
www.manaraa.com
Textbook and Partial Credit: Louden 

Concepts of Programming 
Languages: Introduction 

 
Dr. Sherif G. Aly 



www.manaraa.com

Dr. Sherif G. Aly 

Introduction 

 Objective: 
 

To introduce and study the major principles and 
concepts underlying all programming languages. 

2 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 A notation for communicating to a computer 

what we want it to do. 
 

 How accurate is the definition above? 

3 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 A notation for communicating to a computer 

what we want it to do. 
 

 Before the 1940s, computers were programmed 
using hardwiring: switches were set by the 
programmer to connect the internal wiring of a 
computer to perform requested tasks! 

4 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 John von Neumann envisioned a computer 

should not be hard wired to do specific tasks. 
 

 A series of codes stored as data should 
determine the actions taken by a central 
processing unit. 

5 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 Soon, the assembly language was born.  

 
 Example:  
 

 LDA #2  (Load 2 into the accumulator) 
 STA X  (Store the present value in the  

  accumulator in register X). 

6 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 The assembly language is  
 
 Very machine dependent 
 Very low in abstraction 
 More difficult to program 
 However, very fast and provides tremendous 

programming control.   

7 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 Higher levels of programming languages are needed 

to: 
 

 Provide a higher level of abstraction. 
 Improve the ability to write concise, more understandable 

instructions. 
 Could be used with little change from machine to machine. 
 Capture generalizations such as loops, assignments, 

conditions, etc. 

8 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 
 The same assembly code before: 

 LDA #2  (Load 2 into the accumulator) 
 STA X  (Store the present value in the  

  accumulator in register X). 

 
 Could be written in C as: 

 X=2 

9 



www.manaraa.com

Dr. Sherif G. Aly 

What is a Programming Language? 

 A notation for communicating to a computer 
what we want it to do. 
 

 A programming language is a notational 
system for describing computation in 
machine-readable and human-readable form. 

 

10 



www.manaraa.com

Dr. Sherif G. Aly 

Computation 

 Computation is any process that can be 
carried out by a computing machine such as: 

 
 Mathematical calculations. 
 Data manipulation. 
 Text processing. 
 Information storage and retrieval 

11 



www.manaraa.com

Dr. Sherif G. Aly 

Computation 

 Computation is formally described using a 
Turing Machine. 
 
 A Turing Machine is:  

 A very simple computer that is capable of carrying out all 
known computations (however, not very efficiently). 

 
 Church’s Thesis:  

 It is not possible to build a machine that is inherently 
more powerful than a Turing Machine. 

12 



www.manaraa.com

Dr. Sherif G. Aly 

Computation 

 A programming language is Turing Complete if: 
 

 It can be used to describe any computation performed by a 
Turing Machine. 
 

 A programming language is Turing Complete if it 
has (trivially) 
 Integer variables and arithmetic. 
 Sequential execution of statements. 
 Assignment, selection (if), and looping (while) !!! 
 

13 



www.manaraa.com

Dr. Sherif G. Aly 

Machine Readability 

 For a language to be machine readable it must: 
 Have a simple structure to allow for efficient translation. 

 
 There must be an algorithm for translation: unambiguous and 

finite. 
 
 The algorithm must not have a very high complexity. 
 

 Most programming languages can be translated in time that 
is proportional to the size of the program. 

14 



www.manaraa.com

Dr. Sherif G. Aly 

Machine Readability 

 Usually machine readability is ensured by 
restricting the structure of a programming 
language to that of: 

  
Context Free Languages 

 
 Translation should be based on the same 

structure also. 

15 



www.manaraa.com

Dr. Sherif G. Aly 

Human Readability 

 A programming language should provide 
abstractions of complex computational tasks, 
yet that have to be easy to understand.  
 

 Programming languages tend to resemble 
natural languages (English, German, etc.). 

 
 The goal is to reduce the effort required to 

read and understand a complex program. 

16 



www.manaraa.com

Dr. Sherif G. Aly 

Human Readability 

 Large programs also require many programmers to 
simultaneously write different parts of the program. 
 

 A programming language is not only a means for 
describing a computation, but: 
 
 Is also now part of a software development environment. 
 Should promote and enforce a software design 

methodology. 
 (Software Engineering!) 

17 



www.manaraa.com

Dr. Sherif G. Aly 

Human Readability 

 Software development environments do not 
only contain facilities to write and translate 
programs but also: 

 
 Manipulates files. 
 Keeps records of changes. 
 Performs debugging. 
 Testing. 
 Analysis. 

18 



www.manaraa.com

Dr. Sherif G. Aly 

Human Writability 

 What about writability? 
 

 Should not a programming language be easy 
to write also? 
 

 To some extent, yes, readability tends to be 
more important as many people will be 
reading and maintaining code after you write 
it. 

19 



www.manaraa.com

Dr. Sherif G. Aly 

Abstractions in Programming Languages 

 
 Data abstractions 

 Strings 
 Numbers 
 Trees 

 
 Control abstractions 

 Loops 
 Conditional statements 
 Procedure calls. 

20 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Simple or Basic 

 Abstract the internal representation of 
common data values. 
 

 Integer data values are usually stored using 
two’s complement for example. 
 

 Floating point data values are stored using a 
mantissa representation (mantissa sign, 
value, exponent sign, value). 
 
 21 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Simple or Basic 

 Memory locations containing data values are 
abstracted by giving them names using variables. 
 

 The kind of data value is also abstracted using a 
data type (int, double, float, etc.) 
 

 Example:  
 int x; (C, C++, and Java) 
 var x: integer; (Pascal) 

 
 
 

22 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Structured 

 Data structures are the principal method for 
abstracting collections of related data. 
 
 Arrays 

 int a[10] (C, C++) 
 int a[] = new int[10] (Java) 
 typedef int Intarray[10]; (A new non-internal data type called 

Intarray. It is an array of ten ints). 
 

 Class 
 
 Struct 

 
 
 

23 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Unit Abstractions 

 In large programs, it is necessary to collect related 
code into specific locations within a program. 
 

 Examples: 
 Packages in Ada and Java 
 Modules in ML and Haskell 
 

 A class may also be viewed as a unit abstraction 
that provides data encapsulation and information 
hiding by providing access conventions and 
restrictions. 
 
 
 

24 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Unit Abstractions 

 Unit abstractions facilitate reusability: the ability to 
reuse data abstractions in different programs. 
 
 

 Such data abstractions represent: 
 
 Components: Operationally complete pieces of a program 

or user interface. 
 

 Containers: Data structures containing other user-defined 
data. 

 
 
 

25 



www.manaraa.com

Dr. Sherif G. Aly 

Data Abstractions – Unit Abstractions 

 Unit abstractions form the basis for language 
library mechanisms. 
 
 
 
 

26 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Basic 

 Typical basic control abstractions are those that 
combine a few machine instructions into a more 
understandable abstract statement. 
 

 Example: Assignment  
 x = x + 10 

 
 It abstracts the fetching of the value of x, performing 

a computation and storage of a value into a location 
denoted by a variable name. 

27 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Basic 

 
 Example: GOTO 

 
… 
GOTO 10 
… 
10 CONTINUE 

 
 Abstracts a jump operation to transfer control 

elsewhere in the program. 

28 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Divide a program into groups of instructions. 

 
 Examples: 
 case (Pascal) 
 switch (C, C++, Java) 
 while 

 

29 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Example (C): 

 if (x > 0) 
 { 
  … 
 } else  

 { 
  … 
 } 

30 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Example (Ada): 

 if x>0.0 then 
  … 
  …  
  … 
 else 
  … 
 end if; 

Opening a group of 
nested statements is 

automatic! 

31 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Structured control structures can be nested. 

 
 Procedures, sometimes called subprograms or 

routines are also powerful structured control 
abstractions. 
 

 Procedures must be declared, then invoked. 
 

  

32 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 
 
 Example: Ada gcd declaration 

 
procedure gcd (u, v: in integer; x: out integer) is 
 y, t, z: integer; 
  begin 
     z := u; 
     y := v; 
     loop 
       exit when y = 0; 
       t := y; 
       y := z mod y; 
       z := t; 
     end loop; 
     x := z; 
  end gcd; 
 

Formal Parameters 

33 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Example: Ada gcd call 

 
gcd(8, 18, d) 
 

Call and Actual 
Parameters 

34 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Example: Fortran subroutine declaration 

 
SUBROUTINE gcd (u, v, x) 
… 
END 

 
 Fortran call:  

CALL gcd( a, b, d) 
 

35 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Procedures are more complex mechanisms 

than selection or looping.  
 

 They require storing information about the 
program at the point of the call.  

36 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Structured 

 
 Functions are simply procedures that return a 

value or result. 
 

 Some languages such as C and C++ have 
void functions (return no value).   

37 



www.manaraa.com

Dr. Sherif G. Aly 

Control Abstractions - Unit 

 
 Control abstractions can also be grouped into 

files, packages, and units exactly like data 
abstractions.   

38 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms 

 
 Imperative (also called procedural). 
 Object Oriented 
 Functional 
 Logic 
 Parallel (Paradigm on its own?) 
 Declarative 

39 



www.manaraa.com

Dr. Sherif G. Aly 

The Imperative Paradigm 

40 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Imperative 

 
 Sequential execution of instructions. 
 The use of variables representing memory 

locations. 
 The use of assignment to change the value of 

variables. 
 Containing loops. 

 

41 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Imperative 

 
 It is not necessary for a programming language to 

describe computation exactly as such. 
 

 The requirement that a computation be described as 
a sequence of instructions, each operating on a 
single piece of data is called the von Neumann 
bottleneck. 
 

 It restricts the ability of the language to indicate 
parallel , or non-deterministic computation upon 
multiple pieces of data. 
 

 
 

42 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Imperative 

 
 Imperative programming languages become 

only one paradigm, or pattern, for 
programming languages to follow. 
 

 Examples: C, Pascal, core Ada, FORTRAN 
 

 

43 



www.manaraa.com

Dr. Sherif G. Aly 

The Object Oriented Paradigm 

44 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms – Object 
Oriented 

 
 Of enormous importance in the last decade. 

 
 Very successful in allowing programmers to write reusable, 

extensible code that mimics the real world. 
 

 It is merely an extension of the imperative paradigm (sequential 
execution, changing set of memory locations). 
 

 However, programs now consist of a large number of very small 
pieces whose interactions are carefully controlled, yet easily 
changed. 

 
 

 
 45 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms – Object 
Oriented 

 
 Based on the notion of an object. 
 Loosely coupled 
 Collection of data and operations. 
 

 Many programming languages group objects 
together into classes. 
 

 Objects thus become instances of classes. 
 

 46 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms – Object 
Oriented 

 
 Example: 
 Java 
 Smalltalk 
 C++ 

 
 

47 



www.manaraa.com

Dr. Sherif G. Aly 

The Functional Paradigm 

48 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 Bases the description of computation on the 

evaluation of functions, or the application of 
functions to known values. 
 

 Sometimes called applicative languages. 
 

 The basic mechanism is the evaluation of a function. 
 

 This involves the passing of values as parameters to 
functions, and obtaining returned values. 
 

 
 49 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 Passive data, no sequential control. 

 
 All actions performed by function evaluation (call), 

particularly recursion. 
 

 No variables exist ! 
 

 Repetitive operations are not expressed by loops 
(which require control variables to terminate), rather 
by recursive functions! 
 

 
 50 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 Is very much considered the opposite of 

object oriented programming. 
 
 Examples: Lisp (Scheme), ML, Haskell 

 
 

 

51 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 But why functional programming?? 

 
 It does away with variables and loops. 

 
 Becomes more independent of the machine. 

 
 Because they resemble mathematics, it is easier to 

draw precise conclusions about their behavior! 
 

 
52 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 The recursive function theory in mathematics 

established the following property: 
 
A programming language is Turing complete if it has 

integer values, arithmetic functions on those 
values, and if it has a mechanism for defining new 
functions using existing functions, selection, and 

recursion. 
 

 
53 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 
 
 Example Use Ada to create a functional version of GCD: 

 
procedure gcd_prog is 
 
  function gcd (u, v: in integer) return integer is 
  begin 
    if v = 0 then 
      return u; 
    else 
      return gcd(v, u mod v); 
    end if; 
  end gcd; 

 
 

Recursion, yet no 
loops or variables! 

54 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 LISP is a more functional oriented language than 

Ada. 
 

 LISP programs are list expressions 
 
 Sequences of entities separated by spaces and surrounded 

by parentheses. 
 (+ 2 3) simply means 2 + 3 
 (gcd 8 18) simply means call gcd and pass it 8 and 18. 

 
 

 
55 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 Example Use LISP (Scheme Dialect) to 

create the GCD: 
 

(define (gcd u v) 
   (if (= v 0) u 
       (gcd v (modulo u v)))) 
 

If v=0 return u, notice 
no return statement! 

Otherwise call gcd 
recursively with v and 

the modulus 

56 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Functional 

 
 Example Use Haskell to write GCD: 
 

gcd u v = if v ==0 then u else gcd v (u ‘mod’ v) 

57 



www.manaraa.com

Dr. Sherif G. Aly 

The Logic Paradigm 

58 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 Based on symbolic logic. 
 

 A program consists of a set of statements 
that describe what is true about a desired 
result. 
 

 As opposed to giving a particular sequence of 
statements that must be executed in a fixed 
order to produce the result. 

59 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 A pure logic programming language has no need for 
control abstractions such as loops or selections. 
 

 Control is supplied by the underlying system. 
 

 Logic programming is sometimes called declarative 
programming, since properties are declared, but no 
execution sequence is specified. 
 

 Very high level languages. 

60 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 Example: Prolog 
 

 In Prolog, the form of a program is a 
sequence of statements, called clauses 
which are of the form: 
 a :- b, c, d 
 Means a is true  

 if b, c, d are true 

61 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 Unlike functional programs, Prolog needs 
variables. 
 

 Variables do not represent memory locations 
as in imperative programming, but behave 
more as names for the results of partial 
computations. 
 

 Variables in Prolog must be in upper case. 

62 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 Example: Compute the GCD again using 
logic programming. 
 

 The properties are as follows: 
 The GCD of u and v is u if v=0 
 The GCD of u and v is the same as the GCD of v 

and u mod v if v is not equal to zero. 
 
 

63 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms - Logic 

 Example: Compute the GCD again using 
logic programming. 
 
gcd(U, V, U) :- V = 0 . 
gcd(U, V, X) :- not(V = 0), 
                Y is U mod V, 
                gcd(V, Y, X). 

 

The GCD of U and V 
is U if: 

V is equal to zero 
 

The GCD of U and V is X 
provided that V is not equal to 

zero. But what is X?? 
 

So Create Y as U Mod V 
 

X is the result of GCD applied on 
V and Y 

64 



www.manaraa.com

Dr. Sherif G. Aly 

The Parallel Paradigm 

 Schools vary in labeling this as a paradigm 
on its own. 
 

 No sequential execution involved. 
 

 Examples: Java (Threads), Ada (Tasks) 

65 



www.manaraa.com

Dr. Sherif G. Aly 

The Declarative Paradigm 

 State what needs computing, but not how 
(sequence). 
 

 Logic and functional paradigms share this 
property. 

66 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms 

 Even though a programming language may exhibit 
most or all of the properties of one of the four 
paradigms, few languages adhere purely to one 
paradigm! 
 

 We were able to write a functional version of GCD 
using Ada.  
 

 Scheme LISP which is generally considered to be 
functional, does permit variables to be declared and 
assigned to, definitely an imperative feature! 

67 



www.manaraa.com

Dr. Sherif G. Aly 

Computational Paradigms 

 Scheme programs can also be written in an 
object oriented style. 
 

 We can refer to a “Style” as following one or 
more of the paradigms. 
 

 It is up to you which paradigm to use, based 
on which is more appropriate. 

68 



www.manaraa.com

Dr. Sherif G. Aly 

Examples of Mostly “Pure” 
Languages 
 Imperative: (old) FORTRAN 

 
 Functional: Haskell 

 
 Object Oriented: Smalltalk 

69 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 There has been increasing acceptance of the 
need for programming languages to have 
definitions that are formally precise.  
 

 Precise definitions allow: 
 Definitions of the effect of language constructs. 
 Mathematical reasoning about programs. 
 Standardization of languages. 

70 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Standardization organizations: 
 ANSI (American National Standards Institute) 
 ISO (International Organization for Standardization). 
 

 Such organizations have published definitions for 
many languages including: 
 Pascal 
 FORTRAN 
 C 
 C++ 
 Ada 
 Prolog 

71 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Language definition is loosely divided into 
two parts: 

 
 Syntax 

 
 Semantics 

72 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Syntax: 
 
 Like the grammar of natural languages. 

 
 Defines the structure of a program, and how parts 

can be combined together. 
 

 Usually formally defined using a context-free 
language. 

73 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Syntax Example: 
 
 An if statement consists of  

 The word “if” followed by  
 An expression inside parenthesis followed by  
 A statement followed by 
 An optional else consisting of the word “else” and 

another statement. 
 

 

 
74 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Syntax Example in Context Free Grammar: 
 

<if-statement> ::= if (<expression>) <statement> [else <statement>] 
 
 

OR  
 
 

If-statement  if (expression) statement [else statement] 
 

 
 

 

Optional 

75 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Syntax:  
 An issue closely related to the syntax of a 

programming language is its lexical structure. 
 

 Similar to spelling in a natural language. 
 

 The words in the programming language are 
usually called tokens. 
 

 Example: if, else, +, <= 
 

 76 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Semantics:  
 Denotes the meaning of a language and the 

actual result of execution. 
 

 Is more complex and difficult to describe 
precisely. 
 

 Usually described in English, but can be done 
mathematically also. 

 
   

 
77 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Semantics Example (If in C):  
 

 An if-statement is executed by first evaluating its 
expression, which must have arithmetic pointer or type, 
including all side effects, and if it compares unequal to 0, 
the statement following the expression is executed. If there 
is an else part, and the expression is 0, the statement 
following the else is executed. 
 

 
   

 

78 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Semantics Example (If in C):  
 

 An if-statement is executed by first evaluating its expression, which must have 
arithmetic pointer or type, including all side effects, and if it compares unequal to 
0, the statement following the expression is executed. If there is an else part, and 
the expression is 0, the statement following the else is executed. 
 

What if the expression evaluates to false and there is no 
else?? The statement above does not describe this! 

 
 

   

 

79 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Semantics Example (If in C):  
 

 An if-statement is executed by first evaluating its expression, which must have 
arithmetic pointer or type, including all side effects, and if it compares unequal to 0, the 
statement following the expression is executed. If there is an else part, and the 
expression is 0, the statement following the else is executed. 
 

Is the If statement described above safe?? There should not be another 
statement in the language capable of executing the body of the if, 

without evaluating the expression! 
 

If (x!=0) y = 1/x; 
 

If the If statement is save, the division here is adequately protected from 
division by zero situations!  

 
   

 
80 



www.manaraa.com

Dr. Sherif G. Aly 

Language Definition 

 Semantics: 
 The alternative to this informal description is to use a 

formal method.  
 
 However, no formal method (yet) is analogous to the use of 

context free grammars for describing syntax. 
 

 Formal semantic notational systems include: 
 Operational semantics 
 Denotational semantics. 
 Axiomatic semantics. 

81 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Semantics: 
 The alternative to this informal description is to use a 

formal method.  
 
 However, no formal method (yet) is analogous to the use of 

context free grammars for describing syntax. 
 

 Formal semantic notational systems include: 
 Operational semantics 
 Denotational semantics. 
 Axiomatic semantics. 

82 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 For a programming language to be useful, it 
must have a translator: 
 
 A program (in hardware or software) that accepts 

other programs written in the language in question 
and either:  
 
 Executes them directly. 
 Transforms them into a form suitable for execution. 

 

83 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 A translator is primarily one of three types: 
 
 Interpreter 

 
 Compiler 

 
 Pseudo-Interpreter 

 

84 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Interpreter: 
 
 Executes a program directly. 

 
 Is a one step process: 

 
 Both the program and input are provided to the 

interpreter.The output is then obtained. 
 
 Can be viewed as a simulator for a machine whose 

“machine language” is the language being translated. 
 
 85 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Interpreter: 
 

 
 

Source Code 

Interpreter Input Output 

86 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Compiler: 
 

 Produces an equivalent program in a form suitable for 
execution. 
 

 Is at least a two step process: 
 The original program (source) is input to the compiler. 
 The new program (target) is output from the compiler. 
 

 The target program may then be executed, if it is in a form 
suitable for execution (i.e. machine language). 
 
 87 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Compiler: 
 

 Commonly the target language is assembly language. 
 

 The target program must then be translated by an 
assembler into an object program 
 

 The object program must then be linked with other object 
programs. 
 

 Then loaded into appropriate memory locations before it 
can be executed. 
 
 
 

88 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Compiler: 
 
 Sometimes the target language is another 

programming language. 
 

 Another compiler must then be used to obtain an 
executable object program. 
 
 
 
 89 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Compiler: 
 

 
 
 

Source  
Code 

Compile 

Input 

Further Translation Executable 
Code 

Executable 
Code 

Processor Output 

Target  
Code 

90 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Pseudo-Interpreter: 
 
 Intermediate between interpreters and compilers. 

 
 A source program is compiled into an intermediate 

language. 
 
 The intermediate language is then interpreted. 

 
 Example: Java 

 
 
 

91 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Sometimes preprocessors are needed. 
 

 Preprocessors are run prior to translation. 
 

 They convert the program into a form suitable 
for translation. 

 
 
 
 92 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Both compilers and interpreters must perform similar 
operations (phases): 

 
 Lexical analysis (scanning). 

 Converts the textual representation of the program as a 
sequence of characters into a form easier to process (tokens) 
representing keywords, identifiers, constants, etc. 
 

 Syntax analysis (parsing). 
 Determines the structure of the sequence of tokens. 
 

 Semantic analysis. 
 Determines the meaning of a program. 

 
 
 
 

93 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Such phases do not occur separately, but are 
usually combined. 
 

 A translator must also maintain a runtime 
environment to: 
 Allocate memory space to store program data. 
 Keep track of the progress of execution. 
 

 Since a compiler does not execute code directly, a 
compiler will maintain the runtime environment 
indirectly by adding suitable operations to the target 
code. 

 
 
 
 

94 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 The properties of a programming language 
that can be determined prior to execution are 
called static properties. 
 Lexical and syntactic structure. 
 

 Properties that can be determined only during 
execution are called dynamic properties. 

 
 
 
 

95 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Programming languages can be designed to 
be more suitable for interpretation or 
compilation. 
 

 A more dynamic language is more suitable 
for interpretation. 
 

 A language with strong static structure is 
more suitable for compilation. 

 
 
 

96 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Usually imperative languages have more static 
properties and are compiled. 
 

 Usually functional and logic programming languages 
have more dynamic properties and are interpreted. 
 

 A compiler or interpreter can exist for any language 
of course, regardless of static or dynamic properties. 

 
 
 
 97 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Static allocation: 
 All variables are assumed to occupy a fixed 

position in memory for the duration of program 
execution. 

 A fully static environment may be used. 
 To the opposite extreme, fully dynamic 

environments may be used if all variables do not 
occupy a fixed position in memory. 

 
 
 

 
98 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Stack based environments: 
 Midway between fully static and fully dynamic 

environments. 
 

 Like C and Ada, both have static and dynamic 
aspects. 
 
 

 
 
 99 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Efficiency of Compilers Vs. Translators: 
 

 Interpreters are inherently less efficient than compilers. 
 

 They must simulate the actions of the source program on 
the underlying machine. 
 

 Compilers can boost efficiency of the target code by 
performing optimizations and performing several passes to 
analyze the source program in detail. 
 
 

 
 

100 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Efficiency of Compilers Vs. Translators: 
 

 A programming language needing efficient execution is 
more likely to be compiled than interpreted. 
 

 Interpreters on the other hand usually have an interactive 
mode and can provide immediate output. Example: 

 
 > gcd(8 18) ;;calls the gcd function 
 >2  ;;immediately provides output. 
 
 

 
 

101 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Error Classification: 
 
 Lexical: character-level error, such as illegal character 

(hard to distinguish from syntax). 
 Syntax: error in structure (e.g., missing semicolon or 

keyword). 
 Static semantic: non-syntax error prior to execution (e.g., 

undefined vars, type errors). 
 Dynamic semantic: non-syntax error during execution (e.g., 

division by 0). 
 Logic: programmer error, program not at fault. (e.g. 

computing the average of two numbers is attempted by 
dividing by 3!) 

 

102 



www.manaraa.com

Dr. Sherif G. Aly 

Language Translation 

 Error Reporting: 
 
 A compiler will report lexical, syntax, and static semantic 

errors. It cannot report dynamic semantic errors. 
 

 An interpreter will often only report lexical and syntax errors 
when loading the program. Static semantic errors may not 
be reported until just prior to execution. Indeed, most 
interpreted languages (e.g. Lisp, Smalltalk) do not define 
any static semantic errors. 

 
 No translator can report a logic error. 
 

103 


	Concepts of Programming Languages: Introduction�
	Introduction
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	What is a Programming Language?
	Computation
	Computation
	Computation
	Machine Readability
	Machine Readability
	Human Readability
	Human Readability
	Human Readability
	Human Writability
	Abstractions in Programming Languages
	Data Abstractions – Simple or Basic
	Data Abstractions – Simple or Basic
	Data Abstractions – Structured
	Data Abstractions – Unit Abstractions
	Data Abstractions – Unit Abstractions
	Data Abstractions – Unit Abstractions
	Control Abstractions - Basic
	Control Abstractions - Basic
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Structured
	Control Abstractions - Unit
	Computational Paradigms
	The Imperative Paradigm
	Computational Paradigms - Imperative
	Computational Paradigms - Imperative
	Computational Paradigms - Imperative
	The Object Oriented Paradigm
	Computational Paradigms – Object Oriented
	Computational Paradigms – Object Oriented
	Computational Paradigms – Object Oriented
	The Functional Paradigm
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	Computational Paradigms - Functional
	The Logic Paradigm
	Computational Paradigms - Logic
	Computational Paradigms - Logic
	Computational Paradigms - Logic
	Computational Paradigms - Logic
	Computational Paradigms - Logic
	Computational Paradigms - Logic
	The Parallel Paradigm
	The Declarative Paradigm
	Computational Paradigms
	Computational Paradigms
	Examples of Mostly “Pure” Languages
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Definition
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation
	Language Translation

