
Arne Linder
Rahul Kanchan
Ralph Kennel
Peter Stolze

Cuvillier Verlag Göttingen 

Model-Based Predictive Control
of Electric Drives





Model-Based Predictive Control
of Electric Drives

Arne Linder
Rahul Kanchan
Ralph Kennel
Peter Stolze





Contents

Preface 1

1 Introduction 3

2 Field-oriented control 7

3 Cascade control with PI controllers 13
3.1 Current control . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Flux control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Predictive control 17
4.1 Classification based on operational principle . . . . . . . . . . . 19
4.2 Classification based on prediction horizon and control principle 23

5 Model-based predictive control 27
5.1 Functional principle . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 State space model . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Linear transfer function-based models . . . . . . . . . . 32
5.2.3 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . 35

6 Generalized Predictive Control 39
6.1 “Classical GPC” . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Mathematical derivation . . . . . . . . . . . . . . . . . . 39
6.1.2 Experimental results . . . . . . . . . . . . . . . . . . . . 48

6.2 GPC with filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.1 Mathematical derivation . . . . . . . . . . . . . . . . . . 50
6.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Cascade control with GPC controllers . . . . . . . . . . . . . . 56
6.3.1 Current control . . . . . . . . . . . . . . . . . . . . . . . 58

iii



Contents

6.3.2 Speed control . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . 60
6.3.4 Computation times . . . . . . . . . . . . . . . . . . . . . 66

7 Discrete-time machine model for current control 69
7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.2 Difference quotient . . . . . . . . . . . . . . . . . . . . . 71
7.1.3 Laplace transformation . . . . . . . . . . . . . . . . . . 72
7.1.4 Power series . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Modified machine model for GPC . . . . . . . . . . . . . . . . . 77

8 Multivariable GPC control 83
8.1 “Classical” MIMO-GPC . . . . . . . . . . . . . . . . . . . . . . 83

8.1.1 Determination of the transfer function . . . . . . . . . . 83
8.1.2 Calculation of the system matrices . . . . . . . . . . . . 85
8.1.3 Mathematical derivation . . . . . . . . . . . . . . . . . . 86
8.1.4 Consideration of the control horizon . . . . . . . . . . . 93

8.2 Consideration of disturbance inputs with GPC . . . . . . . . . 95
8.2.1 Determination of the transfer function . . . . . . . . . . 96
8.2.2 Calculation of the system matrices . . . . . . . . . . . . 96
8.2.3 Mathematical derivation . . . . . . . . . . . . . . . . . . 97
8.2.4 Consideration of the control horizon . . . . . . . . . . . 103

8.3 MIMO-GPC with filter . . . . . . . . . . . . . . . . . . . . . . . 104
8.3.1 Determination of the transfer function . . . . . . . . . . 105
8.3.2 Calculation of the system matrices . . . . . . . . . . . . 105
8.3.3 Mathematical derivation . . . . . . . . . . . . . . . . . . 105
8.3.4 Consideration of the control horizon . . . . . . . . . . . 114

8.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4.1 Current control . . . . . . . . . . . . . . . . . . . . . . . 115
8.4.2 Computation times . . . . . . . . . . . . . . . . . . . . . 116

8.5 Comparative summary . . . . . . . . . . . . . . . . . . . . . . . 118

9 Direct model-based predictive control 121
9.1 Published techniques . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2 Inverter operation with DMPC . . . . . . . . . . . . . . . . . . 125

9.2.1 Consideration of the Bootstrap circuit . . . . . . . . . . 127
9.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . 128

iv



Contents

9.3.1 Simple machine model . . . . . . . . . . . . . . . . . . . 131
9.4 Implicit solution . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.4.1 Solving algorithms . . . . . . . . . . . . . . . . . . . . . 134
9.4.2 Mathematical derivation . . . . . . . . . . . . . . . . . . 138
9.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . 138
9.4.4 Computation times . . . . . . . . . . . . . . . . . . . . . 141

9.5 Explicit solution . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.5.1 Standard algorithm . . . . . . . . . . . . . . . . . . . . . 152
9.5.2 Minimum-Time Controller . . . . . . . . . . . . . . . . . 152
9.5.3 Binary search tree . . . . . . . . . . . . . . . . . . . . . 154
9.5.4 Optimal complexity reduction . . . . . . . . . . . . . . . 158
9.5.5 Experimental results . . . . . . . . . . . . . . . . . . . . 162

10 Related control structures 171
10.1 Internal Model Control . . . . . . . . . . . . . . . . . . . . . . . 171
10.2 Linear Quadratic Control . . . . . . . . . . . . . . . . . . . . . 173

10.2.1 Functional principle of LQR . . . . . . . . . . . . . . . . 174
10.2.2 GPC and LQR . . . . . . . . . . . . . . . . . . . . . . . 176

11 Summary and future prospects 179

Bibliography 183

A Glossary polynomial matrices 195

B Nomenclature 203

C Normalization values 215

D Physical machine constants 217

E Polynomials and matrices for GPC 219
E.1 SISO system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
E.2 MIMO system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 221
E.2.2 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 230

F Methods for matrix inversion 231
F.1 Gauss algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 231
F.2 Gauss-Jordan algorithm . . . . . . . . . . . . . . . . . . . . . . 231

v



Contents

F.3 Exchange algorithm . . . . . . . . . . . . . . . . . . . . . . . . 232
F.4 LR decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 232
F.5 Algorithm of Cholesky . . . . . . . . . . . . . . . . . . . . . . . 232
F.6 Computation times . . . . . . . . . . . . . . . . . . . . . . . . . 232

G Alternative method for matrix decomposition 235

Index 237

vi



List of Figures

1.1 Typical structure of a cascade controller . . . . . . . . . . . . . 5

2.1 Three-phase system and alternative two-phase system . . . . . 8
2.2 Complex machine model . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Scalar machine model (field coordinates) . . . . . . . . . . . . . 10
2.4 Rotor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Field-oriented drive control with PI controllers . . . . . . . . . 14
3.2 Simplified model for current control (field coordinates) . . . . . 14
3.3 Current control loop with PI controller . . . . . . . . . . . . . . 15
3.4 Speed control loop with PI controller . . . . . . . . . . . . . . . 15

4.1 Typical structure of a predictive controller . . . . . . . . . . . . 18
4.2 Hysteresis-based predictive controller acc. to Holtz/Stadtfeld [55] 20
4.3 Trajectory-based predictive controller acc. to Mutschler [90] . . 21
4.4 Family tree of predictive control schemes . . . . . . . . . . . . . 24

5.1 Typical structure of an MPC controller . . . . . . . . . . . . . 29
5.2 Definition of the control and prediction horizon . . . . . . . . . 30
5.3 Structure of a Hammerstein model . . . . . . . . . . . . . . . . 36
5.4 Structure of a Wiener model . . . . . . . . . . . . . . . . . . . . 37

6.1 Discrete-time transfer function . . . . . . . . . . . . . . . . . . 40
6.2 Structure of a GPC controller without filter . . . . . . . . . . . 49
6.3 Structure of a GPC controller with filter . . . . . . . . . . . . . 50
6.4 Simulation: Reference action without noise disturbances . . . . 56
6.5 Simulation: Reference action with noise disturbances . . . . . . 57
6.6 Field-oriented drive control with GPC controllers . . . . . . . . 58
6.7 Current control loop with GPC controller . . . . . . . . . . . . 58
6.8 Speed control loop with GPC controller . . . . . . . . . . . . . 59
6.9 Current control: Large-signal behavior . . . . . . . . . . . . . . 61
6.10 Current control: Small-signal behavior . . . . . . . . . . . . . . 62

vii



List of Figures

6.11 Current control: Large-signal behavior at ω = 0.4 . . . . . . . . 64
6.12 Speed control: Small-signal behavior . . . . . . . . . . . . . . . 65
6.13 Speed control: Small-signal behavior, zoomed time scale . . . . 67

7.1 Prediction with a step change in the reference variable isq . . . 76
7.2 Prediction with a step change in the reference variable isd . . . 78

8.1 Multidimensional current control . . . . . . . . . . . . . . . . . 117

9.1 Two-level inverter circuit with DC link . . . . . . . . . . . . . . 122
9.2 Principle of a machine control . . . . . . . . . . . . . . . . . . . 123
9.3 Possible switching states of a two-level inverter . . . . . . . . . 126
9.4 Scalar machine model (stator coordinates) . . . . . . . . . . . . 129
9.5 Simplified model for current control (stator coordinates) . . . . 131
9.6 Simplified model for current control (bridge switching states) . 131
9.7 Current control with DMPC controller, stationary operation . . 140
9.8 Current control with DMPC controller, dynamic operation . . . 141
9.9 Explicit solution for three half bridges . . . . . . . . . . . . . . 147
9.10 Trajectories of the explicit solution . . . . . . . . . . . . . . . . 147
9.11 Functional principle of the search tree . . . . . . . . . . . . . . 157
9.12 Current control with explicit DMPC and PI controller . . . . . 168

10.1 IMC structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.2 IMC structure transformed to the classical controller structure 173
10.3 Structure of LQ control (w = 0, see text) . . . . . . . . . . . . 176

viii



List of Tables

4.1 Classification of predictive control algorithms . . . . . . . . . . 26

6.1 Parameter settings for the GPC current controller . . . . . . . 60
6.2 Parameter settings for a GPC speed controller . . . . . . . . . 64
6.3 Comparison of computation times for PI and GPC controller . 67

8.1 Comparison of different MIMO-GPC variations . . . . . . . . . 118

9.1 Possible switching states of a two-level inverter . . . . . . . . . 126
9.2 Computation times for a DMPC controller . . . . . . . . . . . . 142
9.3 Calculation times for MIMO current controllers . . . . . . . . . 163

F.1 Calculation times for matrix inversion in µs . . . . . . . . . . . 233

ix



List of Tables

x



Preface

This book is a translation of the PhD thesis submitted by Arne Linder to the
Department of Electrical, Information and Printing Technology at Wuppertal
University in 2005. Dr. Arne Linder showed in his outstanding work for the
first time that in general model-based predictive control of electrical drives, even
with prediction horizons greater than one sampling cycle is possible, despite the
high sampling rates which are necessary in drive control.

The presented work shall give a general overview about the predictive con-
trol methods used so far in drive control as well as a classification of them.
Furthermore, a family tree of predictive control methods in drive technology
is presented which also shows relations between them, derivations and further
development of certain methods. Generalized Predictive Control (GPC) is also
introduced, first the two PI current controllers in a field-oriented control scheme
of an induction machine are replaced by two single GPC controllers and their
results are then compared to the ones of classical PI controllers. In a next step
the speed controller is replaced by a GPC contoller. Different types of models,
methods for handling nonlinearities and model discretization are also discussed
in this work. The ability of GPC to provide multivariable control is exam-
ined, using one single controller for both flux- and torque-producing currents.
Moreover, possibilities for a direct inverter control method which makes the
modulator needless are presented as well: The chances of this approach, prob-
lems but also possible remedies are discussed in detail. As a conclusion further
control methods which are partly considered to be predictive are discussed.
The sections contain not only simulation, but also experimental results which
clearly prove the applicability of the presented control methods for electrical
drives.

I would like to thank Dr. Rahul Kanchan, Dipl.-Ing. Peter Stolze and Dipl.-
Ing. (syr.) Nael Al Sheakh Ameen for the translation of this work. M.Sc. Ju-
an Carlos Ramirez Mart́ınez, M.Sc. Bahaa Galal and M.A. Johanna Schmidt
helped to finalize this work by proofreading the English translation.

Munich, June 2010 Ralph Kennel
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1 Introduction

In industry, variable speed electrical drives are applied to various applications;
their power bandwidth differs from a few watts for small servo-motors up to
several hundreds of kilowatts for traction applications. For decades, the DC
series motor was the mostly used drive motor because of its simple speed con-
trollability; for smaller power demands, permanent-magnet DC machines were
also used. Nevertheless, the disadvantage associated with these machines is
the wear-associated commutator which leads to a rise in maintenance expenses
and also to a raised soiling of the machine by brush abrasion. At the same
time, a complete encapsulation of all electrical components is relatively com-
plex due to the construction. Rotating field AC machines are known since the
initial times of electrical machines, however, they were rarely used as the speed
of these machines changes with the frequency of the supplying grid. Conse-
quently, machines of this kind were only used where this feature was required,
e. g. as generators in power stations, or, e. g., for fans where speed adjustment
is unnecessary.

Along with the advances of semiconductor technology, the possibilities to
make AC machines in a simple way speed variable increased. Therefore, the
supply voltage is rectified into a so-called DC link, from where a three-phase
voltage with variable frequency can be generated with the help of an inverter.
Herewith, the task to operate the machine with any speed was solved, however,
a dynamic control similar to DC machines was not possible. This was due to
the fact that the separate control of field flux and torque was not available.
This problem was solved with the introduction of the so-called field-oriented
control (see chapter 2) about 30 years ago.

Since this time, field-oriented control for synchronous as well as for asyn-
chronous machines is state-of-the-art; thereby, PI controllers are used in a
cascaded structure (see chapter 3). Undesirable side effects and nonlineari-
ties of the machine are tackled with precontrols or feedforward compensation
techniques in such a way that the quality of the achieved control meets the
requirements of all drive applications existing so far.

Now the question rises why new control techniques should be examined if the
control techniques available today can fulfill all known requirements until now.

3



1 Introduction

This shall be explained on the basis of the classical structure of a controlled
electrical drive. As shown in figure 1.1 a position control scheme consists of a
threefold cascaded control structure. The external control loops consist of an
integrator which describes the behavior of the system’s inertia and the gearbox,
respectively, and the next inner control loop. When designing such a cascaded
structure normally at first the inner loop is approximated by a PT1-block and
then the controller parameters are determined according to the so-called sym-
metrical optimum. However, good control properties can only be achieved if
the time constants of the inner control loop and the subsequent external con-
trol loop differ by a factor of at least 7–10 [38]. Consequently, for a position
control scheme, the current controller must be about 50–100 times faster than
the position control loop. It can be foreseen that, sooner or later, the dynam-
ics which can be achieved with a cascade structure are no longer suitable for
highly dynamic drive applications as a sufficiently fast current controller is not
feasible. As the need for an ultra fast current control loop arises solely from
the cascaded structure itself, the desired fast dynamics in the position or speed
control loop could be achieved with other control structures, even if the com-
putation time of the control process is significantly higher than with cascaded
control. Hence, it can be seen that, in the medium term, linear controllers in
cascaded structure can no longer meet the growing requirements for the dy-
namics of electrical drives. Predictive or precalculating controllers which need
no cascaded control offer an alternative. Chapter 4 explains the basic principle
of such a control strategy.

All control strategies published so far in the domain of drive technology pre-
calculate the control behavior only for the next sampling cycle. Correspond-
ingly, the optimization of the actuating variable can only be done for this single
precalculated sampling cycle. However, from classic control theory, strategies
are known which allow a higher prediction horizon and are therefore called
Long-Range Predictive Control . Since they use a model of the controlled pro-
cess for the prediction, they are also called model predictive controllers (MPC)
or model-based predictive controllers. These strategies are discussed in de-
tail in chapter 5. Due to the longer prediction horizon, these strategies are
relatively complex in their calculations in comparison to ordinary linear con-
trollers; hence, their implementation in drive technology was not possible yet.
Nevertheless, the availability of faster microprocessors and computing devices
is increasing continuously and at the same time their price is continuously de-
creasing. So the argument of too high computational expenses has already lost
much of its relevance and will lose even more of it in the future. Hence, the
implementation of even complex model-based strategies can be expected to be

4
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Figure 1.1: Typical structure of a cascade controller

realized in some years. In the chapters 6–9 different MPC strategies are intro-
duced and their advantages and disadvantages are explained with respect to
their implementation in drive technology.
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2 Field-oriented control

In drive applications a DC machine has the great advantage that it has separate
field and armature windings. Thus both of its most important states, namely
flux and torque, can be controlled independently of each other by the field
winding current and by the armature current, respectively. The commutator
acting as a mechanical converter makes sure that the current distribution of the
rotor is always positioned properly, so that the rotor current and the main flux
are always in quadrature to each other. Asynchronous machines, on the other
hand, which offer great advantages because of their maintenance free operation,
have only one active winding, the stator winding. The rotor winding is either
short circuited (squirrel-cage motor) or connected with variable resistors (slip
ring rotor). Consequently, both flux and torque in the machine have to be raised
via the stator windings. Splitting the control structure in a simple way into
flux and torque control is not possible. However, for high drive performance,
both states must be controlled independently of each other [57].

A remedy for solving this problem is the use of the so-called field-oriented
control [79], which can be described with the help of space vector representa-
tion [70]. The basic idea behind this representation is that the three-phase
current system can be represented by a three-axis coordinate system as shown
in figure 2.1(a). Unfortunately, the three axes a, b and c are not linearly inde-
pendent of each other, a fact that complicates a mathematical description of
the actions in a three-phase system. Hence, an alternative two-phase system
with two axes linearly independent of each other is constructed. Figure 2.1(b)
shows this equivalent system. To obtain an easy representation of the two
phase quantities, usually a complex coordinate system is selected. Thus, the
corresponding quantities from one coordinate system, e. g. the stator voltage
quantities, can be transformed into another coordinate system with the help of
the transformation equations (2.1) to (2.4).

us = 2
3

`
usa + a · usb + a2 · usc

´
in which a = ej 2π

3 (2.1)

u0 = 1
3

(usa + usb + usc) (2.2)

usα = Re{us} = 2
3

`
usa − 1

2
usb − 1

2
usc

´
(2.3)
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2 Field-oriented control

usβ = Im{us} = 1√
3

(usb − usc) (2.4)

usa

usc

usb
a

b

c
(a)

usα

usβ

Re

Im

(b)

Figure 2.1: Three-phase system and alternative two-phase system

The idea of field-oriented control is based on the fact that the three stator
currents isa, isb and isc in the three stator windings are first transformed into
a complex state space vector is. Therefore, a transformation analog to (2.1) is
used for the stator currents. Then, an induction machine can be described in
an arbitrary reference coordinate system, rotating with ωk, with the following
equations [70,71]:

us = rs · is +
dψs

dτ
+ jωkψs (2.5)

0 = rr · ir +
dψr

dτ
+ j(ωk − ω)ψr (2.6)

ψs = ls · is + lh · ir (2.7)

ψr = lr · ir + lh · is (2.8)

For current control, as it is implemented in the internal loop of a cascade con-
trol structure, it is an adequate solution to choose is und ψr as state variables.
After reformulating according to [56, 57], the following differential equations
can be obtained:

is + τσ
′ dis
dτ

= −jωkτσ
′is +

kr

rσ

„
1

τr
− jω

«
ψr +

1

rσ
us (2.9)

ψr + τr
dψr

dτ
= −j(ωk − ω)τrψr + lh · is (2.10)

in which τs = ls
rs
, τr = lr

rr
, σ = 1 − lh

2

lslr
, ls

′ = σls, lr
′ = σlr, kr = lh

lr
, ks = lh

ls
,

τs
′ = σls

rs
, τr

′ = σlr
rr

, rσ = rs + rr · kr
2 and τσ

′ = σls
rσ

. Figure 2.2 shows the
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corresponding signal flow graph. In this work, double lines represent complex
values.

isus
ψr

ωk
ωr

ω

rσ
1

jτσ' jτr

kr rστr

τσ' lh τr

Figure 2.2: Complex machine model

Now a coordinate system rotating with the speed of the rotating field is
selected as the base coordinate system with the real axis aligned in the direction
of the field. With the help of this new coordinate system the stator current
space vector is can be divided into a torque-producing component isq and
into a flux-producing component isd. As both of these current components
can be controlled independently of each other, dynamic control similar to a
shunt-wound DC machine can be achieved. If the complex equations (2.9)
and (2.10) are divided into their real and imaginary parts, four scalar equations
which describe the dynamic behavior of the induction machine can be obtained.
Because of field orientation ωk = ωs is set; for the same reason ψrq = 0 is set.
The appropriate signal flow graph can be seen in figure 2.3.

isd + τσ
′ disd

dτ
= ωsτσ

′isq +
kr

rστr
ψrd +

1

rσ
usd (2.11)

isq + τσ
′ disq

dτ
= −ωsτσ

′isd −
kr

rσ
ωψrd +

1

rσ
usq (2.12)

ψrd + τr
dψrd

dτ
= lhisd (2.13)

0 = −(ωs − ω)τrψrd + lhisq (2.14)

Equation (2.14) is of no significance for the control and hence, it is not con-
sidered for further analysis. However, it describes the condition for field ori-

9



2 Field-oriented control

entation, i. e. the position angle of the field coordinate system with respect to
the fixed stator coordinate frame can be determined with it. Therefore equa-
tion (2.14) is resolved for the slip or rotor frequency1 ωr = ωs − ω and after
doing this, the following equation can be obtained:

ωr = (ωs − ω) =
lhisq

τrψrd
(2.15)

The value of ψrd required for the calculation of the above relationship can be
obtained from the differential equation (2.13). By adding the calculated slip
speed ωr to the mechanical rotating speed ω of the rotor, the stator speed ωs

results. The integration of ωs provides the field angle δ. The overall signal flow
graph of the induction machine can be seen in figure 2.4.

usd

ωs

ω

isd ψrd

usq isq

rσ
krrσ

1

rσ
1

τσ'

τσ'

lhτσ'

τσ'

τr

τr

1

Figure 2.3: Scalar machine model (field coordinates)

1 The rotor frequency is not the mechanical rotating frequency but the frequency of the
currents flowing in the rotor.
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lh
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(F)

d q
τr τm

ωr

ω

ωs δ

τr

ψrd

Figure 2.4: Rotor model
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3 Cascade control with PI controllers

Before investigating in predictive control of induction machines, it is meaningful
to create a basic control scheme for comparisons first. Therefore, field-oriented
control of an induction machine with conventional PI controllers for current
and speed is realized in a cascaded structure.

Conventional PI controllers can only control one actuating variable with the
help of one reference variable. Controllers of this type are called SISO (sin-
gle input, single output) controllers. In contrast to this, there are controller
structures which can control several actuating variables at the same time; these
are called MIMO (multiple input, multiple output) controllers or multidimen-
sional controllers. Thus, if in an electrical drive the current as well as the
speed has to be controlled with PI controllers, the control structure must be
implemented as a cascaded control. Figure 3.1 shows the typical structure of
field-oriented control with cascaded PI controllers. The internal control loop is
formed by both current controllers for the field- and for the torque-producing
stator current components. In order to improve the clarity of the signal flow
graph both current controllers are represented by one single complex variable
current controller. The speed and flux control loops are superordinated.

3.1 Current control

For the realization of the current control, at first the stator equations (2.11)
and (2.12) are considered. Since current control has to be implemented with
simple PI controllers, it makes sense to neglect the effect of the flux ψrd on
the currents as well as to neglect the cross coupling between the two current
components in equation (2.9). Figure 3.2 shows the resulting structure. The
actual parameters of the induction machine used for the investigations in this
book are given in appendix D.

Apart from the time constants of the stators windings, the dead time of the
inverter must be taken into consideration while designing the PI controller; it
is approximated with another PT1-block with the time constant τtot = 1.5 τ0.
The complete control loop for the flux-producing current component can be
seen in figure 3.3. Since both current control loops for the field- and for the
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3 Cascade control with PI controllers
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Figure 3.1: Field-oriented drive control with PI controllers
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Figure 3.2: Simplified model for current control (field coordinates)
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3.2 Speed control

torque-producing current components are identical, the signal flow graph for
the control of isq is the same as the one for isd. The two effective time constants
τtot and τσ

′ differ from each other by a factor of about 50, thus the controller
has to be designed according to the symmetric optimum [38].

isdusd

rσ
1

τσ'
usd

∗isd

∗
V Ti i,

τtot

Figure 3.3: Current control loop with PI controller

3.2 Speed control

The design of the outer speed control loop requires the approximation of the
behavior of the internal current control loop with a first order transfer function.
Thereby, the time constant τ∗ describes the dynamics of the complete inner
current control loop. The mechanical time constant of the experiment setup
can be determined experimentally. Since the speed feedback signal bounces
in discrete steps if a low resolution incremental encoder with relative high
quantization error is used, it must be smoothed with a low-pass filter in the
feedback path; this is achieved with the use of a simple first order transfer
function element. Figure 3.4 shows the complete speed control loop. Since it
is a control system with a first order transfer function and an integrator, the
symmetrical optimum has to be applied here, too.

ωisqisq

∗
ω∗

V T,ω ω

τ∗ τm

τf

Figure 3.4: Speed control loop with PI controller

15



3 Cascade control with PI controllers

3.3 Flux control

Instead of an explicit flux control loop, a steady reference value for the flux-
producing component of the stator current isd used. By setting isd

∗ = 0.33,
it can be assumed that, as a first approximation, the machine is constantly
excited with nominal flux.

3.4 Experimental results

Experimental results of the cascaded PI controllers in comparison with GPC
control are presented in chapter 6.3.3 on page 60 et seqq. for current control and
on page 63 et seqq. for speed control, respectively. Further results are shown
in chapter 9.5.5 on page 162 et seqq. where the PI controller is compared to
direct model-based predictive control with explicit solution of the optimization
problem.
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4 Predictive control

The linear PID-controllers used in electric drive technology in the beginning
were mostly built with analog operational amplifiers and used the control de-
viation in order to generate an actuating signal. A controller of this type does
not posses any knowledge about the plant itself, knowledge about the plant
is only required for the controller design. With the availability of inexpen-
sive microcomputers and digital control techniques in drive technology which
were developed therefore, the idea to precalculate the plant’s behavior via a
mathematic model and to determine optimum values for the actuating vari-
ables from these precalculated values was born. It was the birth of predictive
or precalculating control.

The first ideas for predictive control methods have been published in the
1960s by Emeljanov [35]. After a rather quiet period in the next decade many
predictive control algorithms, which are fundamental for drive technology, like
Direct Torque Control (DTC) [1, 113] or Predictive Current Control [55] were
developed in the 1980s. Further publications concerned the control of the arma-
ture current of DC drives with the help of line-commutated converters [54,65];
however, this field of research has lost more and more of its significance. Af-
ter 1990 further publications about predictive drive control appeared; some of
them, like [100], show extensions and improvements of known control methods,
while other authors, e. g. [37,118], published completely new control strategies.
But at the end, in most cases, these methods turned out to be only further en-
hancements or combinations of already published fundamental predictive con-
trol strategies. Hence, it makes sense to point out the basic functional and
fundamental principles of predictive control strategies first.

As already explained in chapter 1, linear PI controllers in cascaded structure
which are used in drive control applications, have some basic disadvantages.
With predictive control, it is possible to abandon the cascaded loop since in
a predictive controller all control variables can be controlled simultaneously in
one single controller.

Figure 4.1 shows the typical structure of a predictive controller; as example,
a position control of an electric drive is chosen. The measured state variables,
namely the machine current I, the rotating speed ω and the position angle ϕ are
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4 Predictive control

processed simultaneously in a model of the drive. With the help of this model,
exact information of the current system state can be obtained, which is then
transferred into a block called “prediction and calculation”. This functional
block can be regarded as the heart of a predictive control system; it determines
an optimum value for the actuating variable by comparing the current machine
state with the desired behavior, i. e. the reference value. By applying this ac-
tuating value to the plant via the actuator, the control loop is closed. The
calculation of the optimum value for the actuating variable in the block “pre-
diction and calculation” is done depending on the desired optimum condition,
such as minimum current error, minimum current distortion or similar things.
An evaluation of the efforts for changing the values of the actuating variables
can be done, too.

prediction/
calculation

control
variable

actual

power
electronics

motor
windings

inertia gear etc.

machine and
power electronics

modelmachine state

I
ω

ϕ

ϕ∗

Figure 4.1: Typical structure of a predictive controller

The basic principle described above is common to all predictive control strate-
gies; the only differences are in the functionality of the block “prediction and
calculation”. Because of these differences in prediction and optimization, pre-
dictive algorithms can be classified according to different criteria, namely

• the basic functional principle

• the prediction horizon

• the inverter control

If the predictive controllers published so far are classified according to the above
criteria, it can be seen that they can further be classified into different families
with typical characteristics.
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4.1 Classification based on operational principle

4.1 Classification based on operational principle

Considering the functional principles of the different predictive control algo-
rithms, it can be seen that these can be classified into three main groups. A
decision can be made between hysteresis-based , trajectory-based and model-
based strategies. Indeed, these families are not clearly separated from each
other and sometimes the transition between them is rather floating.

Hysteresis-based predictive controllers

The basic principle of hysteresis-based control strategies is to keep the value
of the controlled variable within a tolerance band or a tolerance area, the so-
called hysteresis. The most simple form of such a controller is the well known
hysteresis or bang-bang controller. Although in literature bang-bang controllers
are not considered to be predictive controllers they do, however, clearly show
their typical behavior.

An improved form of a multidimensional bang-bang controller is the predic-
tive current control scheme proposed by Holtz and Stadtfeld [55]. Using this
controller, the switching instants are determined by the limits of the tolerance
band.

Figure 4.2 shows the functional principle; in this case a circular hysteresis
boundary is chosen, whose position in the stator coordinate system is given by
the stator current reference vector is

∗. If the actual value of the stator current is
reaches the border of the hysteresis area, the next switching state of the inverter
is selected via prediction and optimization: At first, the future trajectories of
the stator current vector are precalculated for all possible switching states and
the time instant at which the actual current will leave the tolerance band is
determined. The basis for these calculations are the well-known mathematical
differential equations of electric machines. Besides, it shall be noted that the
circular tolerance region itself moves along with the stator current space vector
within the complex plane. This movement is indicated with the dotted circle
in figure 4.2.

Now the switching state vector which possesses the longest stay-time within
the hysteresis is selected. With this optimization criterion, the switching fre-
quency of the inverter is minimized; of course other optimization criteria are
also possible, e. g. minimum current distortion or minimum torque ripple.

Hysteresis-based strategies have the advantage that precise knowledge about
the system to be controlled is not required. Even with possible model diver-
gences the control error can be kept within the specified limit band by the

19



4 Predictive control

hysteresis controller. To achieve this, it must always be ensured that the hys-
teresis controller reacts very quickly if the actual value has gone outside of the
hysteresis band. This is a major problem if the hysteresis-based predictive con-
troller is implemented in a digital processor, as the detection of the reference
signal crossing the hysteresis band will be done only during the next sampling
instant. It may happen that the error has, at this time, already grown to a
large value. Hence, hysteresis-based predictive control is more suitable when
the realization is done using analog operational amplifiers rather than micro-
controllers.

0
Re

Im

dt
din

is

is
*

ωs

Figure 4.2: Hysteresis-based predictive controller acc. to Holtz/Stadtfeld [55]

Trajectory-based predictive controllers

Trajectory-based control methods are based on the principle to force the system
onto precalculated system trajectories. Once the system has been pushed onto
one of these trajectories, it remains there because of its own properties until a
change is enforced from outside.

The first trajectory-based predictive control scheme has already been pub-
lished in 1984 by Kennel [65], at that time, however, being a control strat-
egy for a line-commutated thyristor converter. Some time later, well-known
control schemes like Direct Self Control (DSC) by Depenbrock [33] or Di-
rect Mean Torque Control (DMTC) by Flach [37] for the control of induc-
tion machines were published. Some more schemes, like Sliding Mode Con-

20



4.1 Classification based on operational principle

trol [35] or Direct Torque Control (DTC) [1,113] are a combination of hysteresis
based and trajectory-based schemes, whereas Direct Speed Control (DSPC) by
Mutschler [90] can be regarded as a pure trajectory-based control scheme even
if some hysteresis based aspects are included in it. In the following, DSPC will
be explained as an example of trajectory-based predictive control.

Similar to the schemes of Depenbrock [33] and Takahashi/Noguchi [1,113] the
switching states of the inverter are classified into the groups“torque-increasing”,
“slowly torque-decreasing” and “quickly torque-decreasing”. For short time in-
tervals, the inertia of the system as well as the derivatives of the load torque and
the machine torque can be assumed to be constant values. Then the system be-
havior can be represented by a set of parabolas in the speed error/acceleration
plane (figure 4.3). These parabolas are also natural trajectories of the system.

e= – *ω ω

+Hy–Hy
Sk

Sk+1

Sk+2

a = ω

e
a

k

k

+2

+2[ ]

e
a

k

k

+3

+3[ ]
e
a

k

k

+1

+1[ ]

e
a

k

k[ ]

Figure 4.3: Trajectory-based predictive controller acc. to Mutschler [90]

As proposed in the DSPC scheme according to Mutschler [90], the initial
system state is assumed to be at the point [ek ak]T . The desired operating
point is always the origin of the coordinate system, i. e. there is no control
error (e = 0) and the acceleration is zero (a = 0). The system cannot be held
in this condition for long time since this would require an infinite switching
frequency. Hence, a kind of hysteresis band between −Hy and +Hy is defined;
this is described above as the hysteresis-based aspect inside DSPC. In this
way, the maximum switching frequency can be reduced to an acceptable value.
Apart from that this strategy is purely a trajectory-based scheme. To reach
the predefined hysteresis area, at first, a torque increasing switching state Sk

is chosen. Now the system state moves along the dotted parabola (trajectory)
until [ek+1 ak+1]

T is reached. In this point the trajectory of the switching
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4 Predictive control

state Sk crosses another parabola for a torque-decreasing switching state Sk+1,
which will pass through the point +Hy. The intersection point between Sk

and Sk+1 in [ek+1 ak+1]
T has been determined as the optimum switching

instant in advance. Hence, at the correct time instant, switching can take place
without any delay and therefore the desired state point +Hy can be reached
as fast as possible. Exactly in the precalculated time instant, the inverter is
commutated into switching state Sk+1. The system state now moves along
the new parabola until the point [ek+2 ak+2]

T is reached. At this point a
torque-increasing switching state Sk+2 is chosen; the system state now moves
along the corresponding trajectory through −Hy until it reaches the parabola
of the switching state Sk+1, again at the point [ek+3 ak+3]

T . In steady state
operation, the system state keeps moving along the path +Hy – [ek+2 ak+2]

T –
−Hy – [ek+3 ak+3]

T – +Hy and the speed error e is kept within the predefined
tolerance band −Hy to +Hy.

Trajectory-based predictive control is based on a very precise prediction of
the future control system behavior. Hence, in contrast to hysteresis controllers,
controllers of this type require an exact model of the system to be controlled.
Because of the quite complex precalculation of the system trajectories, these
methods are better suited for implementations in the form of digital controllers
on microprocessors.

Model-based predictive controllers

Both hysteresis as well as trajectory-based predictive controllers use the cur-
rent system state to precalculate the value of the controlled variable for the
next sampling cycle. The past is not explicitly taken into consideration as it is
hidden in the actual system state. Although there is a relationship between hys-
teresis and trajectory-based predictive control algorithms, model-based strate-
gies (model predictive Control, MPC) are based on completely different ideas.
Model-based predictive control methods are able to consider the past and to
optimize future values of the actuating variables, not only for the next sampling
cycle, but up to a specified future cost or control horizon. Comparing the struc-
ture of model-based predictive controllers, it can be seen that they are more
like state controllers or Kalman filters rather than the predictive controllers
described above.

A more detailed description of model-based predictive controllers is given in
chapter 5; thus, it can be omitted at this point.
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4.2 Classification based on prediction horizon and control principle

Family tree

If the predictive control schemes published so far are classified into the tree
families mentioned above according to their functional characteristics, a family
tree of predictive control strategies can be designed. As shown in figure 4.4 the
hysteresis and trajectory-based control schemes are closely related with each
other. However, model-based predictive control is based on totally different
ideas and thus it forms a class that is independent from the other ones. Since
MPC strategies do not differ very much from each other, not all of them are
included in the family tree.

4.2 Classification based on prediction horizon and control
principle

Another classification method for predictive control algorithms is based on two
other criteria. The first distinctive feature is the depth of the precalculation,
which is referred to as prediction horizon; another partition can be made accord-
ing to the type of inverter control, the control principle: While some predictive
controllers immediately calculate optimum inverter switching states, i. e. they
control the inverter directly. Other strategies determine a value-continuous
control signal which must be synthesized by a modulator before it is passed
on to the inverter. Some predictive control methods and their classification in
the different families according to the above differentiation criteria are given in
table 4.1.

Most of the control schemes which have been investigated in drive technology
so far have a prediction horizon of only one single sampling cycle. Well known
examples with modulator are e. g. Direct Current Control of Induction Motor
Currents by Mayer/Pfaff [87] or Direct Flux Control proposed by Asher et
al. [7]. Nevertheless, the biggest part of the one-step predictive controllers
belongs to the group of the prediction schemes with direct inverter control,
among them such prominent ones like Direct Torque Control [1, 113] and its
derivatives as well as Direct Self Control [33] and Direct Speed Control [90].

Predictive control strategies with a prediction horizon of more than one single
sampling cycle are exclusively model-based predictive controllers. Thus, they
are also referred to as Long-Range Predictive Control , abbreviated as LRPC.
The only scheme of this kind used for drive control so far is Generalized Predic-
tive Control [27,28]. Its suitability for drive applications has been investigated
by Kennel, Linder and Linke in 2001; the results have been published in [66].
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Figure 4.4: Family tree of predictive control schemes
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4.2 Classification based on prediction horizon and control principle
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4 Predictive control

control principle

with modulator direct

p
re

d
ic

ti
o
n

h
o
ri

zo
n

1

Direct Control of IM
Currents
Direct Flux Control

Direct Torque Control
Direct Self Control
Direct Speed Control

> 1

Generalized Predictive
Control

Direct Model Predictive
Control

Table 4.1: Classification of predictive control algorithms

Predictive control schemes with a prediction horizon of more than one sam-
pling cycle and with direct inverter control have not been used for drive control
so far. This can, to some extent, be justified by the fact that the whole topic
of hybrid systems, which is closely related to these control strategies, is a quite
new field of research. Chapter 9 deals with the application of such a direct
model-based predictive control to an electric drive.
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5 Model-based predictive control

The principle of model-based predictive control or model predictive control—
abbreviated MPC—was introduced for industrial control applications in the
1970s after first ideas of this strategy have already been published in the 1960s.
Subsequently, MPC gained importance mainly in the field of chemical industry
and later on it also gained more regard in the academic area. MPC does not
denote a special control algorithm, but rather a whole family of controller types.
Common characteristic of all these controllers is the principle to determine an
optimum value for the actuating variable by using an explicit model of the
system to be controlled and by minimizing a cost function.

For a first introduction into the subject of MPC, there exist several papers
from technical journals which give an introduction or also a survey about the
different model-based control schemes. The article from Morari/Lee [88] is
recommended here in which an overview about past, present and future im-
provement possibilities of MPC are presented. To present the ideas of MPC
in an easily understandable manner, the article mainly avoids mathematical
equations. For control engineers interested in the mathematical background of
MPC, the detailed tutorial by Rawlings [102] is a good reference.

To the family of model-based predictive control belong, among other meth-
ods, schemes like Dynamic Matrix Control (DMC), Model Algorithmic Control
(MAC), Extended Horizon Adaptive Control (EHAC) and Extended Predictive
Self-Adaptive Control (EPSAC) [30]. In contrast to these control strategies,
Internal Model Control (IMC, see chapter 10.1) does not belong to the MPC
class, even though its name suggests this and even if some authors see this in
such a way, e. g. Garćıa, Prett and Morari [40]. Seborg, on the other hand,
classifies it correctly, not as a predictive, but as an “alternative scheme” [109].
A detailed comparison of different MPC strategies is presented by de Keyser
et al. [68] and Garćıa et al. [40].

As already mentioned in chapter 4, control structures belonging to the family
of model-based predictive control have totally different structures than the
predictive controllers commonly used in drive technology. Of course, these
controllers possess a similar structure, as they also use an explicit and separately
identifiable model of the controlled system for the precalculation of the system
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5 Model-based predictive control

behavior and therefore also for the selection of optimum values for the actuating
variables. But in contrast to conventional predictive controllers used in drive
control applications which precalculate the plant’s behavior only for the next
sampling cycle, MPC controllers consider the future system behavior for more
than one sampling cycle [67]. Main advantages of these controllers are:

• Multivariable structures are easily representable.

• System constraints can be handled systematically and can be considered
in the model.

• Filtering of measured variables without phase displacement can be inte-
grated without further effort.

• Automatic identification of model parameters is possible.

5.1 Functional principle

The functional principle of an MPC controller can be explained with the help
of the structure shown in figure 5.1. Its central part is the model which is used
to predict the future behavior of the system to be controlled. The prediction
consists of two components:

The free response shows the expected behavior of the system output y(t+ j)
assuming future values of the actuating variables being equal to zero.

The forced response forms the additional component of the system response
based on the precalculated set of future actuating values u(t+ j).

For linear systems, the entire future system behavior, the total response, can be
determined as the sum of the free and forced response using the superposition
principle. This sum is precalculated up to the prediction horizon Np. According
to the prediction horizon, a set of future reference values the system output
should be equal to, does also exist. The difference between future reference and
precalculated actual values delivers the future control error. An optimization
algorithm determines a set of optimum future actuating values u(t+j) from the
expected error, taking system restrictions and the cost function into account.
A simple open-loop control scheme would only apply this precalculated future
sequence of values for the actuating variables to the system. By using past
values of the output and of the actuating variables up to the past horizon,
this method changes into closed-loop control. Only the first element of the
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5.1 Functional principle

calculated state vector – u(t) – is applied to the system and afterwards the
whole procedure of prediction, optimization and controlling is again repeated
for each sampling cycle. Hence, the prediction horizon is shifted forward; this
principle is called Receding Horizon Control or RHC.

model

FIFO

+

+ –

future
references
w( )t+j future

errors
future
controls
u( )t+j

past controls
u( )t-i

y( )t-i
past output

total
response

forced
response

free
response

constraints cost function

ω

is

us

M
3~

=
~

ud

optimizer

model

Figure 5.1: Typical structure of an MPC controller

The functional principle of model-based predictive control based on Receding
Horizon Control represents a kind of “natural” predictive control, as it is very
close to human behavior. For example when driving a car, the driver does not
look immediately in front of his car, but he looks far ahead and changes the
actuating variables, e. g. the position of the steering wheel, gas pedal and brake
before he approaches for instance a red traffic light or a curve. Besides, he
precalculates the behavior of the car for a certain distance in front of him up to
a finite horizon taking future values of the actuating variables into account, he
optimizes the amount of acceleration or braking according to his optimization
criteria for this distance and acts accordingly. Like in real MPC, different opti-
mization criteria are possible, leading to different results. If the driver desires
the shortest possible duration of his trip, he will accelerate and brake more
rapidly than if a reduction of fuel consumption is an optimization criterion.

Due to the precalculation of the system behavior up to the prediction horizon,
MPC inevitably leads to a high calculation demand. The calculation complex-
ity can be significantly reduced with the introduction of a so-called control
horizon Nu. After Nu steps, it is assumed that the steady state is reached and
so the controller output remains constant. Figure 5.2 illustrates this situation.
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5 Model-based predictive control

In spite of this modification in the control scheme, still a higher mathemati-
cal effort is necessary for model-based control of a system compared to other
control algorithms. Hence, main areas of applications for MPC algorithms are,
among others, the chemical and process industry [19, 40], since the processes
to be controlled there are very well suited for MPC. The time constants of the
whole system are rather large (in the range of minutes or even higher). Hence,
calculation time is not a problem in this case.

t

reference variable w
controlled variable y
actuating variable u

t+1 t N+ u t N+ p
t+0

t−1

past future

Figure 5.2: Definition of the control and prediction horizon

In the area of electrical drives, however, much higher sampling rates are
needed. Several proposals to overcome this problem have been made [11, 18];
nevertheless, publications on practical applications of MPC strategies for drive
control are not noted except for the already mentioned investigations by Ken-
nel/Linder/Linke [66].

5.2 Models

Besides the cost function, the model which precalculates the future behavior
is one of the crucial points of an MPC scheme. Most systems to be controlled
are continuous-time systems so that the description of the system should be
made in the time or Laplace domain. In contrast to the controlled systems,
the controllers, generally realized with the help of digital computers, are often
discrete-time controllers. For the controller design, it is in most cases sufficient
to replace it by a continuous-time model, parameterize it and afterwards realize
it as a discrete-time digital controller. Nevertheless, it is more advantageous to
consider the discrete character of the controller already in the first approach of
the controller design and hence to use a discrete-time system description. This
also implies that the controlled system is described in the discrete-time domain.
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5.2 Models

A Laplace transformed transfer function cannot be used now, otherwise the
discretization is lost with it. Of course, a representation of the system in the
time domain is always possible, however, it has to be made sure that the time
t can only assume values t = kT0 with k ∈ N and T0 representing the sampling
rate.

The desired representation can be obtained if the discrete-time function
f(kT0) sampled with T0 is Laplace transformed and if then the term eT0s

in the Laplace transformed function is replaced with z. In this way, the Z-
transformed representation F (z) of the discrete-time function f(kT0) can be
obtained. Mathematically the Z-transformation can be expressed with the fol-
lowing equation

F (z) = Z {f(kT0)} =

∞X
k=0

f(kT0)z
−k with z = eT0s (5.1)

As a result, for F (z) a polynomial in z can be obtained in which the factor z−k

means a shift of k sampling cycles. The factor z−1 is also called shift operator
or backward shift operator.

From equation (5.1) follows that a Z-transformation always results in an
infinite series. However, for many functions, closed expressions for their Z-
transformed can be given using the characteristics of power series.

For the derivation of a system model in Z-domain, it is not useful to apply the
definition of the Z-transformation according to (5.1), as this will lead to very
complex mathematical expressions. Since there are transformation tables for
the typical structures given in the relevant control system handbooks and text-
books, e. g. [58], the result can normally be obtained much faster by using these
tables and by applying the mathematical rules for Z-transformed functions.

5.2.1 State space model

The most simple way to get to a discrete-time representation of a system is the
well-known state space model . A linear system can easily be represented in a
so-called state space description:

d

dt
x(t) = Ax(t) + Bu(t) (5.2)

y(t) = Cx(t) + Du(t) (5.3)

In the above equations A is called the state matrix , B the input matrix , C
the output matrix and D the feedforward matrix [108], whereas the vectors
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5 Model-based predictive control

x(t), u(t) and y(t) are representing the state, input and output vector . The
equations (5.2) and (5.3) are called state equation and output equation, respec-
tively [84].

As the model-based control schemes are based on a discrete-time system
model, the above equations have to be transformed into a discrete-time repre-
sentation1:

x(k + 1) = Adx(k) + Bdu(k) (5.4)

y(k) = Cdx(k) + Ddu(k) (5.5)

Several strategies to transform the system equations from continuous-time into
discrete-time representation will be discussed in chapter 7.

5.2.2 Linear transfer function-based models

For time variable or unknown system parameters an adaptive system model
is necessary, whose model parameters can be estimated in a relatively simple
way online and which can be updated in real time. State space-based system
models are less suitable for such purposes; therefore it is recommendable to use
a model which is based on the transfer function of the system to be controlled.
For this intended objective, the following model structures have turned out
to be especially advantageous. For simplicity all the models in this chapter
are presented as SISO models. Nevertheless, an extension to multidimensional
MIMO systems is easily possible; a suitable approach is explained in chapter 8
for the CARIMA model.

A survey about the different linear discrete-time models with which the de-
velopment of an adaptive MPC controller is possible is given in the following.
This overview is taken from the book by Kanjilal [62, chapter 2.4].

AR

The AutoRegressive model , abbreviated AR, can be expressed as follows:

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ anay(t− na) = ξ(t)

or briefly

A(z−1)y(t) = ξ(t)

1 For an easier differentiation between matrices in continuous-time representation and ma-
trices in discrete-time form the matrices in discrete-time representation are marked with
the index d.
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5.2 Models

in which

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

The function ξ(t) represents the noise or disturbance which is affecting the
system. If the noise term cannot be expressed deterministically, white or colored
noise is often used for ξ(t).

IAR

The Integrated AutoRegressive model or IAR is an extension of the AR model
with an integrated noise term:

A(z−1)y(t) =
ξ(t)

∆

in which

∆ = 1− z−1

therefore

∆y(t) + a1∆y(t− 1) + a2∆y(t− 2) + · · ·+ ana∆y(t− na) = ξ(t)

ARMA

With the ARMA or AutoRegressive Moving Average model, the noise is repre-
sented with an extended term:

A(z−1)y(t) = C(z−1)ξ(t)

in which

C(z−1) = 1 + c1z
−1 + c2z

−2 + · · ·+ cncz
−nc

In detail this can be written as:

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ anay(t− na)

= ξ(t) + c1ξ(t− 1) + c2ξ(t− 2) + · · ·+ cncξ(t− nc)
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5 Model-based predictive control

ARIMA

The abbreviation ARIMA stands for AutoRegressive Integrated Moving Average
model. Similar to the difference between AR and IAR models the noise is, in
this case, considered with an integrated structure again:

A(z−1)y(t) = C(z−1)
ξ(t)

∆

or

∆y(t) + a1∆y(t− 1) + a2∆y(t− 2) + · · ·+ ana∆y(t− na)

= ξ(t) + c1ξ(t− 1) + c2ξ(t− 2) + · · ·+ cncξ(t− nc)

ARMAX / CARMA

The ARMAX or AutoRegressive Moving Average model with eXogenous inputs
is very similar to the ARMA model, but possesses additional input variables
which represent the actuating variables from outside having an effect on the
system:

A(z−1)y(t) = B(z−1)u(t− d) + C(z−1)ξ(t)

in which

B(z−1) = b0 + b1z
−1 + b2z

−2 + · · ·+ bnbz
−nb

The value d represents the time delay or dead time between the input u and
the output y of the system. In systems relevant for drive applications, usually
d = 1 can be set. Alternatively, additional delays can be absorbed into the
polynomial B(z−1).

ARMAX models are also known as CARMA or Controlled AutoRegressive
Moving Average models.

ARIMAX / CARIMA

Like the extension of ARMA to ARMAX, ARIMA models can also be extended
to ARIMAX models, i. e. AutoRegressive Integrated Moving Average models
with eXogenous inputs by adding additional input variables. The result can be
described with the equation:

A(z−1)y(t) = B(z−1)u(t− d) + C(z−1)
ξ(t)

∆
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5.2 Models

Models of the CARIMA or Controlled AutoRegressive Integrated Moving av-
erage model type have an identical structure. They are used e. g. for GPC
controllers.

5.2.3 Nonlinear models

Although the area of nonlinear control is still very new and unexplored, a large
number of models which represent the behavior of a nonlinear control system
exist. However, when a closer look is taken at some of these nonlinear models,
they turn out to be linear models using a linearized image of the system to be
controlled. As these models are not really nonlinear models in a narrower sense
they are not further discussed here. Among the remaining strategies, the Ham-
merstein model and the Wiener model are the most prominent ones. Besides
these, there is another interesting proposal for modeling nonlinear systems with
the so-called NARMAX model .

NARMAX

The Nonlinear AutoRegressive Moving Average model with eXogenous inputs
is described in detail by Leontaritis/Billings [80, 81]. Its main principle is a
description of the controlled system similar to the linear ARMAX model, but
extended to be suitable for nonlinear, multivariable, discrete-time control sys-
tems which can be deterministic as well as stochastic. Basis of a NARMAX
model is the following system description for a general multivariable, discrete-
time and time-invariant system:

x(t+ 1) = g [x(t),u(t)]

y(t) = h [x(t),u(t)]

Simplistically, a linear system is considered at first. For such a discrete-time,
time-invariant and linear MIMO system the following can be defined:

x(t+ 1) = g [x(t),u(t)] = Adx(t) + Bdu(t)

y(t) = h [x(t),u(t)] = Cdx(t) + Ddu(t)

This system description in state space, consisting of the matrixes Ad, Bd, Cd

and Dd, can be transformed with the help of a numerical solution technique
into a multi-structural linear transfer function model. The obtained description
is similar to models which are known from linear control engineering. Indeed,
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5 Model-based predictive control

the classical representation forms cannot be generalized for nonlinear systems,
which is the reason why the new multi-structural model is necessary.

With the help of some rules of modern analysis and differential geometry, the
above approach is transferred and applied to the nonlinear system description.
By performing this generalization a recursive, nonlinear and multi-structural
I/O model is obtained, which is completely equivalent to the linear description.
However, these recursive nonlinear models are only valid in a limited operation
range around the equilibrium point.

An enlarged system description is obtained by including stochastic distur-
bances into the model. As this precisely represents a nonlinear counterpart to
the ARMAX model, it is also called NARMAX model.

Hammerstein model

In contrast to most of the linear and nonlinear models explained above, the
Hammerstein model is not a classical MPC model, but it is also used for other
nonlinear controls. Its basic idea is to compose a nonlinear model from a static,
nonlinear part followed by a dynamic linear system as shown in figure 5.3. The
nonlinearity is expressed e. g. by a polynomial like:

r(t) = fN

`
u(t)

´
= Γ1u(t) + Γ2u

2(t) + · · ·+ ΓnαunΓ(t)

For the linear part, different models are possible. In most cases an ARMAX
model (see chapter 5.2.2) is used in which the disturbance term can be ne-
glected.

The parameters of the linear part of the model are usually determined with
well-known online parameter identification techniques. The nonlinear system
part is static; consequently, no online parameter estimation is performed.

r ( )t y( )tstatic
nonlinear
system

dynamic
linear

system

u( )t

nonlinear model

Figure 5.3: Structure of a Hammerstein model
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Wiener model

The Wiener model has no relation to the Austrian capital, it is named after the
mathematician and physicist Norbert Wiener (1894–1964). It differs from the
Hammerstein model by the fact that the nonlinear system is modeled with a
dynamic linear system followed by a static nonlinear system (figure 5.4). Like
the Hammerstein model the parameters of the linear part are estimated online,
whereas the nonlinear part is static.

dynamic
linear

system

r ( )t y( )tstatic
nonlinear
system

u( )t

nonlinear model

Figure 5.4: Structure of a Wiener model

After in this chapter the general functional principle of model-based predic-
tive controllers as well as different system models suitable for these controllers
were introduced, now an MPC controller should be realized in practice. In the
following chapters different model-based control strategies are presented and in
addition they are investigated experimentally.
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6 Generalized Predictive Control

The control strategy Generalized Predictive Control—abbreviated GPC—also
belongs to the group of model-based predictive controllers. It was introduced
by Clarke at the University of Oxford in 1987 [27, 28] and makes use of a
transfer function-based CARIMA model. The optimization problem is solved
analytically by setting the derivative of the cost function equal to zero; thus,
the use of mathematically complex solution algorithms like quadratic (QP) or
linear programming (LP) is not required.

6.1 “Classical GPC”

In its most simple form, a GPC controller represents a linear SISO controller,
i. e. the system to be controlled has only one input and one output variable.
Consideration of disturbances or other disturbing signals is not taken into ac-
count.

6.1.1 Mathematical derivation

The CARIMA model

Basis of an MPC scheme is always a model of the system or plant which is
to be controlled. In a GPC controller a so called CARIMA model is used
which is based on the transfer function of the plant. Considering discrete-time
structures, this transfer function can commonly be described as a fraction of
two polynomials:

G(z−1) =
B(z−1)

A(z−1)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bnbz

−nb

1 + a1z−1 + a2z−2 + · · ·+ anaz−na
(6.1)

The above structure can be explained easier if a representation similar to one
used in communications engineering for recursive filters (IIR filters) is used.
Figure 6.1 shows the equivalent block diagram for equation (6.1). If the system
is affected with a dead time, the first elements of the polynomial B(z−1) are
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6 Generalized Predictive Control

equal to zero. The equation of the CARIMA model can be derived from (6.1)
(see also chapter 5.2.2).

A(z−1)y(t) = B(z−1)u(t− 1) + C(z−1)
ξ(t)

∆
(6.2)

Thereby the last term in (6.2) represents the effect of disturbances. If ξ(t) is
white noise, the polynomial can be set to C(z−1) = 1. Thus, the equation can
be simplified to:

A(z−1)y(t) = B(z−1)u(t− 1) +
ξ(t)

∆
(6.3)

z 1- z 1- z 1- z 1- z 1-

z 1- z 1- z 1- z 1-

b0 b1 b2 b3 bnb

ana a3 a2 a1

+ + + ++ + + +

– – – –

y t( )

u t( )

Figure 6.1: Discrete-time transfer function

The j-step ahead predictor

In order to obtain a predictor, the following Diophantine equation1 is consid-
ered:

1 = Ej(z
−1)A(z−1)∆ + z−jFj(z

−1)

With the help of the definition Ã(z−1) = ∆A(z−1), the following Diophantine
equation can be obtained:

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (6.4)

The idea behind equation (6.4) is that the reciprocal 1/Ã(z−1) is calculated
until the remainder can be factorized as z−jFj(z

−1). The quotient of the

1 Refer to appendix A for a description of Diophantine equations.
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6.1 “Classical GPC”

division is the polynomial Ej(z
−j). Thus, Ej(z

−1) is of degree j − 1 which
leads to the fact that Ej(z

−1) and Fj(z
−1) can be defined as:

Ej(z
−1) = ej,0 + ej,1z

−1 + ej,2z
−2 + · · ·+ ej,j−1z

−(j−1)

Fj(z
−1) = fj,0 + fj,1z

−1 + fj,2z
−2 + · · ·+ fj,naz

−na

Now (6.3) is multiplied with ∆Ej(z
−1)zj :

Ã(z−1)Ej(z
−1)y(t+ j) = Ej(z

−1)B(z−1)∆u(t+ j − 1) + Ej(z
−1)ξ(t+ j)

Solving (6.4) for Ej(z
−1)Ã(z−1) and using it in the above equation, the follow-

ing result can be obtained:

y(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1) + Fj(z

−1)y(t) + Ej(z
−1)ξ(t+ j)

Since, as already mentioned, the degree of the polynomial Ej(z
−1) is j − 1, all

noise components are in the future. Hence, the best possible prediction for y
is:

ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1) + Fj(z

−1)y(t) (6.5)

in which

Gj(z
−1) = Ej(z

−1)B(z−1)

If the prediction is split into single steps, the following equations for the different
prediction steps can be obtained:

ŷ(t+ 1) = G1(z
−1)∆u(t) + F1(z

−1)y(t)

ŷ(t+ 2) = G2(z
−1)∆u(t+ 1) + F2(z

−1)y(t)

ŷ(t+ 3) = G3(z
−1)∆u(t+ 2) + F3(z

−1)y(t)

...

ŷ(t+Np) = GNp(z−1)∆u(t+Np − 1) + FNp(z−1)y(t)
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6 Generalized Predictive Control

Calculation of the actuating variables

The GPC algorithm uses a quadratic cost function in order to minimize values
of the expected control deviations ŷ(t + j) − w(t + j) which were predicted
with (6.5). At the same time the costs for changing the values of the actuating
variables ∆u(t+ j − 1) are evaluated, too.

J(N1, N2, Nu) =

N2X
j=N1

µj

`
ŷ(t+ j)−w(t+ j)

´2
+

NuX
j=1

λj

`
∆u(t+ j − 1)

´2
(6.6)

Some MPC methods do not consider the second term which takes the change of
the values of the actuating variables into account; other methods evaluate the
values of the actuating variables themselves instead of their changes. However,
in GPC the entire expression is evaluated. Thereby, the following parameters
play a role:

• The parameters N1 and N2 are called lower and upper cost horizon.
They indicate the horizon for prediction and optimization. Hence, control
deviations in the time interval t . . . (t+(N1−1)) are not considered in the
evaluation. This does e. g. make sense if the plant is affected with a dead
time during which the actuating variable has no effect on the controlled
variable. In this case, the evaluation of control deviations being in the
dead time phase does not make sense because these cannot be corrected
in any way. Thus, in order to save computation time, N1 can be set equal
to the value of the dead time.

• The parameter Nu denotes the so called control horizon. It does not nec-
essarily need to be equal to the prediction horizon; then, in this case, the
optimization algorithm assumes that the value of the actuating variable
does not change anymore after Nu steps, i. e. ∆u(t+j−1) = 0 for j > Nu.

• The coefficients µj weigh the predicted future quadratic control deviations
ŷ(t+ j)−w(t+ j). By using an appropriate sequence of µj , it is possible
to valuate later control deviations higher than control deviations closer to
t. Furthermore, by replacing the quadratic error with the absolute value
and by selecting µj ∼ j, an optimum function according to the ITAE
criterion can be given.

• The coefficients λj weigh the quadratic value of the change of the values
of the actuating variables ∆u(t+ j − 1). Consequently, in the same way
as for weighing of the control deviations, it is possible to valuate values
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6.1 “Classical GPC”

of the actuating variables being not so close in the future, more or less
than the ones being close to t.

All these coefficients can be considered as setting parameters with whose help
the behavior of the MPC controller can be changed a lot in order to adjust
the controller optimally for achieving the desired system behavior. In this
way, the behavior of nearly every other predictive and non-predictive controller
type can be imposed upon an MPC controller. For a standard GPC controller,
Clarke/Mohtadi/Tuffs use the values µj = 1 and λj = λ for all j [27]. For
reasons of simplicity, also the horizons are often set to N1 = 1 and N2 = Np.

For the optimization of the values of the actuating variables, a differentiation
between values of u(t) being in the future and values being in the past has to
be made, since in causal systems values of the actuating variables that are in
the past cannot be changed anymore. Thus, the term Gj(z

−1)∆u(t + j − 1)
in equation (6.5) is splitted into sub-terms concerning the future and the past.
The sum of the past output values Fj(z

−1)y(t) and of the system response to
the past values of the actuating variables forms the free response f . The rest,
consisting of the system response to future values of the actuating variables, is
the forced response.

y = Gũ + F(z−1)y(t) + G′(z−1)∆u(t− 1)| {z }
=f

y = Gũ|{z}
forced

response

+ f|{z}
free

response

(6.7)

in which ũ = ∆u. With help of (6.7) and assuming that µj = 1 and λj = λ
for all j, the cost function (6.6) can be simplified to

J = (Gũ + f −w)T (Gũ + f −w) + λũT ũ

In order to minimize this equation, it is first expanded into separate terms,
whereby

J = ũT (GT G + λI)ũ + ũT GT (f −w) + (f −w)T Gũ + (f −w)T (f −w)

results. Because of the identity,

ũT GT (f −w) = (f −w)T Gũ

J can be further simplified to

J = ũT (GT G + λI)ũ + 2ũT GT (f −w) + (f −w)T (f −w) (6.8)
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6 Generalized Predictive Control

The minimum of this equation is determined by setting the derivative of J
equal to zero:

∂J

∂ũ
= 2(GT G + λI)ũ + 2GT (f −w)

!
= 0

Solving the equation for ũ, the equation

ũ = (GT G + λI)−1 ·GT (w − f) (6.9)

for optimum future values of the actuating variables can be obtained. Since
only the first element of ũ, which is actually ∆u(t), is required, the law for
the value of the actuating variable that has to be applied to the plant can be
derived from equation (6.9):

u(t) = u(t− 1) + g̃T (w − f) (6.10)

Thereby g̃T is the first row of matrix (GT G + λI)−1 ·GT .

Recursion of the Diophantine equation

The Diophantine equation (6.4) has to be solved in order to calculate Ej(z
−1)

and Fj(z
−1). Although other GPC algorithms which do not require the calcula-

tion of Diophantine equations are available, e. g. the ones proposed by Albertos
and Ortega [3], in the following the “classical” solution will be presented. For
this purpose, the Diophantine equations for the steps j and j + 1 are arranged
first and then they are subtracted from each other:

− 1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1)

+ 1 = Ej+1(z
−1)Ã(z−1) + z−(j+1)Fj+1(z

−1)

0 =
`
Ej+1(z

−1)− Ej(z
−1)
´
Ã(z−1) + z−j

`
z−1Fj+1(z

−1)− Fj(z
−1)
´

The term Ej+1(z
−1) − Ej(z

−1) is of degree j, since Ej(z
−1)—as already ex-

plained above—is of degree j − 1. Thus, one can write:

Ej+1(z
−1)− Ej(z

−1) = R̃(z−1) + rjz
−j (6.11)

in which R̃(z−1) is a polynomial of degree 5 j − 1 and rj is a real number.
This leads to the Diophantine equation

0 = R̃(z−1)Ã(z−1) + z−j`z−1Fj+1(z
−1)− Fj(z

−1) + rjÃ(z−1)
´

From ã0 = 1 follows that R̃(z−1) = 0 because of the shifting of the remaining
terms with z−j . As a result, the equation is simplified to

z−1Fj+1(z
−1) = Fj(z

−1)− rjÃ(z−1)
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Because of ã0 = 1, the following expressions result by comparing the coefficients
of the above polynomial equation:

fj,0 = rj (6.12)

fj+1,i = fj,i+1 − rj ãi+1 (6.13)

From (6.11), (6.12) and the abovementioned fact that R̃(z−1) = 0, the recursion
equation for the polynomials Ej(z

−1) can be obtained.

Ej+1(z
−1) = Ej(z

−1) + fj,0z
−j (6.14)

The final terms of the recursion equations can be obtained from (6.4) for j = 1
and under consideration of ã0 = 1:

E1(z
−1) = e0 = 1 (6.15)

F1(z
−1) = z

`
1− Ã(z−1)

´
(6.16)

From (6.14) it can be seen that all coefficients of the polynomial Ej+1(z
−1)

from 0 to −(j − 1) are identical to the ones of the polynomial Ej(z
−1), i. e.

both polynomials differ only in the term fj,0z
−j , which is newly added to the

polynomial Ej+1(z
−1). Hence, the single polynomials Ej(z

−1) can be written
as:

E1(z
−1) = e0

E2(z
−1) = e0 + e1z

−1

E3(z
−1) = e0 + e1z

−1 + e2z
−2

...

Ej(z
−1) = e0 + e1z

−1 + e2z
−2 + · · ·+ ej−1z

−(j−1)

Ej+1(z
−1) = e0 + e1z

−1 + e2z
−2 + · · ·+ ej−1z

−(j−1) + ejz
−j

= Ej(z
−1) + ejz

−j

in which

ej = fj,0
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Calculation of the free and forced response

The prediction equation (6.5) is split into the forced and into the free re-
sponse (6.7). A calculation of the polynomials Gj(z

−1) is unnecessary if it
is easier to calculate the matrix G and the vector f individually.

First the matrix G is determined. The individual rows of this matrix can be
calculated from the expression Gj(z

−1) = Ej(z
−1)B(z−1):

Gj(z
−1) = Ej(z

−1)B(z−1)

=
“
e0 + e1z

−1 + e2z
−2 + · · ·+ ej−1z

−(j−1)
”

·
“
b0 + b1z

−1 + b2z
−2 + · · ·+ bnbz

−nb
”

The coefficients of the polynomial Gj(z
−1), which was derived according to

the above expression, are then inserted into the jth row of the matrix G.
Since this matrix should be used for the calculation of the forced response, no
terms u(t+ j) with j < 0 shall enter the equation, because these values would
be in the past and thus, they would not be relevant for the forced, but for
the free response. Therefore, the polynomial Gj(z

−1) may only be taken into
consideration up to the degree j−1. As it can be seen in the upper expression,
in this case, the matrix elements gj,0 . . . gj,j−1 and gj+1,0 . . . gj+1,j−1 are all
identical, i. e. the matrix rows differ only in the newly added element gj+1,j .
Therefore:

G =

2666664
g0 0 0 · · · 0
g1 g0 0 · · · 0
g2 g1 g0 · · · 0
...

...
...

. . .
...

gNp−1 gNp−2 gNp−3 · · · g0

3777775
with

gi = e0bi + e1bi−1 + · · ·+ eib0

If i > nb all summations with bk, k > nb are void.
Now the following method is adopted for the calculation of the free response:

The old y- and u-values are combined to a new vector yu. Accordingly, a matrix
FG′ is composed from the coefficients of the polynomial matrices F(z−1) and
G′(z−1) which results in:

f = F(z−1)y(t) + G′(z−1)∆u(t− 1) = FG′ · yu
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in which

F(z−1) =

26664
F1(z

−1)
F2(z

−1)
...

FNp(z−1)

37775 =

26664
f1,0 + f1,1z

−1 + · · ·+ f1,naz
−na

f2,0 + f2,1z
−1 + · · ·+ f2,naz

−na

...
fNp,0 + fNp,1z

−1 + · · ·+ fNp,naz
−na

37775

G′(z−1) =

266664
g′1,0 + g′1,1z

−1 + · · ·+ g′1,nb−1z
−(nb−1)

g′2,0 + g′2,1z
−1 + · · ·+ g′2,nb−1z

−(nb−1)

...

g′Np,0 + g′Np,1z
−1 + · · ·+ g′Np,nb−1z

−(nb−1)

377775

FG′ =

26664
f1,0 f1,1 · · · f1,na g′1,0 g′1,1 · · · g′1,nb−1

f2,0 f2,1 · · · f2,na g′2,0 g′2,1 · · · g′2,nb−1

...
...

...
...

...
...

...
...

fNp,0 fNp,1 · · · fNp,na g′Np,0 g′Np,1 · · · g′Np,nb−1

37775

yu =

266666666664

y(t)
y(t− 1)
· · ·

y(t− na)
∆u(t− 1)
∆u(t− 2)

· · ·
∆u(t− nb)

377777777775
The individual elements g′j,i are calculated in the same way as the elements of

G with the multiplication of Ej(z
−1) and B(z−1). However, in this case, only

the values of u(t+ j) that are in the past are of interest. Hence, the expression
for the calculation is:

g′j,i =

j−1X
k=0

ekbj+i−k j = 1 . . . Np; i = 0 . . . (nb− 1)

As summands with bk, k > nb can also not exist in this case, all terms with
j+i−k > nbmust be omitted. Because of the degree of Ej(z

−1), the summation
is only valid for k = 0 . . . (j − 1), since for higher values of k the terms ek do
not exist anymore.

47



6 Generalized Predictive Control

Now the calculated free response f can be used in equation (6.10) and the
value of the actuating variable u(t) for the next sampling cycle can be deter-
mined.

6.1.2 Experimental results

Since practical experiments showed that a GPC controller without stabilization
through a design polynomial T (z−1) cannot be practically used because of the
highly increased sensitivity related to model deviations or noise influences, there
are no measurement results at this point.

6.2 GPC with filter

If the measured controlled variable contains harmonics and harmonic-free sam-
pling cannot be guaranteed, then the harmonics on the measuring signal lead
to a disturbed actuating variable. Especially in very fast acting controllers like
MPC methods, this leads to strong oscillations in the actuating variable, since
the controller tries to counteract against the apparent control deviation. A
similar problem appears if there are errors in the model. In this case, there
are two workarounds. Either the controller can be made more sluggish so that
it does not react to higher frequencies in the control deviation anymore, or
a low-pass filter is inserted into the feedback path. For the latter case, how-
ever, it shall be kept in mind that the low-pass filter, if not considered in the
controller design, can lead to an unstable behavior of the entire system, since
in dynamic operation the feedback value of the controlled variable is no more
equal to the real value of the controlled variable. Hence, if the fed back values
of the controlled variable are smoothed via a filter, the controller has to be
adapted correspondingly which in reality means to make it slower. Considering
extremely large filter time constants, this leads to the fact that not the actual
plant itself, but the low-pass filter is controlled, whereby the dynamics of the
overall system suffer to a great extent.

GPC controllers offer the possibility to integrate a filter into the controller
itself. The low-pass filter behavior is considered in the controller’s internal
model, so that a reduced sensitivity of the controller for high frequency har-
monics results without influencing the overall dynamics. In this case, the GPC
model actually behaves like a Kalman filter [72], which is also well known for
its delay-free filtering properties.

For a better understanding of GPC with internal filter, the MPC structure
from figure 5.1 is modified according to figure 6.2. As already explained, the
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6.2 GPC with filter

complete system response is precalculated from the actuating variable u(t), the
controlled variable y(t) and this response is used in the control law for calcu-
lating optimum future values for the actuating variables under consideration of
the reference value w(t). In addition, figure 6.2 shows the possibility to use a
parameter adaptive plant model, but this shall not be discussed further.

reference
w + –

control
error control

u

total response

ŷ

cost function

GPC
control law process output

y

parameter
identification

predictor

w ŷ−

constraints

Figure 6.2: Structure of a GPC controller without filter

If the measuring signals containing high-frequency noise should be filtered
for the suppression of the unwanted, high-frequency disturbances, the controller
structure has to be modified by inserting two low-pass filters with identical time
constants as shown in figure 6.3. The measured values of the actual controlled
variable y(t) as well as the values of the actuating variable u(t) are filtered in
the same way. Then the filtered values uf (t) and yf (t) are used for parameter
estimation and prediction of the complete response. With marginal changes
in the structure of the GPC control law, in the parameter identification and
in the predictor in the GPC controller, filtering can be taken into account,
which allows a—related to the entire system—delay-free filtering of unwanted
harmonics.
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Figure 6.3: Structure of a GPC controller with filter

6.2.1 Mathematical derivation

The CARIMA model

The actual CARIMA model described in chapter 6.1.1 does in principle not
change if a low-pass filter is inserted. However, now it cannot be assumed that
ξ(t) in equation (6.2) is white noise. Analog to this, the polynomial C(z−1)
cannot be set equal to 1, as now the disturbances should explicitly be taken into
consideration. However, as the disturbances are normally not exactly known,
C(z−1) is replaced by a design polynomial T (z−1). This is selected in such a
way that it acts like a low-pass filter. Therefore, equation (6.3) can be modified
to

A(z−1)y(t) = B(z−1)u(t− 1) + T (z−1)
ξ(t)

∆
(6.17)

with

T (z−1) = t0 + t1z
−1 + t2z

−2 + · · ·+ tntz
−nt

in which for a filter normally t0 = 1 is set.
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6.2 GPC with filter

The j-step ahead predictor

Taking the design polynomial into consideration, the Diophantine equation,
which is already known from equation (6.4), changes to

T (z−1) = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (6.18)

With the help of the same transformations as already described in chapter 6.1.1
on page 40 et seq., the following equation can be obtained from the above
equation and (6.17):

T (z−1)y(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1)

+ Fj(z
−1)y(t)

+ T (z−1)Ej(z
−1)ξ(t+ j)

Since here Ej(z
−1) is of degree j−1, too, all noise components are in the future

and thus, they cannot appear in the precalculation. Hence, the best possible
prediction of y is given by

T (z−1)ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1) + Fj(z

−1)y(t)

in which again
Gj(z

−1) = Ej(z
−1)B(z−1)

Now, Camacho/Bordons [20] propose the derivation of an optimum prediction
equation for the calculation of ŷ(t+ j) directly from the ∆u- and y-values via
a direct approach with a Diophantine equation. However, Clarke et al. [28] use
the values yf (t) and uf (t), which are filtered with 1/T (z−1), instead of using
y(t) and u(t). Considering this approach, the prediction equation for ŷ(t + j)
results to

ŷ(t+ j) = Gj(z
−1)∆uf (t+ j − 1) + Fj(z

−1)yf (t)

Since future values of the actuating variables are logically not filtered with
T (z−1), Gj(z

−1) can be separated in the following way:

Gj(z
−1) = Gj

′(z−1)T (z−1) + z−jΓj(z
−1) (6.19)

For the case that T (z−1) = 1 (no filtering), the equation Gj(z
−1) = Gj

′(z−1)
is valid. Now the prediction is separated into the free and forced response by
equation (6.19). For this reason the prediction equation results into:

ŷ(t+ j) = Gj
′(z−1)∆u(t+ j − 1)| {z }

forced response

+Fj(z
−1)yf (t) + Γj(z

−1)∆uf (t− 1)| {z }
free response

(6.20)
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Calculation of the actuating variables

The optimization itself is done in the same way as for standard GPC without
filter (chapter 6.1.1 on page 42 et seqq.). Equation (6.20) can be summarized
to

y = G′ũ + f ′

With the help of the cost function (6.6), the equation for the precalculation of
optimum future values for the actuating variables can be obtained:

ũ = (G′T G′ + λI)−1 ·G′T (w − f ′) (6.21)

Analog to standard GPC, it can be stated that G′ 6=
ˆ
G′1 G′2 G′3 · · ·

˜T
because G′ only considers the future parts of ũ for the forced response. Also
in this case, only the first element of ũ, namely ∆u(t), is required for the real
controller. Hence, the value of the actuating variable for the next sampling
cycle results from equation (6.21) :

u(t) = u(t− 1) + g̃′T (w − f ′) (6.22)

in which g̃′T is the first row of the matrix (G′T G′ + λI)−1 ·G′T .

Recursion of the Diophantine equation

Compared to GPC without filter, the Diophantine equation has to be changed
because of the consideration of the design polynomial (compare equation (6.4)
with (6.18)). Nevertheless the same strategy for the calculation of Ej(z

−1) and
Fj(z

−1) can be used. If the Diophantine equations for j and j + 1 are formed
and then subtracted from each other as described in chapter 6.1.1 on page 44 et
seq., T (z−1) can be omitted. Therefore, the recursion equations (6.12) to (6.14)
are also valid in this case.

The final terms of the recursion are obtained from equation (6.18) for j = 1
which results in:

E1(z
−1) = e0 =

t0
ã0

= 1 because ã0 = 1 and t0 = 1 (6.23)

F1(z
−1) = z

`
T (z−1)− Ã(z−1)

´
(6.24)

52



6.2 GPC with filter

Calculation of the free and forced response

In order to simplify the precalculation of the free response if a filter is used,
vectors and matrices are combined, too. In this case, the filtered values yf (t)
and ∆uf (t) from the past form the vectors yf and uf which are then again
combined to a new vector yuf . Instead of the polynomial matrices F(z−1) and
G′(z−1) now F(z−1) and Γ(z−1) are used. Therefore:

f ′ = F(z−1)yf (t) + Γ(z−1)∆uf (t− 1) = FΓ · yuf

in which

F(z−1) =

26664
F1(z

−1)
F2(z

−1)
...

FNp(z−1)

37775 =

26664
f1,0 + f1,1z

−1 + · · ·+ f1,naz
−na

f2,0 + f2,1z
−1 + · · ·+ f2,naz

−na

...
fNp,0 + fNp,1z

−1 + · · ·+ fNp,naz
−na

37775 (unchanged)

Γ(z−1) =

26664
Γ1(z

−1)
Γ2(z

−1)
...

ΓNp(z−1)

37775 =

26664
γ1,0 + γ1,1z

−1 + · · ·+ γ1,nb−1z
−(nb−1)

γ2,0 + γ2,1z
−1 + · · ·+ γ2,nb−1z

−(nb−1)

...

γNp,0 + γNp,1z
−1 + · · ·+ γNp,nb−1z

−(nb−1)

37775

FΓ =

26664
f1,0 f1,1 · · · f1,na γ1,0 γ1,1 · · · γ1,nb−1

f2,0 f2,1 · · · f2,na γ2,0 γ2,1 · · · γ2,nb−1

...
...

...
...

...
...

...
...

fNp,0 fNp,1 · · · fNp,na γNp,0 γNp,1 · · · γNp,nb−1

37775

yuf =

266666666664

yf (t)

yf (t− 1)
· · ·

yf (t− na)

∆uf (t− 1)

∆uf (t− 2)
· · ·

∆uf (t− nb)

377777777775
As equation (6.20) shows, the prediction consists of a part for the forced and

one for the free response. First, in the same way as for the “filterless” case (see
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chapter 6.1.1 on page 46 et seqq.) the following approach is made:

Gj(z
−1) = Ej(z

−1)B(z−1)

=
“
e0 + e1z

−1 + e2z
−2 + · · ·+ ej−1z

−(j−1)
”

·
“
b0 + b1z

−1 + b2z
−2 + · · ·+ bnbz

−nb
”

Under consideration of equation (6.19)

Ej(z
−1)B(z−1) = Gj

′(z−1)T (z−1) + z−jΓj(z
−1) (6.25)

can be obtained. Since G′ should be used for the prediction of the forced
response, terms u(t + j) with j < 0 must not appear in Gj

′(z−1). Therefore,
in the same way as for G, it can be stated that

1. the matrix elements g′j,0 . . . g
′
j,j−1 and g′j+1,0 . . . g

′
j+1,j−1 are all identical

and

2. the matrix rows only differ in the added element g′j+1,j .

Hence, G′ can be defined as:

G′ =

2666664
g′0 0 0 · · · 0
g′1 g′0 0 · · · 0
g′2 g′1 g′0 · · · 0
...

...
...

. . .
...

g′Np−1 g′Np−2 g′Np−3 · · · g′0

3777775
A procedure described by Clarke et al. [28] for the determination of the ele-
ments of FΓ is suggested here. Similar to the approach for the calculation of
the Diophantine equation for Ej(z

−1) and Fj(z
−1), only the equation (6.19)

for Gj+1(z
−1) and Gj(z

−1) is formed and then Gj+1(z
−1) and Gj(z

−1) are
subtracted from each other:

+ Gj+1(z
−1) = Gj+1

′(z−1)T (z−1) + z−(j+1)Γj+1(z
−1)

− Gj(z
−1) = Gj

′(z−1)T (z−1) + z−jΓj(z
−1)

ejz
−jB(z−1) = g′jz

−jT (z−1) + z−j
`
z−1Γj+1(z

−1)− Γj(z
−1)
´

The following expressions can be obtained by comparing the coefficients of the
above polynomial equation:

g′j =
ejb0 + γj,0

t0

γj+1,i−1 = γj,i + ejbi − g′jti
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6.2 GPC with filter

As for the last element γj+1,i, the summand γj,i+1 does of course not exist, in
this case the following applies:

γj+1,i = ejbi+1 − g′jti+1

As it can be easily seen from the above definition, the counter variable i varies
from 0 to max(nb− 1, nt− 1). Since T (z−1) in most cases represents a simple
low-pass filter, only the elements t0 = 1 and t1 exist. Normally it can be
assumed that nb = nt and therefore i = 0 . . . (nb − 1). As a matter of course,
the non-existing terms with bk, k > nb and tk, k > nt, respectively, are omitted.

The final terms of the recursion can also be obtained by coefficient compar-
ison from equation (6.25) for j = 1:

g′0 =
e0b0
t0

γ1,i = e0bi+1 − g′0ti+1

Thus, the matrices G′ and Γ(z−1) can be calculated, whereas only Γ(z−1)
is required for the calculation of the free response f ′. For the calculation of
optimum values for the actuating variables according to equation (6.21), G′

is also not completely necessary since only the first element of ũ is used (see
page 52). However, the values g′j are required for determining the elements of

the matrix Γ(z−1) so that in any case G′ must be completely calculated.
With the help of the recursions and equations shown above, the free response

f ′ can be determined, be substituted into equation (6.22) and then the next
value of the actuating variable u(t) that should be applied to the plant can be
calculated.

6.2.2 Simulations

The typical behavior of a GPC controller with filter polynomial T (z−1) is veri-
fied by the following simulation results. It can be shown that low-pass filtering
of the sampled actuating variable can be done without influence on the dynam-
ics of the overall system.

In figure 6.4, the filtering is turned off by setting T (z−1) = 1. Since the mea-
sured values of the controlled variables are not affected by any disturbances, the
control shows ideal behavior. The reference value is reached in three sampling
steps.

If the measuring signal is disturbed with a rectangle-shaped noise signal
with half the sampling frequency, the signals shown in figure 6.5(a) can be ob-
tained. Although the amplitude of the noise signal is only 0.005 the controller
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Figure 6.4: Simulation: Reference action without noise disturbances

output signal shows strong oscillating behavior; the amplitude of u(t) is approx-
imately 0.2. The actual value of the controlled variable y(t) of the controlled
plant is indeed damped by the plant time constants; despite this fact, the huge
periodical steps of the actuating variable between +0.2 and −0.2 are causal for
the jerky behavior of the system.

If the internal filter features of a GPC controller are enabled now by choos-
ing the filter polynomial T (z−1) = 1 − 0.95z−1, the behavior of the controller
can be significantly improved (figure 6.5(b)). Still the same rectangular-shaped
disturbance signal is added to the measured values of the controlled variable.
Because of the enabled filter, the amplitude of the oscillations of the actuating
variable is now only about 0.02, which corresponds to an improvement of the
factor 10. Accordingly, the controlled variable shows nearly no more super-
imposed oscillations. Despite this, the step response of the entire system has
not significantly changed; the reference value is still reached in three sampling
steps.

6.3 Cascade control with GPC controllers

As a first approach the PI controllers of a conventional field-oriented control
in cascaded structure are replaced by GPC controllers that are also cascaded.
The signal flow graph of the control is shown in figure 6.6. As it can be seen
here, no real flux controller is implemented, but the flux is kept approximately
constant because of a constant reference value for the field-producing stator
current component isd.
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Figure 6.5: Simulation: Reference action with noise disturbances
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Figure 6.6: Field-oriented drive control with GPC controllers

6.3.1 Current control

Current control with a GPC controller is, in principle, based on the same plant
model as the conventional control (figure 3.3 on page 15). Indeed, the discrete-
time approach of GPC offers the possibility of considering dead times with a
value n · T0 directly in the model by shifting the coefficients of the polynomial
B(z−1) by z−n. If a CARIMA model according to equation (6.2) or (6.3) is
used, a dead time of 1 · T0 is already implemented in the model because of
the approach with u(t − 1) instead of u(t). Therefore, the inverter dead time
does not have to be considered for the determination of the CARIMA model
parameters since it has already been defined in the model itself. The resulting
simplified signal flow graph of the current control loop is shown in figure 6.7.

isdusd

rσ
1

τσ'
isd

∗

GPC

Figure 6.7: Current control loop with GPC controller
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6.3 Cascade control with GPC controllers

Using the standard conversion tables, e. g. from [58], the Z-transfer function
of the plant can be obtained:

G(z−1) =

1

rσ

“
1− e

− τ0
τσ ′
”
z−1

1− e
− τ0

τσ ′ z−1
=
B(z−1)

A(z−1)

As the prediction is normally not done with A(z−1), but with Ã(z−1) =
∆A(z−1), the individual coefficients of Ã(z−1) are calculated. Thus, for Ã(z−1)
and B(z−1) the following coefficients can be obtained:

ã0 = 1 b0 = 0

ã1 = −
“
1 + e

− τ0
τσ ′
”

b1 =
1

rσ

“
1− e

− τ0
τσ ′
”

ã2 = e
− τ0

τσ ′

6.3.2 Speed control

The approach for designing the GPC controller for the speed control loop is
in principle the same as described for conventional PI cascade control in chap-
ter 3.2 on page 15. The inner current control loop is replaced with a first order
transfer function (PT1-block) with the time constant τ∗. Figure 6.8 shows the
signal flow graph of the GPC speed control loop. As the internal filter char-
acteristics of GPC are used, the additional low-pass filter in the feedback path
can be significantly smaller than a corresponding one for PI control.

isqisq

∗ω∗

τ∗ τm

τf

GPC
ω

Figure 6.8: Speed control loop with GPC controller

Even the sum of the time constants of both PT1-blocks is much smaller than
the mechanical time constant τm, hence, they are not considered in the design
of the GPC controller. It can be shown by simulation that including both first
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order transfer function blocks into the plant model merely increases the order
of the system and because of this also the calculation matrices of the GPC
controller, but the control performance cannot be improved. Therefore, the
model design can be limited to a pure integrator; the discrete-time transfer
function then becomes to:

G(z−1) =

τ0

τm
z−1

1− z−1

In this case, the coefficients of the polynomials Ã(z−1) and B(z−1) are:

ã0 = 1 b0 = 0

ã1 = −2 b1 =
τ0
τm

ã2 = 1

6.3.3 Experimental results

Current control

To evaluate the behavior of the GPC controller, it is meaningful to compare
it with a PI controller. Because of this, current control of an asynchronous
machine was implemented with a conventional PI and with a model-based pre-
dictive controller. The PI controller was designed as described in chapter 3.1
on page 13 et seqq. according to the symmetrical optimum method and then
it was further optimized empirically. The best possible values that could be
obtained are Ti = 0.33 and Vi = 2.3. The parameters of the GPC controller
can be taken from table 6.1.

Np Nu na nb nt

4 2 2 1 1

ã0 ã1 ã2 b0 b1 t0 t1 λ

1.0 -1.9947 0.9947 0.0 0.1650 1.0 -0.95 0.003

Table 6.1: Parameter settings for the GPC current controller

Figure 6.9 shows the large-signal behavior of the closed control loop; therein
figure 6.9(a) shows the behavior of a PI controlled drive, while the results in
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6.3 Cascade control with GPC controllers

figure 6.9(b) were obtained with a GPC controller. In both cases, the torque-
producing current component isq was step-changed from isq

∗ = 0 to isq
∗ = 0.4.

The results show that the GPC controller generates a smaller overshoot than the
PI controller. In both cases, the rise time is approximately identical, because
it is essentially limited by the available power of the actuator. It can be seen
that in this case no significant advantage is offered by the use of a model-based
predictive controller.

0.2

isq

PI controller

isq

∗

usq

∗

0.4

0

0.5

1.0

isq

usq

∗

0

0 1.0 2.0 ms

tt

(a) PI controller
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Figure 6.9: Current control: Large-signal behavior

The small-signal behavior of both controllers can be seen in figure 6.10. Com-
paring the actual values of the output (controlled) variable of the current con-
trol loop with the PI controller shown in figure 6.10(a) to the behavior of the
GPC controller shown in figure 6.10(b), it can be seen that the PI controller
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does not make use of the full available actuator power because of the small
step-change of the reference value of only ∆isq

∗ = 0.1, while the model-based
predictive controller uses the available actuator power in an optimal way due to
its totally different characteristics. Hence, the GPC controller shows superior
performance in the small-signal behavior compared to the PI controller.
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Figure 6.10: Current control: Small-signal behavior

In contrast to a PI controller, an MPC controller with a transfer function-
based plant model considers not only present values of the actuating and of the
controlled variables, but also considers the past for the calculation of optimum
values for the actuating variables. If constant disturbances appear in a control
loop, a model-based predictive controller knows them since the past is also
considered in the precalculations. In drive control, this case appears typically
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6.3 Cascade control with GPC controllers

in the form of the back EMF, which is proportional to the drive speed that
acts like a disturbance in the current control loop. Because of the much larger
time constants of the speed control loop, the value of this disturbance can be
assumed to be constant for the current control.

The measurements shown in figure 6.11 were taken with a normalized rota-
tional speed ω = 0.4 of the machine. As shown in figure 6.11(a), using a simple
PI current controller, the rise time is significantly longer because of the back
EMF generated by the rotation of the machine. However, the GPC controller
(figure 6.11(b)) shows much better behavior, since the disturbing influence of
the back EMF is known to the GPC controller from the past. Hence, as a ma-
chine is rarely operated in standstill mode and thus, the back EMF does nearly
always exist, the MPC controller shows better results than the PI controller in
large-signal behavior, too.

Speed control

As already done for current control, GPC speed control should also be com-
pared to speed control with a PI controller. For conventional control, the initial
settings obtained according to chapter 3.2 on page 15 were verified experimen-
tally and then optimized. Finally the values Tω = 64.0 and Vω = 17.2 have
been selected as the best possible controller parameters.

It is well known that the dynamics of the speed control loop are significantly
lower than those of the current control loop. However, for technical program-
ming reasons, both current and speed controllers have to be operated with the
same sampling frequency. Now the prediction horizon of an MPC controller
should approximately match the time constants of the plant to be controlled.
Thus, a relatively high prediction horizon of Np = 200 is necessary for a GPC
speed controller. Nevertheless, since the control horizon is only Nu = 1, the
mathematical complexity is limited to a certain extent. A higher value for Nu

did not improve the controller behavior so that a larger control horizon obvi-
ously makes no sense. The remaining optimal parameters of the GPC controller
are given in table 6.2.

The large-signal behavior of a speed control loop gives no or only few infor-
mation about the quality of the controller because in this case the dynamics
are solely limited by the available inverter power. Hence, only the small-signal
behavior is examined for the comparison between PI and GPC controller for
speed control. The results are presented in figure 6.12.

In drive technology, it has quite often to be dealt with the problem that the
measured speed signal must be filtered with a low-pass filter, as otherwise it
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Figure 6.11: Current control: Large-signal behavior at ω = 0.4

Np Nu na nb nt

200 1 2 1 1

ã0 ã1 ã2 b0 b1 t0 t1 λ

1.0 -2.0 1.0 0.0 0.00013 1.0 -0.999 0.1

Table 6.2: Parameter settings for a GPC speed controller
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Figure 6.12: Speed control: Small-signal behavior
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is not useable for control. This problem appears especially when incremental
encoders with low resolution are used, because the speed signal received by
counting the increments per sampling cycle changes with distinct jumps. Of
course, the problems described above do not appear when tacho generators are
used as speed encoders; however, tacho generators are more expensive than
incremental encoders, they also have to be maintained regularly and they are
not useful at low speeds because of the proportionality between the amplitude
of the output signal and the actual speed. This is why they are normally not
used in modern drive technology. When a low-pass filter is inserted into the
feedback path this has to be considered in the controller design, leading to the
fact that the dynamics of the overall control system are deteriorated. However,
in the case of using a model-based predictive controller, the filtering of the
measured controlled variable can be shifted into the controller itself, so that no
negative effect with respect to the overall system dynamics results. This has
already been explained in chapter 6.2.

As it can easily be seen the PI controller in figure 6.12(a) shows the typical
behavior of a controller designed according to the symmetrical optimum. The
rise time is quite high, also due to the fact that the machine is supplied only
with a maximum of 90 percent of the nominal current. Altough the overshoot
could be reduced by changing the controller parameters Vω and Tω, this would
lead to even slower dynamics of the overall system. The selection of parameter
values resulting into a less sluggish behavior must not be done, since the control
will then become unstable because of the low-pass filter in the feedback path.

However, a model-based predictive controller, whose response is shown in
figure 6.12(b), can use the advantage of the internal filtering of the measured
signal in the speed control loop. The reduced rise and settling time can easily
be seen. Here, the dynamics are not limited by the controller itself, only by the
maximum value of the torque-producing component of the stator current isq to
isq,max = 1.2. The GPC controller in the speed control loop is clearly superior
to conventional PI control because of the significantly shorter rise time and the
almost not existing overshoot. Figure 6.13 once more shows the behavior of a
GPC speed controller with a zoomed time scale.

6.3.4 Computation times

For the conventional control methods in drive technology it is extremely impor-
tant to keep the computation time of the control algorithm as short as possible,
because otherwise the high sampling rate necessary for good control quality
cannot be obtained. However, as the measurement results given in table 6.3
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Figure 6.13: Speed control: Small-signal behavior, zoomed time scale

show, this can also be achieved with model-based predictive control based on
the GPC principle. A GPC controller in the current control loop does not need
more computation time than a PI controller. However, when a model-based
predictive controller is used as a speed controller, the high prediction horizon
with Np = 200 required here becomes apparent. As a result the computation
time is increased to a value being 4 times higher compared to the value of a
conventional PI controller. Nevertheless, the total time is still within a range
which permits the use of GPC even for fast switching inverters. In addition,
if the performance gains represented in chapter 6.3.3 on page 63 et seqq. are
considered the additional computational expenses are counterbalanced in many
cases.

Type PI GPC

Current controller 2× 2.3 µs 2× 2.3 µs
Speed controller 2.3µs 8.8µs

Table 6.3: Comparison of computation times for PI and GPC controller

As process computer for these and all other measurements a commercial PC
with an AMD Duron® processor (900MHz clock frequency) was used together
with the real time operating system Linux/RTAI. Thus the results presented
here are in terms of absolute values not necessarily comparable to results that
can be achieved with standard microcomputers that are normally used in drive
technology; however, the ratio of the computation times for a PI and a GPC
controller should be comparable.
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6 Generalized Predictive Control

The calculation of the system matrices for the GPC controller involves a
matrix inversion. For the drive-technological examples presented in this work,
parameter adaptation of the system model was omitted; hence, the matrix
inversion can be carried out offline and thus, it does not belong to the time
critical parts of the program. However, if an adaption of the model parameters
should be implemented, then the inversion of the system matrices has to be
done during the runtime of the control process. Although this does not have
to be done within one sampling cycle, a time-saving programming of this task
should be taken into consideration. A comparison of different procedures for
matrix inversion and the computation times required for these tasks can be
found in appendix F.
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7 Discrete-time machine model for current
control

Since a cascaded controller structure has some drawbacks due to its functional
principle [67] and since model-based predictive control offers the possibility of
MIMO control, this advantage should be utilized. As a first example, a MIMO
current controller for field-oriented control of an induction machine should be
derived, i. e. a current controller that simultaneously controls the flux-producing
as well as the torque-producing component of the stator current is. For such
a multidimensional control, a multidimensional plant model is necessary, too.
As a model-based predictive controller should be used, the MIMO plant model
of the machine has to be discrete-time.

7.1 Derivation

A linear system can be clearly described in the so-called state space representa-
tion (see equations (5.2) and (5.3) on page 31). For a machine model according
to this representation, it makes sense to use the following variables for the
vectors x, u and y:

x =

24 isd

isq

ψrd

35 , u =

»
usd

usq

–
, y =

24 isd

isq

ψrd

35
The following state space representation results from the known machine equa-
tions (2.11)–(2.13):

d

dτ

24 isd

isq

ψrd

35 =

26666664
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τσ
′ ωs

kr

rστrτσ
′

−ωs −
1

τσ
′ −

krω

rστσ
′

lh

τr
0 −

1

τr

37777775 ·
24 isd

isq

ψrd

35+

266664
1

rστσ
′ 0

0
1

rστσ
′

0 0

377775 ·
»
usd

usq

–

(7.1)
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24 isd

isq

ψrd

35 =

241 0 0
0 1 0
0 0 1

35 ·
24 isd

isq

ψrd

35+

240 0
0 0
0 0

35 · »usd

usq

–
(7.2)

Considering a linear, time-invariant system, the values of the elements of the
matrices A, B, C and D are constant. However, in our case, this is not true
for the rotating speeds ωs and ω, as they change their values during machine
operation. Unfortunately, the mathematically correct method, i. e. including
ωs and ω in the input vector u is not applicable since the rotating speeds are
multiplicatively linked with different state variables resulting in a nonlinearity.
The state space representation for linear systems cannot represent this fact. As
the time constant of the speed control loop has a much higher value than the
one of the current control loop, ωs and ω can be treated as constants for the
runtime of the current controller. Hence, ωs and ω are treated as parameters
similar to other machine parameters. The values of the remaining parameters
are constant. For the motor used for the experiments, the matrices result
(according to appendix D) to

A =

26666664
−

1

τσ
′ ωs

kr

rστrτσ
′

−ωs −
1

τσ
′ −

krω

rστσ
′

lh

τr
0 −

1

τr

37777775 =

24−0, 3964 ωs 0, 07380
−ωs −0, 3964 −4, 450 ω

0, 04245 0 −0, 01658

35 (7.3)

B =

266664
1

rστσ
′ 0

0
1

rστσ
′

0 0

377775 =

244, 641 0
0 4, 641
0 0

35 (7.4)

C =

241 0 0
0 1 0
0 0 1

35 (7.5)

D =

240 0
0 0
0 0

35 (7.6)

To use these equations in a model-based control method, they must be trans-
formed into a discrete-time form according to (5.4) and (5.5). For this several
procedures exist.
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7.1 Derivation

7.1.1 MATLAB

The mathematical computer algebra system MATLAB® from The MathWorks
Inc. is a powerful tool for the calculation of matrices. For an easy treatment of
control systems, the additional Control System Toolbox is available. With the
functions available within this toolbox, complete system models can be trans-
formed from a continuous-time into a discrete-time form and from state space
representation into a transfer function-based system model. Unfortunately,
MATLAB® cannot handle symbolic mathematics without further extensions,
thus, only numerical solutions can be given for the different parameters and el-
ements. Since this is not useable in our case because of the varying parameters
ωs and ω, MATLAB® cannot be used in this way. Hence, the software Maple®

from Waterloo Maple Inc. which is able to handle symbolic mathematics is used
for the further work, too.

7.1.2 Difference quotient

The most simple way to transform a continuous-time representation of a sys-
tem into a discrete-time representation consists of approximating the derivative
operator with a difference.

dx

dt
≈ x(k + 1)− x(k)

∆t

If this is applied to the equations (5.2) and (5.3) and if the constant sampling
time T0 is used for the time difference ∆t, the following equations can be
obtained:

x(k + 1)− x(k)

T0
= Ax(k) + Bu(k) (7.7)

y(k) = Cx(k) + Du(k) (7.8)

Equation (7.7) can be further transformed into

x(k + 1)− x(k) = T0Ax(k) + T0Bu(k)

x(k + 1) = (T0A + I)x(k) + T0Bu(k) (7.9)
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7 Discrete-time machine model for current control

A comparison of (7.9) with (5.4) and of (7.8) with (5.5), respectively, delivers
the following expressions for the matrices of the discrete-time representation:

Ad = T0A + I (7.10)

Bd = T0B (7.11)

Cd = C (7.12)

Dd = D (7.13)

If the above transformations are carried out on (7.3)–(7.6), the following
results can be obtained:

Ad =

26666664
1−

T0

τσ
′ T0ωs

T0kr

rστrτσ
′

−T0ωs 1−
T0

τσ
′ −

T0krω

rστσ
′

T0lh

τr
0 1−

T0

τr

37777775
=

24 0, 9872 0, 03217 ωs 0, 002374
−0, 03217 ωs 0, 9872 −0, 1432 ω

0, 001366 0 0, 9995

35
(7.14)

Bd =

266664
T0

rστσ
′ 0

0
T0

rστσ
′

0 0

377775 =

240, 1493 0
0 0, 1493
0 0

35 (7.15)

Cd = C (unchanged) (7.16)

Dd = D (unchanged) (7.17)

7.1.3 Laplace transformation

A mathematically exact calculation of the matrices of the discrete-time state
space representation is of course not possible with the simple method described
above. For this purpose, the solution of the matrix differential equation (5.2)
has to be determined. The following expression is selected analog to the scalar
case:

x(t) = eAtk (7.18)
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7.1 Derivation

The matrix eAt is called matrix exponential function. It is defined by the
following series [84]:

eAt =

∞X
i=0

Aiti

i!
= I + At+

A2

2!
t2 +

A3

3!
t3 +

A4

4!
t4 + · · · (7.19)

From (5.2) and with the expression (7.18) the equation of motion

x(t) = Φ(t)x0 +

Z t

0

Φ(t− τ)Bu(τ)dτ (7.20)

with
Φ(t) = eAt (7.21)

can be obtained. Φ is called transition matrix . If the time is set to t = (k+1)T0,
the following equation results from (7.20) with the help of definition (7.21):

x((k + 1)T0) = eA(k+1)T0x0 +

Z (k+1)T0

0

eA((k+1)T0−τ)Bu(τ)dτ (7.22)

In a digital control the values of the actuating variables are only changed at the
sampling instances. Hence, the value of u(t) is constant for kT0 5 t 5 (k+1)T0.
Thus, the following equation results from (7.22) after some intermediate steps
and the substitution α = (k + 1)T0 − τ [85]:

x((k + 1)T0) = eAT0x(kT0) +

Z T0

0

eAαdα Bu(kT0) (7.23)

By comparing the coefficients of the above equation with (5.4), Ad and Bd can
be determined directly:

Ad = eAT0 (7.24)

Bd =

Z T0

0

eAαdα B (7.25)

Assuming a continuous system, it can be stated that detA 6= 0 ; the input
matrix of the discrete-time system thus results to:

Bd = A−1
“
eAT0 − I

”
B (7.26)

With the help of the equations (7.24) and (7.26), the state matrix Ad and
the input matrix Bd of the discrete-time system can be calculated. Since the
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7 Discrete-time machine model for current control

output equation (5.3) does not contain derivative operators, it can easily be
transformed into the discrete form with the substitution t = kT0. Comparing
it to (5.5), it can be seen that Cd = C and Dd = D does always apply.

For the transformation of the continuous-time state space representation into
the discrete-time one, it is necessary to calculate the matrix exponential func-
tion eAt. Besides the series expansion given in equation (7.19), Schwarz [108]
shows that eAt can also be determined with the help of the Laplace transfor-
mation:

eAt = L−1 ˘(sI−A)−1¯ (7.27)

Since Maple® contains functions for the execution of Laplace operations the
above transformation can be implemented easily. However, an analytic calcu-
lation shows that in this case the state and input matrix of the discrete-time
representation require more than 30 DINA4 pages. Even though some trun-
cations and simplifications are certainly possible, the result can surely not be
implemented in a real time control due to its extremely high computation time.
Thus, the analytically exact calculation of the discrete-time representation by
means of Laplace transformation cannot be considered to be feasible anymore.

7.1.4 Power series

The third possibility for the calculation of the matrix exponential function is by
truncating the series expansion from equation (7.19) after the desired accuracy
is obtained. If the series expansion is truncated after the first element, the
following expression can be obtained:

eAT0 ≈ T0A + I (7.28)

Mathematically, this corresponds to a substitution of the derivative operator
with a difference, as shown by a substitution of (7.28) in the equations (7.24)
and (7.26) and by a comparison with the transformation equations (7.10)
and (7.11), which were derived in chapter 7.1.2.

In the case of a truncation after the second element, the calculation equations
for the individual matrix elements do of course become more complex. Then
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the state and input matrix are:
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ωsT0
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′rσ
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7 Discrete-time machine model for current control

7.2 Experimental results

In order to evaluate the accuracy of the different prediction algorithms they
were implemented in a conventional field-oriented control with PI controllers
and the predicted results were compared to the values obtained from the ac-
tual system. Figure 7.1 shows the response when a step in the reference
value for the torque-producing component of the stator current isq was ap-
plied, while figure 7.2 shows the system response for a reference value change
in the flux.producing component of the stator current component isd.
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Figure 7.1: Prediction with a step change in the reference variable isq

In figure 7.1(a) the value of the advance calculation for isq is shown, i. e.
the value that will be reached by the current in the next sampling cycle. The
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7.3 Modified machine model for GPC

deviations between the advance calculation and the actual values are relatively
small. They are caused by parasitic effects which have not been taken into
account when the system model was derived.

The prediction of isd is shown in figure 7.1(b), the change in the predicted
values appears at the same time as the actual current rise. At first sight this is
astonishing since the prediction should consider the direct influence of usq on
isd. Nevertheless, equation (7.15) shows that there is no direct influence of usq

on isd when the prediction is done with a simple difference quotient. However,
the power series method considers this influence, but with an extremely small
value (see equation (7.30)). Obviously a system of higher order is necessary
for the exact modeling of the cross coupling; a second order system delivers
exactly the same results as the simple difference equation. Nevertheless, the
correlation between prediction and reality is in both cases as good as for the
prediction of isq in figure 7.1(a).

Figure 7.2(a) shows the response of isq when a step in the flux-producing
component of the stator current from isd = 0.1 to isd = 0.35 was applied. The
torque-producing component of the stator current was controlled to isq = 0.
As the step change in isd does not lead to a measurable influence on isq, the
actual values as well as both predicted values are constantly 0.

As shown in figure 7.2(b), the prediction of the flux-producing component of
the stator current isd when a voltage usd is applied behaves in the same way
as the prediction of the torque-producing component of the stator current isq

when usq is applied (figure 7.1(a)). The values that will be measured in the next
sampling cycle are precalculated; hence, the correlation between the values of
the actual system and the values calculated with the model is sufficiently good.

All measurements confirm that the calculation of the discrete-time machine
model using the series expansion of the matrix exponential function shows no
improvement in the prediction compared to the simple approximation via the
difference quotient. A comparison of the equations (7.29) and (7.30), resulting
from the series expansion with the corresponding equations (7.14) and (7.15) for
the difference quotient, shows that the calculation complexity is clearly much
higher if series expansion is used. Hence, the method explained in chapter 7.1.2,
i. e. modeling via the difference quotient should be preferred.

7.3 Modified machine model for GPC

In practical applications of the machine model derived from the equations (5.4)
and (5.5) in chapter 7.1 it can be seen that the approximation of the nonlin-
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Figure 7.2: Prediction with a step change in the reference variable isd

78



7.3 Modified machine model for GPC

earities by treating ω and ωs as parameters is not feasible. The discrete state
matrix Ad would change in every sampling cycle and therefore the various poly-
nomial matrices of the GPC controller, as shown in chapter 8, would also have
to be completely calculated again in every sampling cycle. Since this contains,
among other things, a matrix inversion, the necessary arithmetic operations
exceed the available computation time. Hence, this method is not feasible with
the available resources.

An alternative would be to extract the feedback coupling branches from the
model and to substitute them with additional system inputs. In this approach
from the known values of ω, ωs, isd, isq and ψrd, three virtual “inputs” ωsisd,
ωsisq and ωψrd would be calculated, which would then be fed back to the
system. In simulations, this works well, in practice, a passively running model
also shows good results; however, if this structure should be used for control via
GPC, the GPC controller then interprets the additional pseudo inputs ωsisd,
ωsisq and ωψrd, which were added in order to consider the cross coupling
and the back EMF, as real plant inputs and consequently the GPC controller
delivers values for these actuating variables. However, since these are no real
actuating variables, they cannot be influenced by the controller. Thus, a model
of this kind cannot be used for GPC control.

A solution is to treat the feedback couplings as known disturbance vari-
ables and to consider them already in the modeling. Therefore the state space
model (5.2) and (5.3)—as described by Camacho/Bordons—is expanded for
the consideration of the disturbance inputs [20]

d

dt
x = Ax + Bu + Ev (7.31)

y = Cx + Du + Fv (7.32)

The input matrix for disturbance variables E and the feedforward matrix for
disturbance variables F are added. The vectors x, u, v and y are defined ac-
cording to the machine model (2.11)–(2.13), in which in contrast to chapter 7.1
the output vector y does not contain the flux ψrd. Otherwise the GPC con-
troller would treat ψrd as a real output of the plant and expect a reference value
for this variable. Since the flux should not be controlled and only a constant
flux-producing current isd will be given, this is redundant. The definitions of
the individual vectors are as follows:

x =

24 isd

isq

ψrd

35 , u =

»
usd

usq

–
, v =

24ωsisd

ωsisq

ωψrd

35 , y =

»
isd

isq

–
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whereby the state space representation is given by
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0 0 0

3775 ·
24ωsisd

ωsisq

ωψrd

35

(7.33)

»
isd

isq

–
=

»
1 0 0
0 1 0

–
·

24 isd

isq

ψrd

35
+

»
0 0
0 0

–
·
»
usd

usq

–

+

»
0 0 0
0 0 0

–
·

24ωsisd

ωsisq

ωψrd

35
(7.34)

So the matrices A, B, C and D as well as E and F result to:

A =

26666664
−

1

τσ
′ 0

kr

rστrτσ
′

0 −
1

τσ
′ 0

lh

τr
0 −

1

τr

37777775 =

24−0.3964 0 0.07380
0 −0.3964 0

0.04245 0 −0.01658

35 (7.35)

B =

266664
1

rστσ
′ 0

0
1

rστσ
′

0 0

377775 =

244.641 0
0 4.641
0 0

35 (7.36)
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7.3 Modified machine model for GPC

C =

»
1 0 0
0 1 0

–
(7.37)

D =

»
0 0
0 0

–
(7.38)

E =

2664
0 1 0

−1 0 −
kr

rστσ
′

0 0 0

3775 =

24 0 1 0
−1 0 −4.450
0 0 0

35 (7.39)

F =

»
0 0 0
0 0 0

–
(7.40)

Since a discrete-time model is necessary for the control of the plant with
an MPC controller, the equations derived above have to be transferred into a
discrete-time state space representation:

x(k + 1) = Adx(k) + Bdu(k) + Edv(k) (7.41)

y(k) = Cdx(k) + Ddu(k) + Fdv(k) (7.42)

The matrices Ed and Fd thereby represent the input and feedforward matrix
for the discrete-time disturbance function v(k).

As all system matrices now contain no symbolic parameters, but only nu-
merical values, an analytic calculation of Ad, Bd, Cd, Dd, Ed and Fd is
not required anymore. Therefore, a method programmed with the help of
Maple® in order to determine the matrices of the discrete-time state space
representation via difference quotient (chapter 7.1.2), Laplace transformation
(chapter 7.1.3) or power series expansion (chapter 7.1.4) is not necessary. The
calculation of the matrices of the equations (7.41) and (7.42) can easily be done
with MATLAB®, resulting in the following values:

Ad =

24 0.9873 0 0.002358
0 0.9873 0

0.001357 0 0.9995

35
Bd =

24 0.1484 0
0 0.1484

0.0001015 0

35
Cd = C unchanged

Dd = D unchanged
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7 Discrete-time machine model for current control

Ed =

24 0 0.03197 0
−0.03197 0 −0.1423

0 2.187 · 10−5 0

35
Fd = F unchanged

It is remarkable that Ed3,2 = 2.187 · 10−5, even though it is expected to be

equal to zero: Ed3,2 = 0. Obviously internal rounding errors of MATLAB®

lead to this deviation. The difference is relatively small, however, it can of
course be corrected when the model is integrated into a control structure.
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8 Multivariable GPC control

As MPC controllers are in principle already designed as multidimensional con-
trollers, the extension of a SISO-GPC to a multivariable method does not
involve too much complexity and costs. Hence, the derivation nearly exactly
corresponds to the one presented in chapter 6.1.1 for a SISO system, how-
ever, due to the higher dimensions, vectors become matrices and polynomials
become polynomial matrices. Besides, it has to be noted that special math-
ematical rules apply for polynomial matrices and matrix polynomials. Good
summaries of these rules can be found in the publication by Goodwin/Sin [44]
and on the website of the company PolyX [125]. Appendix A gives an overview
about some of the most important mathematical rules. Further information
about matrix theory can be taken from the books by Gantmacher [39], Lan-
caster/Tismenetsky [75] and Zurmühl/Falk [124].

8.1 “Classical”MIMO-GPC

The “classical” multidimensional GPC is a simple extension of the uni-dimen-
sional method to a multidimensional one.

8.1.1 Determination of the transfer function

Before an MPC based on a transfer function-based model can be designed,
the state space representation (equations (5.4) and (5.5)) must be converted
into a transfer function and/or matrix. If the transformation is done for a
unidimensional control, a discrete-time transfer function of the form

Gd(z−1) = gd0 + gd1z
−1 + gd2z

−2 + · · ·+ gdnz
−n =

Y (z)

U(z)

results. However, for a multidimensional control the division Y(z)/U(z) results
into a matrix polynomial, i. e. a polynomial whose coefficients are real matrices.

Gd(z−1) = Gd0 + Gd1z
−1 + Gd2z

−2 + · · ·+ Gdnz
−n =

Y(z)

U(z)
(8.1)
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8 Multivariable GPC control

For the individual elements of Y(z) and U(z), the following applies:

y(t) : Vector(n× 1) with n = number of system outputs

u(t) : Vector(m× 1) with m = number of system inputs

Because of this, for the discrete-time transfer function Gd(z−1), the following
applies, too:

Gd(z−1) : Matrix(n×m) (rows × columns)

Matrix polynomials can be transferred into polynomial matrices and vice ver-
sa [39]; polynomial matrices are matrices whose elements are polynomials. Con-
sidering the polynomial matrix P(z−1):

P(z−1) =
‚‚Pj,i(z

−1)
‚‚n,m

=
‚‚pj,i0 + pj,i1z

−1 + · · ·+ pj,ikz
−k
‚‚n,m

The polynomial matrix P(z−1) can be written as a polynomial in z with the
coefficients being real matrices:

P(z−1) = P0 + P1z
−1 + · · ·+ Pkz

−k

with

Px =
‚‚pj,ix

‚‚n,m

Therefore, a polynomial matrix P(z−1) can be transferred into a matrix poly-
nomial and vice versa.

For the calculation of the transfer matrix Gd(z−1), the state space represen-
tation (equations (5.4) and (5.5)) is considered first:

x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) + Ddu(k)

These equations are then transformed into the Z-domain:

zX(z) = AdX(z) + BdU(z) (8.2)

Y(z) = CdX(z) + DdU(z) (8.3)

By rearranging (8.2), the following equation can be obtained:

X(z) = (zI−Ad)−1BdU(z)
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8.1 “Classical” MIMO-GPC

Replacing it into (8.3) results in

Y(z) =
`
Cd(zI−Ad)−1Bd + Dd

´
U(z)

Thus, the transfer function Gd(z−1) can be written as

Gd(z−1) = Cd(zI−Ad)−1Bd + Dd (8.4)

8.1.2 Calculation of the system matrices

In the case of a unidimensional control, the system polynomials A(z−1) and
B(z−1), on which the CARIMA model is based, can easily be taken from the
transfer function Gd(z−1). As shown in equation (6.1), A(z−1) is the denomi-
nator and B(z−1) is the numerator of Gd(z−1).

However, if it is a multidimensional system, then A(z−1) and B(z−1) are sys-
tem polynomial matrices. Since Gd(z−1) is also a polynomial matrix, A(z−1)
and B(z−1) cannot simply be determined by taking the denominator and nu-
merator of Gd(z−1). A simple method for the determination of A(z−1) and
B(z−1) is presented by Camacho in [20, chapter 6.2.1]. Furthermore a math-
ematically more complex method which is also described by Goodwin and
Sin [44, chapter 2.3.5] is explained which delivers left coprime1 results for
A(z−1) and B(z−1). Although this is not necessary for the implementation
of a multivariable GPC controller, using left coprime system matrices results
in more efficient algorithms leading to shorter computation times. This proce-
dure is explained in detail in appendix G; a very good and detailed description
can also be found in the publication by Geering [41], this is the reason why
further explanations are omitted at this point. For the sake of simplicity, only
the simpler method by Camacho [20] is treated in the following.

It is well-known that

Gd(z−1) = A(z−1)
−1

B(z−1)z−1 (8.5)

Now the most simple way is to assume that A(z−1) is a diagonal matrix whose
diagonal elements are the least common multiples of the denominators of the
corresponding rows of Gd(z−1). Then, the polynomial matrix B(z−1) can
simply be calculated with

B(z−1) = A(z−1)Gd(z−1)z (8.6)

1 See appendix A for an explanation of the mathematical terms for polynomial matrices.
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8 Multivariable GPC control

8.1.3 Mathematical derivation

The CARIMA model

Analog to SISO systems, the following approach is taken for the CARIMA
model:

A(z−1)y(t) = B(z−1)u(t− 1) + C(z−1)
ξ(t)

∆
(8.7)

in which now the following applies:

A(z−1) = I + A1z
−1 + A2z

−2 + · · ·+ Anaz
−na

B(z−1) = B0 + B1z
−1 + B2z

−2 + · · ·+ Bnbz
−nb

C(z−1) = I + C1z
−1 + C2z

−2 + · · ·+ Cncz
−nc

∆ = 1− z−1

The dimensions of the individual matrices are:

A(z−1) : Matrix(n× n)

B(z−1) : Matrix(n×m)

C(z−1) : Matrix(n× n)

ξ(t) : Vector(n× 1)

In this case, the matrix polynomial can also be set to C(z−1) = I if ξ(t)
represents white noise. Then equation (8.7) simplifies to

A(z−1)y(t) = B(z−1)u(t− 1) +
ξ(t)

∆
(8.8)

The j-step ahead predictor

As in 6.1.1, a Diophantine equation is used for the derivation of an optimum
predictor, too:

I = Ej(z
−1)A(z−1)∆ + z−jFj(z

−1)

= Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (8.9)

with

Ã(z−1) = ∆A(z−1)

Ej(z
−1) = Ej,0 + Ej,1z

−1 + Ej,2z
−2 + · · ·+ Ej,j−1z

−(j−1)

Fj(z
−1) = Fj,0 + Fj,1z

−1 + Fj,2z
−2 + · · ·+ Fj,naz

−na
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8.1 “Classical” MIMO-GPC

with the dimensions

Ej(z
−1) : Matrix(n× n)

Fj(z
−1) : Matrix(n× n)

Concerning the degree of the matrix polynomials, the statements given for
unidimensional systems apply analogously.

After solving (8.9) for Ej(z
−1)Ã(z−1) and after inserting this result into

equation (8.8), which was multiplied with ∆Ej(z
−1)zj the prediction equation

y(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1) + Fj(z

−1)y(t) + Ej(z
−1)ξ(t+ j)

can be obtained. All noise terms are in the future, too, which means that they
are unknown and so they can be neglected for the prediction. Hence, the best
possible prediction is

ŷ(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1) + Fj(z

−1)y(t) (8.10)

Different from the SISO-GPC case,

Ej(z
−1)B(z−1) = Gj(z

−1) + z−jGjp(z−1) degree
`
Gj(z

−1)
´
< j (8.11)

is set, whereas the Gj(z
−1) matrix polynomials, in contrast to the Gj(z

−1)
polynomials in the unidimensional case only refer to the future. The part
forming the free response is completely inside the z−jGjp(z−1) term. Thus,
the prediction equation becomes to

ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1)| {z }
forced response

+ Gjp(z−1)∆u(t− 1) + Fj(z
−1)y(t)| {z }

all parameters are in the past
→ free response f(t+j)

(8.12)

ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1) + f(t+ j) (8.13)

with

f(t+ j) = Gjp(z−1)∆u(t− 1) + Fj(z
−1)y(t)
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8 Multivariable GPC control

with the dimensions

Gj(z
−1),Gjp(z−1) : Matrix(n×m)

f(t) : Vector(n× 1)

Therefore, the single prediction steps for a MIMO system are:

ŷ(t+ 1) = G1(z
−1)∆u(t) + f(t+ 1)

ŷ(t+ 2) = G2(z
−1)∆u(t+ 1) + f(t+ 2)

ŷ(t+ 3) = G3(z
−1)∆u(t+ 2) + f(t+ 3)

...

ŷ(t+Np) = GNp(z−1)∆u(t+Np − 1) + f(t+Np)

Calculation of the actuating variables

A quadratic cost function is applied to the values precalculated with (8.13) in
order to calculate an optimum sequence of values for the actuating variables.
The cost function is the same as the one for unidimensional control.

J(N1, N2, Nu) =

N2X
j=N1

µj

‚‚ŷ(t+j)−w(t+j)
‚‚2

+

NuX
j=1

λj

‚‚∆u(t+j−1)
‚‚2

(8.14)

Because of calculating the absolute value and because of squaring the expected
control error and, respectively, future changes of the actuating variables, only
a scalar value remains. Hence, the weighting factors µj and λj are even in the
multidimensional case scalar values, too. Unfortunately, a different weighting
of the different system outputs is, because of this, not possible because then the
control errors or the ∆u-values would have to be multiplied with a weighing
matrix before the magnitude is calculated.

According to the unidimensional case, µj = 1 for all j is selected and mostly
also N1 = 1 and N2 = Np is set.

To optimize the values of the actuating variables, the term Gjp(z−1)∆u(t−1)
in equation (8.13) is combined to a multiplication of real matrices GŨ. Thus,
similar to the SISO system, the following can be written:

Y = GŨ + F (8.15)
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8.1 “Classical” MIMO-GPC

in which also Ũ = ∆U. Analog to the unidimensional case, a simplified MIMO
cost function corresponding to the unidimensional equation (6.8) can be set up
by substituting (8.15) in (8.14):

J = ŨT (GT G + λI)Ũ + 2ŨT GT (F−W) + (F−W)T (F−W) (8.16)

After the derivation of (8.16) with respect to ∂

∂Ũ
and by setting the resulting

term equal to zero, optimum future values for the actuating variables according
to

Ũ = (GT G + λI)−1 ·GT (W − F) (8.17)

can be determined, in which the simplifications µj = 1 and λj = λ for all j
were also applied.

Recursion of the Diophantine equation

The Diophantine equation (8.9) is also solved similar to the SISO system by
setting it up for j and j + 1 and then by subtracting the resulting expressions
from each other:

− I = Ej(z
−1)Ã(z−1) + z−jFj(z

−1)

+ I = Ej+1(z
−1)Ã(z−1) + z−(j+1)Fj+1(z

−1)

0 =
`
Ej+1(z

−1)−Ej(z
−1)
´
Ã(z−1) + z−j

`
z−1Fj+1(z

−1)− Fj(z
−1)
´

Analog to equation (6.11), the approach

Ej+1(z
−1)−Ej(z

−1) = R̃(z−1) + Rjz
−j (8.18)

is taken because of the degrees of the matrix polynomials. In (8.18) R̃(z−1)
is a matrix polynomial of the degree 5 j − 1 and Rj is a real matrix. As in
the unidimensional case, here it also applies that R̃(z−1) = 0, because Ã(z−1)
is monic2 (Ã0 = I). After substituting this into the Diophantine equation the
following results:

z−1Fj+1(z
−1) = Fj(z

−1)−RjÃ(z−1)

Since, as already mentioned, Ã(z−1) is monic, the following results after a
coefficient comparison of the above matrix polynomial equation:

Fj,0 = Rj (8.19)

Fj+1,i = Fj,i+1 −RjÃi+1 (8.20)

2 For an explanation see appendix A.
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8 Multivariable GPC control

in which i varies from 0 . . .degree(Fj+1). Moreover, from the equations (8.18),
(8.19) and the identity R̃(z−1) = 0 the recursion law for Ej(z

−1) follows:

Ej+1(z
−1) = Ej(z

−1) + Fj,0z
−j (8.21)

Considering that A(z−1) is monic the final terms of the recursion are obtained
from (8.9) for j = 1:

E1(z
−1) = E0 = I (8.22)

F1(z
−1) = z

`
I− Ã(z−1)

´
(8.23)

In the multidimensional case, as it can be seen easily from (8.21), the coeffi-
cients from 0 to −(j − 1) of the matrix polynomial Ej+1(z

−1) are all identical,
too. Therefore, the individual polynomials can be written as:

E1(z
−1) = E0

E2(z
−1) = E0 + E1z

−1

E3(z
−1) = E0 + E1z

−1 + E2z
−2

...

Ej(z
−1) = E0 + E1z

−1 + E2z
−2 + · · ·+ Ej−1z

−(j−1)

Ej+1(z
−1) = E0 + E1z

−1 + E2z
−2 + · · ·+ Ej−1z

−(j−1) + Ejz
−j

= Ej(z
−1) + Ejz

−j

in which

Ej = Fj,0

Calculation of the free and forced response

As shown on page 87, the prediction equation (8.10) is separated into the forced
and the free response (equations (8.13) and (8.15)). From (8.12) follows that
only the part Gj(z

−1) is essential for the forced response. Therefore, for the
calculation of Gj(z

−1) according to (8.11), the approach

Gj(z
−1) = Ej(z

−1)B(z−1)

is taken in which, according to definitions, only the terms of the product
Ej(z

−1)B(z−1) with degree 5 (j − 1) shall be used. Besides, it has to be
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8.1 “Classical” MIMO-GPC

noted that for all Ek,j , it applies that Ek,j = Ej . Therefore, the polynomial
matrix Gj(z

−1) can be obtained from the terms of degree 0 . . . (j − 1) of the
following equation

Gj(z
−1) =

`
E0 + E1z

−1 + · · ·+ Ej−1z
−(j−1)´`B0 + B1z

−1 + · · ·+ Bnbz
−nb´

For Gj+1(z
−1) the terms 0 . . . j are calculated analogously:

Gj+1(z
−1) = Ej+1(z

−1)B(z−1)

=
`
Ej(z

−1) + Fj,0z
−j´B(z−1)

=
`
E0 + E1z

−1 + · · ·+ Ej−1z
−(j−1)´B(z−1) + Fj,0z

−jB(z−1)

= Gj(z
−1)

+ E0Bjz
−j + E1Bj−1z

−j + · · ·+ Ej−1B1z
−j| {z }

additionally from (E0+E1z−1+···+Ej−1z−(j−1))B(z−1)

since for Gj+1(z−1) only terms up to degree j
need to be considered in the calculation

+Fj,0B0z
−j

= Gj(z
−1) +

`
Fj,0B0 + Ej−1B1 + · · ·+ E0Bj

´
z−j

As in unidimensional GPC, the individual Gj terms differ only in the newly
added element, too. Hence it can be written

Gj(z
−1) = G0 + G1z

−1 + G2z
−2 + · · ·+ Gj−1z

−(j−1) j = 1 . . . Np

with

Gj = Fj,0B0 +

jX
k=1

Ej−kBk j = 0 . . . (Np − 1)

Since Fj,0 = Ej , the following results:

Gj =

jX
k=0

Ej−kBk

For k > nb, the corresponding summands do not exist, since then the terms Bk

do not exist anymore. Therefore, the rows of G also differ only in one element.
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With this (8.15) results to:

26666664

ŷ(t+ 1)
...

ŷ(t+ j)
...

ŷ(t+Np)

37777775 =

26666664

G0 · · · 0 · · · 0
...

. . .
...

. . .
...

Gj−1 · · · G0 · · · 0
...

. . .
...

. . .
...

GNp−1 · · · GNp−j · · · G0

37777775

26666664

∆u(t)
...

∆u(t+ j − 1)
...

∆u(t+Np − 1)

37777775

+

26666664

f(t+ 1)
...

f(t+ j)
...

f(t+Np)

37777775
(8.24)

For the calculation of the free response, both matrix polynomials Gjp(z−1)
and Fj(z

−1) are required according to equation (8.12). The calculation of
Fj(z

−1) has already been explained in the previous chapter. Gjp(z−1), how-
ever, is calculated exactly like Gj(z

−1) via definition (8.11), whereas now,
however, the terms with degree > j are of interest, since only past values of the
actuating variables are considered in the free response. This is realized via the
time shift factor z−j in equation (8.11). If the equation is solved, the individual
elements of Gjp(z−1) can be obtained:

Gjp,i =

j−1X
k=0

EkBj+i−k j = 1 . . . Np; i = 0 . . . (nb− 1)

Here it has to be noted, too, that summands with (j + i − k) > nb are not
considered.

As already done for the SISO system the coefficients of the polynomial ma-
trices Gp(z−1) and F(z−1) are combined so that the following applies:

F = F(z−1)y(t) + Gp(z−1)∆u(t− 1) = FGp ·YU
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in which

F(z−1) =

264 F1(z
−1)

...
FNp(z−1)

375

=

264 F1,0 + F1,1z
−1 + · · ·+ F1,naz

−na

...
FNp,0 + FNp,1z

−1 + · · ·+ FNp,naz
−na

375

Gp(z−1) =

264 G1p(z−1)
...

GNpp(z−1)

375

=

264 G1p,0 + G1p,1z
−1 + · · ·+ G1p,nb−1z

−(nb−1)

...

GNpp,0 + GNpp,1z
−1 + · · ·+ GNpp,nb−1z

−(nb−1)

375
as well as the combinations

FGp =

264 F1,0 F1,1 · · · F1,na G1p,0 G1p,1 · · · G1p,nb−1

...
...

...
...

...
...

...
...

FNp,0 FNp,1 · · · FNp,na GNpp,0 GNpp,1 · · · GNpp,nb−1

375

YU =

2666666664

y(t)
...

y(t− na)
∆u(t− 1)

...
∆u(t− nb)

3777777775
8.1.4 Consideration of the control horizon

If the actuating variable u(t) is assumed to be constant after Nu time steps,
Nu is called control horizon. Since the actuating variable does not change
anymore (∆u(t) = 0) for Nu < t 5 N2, computation time can be saved as full
prediction matrices are not required anymore. Thus, equation (8.24), assuming
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that Nu 5 N2, simplifies to:264ŷ(t+N1)
...

ŷ(t+N2)

375 =

264GN1−1 GN1−2 · · · GN1−Nu

...
...

...
GN2−1 GN2−2 · · · GN2−Nu

375
264 ∆u(t)

...
∆u(t+Nu − 1)

375

+

264f(t+N1)
...

f(t+N2)

375
or

YN12 = GN12uŨNu + FN12 (8.25)

Hence, the equations for the calculation of optimum values for the actuating
variables given in chapter 8.1.3 on page 88 can be further simplified. Substi-
tuting equation (8.25) instead of (8.15) into (8.14) results in the following cost
function:

J = (GN12uŨNu +FN12 −WN12)
T (GN12uŨNu +FN12 −WN12)+λŨNu

T ŨNu

If the minimum of the above equation is determined, optimum values for the
actuating variables which take the control horizon Nu into account can be
obtained from the following equation:

ŨNu = (GN12u

T GN12u + λI)−1 ·GN12u

T (WN12 − FN12) (8.26)

Here of course only ∆u(t) is required, too. Hence, only the first m rows of Ũ
need to be calculated.

Considering which ones of the equations from page 90 on, which are necessary
for the calculation of the free and the forced response, can be simplified in the
same way, it can easily be seen that because of the restriction of F to FN12 not
the complete matrix FGp is needed. Since, however, YU contains only the past
values of y(t) and ∆u(t), no simplification results for this matrix. Analogously,
the number of columns of FGpN12

and FGp is identical, only the number of
rows is reduced. Therefore the equation

FN12 = FGpN12
·YU
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8.2 Consideration of disturbance inputs with GPC

results, in which

FGpN12
=

264FN1,0 · · · FN1,na GN1p,0 · · · GN1p,nb−1

...
...

...
...

...
...

FN2,0 · · · FN2,na GN2p,0 · · · GN2p,nb−1

375

8.2 Consideration of disturbance inputs with GPC

If MPC is used for the control of a nonlinear system, e. g. an induction machine,
the nonlinearities of the controlled system can be considered in two different
ways. Either the nonlinear parts of the system are approximated with linear
ones or a nonlinear variant of MPC can be used. Indeed, until now nonlinear
MPC methods still represent a widely uninvestigated field. Certainly, there
are several publications which deal with nonlinear MPC control or which intro-
duce such control methods; nevertheless, this technology is still in its fledgling
stages. Although the statement by Garćıa, Prett and Morari from 1989 [40]
that in this research area barely the basics are understood is outdated now
since experimental investigations and sporadically even industrial applications
of nonlinear MPC methods are demonstrated in newer publications. However, a
theoretical foundation, in contrast to the linear strategies, is nearly completely
absent until today [88, 102]. Although meanwhile progress was made, nonlin-
ear model-based methods must become much more reliable, more efficient and
failsafe before they will be widely accepted. One of the major problems of all
nonlinear MPC control schemes is the proof that the control method always
finds the global minimum which is not as trivial as in the linear case and partly
proofs do still have to be deduced. In the case of nonlinear controls, no con-
clusions can be drawn from considering the open and then the closed control
loop, since the principle of superposition does only apply for linear systems.
Unfortunately, it would go beyond the scope of this work to derive a nonlinear
optimization method including a nonlinear model and a stability proof. How-
ever, as a continuation of this project the development of a nonlinear MPC for
electric drives could be conceivable; approaches therefore can be found e. g. in
the publication of Morari/Lee [88].

If a drive with an induction machine has to be controlled it makes sense to
consider the multiplicatively linked cross couplings which cannot be included
as non-linearities in the linear CARIMA model as disturbances instead of im-
plementing a nonlinear control strategy.
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8 Multivariable GPC control

8.2.1 Determination of the transfer function

Based on the discrete-time state space representation considering the distur-
bances according to the equations (7.41) and (7.42) now analog to the transfer
function matrix Gd(z−1) in equation (8.1), a disturbance transfer function ma-
trix Hd(z−1) is defined:

Hd(z−1) = Hd0 + Hd1z
−1 + Hd2z

−2 + · · ·+ Hdnz
−n =

Y(z)

V(z)
(8.27)

whereas the individual elements have the following dimensions:

y(t) : Vector(n× 1) with n = number of system outputs

v(t) : Vector(l × 1) with l = number of disturbance inputs

Hd(z−1) : Matrix(n× l)

With the help of the approach for the transfer function matrix Gd(z−1), de-
scribed in chapter 8.1.1, the disturbance transfer function matrix Hd(z−1) can
be obtained in the same way:

Hd(z−1) = Cd(zI−Ad)−1Ed + Fd (8.28)

Thus, two mathematically separated systems with overlapping outputs exist
for the actuating and for the disturbance variables.

8.2.2 Calculation of the system matrices

If the statements for the calculation of the polynomial matrices A(z−1) and
B(z−1), described in chapter 8.1.2, are applied to the matrix D(z−1) which
is necessary for the consideration of disturbances in the CARIMA model, the
following must be effective:

Hd(z−1) = A(z−1)
−1

D(z−1)z−1

Since A(z−1) is already known from 8.1.2, D(z−1) can be calculated directly
with the help of

D(z−1) = A(z−1)Hd(z−1)z (8.29)
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8.2 Consideration of disturbance inputs with GPC

8.2.3 Mathematical derivation

The CARIMA model

The multidimensional CARIMA model in equation (8.7) is complemented with
a deterministic disturbance term so that disturbance variables can be consid-
ered:

A(z−1)y(t) = B(z−1)u(t− 1) + D(z−1)v(t) + C(z−1)
ξ(t)

∆
(8.30)

with
D(z−1) = D0 + D1z

−1 + D2z
−2 + · · ·+ Dndz

−nd

The dimensions of D(z−1) and v(t) are:

D(z−1) : Matrix(n× l)

v(t) : Vector(l × 1)

Like in the previous cases, it is also assumed here that ξ(t) represents white
noise; therefore C(z−1) is equal to the identity matrix I. Thus equation (8.30)
becomes to

A(z−1)y(t) = B(z−1)u(t− 1) + D(z−1)v(t) +
ξ(t)

∆
(8.31)

The j-step ahead predictor

If the disturbance variables are considered, the well-known Diophantine equa-
tion does not change in comparison to the classical variant. The precalculation
of future system outputs can here also be derived via equation (8.9). Multipli-
cating equation (8.31) with ∆Ej(z

−1)zj and applying equation (8.9) solved for
Ej(z

−1)Ã(z−1), the following results for the prediction:

y(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1)

+ Ej(z
−1)D(z−1)∆v(t+ j)

+ Fj(z
−1)y(t)

+ Ej(z
−1)ξ(t+ j)

Again, the noise terms being in the future can be neglected and thus

ŷ(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1)

+ Ej(z
−1)D(z−1)∆v(t+ j)

+ Fj(z
−1)y(t)

(8.32)
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8 Multivariable GPC control

can be obtained. Now, analog to (8.11)

Ej(z
−1)D(z−1) = Hj(z

−1) + z−jHjp(z−1) degree
`
Hj(z

−1)
´
< j (8.33)

is defined additionally. Since the matrix polynomials Hj(z
−1) and Hjp(z−1) for

the disturbances exactly correspond to Gj(z
−1) and Gjp(z−1), the statements

in chapter 8.1.3 on page 86 et seqq. concerning the decomposition in future and
past values apply here, too. Therefore, equation (8.32) becomes

ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1)| {z }
forced response

+Hj(z
−1)∆v(t+ j)| {z }

future, deterministic
disturbances

+ Gjp(z−1)∆u(t− 1) + Hjp(z−1)∆v(t) + Fj(z
−1)y(t)| {z }

all values in the past
→ free response f(t+j)

(8.34)

ŷ(t+ j) = Gj(z
−1)∆u(t+ j − 1) + Hj(z

−1)∆v(t+ j) + f(t+ j) (8.35)

with

f(t+ j) = Gjp(z−1)∆u(t− 1) + Hjp(z−1)∆v(t) + Fj(z
−1)y(t)

Dimensions:

Gj(z
−1),Gjp(z−1) : Matrix(n×m) (unchanged)

Hj(z
−1),Hjp(z−1) : Matrix(n× l)

f(t) : Vector(n× 1)

The individual prediction steps are

ŷ(t+ 1) = G1(z
−1)∆u(t) + H1(z

−1)∆v(t+ 1) + f(t+ 1)

ŷ(t+ 2) = G2(z
−1)∆u(t+ 1) + H2(z

−1)∆v(t+ 2) + f(t+ 2)

ŷ(t+ 3) = G3(z
−1)∆u(t+ 2) + H3(z

−1)∆v(t+ 3) + f(t+ 3)

...

ŷ(t+Np) = GNp(z−1)∆u(t+Np − 1) + HNp(z−1)∆v(t+Np) + f(t+Np)
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8.2 Consideration of disturbance inputs with GPC

Calculation of the actuating variables

Since nothing has changed in the mathematical basis for the calculation of
optimum values for the actuating variables, which is still done via a quadratic
cost function, equation (8.14) remains valid without any changes. After a
combination of equation (8.35) analog to the procedure in chapter 8.1.3 on
page 88, the prediction equation results in

Y = GŨ + HṼ + F (8.36)

with Ũ = ∆U and Ṽ = ∆V. Since the disturbance term HṼ is independent
of the actuating variables, it can be considered as a kind of free response term.
Therefore, HṼ and F are combined to a new free response F′ = HṼ + F.
Thus, a simplified prediction equation results:

Y = GŨ + F′ (8.37)

Taking these assumptions into account, optimum future values for the actuating
variables can be calculated in the same way as without consideration of known
disturbances, only the free response F used there has to be replaced with its
modified version F′. The optimum controller outputs can be calculated with

Ũ = (GT G + λI)−1 ·GT (W − F′) (8.38)

if the usual simplifications, µj = 1 and λj = λ for all j, are applied.

Recursion of the Diophantine equation

The Diophantine equation which is necessary for the determination of the poly-
nomial matrices for the prediction has not changed compared to MIMO-GPC
without consideration of disturbances. Equation (8.9) is valid without any mod-
ifications and hence also the approach described in chapter 8.1.3 on page 89 et
seq.

Calculation of the free and forced response

Comparing equation (8.34) and (8.35) to (8.12) and (8.13) it can be seen that
the polynomial matrices Gj(z

−1) and Gjp(z−1) can be taken without any
changes. Hence, only Hj(z

−1) and Hjp(z−1) have to be derived newly. Since
the definitions of the polynomial matrices mentioned above in equation (8.33)
and (8.11) are very similar to each other, Hj(z

−1) has to be similar to Gj(z
−1)
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8 Multivariable GPC control

because of the recursive properties of Ej(z
−1). Therefore the following must

apply:

Hj(z
−1) = H0 + H1z

−1 + H2z
−2 + · · ·+ Hj−1z

−(j−1) j = 1 . . . Np

with

Hj =

jX
k=0

Ej−kDk

All summands with k > nd are omitted as well. Therefore, equation (8.36) can
be written in detail as:26666664

ŷ(t+ 1)
...

ŷ(t+ j)
...

ŷ(t+Np)

37777775 =

26666664

G0 · · · 0 · · · 0
...

. . .
...

. . .
...

Gj−1 · · · G0 · · · 0
...

. . .
...

. . .
...

GNp−1 · · · GNp−j · · · G0

37777775

26666664

∆u(t)
...

∆u(t+ j − 1)
...

∆u(t+Np − 1)

37777775

+

26666664

H0 · · · 0 · · · 0
...

. . .
...

. . .
...

Hj−1 · · · H0 · · · 0
...

. . .
...

. . .
...

HNp−1 · · · HNp−j · · · H0

37777775

26666664

∆v(t+ 1)
...

∆v(t+ j)
...

∆v(t+Np)

37777775

+

26666664

f(t+ 1)
...

f(t+ j)
...

f(t+Np)

37777775
(8.39)

Besides the already known terms Gjp(z−1) and Fj(z
−1) after equation (8.34),

the term Hjp(z−1) is also needed for the calculation of the free response. Since
this term is also calculated according to (8.33) analog to the calculation of
Gjp(z−1), the following applies for the individual elements of Hjp(z−1):

Hjp,i =

j−1X
k=0

EkDj+i−k j = 1 . . . Np; i = 0 . . . (nd− 1)
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8.2 Consideration of disturbance inputs with GPC

Summands with (j + i− k) > nd are omitted again.
If the coefficients of the polynomial matrices Gp(z−1), Hp(z−1) and F(z−1)

are combined together into a single matrix this results in

F = F(z−1)y(t) + Gp(z−1)∆u(t− 1) + Hp(z−1)∆v(t) = FGpHp ·YUV

in which, in addition to the already known definitions F(z−1) and G(z−1), the
terms

Hp(z−1) =

264 H1p(z−1)
...

HNpp(z−1)

375

=

264 H1p,0 + H1p,1z
−1 + · · ·+ H1p,nd−1z

−(nd−1)

...

HNpp,0 + HNpp,1z
−1 + · · ·+ HNpp,nd−1z

−(nd−1)

375

FGpHp =

264 F1,0 F1,1 · · · F1,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

G1p,0 G1p,1 · · · G1p,nb−1

...
...

...
...

GNpp,0 GNpp,1 · · · GNpp,nb−1

H1p,0 H1p,1 · · · H1p,nd−1

...
...

...
...

HNpp,0 HNpp,1 · · · HNpp,nd−1

375

YUV =

266666666666666664

y(t)
...

y(t− na)
∆u(t− 1)

...
∆u(t− nb)

∆v(t)
...

∆v(t− nd+ 1)

377777777777777775
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8 Multivariable GPC control

are valid. For a further simplification of the matrix operations, F′ = HṼ + F
can be summarized again as already explained. However, this does only make
sense if the future values of the disturbances v(t) are known. If they are
unknown, it is more reasonable to choose the actual value for all future values,
i. e. v(t+j) = v(t). Thereby, the changes ∆v(t+j) become zero which leads to
the fact that the complete term HṼ disappears. In these cases, the calculation
of a modified free response F′ is unnecessary; simply F is used instead of F′ in
equation (8.38). However, if the future disturbances are explicitly known, F′

should be determined exactly. Then the modified free response results to

F′ = H · Ṽ + FGpHp ·YUV = HFGpHp · ṼYUV

in which

HFGpHp =

26664
H0 0 · · · 0
H1 H0 · · · 0
...

...
. . .

...
HNp−1 HNp−2 · · · H0

F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

G1p,0 G1p,1 · · · G1p,nb−1

G2p,0 G2p,1 · · · G2p,nb−1

...
...

...
...

GNpp,0 GNpp,1 · · · GNpp,nb−1

H1p,0 H1p,1 · · · H1p,nd−1

H2p,0 H2p,1 · · · H2p,nd−1

...
...

...
...

HNpp,0 HNpp,1 · · · HNpp,nd−1

37775
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ṼYUV =

2666666666666666666666664

∆v(t+ 1)
...

∆v(t+Np)
y(t)

...
y(t− na)
∆u(t− 1)

...
∆u(t− nb)

∆v(t)
...

∆v(t− nd+ 1)

3777777777777777777777775

8.2.4 Consideration of the control horizon

Analog to the approach described in chapter 8.1.4, the computation time nec-
essary for the calculation of optimum future values for the actuating variables
should also be reduced when GPC with consideration of disturbances is used
by taking the control horizon Nu with Nu 5 N2 into account. The parts of the
matrices G, H, F′ etc., which are unnecessary for the calculation of ∆u(t+ j),
j = N1 . . . N2 are neglected and the matrices are reduced in their dimensions to
sizes as small as possible. A prediction equation with lesser dimensions results:

264ŷ(t+N1)
...

ŷ(t+N2)

375 =

264GN1−1 GN1−2 · · · GN1−Nu

...
...

...
GN2−1 GN2−2 · · · GN2−Nu

375
264 ∆u(t)

...
∆u(t+Nu − 1)

375

+

264HN1−1 HN1−2 · · · HN1−Nu

...
...

...
HN2−1 HN2−2 · · · HN2−Nu

375
264 ∆v(t+ 1)

...
∆v(t+Nu)

375

+

264f(t+N1)
...

f(t+N2)

375
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or

YN12 = GN12uŨNu + HN12uṼ + FN12 (8.40)

In the same way, equation (8.38) for the calculation of optimum values for the
actuating variables can be simplified to

ŨNu = (GN12u

T GN12u + λI)−1 ·GN12u

T (WN12 − F′N12) (8.41)

Since in most cases, especially in the application for a drive control that is
described here, future disturbances will not be known, the calculation of a
modified free response F′N12 and with it of a transfer function matrix HN12u

is unnecessary. Therefore, for the prediction of the free response, only the
equation

FN12 = FGpHpN12
·YUV

is required, in which

FGpHpN12
=

264 FN1,0 FN1,1 · · · FN1,na

...
...

...
...

FN2,0 FN2,1 · · · FN2,na

GN1p,0 GN1p,1 · · · GN1p,nb−1

...
...

...
...

GN2p,0 GN2p,1 · · · GN2p,nb−1

HN1p,0 HN1p,1 · · · HN1p,nd−1

...
...

...
...

HN2p,0 HN2p,1 · · · HN2p,nd−1

375
8.3 MIMO-GPC with filter

As already described for unidimensional model-based controllers (chapter 6),
a MIMO-GPC controller is also not really feasible in the presence of harmonic
affected measured values. The possible workarounds, i. e. stabilizing the control
loop by reducing the controller dynamics or by integrating a low-pass filter into
the measuring system, can absolutely not be recommended as they lead to an all
in all more sluggish control. A remedial approach for this, as already described
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8.3 MIMO-GPC with filter

in chapter 6.2 for the unidimensional case, is to integrate a filter into the GPC
controller itself. In the following, this should be adapted for a multidimensional
control.

Of course, the use of the integrated filter in the system model is possible with
and also without consideration of the disturbances. For reasons of simplicity,
here only the procedure with consideration of known disturbances is derived.
The reader himself can easily derive a GPC control with filter, but without
considering the disturbances; in this case only the terms D(z−1) and v(t) as
well as the terms derived from these have to be neglected in the following
description.

For a practical implementation of the filter characteristics, Camacho/Bor-
dons [20, chapter 6.1.2] describe a method that is taken from Goodwin/Sin [44,
chapter 7.4.2]; however, it seems to be more easy and more reasonable to extend
the principle discussed in chapter 6.2.1 on page 50 et seqq. to multidimensional
control with consideration of disturbances similar to the SISO principle by
Clarke [28].

8.3.1 Determination of the transfer function

Since the integrated filter has no influence on the system itself, the transfer
function of the system does of course not change. The equations derived in the
chapters 8.1.1 and 8.2.1 apply without any limitations.

8.3.2 Calculation of the system matrices

Being a decomposition of the transfer function, the system matrices do also not
depend on the filtering. Hence, the equations specified in the chapters 8.1.2
and 8.2.2 can be applied further on.

8.3.3 Mathematical derivation

The CARIMA model

Since the plant itself has not changed, the CARIMA model (8.30) from chap-
ter 8.2.3 has not changed, either; only the assumption that ξ(t) represents
white noise cannot be accepted anymore. Therefore, as already described for
the unidimensional case in chapter 6.2.1 on page 50, C(z−1) must not be set
equal to the identity matrix I, but is substituted with a design polynomial
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8 Multivariable GPC control

T(z−1). Thus, the CARIMA model results into

A(z−1)y(t) = B(z−1)u(t− 1) + D(z−1)v(t) + T(z−1)
ξ(t)

∆
(8.42)

with

T(z−1) = T0 + T1z
−1 + T2z

−2 + · · ·+ Tntz
−nt

in which for a filter, normally T0 = I is set. The dimension of T(z−1) is

T(z−1) : Matrix(n× n)

The j-step ahead predictor

Compared to equation (8.31), an additional term with T(z−1) exists now and
so the Diophantine equation (8.9) changes to

T(z−1) = Ej(z
−1)A(z−1)∆ + z−jFj(z

−1)

= Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (8.43)

Analog to the approach described in chapter 8.1.3 on page 86 et seqq. by
multiplying (8.42) with ∆Ej(z

−1)zj and by substituting equation (8.43) solved
for Ej(z

−1)Ã(z−1) into the result, the following prediction equation can be
obtained:

T(z−1)y(t+ j) = Ej(z
−1)B(z−1)∆u(t+ j − 1)

+ Ej(z
−1)D(z−1)∆v(t+ j)

+ Fj(z
−1)y(t)

+ T(z−1)Ej(z
−1)ξ(t+ j)

Again, as Ej(z
−1) is of degree j − 1, all noise terms are completely in the

future, which means that they do not have to be considered for the prediction.
At the same time, all variables can be filtered with T(z−1), i. e. dividing them
by T(z−1). Then, the following results:

ŷ(t+ j) = Ej(z
−1)B(z−1)∆uf (t+ j − 1)

+ Ej(z
−1)D(z−1)∆vf (t+ j)

+ Fj(z
−1)yf (t)
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8.3 MIMO-GPC with filter

with the filtered variables

uf (t) =
u(t)

T(z−1)
, vf (t) =

v(t)

T(z−1)
, yf (t) =

y(t)

T(z−1)

Future values of the actuating variables are not known yet. Hence, it does not
make sense to filter them; the same applies for future disturbances. Therefore,
the polynomial T(z−1) has to be taken out of the corresponding terms. Analog
to the equations (6.19), (8.11) and (8.33), the following definitions result:

Ej(z
−1)B(z−1) = Gj

′(z−1)T(z−1) + z−jΓj(z
−1) (8.44)

Ej(z
−1)D(z−1) = Hj

′(z−1)T(z−1) + z−jΘj(z
−1) (8.45)

With these, the prediction equation becomes

ŷ(t+ j) = Gj
′(z−1)∆u(t+ j − 1)| {z }

forced response

+Hj
′(z−1)∆v(t+ j)| {z }

future deterministic
disturbances

+ Γj(z
−1)∆uf (t− 1) + Θj(z

−1)∆vf (t) + Fj(z
−1)yf (t)| {z }

all terms in the past
→ free response f ′(t+j)

(8.46)

ŷ(t+ j) = Gj
′(z−1)∆u(t+ j − 1) + Hj

′(z−1)∆v(t+ j) + f ′(t+ j) (8.47)

with

f ′(t+ j) = Γj(z
−1)∆uf (t− 1) + Θj(z

−1)∆vf (t) + Fj(z
−1)yf (t)

Dimensions:

Gj
′(z−1),Γj(z

−1) : Matrix(n×m)

Hj
′(z−1),Θj(z

−1) : Matrix(n× l)

f ′(t) : Vector(n× 1)

As the equations (8.42) to (8.46) show, the disturbance variables v(t) have
to be filtered with the same filter as the actuating variables u(t) and the out-
put variables y(t). Hence, the three vectors mentioned above must have the
same dimensions, i. e. n = m = l. If this is not the case, the corresponding
system matrices of the machine model from chapter 7.3 can be extended as
a workaround by artificially adding zero elements in order to get the required
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number of rows. In this way it can be made sure that all system variables can
be filtered with the identical filter matrix.

Finally, the single prediction steps can be written as

ŷ(t+ 1) = G1
′(z−1)∆u(t) + H1

′(z−1)∆v(t+ 1) + f ′(t+ 1)

ŷ(t+ 2) = G2
′(z−1)∆u(t+ 1) + H2

′(z−1)∆v(t+ 2) + f ′(t+ 2)

ŷ(t+ 3) = G3
′(z−1)∆u(t+ 2) + H3

′(z−1)∆v(t+ 3) + f ′(t+ 3)

...

ŷ(t+Np) = GNp

′(z−1)∆u(t+Np − 1) + HNp

′(z−1)∆v(t+Np) + f ′(t+Np)

Calculation of the actuating variables

For the determination of optimum future values for the actuating variables,
the procedure is just the same as described in chapter 8.1.3 and 8.2.3 on the
pages 88 and 99 for MIMO-GPC without internal filter and without or with
consideration of disturbances. From equation (8.47) results:

Y = G′Ũ + H′Ṽ + F′ (8.48)

Combining the partial terms H′Ṽ and F′, which are independent of the actu-
ating variables, results in

Y = G′Ũ + F′′ with F′′ = H′Ṽ + F′ (8.49)

Applying the cost function (8.14), which has already been described in chap-
ter 8.1.3 on page 88, finally, the equation for optimum future values of the
actuating variables is obtained:

Ũ = (G′T G′ + λI)−1 ·G′T (W − F′′) (8.50)

Recursion of the Diophantine equation

In order to solve the Diophantine equation (8.43) for the multidimensional
case, the procedure is exactly the same as the one already described for the
unidimensional case in chapter 6.2.1 on page 52. Again, the filter or design
polynomial T(z−1) is omitted because of the subtraction. Hence, the recursion
equations (8.19) to (8.21) determined in chapter 8.1.3 on page 89 do also apply
here. As explained in chapter 8.2.3 on page 99, the consideration of disturbances
does not change the Diophantine equation and its solution.
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8.3 MIMO-GPC with filter

The final terms of the recursion are obtained by considering equation (8.43)
for j = 1:

E1(z
−1) = E0 =

T0

Ã0

= I since Ã0 = I and T0 = I (8.51)

F1(z
−1) = z

`
T(z−1)− Ã(z−1)

´
(8.52)

Calculation of the free and forced response

The individual elements for the calculation of the free and forced response
are calculated in the same way as for the unidimensional case. Starting from
equation (8.44) with the considerations described in chapter 6.2.1 on page 53
et seqq., one can see that here again no terms with u(t + j), j < 0 may enter
Gj

′(z−1). Because of this, the degree of Gj
′(z−1) is limited to 5 (j − 1).

Accordingly, for the elements of Gj
′(z−1) follows:

1. The matrix elements G′
j,0 . . .G

′
j,j−1 and G′

j+1,0 . . .G
′
j+1,j−1 are all

identical.

2. The matrix rows only differ in the newly added element G′
j+1,j .

Hence, the following definition applies for G′:

G′ =

2666664
G′

0 0 0 · · · 0
G′

1 G′
0 0 · · · 0

G′
2 G′

1 G′
0 · · · 0

...
...

...
. . .

...
G′

Np−1 G′
Np−2 G′

Np−3 · · · G′
0

3777775
Now, the determination of the elements of Γ(z−1) is done with the approach
described on page 53 et seqq.: Equation (8.44) is set up for j + 1 and j and
then these equations are subtracted from each other.

+ Ej+1(z
−1)B(z−1) = Gj+1

′(z−1)T(z−1) + z−(j+1)Γj+1(z
−1)

− Ej(z
−1)B(z−1) = Gj

′(z−1)T(z−1) + z−jΓj(z
−1)

Ejz
−jB(z−1) = G′

jz
−jT(z−1) + z−j

`
z−1Γj+1(z

−1)− Γj(z
−1)
´

A coefficient comparison results into

G′
j =

EjB0 + Γj,0

T0

Γj+1,i−1 = Γj,i + EjBi −G′
jTi
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8 Multivariable GPC control

and for the last element:

Γj+1,i = EjBi+1 −G′
jTi+1

The final terms of the recursion can be determined from equation (8.44) for
j = 1 as follows:

G′
0 =

E0B0

T0

Γ1,i = E0Bi+1 −G′
0Ti+1

The limits or degrees of the individual polynomial matrices can be derived
according to the same criteria as for SISO control with filter. In the same way,
all terms with Bk, k > nb and Tk, k > nt are omitted again.

Besides Γ, Θ is also necessary for the calculation of the free response. Since
the equations (8.44) and (8.45) have the absolutely identical framework, the
same solution approach as for the calculation of G′ and Γ can be used for the
calculation of the elements of H′ and Θ. Then it follows:

H′ =

2666664
H′

0 0 0 · · · 0
H′

1 H′
0 0 · · · 0

H′
2 H′

1 H′
0 · · · 0

...
...

...
. . .

...
H′

Np−1 H′
Np−2 H′

Np−3 · · · H′
0

3777775
The recursion equations are given by:

H′
j =

EjD0 + Θj,0

T0

Θj+1,i−1 = Θj,i + EjDi −H′
jTi

and for the last element:

Θj+1,i = EjDi+1 −H′
jTi+1

as well as for the last terms:

H′
0 =

E0D0

T0

Θ1,i = E0Di+1 −H′
0Ti+1
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8.3 MIMO-GPC with filter

Elements with Dk, k > nd and Tk, k > nt are, of course, omitted. Hence, the
prediction equation (8.48) can be written in detail as:

26666664

ŷ(t+ 1)
...

ŷ(t+ j)
...

ŷ(t+Np)

37777775 =

26666664

G′
0 · · · 0 · · · 0

...
. . .

...
. . .

...
G′

j−1 · · · G′
0 · · · 0

...
. . .

...
. . .

...
G′

Np−1 · · · G′
Np−j · · · G′

0

37777775

26666664

∆u(t)
...

∆u(t+ j − 1)
...

∆u(t+Np − 1)

37777775

+

26666664

H′
0 · · · 0 · · · 0

...
. . .

...
. . .

...
H′

j−1 · · · H′
0 · · · 0

...
. . .

...
. . .

...
H′

Np−1 · · · H′
Np−j · · · H′

0

37777775

26666664

∆v(t+ 1)
...

∆v(t+ j)
...

∆v(t+Np)

37777775

+

26666664

f ′(t+ 1)
...

f ′(t+ j)
...

f ′(t+Np)

37777775
(8.53)

For a simpler calculation of the free response F′, the filtered past values yf (t),
∆uf (t) and ∆vf (t) are combined to the matrices Yf , Uf and Vf and then they
are altogether combined to a big matrix YUVf according to the already well-
known procedure. In the same way the polynomial matrices F(z−1), Γ(z−1)
and Θ(z−1) are combined to FΓΘ. Then it follows:

F′ = F(z−1)yf (t) + Γ(z−1)∆uf (t− 1) + Θ(z−1)∆vf (t) = FΓΘ ·YUVf

in which

F(z−1) =

264 F1(z
−1)

...
FNp(z−1)

375 =

264 F1,0 + F1,1z
−1 + · · ·+ F1,naz

−na

...
FNp,0 + FNp,1z

−1 + · · ·+ FNp,naz
−na

375

111



8 Multivariable GPC control

Γ(z−1) =

264 Γ1(z
−1)

...
ΓNp(z−1)

375 =

264 Γ1,0 + Γ1,1z
−1 + · · ·+ Γ1,nb−1z

−(nb−1)

...

ΓNp,0 + ΓNp,1z
−1 + · · ·+ ΓNp,nb−1z

−(nb−1)

375

Θ(z−1) =

264 Θ1(z
−1)

...
ΘNp(z−1)

375 =

264 Θ1,0 + Θ1,1z
−1 + · · ·+ Θ1,nd−1z

−(nd−1)

...

ΘNp,0 + ΘNp,1z
−1 + · · ·+ ΘNp,nd−1z

−(nd−1)

375

FΓΘ =

264 F1,0 F1,1 · · · F1,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

Γ1,0 Γ1,1 · · · Γ1,nb−1

...
...

...
...

ΓNp,0 ΓNp,1 · · · ΓNp,nb−1

Θ1,0 Θ1,1 · · · Θ1,nd−1

...
...

...
...

ΘNp,0 ΘNp,1 · · · ΘNp,nd−1

375

YUVf =

266666666666666664

yf (t)
...

yf (t− na)

∆uf (t− 1)
...

∆uf (t− nb)

∆vf (t)
...

∆vf (t− nd+ 1)

377777777777777775
If future values of the disturbances v(t) are known, now the combination

F′′ = H′Ṽ + F′ can be made according to the approach described on page 108
in order to further simplify the calculation of the GPC control. In this case,
the modified free response results into:

F′′ = H′ · Ṽ + FΓΘ ·YUVf = H′FΓΘ · ṼYUV
f
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8.3 MIMO-GPC with filter

with

H′FΓΘ =

26664
H′

0 0 · · · 0
H′

1 H′
0 · · · 0

...
...

. . .
...

H′
Np−1 H′

Np−2 · · · H′
0

F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

Γ1,0 Γ1,1 · · · Γ1,nb−1

Γ2,0 Γ2,1 · · · Γ2,nb−1

...
...

...
...

ΓNp,0 ΓNp,1 · · · ΓNp,nb−1

Θ1,0 Θ1,1 · · · Θ1,nd−1

Θ2,0 Θ2,1 · · · Θ2,nd−1

...
...

...
...

ΘNp,0 ΘNp,1 · · · ΘNp,nd−1

37775

ṼYUV
f

=

2666666666666666666666666664

∆v(t+ 1)
...

∆v(t+Np)

yf (t)
...

yf (t− na)

∆uf (t− 1)

...

∆uf (t− nb)

∆vf (t− 1)
...

∆vf (t− nd+ 1)

3777777777777777777777777775
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8 Multivariable GPC control

If the current values of the disturbances v(t) are known, but not their future
trend, then they are assumed to be constant. This leads to the fact that the
expression ∆v(t) becomes zero and that the term H′Ṽ disappears. Then, the
calculation of a modified free response F′′ is unnecessary and in equation (8.50),
F′′ is replaced with F′.

8.3.4 Consideration of the control horizon

According to chapters 8.1.4 and 8.2.4 a simplification of the calculations under
consideration of the control horizon Nu, Nu 5 N2 is possible, even if the filter
characteristics of GPC are used. Then equation (8.53) becomes264ŷ(t+N1)

...
ŷ(t+N2)

375 =

264G
′
N1−1 G′

N1−2 · · · G′
N1−Nu

...
...

...
G′

N2−1 G′
N2−2 · · · G′

N2−Nu

375
264 ∆u(t)

...
∆u(t+Nu − 1)

375

+

264H
′
N1−1 H′

N1−2 · · · H′
N1−Nu

...
...

...
H′

N2−1 H′
N2−2 · · · H′

N2−Nu

375
264 ∆v(t+ 1)

...
∆v(t+Nu)

375

+

264f
′(t+N1)

...
f ′(t+N2)

375
or

YN12 = G′
N12uŨNu + H′

N12uṼ + F′N12 (8.54)

The same simplifications can be carried out for equation (8.50) with which the
calculation of optimum values for the actuating variables is done:

ŨNu = (G′
N12u

T
G′

N12u + λI)−1 ·G′
N12u

T
(WN12 − F′′N12) (8.55)

Based on the fact that in most cases future values of the disturbances will
be unknown, F′′N12 can be replaced with F′N12 as already described above.
Then, the matrix H′

N12u is redundant, too, and it is not necessary to calculate
it. Therefore, the free response F′N12 is given by:

F′N12 = FΓΘN12 ·YUVf
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in which

FΓΘN12 =

264 FN1,0 FN1,1 · · · FN1,na

...
...

...
...

FN2,0 FN2,1 · · · FN2,na

ΓN1,0 ΓN1,1 · · · ΓN1,nb−1

...
...

...
...

ΓN2,0 ΓN2,1 · · · ΓN2,nb−1

ΘN1,0 ΘN1,1 · · · ΘN1,nd−1

...
...

...
...

ΘN2,0 ΘN2,1 · · · ΘN2,nd−1

375
8.4 Experimental results

8.4.1 Current control

The effectiveness of considering disturbances using a multidimensional GPC
controller was experimentally tested. For these tests, different reference value
steps were applied to the stator current components isd and isq and the con-
troller behavior for the other current component was observed. As figure 2.3
on page 10 shows, the cross coupling between isd and isq is proportional to the
rotating frequency ωs. Therefore, considering a machine in standstill operation
(ω = 0), a feedback of the rotor flux ψr on the stator current is is not existant.
Because of this, the reference value for the mechanical rotating speed ω was
set to ω = 0.5 (half nominal speed) for the experiments; the electrical rotating
speed ωs will be slightly higher because of the slip. The used prediction hori-
zons are Np = 4 and Nu = 2; the degrees of the individual system polynomials
have the values na = 1, nb = 1, nd = 1 and nt = 1. In the following, the
system matrices for the MIMO-GPC controller are given:

Gd(z−1) =

264
0,1484 z−1

1−0,9873 z−1 0 0

0 0,1484 z−1

1−0,9873 z−1 0

0 0 0

375

Hd(z−1) =

264 0 0,03197 z−1

1−0,9873 z−1 0
−0,03197 z−1

1−0,9873 z−1 0 −0,1423 z−1

1−0,9873 z−1

0 0 0

375
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8 Multivariable GPC control

T(z−1) =

241− 0, 95 z−1 0 0
0 1− 0, 95 z−1 0
0 0 1

35
A(z−1) =

241− 0, 9873 z−1 0 0
0 1− 0, 9873 z−1 0
0 0 1

35
B(z−1) =

240, 1484 z−1 0 0
0 0, 1484 z−1 0
0 0 0

35
D(z−1) =

24 0 0, 03197 z−1 0
−0, 03197 z−1 0 −0, 1423 z−1

0 0 0

35
λ =

240, 003 0 0
0 0, 003 0
0 0 0, 003

35

The measurement results can be found in figure 8.1. The plots show the effect
of a step in the torque-producing current component from isq = 0 to isq = 1 to
the field-producing current component isd, which is controlled with the same
MIMO-GPC controller. The field-producing current component is controlled
to the constant value isd = 0.2. Figure 8.1(a) shows that during the increase of
the torque-producing current component isq the flux-producing current com-
ponent isd shows a recognizable deviation from its reference value when a GPC
controller without consideration of disturbances is used. If the known influence
of the cross coupling is considered in the controller, the control error of isd

disappears nearly completely during the increase of isq (figure 8.1(b)).

8.4.2 Computation times

The computation time necessary for the multidimensional current controller
with consideration of disturbances is around 4.1µs, i. e. approximately in the
same range as the calculation time for two unidimensional GPC current con-
trollers (see chapter 6.3.4 on page 66). Since, in contrast to the two unidi-
mensional currents controllers, the MIMO control considers the cross coupling
between isd und isq as a disturbance input, multivariable control for an indi-
vidual control of the flux- and torque-producing current components is clearly
preferable.
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Figure 8.1: Multidimensional current control
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8.5 Comparative summary

A mathematical view of the different variations of MIMO-GPC shows the exact
differences and is helpful for the interpretation of the results shown above.
Table 8.1 gives an overview of the various equations for the calculation of
the free response and of future optimum values for the actuating variables in
different configurations.

without disturbances with disturbances

without filter

F = F(z−1)y(t)

+ Gp(z−1)∆u(t− 1)

= FGp ·YU

Ũ = (GT G + λI)−1

·GT (W − F)

F = F(z−1)y(t)

+ Gp(z−1)∆u(t− 1)

+ Hp(z−1)∆v(t)

= FGpHp ·YUV

F′ = H · Ṽ + F

Ũ = (GT G + λI)−1

·GT (W − F′)

with filter

F′ = F(z−1)yf (t)

+ Γ(z−1)∆uf (t− 1)

= FΓ ·YUf

Ũ = (G′T G′ + λI)−1

·G′T (W − F′)

F′ = F(z−1)yf (t)

+ Γ(z−1)∆uf (t− 1)

+ Θ(z−1)∆vf (t)

= FΓΘ ·YUVf

F′′ = H′ · Ṽ + F′

Ũ = (G′T G′ + λI)−1

·G′T (W − F′′)

Table 8.1: Comparison of different MIMO-GPC variations

As already described in chapter 8.2.3 on page 99 et seqq., G and G′ are
absolutely identical, no matter if disturbance inputs are taken into considera-
tion, or not. Thus, the only difference between the structures of MIMO-GPC
controllers with and without consideration of known disturbances is the cal-
culation of the free response F or F′. Thereby only the term Hp(z−1)∆v(t)
or Θ(z−1)∆vf (t) is added since F, Gp, F′ and Γ are all independent of the
consideration of disturbances. Examining the values in the polynomial matrix
Θ(z−1), it can be seen that the influence of the disturbances on the calculation
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8.5 Comparative summary

of the free response is quite small which, however, describes the actual behavior
of the machine. Thus, the behavior of the controller does not change much if
the disturbances are taken into account in the GPC controller. Despite this, as
shown in figure 8.1, a significant suppression of the cross coupling is noticeable.
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9 Direct model-based predictive control

All the techniques for optimum control of a drive by means of Long-Range
Predictive Control (LRPC), which have been described so far, are based on the
principle that an optimum voltage space vector is determined, which will be
applied to the machine being controlled in the next switching cycle. Commonly
a two-level inverter fed from a DC link voltage is used as voltage source for the
machine, as shown in figure 9.1. This inverter consists of three half bridges,
labeled with the letters a, b and c. They can independently connect the three
phases of the machine either to the positive or to the negative DC link voltage
ud. Hence, it follows that only a finite number of possible voltage space vectors
us can exist. In control engineering, such systems, consisting of interdependent
physical laws, logical rules and which are subject to constraints of the operating
range, i. e. their input variables, state variables and output variables can assume
partly continuous but also partly discrete values, are named Mixed Logical
Dynamical Systems (MLD) or Hybrid Systems.

In drive control, the normal approach is that the controller output is fed
to a so-called modulator which discretizes the reference space voltage vector
(figure 9.2(a)). This means that the modulator synthesizes the desired space
voltage vector which can normally not be delivered from the inverter out of
three other space voltage vectors that can be delivered. The value of these
voltage space vectors averaged over one sampling interval is equal to the desired
reference value. As conventional model-based techniques do not consider this
fact, the actual optimum control is impaired by the modulator which is neither
considered in the controller design nor in the model. An optimum control
which regards the fact that the inverter can realize only a finite number of
possible output states, must be superior to the MPC techniques discussed so
far. Hence, a new MPC scheme is introduced in the following: It allows direct
inverter control, i. e. the control algorithm directly determines the optimum
inverter switching state for the next sampling cycle. This technique is called
Direct Model Predictive Control or DMPC (figure 9.2(b)).

The basic functional principle of direct model-based predictive control can be
explained best with an example of playing chess. The chess player precalculates
all discrete values of the variables, in this case the moves of his chessmen, up to
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control
circuit

ud

usa

usc

usb

ba c

Figure 9.1: Two-level inverter circuit with DC link
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9 Direct model-based predictive control

a “prediction horizon” for the further match, including the possible movements
of his opponent, i. e. the behavior of the controlled system. Besides, he takes
his decisions similar to the Branch and Bound principle (see chapter 9.4.1)
because movement combinations which lead recognizably to a disadvantage for
him are not examined further, instead he immediately looks for alternatives.
After finishing the optimization, he will choose the best possible move for him,
carry it out and then wait for the reaction of the opponent which corresponds
again to the principle of Receding Horizon. After the system reaction, i. e. the
opponent’s move, the whole precalculation and optimization will be started
again.

9.1 Published techniques

As already mentioned in chapter 5, model-based control schemes are already
known for more than 30 years in control engineering and are also applied in
practical applications. A short historical overview is given e. g. in the publica-
tions of Clarke [30] and Morari/Lee [88]. Nevertheless, the implicit considera-
tion of switching actuators has barely found an entree in these published control
techniques. The work carried out at the Technical University of Aachen in the
1980s by Hoffmann [51, 52] and Schmitz [105] can be taken as an exception.
Just recently, research in the control of hybrid systems has gained in impor-
tance and now publications which deal with the application of model-based
predictive techniques to these systems are known [10].

In 1984, Hoffmann published in his dissertation [51] under the name Adaptive
Two-step Control for the first time an MPC control scheme which considered
the special constraints of an actuator with a finite number of discrete switching
states already in the approach itself. Thereby, Hoffmann only dealt with a
two-step controller. The description of the control strategy shows clearly that
it is a typical MPC control scheme:

• The controller itself contains a system model. The model parameters can
be adapted online.

• The future behavior of the system is precalculated for all possible se-
quences of control values using a predictor and it is evaluated via a cost
function. The sequence of control values with the best result is selected
and the first value of this sequence is applied to the controlled system.

• The advance calculation will be done up to a predetermined cost and
control horizon.
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9.2 Inverter operation with DMPC

As the above points prove, Adaptive Two-step Control is definitely a special
case of Direct Model Predictive Control.

The two-step control by Hoffmann was further developed by Schmitz and
published as Adaptive Predictive Three-step Control [105]. Besides the exten-
sion of the method to a three-step control, Schmitz has carried out additional
improvements in detail, among other things, with regard to the search for an
optimum sequence of control values. Special attention was given to the reduc-
tion of the necessary computation time, an aspect which can, even today, be a
decisive factor for the feasibility of a DMPC control.

9.2 Inverter operation with DMPC

In drive technology, in most cases, a two-level inverter fed from a DC link is
used as an actuator for closed-loop current control. As it is commonly known,
such an inverter has eight discrete switching states which can directly generate
seven different voltage vectors. The possible voltage values can be calculated
with the equations (2.1) to (2.4) given in chapter 2 on page 7. Figure 9.3 shows
the results in space vector representation; the corresponding values are depicted
in table 9.1. Of course, the DMPC method can be applied to any kind of in-
verter with a higher number of switching levels and of voltage or current source
type. Then, however, figure 9.3 and table 9.1 must be modified accordingly. It
has to be pointed out that the number of possible voltage space vectors and
thus, the number of possible switching sequences to be precalculated will rise
exponentially when multilevel inverters are considered.

When controlling an electrical machine, the controller can be implemented
either in stationary or in rotating coordinates. Since the inverter switching
states seen from a rotating coordinate frame will be constantly changing, it is
better to realize a direct controller in a stationary (stator) coordinate system.
Thus the reference values will change sinusoidally with time, however, with an
MPC controller this does not lead to a contouring error as long as the sine
form of the reference value can be precalculated and then be forwarded to the
controller input. Although some additional computation time is necessary, this
is less time consuming than the transformation of all the possible switching
states of the inverter into the rotating coordinate frame and their following
forecast. Furthermore, predicting the sine form of the reference current value
can simply be omitted at the expense of a contouring error, i. e. for the complete
prediction horizon Np, it can be assumed that the reference value is constant.
Implementing the DMPC controller in field coordinates on the other hand,
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Figure 9.3: Possible switching states of a two-level inverter

Vector Switching state Voltage
number Bridge c Bridge b Bridge a usα usβ

0 0 0 0 0 0

1 0 0 1 2√
3

0

2 0 1 0 − 1√
3

1

3 0 1 1 1√
3

1

4 1 0 0 − 1√
3

−1

5 1 0 1 1√
3

−1

6 1 1 0 − 2√
3

0

7 1 1 1 0 0

Table 9.1: Possible switching states of a two-level inverter
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9.2 Inverter operation with DMPC

would mean that a prediction of the future location of the possible inverter
switching states would be absolutely necessary since otherwise no control would
be possible.

9.2.1 Consideration of the Bootstrap circuit

Low-cost inverters often have a so-called bootstrap circuit as power supply for
the driver components of the IGBT module. When such a circuit is used, a
power supply for the driver circuits of the “upper” half-bridge IGBT switches
with special DC/DC converters is not required; unfortunately, this leads to
the serious drawback that the “upper” IGBT drivers are only supplied with
power if the “lower” half-bridge IGBT switches are turned on. This fact can be
handled when the corresponding driver modules are equipped with a storage
capacitor which backs up the power supply while the“upper” IGBTs are turned
on. Since this storage capacitor is only recharged when the “lower” devices
are switched on, the duty cycles cannot be arbitrarily chosen. By using a
modulation technique, e. g. space vector modulation, it can be ensured that
the “lower” semiconductor devices are switched on often enough to guarantee
power supply for the driver of the “upper” switches by limiting the modulation
index to e. g. mmax = 0.95. A direct inverter control method without the need
for a modulator does not have this possibility. Nevertheless, in this case it also
has to be ensured that after a certain on-time of the “upper” device, the “lower”
device will be switched on for at least one sampling cycle in order to recharge
the capacitor for the power supply of the “upper” IGBT drivers.

Classical direct control methods, e. g. Direct Torque Control (DTC) [1, 113]
or Direct Self Control (DSC) [33], offer no such possibility to pass the informa-
tion to the controller which voltage vectors should not be switched due to the
aforementioned constraints of the bootstrap circuit. In these cases, the easiest
method is simply to switch on the “lower” device of the related half bridge
compulsorily and thus, to ignore the optimum voltage vector precalculated by
the control algorithm at least partially. However, this leads to a non-optimum
control since by the subsequent correction of the optimum vector it cannot be
guaranteed that the best possible switching state has been selected from the
remaining allowed ones.

Model-based control strategies (MPC controllers) are predestined for appli-
cations in which constraints of the actuator or of the plant have to be considered
already in the controller design. Accordingly, when using DMPC methods, it is
possible to pass the information about the constraint resulting from the boot-
strap circuit to the controller already beforehand. Terno [115, p. 28] defines
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9 Direct model-based predictive control

this as a prohibited family , i. e. a subset of possible solutions of the optimiza-
tion problem which may not be used because of any constraints and hence, are
not available as an optimum solution. The knowledge at which time some volt-
age vectors may not be switched can be included in the design of the control
algorithm and hence, the controller will consider this for the whole control hori-
zon in advance. Because of this, it is ensured that the controller will find the
optimum switching sequence among the remaining possibilities under all con-
ditions. Therefore DMPC techniques are superior to any other direct control
method.

9.3 Model formulation

Because of the close relationship with conventional MPC, modeling can be done
following the same principles. In [51] Hoffmann also uses an approach similar to
a CARIMA model. However, considering the derivation of the machine model
one has to take care that a DMPC controller—as mentioned in chapter 9.2—is
better realized in a stationary (stator) coordinate system.

Basic for all models used to control an induction machine is always the com-
plex machine model as stated in chapter 2, which can be described by equa-
tions (2.9) and (2.10) (see also figure 2.2 on page 9). If a stationary coordinate
frame is selected, i. e. ωk = 0, and the equations (2.9) and (2.10) are splitted
into real and imaginary part, the following system of equations can be obtained:

isα + τσ
′ disα

dτ
=

kr

rστr
ψrα +

kr

rσ
ωψrβ +

1

rσ
usα (9.1)

isβ + τσ
′ disβ

dτ
=

kr

rστr
ψrβ −

kr

rσ
ωψrα +

1

rσ
usβ (9.2)

ψrα + τr
dψrα

dτ
= −ωτrψrβ + lhisα (9.3)

ψrβ + τr
dψrβ

dτ
= ωτrψrα + lhisβ (9.4)

In order to clarify the relations between isα, isβ , ψrα and ψrβ , figure 9.4 shows
the signal flow graph of an induction machine in stationary coordinates.

In the same way as with continuous signal MPC controllers, the control
algorithm can be developed as a single or MIMO controller; consideration of
disturbances and filtering of noisy measurement signals can be implemented,
too. Since, in these cases, the approach is identical to the ones described in
chapters 6 and 8, only one of the many possible combinations is discussed here:
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usα

ω

usβ

rσ
1

rσ
1

τσ'

τσ'

isα ψrα

lh τr

ωs

isβ

ψrβ

lh τr

kr rστr

kr rστr

τr

τr

Figure 9.4: Scalar machine model (stator coordinates)
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A MIMO-DMPC algorithm is introduced in which the cross coupling between
ψrα and ψrβ as well as the impact of isα and isβ caused by the rotor flux
(figure 9.4) is neglected due to simplicity.

As the signal flow graph in figure 9.4 shows, the stator voltages usα and usβ

are the input variables of the plant and thus, they are also the actuating vari-
ables. A MIMO-DMPC controller for current control of an induction machine
with a DC link inverter, using this model with usα and usβ as plant inputs,
has to optimize two actuating variables, which can, according to table 9.1, take
only a few discrete values. In addition to that, usα and usβ are not independent
from each other because they depend on the switching states of the inverter
half bridges. Furthermore, the change of the actuating values ∆u does in this
case not express the real effort for changing the actuating variables because
the effort is not dependent on the change of the voltage level of usα or usβ ,
but only on the switching operations in the inverter itself. Because of this, it
is reasonable to use the switching states of the three half bridges as actuating
variables instead of the complex stator voltages. As a matter of course, in this
case, the conversion from the half bridge states to the machine voltages usα

and usβ has to be added to the plant model. The necessary conversion factors
can be taken from table 9.1. Such an approach has several advantages:

• The cost function evaluates the real switching effort, i. e. the switchings
that have to be executed in the inverter. This means that only by selecting
the appropriate weighting factor, the average switching frequency of the
DMPC controlled inverter can be lowered or raised. The controller then
tries to achieve an optimal result for the whole cost function, consisting
of control deviation and switching operations, by switching other bridges.

• The actuating variables directly correspond to the states of the single half
bridges. Hence, the inverter states are directly optimized. The results can
be forwarded to the inverter without any further conversion; an additional
mathematical transformation is not necessary.

• A two-level inverter with DC link permits eight different switching states.
These can, however, generate only seven different space voltage vectors.
Choosing the inverter states as actuating variables, it is possible to con-
sider all eight switching possibilities of the inverter. Dependent on the
better alternative concerning the switching frequency, the zero voltage
space vector is created either by the switching state 000 or 111. On
the contrary, if the stator voltages usα and usβ are selected as actuating
variables, this degree of freedom is lost.
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9.3 Model formulation

• Considering an inverter with DC link, every half bridge has only two
possible states. Thus, each of the three actuating variables can take
only two different states. Hence, the optimization problem is a so-called
boolean optimization. For this kind of optimization, there exists a wide
range of simplifications which lead to efficient optimization algorithms.

9.3.1 Simple machine model

A simple machine model without consideration of the cross coupling or of dis-
turbances makes it easier to get familiar with direct model-based predictive
control. Thus, the machine model is reduced to two single and independent
first order transfer functions as it can be seen in figure 9.5.

isαusα

isβusβ

rσ
1

rσ
1

τσ'

τσ'

Figure 9.5: Simplified model for current control (stator coordinates)

Since, as mentioned above, not the stator voltages usα and usβ , but the
switching states a, b and c of the individual half bridges should be selected as
input variables, the corresponding translation has to be added to the machine
model shown above (figure 9.6). The translation block from a, b, c to usα, usβ

contains the factors given in table 9.1.

isαusαa

isβusβ

rσ
1

rσ
1

τσ'

τσ'
3

2
b

c

Figure 9.6: Simplified model for current control (bridge switching states)

If the signal flow graph shown in figure 9.6 is translated into state space
equations according to equations (5.2) and (5.3) (see page 31), the vectors x,
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u and y are selected as follows:

x =

»
isα

isβ

–
, u =

24ab
c

35 , y =

»
isα

isβ

–
Thus, the state space representation of figure 9.6 is given as:

d

dτ
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′ 0
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−
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(9.5)
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1 0
0 1

–
·
»
isα

isβ
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+
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0 0 0
0 0 0

–
·

24ab
c

35 (9.6)

9.4 Implicit solution

A simple way for designing a direct control method of an inverter without an
intermediary modulator under retention of Long-Range Predictive Control is to
adapt a suitable GPC controller. Multidimensional controllers with and with-
out filtering of the measured values as well as consideration of disturbances are
possible without any problems. It is advisable to filter the measured stator cur-
rents with a low-pass filter since, otherwise, the control will be very difficult to
handle because of the typical characteristics of GPC methods (see chapter 6.1.2
on page 48). Thus, the state space representation given in the equations (9.5)
and (9.6) can be rewritten in the following way:

d

dτ

»
isα

isβ

–
=

2664−
1

τσ
′ 0

0 −
1

τσ
′

3775 · »isα

isβ

–

+

2664
2

√
3 rστσ

′
−

1
√

3 rστσ
′
−

1
√

3 rστσ
′

0
1

rστσ
′ −

1

rστσ
′

3775 ·
24ab
c

35
(9.7)
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24 isα

isβ

Dummy

35 =

241 0
0 1
0 0

35 · »isα

isβ
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+

240 0 0
0 0 0
0 0 0

35 ·
24ab
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35 (9.8)

According to that, state, input and output vector are

x =

»
isα

isβ

–
, u =

24ab
c

35 , y =

24 isα

isβ

Dummy

35
The “dummy” variable in the output vector y is necessary for the internal

filtering of GPC. Since it is not reasonable to use a GPC controller without
internal filtering via a T(z−1) design polynomial—as already mentioned—, at
least a smooth filtering via T(z−1) has to be done. Since the actuating variables
∆u(t) as well as the controlled variables y(t) have to be filtered with the same
polynomial, both vectors need to have the same dimension. Since u(t) has the
dimension three, a “dummy” value has to be added to y(t) in order to get the
same dimension and to make use of an identical filter for y(t).

In the method presented here from the free and the forced response calculated
using the j-step ahead predictor and from future values of the reference variable,
an optimal sequence of values for the actuating variables is determined by using
a cost function. In this case, direct control does not differ from conventional
MPC. Hence, the same quadratic cost function as denoted in chapter 6.1.1 on
page 42 in equation (6.6) can be used. As proven in chapter 8.1.3 on page 88 this
cost function is applicable for a unidimensional as well as for a multidimensional
controller (equation (8.14)). Since the direct controller, in this case, should be
a MIMO controller, in the following, only the multidimensional case will be
dealt with. Equations and statements valid for SISO methods can easily be
derived.

Analytical minimization of the cost function J leads to equation (8.17) for
optimal future values of the actuating variables. However, in this case the
actuating variable u(t) can take any value. This equation is called single-step
optimization. If the inverter is controlled directly without an intermediary mod-
ulator a single-step optimization is not possible because the actuating variable
can take only a few discrete values. Seen from the view of mathematics, this
means that the actuating variable u(t) has to be an element of the set of pos-
sible actuating variables S , which itself is a subset of the natural numbers N,
i. e. u(t) ∈ S ⊆ N. It is therefore necessary to solve the optimization problem
using a multi-step optimization. Unfortunately, a multi-step optimization, in
contrary to a single-step optimization, cannot be done analytically anymore
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9 Direct model-based predictive control

because of the nonlinearity caused by the discrete actuating variables. Thus,
a decision and search strategy which can find the best possible sequence of
values for the actuating variables has to be used, i. e. the smallest value of the
cost function (8.16) under consideration of the special constraints for Ũ has to
be found. Since only the value of Ũ which leads to a minimized J has to be
searched for, the constant term (W − F)T (W − F) in equation (8.16) can be
omitted; thus, the optimization rule is:

J = min
Ũ

n
ŨT (GT G + λI)Ũ + 2ŨT GT (F−W)

o
(9.9)

9.4.1 Solving algorithms

For the search for the minimum of J , several methods exist. In order to de-
cide which discrete optimization method should be used, the demands for the
optimization have to be defined. The following criterions play a role for this
decision (see also [105, chapter 5.3.3] and [115, chapter 2]):

• Can finiteness of the algorithm be guaranteed?

• Which computation time is necessary for the algorithm?

• If the algorithm does not deliver a solution in a defined time, does it
deliver at least approximate solutions instead?

• How much memory is needed?

• Has the algorithm a clear structure and is it easily readable (structured
programming)?

• Does the algorithm find the global and not only a local minimum in each
case?

In the following chapters different discrete optimization methods are de-
scribed and discussed under the aspect of their use in a DMPC controller for
current control of an induction machine. A good overview about the algorithms
is also given in the publication by Terno [115].

Exhaustive Search (Complete enumeration)

The most simple method is based on the principle that all possible sequences
of values of the actuating variables Ũ are determined first and then, one af-
ter another is evaluated with the cost function J . The sequence which leads
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9.4 Implicit solution

to the smallest value of the cost function is the solution that was searched.
Since in this method, all possibilities are tested, regardless of the computa-
tional effort, this method is called exhaustive search or complete enumeration
in technical literature. As it can easily be seen, this strategy will always find
the global minimum because all possible combinations are tested. Using the
example of a two-position actuator, a bang-bang GPC controller is described by
Tsang/Clarke [119]; the authors also recommend the simple exhaustive search
for solving the optimization problem. However, it is questionable if this can
also be recommended for systems with multilevel actuators (e. g. three-phase
inverters) and for longer control horizons, or if other optimization techniques
are better suited in these cases since the computation time for an exhaustive
search should not be underestimated. For an actuator with x discrete actuating
possibilities and a control horizon Nu exactly xNu different possible switching
sequences exist, i. e. the needed computation time increases exponentially with
the number of predicted time steps. For a two-level inverter with x = 8 dif-
ferent switching states and Nu = 2 already 64, with Nu = 3 as many as 512
switching sequences have to be calculated individually. As the results shown in
chapter 9.4.4 prove, an implementation of an exhaustive search strategy is not
feasible in drive control.

Speed-up strategy: To improve the complete enumeration method, Hoffmann
has extended it by a so-called speed-up strategy [51, chapter 3.3.1] in order
to save computation time. In the dynamic case, i. e. when large steps of the
reference value occur, an actuating variable which moves the controlled variable
to the reference value with maximum speed is applied first. If an opposite state
of the actuating variable is switched at an adequate time t1, the reference
value can be reached in a minimal amount of time without any overshoot. In
the speed-up strategy by Hoffmann the point of time t1 for switching and the
whole duration of the process are calculated in advance and hence, in transient
state, the necessary computation time can be reduced significantly.

If the speed-up strategy by Hoffmann is compared to the trajectory-based
predictive controllers, which are known in drive control and which are presented
in chapter 4.1, one can see that both methods are based on the same princi-
ples. In both cases a system trajectory is selected by choosing an appropriate
switching state of the value-discrete actuator and then an optimum switching
time is determined. Taking conventional trajectory-based methods into con-
sideration, at this predetermined time, another, also predetermined switching
state will be applied to the plant, whereas the speed-up strategy switches back
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to direct model-based predictive control with exhaustive search for the optimal
switching state after two steps. However, both strategies are based on the basic
principle of trajectory-based control.

For DMPC of an induction machine, the speed-up strategy is not interesting
since the current controller only needs few sampling cycles for reaching the
reference value. Even a step of isq = 0 to isq = 1.0 at ω = 0.5 takes just 13
sampling cycles. Thus, the effort for the speed-up strategy is not worthwhile.

Taking speed control into consideration, the time necessary for reaching the
reference value after a step change is indeed significantly larger, but even in the
stationary case still a relatively high prediction horizon is necessary (see chap-
ter 6.3.3 on page 63 et seqq.). Thus the implementation of a speed-up strategy
for this application does not lead to a decrease of the maximum necessary online
computation time, too.

Branch and Bound

In his publication [105, chapter 5.2.2], Schmitz proposes a computation time
saving optimization method called Branch and Bound. It is based on the prin-
ciple that the decision tree is run through from the root to the last node only
for the first path. The value J of the cost function valid for this sequence of
values of the actuating variables is saved as the temporary minimum. Now,
other paths through the decision tree are only examined further if they are
promising for a new minimum. This means that, if the temporary value of
the cost function of a partly run through path is already larger than the cur-
rent, temporary minimum, the currently investigated path including all further
nodes cannot contain the global minimum. Thus, the correspondent part of the
decision tree does not have to be run through anymore and will be cut out. The
same happens if the part of the tree which is still to be investigated belongs
to a prohibited family and thus, can also not contain the optimum possible
solution [115]. If the algorithm has run through a possible path to the end
node and if the value of the cost function for this sequence is smaller than the
temporary minimum, the temporary minimum will be replaced by the value of
the cost function for the currently investigated path of the decision tree. This
search strategy also guarantees that the global minimum will be found in any
case.

Especially with high control horizons Nu the Branch and Bound strategy
leads to a significant reduction of the computation time because branches of
the decision tree which will recognizably not lead to a minimum are not investi-
gated. A further reduction of computation time is achieved when investigating
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other branches of the same subtree since the temporary costs up to the current
node are already known; thus, the part of the costs created by the nodes lying
between the root of the decision tree and the current node does not have to
be calculated again. Furthermore, additional computation time can be saved
if an estimation about the minimum reachable value of the cost function in a
branch is done in advance. Is this value higher than the temporary minimum,
an investigation of the branch is not necessary because it will not lead to an
optimum solution.

As chapter 9.4.4 shows, an online calculated solution of the optimization
problem via Branch and Bound is also too slow for use in drive control. Addi-
tionally, it is to mention that the Branch and Bound principle has the drawback
that an actual reduction of the computation time cannot be guaranteed ! In the
worst case it can happen that the cost function has to be evaluated for all
possible sequences.

Cutting Planes

The Cutting Planes stragegy can be explained with few words. The basic idea
is to determine the optimum solution neglecting the fact, that the solution has
to be integer. The first step is to check if the obtained solution is already an
element of the valid set S ⊆ N. If this is not the case, constraints, which cut
off parts of the area of possible solutions, are added one by one; these con-
straints are called cutting planes. Then, the new linear optimization problem
is solved under consideration of the constraints. These steps are repeated until
an optimum solution which fulfills the integer constraint is found. A detailed
description of this method can be found in the book of Terno [115, chapter 2.4]
and also with Hadley [47, from chapter 8.11 on].

However, methods based on cutting planes have the fundamental drawback
that they converge extremely slow [63, chapter 1.6.4]. Thus, they cannot be
used in drive control.

Expansion Strategy

Besides the methods already mentioned, Terno also refers to the so-called Ex-
pansion Strategy [115, chapter 2.3]. This method was developed by Schoch at
the Mining University (Bergakademie) Freiberg in 1970; in [106] it is described
in detail. The strategy solves the optimization task by using a substitution
problem. This substitution problem is defined in a subset x ∈ R ∩S of the set
x ∈ S which is valid for the original problem. Additionally, the substitution
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problem should fulfill the constraints that R ∩ S 6= ∅, that a lower boundary
exists for all values of the substitution problem and that the minimum of the
substitution problem defined for x ∈ R ∩ S represents the minimum of the
original optimization task for x ∈ S . Now subsets Uk ⊂ R which are defined
for the substitution problem via an upper and a lower boundary are examined.
The elements of Uk are tested if they are members of S . The procedure is
repeated until an optimum element is found. Hence, in this method the set
of the examined elements is expanded step by step which leads to the name
Expansion Strategy.

As further mentioned by Schoch, Cutting Planes as well as Branch and Bound
are special cases of the Expansion Strategy [106, chapter 1.2.2 and 1.3.2].

Discrete Dynamic Programming

For the solution of a separable optimization problem via Dynamic Program-
ming, the optimization problem is separated into several sub-problems which
are treated one after another. This leads to a multilevel decision process with
the output state of one level being the input state of the next one. This means
that a multidimensional optimization task is splitted into several unidimen-
sional sub-problems which will be solved successively; it’s solved best in a recur-
sive matter. According to Hoffmann [51, chapter 3.3.3], Dynamic Programming
can indeed save computational time, however it is less suitable because of its
highly increased memory requirements. For this reason it is not discussed any
further; more detailed descriptions can be found e. g. in Cooper/Cooper [31].

9.4.2 Mathematical derivation

The DMPC controller with implicit solution of the optimization task is, as
already explained, a GPC strategy in which the discrete-valued structure of
the actuator is considered. Since this affects only the method of optimization,
the mathematical derivations presented in chapter 8 are valid without any
modifications. The calculation of the system matrices of the CARIMA model,
the j-step ahead predictor etc. are described there. The optimization rule is
given in equation (9.9) on page 134 together with explanations.

9.4.3 Experimental results

As already mentioned a GPC control without filtering of the measured values
cannot be used properly; hence, a controller structure with integrated filter
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characteristics is selected. The prediction horizons are Np = 3 and Nu = 2; the
degrees of the system polynomials are na = 1, nb = 1 and nt = 1. With this
simple model (figure 9.6) it is not possible to consider disturbances and hence,
this is not implemented either. The following system and polynomial matrices
result:

G(z−1) =

264 0.1713 z−1

1−0.9873 z−1 − 0.08566 z−1

1−0.9873 z−1 − 0.08566 z−1

1−0.9873 z−1

0 0.1484 z−1

1−0.9873 z−1 − 0.1484 z−1

1−0.9873 z−1

0 0 0

375
T(z−1) =

241− 0.95 z−1 0 0
0 1− 0.95 z−1 0
0 0 1− 0.95 z−1

35
A(z−1) =

241− 0.9873 z−1 0 0
0 1− 0.9873 z−1 0
0 0 1

35
B(z−1) =

240.1713 z−1 −0.08566 z−1 −0.08566 z−1

0 0.1484 z−1 −0.1484 z−1

0 0 0

35
In order to compare the influence of the weighting of the actuating variables,
two different matrices were selected as λ, one for a light weighting of the change
of the values of the actuating variables with λ = 0.001 and one for a significantly
higher weighting of the change with λ = 0.1.

Equation (9.9), derived from equation (8.14), shows that for the weighting
not the values of the actuating variables themselves are considered, but the
change of the values of the actuating variables. A change in one of the three
inputs a, b or c means that a half bridge has to be switched. Hence, with the
weighting factor λ the number of inverter switching actions is indeed evaluated
(see chapter 9.3).

For reasons explained in chapter 9.2, a DMPC controller is better realized
in stationary coordinates than in a rotating reference frame. Hence, results
shown in αβ coordinates are more meaningful. Figure 9.7 shows the behavior
of a simple MIMO-DMPC current controller in stationary state. Matching the
explanations in chapter 9.2, no contouring error occurs.

Comparing figure 9.7(a) with figure 9.7(b) shows the influence of the weight-
ing factor λ on the behavior of the closed control loop. A higher value for λ
leads to a higher weighting of the change of the actuating variables; hence, the
controller now accepts a higher control error in order to avoid frequent switch-
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Figure 9.7: Current control with DMPC controller, stationary operation

ing of the semiconductors. It seems that similar results can be obtained when
using a simple hysteresis controller—however, this is not true because there are
some serious differences:

• When using a hysteresis controller, a switching event only takes place
when a constant error limit has been exceeded. However, DMPC selects
an optimal future switching sequence in advance according to the selected
optimization criteria. This means that dependent on the current system
state, switching takes place at different error values.

• A hysteresis controller does not really evaluate the switching effort. Thus
a hysteresis-based two-level controller can e. g. not decide which one of the
two zero voltage space vectors, being able to be switched by the inverter,
is favorable for less switching actions.

• When using a hysteresis controller, it is not possible to exclude certain
undesired switching states of the inverter already in the beginning of the
optimization (see chapter 9.2.1).

Furthermore, it is to be noted that the weighting factor does influence the
number of switching events and the control error, but not the dynamics of the
entire system. Figure 9.8 showing the step response of the controlled system
confirms this. In order to evaluate the mutual influence of isα and isβ besides
the system dynamics, only the reference value for isα was step changed. As
it can be seen easily, the rise time in figure 9.8(a) with λ = 0.001 as well
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as with λ = 0.1 in figure 9.8(b) is exactly the same and corresponds to the
physically possible minimum value. Only the number of switching events is
much higher when less importance is given to the switching effort (figure 9.8(a)).
A mutual influence of both stator current components cannot be detected since
the amplitude of the current harmonics is significantly higher than the influence
of the cross coupling. Hence, it makes no sense to add a consideration of the
cross coupling between isα and isβ to the simple machine model according to
figure 9.6 because it would only result in a higher controller complexity without
an improvement of the control quality.
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(a) λ = 0.001
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Figure 9.8: Current control with DMPC controller, dynamic operation

9.4.4 Computation times

For investigating the feasibility of DMPC for drive systems, the computation
times for different controller configurations and solution methods were deter-
mined. The corresponding results can be seen in table 9.2.

As it can be seen easily, considering methods with full enumeration control
horizons Nu of more than two prediction steps leads to unacceptable computa-
tion times. Thereby, not just the higher number of possible switching sequences
becomes noticeable; enlarging the horizons enlarges the different matrices fur-
ther, which leads to an increase of the computational effort necessary for the
calculation of the cost function J . Since, considering complete enumeration,
the cost function J has to be evaluated for every possible sequence of switch-
ing states, both increases of the computational effort multiply with each other.
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9 Direct model-based predictive control

Method Nu Events Max. computation time

Complete Enumeration 2 64 35µs
Complete Enumeration 3 512 > 500 µs

Branch and Bound 2 5 64 27µs
Branch and Bound 3 5 512 186µs

Table 9.2: Computation times for a DMPC controller

Thus, a DMPC current control with a control horizon of Nu = 3 is only feasi-
ble with sampling cycles above 650µs, corresponding to a maximum sampling
frequency of 1.5 kHz. Control horizons with Nu > 3 cannot be realized due to
the low sampling frequency needed.

The application of the Branch and Bound method for current control of an
induction machine shows that, with smaller control horizons, the reduction of
the computational effort becomes, as expected, only slightly noticeable. Taking
the same basic conditions as for exhaustive search, for Nu = 2 a maximum com-
putation time of 27 µs results. For a control horizon of Nu = 3 the computation
lasts between 4.6 µs and 186 µs. The big difference between the maximum and
minimum computation time is typical for Branch and Bound methods because,
dependent on the current system state and the reference values, the optimum
switching sequence is found in a different amount of time. Nevertheless, the
experiments show that even with Branch and Bound, a DMPC control with
control horizons higher than Nu = 2 is not suitable for drive control.

The comparison between complete enumeration and a search strategy based
on Branch and Bound shows that by using an intelligent search algorithm, a
reduction of the computation time is possible. This acceleration, however, is
absolutely not sufficient for the needs in drive systems. However, from math-
ematics, other very elegant solution algorithms, which can save much com-
putation time, are known especially for boolean optimization problems. As
an example, one can mention the method by Laserre for quadratic boolean
optimization tasks [78]. Solution strategies for linear boolean programs are
discussed by Terno [115, chapter 5.10]. As the mathematical research in this
area is not completed, providing an entire list of boolean optimization algo-
rithms here does not make sense; readers interested in mathematics can look
for papers with the AMS classification 90C09 1 in adequate data bases. Indeed,
it is questionable if the methods presented there will lead to success, i. e. to a

1 The number 90C09 is the American Mathematical Society code number for “Boolean
Programming”.

142



9.5 Explicit solution

sufficiently fast solution of the optimization task. Even the application of very
specialized search strategies won’t reduce the computation time necessary for
the online-solution of the optimization problem to a value which is needed for
a reasonable use of the method in drive technology. Hence, direct model-based
predictive control with an implicit solution of the optimization problem is not
feasible in drive technology.

9.5 Explicit solution

Contrary to most researchers who deal with model-based predictive control
and who solve the emerging quadratic or linear optimization problem implic-
itly, Bemporad and Morari have chosen another way: They try to solve the
optimization problem in dependence of the state vector x of the system ex-
plicitly, i. e. quasi offline [11, 12]. In contrast to the methods described so far,
which are based on GPC and which make use of a transfer function based sys-
tem model, the classical MPC approach used by Bemporad and Morari uses
a state space model of the system to be controlled (compare equations (5.4)
and (5.5) on page 32):

x(t+ 1) = Ax(t) + Bu(t) (9.10)

y(t) = Cx(t) + Du(t) (9.11)

under consideration of the constraints

x ∈ X ⊂ Rn, y ∈ Y ⊂ Rp, u ∈ U ⊂ Rm

Furthermore, a cost function is defined as follows:

J(N1, N2) = x(t+N2)
T Px(t+N2)

+

N2X
j=N1

“
x(t+ j − 1)T Qx(t+ j − 1)

+ u(t+ j − 1)T Ru(t+ j − 1)
” (9.12)

In this case we have a quadratic cost function with finite time horizon, Q
weights the system states and R the actuating variables; P weights the final
value of the state vector. Linear cost functions with a finite or infinite cost
horizon are also possible. Furthermore, the cost function (9.12) has been sim-
plified compared to (6.6) and (8.14) by assuming the reference value w(t + j)
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9 Direct model-based predictive control

being zero for all j = 0. As already known, N1 = 1 and N2 = Np are chosen
for reasons of simplicity. Now, this cost function has to be minimized under
the following constraints:

x(t+ j) ∈ X j = 1 . . . Np

u(t+ j) ∈ U j = 0 . . . Np

x(t+ j + 1) = Ax(t+ j) + Bu(t+ j) k = 0

u(t+ j) = Kx(t+ j) N1 5 k 5 N2

Q = QT º 0 (“º” means positive semidefinite)

R = RT Â 0 (“Â” means positive definite)

P º 0

By replacing

x(t+ j) = Ajx(t) +

j−1X
k=0

AkBu(t+ j − 1− k)

the optimization problem can be obtained, i. e. to minimize the cost func-
tion (9.12), in the form:

J ′
`
x(t)

´
=

1

2
x(t)T Y x(t) + min

U


1

2
UT HU + x(t)T FU

ff
(9.13)

with the constraints

GU 5 W + Ex(t)

with

U =
h
u(t)T , . . . ,u(t+Nu − 1)T

iT

∈ Rs s = m ·Nu

H = HT Â 0

The Matrices H, F, Y, G, W and E can be calculated from Q, R and from
the original optimization rules, based on (9.12). Since only the vector of the
actuating variables U is required as a result of the optimization, the term with
Y in (9.13) can be neglected.

The optimization problem in (9.13) is a so-called Quadratic Program (QP).
Since J ′ is dependent on the current system state x(t), the QP has to be solved
again for every sampling cycle. Although time efficient solution algorithms for
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QP problems are known today, the online calculation of u(t) for fast applica-
tions in control engineering is hardly feasible, especially for the fast processes
in drive technology. Hence, the application of the “classical” MPC method will
be limited to processes with low sampling rate and/or low complexity.

In [11], Bemporad, Morari et al. proposed a new method for linear time-
invariant (LTI) systems which transfer the solution of the optimization prob-
lem offline; in [12] this strategy is expanded to piecewise affine (PWA) and
hybrid systems. The basic idea is to treat the state vector x(t) as a parameter
vector. Thereby, the optimization problem (9.13) becomes a multi-parametric
Quadratic Program, short mp-QP. By solving this mp-QP problem, one obtains
a solution function Uopt = f

`
x(t)

´
; hence, the MPC control law is explicitly

available. In the following, it is described how this solution function can be
obtained and which characteristics it has.

First, an auxiliary variable is defined:

z = U + H−1FT x(t) z ∈ Rs (9.14)

By quadratic complement, (9.13) is transformed to

J ′z
`
x(t)

´
= min

z


1

2
zT Hz

ff
(9.15)

under the constraint
Gz 5 W + Sx(t)

with

S = E + GH−1FT

J ′z
`
x(t)

´
= J ′

`
x(t)

´
− 1

2
xT
“
Y − FH−1FT

”
x(t)

Thus, the state vector x(t), considered as a parameter, only appears in the
constraints.

In order to solve the mp-QP problem, an initial vector x0 within the possi-
ble state space, for which the upper optimization problem can be solved, has
to be found now. How such a start point can be found is described e. g. by
Bemporad et al. [13]. With the help of x0, obtained as described above, an op-
timum solution z0 of (9.15) can be determined. Since the Matrix H is positive
definite, the solution is unique and a set of active constraints G̃z0 = W̃ + S̃x0

is obtained. These constraints form a region P0. The optimum value of z and
the corresponding vector of the lagrange multiplier λ are now uniquely defined
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9 Direct model-based predictive control

affine functions of x over P0; this can be proved with the help of the Karush-
Kuhn-Tucker conditions. In the same way, it can be proved that P0 forms a
polyhedron or a polytope in state space.

If the first region P0 is defined, the remaining state space has to be analyzed
and further regions have to be created. A possible approach is also described
by Bemporad et al. in [13]. Hence, as the issues proven for P0 are also valid
for all regions, these are also polytopes, each with an affine law for determin-
ing an optimum z. As the relationship between z and U is also affine (see
equation (9.14)), a piecewise affine description Uopt = f

`
x(t)

´
exists now.

Indeed, for users less interested in mathematics, it is not necessary to deal in
detail with the algorithms and mathematical proofs mentioned and also partly
explained above. At the Swiss Federal Institute of Technology (ETH) Zurich
at Prof. Morari’s department, a toolbox for MATLAB was developed with
which calculation of explicit solutions for different LTI and PWA systems with
different cost functions can easily be done [73]. Figure 9.9 shows the results
of a calculation of the explicit solution for current control of an induction
machine. Here, a 1-norm cost function with a prediction horizon of two steps
was selected. For an easier rating of the obtained piecewise affine solution
function, the solution was determined for the origin as fixed reference value.
As it can easily be seen, the three phases a, b, and c are always switched in such
a way that the current space vector is moved to the origin. In the origin itself
the vector [0, 0, 0] is selected, which leads to the actual value of the current
space vector remaining on this point.

The trajectories of a closed-loop control using a controller with a PWA con-
trol law are shown in figure 9.10. As an example, a closer look is taken at two
trajectories in the following.

Considering trajectory A at the beginning, at point A1, as it can be obtained
from a comparison with figure 9.9, the state [1, 0, 0] is switched, i. e. c = 1,
b = 0 and a = 0. This voltage space vector moves the system state in the
fastest way towards the origin although the origin cannot be reached directly.
At point A2 the state vector x reaches the value isβ = 0; hence, according to
the predetermined control law, a switching operation takes place in phase b (see
figure 9.9(b)). Now, the switching state [1, 1, 0] is applied to the machine which
moves the state vector directly into the origin along the axis isβ = 0. Then,
the half bridges b and c are again switched back to the “lower” semiconductors,
leading to a zero vector applied to the machine. Hence, the system state will
remain in the origin.

If trajectory B is considered, first of all, in point B1, the state [1, 0, 0] is ap-
plied to the machine, too. Five sampling cycles later, the system state reaches
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the value isα = 0. Since there is no voltage vector being switchable by the in-
verter that can move x directly into the origin along the axis isα = 0, the system
state is oscillating between the sectors for a = 1 and a = 0 (figure 9.9(a)). Ac-
cording to that, the states [1, 0, 1] and [1, 0, 0] are alternately applied to the
machine. Thus, the machine state is forced to slide along the boundary be-
tween the sectors with the control law u = [1, 0, 1] and u = [1, 0, 0]. Here the
DMPC method gains the character of sliding mode control [35], because the
system state is moved along synthetically created trajectories. In this case, the
controlled variable x will also be moved into the origin as fast as possible.

The determined explicit solution consists of 217 polytopes (regions), each
with a piecewise affine control law being valid. At first view, this seems to be
remarkable since a two-level inverter has only eight different switching states
and hence for the next step only eight different control laws can exist. However,
it has to be noted that the solution vector U is determined over the whole
prediction horizon when the explicit solution is calculated. Hence, in the case
treated here already 82 = 64 different control laws are possible. Furthermore,
the complete number of determined regions can be significantly higher than the
maximum number of control laws being theoretically possible because of the
constraint that all regions have to be convex polytopes.

Tracking

For the practical application of a control system, the optimization to a fixed
reference value described so far can rarely be used because in practical opera-
tion, the reference values will change dynamically. Correspondingly, the plant
model has to be changed so that not the system state x itself, but the control
error x−w has to be controlled to become zero. This procedure in which the
actual value has to follow a “free” reference value is called tracking. For that,
the state vector x is extended by the actuating variable u and by the refer-
ence value w, and as input variable the change of the values of the actuating
variable, i. e. ∆u, is used. Consequently, the model equation (9.10) becomes24x(t+ 1)

u(t)
w(t+ 1)

35 =

24A B 0
0 I 0
0 0 I

35 ·
24 x(t)
u(t− 1)
w(t)

35+

24BI
0

35 ·∆u(t)

Thus, the new model equations can be obtained:

xt(t+ 1) = Atxt(t) + Btut(t) (9.16)

yt(t) = Ctxt(t) + Dtut(t) (9.17)
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with

xt(t) =

24x(t+ 1)
u(t)

w(t+ 1)

35 , ut(t) = ∆u(t) ,

At =

24A B 0
0 I 0
0 0 I

35 , Bt =

24BI
0

35 ,

Ct = I, = Dt = 0

The cost function known from equation (9.12)

J =

N2X
j=N1

“
x(t+ j − 1)T Qx(t+ j − 1) + u(t+ j − 1)T Ru(t+ j − 1)

”
is also modified so that it contains the evaluation of the control error x−w:

J =

N2X
j=N1

0B@
24 x(t+ j)
u(t+ j − 1)
w(t+ j)

35T

·

24 Q 0 −Q
0 R 0
−Q 0 Q

35 ·
24 x(t+ j)
u(t+ j − 1)
w(t+ j)

35
+ ∆u(t+ j − 1)T ·R∆ ·∆u(t+ j − 1)

”
The new weighting factor R∆ thereby weights the change of the values of the
actuating variables ∆u. Now, adequate to the new plant model (9.16)-(9.17),
a cost function

J =

N2X
j=N1

“
xt(t+ j − 1)T Qt xt(t+ j − 1)

+ ut(t+ j − 1)T Rt ut(t+ j − 1)
” (9.18)

with

Qt =

24 Q 0 −Q
0 R 0
−Q 0 Q

35 , Rt = R∆

exists.
If, instead of the model given in the equations (9.10) and (9.11) and the cost

function (9.12), the model in (9.16) and (9.17) and the cost function (9.18)
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is used and one proceeds as described so far in order to determine optimal
solutions, an explicit solution of the MPC problem under consideration of ref-
erence values is possible. Due to the fact that the dimension of the state vector
enlarges when reference values and former values of the actuating variables
are considered, the dimension of the solution space will be enlarged accord-
ingly. Hence, the solution of a tracking problem is always more complex than
a solution which takes a zero vector as constant reference value.

Delays

Normally, digital controls cause a delay of one sampling cycle between the point
of time at which the controller has determined a reference value and the point
of time at which this reference value is actually applied to the plant. MPC
strategies based on a transfer function-based model of the plant can easily be
adopted in this case because the delay can be implemented easily by multiplying
the polynomial B(z−1) or the polynomial matrix B(z−1) of the CARIMA model
with z−1, as described in chapter 6.1.1 on page 39. The use of a state space-
based predictive controller unfortunately excludes this simple method; however,
it is possible to add an appropriate delay to the plant model by extending the
state vector. Thus, the state equation of the system is modified as follows:»

x(t+ 1)
u(t)

–
=

»
A B
0 0

–
·
»

x(t)
u(t− 1)

–
+

»
0
I

–
· u(t)

Consequently, a new representation of the model can be obtained:

xd(t+ 1) = Adxd(t) + Bdud(t) (9.19)

yd(t) = Cdxd(t) + Ddud(t) (9.20)

with

xd(t) =

»
x(t+ 1)

u(t)

–
, ud(t) = u(t) ,

Ad =

»
A B
0 0

–
, Bd =

»
0
I

–
,

Cd = I , Dd = 0

The vector of state variables xd does now also contain the actuating variable
u. In the cost function, however, only the state variables themselves should be
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evaluated. Thus equation (9.12) has to be adjusted again. In this case, it can
be applied:

J =

N2X
j=N1

 »
x(t+ j)

u(t+ j − 1)

–T

·
»
Q 0
0 0

–
·
»

x(t+ j)
u(t+ j − 1)

–
+u(t+ j − 1)T ·R · u(t+ j − 1)

”
Here not the change of the values of the actuating variable, but again the
actuating variable itself is evaluated. Thus, the new cost function can be written
as:

J =

N2X
j=N1

“
xd(t+ j − 1)T Qd xd(t+ j − 1)

+ud(t+ j − 1)T Rd ud(t+ j − 1)
” (9.21)

with

Qd =

»
Q 0
0 0

–
, Rd = R

If the state equations (9.19) and (9.20) and the corresponding cost func-
tion (9.21) are used and the problem is solved via mp-QP, an explicit solution
of the optimization problem is obtained for the case that the system to be
controlled has a delay of one sampling cycle.

Delay with tracking

It can be assumed that drive controls commonly have a delay and that the
system state should not be driven into the origin, but it should follow a refer-
ence value. Thus, for an applicable control for electrical drives both methods
mentioned above have to be combined. This can be achieved by a further slight
modification of (9.16),24x(t+ 1)

u(t)
w(t+ 1)

35 =

24A B 0
0 I 0
0 0 I

35 ·
24 x(t)
u(t− 1)
w(t)

35+

240I
0

35 ·∆u(t)

which leads to the model equations

xt,d(t+ 1) = At,dxt,d(t) + Bt,dut,d(t) (9.22)

yt,d(t) = Ct,dxt,d(t) + Dt,dut,d(t) (9.23)
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with

xt,d(t) =

24x(t+ 1)
u(t)

w(t+ 1)

35 , ut,d(t) = ∆u(t) ,

At,d =

24A B 0
0 I 0
0 0 I

35 , Bt,d =

240I
0

35 ,

Ct,d = I , Dt,d = 0

The evaluation function (9.18) does not have to be modified, i. e. Qt,d = Qt

and Rt,d = Rt, in which again the weighting factor R∆ weights the change of
the value of the actuating variables.

As the above equations show, for the integration of a delay of one sampling
cycle into a control with tracking no extension of the state vector compared to
the mere tracking version xt is necessary. Hence, the consideration of the delay
can, in this case, be integrated into the plant model without any further effort.

9.5.1 Standard algorithm

If the explicit solution of MPC is calculated with the method described above,
for a practical realization of the control one first has to find out in which one
of the calculated polytopes the current system state x lies in order to apply
the corresponding affine control law afterwards. As the polytopes are usually
not sorted there is no other way than an exhaustive search over all existing
polytopes. For every polytope Pi and for all system states x being within this
polytope the equation

Hix 5 Ki (9.24)

is valid. Then all determined polytopes have to be checked one after another
if equation (9.24) is valid. If this is the case, the polytope Pj that contains x
is found. Then the corresponding control law has to be applied.

Due to the complete enumeration of all existent polytopes this method is, of
course, not very efficient. Thus, more intelligent search strategies are recom-
mended for drive control.

9.5.2 Minimum-Time Controller

The so-called Minimum-Time Controller proposed by Grieder/Morari is consid-
erably faster than the standard method. It can be used for linear time-invariant
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(LTI) [45] as well as for piecewise affine (PWA) or hybrid systems [46]. The
intention of this method is to determine an indeed sub-optimal, but in the ex-
ecution less complex solution of the optimization task. A lower complexity of
the explicit controller structure can in the easiest way be obtained with short
prediction horizons and with a lesser number of input variables. Unfortunately,
these variables are normally dependent of the system to be controlled and thus
cannot be chosen freely. The alternative way proposed here consists of the iter-
ative solution of single-step optimization problems with a varying target region
Tset. For that in each case the following optimization task

J1

`
x(t)

´
= min

u(t)

n
x(t+ 1)T Qx(t+ 1) + u(t)T Ru(t)

o
(9.25)

is solved under consideration of

x(t+ 1) ∈ Tset ⊆ X

u(t) ∈ U

x(t+ 1) = Ax(t) + Bu(t)

Q = QT Â 0

R = RT Â 0

The intention is to drive the system to be controlled as fast as possible into a
region XLQR in which an optimal unconstrained LQR control is feasible without
exceeding the constraints. This set shall be the first target region:

Tset =
`
X 1

f

´0
= XLQR

Within this region the LQR control law FLQR is valid so that F0
0 = FLQR and

G0
0 = 0.
In order to obtain a PWA control law for the whole state space, the mp-QP

based on (9.25) is solved. This results in the following polytope structure:

Piter
k =

n
x ∈ Rn|Hiter

k x 5 Kiter
k

o
k = 1 . . . R

In this case, iter is the iteration step, beginning from 0 for XLQR; R is the
number of different polytopes in the current iteration step. The control laws
belonging to the individual polytopes can be expressed by the equation

u(t) = Fiter
k x(t) + Giter

k
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Now, the explicit solution can be calculated iteratively for the whole region.
For this purpose, the solution region of the last iteration step is selected as the
new target region:

Tset =
`
X 1

f

´iter
=

R[
k=1

Piter
k

For this region, a single-step mp-QP problem is solved again whereby the new
control step iter + 1 results. This is repeated until the target region does not
change anymore. After every iteration step, all regions and the corresponding
control laws are saved.

Because of the iterative solution of the optimization task, the explicit solution
gets a tree-like structure; this can be used for the setup of an efficient search
strategy for the online evaluation of the PWA control law. Therefore, at first
the region with the lowest iteration step containing the current system state
x(t) is determined, i. e.

itermin = min
iter

iter, in which x(t) ∈
`
X 1

f

´iter

Within this region the active polytope Pitermin
j is determined via exhaustive

search. This can be done much faster than with direct exhaustive search be-
cause the number of polytopes per region is very small. If iter and j are known,
the value of the actuating variable to be applied to the plant can be determined
with the equation

u(t) = Fitermin
j x(t) + Gitermin

j (9.26)

The ulterior motive of the Minimum-Time Controller is, that, independent
from the cost function, far away from the reference value, the maximum value
of the actuating variable is in any case also the optimal one. This leads to a
polytope structure simplified in two ways: On the one hand, the number of
regions compared to the standard method is reduced; on the other hand, the
individual polytopes and control laws are automatically sorted in a tree-like
structure. The two-stage evaluation of the explicit control law significantly
reduces the necessary online computational time compared to the standard
method, however, for the cost of a non-optimum control concerning the cost
function. Instead, the strategy is focused to move the system state x(t) as fast
as possible into the origin or the region XLQR, respectively.

9.5.3 Binary search tree

Another method to reduce the online evaluation time is to transform the poly-
tope structure obtained with the standard method into a binary search tree.
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Tøndel, Johansen and Bemporad have proposed such a strategy in [117]. For
this purpose, all hyperplanes, i. e. the boundaries of all polytopes, are consid-
ered in a first step. The whole number of hyperplanes shall be L and they are
all represented by the equation aj

T x = bj , j = 1 . . . L. With the help of this
equation, a describing function dj(x) is defined as follows:

dj(x) = aj
T x− bj (9.27)

By evaluating the sign of dj(x) for every point in state space, it can be stated if
the point is “above” or “below”2 the corresponding hyperplane j. Consequently,
any polytope P(J ) in state space can be described by a so-called index set J ;
an index set J = {1+, 2−, 3−} would be equivalent to d1(x) = 0, d2(x) < 0
and d3(x) < 0; it describes how the polytope P(J ) behaves with each of the
enumerated hyperplanes. Additionally, an index set I is defined that describes
which polytopes Pi of the original polytope structure lie at least partly within
the region described by P(J ):

I (J ) = {i|Pi ∩ P(J ) is full dimensional}

Furthermore, for every index set I , a set F (I ) exists which enumerates the
control laws of the polytopes lying within P(J ):

F (I ) = {k|Fk belonging to Pi, i ∈ I }

This last definition is important because different polytopes can have the same
control law. This is particularly interesting considering Receding Horizon Con-
trol since, in this case, only the first value of the sequence of values of the
actuating variables will be passed on to the system. Hence, for the construc-
tion of the search tree one only has to differentiate between the first elements
of the control law which leads to a significantly simplified tree structure.

The concept of the method is to design a search tree in which for every node
Nk for a given state vector x(t) ∈ X , the describing function dj(x) is called.
Depending on the sign of dj(x), one will branch either in the following left or
the right subtree. The indices of the nodes which do still have to be evaluated
are stored in a list K . For each of the nodes Nk, two index sets Jk exist,
which contain the results of the describing functions dj(x) already applied and
one set Ik, which contains the indices of the polytopes contained in P(Jk),
i. e. Ik = I (Jk). Evaluated nodes additionally contain the information about

2 The terms “above” and “below” are used in quotation marks because the definition of
“above” and “below” in multidimensional spaces does not correspond to the natural feel-
ing, but is only given by mathematics.
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9 Direct model-based predictive control

the affine control law Fk to be applied in this operating point if they are end
nodes. Otherwise an array with the index of the hyperplane jk whose describing
function djk (x) is needed for the decision about the selection of the following
part of the tree is added. The construction of this search tree is done in the
following way:

At first, for all hyperplanes, the index sets I (j+) and I (j−) for j = 1 . . . L
are determined, i. e. the polytopes of the original description of the polytopes
which lie at least partly “above” or “below” the concerning hyperplane have to
be identified.

Afterwards, the root of the tree is initialized as node N1. As the root encloses
all available polytopes, it applies consequently that J1 is an empty set and I1

contains all polytopes. Since the root has not been evaluated yet, it is set as
the first element in the set of the nodes which still have to be evaluated. Hence,
K = {N1}. Then, the other nodes of the tree are determined iteratively. For
this purpose, the following loop is run through until there are no more nodes
to be evaluated, i. e. K = ∅.

From the set K , one node Nk is selected and K will become K \ Nk. The
polytopes Pi with i ∈ Ik being in the hyperplanes Jk which have already been
evaluated are now separated again by all hyperplanes which have not been
evaluated yet and the remaining regions are determined approximately with
I (Jk) ∩ I (j±) for all j = 1 . . . L. The results of this separation are sorted
by max(|F (I (Jk) ∩ I (j+))|, |F (I (Jk) ∩ I (j−))|). Then, for the first nj ele-
ments of this sorted list, the exact index sets I±k = I (Jk ∪ j±) are calculated.
The value of nj is selected in such a way that all hyperplanes of the sorted
list which minimize the number of the maximum remaining control laws, i. e.
max(|F (I (Jk)∩I (j+))|, |F (I (Jk)∩I (j−))|), are used for the calculation again.
This repeated calculation is necessary since the estimation of the remaining
regions with I (Jk)∩I (j±) can result in a larger polytope than the mathemati-
cally exact, but also more complex method with I±k = I (Jk∪j±); the following
example shall serve as an illustration of this fact.

When a polytope structure according to figure 9.11 is given and only the
polytope P1 and both hyperplanes j1 and j2 are considered, apparently the
following statements are valid:

I (1+) = {1} I (2+) = {1}

I (1−) = {1} I (2−) = {1}

Now supposed that in one of the previous recursion steps for the calculation
of the search tree 1+ has already been applied, i. e. I (Jk) = {1+, · · · }. Hence,
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9.5 Explicit solution

for further steps, only the area of the polytope left of j1 is existent. If the
estimation of the remaining region concerning the hyperplane j2 is applied, one
can see that {1} is an element of I (Jk) ∩ I (2+) as well as of I (Jk) ∩ I (2−)
because {1} ∈ I (2+) and {1} ∈ I (2−). In reality, however, “below”, i. e. right
of j2, there is no further part of P1, because this part has already been cut off
by the application of 1+. The calculation with I−k = I (Jk ∪ 2−) correctly does
not contain {1}.

P1

j1

j2

+

+

–

–

Figure 9.11: Functional principle of the search tree

For the exact index sets, the hyperplane jk is now determined, for which the
value of max(|F (I+

k )|, |F (I−k )|) becomes minimal. Thus, it can be determined
which hyperplane produces the best possible distribution of control laws with
the intent to keep the depth of the search tree as small as possible in order
to reduce the necessary online computation time. If more than one hyper-
plane satisfies this optimality constraint the number of remaining polytopes,
max(|I+

k |, |I
−
k |), is considered as additional criterion, i. e. the hyperplane which

reduces the set of polytopes to be evaluated and also the number of remaining
control laws, is selected. If there are still several optimum hyperplanes remain-
ing, there is no further evaluation due to reasons of complexity and simply one
of the possible hyperplanes is selected.

As it is determined now by which hyperplane the state space is separated in
the best way, the information about the tree node Nk can be completed. The
optimum hyperplane jk, determined above, is used for the separation of the
tree. Both originating subsequent nodes N±

k are initialized with J±k = Jk ∪ j±
and the I±k determined above. If the number of control laws in the subsequent
node is |F (I±)| > 1, they are added to the set of nodes which still have to
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9 Direct model-based predictive control

be evaluated. Otherwise the subsequent node is an end node, as for the whole
remaining region one single control law is valid. Thus, the number of the
corresponding control law is assigned to this end node.

As already mentioned above, these steps are repeated until all nodes are
evaluated. Then, the search tree is completely known. The calculation of the
binary search tree is mathematically rather complex; due to the fact that the
calculation can be done offline, this complexity can be accepted.

Once the calculation of the search tree is done, the online evaluation of
the explicit control law is significantly simplified. For this purpose, only the
following algorithm has to be processed:

1. Select the root N1 as current node Nk.

2. Evaluate the describing function dj(x) from equation (9.27) in which x
is the current system state and j = jk.

3. Branch to the corresponding subsequent node dependent on the sign of
dj(x), i. e. Nk = N+

k or Nk = N−
k

4. If Nk is an end node, calculate the value of the actuating variable u(t)
from the control law of the end node. Otherwise go back to step 2.

For a practical realization of an MPC controller based on the receding horizon
principle, it is important to branch out the tree only at those hyperplanes that
separate polytopes from each other whose corresponding control laws differ
already in the first step. In this way, an additional simplification of the search
tree can be achieved still granting an optimum control method.

9.5.4 Optimal complexity reduction

In many cases the explicit solution of an MPC controller is calculated for a pre-
diction horizon greater than one. Considering especially a discrete controller,
a multiplicity of polytopes whose corresponding control laws being basically
different, however, not in the first step, do exist. As, in a real control, only
the first value of the precalculated sequence of values for the actuating vari-
ables is really applied to the plant, it makes sense to combine polytopes whose
control laws are the same for the first step in order to reduce the complex-
ity of the structure and therewith also to reduce the necessary computation
time. Unfortunately, this combination cannot be realized by simply combining
all possible polytopes since it has to be ensured that the resulting structure
again consists of convex polytopes (see further in this chapter). In [43], Geyer,
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Torrisi and Morari propose a method to combine regions with the same control
law as skillfully as possible under consideration of the convexity constraint. If
this strategy is applied in dependence of the first step of every control law, a
significant simplification of the polytope structure can be expected. Thus one
can proceed as follows:

If the calculated piecewise affine controller structure is available as a collec-
tion of hyperplanes, a unique marking M for every region can be determined
via a sign vector which in principle shows the relation between a certain region
and the different hyperplanes. An algorithm doing such a cell enumeration is
e. g. described in detail by Geyer et al. in [42]; here a detailed description is
omitted. The determined markings are the basis for the optimal complexity
reduction to be done in the following.

If all boundaries are only defined on state variables and input variables, the
hyperplanes and markings are also defined on the state and input variable space.
Such a case is called global hyperplane arrangement . The markings M of the
hyperplane arrangement are then identical to the index sets J of the piecewise
affine controller structure that has already been described in chapter 9.5.3 and
the single polytopes as well as the single descriptions of the dynamics can
be set equal to each other. However, if the boundaries should furthermore
be dependent on additional variables which themselves are again dependent
on other boundaries, the algorithm described in [42] results in a collection of
hyperplane arrangements being sequentially defined into one another. Hence,
the set of regions does not cover the whole state space, but it is a polytope subset
of it. Such a case is called local hyperplane arrangement . It commonly occurs if
the system consists of several so-called discrete hybrid automata (DHA) which
are sequentially dependent on each other, i. e. one DHA defines a group of
hyperplanes within a polytope of the group of hyperplanes of the previous
PWA description. However, this very complex case is not to be assumed in
the application of a drive control with inverter as discussed here. Thus, it can
be assumed that it has only to be dealt with a global hyperplane arrangement
here.

For a given PWA description, e. g. a controller structure for an explicit MPC
controller, now an optimization problem has to be solved. This means that
a new set {Qj}, j = 1 . . . Q with the following characteristics has to be cre-
ated from a given set {Pi}, i = 1 . . . P of polytopes which describe the same
dynamics:

• The union of the new polytopes is equal to the union of the original ones,
i. e.

SP
i=1 Pi =

SQ
j=1Qj .
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9 Direct model-based predictive control

• The new polytopes are mutually disjoint, i. e. the following statement is
valid: Qi 6= Qj for all i, j ∈ {1 . . . Q}, i 6= j.

• The new polytopes are unions of the old ones, i. e. for each Qj , j ∈
{1 . . . Q} there is an index set I ⊆ {1 . . . P} so that Qj is the union of all
Pi, i ∈ I .

• The number Q is minimal, i. e. there is no set {Qj}, j = 1 . . . Q with a
lesser number of polytopes.

The optimization task is non-trivial because the union of all polytopes with
the same description of the dynamics is normally not convex; furthermore,
overlapping regions are not allowed.

First, it is to be assumed that besides the PWA description a corresponding
global hyperplane arrangement exists together with the associated markings M
which can be seen to be given for the existent control structure or be deter-
mined easily. With the help of these markings the following characteristics of
polytopes can be determined quickly:

Separating hyperplanes: A hyperplane j and two polytopes P1 and P2 with
the associated markings M1 and M2 shall be given. The hyperplane j is
a separating hyperplane with regard to the polytopes P1 and P2 if M1

and M2 differ in the jth element.

Envelope: Two polytopes P1 and P2 with the associated markings M1 and M2

shall be given, in which M1(i) = M2(i) for all i ∈ J and M1(i) 6= M2(i)
for all i ∈ {1 . . . L} \ J . L is the whole number of all hyperplanes. If a
new marking M with M(i) = M1(i) for all i ∈ J and M(i) = ‘*’ for all
i ∈ {1 . . . L} \ J is constructed, the envelope env(P1,P2) is given by M .

Convexity: Two polytopes P1 and P2 with the associated markings M1 and
M2, M1 6= M2 shall be given. The combination P1 ∪P2 is convex if, and
only if, the markings M1 and M2 differ in exactly one element.

Neighboring polytopes: Two polytopes are called neighboring if they have a
common facet.

Connections: A set of polytopes {Pi}, i ∈ I with the associated markings
Mi shall be given. The polytopes are connected if another polytope Pj ,
j ∈ I , j 6= i exists for every polytope Pi, i ∈ I , so that the associated
markings Mi and Mj differ in exactly one element.
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9.5 Explicit solution

Having a closer look at the markings of the hyperplane arrangements, it can
easily be figured out if two polytopes are connected with each other, if their
envelope is convex or similar things. This is used in order to merge those
polytopes of the controller structure which contain the same control law with
the help of a recursive Branch and Bound algorithm. At first look, this seems
to be complicated, however, it is quite simple.

If e. g. the polytopes with the control law x should be optimally combined,
the envelope Px = env(Mx) is constructed first, in which Mx describes the set
of all markings of these polytopes. As described above, the marking Mx of the
envelope can simply be determined by setting the corresponding elements ofMx

to the value ‘*’. If Px does not contain any polytopes with other control laws the
problem is already solved due to the fact that the combination of all polytopes
with the control law x is convex; in this case, the optimum combination simply
consists of the combination of all polytopes.

Usually, env(Mx) will, however, include polytopes with other control laws,
i. e. the combination of Mx is not convex. In this case the envelope Px has to be
reasonably separated. Thereto, Jx shall be the set of indices of all separating
hyperplanes with regard to the polytopes within Px. As the definitions stated
above prove, Jx is simply the enumeration of all positions on which the elements
of Mx have the value ‘*’ and thus, it can be easily determined. For every
hyperplane i ∈ Jx, the envelope can now be separated into two new convex
regions which are named Px,i+ and Px,i− with the associated markings Mx,i+

and Mx,i−. The Branch and Bound algorithm now branches at the hyperplane i
by calling itself two times; once with Mx,i+ and once with Mx,i− as the polytope
structure to be optimized. This step is repeated for all other hyperplanes i ∈ Jx.

In two cases, a node of the tree is an end node: First, if the envelope of
the current polytope structure contains no more polytopes with other control
laws, i. e. when the combination is convex. The second case applies if the
current polytope structure contains no further polytopes with the control law
of the polytope structure that should be optimized since in this case no further
polytopes are available for merging. Furthermore, the usual techniques for
excluding branches from the tree that will recognizably not lead to an optimum,
are used.

Since for a practical implementation of an explicit MPC controller, only the
first value of the sequence of actuating variables u is of interest, a reduction
of the controller structure is not only done under consideration of the control
law itself, but all regions, which will in the next sampling cycle apply the same
value of the actuating variable to the plant, are merged. As a two-level inverter
with DC link has only eight different switching states, as already explained
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in chapter 9.2, u(t) can take one out of only eight values. For controls with
tracking, i. e. with any values for the actuating variables, ∆u(t) is used as
input variable instead of u(t). Hence, the maximum number of possible values
increases to 27 because for the three half bridges applies that ∆a is, as well
as ∆b and ∆c, an element of {−1, 0, 1}. According to this, only 27 different
groups of polytopes exist. However, since the convexity constraint has to be
regarded, too, it cannot be expected that the controller structure consists of
only 27 different polytopes after the optimization process has been performed;
the real number of polytopes will be significantly higher.

It has to be mentioned that solutions calculated with the method of Optimal
Complexity Reduction have in principle a higher online computational demand
than a binary search tree according to chapter 9.5.3, although both algorithms
only consider those hyperplanes which lead to different values for the actuating
variables in the next sampling cycle, but the search tree further accelerates
the online-search for the control law to be applied through the fact that here
an easier approach is possible because of the tree-like structure, while, consid-
ering the simplified structure obtained by optimum complexity reduction, an
exhaustive search over the remaining polytopes has still to be done. However,
in experiments it was proven that due to the high memory requirements for
very complex solution structures, a direct calculation of the search tree is not
possible; however, it is possible to determine the structure with the help of the
algorithm described here first and then to determine the binary search tree.

9.5.5 Experimental results

LTI system

For the evaluation of the explicit control, the drive was first considered as a
linear time-invariant (LTI) system, i. e. the hybrid structure of the drive was
neglected. So the machine model derived in chapter 7 for a multidimensional
GPC controller can be used; however, the transformation into the CARIMA
model can be omitted, as for the explicit solution, the discrete-time state space
model is used. Additionally, the consideration of the cross coupling in form of
known disturbances, as described in chapter 7.3, was omitted so that the model
used is in fact a discretized form of the simplified model shown in figure 3.2
on page 14. With the help of this model, the computation time for an explicit
MPC control can be examined comparatively. Table 9.3 shows the results for
the different algorithms. For reasons of comparison, the computational demand
for an online calculated MIMO GPC controller is also given.

162



9.5 Explicit solution

Type Structure
Max. calc.

time

exhaustive search 225 polytopes 163µs
Minimum-Time-Controller 9 polytopes, 2 iterations 27µs
Opt. complexity reduction 60 polytopes 94µs

Binary search tree 225 nodes, branches: 10 4.7µs
MIMO-GPC – analytical solution – 4.1µs

Table 9.3: Calculation times for MIMO current controllers

As it can easily be seen, model-based predictive control with explicit solu-
tion of the optimization task (see chapter 9.5.1) is not feasible for drive control
without further modifications since the complete enumeration over the 225
polytopes of the controller structure needs significantly too much time. How-
ever, a minimum-time-controller whose execution time is significantly smaller,
because only two iterations with altogether nine polytopes have to be evalu-
ated, is feasible (see chapter 9.5.2). Its drawback is, however, that it does not
provide an optimum control considering the cost function. The use of optimal
complexity reduction (see chapter 9.5.4) also leads to an acceleration of the on-
line search because of the simplification of the controller structure from 225 to
only 60 remaining polytopes; due to the exhaustive search over the remaining
60 polytopes, which is still necessary, the computation time is still too high.
When a binary search tree (see chapter 9.5.3) is used, the online calculation
time can be reduced by a factor of nearly 35 compared to the standard method
which makes an implementation feasible. An interesting fact is that the search
tree also contains 225 elements, i. e. the same amount of elements as the original
polytope structure. However, by arranging the optimum solution as a tree-like
structure, in the worst case only ten decisions have to be made, significantly
less than the 225 for the exhaustive search. Furthermore, every decision in the
search tree is always coupled to the evaluation of only one hyperplane equation;
for the polytope search, all hyperplanes of a polytope have to be evaluated, if
possible, in order to determine if a given point lies within this polytope or not.

In summary it can be stated that explicit MPC for an electrical drive mod-
eled as LTI system is feasible considering the computation time. However, in
comparison to the analytical solution, no reduction of the computation time
could be determined. This is why, in this case, the analytical GPC method
should be preferred.
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Hybrid system

As the measured computation times given in table 9.3 generally prove the fea-
sibility of explicit MPC also for electrical drive technology, now a direct model-
based predictive control scheme with explicit solution is presented. There-
fore, at first, the simplified machine model explained in chapter 9.3.1 has to
be discretized; the procedure is the same as described in chapter 7. For the
discrete-time simplified machine model in stator coordinates according to the
equations (9.10) and (9.11), the following system matrices result:

A =

26641−
T0

τσ
′ 0

0 1−
T0

τσ
′

3775 =

»
0.9873 0

0 0.9873

–
(9.28)

B =

2664
2T0√
3 rστσ

′
−

T0√
3 rστσ

′
−

T0√
3 rστσ

′

0
T0

rστσ
′ −

T0

rστσ
′

3775
=

»
0.1713 −0.08566 −0.08566

0 0.1484 −0.1484

– (9.29)

C = I (9.30)

D = 0 (9.31)

If the usual algorithms for the calculation of an explicit solution are applied
to these matrices, a controller structure results, which neither considers the
delay of one sampling cycle caused by the digital control nor is feasible for
controlling to another reference value than u(t) = [0 0]T . Thus, the matrices of
the equations (9.28)–(9.31) must be transformed to the corresponding matrices
under consideration of delay and tracking according to the equations (9.22)
and (9.23). This gives for matrix At,d

At,d =

26666666666664

1−
T0

τσ
′ 0

2T0√
3 rστσ

′
−

T0√
3 rστσ

′
−

T0√
3 rστσ

′
0 0

0 1−
T0

τσ
′ 0

T0

rστσ
′ −

T0

rστσ
′ 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

37777777777775
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or, represented in numerical values

At,d =

2666666664

0.9873 0 0.1713 −0.08566 −0.08566 0 0
0 0.9873 0 0.1484 −0.1484 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3777777775
and for the remaining system matrices

Bt,d =

2666666664

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

3777777775

Ct,d =

2666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3777777775

Dt,d =

2666666664

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

3777777775
As not the actuating variable itself should be evaluated, but only the change

of the value of the actuating variable, which corresponds to the switching effort
of the inverter, the weighting matrices have to be defined in the following way
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(λ is the weighting factor for the change of the value of the actuating variables):

Qt,d =

2666666664

1 0 0 0 0 −1 0
0 1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 1 0
0 −1 0 0 0 0 1

3777777775
Rt,d =

24λ 0 0
0 λ 0
0 0 λ

35
For the model described above, controller structures with around 7500–8500

polytopes result; the exact number is varying a little bit depending on the
value of λ. However, commonly it can be stated that a higher weighting of ∆u
leads to simpler controller structures. Nevertheless, an explicit controller of this
complexity is not feasible due to reasons of memory demands and especially
due to the needed computation time. The offline computation of a search
tree is also not possible since the memory requirements for these tasks are
not available on conventional PCs. A workaround is to reduce the complexity
beforehand to around 1800–2200 polytopes by merging regions with the same
∆u; after that, the calculation of a binary search tree is possible. Finally, a
tree-like structure results with around 2100–2300 nodes and a maximum tree
depth of 18 which needs less than 8µs of online computation time on the used
computer system. If this computation time is compared with the times given
in table 9.2, one can see that model-based predictive control with direct control
of the inverter is feasible with the help of an explicit solution, in contrast to
the online optimization methods discussed there.

The behavior of such a control was analyzed using the example of current
control of an electrical drive; the experimental results can be seen in figure 9.12.
Also here, as in chapter 9.4.3, measurement results are given in a stationary
coordinate frame; here again, only a step change of the reference value isα was
done, in order to get some information about the coupling between isα and isβ .
For a comparison with a conventional control scheme, the same measurement
was repeated with PI current controllers for isα and isβ (figure 9.12(c)), whereas
here, of course, a modulator (PWM) has to be inserted between controller and
inverter. In order to get, despite of this fact, reasonably comparable results,
the switching frequency of the inverter was, for these measurements, reduced
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to 1630 Hz, for direct control, however, a sampling frequency of 9770 Hz was
used.3

As it can be seen in figure 9.12, the direct explicit MPC has a behavior similar
to the direct GPC in figure 9.8. The switching frequency and thus, the value
of the control deviation can be influenced via the weighting factor λ, while the
dynamics of the complete system are not affected by this. The new reference
value will always be reached in the shortest possible time, i. e. the dynamics of
the controlled plant are only limited by the physical limits of the system itself.
Weighting the switching events less than λ = 0.1 does not make sense because,
for the selected sampling time of around 100µs, the minimum of the current
disturbances is already reached, as it can be seen in figure 9.12(a).

An influence of the cross coupling between the stator current isα and isβ

cannot be figured out because it is significantly smaller than the amplitude of
the current harmonics. Thus, an implementation of this cross coupling in the
plant model does not make sense since it would result only in a higher, but
unnecessary complexity of the explicit controller structure.

Figure 9.12(c) shows the behavior of the system when using a linear PI
controller for the same control task and the same sequences of reference values
as used for direct control in figure 9.12(a) and figure 9.12(b). As it is to be
expected, the current distortions are much smaller when a linear controller
is used because using an inverter, controlled via a modulator, the switching
times of the semiconductors are variable within a sampling cycle, while direct
controllers can only switch at the beginning of every sampling cycle. However, a
drawback of a PI controlled drive is that the dynamics of the complete system
are coupled to the switching frequency, because the switching frequency is
dependent on the sampling frequency and for a PI controller it does not make
sense to use a higher sampling frequency than twice the switching frequency.
The reason for this is the fact that, for parameterizing a PI controller, the dead
time caused by the digital control has to be considered, which leads to a more
sluggish control. However, this dead time is directly related to the selected
sampling rate. If a low switching frequency is desired, e. g. for a high power
converter, the dynamics of the complete system are degraded if current control
is done by PI controllers because the low switching frequency also causes a
low sampling rate. However, when using an explicit DMPC controller, it is
possible to use a comparably high sampling rate and to ensure, despite of this,
a low average switching frequency by using a considerably high weighting of the

3 Since six switching instances per period of the carrier signal take place when using
modulator-based inverter control, the switching frequency for the measurements with
a PI controller was set to 1/6th of the sampling frequency of the direct controller.
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Figure 9.12: Current control with explicit DMPC and PI controller
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switching events in the cost function. Furthermore, in model-based predictive
controllers, the dead time caused by digital controllers can be considered in the
controller design. Thus, this dead time has a significantly lesser influence on
the dynamics of the controlled system.
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10 Related control structures

In literature, one can quite often find control methods being partly denoted as
model-based predictive controllers or which are said to be equal with some pre-
dictive control strategies. Here, especially Internal Model Control and Linear
Quadratic Control have to be mentioned. In fact, both controllers have some
similarities compared to MPC that cannot be overlooked. In the following sec-
tions, these similarities, but also the differences of these methods compared to
a real model-based predictive control strategy, will be presented.

10.1 Internal Model Control

Internal Model Control (IMC) is actually no control method , but a special
design principle for a control. However, it is, probably because of its name,
assigned to MPC controllers by some authors, e. g. Garćıa/Prett/Morari [40].
In a very detailed description of the method by Lunze [84], it is also intro-
duced under the name “model-based control”; however, in this context it is
not assumed to be a predictive or precalculating control. In order to show
that the basic ideas of IMC are, despite some similarities, significantly dif-
ferent from the ones on which MPC is based, they will shortly be outlined
here. For further information, the interested reader is referred to the book of
Lunze [84, chapter 12.2]; a detailed comparison between MPC and IMC can
be found in Dittmar/Pfeiffer [34, chapter 2.4.2]. By Harnefors/Nee [48], the
application of IMC for current control of an induction machine is described in
detail.

The basic principle of IMC controller design is to integrate an inner model
of the plant to be controlled into the controller itself. Thus, it is contrary
to conventional controls which use a plant model only for parameterizing the
controller; the actual control law itself does, however, not contain a model.
Figure 10.1 shows the typical structure of an IMC controller.

The plant model is connected in parallel to the plant which leads to the fact
that not the controlled variable y(t), but the difference between the real and the
output vector calculated via the model, y(t)−ŷ(t), is fed back to the controller.
A value of this feedback unequal to zero can be caused by two different things:
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Figure 10.1: IMC structure

1. A disturbance v(t) affects the plant.

2. A model error is present.

Assuming that the model is not affected with an error and that there is no dis-
turbance v(t) existing, the feedback is also equal to zero. So the IMC controller
is, in this case, a simple open-loop control and offers a holistic approach for
the direct selection of the controller structure by deducing it from the desired
behavior of the entire system.

If a disturbance v(t) occurs, the difference y(t)−ŷ(t) will be unequal to zero.
The controller reacts to this signal by correspondingly changing the controller
output u(t). This ability to react to disturbances is a difference of an IMC
controller compared to a mere feedforward control. No stability problems will
occur; if the plant and the IMC controller are stable, the closed control loop
will also be stable.

For a practical realization of an IMC controller, the IMC controller structure
(figure 10.1) is transformed into the conventional structure according to fig-
ure 10.2; again a feedback of the controlled variable y(t) results. Thereby, the
dashed box corresponds to a conventional controller FR(s). If the plant model
is known and the IMC controller is designed according to the desired behavior
(see above), FR(s) can easily be determined.

In reality, one cannot assume that the plant model is in all cases equal to the
real plant. The possibilities to consider this in an IMC controller are described
by Harnefors/Nee [48] and Zafiriou/Morari [123] and thus, they are not further
discussed here. Thereby, also an adaptive plant model is possible.

Compared to conventional control with linear controllers, IMC has some ad-
vantages; among other things, the controller design is significantly easier. If,
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Figure 10.2: IMC structure transformed to the classical controller structure

e. g., the IMC structure is translated into a conventional controller structure
according to figure 10.2 and a PI controller is used, the proportional and in-
tegral gains of the controller are directly expressed in terms of the machine
parameters and the desired controller bandwidth. Furthermore, the stability
of the complete system can always be granted if the system to be controlled is
open-loop stable and if the IMC controller is stable, too.

Although Internal Model Control apparently seems to be an attractive de-
sign principle, in reality some problems occur which lead to the fact that an
IMC controller can practically not be realized. Besides stability of the actual
IMC controller itself, causality of the control law has to be guaranteed, too.
Dittmar/Pfeiffer [34, chapter 2.4.2] show that even for a plant only consisting
of a simple PT1-block with dead time no realizable IMC controller can be found
since the inversion of the dead time leads to the fact that, for the determina-
tion of the current value of the actuating variable, future values of the control
deviation are needed. If an IMC controller should be used despite this fact, the
model of the plant to be controlled has to be simplified in such a way that the
design of a practically realizable controller according to the basics of IMC is
possible, which consequently leads to a non-optimum control in this case.

10.2 Linear Quadratic Control

Sometimes, it is told that Generalized Predictive Control, a subset of model-
based predictive controllers presented in chapter 6 and 8 for uni- and multi-
dimensional plants, is identical to Linear Quadratic Control . However, this is
definitely not true. Both methods are similar and in some special cases, one
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can obtain the same results with both methods, although these are clearly two
different control strategies.

10.2.1 Functional principle of LQR

Before comparing the methods GPC and LQR, it is necessary to explain the
basic principles of Linear Quadratic Control. For reasons of simplicity, only
the basic design principle of an LQ control for a deterministic time-invariant
system is described. The interested reader shall be refered to further literature.
A detailed description of the LQR principle can be found e. g. in the publication
of Isermann [58, chapter 8.1] or Kanjilal [62, chapter 13]; a good explanation
for the case of a continuous-time LQ controller has been written by Lunze [85,
chapter 7].

Linear Quadratic Control is based on a state space model of the plant accord-
ing to the equations (9.10) and (9.11) on page 143 as well as the corresponding
cost function (9.12)1. Since for an LQR control it is always assumed that
the system variables are not constrained, the following statements are valid:
x ∈ Rn, y ∈ Rp and u ∈ Rm; furthermore, for LQR, only one single horizon
exists. Thus, N1 = 0 and N2 = Np = Nu = N . In order to avoid mixing
up with the weighting matrix P that will be introduced in the following, the
weighing of the final value of the state vector is denoted with S here. Thus,
the cost function can be written as:

J(N) = x(t+N)T Sx(t+N)

+

NX
j=1

“
x(t+ j − 1)T Qx(t+ j − 1)

+ u(t+ j − 1)T Ru(t+ j − 1)
” (10.1)

Now, the intention is to obtain an optimum control law with which according
to the equation

u(t) = −K(t)x(t) (10.2)

optimum future values for the actuating variables can be calculated. Thereby,
K denotes the so called controller matrix of the LQ controller. Now, such a
controller matrix K that minimizes the cost function (10.1) has to be found.

According to the optimality constraint by Bellman [9], the end of an optimum
sequence is also an optimum. Consequently, if the last value of an optimum

1 In order to keep the mathematical representation of LQR consistent to the equations in
chapter 9, the index d is not used despite of the discrete-time form.
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sequence is known, the other elements can be calculated backwards. Thus,
for the solution of the optimization problem, only the last step of the cost
function (10.1) is considered:

JN = x(t+N)T PN x(t+N) PN = S

Thereby, P is the new weighting matrix. For the above optimization task, an
optimum value for u(t+N − 1) is determined by setting the derivation of the
cost function JN equal to zero:

u(t+N − 1) = −
“
BT SB + R

”−1

BT SAx(t+N − 1)

= −KN−1 x(t+N − 1)

Now, the remaining equations for u(t + j), j = (N − 2) . . . 0 and with these,
also the equations for the remaining elements of K and P can be determined
recursively.

Commonly, one can be sure that the controller matrix is not constant. How-
ever, if an infinite optimization horizon is used, a time-invariant control law
can be obtained:

u(t) = −Kx(t) (10.3)

In this case, the controller matrix results in:

K =
“
R + BT PB

”−1

BT PA (10.4)

with P as a solution of the matrix Riccati equation

P = Q + AT P

„
I−B

“
R + BT PB

”−1

BT P

«
A (10.5)

The solution of equation (10.5) is done via the recursive calculation stated
above. Afterwards, the controller matrix K for the advance calculation of
optimum future sequences of values for the actuating variables is known. Fig-
ure 10.3 shows the structure of the complete LQ control. For reasons of sim-
plicity, the feedforward matrix is considered to be D = 0, an assumption that
can be made for most cases in drive control. Furthermore, it has to be consid-
ered that for the LQ controller shown here, the state variables are controlled
to be zero, i. e. a reference value different from the zero vector is not possible.
For changing reference values, the control deviation y − w or x − w, respec-
tively, has to be minimized instead of the system state x. The corresponding
procedure is analog to the one shown in chapter 9.5 on page 148 et seqq.
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control system

LQ controller

Figure 10.3: Structure of LQ control (w = 0, see text)

10.2.2 GPC and LQR

If Linear Quadratic Control is compared to GPC by all means, some similarities
can be found (see also [28,40,62])):

• Both methods use a linear model of the plant and GPC as well as LQR
minimize a scalar quadratic cost function.

• The optimization problem is solved analytically in both cases, i. e. by
differentiating the cost function with regard to the actuating variable
and then by searching the zero point.

• Under certain circumstances LQR as well as LRPC deliver identical re-
sults.

• LQ controllers with finite horizon as well as GPC controllers minimize
the same cost function and the same values for the actuating variables
are obtained. Thus, they have the same stability characteristics.

Besides these similarities, there are also significant differences [28,34,40,62]:

• Whereas for GPC a transfer function-based model is used (see chap-
ter 6.1.1 on page 39), the calculations for LQR are based on a state
space model.

• Like all strategies based on LRPC, GPC uses the current time t as ref-
erence point and from this point, the optimum vector for the actuating
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variables u(t) is calculated based on the advance calculation of the control
variables y(t+j) over a finite horizon into the future. However, for LQR,
which is based on a state space representation, the selected reference time
point is at the end of the horizon, i. e. at t+N , and from that point the
values of the actuating variable u(t) are determined via backward recur-
sions. In this case, the horizon N can, in contrast to GPC, be finite as
well as infinite.

• For LQ control, the optimum feedback strategy is calculated in the design
process, i. e. offline. For GPC, the optimum sequence of values for the
actuating variables is newly determined for every sampling cycle.

• GPC determines an optimum sequence of values for the actuating vari-
ables with a finite horizon, in which the cost horizon Nu can in fact be
smaller than the prediction horizon Np. In contrast to that, LQR deter-
mines an optimum feedback matrix with a mostly infinite time horizon.
If a finite horizon is chosen, cost and prediction horizon are always equal.

• MPC strategies without consideration of constraints—as it is often the
case for GPC controllers—result in a time-invariant control law. In con-
trast to that, LQR commonly leads to a non-constant controller matrix
K(t). A time-invariant controller, which is desired for most applications,
can also be determined with LQR, as long as the weighting matrices S, Q
and R are chosen to be constant over the time and an infinite optimization
horizon is selected.

• LQR solves the optimization problem via a Riccati equation. This re-
quires the actuating variable being neither constrained in the slope nor
in the amplitude. This assumption will in reality never be fulfilled. In
contrast to that, GPC allows an optimization under consideration of such
constraints.

As the differences show, GPC is based on different basic ideas than LQR,
although some similarities can clearly be seen. Although LQR with finite time
horizon and GPC deliver the same results, GPC should be preferred. On the
one hand, LQR does in its approach not allow to consider possible system
constraints; on the other hand, a GPC method is superior to an LQR strategy
considering the practical aspect. LQ controls calculate future values for the
actuating variables directly from the state vector. If not all state variables are
directly measurable, a state observer is needed. Thus, additional online matrix
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operations are necessary, leading to the fact that LQR will mathematically be
very complex.
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11 Summary and future prospects

In the presented work, the fundamental applicability of model-based predic-
tive control in drive technology with the technical means being available today
could be proven. Computation times that do even satisfy the high performance
needs of a current controller were achieved; the computation times are consis-
tently lower than 10µs. However, some constraints, which do still limit the
applicability of MPC, have to be considered.

The GPC principle, which is based on an analytical solution of the optimiza-
tion problem, is applicable to linear systems without any problems. Even a
speed controller with a prediction horizon of Np = 200 needs a computation
time of less than 9µs. An advantage of the GPC method is that because of
the transfer function-based model structure, filtering of the measured values is
possible without delays. Furthermore, constant disturbances are considered by
the controller, since former values of the actuating and of the control variables
are also used for the optimization.

For a mere current controller (see chapter 6.3.3 on page 60 et seqq.), the
advantages of a GPC controller are only noticeable considering small-signal be-
havior. Equal results can also be achieved by using conventional techniques, i. e.
with a PI controller together with a feed-forward control. Thus the additional
effort for a GPC current controller is not really rewarding. The same statement
can be given for a MIMO current controller for isd and isq used in field-oriented
control (see chapter 8.4 on page 115 et seqq.). Indeed, the consideration of the
cross coupling between the flux- and torque-producing components of the stator
current is shows an improvement of the controller dynamics; however, similar
results can also be achieved—with less effort—with an adequate extension of
the PI control.

However, GPC speed control (see chapter 6.3.3 on page 63 et seqq.) shows
significant advantages compared to linear control, since the speed information
derived from an incremental encoder signal has to be filtered quite intensively
when using conventional control methods. Here the possibility to integrate a
delay-free filtering into a CARIMA model structure according to chapter 6.2 on
page 48 et seqq. becomes positively noticeable. Thus GPC for use in a speed
control application is profitable.
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However, a drawback of a GPC-based method is that constraints can hardly
be implemented because of the analytical solution. Considering a MIMO con-
trol for current and speed, it is necessary to limit the machine current. However,
as in such a case the current value is not known outside the controller, the limi-
tation has to be done within the controller structure leading to some problems.
For this reason, a practical realization of such a control scheme was given up.
Instead, the idea of a direct machine control was pursued.

A direct model-based predictive control has many advantages that cannot be
achieved with any other control method. No other method offers the possibility
to evaluate the switching effort in such a simple way. Furthermore, switching
states that are not allowed, can a priori be excluded from the optimization (see
chapter 9.2.1 on page 127 et seq.). Since, considering a GPC method, future
values of the actuating variables within the prediction horizon can be forwarded
to the controller, control can be done in a stationary coordinate frame without
a contouring error (see chapter 9.4.3 on page 138 et seqq.). Unfortunately,
a GPC based direct control method can practically not be realized, as the
computation time necessary for the evaluation of the optimization problem
cannot be reduced to an acceptable value, even if intelligent search strategies
are applied (see chapter 9.4.4 on page 141 et seq.).

A way out of this dilemma is the explicit solution of the optimization problem.
Unfortunately, this can, until now, only be done for MPC controllers based on
state space representation; thus, an explicit GPC control with the methods
currently available can at least presently not be realized. Hence, the GPC
specific advantages like internal filtering and consideration of past values cannot
be used. However, even the explicit solution can only be practically applied
when additional tools are used, since the computation times for an online search
for the active control law even for small controller structures quickly exceed
the acceptable value for drive control. Simplifications and transformations of
the explicit controller structure, as they are described in the chapters 9.5.3
and 9.5.4, allow indeed the execution of even complex controllers in very short
times.

For current control with a linear model, i. e. with modulator, the explicit
MPC solution is inferior to a GPC controller, since the computational effort is
nearly the same. GPC, however, offers further advantages due to the reasons
stated above. Thus, an explicit MPC controller with linear model cannot be
recommended for electric drive technology.

A direct control with a GPC-based method and without a modulator is not
feasible because of the needed computation time. However, a transformation
of the optimization problem into a polytope structure with affine control laws
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allows the execution of MPC control of an electric drive under consideration of
the value discrete nature of the actuator. An application as current controller
shows the superiority of DMPC compared to a linear controller in dynamic
mode (see chapter 9.5.5 at page 162 et seqq.). However, some drawbacks do
exist:

• System models based on the transfer function are similar to the IIR filters
known from communications technology. Hence, a filtering of measured
signals can be easily implemented. State space models, on the other hand,
offer no possibility to perform a delay-free filtering without any additional
effort. If this is needed, a Kalman filter or similar tools have to be included
in the signal path. For realizing a current control of an electric drive via
DMPC, this is indeed not necessary, since the current distortions are
quasi included in the model by regarding the hybrid characteristics of
the system. Hence, the disadvantage of the missing delay-free filtering
has no impact on the controller performance in this case. However, if a
speed control is to be included in the DMPC controller, problems are to
be expected.

• For the experimental investigations, a very simple machine model was
used, but even this model resulted in controller structures with up to
10,000 polytopes. More complex plant models, which e. g. consider the
cross coupling or which allow MIMO control of current and speed, will
quickly lead to even more complex structures which are not feasible any-
more with the hard- and software currently available. Similar statements
can be made for larger control horizons.

• In explicit MPC methods, a consideration of future reference value tra-
jectories is not possible, since in this case for every future sampling cycle
the dimension of the controller structure would be enlarged by one, which
would again lead to structures that are not feasible anymore. Since cur-
rent control is done in stator coordinates contouring errors cannot be
avoided.

• With the use of the implicit single-step optimization method by means
of an explicit solution, the advantage that dynamic constraints for the
values of the actuating variables can be considered, as they can e. g. be
caused by a bootstrap driver circuit of the inverter, does not apply. Only
the approach known from conventional direct control methods remains,
i. e. to change the switching state determined by the control afterwards if
it is necessary.
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• MPC controllers based on state space models cannot consider past input
and output variables of the plant and thus they fail in controlling constant
disturbances to zero. Unfortunately, for current control of electrical drives
the back EMF of the machine is such a disturbance. In order to achieve
offset-free control additional effort is necessary.

In summary, it can be stated that model-based predictive controllers can be
applied in drive technology. However, the application of MPC in fast switching
inverters does not seem to be expedient for the reasons stated above. Direct
control of electric drives without intermediary modulator with explicit MPC
seems to be much more promising here. However, the current state of research
does not allow to make use of the fundamental advantages of direct LRPC.
Indeed, the available processing power will surely increase. Furthermore, the
worldwide research activities in the area of hybrid systems and explicit MPC
control are far from being concluded. Thus further improvements of the offline
calculations which lead to smaller controller structures can be expected. Both
together will in some time make DMPC feasible for more complex calculations,
too. Thus the following intentions seem to be reachable:

• The machine model can be improved in the same degree as in which more
complex structures will become feasible. A MIMO control including speed
or even position control will then be realizable.

• As for MPC, the cost function can be chosen freely, it is also possible to
weight the distortion factor d besides the current error and the switching
effort. With these demands online optimized pulse patterns can be ob-
tained. The conventional method via offline optimized pulse patterns for
different stationary operating points and the exhausting compensation of
the modulation error in dynamic mode [15] would then not be necessary
anymore.

Finally, nonlinear predictive controllers shall be pointed out. If a DMPC con-
troller is used, the dead time and the value-discrete character of the actuating
variable (quantization) caused by the digital control are implicitly considered.
Moreover, an electric drive has indeed further nonlinearities, like e. g. the cross
coupling of both stator current components or saturation effects in the machine,
which are not considered in the simple machine model used here. However, by
taking the approach to describe the plant as a piecewise affine system, these
nonlinearities could be approximated. Assuming the fact that in the near fu-
ture also for complex systems a feasible controller structure can be determined,
it should be possible that further improvements of DMPC control can be made.
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[71] K. P.Kovács, I. Rácz, Transiente Vorgänge in Wechselstrommaschinen
(Transient Behavior of AC Machines), Volume II, Budapest: Akadémiai
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Appendix A

Glossary polynomial matrices

From [44] and [125]:

Polynomial matrix: A k ×m polynomial matrix is a matrix of the form

P(s) = P0 + P1s+ P2s
2 + · · ·+ Pns

n

in which s is an undefined, normally complex variable and

P0,P1,P2, · · ·Pn

represents the constant k × m coefficient matrices. If nothing else is
declared, real polynomial matrices, i. e. polynomial matrices whose coef-
ficient matrices are real, are treated.

If Pn is not a zero matrix, then P(s) is of the degree n.

If Pn is an identity matrix, P(s) is said to be monic.

Tall and wide: A polynomial matrix is tall, if it has at least as many rows as
columns. It is wide, if it has at least as many columns as rows.

Rank: A polynomial matrix P(s) has full column rank (or full normal column
rank) if it has full column rank everywhere in the complex plane, except
at a finite number of points. Similar definitions can be given for full row
rank and full rank .

The normal rank of a polynomial matrix P(s) is equal to

max
s∈C

rg P(s)

Similar definitions apply to the notions of normal column rank and normal
row rank .

A square polynomial matrix is nonsingular if it has full normal rank for
almost all complex values of s.
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Appendix A Glossary polynomial matrices

Row and column degrees: Let the elements of the k × m polynomial matrix
P(s) be

Pi,j(s), i = 1, 2, · · · , k j = 1, 2, · · · ,m

Then the numbers

ρi = max
j

degPi,j(s), i = 1, 2, · · · , k

γj = max
i

degPi,j(s), j = 1, 2, · · · ,m

are the row and the column degrees of P(s), respectively.

Leading coefficient matrix: Supposing that the polynomial matrix P(s) has
the row and column degrees

ρi, i = 1, 2, · · · , k
γj , j = 1, 2, · · · ,m

the leading column coefficient matrix of P(s) is a constant matrix whose
element ei,j is the coefficient of the term with power γj of the polynomial
element Pi,j(s) of the matrix P(s).

The leading row coefficient matrix of P(s) is a constant matrix whose
element ei,j is the coefficient of the term with power ρj of the polynomial
element Pi,j(s) of the matrix P(s).

Column- and row-reduced: A polynomial matrix is column reduced if its lead-
ing column coefficient matrix has full column rank. It is row reduced if
its leading row coefficient matrix has full row rank.

A nonsingular polynomial matrix P(s) is row reduced if, and only if,
its leading row coefficient matrix is regular (non-singular). It is column
reduced if, and only if, its leading column coefficient matrix is regular.

Any nonsingular polynomial matrix P(s) can be transformed into a row-
reduced form by elementary row operations. Additionally, the resulting
leading row coefficient matrix can be assumed to be a lower triangular
matrix with unity entries on the main diagonal. In the same way P(s) can
be converted into a column-reduced form by elementary column opera-
tions. Then, the resulting leading column coefficient matrix can assumed
to be an upper triangular matrix with unity entries on the main diagonal.
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Roots: The roots or zeros of a polynomial matrix P(s) are those points in the
complex plane where P(s) loses rank.

If P(s) is square, its roots are the roots of its determinant detP(s),
including multiplicity.

Prime: A polynomial matrix P(s) is left prime if it has full row rank everywhere
in the complex plane. The matrix is right prime if it has full column rank
everywhere in the complex plane.

Coprime (relative prime): N polynomial matrices P1(s),P2(s), · · ·PN (s) with
the same number of rows are left coprime or relatively left prime, ifˆ

P1(s) P2(s) · · · PN (s)
˜

is left prime. If all N polynomial matrices have the same number of
columns, then they are right coprime or relatively right prime if26664

P1(s)
P2(s)

...
PN (s)

37775
is right prime.

Two matrices DL(s) and NL(s) with the same number of rows are rela-
tively left prime or left coprime if, and only if, their greatest common left
divisor is unimodular.

Two matrices DR(s) and NR(s) with the same number of columns are
relatively right prime or right coprime if, and only if, their greatest com-
mon right divisor is unimodular.

Unimodular: A unimodular matrix U(s) is defined as an arbitrary square ma-
trix which can be derived from the identity matrix by a finite number
of elementary row and column operations. Therefore, the determinant
detU(s) is a nonzero real or complex scalar, and conversely any polyno-
mial matrix whose determinant is a nonzero real or complex scalar is a
unimodular matrix.

The inverse of a polynomial matrix, an inverse matrix being in the ring
area, i. e. again a polynomial matrix, exists if, and only if, the original
matrix is unimodular [124].
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Appendix A Glossary polynomial matrices

Elementary row and column operations: Three elementary row operations ex-
ist:

• Multiplication of a row with a real or complex-valued constant un-
equal to zero: »

1 s
2 s2

–
row 1 · 3−−−−−→

»
3 3s
2 s2

–
• Interchanging of two rows:»

1 s
2 s2

–
interchange row 1 and row 2−−−−−−−−−−−−−−−−−−→

»
2 s2

1 s

–
• Addition of a polynomial multiple of one row to another one:»

1 s
2 s2

–
row 1 = row 1 + s · row 2−−−−−−−−−−−−−−−−→

»
1 + 2s s+ s3

2 s2

–
Elementary column operations are defined analogously.

It shall be noted that the elementary row or column operations of a
polynomial matrix P(s) can also be realized if identical operations are
carried out on an identity matrix I and then P(s) is premultiplied with
the result.

Diophantine equation: The most simple form of a linear, scalar polynomial
equation—the so-called Diophantine equation named after the Alexan-
drinian mathematician Diophantos (A.D. 275)—is:

A(s)X(s) +B(s)Y (s) = C(s)

The polynomials A(s), B(s) and C(s) are given, while the polynomials
X(s) and Y (s) are unknown. The equation is solvable if, and only if, the
greatest common divisor of A(s) and B(s) is also a divisor of C(s). This
implies that the equation is solvable for any right hand side polynomial
including C(s) = 1, if A(s) and B(s) are coprime.

If a Diophantine equation is solvable, it always has an infinite number
of solutions. If (X0(s), Y0(s)) is any (particular) solution, the general
solution is

X(s) = X0(s) +B(s)T (s)

Y (s) = Y0(s)−A(s)T (s)
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where T (s) is an arbitrary polynomial (the parameter) and A(s) and B(s)
are coprime polynomials to which the following applies:

B(s)

A(s)
=
B(s)

A(s)

If A(s) and B(s) themselves are coprime, then one can of course select

A(s) = A(s), B(s) = B(s)

Among all solutions of a Diophantine equation, a unique solution pair
(X(s), Y (s)) exists, characterized by

degX(s) < degB(s)

There is another—usually different—solution pair with

deg Y (s) < degA(s)

Both solution pairs are only identical if

degA(s) + degB(s) = degC(s)

Bézout equation: A Diophantine equation with 1 on the right hand side is
called Bézout equation. It could e. g. have the form

A(s)X(s) +B(s)Y (s) = 1

in which A(s) and B(s) are given polynomials and X(s) and Y (s) are
unknown.

Two polynomial matrices DL(s) and NL(s) with the same number of
rows are left coprime if, and only if, two polynomial matrices A(s) and
B(s) exist, which fulfil the Bézout equation

DL(s)A(s) + NL(s)B(s) = I

Two polynomial matrices DR(s) and NR(s) with the same number of
columns are right coprime if, and only if, two polynomial matrices A(s)
and B(s) exist, which fulfil the Bézout equation

A(s)DR(s) + B(s)NR(s) = I
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Appendix A Glossary polynomial matrices

Divisors and multiples: Let the polynomials A(s), B(s) and C(s) be given such
that A(s) = B(s) · C(s). In this case, B(s) is called divisor of A(s) and
A(s) is called multiple of B(s). It can be written as B(s)|A(s). This is
also stated as B(s) divides A(s).

If a polynomial G(s) divides both A(s) and B(s), then G(s) is called
common divisor of A(s) and B(s). If additionally, G(s) is a multiple of
every common divisor of A(s) and B(s), then G(s) is the greatest common
divisor (GCD) of A(s) and B(s). If the only common divisors of A(s)
and B(s) are constants, then A(s) and B(s) are coprime.

If a polynomial M(s) is a multiple of both A(s) and B(s), then M(s)
is called common multiple of A(s) and B(s). If additionally, M(s) is a
divisor of all common multiples of A(s) and B(s), then M(s) is the least
common multiple (LCM) of A(s) and B(s).

Now let the polynomial matrices A(s), B(s) and C(s) of compatible size
be given such that A(s) = B(s) · C(s). In this case, B(s) is called the
left divisor of A(s) and A(s) is called the right multiple of B(s).

If a polynomial matrix G(s) is a left divisor of A(s) and B(s), then G(s)
is called common left divisor of A(s) and B(s). If additionally, G(s)
is a right multiple of every common left divisor of A(s) and B(s), then
G(s) is the greatest common left divisor of A(s) and B(s). If the only
common left divisors of A(s) and B(s) are unimodular matrices, then the
polynomial matrices A(s) and B(s) are left coprime.

If a polynomial matrix M(s) is a right multiple of A(s) and B(s), then
M(s) is called common right multiple of A(s) and B(s). If additionally,
M(s) is a left divisor of all common right multiples of A(s) and B(s),
then M(s) is the smallest common right multiple of A(s) and B(s).

Right divisors, left multiples, common right divisors, greatest common
right divisors, common left multiples and smallest common left multiples
are defined in a similar way.

Other properties: For the sake of simplicity, the properties described here are
either for left or for right matrix operations. The corresponding results
for the other case can be derived by substituting right, row, column,
premultiplication, etc. with left, column, row or postmultiplication.

Any m × l polynomial matrix P(s) of the rank r can be reduced by
elementary column operations to a lower left triangular matrix in which
the following applies:
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• If l > s, then the last (l − s) columns are all zero.

• In row j with 1 5 j 5 s, the diagonal element is monic and of a
higher degree than any (nonzero) element at the left of it.

• If in row j with 1 5 j 5 s, the diagonal element is unity, then all
elements at the left of it are zero.

The twom×m andm×r polynomial matrices DL(s) and NL(s) are given.
If the matrix

ˆ
DL(s) NL(s)

˜
is reduced to a lower left triangular formˆ

R(s) 0
˜

according to the above description, then R(s) is the greatest
common left divisor of DL(s) and NL(s).

201



Appendix A Glossary polynomial matrices

202



Appendix B

Nomenclature

The notation of the individual variables, parameters etc. is based on the fol-
lowing convention:

Scalar values : Italic font (a, b, c)
Complex values : Italic bold font (a , b, c)
Vectors : Bold lowercase letters (a,b, c)
Matrices : Bold capitals (A,B,C)
Sets : Italic, bold capitals (A,B ,C )
Polynomials in z : Capitals (A(z−1), B(z−1), C(z−1))
Polynomial matrices in z : Bold capitals (A(z−1),B(z−1),C(z−1))
Polytopes : Curved capitals (A,B, C)
Number ranges : Bold capitals with double line (A,B,C)

Reference values : Star superscript (a∗,a∗,a∗)

Overview of the formula symbols:

Machine values:
a Acceleration
a Switching state of the half bridge of phase a
b Switching state of the half bridge of phase b
c Switching state of the half bridge of phase c
d Distortion factor
e Control deviation, control error
fs Inverter switching frequency, non-normalized
I Current (general)
IR Rated current
Iph,R Rated phase current
is Stator current
isa Stator current in phase a
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isb Stator current in phase b
isc Stator current in phase c
isd Field-producing component of the stator current
isq Torque-producing component of the stator current
isα Real part of is in stator coordinates
isβ Imaginary part of is in stator coordinates
kr Rotor coupling factor
ks Stator coupling factor
lh Mutual machine inductance
lr Rotor inductance
lr
′ Transient rotor inductance

lrσ Leakage inductance of the rotor
ls Stator inductance
l′s Transient stator inductance
lsσ Leakage inductance of the stator
m Modulation index
p Number of pole pairs
rr Rotor resistance
rs Stator resistance
rσ Effective resistance of both windings
S Inverter switching state
T0 Sampling rate, non-normalized
UR Nominal machine voltage
Uph,R Nominal phase voltage
ud DC link voltage
us Stator voltage
usd Field-producing component of the stator voltage
usq Torque-producing component of the stator voltage
usα Real part of us in stator coordinates
usβ Imaginary part of us in stator coordinates
δ Field angle
σ Total leakage factor
τ0 Sampling rate
τf Filter time constant for the actual values
τm Mechanical time constant
τr Rotor time constant
τr
′ Transient rotor time constant

τs Stator time constant
τs
′ Transient stator time constant
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τtot Dead time
τσ
′ Transient time constant

ϕ Mechanical rotor position
ψr,ψrd Rotor flux
ψrα Real part of ψr in stator coordinates
ψrβ Imaginary part of ψr in stator coordinates
ψs Stator flux
ω Mechanical rotor speed
ωk Angular speed of the coordinate system
ωr Angular speed of the rotor current
ωs Angular speed of the stator current
ωs,R Nominal angular speed of the stator current

PI controller constants
Ti Integrator time constant of the current controllers
Tω Integrator time constant of the speed controller
Vi Gain factor of the current controllers
Vω Gain factor of the speed controller

MPC variables (SISO)
A(z−1) Denominator polynomial of the transfer function G(z−1)

Ã(z−1) Modified denominator polynomial; Ã(z−1) = ∆A(z−1)
B(z−1) Numerator polynomial of the transfer function G(z−1)
C(z−1) Noise polynomial
d Discrete delay time
Ej(z

−1) Auxiliary polynomial
Fj(z

−1) Auxiliary polynomial
F(z−1) Transfer polynomial matrix for past controlled variables
FG′ Aux. matrix for the calculation of the free response
FΓ Aux. matrix for the calc. of the free response with filt.
f(t) Free response
f Vector of the free response f(t)
f ′(t) Free response with filtering
f ′ Vector of the free response with filtering
G Transfer matrix for the forced response
G(z−1) Transfer function of the system
G′ Transfer matrix for the forced response with filtering
G′(z−1) Transfer polynomial matrix for past actuating variables
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Gj(z
−1) Transfer polynomial for GPC controller

Gj
′(z−1) Transfer function for future actuating variables

g̃T First row of the matrix (GT G + λI)−1 ·GT

g̃′T First row of the matrix (G′T G′ + λI)−1 ·G′T

I Identity matrix
i Counter variable
J Cost function
j Counter variable
k Counter variable
N Horizon (general)
N1 Lower cost horizon
N2 Upper cost horizon
Np Prediction horizon
Nu Control horizon
na Degree of the denominator polynomial A(z−1)
nb Degree of the numerator polynomial B(z−1)
nc Degree of the noise polynomial C(z−1)
nt Degree of the design polynomial T (z−1)
rj Auxiliary values for the calculation of Ej(z

−1)

R̃(z−1) Auxiliary polynomial for the calculation of Ej(z
−1)

T (z−1) Design polynomial for filtering
u(t) Actuating variable

uf (t) Actuating variable, filtered with T (z−1)
ũ Vector of actuating variable differences ∆u(t)
w(t) Reference variable
w Vector of reference variables w(t)
y(t) Controlled variable

yf (t) Controlled variable, filtered with T (z−1)
ŷ(t) Predicted value of the controlled variable
y Vector of the predicted controlled variables ŷ(t)
yu Vector of past controlled and actuating v. y(t) and u(t)

yuf Vector of filt. controlled and actuating v. yf (t) and uf (t)
Γ(z−1) Transfer polynomial matrix for filtered actuating variables
Γj(z

−1) Transfer function for filtered actuating variables
∆ Differential operator 1− z−1

λj Weighting factors for actuating variables
µj Weighting factors for control errors
ξ(t) Noise variable
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MPC variables (MIMO)
0 Zero matrix
A State matrix
A(z−1) Denominator polynomial matrix for the CARIMA model

Ã(z−1) Modified polynomial matrix; Ã(z−1) = ∆A(z−1)
Ad State matrix in the discrete-time model
B Input matrix
B(z−1) Numerator polynomial matrix for the CARIMA model
Bd Input matrix in the discrete-time model
C Output matrix
C(z−1) Noise polynomial matrix for the CARIMA model
Cd Output matrix in the discrete-time model
D Feedforward matrix
D(z−1) Noise polynomial matrix for the CARIMA model
Dd Feedforward matrix in the discrete-time model
Ed Noise input matrix in the discrete-time model
Ej(z

−1) Auxiliary polynomial matrix
F Matrix of the free responses f(t)

F′ Matrix of the modified free responses HṼ + F
F′ Matrix of the free responses f ′(t) (with filtering)

F′′ Matrix of the modified free resp. HṼ + F′ (with filt.)
FN12 Matrix F under consideration of the control horizon
F′N12 Matrix F′ under consideration of the control horizon
F′′N12 Matrix F′′ under consideration of the control horizon
F(z−1) Transfer polynomial matrix for past controlled variables
Fd Noise feedforward matrix in the discrete-time model
Fj(z

−1) Auxiliary polynomial matrix
FGp Auxiliary matrix for the calculation of the free response
FGpN12

Matrix FGp under consideration of the control horizon

FGpHp Auxiliary matrix for the free response with noise
FGpHpN12

Matrix FGpHp under cons. of the control horizon

FΓΘ Like FGpHp, but with filtering
FΓΘN12 Matrix FΓΘ under consideration of the control horizon
f(t) Free response
f ′(t) Free response with filtering
fj Vector of the free response
G Transfer matrix for the forced response
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G′ Transfer matrix for the forced response with filtering
GN12u Matrix G under consideration of the control horizon
G′

N12u Matrix G′ under consideration of the control horizon
Gd(z−1) Discrete-time transfer matrix (matrix polynomial)
Gj(z

−1) Transfer polynomial matrix for the forced response
Gj

′(z−1) Like Gj(z
−1), but with filtering

Gjp(z−1) Transfer polynomial matrix for past actuating variables
Gp(z−1) Transfer polynomial matrix for past actuating variables
H Transfer matrix for future disturbances
H′ Like H, but with filtering
HN12u Matrix H under consideration of the control horizon
H′

N12u Matrix H′ under consideration of the control horizon
Hd(z−1) Discrete-time dist. trans. matrix (matrix polynomial)
Hj(z

−1) Transfer polynomial matrix for future disturbances
Hj

′(z−1) Like Hj(z
−1), but with filtering

Hjp(z−1) Transfer polynomial matrix for past disturbances
Hp(z−1) Transfer polynomial matrix for past disturbances
HFGpHp Aux. matrix for the calculation of the mod. free resp.
H′FΓΘ Like HFGpHp, but with filtering
I Identity matrix
i Counter variable
J Cost function
j Counter variable
K Controller matrix (LQR)
k Counter variable
l Number of disturbance variables
m Number of system inputs
N Horizon (general)
N1 Lower cost horizon
N2 Upper cost horizon
Np Prediction horizon
Nu Control horizon
n Number of system outputs
na Degree of the denominator matrix polynomial A(z−1)
nb Degree of the numerator matrix polynomial B(z−1)
nc Degree of the noise matrix polynomial C(z−1)
nd Degree of the disturbance matrix polynomial D(z−1)
nt Degree of the design matrix polynomial T(z−1)
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P Weighting matrix (LQR)
P(z−1) Arbitrary polynomial matrix
Q Weighting matrix for the state variables
R Weighting matrix for the actuating variables
Rj Real auxiliary matrix for the calculation of Ej(z

−1)

R̃(z−1) Auxiliary polynomial matrix for the calculation of Ej(z
−1)

S Weighting matrix for the final value of the state variables
T(z−1) Design polynomial matrix for filtering
U(z) Z-transformed system input u(t)

Ũ Matrix of actuating variable differences ∆u(t)

ŨNu Matrix Ũ under consideration of the control horizon
u(t) Actuating variables or systems inputs

uf (t) Actuating variables, filtered with T(z−1)

Ṽ Matrix of disturbance variable differences ∆v(t)

ṼYUV Matrix of misc. future and past variable values

ṼYUV
f

Matrix of misc. future and past values with filter
v(t) Disturbance variables

vf (t) Disturbance variables filtered with T(z−1)
W Matrix of future reference variables w(t)
WN12 Matrix W under consideration of the control horizon
w(t) Reference variables
x(t) State variables
Y Matrix of the predicted controlled variables ŷ(t)
YN12 Matrix Y under consideration of the control horizon
Y(z) Z-transformation of system output variables y(t)
YU Matrix of past controlled and actuating v. y(t) and u(t)
YUV Matrix of past controlled, actuating and dist. v.

YUVf Matrix of past controlled, control and dist. v. with filt.
y(t) Controlled variables or system output variables

yf (t) Controlled variables, filtered with T(z−1)
ŷ(t) Predicted values of the controlled variables
Γ(z−1) Like Gp(z−1), but with filtering
Γj(z

−1) Like Gjp(z−1), but with filtering
∆ Differential operator 1− z−1

Θ(z−1) Like Hp(z−1), but with filtering
Θj(z

−1) Like Hjp(z−1), but with filtering
λj Weighting factors for actuating variables
µj Weighting factors for control errors
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ξ(t) Noise variable

DMPC variables
0 Zero matrix
A State matrix (discrete-time)
Ad State matrix (discrete-time), cons. delay
At State matrix (discrete-time), cons. tracking
At,d State matrix (discrete-time), cons. tr. and delay
A(z−1) Den. polynomial matrix for CARIMA model (GPC)
aj Describing vector for hyperplane j
B Input matrix (discrete-time)
Bd Input matrix (discrete-time), cons. delay
Bt Input matrix (discrete-time), cons. tracking
Bt,d Input matrix (discrete-time), cons. tr. and delay
B(z−1) Num. polynomial matrix for CARIMA model (GPC)
bj Describing vector for hyperplane j
C Output matrix (discrete-time)
Cd Output matrix (discrete-time), cons. delay
Ct Output matrix (discrete-time), cons. tracking
Ct,d Output matrix (discrete-time), cons. tr. and delay
D Feedforward matrix (discrete-time)
Dd Feedforward matrix (discrete-time), cons. delay
Dt Feedforward matrix (discrete-time), cons. tracking
Dt,d Feedforward matrix (discrete-time), cons. tr. and delay
dj Describing function for hyperplane j
E Matrix of constraints, modified cost function
F Weighting matrix, modified cost function
F Matrix of free responses f(t) (GPC)
F Set of indices of the control laws
Fi Matrix control law within polytope Pi

Fk Affine control law
f(t) Free responses (GPC)
G Matrix of constraints, modified cost function
G Transfer matrix for forced response (GPC)
G(z−1) Discrete-time transfer matrix (matrix polyn.) (GPC)
Gi Matrix control law within polytope Pi

H Weighting matrix, modified cost function
Hi Describing matrix for polytope Pi in HK notation
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I Identity matrix
I Set of indices i of polytopes Pi

Ik Set of indices of all polytopes Pi being in P(Jk)
i Counter variable
iter Iteration step with minimum-time controller
J Cost function
J Set of indices j of hyperplanes
J ′ Modified cost function
J ′z Modified cost function for explicit solution
J1 Single-step cost function for minimum-time controller
Jk Result of the hyperplanes already evaluated in node Nk

Jx Set of indices of all separating hyperplanes rel. to Px

j Counter variable
K Controller gain matrix
K Set of nodes Nk to be evaluated
Ki Describing matrix for the polytope Pi in HK notation
k Counter variable
L Number of hyperplanes
M Marking for position of polytope rel. to the hyperpl.
Mx Set of markings M of the polytope Px

m Number of system inputs
N Set of natural numbers
N1 Lower cost horizon
N2 Upper cost horizon
Nk Node k of the binary search tree
Np Prediction horizon
Nu Control horizon
n Number of the system states
na Degree of the den. matrix polynomial A(z−1) (GPC)
nb Degree of the num. matrix polynomial B(z−1) (GPC)
nt Degree of the design matrix polynomial T(z−1) (GPC)
P Number of polytopes of the explicit solution
P Weight. matrix for the final value of the state variables
Pj Polytope of the explicit solution
p Number of system outputs
Q Number of polytopes of the reduced explicit solution
Q Weighting matrix for the state variables
Qd Like Q, but under consideration of delay
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Qt Like Q, but under consideration of tracking
Qt,d Like Q, but under consideration of tr. and delay
Qj Polytope of the reduced explicit solution
R Number of polytopes in a region with min-time contr.
R Weighting matrix for the actuating variables
Rd Like R, but under consideration of delay
Rt Like R, but under consideration of tracking
Rt,d Like R, but under consideration of tracking and delay
R∆ Weighting matrix for changes of the actuating variables
R Set of real numbers
R Arbitrary set
S Matrix for constraints for the explicit solution
S Arbitrary set
s Dimension of U
T(z−1) Design polynomial matrix with filter (GPC)
Tset Target area for minimum-time controller
U Vector of all actuating variables u

Ũ Matrix of actuating variable differences ∆u(t) (GPC)
U Set of possible values for the actuating variables
Uk Subset for the expansion principle
u,u(t) Input vector, actuating variables
ud,ud(t) Input vector, actuating variables, cons. delay
ut,ut(t) Input vector, actuating variables, cons. tracking
ut,d,ut,d(t) Input vector, actuating variables, cons. tr. and delay
W Matrix for constraints, modified cost function
W Matrix of future reference variables w(t) (GPC)
w,w(t) Reference variables
wd,wd(t) Reference variables, cons. of delay
wt,wt(t) Reference variables, cons. of tracking
wt,d,wt,d(t) Reference variables, cons. of tracking and delay
X Set of possible values for the state variables
XLQR Central region with LQR control for min-time controllers
XN

f Feasible region for N sampling cycles
x,x(t) State vector
xd,xd(t) State vector, cons. of delay
xt,xt(t) State vector, cons. of tracking
xt,d,xt,d(t) State vector, cons. of tracking and delay
Y Weighting matrix, modified cost function
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Y Set of possible values for the controlled variables
y,y(t) Output vector, controlled variables
yd,yd(t) Output vector, controlled variables, cons. of delay
yt,yt(t) Output vector, controlled variables, cons. of tracking
yt,d,yt,d(t) Source vector, controlled variables, cons. of tr. and delay
z Auxiliary vector for the explicit solution
λ Weighting factor for the actuating variables

Control Engineering (general)
A State matrix
Ad State matrix in a discrete-time model
B Input matrix
Bd Input matrix in a discrete-time model
C Output matrix
Cd Output matrix in a discrete-time model
D Feedforward matrix
Dd Feedforward matrix in a discrete-time model
E Input matrix for disturbance variables
Ed Disturbance input matrix in a discrete-time model
F Feedforward matrix for disturbance variables
Fd Disturbance feedf. matrix in a discrete-time model
FR(s) Controller transfer function
I Identity matrix
k Discrete-time point at time kt
k Arbitrary constant vector
t Time (general)
T0 Sampling time
u Input vector
v Input vector of the disturbance variables
x State vector
y Output vector
τ Normalized time
Φ Transition or fundamental matrix

Matrix algebra
A Arbitrary matrix
B Auxiliary matrix for intermediate results
I Identity matrix
L Left (lower) triangular matrix
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P Permutation matrix
R Right (upper) triangular matrix
x,y Arbitrary vectors
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Appendix C

Normalization values

The nominal phase values are used for normalization.

Star connection
Uph,R =

1√
3
UR

Iph,R = IR

Y-connection
Uph,R = UR

Iph,R =
1√
3
IR

Thereby the following normalization values result:

Voltage
√

2 · Uph,R

Current
√

2 · Iph,R

Impedance
Uph,R

Iph,R

Inductance
Uph,R

ωs,R · Iph,R
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Flux linkage

√
2 · Uph,R

ωs,R

Power 3 · Uph,R · Iph,R

Torque
3 · p · Uph,R · Iph,R

ωs,R

Rotating speed
ωs,R

p

Time
1

ωs,R
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Appendix D

Physical machine constants

Technical data of the asynchronous machine used in the experiments in the
chapters 3.4, 6.1.2, 6.3.3, 7.2, 8.4, 9.4.3 and 9.5.5:

Machine constant value

UR 380V
IR 4.9A
ωs,R 50Hz
ls 2.67
τr 95.2
rs 0.0447
τs 59.7
lsσ = lrσ 0.0863
lh = ls + lsσ 2.58

rr = lr
τr

0.0280

σ 0.0663
ls
′ = lr

′ 0.177
kr = ks 0.966
τs
′ 3.96

rσ 0.0708
τσ
′ 2.50

τm 550
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Appendix E

Polynomials and matrices for GPC

E.1 SISO system

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

B(z−1) = b0 + b1z
−1 + b2z

−2 + · · ·+ bnbz
−nb

C(z−1) = 1 + c1z
−1 + c2z

−2 + · · ·+ cncz
−nc

Ej(z
−1) = ej,0 + ej,1z

−1 + ej,2z
−2 + · · ·+ ej,j−1z

−(j−1) j = 1 . . . Np

= e0 + e1z
−1 + e2z

−2 + · · ·+ ej−1z
−(j−1) (see chapter 6.1.1)

Fj(z
−1) = fj,0 + fj,1z

−1 + fj,2z
−2 + · · ·+ fj,naz

−na j = 1 . . . Np

F(z−1) =

26664
F1(z

−1)
F2(z

−1)
...

FNp(z−1)

37775 =

26664
f1,0 + f1,1z

−1 + · · ·+ f1,naz
−na

f2,0 + f2,1z
−1 + · · ·+ f2,naz

−na

...
fNp,0 + fNp,1z

−1 + · · ·+ fNp,naz
−na

37775

FG′ =

26664
f1,0 f1,1 · · · f1,na g′1,0 g′1,1 · · · g′1,nb−1

f2,0 f2,1 · · · f2,na g′2,0 g′2,1 · · · g′2,nb−1

...
...

...
...

...
...

...
...

fNp,0 fNp,1 · · · fNp,na g′Np,0 g′Np,1 · · · g′Np,nb−1

37775

FΓ =

26664
f1,0 f1,1 · · · f1,na γ1,0 γ1,1 · · · γ1,nb−1

f2,0 f2,1 · · · f2,na γ2,0 γ2,1 · · · γ2,nb−1

...
...

...
...

...
...

...
...

fNp,0 fNp,1 · · · fNp,na γNp,0 γNp,1 · · · γNp,nb−1

37775
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f =

26664
f(t+ 1)
f(t+ 2)

...
f(t+Np)

37775

f ′ =

26664
f ′(t+ 1)
f ′(t+ 2)

...
f ′(t+Np)

37775

G =

26664
g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gNp−1 gNp−2 · · · g0

37775

G′ =

2666664
g′0 0 0 · · · 0
g′1 g′0 0 · · · 0
g′2 g′1 g′0 · · · 0
...

...
...

. . .
...

g′Np−1 g′Np−2 g′Np−3 · · · g′0

3777775

G′(z−1) =

266664
g′1,0 + g′1,1z

−1 + · · ·+ g′1,nb−1z
−(nb−1)

g′2,0 + g′2,1z
−1 + · · ·+ g′2,nb−1z

−(nb−1)

...

g′Np,0 + g′Np,1z
−1 + · · ·+ g′Np,nb−1z

−(nb−1)

377775
T (z−1) = 1 + t1z

−1 + t2z
−2 + · · ·+ tntz

−nt

ũ =

26664
∆u(t)

∆u(t+ 1)
...

∆u(t+Np − 1)

37775

w =

26664
w(t+ 1)
w(t+ 2)

...
w(t+Np)

37775
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E.2 MIMO system

y =

26664
ŷ(t+ 1)
ŷ(t+ 2)

...
ŷ(t+Np)

37775

yu =

266666666664

y(t)
y(t− 1)
· · ·

y(t− na)
∆u(t− 1)
∆u(t− 2)

· · ·
∆u(t− nb)

377777777775

yuf =

266666666664

yf (t)

yf (t− 1)
· · ·

yf (t− na)

∆uf (t− 1)

∆uf (t− 2)
· · ·

∆uf (t− nb)

377777777775

Γ(z−1) =

26664
Γ1(z

−1)
Γ2(z

−1)
...

ΓNp(z−1)

37775 =

26664
γ1,0 + γ1,1z

−1 + · · ·+ γ1,nb−1z
−(nb−1)

γ2,0 + γ2,1z
−1 + · · ·+ γ2,nb−1z

−(nb−1)

...

γNp,0 + γNp,1z
−1 + · · ·+ γNp,nb−1z

−(nb−1)

37775
E.2 MIMO system

E.2.1 Definitions

A(z−1) = I + A1z
−1 + A2z

−2 + · · ·+ Anaz
−na

B(z−1) = B0 + B1z
−1 + B2z

−2 + · · ·+ Bnbz
−nb

C(z−1) = I + C1z
−1 + C2z

−2 + · · ·+ Cncz
−nc

D(z−1) = D0 + D1z
−1 + D2z

−2 + · · ·+ Dndz
−nd

Ej(z
−1) = Ej,0 + Ej,1z

−1 + Ej,2z
−2 + · · ·+ Ej,j−1z

−(j−1) j = 1 . . . Np
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= E0 + E1z
−1 + E2z

−2 + · · ·+ Ej−1z
−(j−1) (s. chapter 8.1.3)

F =

26664
f(t+ 1)
f(t+ 2)

...
f(t+Np)

37775 F′ and F′′ are defined accord-
ingly via f ′(t) and f ′′(t)

FN12 =

26664
f(t+N1)

f(t+N1 + 1)
...

f(t+N2)

37775 F′N12 and F′′N12 are defined
accordingly via f ′(t) and f ′′(t)

F(z−1) =

26664
F1(z

−1)
F2(z

−1)
...

FNp(z−1)

37775 =

26664
F1,0 + F1,1z

−1 + · · ·+ F1,naz
−na

F2,0 + F2,1z
−1 + · · ·+ F2,naz

−na

...
FNp,0 + FNp,1z

−1 + · · ·+ FNp,naz
−na

37775
Fj(z

−1) = Fj,0 + Fj,1z
−1 + Fj,2z

−2 + · · ·+ Fj,naz
−na j = 1 . . . Np

FGp =

26664
F1,0 · · · F1,na G1p,0 · · · G1p,nb−1

F2,0 · · · F2,na G2p,0 · · · G2p,nb−1

...
...

...
...

...
...

FNp,0 · · · FNp,na GNpp,0 · · · GNpp,nb−1

37775

FGpN12
=

26664
FN1,0 · · · FN1,na GN1p,0 · · · GN1p,nb−1

FN1+1,0 · · · FN1+1,na G(N1+1)p,0 · · · G(N1+1)p,nb−1

...
...

...
...

...
...

FN2,0 · · · FN2,na GN2p,0 · · · GN2p,nb−1

37775
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FGpHp =

26664
F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

G1p,0 G1p,1 · · · G1p,nb−1

G2p,0 G2p,1 · · · G2p,nb−1

...
...

...
...

GNpp,0 GNpp,1 · · · GNpp,nb−1

H1p,0 H1p,1 · · · H1p,nd−1

H2p,0 H2p,1 · · · H2p,nd−1

...
...

...
...

HNpp,0 HNpp,1 · · · HNpp,nd−1

37775

FGpHpN12
=

26664
FN1,0 FN1,1 · · · FN1,na

FN1+1,0 FN1+1,1 · · · FN1+1,na

...
...

...
...

FN2,0 FN2,1 · · · FN2,na

GN1p,0 GN1p,1 · · · GN1p,nb−1

G(N1+1)p,0 G(N1+1)p,1 · · · G(N1+1)p,nb−1

...
...

...
...

GN2p,0 GN2p,1 · · · GN2p,nb−1

HN1p,0 HN1p,1 · · · HN1p,nd−1

H(N1+1)p,0 H(N1+1)p,1 · · · H(N1+1)p,nd−1

...
...

...
...

HN2p,0 HN2p,1 · · · HN2p,nd−1

37775
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FΓΘ =

26664
F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

Γ1,0 Γ1,1 · · · Γ1,nb−1

Γ2,0 Γ2,1 · · · Γ2,nb−1

...
...

...
...

ΓNp,0 ΓNp,1 · · · ΓNp,nb−1

Θ1,0 Θ1,1 · · · Θ1,nd−1

Θ2,0 Θ2,1 · · · Θ2,nd−1

...
...

...
...

ΘNp,0 ΘNp,1 · · · ΘNp,nd−1

37775

FΓΘN12 =

26664
FN1,0 FN1,1 · · · FN1,na

FN1+1,0 FN1+1,1 · · · FN1+1,na

...
...

...
...

FN2,0 FN2,1 · · · FN2,na

ΓN1,0 ΓN1,1 · · · ΓN1,nb−1

ΓN1+1,0 ΓN1+1,1 · · · ΓN1+1,nb−1

...
...

...
...

ΓN2,0 ΓN2,1 · · · ΓN2,nb−1

ΘN1,0 ΘN1,1 · · · ΘN1,nd−1

ΘN1+1,0 ΘN1+1,1 · · · ΘN1+1,nd−1

...
...

...
...

ΘN2,0 ΘN2,1 · · · ΘN2,nd−1

37775

G =

26664
G0 0 · · · 0
G1 G0 · · · 0
...

...
. . .

...
GNp−1 GNp−2 · · · G0

37775
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G′ =

26664
G′

0 0 · · · 0
G′

1 G′
0 · · · 0

...
...

. . .
...

G′
Np−1 G′

Np−2 · · · G′
0

37775

GN12u =

26664
GN1−1 GN1−2 · · · GN1−Nu

GN1 GN1−1 · · · GN1−Nu+1

...
...

...
GN2−1 GN2−2 · · · GN2−Nu

37775

G′
N12u =

26664
G′

N1−1 G′
N1−2 · · · G′

N1−Nu

G′
N1 G′

N1−1 · · · G′
N1−Nu+1

...
...

...
G′

N2−1 G′
N2−2 · · · G′

N2−Nu

37775

Gp(z−1) =

26664
G1p,0 + G1p,1z

−1 + · · ·+ G1p,nb−1z
−(nb−1)

G2p,0 + G2p,1z
−1 + · · ·+ G2p,nb−1z

−(nb−1)

...

GNpp,0 + GNpp,1z
−1 + · · ·+ GNpp,nb−1z

−(nb−1)

37775

H =

26664
H0 0 · · · 0
H1 H0 · · · 0
...

...
. . .

...
HNp−1 HNp−2 · · · H0

37775

H′ =

26664
H′

0 0 · · · 0
H′

1 H′
0 · · · 0

...
...

. . .
...

H′
Np−1 H′

Np−2 · · · H′
0

37775

HN12u =

26664
HN1−1 HN1−2 · · · HN1−Nu

HN1 HN1−2 · · · HN1−Nu+1

...
...

...
HN2−1 HN2−2 · · · HN2−Nu

37775
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H′
N12u =

26664
H′

N1−1 H′
N1−2 · · · H′

N1−Nu

H′
N1 H′

N1−2 · · · H′
N1−Nu+1

...
...

...
H′

N2−1 H′
N2−2 · · · H′

N2−Nu

37775

Hp(z−1) =

26664
H1p(z−1)
H2p(z−1)

...
HNpp(z−1)

37775

=

26664
H1p,0 + H1p,1z

−1 + · · ·+ H1p,nd−1z
−(nd−1)

H2p,0 + H2p,1z
−1 + · · ·+ H2p,nd−1z

−(nd−1)

...

HNpp,0 + HNpp,1z
−1 + · · ·+ HNpp,nd−1z

−(nd−1)

37775

HFGpHp =

26664
H0 0 · · · 0
H1 H0 · · · 0
...

...
. . .

...
HNp−1 HNp−2 · · · H0

F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

G1p,0 G1p,1 · · · G1p,nb−1

G2p,0 G2p,1 · · · G2p,nb−1

...
...

...
...

GNpp,0 GNpp,1 · · · GNpp,nb−1

H1p,0 H1p,1 · · · H1p,nd−1

H2p,0 H2p,1 · · · H2p,nd−1

...
...

...
...

HNpp,0 HNpp,1 · · · HNpp,nd−1

37775
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H′FΓΘ =

26664
H′

0 0 · · · 0
H′

1 H′
0 · · · 0

...
...

. . .
...

H′
Np−1 H′

Np−2 · · · H′
0

F1,0 F1,1 · · · F1,na

F2,0 F2,1 · · · F2,na

...
...

...
...

FNp,0 FNp,1 · · · FNp,na

Γ1,0 Γ1,1 · · · Γ1,nb−1

Γ2,0 Γ2,1 · · · Γ2,nb−1

...
...

...
...

ΓNp,0 ΓNp,1 · · · ΓNp,nb−1

Θ1,0 Θ1,1 · · · Θ1,nd−1

Θ2,0 Θ2,1 · · · Θ2,nd−1

...
...

...
...

ΘNp,0 ΘNp,1 · · · ΘNp,nd−1

37775
T(z−1) = T0 + T1z

−1 + T2z
−2 + · · ·+ Tntz

−nt

Ũ =

2664
∆u(t)

∆u(t+ 1)
· · ·

∆u(t+Np − 1)

3775

ŨNu =

2664
∆u(t)

∆u(t+ 1)
· · ·

∆u(t+Nu − 1)

3775

Ṽ =

2664
∆v(t+ 1)
∆v(t+ 2)

· · ·
∆v(t+Np)

3775

227



Appendix E Polynomials and matrices for GPC

ṼYUV =

266666666666666666666666666666664

∆v(t+ 1)
∆v(t+ 2)

...
∆v(t+Np)

y(t)
y(t− 1)

...
y(t− na)
∆u(t− 1)
∆u(t− 2)

...
∆u(t− nb)

∆v(t)
∆v(t− 1)

...
∆v(t− nd+ 1)

377777777777777777777777777777775

ṼYUV
f

is defined accordingly
via ∆v(t+1), yf (t), ∆uf (t−1)
and ∆vf (t)

W =

26664
w(t+ 1)
w(t+ 2)

...
w(t+Np)

37775

WN12 =

26664
w(t+N1)

w(t+N1 + 1)
...

w(t+N2)

37775

Y =

26664
ŷ(t+ 1)
ŷ(t+ 2)

...
ŷ(t+Np)

37775

YN12 =

26664
ŷ(t+N1)

ŷ(t+N1 + 1)
...

ŷ(t+N2)

37775
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YU =

266666666666664

y(t)
y(t− 1)

...
y(t− na)
∆u(t− 1)
∆u(t− 2)

...
∆u(t− nb)

377777777777775

YUV =

266666666666666666666664

y(t)
y(t− 1)

...
y(t− na)
∆u(t− 1)
∆u(t− 2)

...
∆u(t− nb)

∆v(t)
∆v(t− 1)

...
∆v(t− nd+ 1)

377777777777777777777775

YUVf is defined accordingly
via yf (t), ∆uf (t − 1) and
∆vf (t)

Γ(z−1) =

26664
Γ1(z

−1)
Γ2(z

−1)
...

ΓNp(z−1)

37775 =

26664
Γ1,0 + Γ1,1z

−1 + · · ·+ Γ1,nb−1z
−(nb−1)

Γ2,0 + Γ2,1z
−1 + · · ·+ Γ2,nb−1z

−(nb−1)

...

ΓNp,0 + ΓNp,1z
−1 + · · ·+ ΓNp,nb−1z

−(nb−1)

37775

Θ(z−1) =

26664
Θ1(z

−1)
Θ2(z

−1)
...

ΘNp(z−1)

37775

=

26664
Θ1,0 + Θ1,1z

−1 + · · ·+ Θ1,nd−1z
−(nd−1)

Θ2,0 + Θ2,1z
−1 + · · ·+ Θ2,nd−1z

−(nd−1)

...

ΘNp,0 + ΘNp,1z
−1 + · · ·+ ΘNp,nd−1z

−(nd−1)

37775
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E.2.2 Dimensions

A(z−1) : Matrix(n× n) (rows × columns)

B(z−1) : Matrix(n×m)

C(z−1) : Matrix(n× n)

D(z−1) : Matrix(n× l)

Ej(z
−1) : Matrix(n× n)

Fj(z
−1) : Matrix(n× n)

f(t), f ′(t) : Vector(n× 1)

Gd(z−1),Gj(z
−1),Gjp(z−1) : Matrix(n×m)

Gj
′(z−1) : Matrix(n×m) See note!

Hd(z−1),Hj(z
−1),Hjp(z−1) : Matrix(n× l)

Hj
′(z−1) : Matrix(n× l) See note!

T(z−1) : Matrix(n× n)

u(t),uf (t) : Vector(m× 1)

v(t),vf (t) : Vector(l × 1)

w(t) : Vector(n× 1)

y(t),yf (t) : Vector(n× 1)

Γj(z
−1) : Matrix(n×m) See note!

Θj(z
−1) : Matrix(n× l) See note!

ξ(t) : Vector(n× 1)

Note: If filtering is applied the vector of actuating variables u(t), the vector of
disturbances v(t) and the vector of controlled variables y(t) must all have the
same dimension (see chapter 8.3.3 on page 106 et seqq.). Therefore in all cases
n = m = l applies.
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Methods for matrix inversion

For matrix inversion several algorithms exist whose suitability for a matrix
inversion necessary for a GPC controller will be examined in the following.
Special attention is given to the computation time that is necessary for the
matrix inversion.

F.1 Gauss algorithm

The basic idea of the Gauss algorithm is to solve the matrix equation A·A′ = I.
The algorithm is described in the following:

1. First the matrix A has to be transformed into triangular form. For this
purpose, each diagonal element is removed from the underneath matrix
rows one after the other so that then, the matrix has a triangular form.
The multipliers for each case are stored in an auxiliary matrix B. Pivoting
for the optimization of the calculation was not implemented.

2. After having transformed the input matrix A, the same will also be car-
ried out with the identity matrix I using the factors stored in matrix
B.

3. Since now A and I are both transformed in identical manner into Ã and Ĩ,
the equation Ã ·A′ = Ĩ results, in which Ã is an upper triangular matrix.
The identity matrix I has transformed into a lower triangular matrix Ĩ
whose diagonal elements are all 1. The system of equations can easily be
solved and then, the elements of the matrix A′ = A−1 are determined.

F.2 Gauss-Jordan algorithm

The algorithm of Gauss Jordan corresponds to the algorithm by Gauss, ex-
plained in section F.1, with the difference that the matrix A is not transformed
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into a triangular form, but into a diagonal form. This can be achieved if the
diagonal elements are not only eliminated from the lower, but also from the
above matrix rows.

F.3 Exchange algorithm

The exchange algorithm is based on the assumption that the equation y = Ax
can be written as x = A′y using the inverse matrix A′ = A−1. Therefore,
the inversion of a matrix can be realized via the exchange of an independent
variable with a dependent one. The procedure is very well explained by Ose et
al. [98].

F.4 LR decomposition

The LR decomposition, also known as LU decomposition, decomposes the ma-
trix A into a lower (left) and into an upper (right) triangular matrix L and R,
such that A = LR applies. If pivoting is done before the decomposition, the
exchange movements are stored in a permutation matrix P so that in the end
PA = LR applies. Therefore, A = PT LR does apply, too. Since L and R
are triangular matrices, they can be easily inverted and from L−1 and R−1 the
inverse matrix A−1 = PT R−1L−1 can be obtained. The exchange of L and R
because of (LR)−1 = R−1L−1 has to be noted.

F.5 Algorithm of Cholesky

For reasons of completeness, the algorithm of Cholesky should be mentioned,
too, which, compared to the LR decomposition, promises a significant reduction
of the calculation complexity [112, 124]. But, since it is suitable only for the
inversion of symmetrical matrices, it cannot be used for the calculation of MPC
system matrices and so it is omitted from further discussions.

F.6 Computation times

For the implementation of GPC, it is extremely important to use very efficient
methods for matrix operations. Therefore, for the programming of the methods
described above, optimizations were carried out, i. e. all divisions with the same
divisor within loops were replaced by allocations before and multiplications
within the loop. Then the methods described above were tested. The results
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are presented in table F.1. For the examinations, a computer with an AMD
Duron® processor (900 MHz) and 128MB RAM was used.

Matrix size
Algorithm 3× 3 10× 10 15× 15 25× 25 100× 100

Gauss 1.9 18.9 56.2 239.4 14390

Gauss-Jordan 1.1 11.8 35.5 395.1 26010

Exchange algorithm 1.2 19.9 58.7 268.6 16980

LR (with pivoting) 2.4 20.9 54.9 206.9 10010

LR (without pivoting) 1.8 16.1 45.6 177.0 9420

Table F.1: Calculation times for matrix inversion in µs

As the presented results clarify, the choice of the optimum method depends
on the size of the matrix that should be inverted. For small matrices with sizes
up to 15×15, the Gauss-Jordan algorithm is the fastest one, whereas for larger
matrices, the LR decomposition is superior.
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Alternative method for matrix decomposition

The method for decomposition of the transfer polynomial matrix Gd(z−1)
into two left coprime matrices A(z−1) and B(z−1), originally developed by
Goodwin/Sin [44, chapter 2.3.5] and explained by Camacho/Bordons [20, chap-
ter 6.2.1], is based on the following approach:

At the beginning, Gd(z−1) is converted into an arbitrary right matrix frac-
tion.

Gd(z−1) = NR(z−1)DR(z−1)
−1

Analog to the decomposition into a left fraction (see chapter 8.1.2 on page 85),
DR(z−1) is chosen as a diagonal matrix whose diagonal elements are equal to
the smallest common denominator of the corresponding columns of Gd(z−1).
Then, NR(z−1) can easily be determined via NR(z−1) = Gd(z−1)DR(z−1).
Here, NR(z−1) and DR(z−1) do not have to be right coprime.

Now, a unimodular matrix U(z−1) has to be determined which fulfils the
equation »

U11(z
−1) U12(z

−1)
U21(z

−1) U22(z
−1)

–
·
»
DR(z−1)
NR(z−1)

–
=

»
R(z−1)

0

–
(G.1)

in which

U(z−1) =

»
U11(z

−1) U12(z
−1)

U21(z
−1) U22(z

−1)

–
P(z−1) =

»
DR(z−1)
NR(z−1)

–
R(z−1) = Greatest common right divisor of DR(z−1) and NR(z−1)

If P(z−1) is transformed into a upper right triangular form by elementary row
transformations, the greatest common right divisor of DR(z−1) and NR(z−1)
can be obtained according to the properties of polynomial matrices mentioned
in appendix A. If the same transformations are applied to an identity matrix,
the unimodular matrix U(z−1) will result.
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It can be proven that the sub-matrices U21(z
−1) and U22(z

−1) are left co-
prime. Since U22(z

−1) is in addition to that non-singular, the following equa-
tion can be deduced from (G.1):

NR(z−1)DR(z−1)
−1

= −U22(z
−1)

−1
U21(z

−1)

A comparison with equation (8.5) results in

A(z−1) = U22(z
−1)

B(z−1) = −U21(z
−1)z

As already mentioned U21(z
−1) and U22(z

−1) are left coprime and thus a left
coprime description is also found for A(z−1) and B(z−1).

The procedure described above is also described in detail by Geering [41] in
German language.
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AC machine, see Machine, AC
Active constraint, see Constraint,

active
Actuating

value, 18, 28, 130
variable, 4, 17, 18, 22, 27–29,

42–44, 48, 49, 51, 52,
55, 56, 62, 73, 79, 88,
89, 92–94, 96, 99, 103,
104, 107, 108, 114, 118,
130, 131, 133, 134, 136,
139, 143, 144, 148–152,
154, 155, 158, 161, 162,
165, 166, 173–177,
179–182, 230

Actuator, 18, 124, 125, 127, 135,
138, 181

multilevel, 135
two-position, 135

Adaptive
control, see Control, adaptive
plant model, see Plant,

model, adaptive
system model, see System,

model, adaptive
Affine

control law, see Control, law,
affine

function, see Function, affine
Albertos, P., 44
Analytical solution, see Solution,

analytical
AR, see Model, AR
ARIMA, see Model, ARIMA
ARIMAX, see Model, ARIMAX
ARMA, see Model, ARMA
Armature

current, see Current,
armature

winding, see Winding,
armature

ARMAX, see Model, ARMAX
Asher, G.M., 23
Asynchronous machine, see

Machine, asynchronous

Bang-bang
control, see Control,

bang-bang
controller, see Controller,

bang-bang
Bellmann optimality constraint,

see Constraint,
Bellmann optimality

Bemporad, A., 143, 145, 146, 155
Bézout equation, see Equation,

Bézout
Billings, S.A., 35
Binary tree, see Tree, binary
Boolean optimization, see

Optimization, boolean
Bootstrap circuit, 127, 181
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Bordons, C., 51, 79, 105, 235
Branch and Bound, 124, 136, 137,

138, 142, 161

Camacho, E. F., 51, 79, 85, 105,
235

CARIMA, see Model, CARIMA
CARMA, see Model, CARMA
Cascade control, see Control,

cascade
Cascaded

control, see Control, cascaded
controller, see Controller,

cascaded
structure, see Structure,

cascaded
Cell enumeration, 159
Cholesky algorithm, 232
Clarke, D.W., 39, 43, 51, 54, 105,

124, 135
Closed control loop, see Control,

loop, closed
Closed-loop control, see Control,

closed-loop
Coefficient matrix, 195

column
leading, 196

column-reduced, 196
leading, 196
row

leading, 196
row-reduced, 196

Colored noise, see Noise, colored
Column degree, see Degree,

column
Column leading coefficient matrix,

see Coefficient matrix,
column leading

Column-reduced

coefficient matrix, see
Coefficient matrix,
column-reduced

polynomial matrix, see
Matrix, polynomial,
column-reduced

Complete enumeration, 134, 135,
141, 142, 152, 163

Complete response, see Response,
complete

Condition for field orientation, 9
Connection, 160
Constant disturbance, see

Disturbance, constant
Constraint, 28, 121, 124, 127, 128,

134, 137, 143–145, 148,
153, 177, 179, 180

active, 145
Bellmann optimality, 174
convexity, 159, 162
dynamic, 181
integer, 137
optimality, 157

Continuous-time
model, see Model,

continuous-time
representation, see

Representation,
continuous-time

Contouring error, 125, 139, 180,
181

Control
adaptive, 124, 125
algorithm, 27, 121, 127, 128
bang-bang, 19
cascade, 4, 8, 13, 56

PI, 59
closed-loop, 28, 95, 125, 146
conventional, 166, 171, 172,
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179
current, 8, 13, 14–16, 58, 60,

62–64, 69, 115, 125, 130,
131, 134, 140–142, 146,
166–168, 171, 180–182

armature, 17
direct, 23, 26
MIMO, 117
predictive, 17

design, 171
deviation, 17, 42, 48, 130,

167, 173, 175
DFC, 23, 26
digital, 17, 73, 150, 164, 167,

182
direct, 127, 128, 132, 133,

166, 167, 180–182
DMC, 27
DMPC, 16, 26, 121, 125,

127, 128, 130, 131, 136,
140–143, 148, 164, 167,
180–182

explicit, 168
MIMO, 130

DMTC, 20
DSC, 20, 23, 26, 127
DSPC, 21, 23, 26
DTC, 17, 21, 23, 26, 127
EHAC, 27
EPSAC, 27
error, 19, 21, 28, 88, 116, 139,

140, 148, 149
explicit, 162
feedforward, 172, 179
field-oriented, 3, 7, 8, 13, 14,

56, 58, 69, 76, 179
flux, 7, 16
GPC, 16, 23, 26, 39, 42, 44,

48, 49, 52, 58, 59, 63,

67, 77, 79, 95, 103, 105,
112, 114, 132, 133, 138,
143, 163, 173, 174, 176,
177, 179, 180, 219, 232

direct, 167
explicit, 180
MIMO, 83, 99, 104, 108,

118
SISO, 87, 91

horizon, see Horizon, control
hysteresis-based, 19–21, 23
IMC, 27, 171, 172, 173
law, 49, 145, 146, 148,

152–159, 161, 162, 171,
173, 180

affine, 146, 152, 156, 180
explicit, 154, 158
optimum, 174
PWA, 146, 148, 153, 154
time-invariant, 175, 177

linear, 179
loop, 4, 13, 18, 62, 104, 172

closed, 60, 139
current, 4, 13, 15, 58, 59,

61, 63, 67, 70
flux, 13
internal, 13
position, 4
speed, 4, 13, 15, 59, 63, 66,

70
LQR, 153, 171, 173, 174,

175, 176, 177, 178
LRPC, 4, 23, 121, 132, 176

direct, 182
MAC, 27
method, 66, 171, 180
MIMO, 19, 69, 83, 105, 116,

180–182
model-based, 19, 171
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MPC, 4, 5, 22, 23, 27, 28–30,
32, 37, 39, 42, 48, 67, 69,
70, 83, 95, 121, 124, 128,
133, 143, 145, 150, 152,
162, 163, 166, 171, 177,
179, 181, 182, 232

explicit, 164, 180, 182
nonlinear, 95

non-optimum, 127, 154, 173
nonlinear, 35, 36
offset-free, 182
open-loop, 28, 95, 172
optimum, 121, 158, 163
PI, 15, 59, 60, 66, 167, 179
position, 4, 17, 182
predictive, 17, 18–20, 23, 24,

26, 29, 171
current, 19
hysteresis-based, 20, 22
trajectory-based, 21, 22

RHC, 29, 124, 155, 158
scheme, 20, 180
SISO, 85, 110, 133
sliding mode, 21, 148
speed, 15, 16, 59, 63, 65,

136, 179–182
step, 154
strategy, 4, 20, 26, 27, 39,

124, 171, 174
structure, 4, 13, 160
system, 148

nonlinear, 35
task, 167
technique, 3, 124
three-step, 125
torque, 7
trajectory-based, 19–21, 23,

135, 136
two-step, 124, 125

value, 124, 125
Controller

bandwidth, 173
bang-bang, 19
cascaded, 16, 69
conventional, 172, 173
current, 4, 13, 60, 61, 63, 69,

70, 136, 139, 179, 181
MIMO, 69, 116, 163
PI, 63, 166
SISO, 116

design, 17, 121, 127, 169, 171,
172

digital, 22, 169
discrete-time, 30

direct, 125, 133, 167
discrete, 30, 158
DMPC, 125, 128, 134,

138–142, 167, 181, 182
MIMO, 139

dynamics, 104, 179
explicit, 153, 166, 167, 180
flux, 56
GPC, 35, 39, 43, 48, 49, 55,

56, 58–68, 79, 105, 116,
119, 132, 133, 176, 177,
179, 180, 231

bang-bang, 135
MIMO, 85, 104, 115, 116,

118, 162, 163
SISO, 83, 104, 116

hysteresis, 19, 22, 140
hysteresis-based, 140
IMC, 171–173
input, 125
linear, 4, 17, 167, 172, 181
LQR, 174–176

continuous-time, 174
matrix, 174, 175, 177
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MIMO, 13, 83, 128, 132, 133,
179

minimum-time, 152, 154, 163
MPC, 4, 22, 23, 29, 37, 43,

60–63, 66, 67, 69, 81, 83,
125, 127, 128, 158, 159,
161, 169, 171, 173, 180,
182

explicit, 180
MIMO, 130

output, 99, 121, 172
parameter, 4, 63, 66
performance, 181
PI, 3, 13, 14–17, 56, 60–67,

76, 167, 168, 173, 179
PID, 17
predictive, 4, 17–19, 22, 23,

27, 28, 43
hysteresis-based, 19, 20, 22
nonlinear, 182
state space-based, 150
trajectory-based, 20, 21,

22, 135
PWA, 159
SISO, 13, 39, 128, 133
speed, 13, 63, 64, 66, 67, 179
state, 22
structure, 13, 138, 161–164,

166, 167, 172, 173,
180–182

PWA, 159
time-invariant, 177
two-level, 140
two-step, 124

Conventional
control, see Control,

conventional
controller, see Controller,

conventional

Converter, 167
Convexity, 160

constraint, see Constraint,
convexity

Cooper, L., 138
Cooper, M.W., 138
Coordinate

frame
rotating, 125
stationary, 128, 166, 180

system
field, 10
rotating, 8, 9
stationary, 125, 128
stator, 10, 19

Coordinates
field, 10, 14
stationary, 128, 139
stator, 129, 131, 164, 181

Coprime
matrix

polynomial, see Matrix,
polynomial, coprime

polynomial, see Polynomial,
coprime

system matrix, see System,
matrix, coprime

Cost
function, see Function, cost
horizon, see Horizon, cost

Cross coupling, 13, 77, 79, 95, 115,
116, 119, 130, 131, 141,
162, 166, 167, 179, 181,
182

Current
armature, 7
control, see Control, current
control loop, see Control,

loop, current
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controller, see Controller,
current

distortion, 18, 19, 167, 181
distribution

rotor, 7
error, 182
field winding, 7
field-producing, 13, 116
flux-producing, 13, 79, 116
nominal, see Nominal,

current
reference vector, 19
rotor, 7
space vector, 19, 146
stator, 8, 19, 115, 132, 141,

182
field-producing, 56
flux-producing, 76, 77, 179
torque-producing, 66, 76,

77, 179
torque-producing, 15, 61, 116

Cutting planes, 137, 138

DC
link, 121, 122, 125, 130, 131,

161
machine, see Machine, DC

Dead time, 13, 39, 42, 58, 167,
169, 173, 182

Decision tree, 136, 137
Degree

column, 196
row, 196

Delay, 22, 150, 151, 152, 164, 179
Delay-free filter, see Filter,

delay-free
Depenbrock, M., 20, 21
Derivative, 21, 39, 44

operator, 71, 74

Describing function, 155, 156, 158
Description

left coprime, 236
linear, 36
PWA, 146, 159, 160
state space, 31

Design polynomial, 50–52, 105,
108, 133

Determinant, 197
DFC, see Control, DFC
DHA, see Discrete, Hybrid

Automata
Diagonal

element, 201, 231, 232, 235
form, 232
main, 196
matrix, see Matrix, diagonal

Difference quotient, 71, 77, 81
Digital

control, see Control, digital
controller, see Controller,

digital
Diophantine equation, see

Equation, Diophantine
Diophantos of Alexandria, 198
Direct

control, see Control, direct
controller, see Controller,

direct
Flux Control, see Control,

DFC
inverter control, see Inverter,

control, direct
Mean Torque Control, see

Control, DMTC
Model-Based Predictive

Control, see Control,
DMPC

Model-Based Predictive
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Controller, see
Controller, DMPC

Self Control, see Control,
DSC

Speed Control, see Control,
DSPC

Torque Control, see Control,
DTC

Discrete
controller, see Controller,

discrete
dynamic programming, see

Programming, dynamic,
discrete

Hybrid Automata, 159
Discrete-time

function, see Function,
discrete-time

model, see Model,
discrete-time

representation, see
Representation,
discrete-time

system description, see
System, description,
discrete-time

Discrete-time system, see System,
discrete-time

Disturbance, 33, 36, 39, 40, 49, 50,
55–57, 63, 79, 81, 95,
96–99, 102–105, 107,
108, 112, 114–119, 128,
131, 132, 139, 162, 167,
172, 179, 182, 230

constant, 62, 182
input, 96
transfer function matrix, 96

Dittmar, R., 171, 173
Divisor

greatest common, 197, 198,
200, 201, 235

left, 200, 201
right, 200, 235

DMC, see Control, DMC
DMPC, see Control, DMPC
DMTC, see Control, DMTC
DSC, see Control, DSC
DSPC, see Control, DSPC
DTC, see Control, DTC
Dynamic

constraint, see Constraint,
dynamic

Matrix Control, see Control,
DMC

programming, see
Programming, dynamic

Dynamics, 48, 63, 66
of the complete system, 167
of the controlled plant, 167
of the controlled system, 169
of the entire system, 140
of the inner loop, 15
of the overall system, 48, 55,

66
of the speed control loop, 63

EHAC, see Control, EHAC
Electrical rotating speed, see

Rotating, speed,
electrical

Emeljanov, S.V., 17
EMF, 63, 79, 182
End node, see Tree, node, end
Envelope, 160, 161
EPSAC, see Control, EPSAC
Equation

Bézout, 199
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Diophantine, 40, 44, 51, 52,
54, 86, 89, 97, 99, 106,
108, 198, 199

matrix, 231
matrix Riccati, 175, 177
of motion, 73
polynomial, 45, 54, 198

Evaluation function, 152
Exchange algorithm, 232, 233
Exhaustive search, 134, 135, 136,

142, 152, 154, 162, 163
Expansion strategy, 137, 138
Explicit

control, see Control, explicit
controller, see Controller,

explicit
solution, see Solution,

explicit
Extended

Horizon Adaptive Control,
see Control, EHAC

Predictive Self-Adaptive
Control, see Control,
EPSAC

Falk, S., 83
Feedback

branch, 79
coupling, 79
matrix, 177
path, 15, 48, 66
value, 48

Feedforward
compensation, 3
control, see Control,

feedforward
matrix, 31, 79, 81, 175

Field, 9
angle, 10

coordinate system, see
Coordinate, system, field

coordinates, see Coordinates,
field

orientation, 9, 10
rotating, 9
winding, see Winding, field

current, see Current, field
winding

Field-oriented
control, see Control,

field-oriented
Field-producing current, see

Current, field-producing
Filter, 48, 50, 52, 53, 104,

105–108, 110, 133
characteristics, 59, 105, 114
delay-free, 48, 49, 179, 181
IIR, 39, 181
integrated, 105, 138
internal, 48, 108, 133, 180
Kalman, 22, 48, 181
low-pass, 15, 48–50, 55, 59,

63, 66, 104, 132
matrix, 108
polynomial, 55, 56
without phase displacement,

28
Finite

cost horizon, see Horizon,
cost, finite

horizon, see Horizon, finite
Flach, E., 20
Flux, 3, 7, 13

control, see Control, flux
controller, see Controller, flux
linkage, 216
main, 7
nominal, see Nominal, flux
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Flux-producing current, see
Current, flux-producing

Forced response, see Response,
forced

Free response, see Response, free
Function

affine, 146
cost, 27, 28, 30, 39, 43, 52,

88, 89, 94, 108, 124, 130,
133–137, 141, 143, 144,
146, 149–151, 154, 163,
169, 174–176, 182

1-norm, 146
linear, 143
quadratic, 42, 88, 99, 133,

176
discrete-time, 31
optimum, 42
solution

PWA, 146
transfer, 31, 32, 39, 83, 85,

96, 105, 181
discrete-time, 40, 60, 83, 84
first order, 15, 59, 60, 131
matrix, 96, 104

Z-transfer, 59

Gantmacher, F.R., 83
Garćıa, C. E., 27, 95, 171
Gauss algorithm, 231, 233
Gauss-Jordan algorithm, 231, 233
Geering, H. P., 85, 236
Generalized Predictive Control,

see Control, GPC
Generalized Predictive Controller,

see Controller, GPC
Geyer, T., 158, 159
Goodwin, G.C., 83, 85, 105, 235
GPC, see Control, GPC

Greatest common divisor, see
Divisor, greatest
common

Grieder, P., 152

Hammerstein model, see Model,
Hammerstein

Harmonics, 48, 49, 104, 141, 167
Harnefors, L., 171, 172
Hoffmann, U., 124, 125, 128, 135,

138
Holtz, J., 19, 20
Horizon, 29, 177

control, 22, 29, 30, 42, 63, 93,
94, 103, 114, 124, 128,
135, 136, 141, 142, 181

cost, 22, 124, 177
finite, 143
infinite, 143
lower, 42
upper, 42

finite, 143
past, 28
prediction, 4, 18, 23, 26,

28–30, 42, 63, 67, 115,
124, 125, 136, 139, 146,
148, 153, 158, 177, 179,
180

Hybrid system, see System, hybrid
Hyperplane, 155–163

arrangement, 159–161
separating, 160, 161

Hysteresis, 19–21
Hysteresis controller, see

Controller, hysteresis
Hysteresis-based

control, see Control,
hysteresis-based
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controller, see Controller,
hysteresis-based

I/O model, see Model, I/O
IAR, see Model, IAR
IIR filter, see Filter, IIR
IMC, see Control, IMC
Implicit

optimization, see
Optimization, implicit

solution, see Solution,
implicit

Incremental encoder, 15, 66, 179
Induction machine, see Machine,

induction
Inertia, 4, 21
Infinite cost horizon, see Horizon,

cost, infinite
Input

matrix, 31, 73–75, 79, 231
state, 138
variable, 39, 121, 130, 131,

148, 153, 159, 162, 182
vector, 32, 133

Integer constraint, see Constraint,
integer

Integrated filter, see Filter,
integrated

Internal
control loop, see Control,

loop, internal
filter, see Filter, internal
Model Control, see Control,

IMC
Model Controller, see

Control, IMC
Inverter, 3, 13, 19, 21–23, 58, 63,

67, 121, 125, 127,

130–133, 139, 140, 148,
159, 165–167, 181, 182

control, 18, 23
direct, 23, 26, 121, 127

multilevel, 125
state, 130
switching state, 121
three-phase, 135
two-level, 121, 122, 125, 126,

130, 135, 148, 161
Isermann, R., 174
ITAE criterion, 42
Iterative solution, see Solution,

iterative

Johansen, T.A., 155

Kalman filter, see Filter, Kalman
Kanjilal, P. P., 32, 174
Karush-Kuhn-Tucker conditions,

146
Kennel, R., 20, 23
de Keyser, R.M., 27
KKT, see Karush-Kuhn-Tucker

conditions

Lagrange multiplier, 145
Lancaster, P., 83
Laplace

domain, 30
operation, 74
transformation, 31, 72, 74, 81

Large-signal behavior, 60, 61, 63,
64

Leading coefficient matrix, see
Coefficient matrix,
leading

Least common multiple, see
Multiple, least common

246



Index

Lee, J.H., 27, 95, 124
Left

divisor, see Divisor, left
multiple, see Multiple, left

Left coprime description, see
Description, left coprime

Leontaritis, I. J., 35
Linder, A., 23
Linear

control, see Control, linear
controller, see Controller,

linear
description, see Description,

linear
model, see Model, linear
program, see Program, linear
Quadratic Regulator, see

Control, LQR
system, see System, linear

Linke, M., 23
Load torque, see Torque, load
Long-Range Predictive Control,

see Control, LRPC
Low-pass filter, see Filter,

low-pass
Lower cost horizon, see Horizon,

cost, lower
LQR, see Control, LQR
LR decomposition, 232, 233
LRPC, see Control, LRPC
LTI system, see System, LTI
Lunze, J., 171, 174

MAC, see Control, MAC
Machine

AC, 3
asynchronous, 3, 7–9, 13, 60,

217
DC, 3, 7, 9, 17

induction, 20, 69, 95, 128,
130, 134, 136, 142, 146,
171

parameter, 70, 173
synchronous, 3
torque, 21

Machine model, see Model,
machine

Main
diagonal, see Diagonal, main
flux, see Flux, main

Matrix
coefficient

column leading, see
Coefficient matrix,
column leading

diagonal, 85, 235
differential equation, 72
element, 46, 54, 55, 70, 109,

196, 231
equation, see Equation,

matrix
exponential function, 73, 74,

77
fraction

right, 235
inversion, 68, 79, 231, 232,

233
polynomial, 46, 53, 79, 83–87,

89–92, 96, 98, 99, 101,
110, 111, 118, 139, 150,
195, 196–201, 235

column-reduced, 196
coprime, 197–200, 235, 236
monic, 90, 195, 201
nonsingular, 196
prime, 197
row-reduced, 196
unimodular, 197, 200, 235
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polynomial equation, 89
positive definite, 145
prediction, 93
Riccati equation, see

Equation, matrix Riccati
transition, 73
triangular, 196, 200, 231, 232

Mayer, H.R., 23
Mechanical rotating

frequency, see Rotating,
frequency, mechanical

speed, see Rotating, speed,
mechanical

MIMO
control, see Control, MIMO
system, see System, MIMO

Minimum-time controller, see
Controller,
minimum-time

Model
AR, 32, 33, 34
ARIMA, 34
ARIMAX, 34
ARMA, 33, 34
ARMAX, 34, 35, 36
CARIMA, 32, 34, 35, 39, 40,

50, 58, 85, 86, 95, 96,
97, 105, 106, 128, 138,
150, 162, 179

CARMA, 34
continuous-time, 30
discrete-time, 81
equation, 151
error, 172
Hammerstein, 35, 36, 37
I/O, 36
IAR, 33, 34
linear, 32, 35, 36, 176, 180

discrete-time, 32

machine, 69, 77, 79, 107, 128,
131, 141, 162, 164, 181,
182

complex, 9, 128
discrete-time, 69, 77, 164
scalar, 10, 129

MPC, 36
NARMAX, 35, 36
nonlinear, 35, 36
parameter, 28, 32, 36, 68, 124
process, 4
rotor, 11
SISO, 32
state space, 31, 79, 143, 174,

176, 181, 182
discrete-time, 162

transfer function-based, 32,
35, 83, 150, 176, 179

Wiener, 35, 37
Model Algorithmic Control, see

Control, MAC
Model-Based

Predictive Controller, see
Controller, MPC

Model-based
control, see Control,

model-based
predictive control, see

Control, MPC
Mohtadi, C., 43
Monic polynomial matrix, see

Matrix, polynomial,
monic

Morari, M., 27, 95, 124, 143, 145,
146, 152, 159, 171, 172

MPC, see Control, MPC
model, see Model, MPC

Multi-parametric quadratic
program, see Program,
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quadratic,
multi-parametric

Multi-step optimization, see
Optimization, multi-step

Multidimensional optimization
task, see Optimization,
task, multidimensional

Multilevel
actuator, see Actuator,

multilevel
inverter, see Inverter,

multilevel
Multiple

least common, 85, 200
left, 200
right, 200

Multivariable system, see System,
multivariable

Mutschler, P., 21

NARMAX, see Model, NARMAX
Nee, H.-P., 171, 172
Neighboring polytope, see

Polytope, neighboring
Noguchi, T., 21
Noise, 33, 34, 48

colored, 33
white, 33, 40, 50, 86, 97, 105

Nominal
current, 66
flux, 16

Non-optimum control, see
Control, non-optimum

Nonlinear
control, see Control,

nonlinear
model, see Model, nonlinear
optimization, see

Optimization, nonlinear

system, see System, nonlinear
Nonsingular, 195

polynomial matrix, see
Matrix, polynomial,
nonsingular

Numerical solution, see Solution,
numerical

Offline optimized pulse pattern,
see Pulse pattern, offline
optimized

Offset-free control, see Control,
offset-free

Online
optimized pulse pattern, see

Pulse pattern, online
optimized

solution, see Solution, online
Open-loop control, see Control,

open-loop
Operational amplifier, 17, 20
Optimal complexity reduction,

158, 159, 162, 163
Optimality constraint, see

Constraint, optimality
Optimization, 4, 18, 19, 29, 43, 52,

124, 131, 134, 138, 140,
143, 144, 148, 179, 180

algorithm, 28, 42, 131
boolean, 131, 142
criterion, 19, 29, 140
horizon, 175, 177
implicit, 181
method, 136, 166

discrete, 134
multi-step, 133
nonlinear, 95
problem, 16, 39, 128, 131,

133, 135, 137, 138,
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143–145, 151, 176, 177,
179, 180

boolean, 142
linear, 143
quadratic, 143

process, 162
quadratic boolean, 142
rule, 134, 138, 144
single-step, 133, 153, 181
task, 137, 138, 153, 154, 160,

163, 175
multidimensional, 138

technique, 135
Optimum

condition, 18
control, see Control,

optimum
solution, see Solution,

optimum, 137
symmetrical, 4, 15, 60, 66

Optimum function, see Function,
optimum

Ortega, R., 44
Ose, G., 232
Output

equation, 32, 74
matrix, 31
state, 121, 138
variable, 39, 107, 121, 182
vector, 32, 79, 133, 171

Overshoot, 61, 66, 135

Parameter
adaptation, 68
estimation, 36, 49
identification, 36, 49

Past horizon, see Horizon, past
Pfaff, G., 23
Pfeiffer, B.-M., 171, 173

PI
control, see Control, PI
controller, see Controller, PI

PID controller, see Controller,
PID

Plant, 17, 18, 28, 39, 42, 44, 48,
56, 63, 79, 81, 105, 127,
135, 150, 154, 158, 161,
171–174, 176, 182

input, 130
model, 58, 60, 130, 148–150,

152, 167, 171, 172, 181
adaptive, 49, 172
MIMO, 69
transfer function-based, 62

time constant, 56
Polynomial

coprime, 199, 200
equation, see Equation,

polynomial
matrix, see Matrix,

polynomial
system, see System,

polynomial
Polytope, 146, 148, 152–163, 166,

181
neighboring, 160
structure, 154–156, 159, 161,

180
Position

angle, 17
angle of the field coordinate

system, 10
control, see Control, position

Positive definite matrix, see
Matrix, positive definite

Prediction, 29, 41
algorithm, 76
equation, see Equation,
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prediction, 46, 51, 87,
90, 99, 103, 106, 107,
111

horizon, see Horizon,
prediction

matrix, see Matrix,
prediction

step, 41, 88, 98, 108, 141
Predictive

control, see
Control,predictive

controller, see Controller,
predictive

current control, see Control,
predictive, current

Predictor, 40, 49, 51, 86, 97, 106,
124, 133, 138

Prett, D.M., 27, 95, 171
Prime polynomial matrix, see

Matrix, polynomial,
prime

Process model, see Model, process
Program

linear, 39
boolean, 142

quadratic, 39, 144, 145
multi-parametric, 145, 151,

153, 154
Programming

dynamic, 138
discrete, 138

Prohibited family, 128
PT1-block, 4, 13, 59, 173
Pulse pattern

offline optimized, 182
online optimized, 182

PWA
control law, see Control, law,

PWA

controller, see Controller,
PWA

description, see Description,
PWA

solution function, see
Function, solution, PWA

system, see System, PWA

Quadratic
program, see Program,

quadratic
Quantization error, 15

Rank, 195
column, 195–197
row, 195–197

Rawlings, J. B., 27
Receding Horizon Control, see

Control, RHC
Reference

action, 56
frame

rotating, 139
Representation

continuous-time, 32, 71
discrete-time, 32, 71, 72, 74
state space, 69–71, 80, 83, 84,

132, 177, 180
continuous-time, 74
discrete-time, 72, 81, 96

Response
complete, 49
forced, 28, 43, 46, 51, 52, 53,

54, 90, 94, 98, 99, 107,
109, 133

free, 28, 43, 46, 48, 51, 53,
55, 87, 90, 92, 94,
98–100, 102, 104, 107,
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109, 110–112, 114, 118,
119, 133

step, 140
total, 28

RHC, see Control, RHC
Right

divisor, see Divisor, right
matrix fraction, see Matrix,

fraction, right
multiple, see Multiple, right

Ring area, 197
Root, see Tree, root

node, 136
tree, 136

Roots, 197
Rotating

coordinate
frame, see Coordinate,

frame, rotating
system, see Coordinate,

system, rotating
field, see Field, rotating
frequency, 115

mechanical, 10
reference frame, see

Reference, frame,
rotating

speed, 17, 63, 70, 216
electrical, 115
mechanical, 10, 115
stator, 10

Rotor
current, see Current, rotor
flux, 115
frequency, 10

Rotor winding, see Winding, rotor
Row degree, see Degree, row
Row leading coefficient matrix, see

Coefficient matrix, row

leading

Row-reduced

coefficient matrix, see
Coefficient matrix,
row-reduced

polynomial matrix, see
Matrix, polynomial,
row-reduced

Sampling

cycle, 4, 22, 23, 26, 28, 29,
48, 52, 66, 68, 77, 79,
121, 127, 136, 142, 144,
146, 150–152, 161, 162,
164, 167, 177, 181

frequency, 55, 63, 142, 167

instance, 73

instant, 20

interval, 121

rate, 30, 31, 66, 145, 167

time, 71, 167

Schmitz, P., 124, 125, 136

Schoch, M., 137, 138

Seborg, D. E., 27

Second order system, see System,
second order

Separating hyperplane, see
Hyperplane, separating

Sin, K. S., 83, 85, 105, 235

Single-step optimization, see
Optimization,
single-step

SISO

control, see Control, SISO

controller, see Controller,
SISO

model, see Model, SISO
system, see System, SISO
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Sliding mode control, see Control,
sliding mode

Slip frequency, 10
Small-signal behavior, 61–63, 65,

67
Solution

analytical, 163
explicit, 16, 143, 146–148,

150–152, 154, 158,
162–164, 166, 180, 181

function, 145
implicit, 132, 143
iterative, 153
numerical, 35, 71
online, 143
optimum, 128, 137, 145, 150,

163
region, 154
space, 150

Space vector representation, 7, 125
Speed

control, see Control, speed
controller, see Controller,

speed
encoder, 66
error, 22
signal, 15, 63, 66

Stadtfeld, S., 19, 20
State, 7, 18

controller, see Controller,
state
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159, 175, 177
vector, 29, 32, 133, 143, 145,
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model, see Model, state space
representation, see

Representation, state
space

vector, 8
State space-based system model,

see System, model, state
space-based
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Trajectory-based control, see

Control,
trajectory-based
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controller, see Controller,
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armature, 7
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stator, 7, 8, 13

Z-domain, 31, 84
Z-transfer function, see Function,

Z-transfer
Z-transformation, 31
Zafiriou, E., 172
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For more than 20 years, the so-called field-oriented control is
standard for controlled electric drive systems. Until now, the
strategies based on this method fulfill completely the re-
quirements of drive technology. However, due to the system
characteristics, an arbitrary improvement of the controller pro-
perties is not possible. Predictive or precalculating control
methods which need no controller cascade are an alternative.

Main focus of this work is to examine model-based predictive
controllers for their applicability in drive technology. These
methods with their high prediction horizon are well-known from
classic control theory and in process engineering they are applied
with great success. Several strategies are presented, explained
and evaluated, whereas, at the same time, the interested reader
gets advice for the implementation of these methods. Since
model-based predictive control is, until now, not very common in
drive technology, this work also includes detailed derivations of
the control algorithms.
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