Fall 2021

Fang Yu

Software Security Lab.

Dept. Management Information
Systems,

National Chengchi University

Data Structures
Lecture 6

Announcement

= Project proposal (due on Nov. 11) should include the
following sections:

=]. Introduction /Your topic and motivation
m 2. Search tricks /Your score formulation

®m 3, System design /Class diagrams [proposal sample]

® 4. Schedule /How and when to accomplish stages

m 5. Challenges /Techniques that you need but may have a
hard time to learn on your own

Announcement

HWs Review

= BMI

® Generic Progression

m Keyword Counting
The Ordered List
HTML Tag Matching

1 Abstract
Non-linear Data Structures

Trees and their variations

Abstract Data Type (ADT)

® An abstract data type (ADT) 1s an abstraction of a data
structure with a generic data type of stored elements

= An ADT specifies:
® Generic elements (data) stored
m (Operations on the data
® Error conditions associated with operations

® We have discussed Array ADT, List ADT, Stack ADT, and
Queue ADT

® All of them are linear ADT

A Hierarchical Structure

r - 1
Defaut Name Defauk Name Dedauht Nare
- r [1
Default Name: Defauk Name Dedault Nome
Marager

Linux/Unix file systems

(root directory)

'share| include)

.bashrc [.mozilla) (D f’ top) (Pictures | (Music’ .bashrc (Desktop) (Docs]
A

family) (hawaii) (downtown) — pets

mom.jpg timmy.jpg ... img01.jog img02.jpg img03.jpg .. fido.jpg fluffy.jpg

Tree: A Hierarchical ADT

= A tree (upside down) is an
abstract model of a

. . Computers”R”Us
hierarchical structure

® A tree consists of nodes

. . Manufacturin
with a parent-child -
relation
[| Each element (except the US International Laptops Desktops

top element) has a parent

and zero or more children
e]ements Europe Asia Canada

Tree Terminology

= Root: a node without any parent (A)

® Internal node: a node with at least
one child (A, B, C, F)

= External node (a.k.a. leaf): a node
without children (E, I, J, K, G, H, D)

= Subtree: tree consisting of a node
and 1ts descendants

Tree Terminology

= Ancestors of a node: parent,
grandparent, grand-grandparent,
ete.

= Depth of a node: number of
ancestors, e.g., the depth of F is 2.

= Height of a tree: maximum depth
of any node, e.g., the height of this
tree 1is 3.

= Descendant of a node: child,
grandchild, grand-grandchild, etc.

Tree ADT

® We use positions to define the tree ADT

® The positions in a tree are its nodes and neighboring positions satisfy the
parent-child relationships

root() Return the tree’s root; error if tree is empty
parent(v) Return v’s parent; error if v is a root

children(v) Return v’s children (an iterable collection of nodes)
1sRoot(v) Test whether v is a root

isExternal(v) Test whether v is an external node

isInternal(v) Test whether v is an internal node

Tree ADT

® Generic methods (not necessarily related to a tree

structure):

1IsEmpty() Test whether the tree has any node or not

size() Return the number of nodes in the tree

iterator() Return an iterator of all the elements stored in the tree
positions() Return an iterable collection of all the nodes of the tree

replace(v,e) Replace with e and return the element stored at node v

A Linked Structure for Tree

® A tree node is represented by an object storing
® Element
® A parent node
® A sequence of children nodes

(parent node)

@-O-©) (atist of children)

v

LT T] (childnode)

(element) -

A Linked Structure for Tree

® Tree nodes implement the
Tree ADT

Binary Tree

® A binary tree is a tree with the
following properties:

® Each internal node has at most two
children

® The children of a node are an ordered
pair (left and right)

® We call the children of an internal
node left child and right child

Binary Tree

® Alternative recursive definition: a
binary tree is either

® 3 tree consisting of a single node, or

® 3 tree whose root has an ordered pair of
children, each of which is a binary tree

Arithmetic Expression Tree

® Binary tree associated with an
arithmetic expression

® internal nodes: operators

m external nodes: operands

® Example: arithmetic expression tree
for the expression: 2 3 b

2x(@a-1)+ (3 xb))

Decision Tree

® Binary tree associated with a decision process
® internal nodes: questions with yes/no answer

® external nodes: decisions

® Example: dining decision

Want a fast meal?

On a diet? On expense account?

Proper Binary Trees

® Each internal node has exactly 2 children

Proper Binary Trees

= n :number of total nodes Properties:

® ¢ :number of external nodes
® | :number of internal nodes
® h :height (maximum

depth of a node)

lL.e=i+1
2.n=2e-1
3.h=<i

4. h=(n-1)2
5.e<2h

6. h = log, e

7.hzlog,(n+1)—1

Properties
] . e=1tl

B) n=e¢t1=2e-1=21+1

Properties
"3 h<=1

= 4. h<= (n-1)/2

Properties

m 5 e<=2h
® 6. h>=log,e

m 7. h>=log, ((nt+1)/2) =log,(n+1) -1

BinaryTree ADT

® The BinaryTree ADT extends the Tree ADT, i.e., it inherits
all the methods of the Tree ADT

= Additional methods:
position left(p)

position right(p)
boolean hasLeft(p)
® boolean hasRight(p)

® Update methods may be defined by data structures
implementing the BinaryTree ADT

A Linked Structure for
Binary Trees

® A node is represented by an object

storing Parent node
® Element

® Parent node

m [eft child node

m Right child node

Element

Left child Right child

A Linked Structure for
Binary Trees

An Array-Based
Representation

® Nodes are stored in an array A

® Node v is stored at A[rank(v)]
® rank(root) =1
® Left in even: if node is the left child of parent(node),
rank(node) = 2 - rank(parent(node))
m Right in odd: if node 1s the right child of parent(node),
rank(node) = 2 - rank(parent(node)) + 1

m A[0] is always empty
® AJi1] 1s empty if there 1s no node in the ith position

® The array size N is 20D

An Array-Based
Representation

Tree Traversal

® Visit all nodes in a tree

® Do some operations

. . Computers”R”Us
during the visit

Manufacturing

US International Laptops Desktops

Canada

Preorder Traversal

= A node is visited (so is the operation) before its descendants

= Application:

® Print a structured document

Algorithm preOrder(v)
Visit(v)
for each child w of v
preOrder (w)

Preorder Traversal

2

1. Motivations

1.1 Greedy

7 O\

1.2 Avidity

Make Money Fast!
51~
2. Methods
6
2.1 Stock 2.2 Ponzi
Fraud Scheme

9
References
8
2.3 Bank
Robbery

For your project, you can print a structured web site with its sub links
using preorder traversal

Postorder Traversal

® A node is visited after its descendants

= Application:
®m Compute space used by files in a directory and its
subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
Visit(v)

Postorder Traversal

csl6/

8
3 70
todo.txt_]

homeworks/ programs/

1 O\ 4 5 6
hlc.doc hlnc.doc DDR java Stocks.java Robot.java
3K 2K 10K 25K 20K

For your project, you can compute the score of a web site and its sub links
using postorder traversal

1K

Inorder Traversal

® A node is visited after its left subtree and before its right
subtree

Algorithm inOrder(v)
if hasLeft (v)
inOrder (left (v))
Visit(v)
if hasRight (v) I
inOrder (right (v))

Print Arithmetic Expressions

® Specialization of an inorder traversal
® print operand or operator when visiting node
® print “(“ before traversing left subtree

® print “)*“ after traversing right subtree

Algorithm printExpression(v) 1

if hasLeft (v)

print(“(")
printExpression (left(v))

print(v.element ()) a 1

if hasRight (v)
printExpression (right(v)) (2x(a-1)+3xb))
print (*)")

Evaluate Arithmetic
Expressions

® Specialization of a postorder traversal
® recursive method returning the value of a subtree

® when visiting an internal node, combine the values of the
subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else 1

x < evalExpr(leftChild (v))

y < evalExpr(rightChild (v))

() < operator stored at v

return x () y

Euler Tour Traversal

® Generic traversal of a
binary tree

® Walk around the tree and
visit each node three times:

® on the left (preorder)

® from below (inorder)

® on the right (postorder)

A template method pattern

= A generic computation mechanism

® Specialized for an application by redefining the visit
actions

Algorithm eularTour(T,v)
Perform the action for visiting node v on the left
If v has a left child u in T then

cularTour(T, u)
Perform the action for visiting node v from below
If v has a right child w in T then

cularTour(T, w)
Perform the action for visiting node v on the right

An Application of EularTour

® printExpression
® On the left action: print (
® From below action: print v

® On the right action: print)

Algorithm printExpression(T,v)

if T.isInternal(v) then print “(”

If v has a left child u in T then
printExpression(T, u)

print(v)

If v has a right child w in T then
printExpression(T, w)

if T.isInternal(v) then print *)”

HW 6 (Due on 11/11)

Compute the score of a website!

= Construct a tree and its nodes according to a given website

® An element (referred by a node) represents one web page and has three
fields: (name, url, score)

® Given a keyword and its weight, compute the score of each node
® Score = number of appearance * weight

B The score of a node = the score of the content of its url + the scores of
its children

® This can be done by a postorder traversal of a tree

= Qutput the hierarchy of the website (with names and scores) using
parentheses

® This can be done by an eular tour

An example input

You will be given a website like:

® Soslab, http://soslab.nccu.edu.tw/Welcome.html
= Publication, http://soslab.nccu.edu.tw/Publications.html
® Projects, http://soslab.nccu.edu.tw/Projects.html
= AppBeach, http://soslab.xyz:7777
m Stranger, https://vlab.cs.ucsb.edu/stranger/
= Member, http://soslab.nccu.edu.tw/Members.html

= Course, http://soslab.nccu.edu.tw/Courses.html

An example output

Given a set of keywords, (Yu,1.2), (Fang, 1.8) you shall output something like
(Soslab, 56.6
(Publication, 18)
(Projects, 15.6
(AppBeach, 2.6)
(Stranger, 8.8)
)
(Member, 9.2)
(Course, 4.8)

Fang Yu, 56.6 indicates that the sum of the score in the content of
the given url (http://soslab.nccu.edu.tw) and its sub links

Coming Up...
® The program prescreen is on Nov. 4

® The project proposal is due on Nov. 11

= We will talk about heap (some kind of a tree) on Nov. 11.
m Read Chapter 8

