ઺ which 

correspond to the first tooling element and the fourth sensor, respectively. Furthermore, it 

can be seen that fault 1 and fault 6 belong to a minimal coupled pattern (MCP) {1, 3, 4, 5, 

6, 7, 8} with degree 7. 

Since this is a relatively small size problem with eight potential faults, we may 

exhaustively calculate ߨሺ઻|܇ሻ. Based on equations (4.3), (4.4), (4.5), (4.6) and (4.7), we 
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calculate the posterior ߨሺ઻|܇ሻ 1000 times for 1000 randomly generated sets of 

measurements Y and then obtain the average ߨሺ઻|܇ሻ. The first four models (fault 

patterns) with the largest posterior probabilities in average are listed in Table 4.2. The 

first column represents the fault patterns or candidate models. The fault indices mark 

which components in ઻ are nonzero and included in the model. The column on the right 

shows the average posterior probabilities of the corresponding fault patterns. That is, 

given the product measurement information Y, how likely a fault pattern may occur. We 

list the candidate models in a descending order according to the posterior probabilities.   

The results in Table 4.2 show that the average posterior probability for the correct 

root cause {1, 6} is 0.469, which is higher than that of the other candidate models. We set 

our fault diagnosis criterion as choosing the fault pattern with the largest posterior. The 

rate to identify the correct fault pattern {1, 6} by applying the proposed diagnosis 

procedure is 59.6% among 1000 times.  This example indicates that the Bayesian 

diagnosis procedure works well under this fault coupling situation with MCP degree 

relatively large.  

Table 4.2 Fault patterns and the corresponding average posterior 
probability for MCP of degree 7 

Fault Index ߨሺ઻|܇ሻ 

1 6 0.469 

1 0.250 

1 4 0.020 

1 5 0.018 

4.3.2 Minimal Coupled Pattern of Degree 4 

In the second example, we design a ۱כ matrix as ۱כ ൌ ሾ܋ଵ ଶ܋ ۷଺ሿ with ܋ଵ 

generated from ଺ܰሺ0, ۷଺ሻ and ܋ଶ ൌ ሾ1 0 1 0 1 0ሿ். Same as the first example, 
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six quality characteristics are measured on each product. During the manufacturing 

process, two potential process faults and six potential sensor faults would affect the 

values of products’ measurements. By examining the column linear independency in ۱כ 

matrix, one minimal coupled pattern can be identified as {2, 3, 5, 7} with MCP degree 4. 

The MCP degree for this example is decreased by 3 compared with that of the example in 

Section 4.3.1. We are interested in finding out whether the diagnosis accuracy will be 

sensitive to the reduction of MCP degree.  

The problem is studied using two sub-cases with the mean shifts set as ઺ሺ1ሻ ൌ

ሾ0 0 1.2 0 1.2 0 1.2 0ሿ் and ઺ሺ2ሻ ൌ ሾ0 0 1 0 0.7 0 1.5 0ሿ், 

respectively. For each case we calculate the posteriors of the candidate models 1000 

times. The first three models with highest average posterior probabilities are listed in 

Table 4.3. 

Table 4.3 Fault patterns and the corresponding average posterior 
probability degree 4 MCP 

ଷߚ ൌ ହߚ ൌ ଻ߚ ൌ ଷߚ 1.2 ൌ 1, ହߚ ൌ 0.7, ଻ߚ ൌ 1.5 

Fault Index ߨሺ઻|܇ሻ Fault Index ߨሺ઻|܇ሻ 

2 0.841 2 0.650 

2 3 0.030 2 5 0.184 

2 5 0.030 2 3 5 0.047 

From Table 4.3, we see that for both cases the fault pattern {2} stands out with 

the highest posterior probability 0.84 and 0.65. It can be observed that faults {3, 5, 7} 

belong to the minimal coupled pattern {2, 3, 5, 7}. The number of faults that occur is 3, 

counting for 75% within the MCP. Rather than picking up a model including multiple 

faults, the diagnosis approach prefers fault 2 which is also in the MCP {2, 3, 5, 7}.  
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The results show that when the true faults are not sparse in comparison with their 

corresponding MCP degree, the correct model including all those true faulty elements 

will not show up with high posterior probability, while the model with few variables will 

have high posterior probability. This can be further verified by trying another case where 

the mean shift is set as ઺ଷ ൌ ሾ0 0 1 0 0 0 0 0ሿ். That is, the fault only 

occurs on the third element of ઺ (the first sensor) among a MCP {2, 3, 5, 7}. For 96.5% 

of the 1000 simulations, our fault diagnosis procedure can identify the correct fault 

pattern. In contrast to the cases where three faults occur in a four-degree MCP, the 

diagnosis procedure is much more successful in identifying the sparse fault patterns 

4.3.3 Minimal Coupled Pattern of Degree 3 

We further reduce the degrees of MCP to three. Consider a matrix ۱כ ൌ

ሾ܋ଵ ଶ܋ ଷ܋ ۷ଵ଴ሿ. The first two column vectors c1 and c2 are generated from ଵܰ଴ሺ0, ۷ଵ଴ሻ 

and c3=0.5c1+0.9c2. This ۱כ matrix represents a system with ten measurements on each 

product, three potential process faults and ten potential sensor faults. Since ܋ଵ, ܋ଶ and ܋ଷ 

are linearly dependent, it can be seen that one minimal coupled pattern is {1, 2, 3} with 

degree 3. Three cases with mean shifts ሺߚଵ ൌ 1.2, ଶߚ ൌ 1.8ሻ, ሺߚଵ ൌ 2, ଶߚ ൌ 1.2ሻ, and 

ଷߚ ൌ 1.2 are studied. Same as the examples in Section 4.3.1 and Section 4.3.2, we 

calculate the average posterior probabilities for each candidate models by running the 

simulations 1000 times. The first four fault patterns with the largest average posterior 

probabilities are listed in Table 4.4. 

In addition, the rates that the root causes are detected for these three cases are 

25%, 17%, and 98.8%, respectively. Again, the diagnosis procedure is much more 

successful for case 3 because the true fault pattern in case 3 is sparse compared with the 

MCP degree. 
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Table 4.4 Fault patterns and the corresponding average posterior 
probability for degree 3 MCP 

ଵߚ ൌ 1.2, ଶߚ ൌ ଵߚ 1.8 ൌ 2, ଶߚ ൌ ଷߚ 1.2 ൌ 1.2

Fault Index ߨሺࢅ|ࢽሻ Fault Index ߨሺࢅ|ࢽሻ Fault Index ߨሺࢅ|ࢽሻ 

3 0.3886 1 0.412 3 0.794 

1 2 0.0920 2 0.412 1 3 0.016 

1 3 0.0920 2 8 0.008 2 3 0.016 

2 3 0.0920 1 8 0.008 1 2 0.016 

All the three simulation examples show that the Bayesian diagnosis approach are 

effective to identify sparse fault patterns, i.e., when the number of true faults is relatively 

small. The sparsity of the fault pattern should be defined with consideration of the degree 

of the MCP containing the fault pattern. Typically, if the number of faults in a fault 

pattern is less than half of the MCP degree, it can be considered as sparse and the 

Bayesian diagnosis approach should be effective. Before identifying the faults, we don’t 

know exactly how many faults occur and which MCP they belong to. For moderately 

reliable manufacturing systems, however, since only a small number of elements may 

have malfunctioned, the sparse fault patterns should be much more likely than the less 

sparse ones. Under those circumstances, the Bayesian faults diagnosis method can 

perform well.  

In addition, it is important to consider the degrees of MCPs in the design of a 

manufacturing system. MCPs with large degrees will improve the diagnosability of 

process and sensor faults.  

4.3.4 Sensitivity Analysis and Comparison with CML 

In Section 4.2.3, some guidelines for the selection of the hyperparameter values 

are presented. For the value of c, we recommend using historical data or conducting pilot 

experiments to get a good estimation of c. For all the examples, we set c=100, which 
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works pretty well. In this section, we investigate how the diagnosis accuracy will be 

affected when vary the value of c, and if the magnitude of mean shift will influence the 

choice of c. The simulation example in Section 4.3.1 is used for the study. The example 

has a ۱כ matrix as ۱כ ൌ ሾ܋ଵ ଶ܋ ۷଺ሿ with the two columns ܋ଵ and ܋ଶ generated from 

normal distribution ଺ܰሺ0,    .଺ሻࡵ

Firstly, we add the same mean shift as used in Section 4.3.1  

઺ ൌ ሾ1.5 0 0 0 0 1 0 0ሿ் to the system. All the parameter values are chosen 

from Table 4.1 except for c. Figure 4.2 demonstrates a curve between the success rate and 

the corresponding values of c. The range of c is from 0.1 to 103. For each value of c, the 

diagnosis procedure is conducted 1000 times and the rate to identify the correct fault 

pattern {1, 6} is then approximated. The curve shows the trend that the diagnosis 

accuracy will be very low when c is small. The diagnosis power will increase with the 

increase of c. For this case, the identification accuracy will reach its maxima when 

log10(c) is about 1, that is c is equivalent to 10. The identification accuracy then goes 

down slowly but still remains above 50%. In Table 4.5, we listed the success 

identification rates corresponding c=1, 10, 100 and 1000. When c=100, the success 

identification rate is 0.596. It is slightly smaller the highest identification rate 0.622 

achieved at c=10 but the performance is still very good.  

In fact, c values between 10 and 1000 lead to similar diagnosis performance, 

which shows that the Bayesian diagnosis approach is fairly robust to the selection of the c 

value and there is a wide range to choose the proper c value. 

In Section 4.2.4, we introduce a CML method for choosing the hyerparameters in 

the Bayesian hierarchical model, mainly dealing with w and c. The major advantage of 

CML is the success rate of fault identification is not affected by the c value.  
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Figure 4.2 Diagnosis success rate v.s. log(c) 

Table 4.5 Diagnosis performance for different c values and the CML 
method 

Value of c 1 10 100 1000 

Success rate of fault identification 
WITHOUT using CML 0.36 0.622 0.596 0.504 

Success rate of fault identification 
using CML 0.412 0.412 0.412 0.412 

 

The performance of the CML method is investigated using the same example. In 

Figure 4.2, the dashed line demonstrates the diagnosis result using CML method. The rate 

to identify the fault pattern {1,6} is 41.2%. The performance is not as good as choosing c 

from [10, 1000] in this example, but the diagnosis accuracy is still acceptable.  In real 



www.manaraa.com

71 
 

applications, however, the true optimal c value is unknown since the true fault pattern is 

unknown. So the CML method is an alternative method to achieve a reliable result.   

Besides the parameter choice, the diagnosis performance will also depend on the 

process and measurement system layouts, and also the magnitude of the mean shift. For a 

manufacturing with multiple potential faults, since there are infinite numbers of fault 

combinations, we only focus on the single mean shift fault.  

We still using the system  ۱כ ൌ ሾ܋ଵ ଶ܋ ۷଺ሿ with the two columns ܋ଵ and ܋ଶ 

generated from normal distribution ଺ܰሺ0,  ଺ሻ.  Figure 4.3 demonstrates four posteriorࡵ

probability curves by varying ߚଷ, the third component of ઺ and also the first sensor, from 

0 to 1.5 while the other components of ઺ remain zero. The four curves are plotted under 

c=1, 10, 100, 150. The plot shows that the posterior probability of the correct model 

increases with the increase of the magnitude of mean shift. That is, larger mean shift will 

be easier to identify. When the mean shift magnitude exceeds some threshold η , in this 

example 6.0=η , the posterior probability will remain stable. By comparing the four 

curves, it can be seen that generally, for the same magnitude of mean shift, the posterior 

probability of the correct fault pattern will be higher when choosing a larger c. This result 

is accordant to the result we get from the previous sensitivity analysis. 

Another simulation example is conducted by adding a single process fault 03 =β  

and keeping the rest components in β  as zero. The posterior probability curves of the 

fault pattern {1} are plotted in Figure 4.4. The results are similar to the previous example 

– setting a single fault 03 ≠β  . It can be observed the threshold for the posterior 

probability to remain steady is about 4.0=η  , which means that the diagnosis procedure 

tends to be more sensitive to the mean shift on process fault 1β  than the sensor fault 3β  . 

It indicates that the proposed diagnosis procedure has different sensitivity to the root 

causes due to their effect on the product quality characteristics and the layout.  
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Figure 4.3 Posterior Probability v.s. Single Sensor Fault Mean Shift Magnitude 

 

 

Figure 4.4 Posterior Probability v.s. Single Process Fault Mean Shift Magnitude 
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4.4 Case Study 

In this section, we apply the Bayesian fault diagnosis approach to automotive 

body assembly example demonstrated in Section 2.2.3 and Section 3.4. To increase the 

computational complexity, we add the quality measurement points to 15. For each point, 

the deviations in both x- and z- directions are measured by the sensors. The revision and 

new added points are illustration in Figure 4.5 
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Figure 4.5 Key points on right-hand bodyside 

Table 4.6 Nominal x-z coordinates for pins and measurement points 

Point 
Nominal Coordinates (mm) 

x z 

P1 2184 1489 
P2 4680 1428 
M1 3134 1200 
M2 4015 1618.5 
M3 2184 1489 
M4 4895.3 1510.5 
M5 3721 1256.5 
M6 3264 1930 
M7 4895 1608 
M8 4895.5 1273 
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M9 4693.8 2228.5 
M10 4899 1214.5 
M11 2890 2228.5 
M12 2000 1031 
M13 1523 1640 
M14 1840 1300 
M15 3984 2228.5 

The nominal x-z coordinates of P1, P2, and the 15 measurement points are shown 

in Table 4.6. The same as the notation used in Section 2.2.3, 

ሺ݆ሻܡ ؠ ሾܯଵሺݔሻ ڮ ሻݔଵହሺܯ ሻݖଵሺܯ ڮ  ሻሿ் denotes the sensor measurementݖଵହሺܯ

vector, where Mi(x) and Mi(z) represents the measured deviations of Mi’s (i=1,..,15) from 

their nominal positions in the x- and z- directions respectively.  

Table 4.7 Hyperparameters settings for  
assembly example 

c λ ν w 

100 0.1 10 1/33 

Table 4.8 Root cause v.s. success identification rate 

True Fault Patterns Without CML With CML 

ଵߚ ൌ 0.4݉݉ 93.22% 91% 

ଵߚ ൌ 0.15݉݉, ଺ߚ ൌ 0.1݉݉ 83.72% 73.82% 

ଵߚ ൌ 0.1݉݉, ଼ߚ ൌ 0.08݉݉, ଶଶߚ ൌ 0.13݉݉ 69.88% 73.10% 
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Based on the geometric relationship between locating pins and the measurement 

points, the ۱ and ۱כ matrix can be obtained as  

۱ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0.1158 1 െ0.1158
െ0.0519 1 0.0519

0 1 0
െ0.0086 1 0.0086
0.0931 1 െ0.0931

െ0.1767 1 0.1767
െ0.0477 1 0.0477
0.0865 1 െ0.0865

െ0.2963 1 0.2963
0.1100 1 െ0.1100

െ0.2963 1 0.2963
0.1835 1 െ0.1835

െ0.0605 1 0.0605
െ0.2963 1 0.2963
0.3806 0 0.6194
0.7336 0 0.2664

0 0 1
1.0863 0 െ0.0863
0.6158 0 0.3842
0.4327 0 0.5673
1.0861 0 െ0.0861
1.0863 0 െ0.0863
1.0055 0 െ0.0055
1.0877 0 െ0.0877
0.2829 0 0.7171

െ0.0737 0 1.0737
െ0.2648 0 1.2648
െ0.1378 0 1.1378
0.7212 0 0.2788 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

And  ۱כ is obtained as ۱כ ൌ ሾ۱ ۷ଷ଴ൈଷ଴ሿ. 

The variance of the sensor measurements in this assembly system is  

ଶߪ ൌ ൬
0.2
6 ݉݉൰

ଶ

 

We use sample size ܰ ൌ 20. To illustrate the performance of the diagnosis approach, we 

study three cases here. For the first case, we add only one mean shift fault on pin P1 in the 

z-direction, ߚଵ ൌ 0.4݉݉, and keep P2 and all the sensors working properly. For the 
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second case, a double-mean-shift is added on P1 in x-direction and a sensor mean shift M3 

in x direction, ߚଵ ൌ 0.15݉݉, ଺ߚ ൌ 0.1݉݉, such that one process fault and one sensor 

fault occur simultaneously. For the third case, we introduce a triple-mean-shift-fault on P2 

in z-direction, M5 in x direction, and M4 in z direction by setting ߚଵ ൌ 0.1݉݉, ଼ߚ ൌ

0.08݉݉, ଶଶߚ ൌ 0.13݉݉. 

Before the diagnosis procedure, we check the linear dependency among columns 

in ۱כ matrix. One of the smallest MCFs is {1, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30} with degree 17. Based on the discussions in Section 4.3, a fault pattern 

with no more than 8 faults is considered as sparse and can be identified by the Bayesian 

diagnosis approach.  

 The reason we add more measurement points is we want to increase the number 

of potential faults such that MCMC simulation approximation method can be applied. For 

this revised example, the total number of potential faults is 33, which is greater than 25, 

and the exhaustive calculation of all the posterior probabilities is infeasible and 

unnecessary. We then apply the M-H simulation algorithm to estimate ߨሺ઻|܇ሻ. The total 

number of iterations for the M-H algorithm is set to be 30000 with 4000 burn-in 

iterations. To find the percentage of identifying the correct patterns, we run the entire 

simulation for 1000 times. 

    The hyperparameter settings used in the diagnosis are listed in Table 4.7 and 

the percentages of correct root cause identification for the three cases are given in the 

second column of Table 4.8. It shows the success identification rates for the three cases 

are 93.22%, 83.72% and 69.88% respectively, which indicates that the Bayesian fault 

diagnosis approach is effective for all three cases. Note that the sample size used in this 

example is N=20. If larger sample size is used, the percentage of correct fault 

identification should be higher. In addition, the results using the CML method listed in 

the third column of Table 4.8. Again, the performance of the CML method is reliable and 

comparable with the result using c=100.  
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CHAPTER 5. SUMMARY 

My research focuses on developing systematic procedures in detecting and 

diagnosing process and sensor mean shift faults in the manufacturing systems which can 

be modeled by a fault-quality model.  

The studies are divided into monitor part and diagnosis part. We first propose a 

multivariate monitoring process in Chapter 2 with the assumption that no sensor faults 

present and illustrated its use in conjunction with models from the literature.  Compared 

to standard methods for monitoring multivariate processes (e.g., chi-squared control 

charts and Lowry et al.’s (1992) direct MEWMA), the procedure has the advantage of 

monitoring the process in a potentially reduced-dimensional space.  This helps to 

alleviate the diminished sensitivity of monitoring methods that results from increases in 

the number of product quality variables, a consequence of the proliferation of in-process 

sensors. 

In Chapter 3, we develop a W control chart to detect sensor mean shifts in 

manufacturing processes based on a linear fault-quality model. It shows that the W chart 

is sensitive to sensor faults only and completely insensitive to process faults. This 

property enables the W chart, when combined with the U chart, to effectively distinguish 

sensor faults from process faults, which will greatly assist fault isolation and elimination 

in manufacturing processes.  

Because the statistic monitored by the W control chart follows a chi-squared 

distribution, with the degrees of freedom fixed, the noncentrality parameter completely 

determines the fault detection sensitivity and the average run length of the W chart. A new 

unit-free index referred to as the sensitivity ratio (SR) is defined to measure the sensitivity 

of the W chart. Through analysis of the sensitivity ratios for single- and double- sensor 

faults, it is clear that the sensitivity of the W chart is affected by the potential influence, 

which is defined in the robust regression literature, of the sensor measurement.  
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In Chapter 4, a Bayesian fault diagnosis approach is developed to locate the root 

causes in discrete manufacturing processes. The problem is very difficult because the 

number of potential faults to be estimated is always larger than the number of 

measurements. Based on the Bayesian variable selection algorithm, our fault diagnosis 

approach mainly deals with the fault pattern with the largest posterior probability. In the 

setup of the hierarchical priors, we impose a constraint that the coupled faults cannot 

occur simultaneously. The diagnosis is made based on the first or first few fault patterns 

with the highest posterior probabilities in the system. When the size of the problem is 

large, the Metropolis-Hastings algorithm – an MCMC method – is applied to identify the 

most frequent fault patterns in the simulation.  Various numerical examples are used to 

demonstrate the diagnosis procedure, which show that the proposed diagnosis procedure 

is effective in identifying sparse fault patterns. Guidelines have been provided for the 

hyperparameters selection in the Bayesian hierarchical model. An alternative method for 

selection of some hyperparameters, the CML method, is also discussed and tested 

through examples. 
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