
www.manaraa.com

Fundamentals of Computer Programming with C#

(The Bulgarian C# Programming Book)

by Svetlin Nakov & Co.

http://www.introprogramming.info

ISBN: 978-954-400-773-7

ISBN-13: 978-954-400-773-7 (9789544007737)

ISBN-10: 954-400-773-3 (9544007733)

Pages: 1122

Language: English

Published: Sofia, 2013

Tags: book; free book; ebook; e-book; programming; computer programming; programming concepts; programming principles; tutorial;

C#; data structures; algorithms; Intro C#; C# book; book C#; CSharp; CSharp book; programming book; book programming; textbook;

learn C#; study C#; learn programming; study programming; how to program; programmer; practical programming guide; software
engineer; software engineering; computer programming; software developer; software technologies; programming techniques; logical

thinking; algorithmic thinking; developer; software development; programming knowledge; programming skills; programming language;

basics of programming; presentations; presentation slides; coding; coder; source code; compiler; development tools; code decompiler;

JustDecompile; debugging code; debugger; Visual Studio; IDE; development environment; bug fixing; class library; API; C#; .NET; .NET
Framework; types; variables; operators; expressions; statements; value types; reference types; type conversion; console; console input;

console output; console application; conditional statements; if; if-else; switch-case; loops; whole; do-while; for loops; foreach; nested

loops; arrays; matrices; multidimensional arrays; numeral systems; binary numbers; decimal numbers; hexadecimal numbers;

representations of numbers; methods; method invocation; parameters; recursion; iteration; recursive algorithms; classes; objects; fields;

constructors; properties; static fields; static methods; static constructor; static members; namespaces; exceptions; exception handling;
stack trace; catch exception; throw exception; try-catch; try-finally; using statement; strings; text processing; StringBuilder; escaping;

System.String; regular expressions; string formatting; OOP; object-oriented programming; access modifiers; public; private; protected;

internal; this keyword; const fields; readonly fields; default constructor; implicit constructor; overloading; method overloading; constructor

overloading; automatic properties; read-only properties; constants; enumerations; inner classes; nested classes; generics; generic types;
generic methods; text files; streams; files; StreamReader; StreamWriter; data structures; ADT; abstract data structure; linear data

structures; list; linked list; static list; doubly-linked list; array list; stack; queue; deque; trees; graphs; binary tree; binary search tree;

balanced tree; balanced search tree; B-tree; red-black tree; tree traversal; ordered balanced search tree; graph representation; list of

edges; list of successors; adjacency matrix; depth-first search; DFS; breadth-first search; BFS; dictionary; hash table; associative array;
hash function; collision resolution; set; multi set; bag; multi bag; multi dictionary; algorithm complexity; asymptotic notation; time

complexity; memory complexity; execution time; performance; collection classes; .NET collections; Wintellect Power Collections; OOP;

principles; abstraction; encapsulation; polymorphism; abstract class; interface; operation contract; virtual method; method overriding;

cohesion; strong cohesion; coupling; loose coupling; spaghetti code; object-oriented modeling; UML; use-case diagram; sequence diagram;

statechart diagram; activity diagram; design patterns; singleton; factory method; code quality; high-quality code; code conventions; naming
identifiers; variable names; method names; naming classes; code formatting; high-quality classes; high-quality methods; variable scope;

variable span; variable lifetime; control-flow statements; defensive programming; assertions; code documentation; documentation; self-

documenting code; code refactoring; lambda expressions; LINQ; extension methods; anonymous types; LINQ queries; data filtering; data

searching; data sorting; data grouping; problem solving; problem solving methodology; problems and solutions; generating ideas; task
decomposition; algorithm efficiency; writing code; code testing; border cases testing; borderline cases; performance testing; regression

testing; exercises; problems; solutions; programming guidelines; programming problems; programming exercises; good programmer;

efficient programmer; pragmatic programmer; Nakov; Svetlin Nakov; Software Academy; Bulgaria; Bulgarian book; BG book; Bulgarian C#

book; Kolev; Vesselin Kolev; Dilyan Dimitrov; Hristo Germanov; Iliyan Murdanliev; Mihail Stoynov; Mihail Valkov; Mira Bivas; Nikolay
Kostov; Nikolay Nedyalkov; Nikolay Vassilev; Pavel Donchev; Pavlina Hadjieva; Radoslav Ivanov; Radoslav Kirilov; Radoslav Todorov;

Stanislav Zlatinov; Stefan Staev; Teodor Bozhikov; Teodor Stoev; Tsvyatko Konov; Vesselin Georgiev; Yordan Pavlov; Yosif Yosifov, ISBN

9789544007737, ISBN 9544007733, ISBN 978-954-400-773-7, ISBN 954-400-773-3

Book Front Cover

http://www.introprogramming.info/
http://www.introprogramming.info

www.manaraa.com

Contents

Contents .. 2

Detailed Table of Contents .. 5

Preface .. 13

Chapter 1. Introduction to Programming... 69

Chapter 2. Primitive Types and Variables .. 111

Chapter 3. Operators and Expressions ... 139

Chapter 4. Console Input and Output .. 165

Chapter 5. Conditional Statements .. 195

Chapter 6. Loops ... 211

Chapter 7. Arrays .. 235

Chapter 8. Numeral Systems ... 265

Chapter 9. Methods ... 293

Chapter 10. Recursion ... 351

Chapter 11. Creating and Using Objects .. 385

Chapter 12. Exception Handling .. 415

Chapter 13. Strings and Text Processing ... 457

Chapter 14. Defining Classes ... 499

Chapter 15. Text Files .. 615

Chapter 16. Linear Data Structures ... 641

Chapter 17. Trees and Graphs ... 681

Chapter 18. Dictionaries, Hash-Tables and Sets 727

Chapter 19. Data Structures and Algorithm Complexity 769

Chapter 20. Object-Oriented Programming Principles 807

Chapter 21. High-Quality Programming Code 853

Chapter 22. Lambda Expressions and LINQ 915

Chapter 23. Methodology of Problem Solving 935

Chapter 24. Sample Programming Exam – Topic #1 985

Chapter 25. Sample Programming Exam – Topic #2 1041

Chapter 26. Sample Programming Exam – Topic #3 1071

Conclusion ... 1119

www.manaraa.com

FUNDAMENTALS OF

COMPUTER PROGRAMMING

WITH C#

(The Bulgarian C# Programming Book)

Svetlin Nakov & Co.

Dilyan Dimitrov

Hristo Germanov

Iliyan Murdanliev

Mihail Stoynov

Mihail Valkov

Mira Bivas

Nikolay Kostov

Nikolay Nedyalkov

Nikolay Vasilev

Pavel Donchev

Pavlina Hadjieva

Radoslav Ivanov

Radoslav Kirilov

Radoslav Todorov

Stanislav Zlatinov

Stefan Staev

Svetlin Nakov

Teodor Bozhikov

Teodor Stoev

Tsvyatko Konov

Vesselin Georgiev

Veselin Kolev

Yordan Pavlov

Yosif Yosifov

Sofia, 2013

www.manaraa.com

FUNDAMENTALS OF COMPUTER

PROGRAMMING WITH C#

(The Bulgarian C# Programming Book)

© Svetlin Nakov & Co., 2013

The book is distributed freely under the following license conditions:

1. Book readers (users) may:

- distribute free of charge unaltered copies of the book in electronic or

paper format;

- use portions of the book and the source code examples or their

modifications, for all intents and purposes, including educational and

commercial projects, provided they clearly specify the original source,

the original author(s) of the corresponding text or source code, this

license and the website www.introprogramming.info;

- distribute free of charge portions of the book or modified copies of it

(including translating the book into other languages or adapting it to

other programming languages and platforms), but only by explicitly

mentioning the original source and the authors of the corresponding

text, source code or other material, this license and the official website

of the project: www.introprogramming.info.

2. Book readers (users) may NOT:

- distribute for profit the book or portions of it, with the exception of the

source code;

- remove this license from the book when modifying it for own needs.

All trademarks referenced in this book are the property of their respective

owners.

Official Web Site:

http://www.introprogramming.info

ISBN 978-954-400-773-7

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

www.manaraa.com

Detailed Table of Contents

Contents .. 2

Detailed Table of Contents .. 5

Preface .. 13

About the Book ... 13

C# and .NET Framework .. 17

How То Read This Book? .. 22

Why Are Data Structures and Algorithms Emphasized? 25

Do You Really Want to Become a Programmer? ... 26

A Look at the Book’s Contents .. 29

History: How Did This Book Come to Be? ... 38

Authors and Contributors ... 40

The Book Is Free of Charge! ... 53

Reviews ... 53

License .. 63

Resources Coming with the Book ... 65

Chapter 1. Introduction to Programming... 69

In This Chapter ... 69

What Does It Mean "To Program"? .. 69

Stages in Software Development ... 71

Our First C# Program .. 75

The C# Language and the .NET Platform .. 79

Visual Studio IDE .. 93

Alternatives to Visual Studio .. 104

Decompiling Code .. 104

C# in Linux, iOS and Android ... 107

Other .NET Languages .. 107

Exercises ... 108

Solutions and Guidelines ... 108

Chapter 2. Primitive Types and Variables .. 111

In This Chapter .. 111

What Is a Variable? .. 111

Data Types .. 111

Variables ... 123

Value and Reference Types .. 128

Literals ... 131

www.manaraa.com

6 Fundamentals of Computer Programming with C#

Exercises ... 135

Solutions and Guidelines ... 136

Chapter 3. Operators and Expressions ... 139

In This Chapter .. 139

Operators .. 139

Type Conversion and Casting ... 152

Expressions ... 158

Exercises ... 160

Solutions and Guidelines ... 161

Chapter 4. Console Input and Output .. 165

In This Chapter .. 165

What Is the Console? .. 165

Standard Input-Output ... 169

Printing to the Console .. 169

Console Input .. 183

Console Input and Output – Examples .. 190

Exercises ... 192

Solutions and Guidelines ... 193

Chapter 5. Conditional Statements .. 195

In This Chapter .. 195

Comparison Operators and Boolean Expressions .. 195

Conditional Statements "if" and "if-else" ... 200

Conditional Statement "switch-case" ... 206

Exercises ... 208

Solutions and Guidelines ... 209

Chapter 6. Loops ... 211

In This Chapter .. 211

What Is a "Loop"? .. 211

While Loops ... 211

Do-While Loops .. 216

For Loops .. 221

Foreach Loops ... 225

Nested Loops ... 226

Exercises ... 231

Solutions and Guidelines ... 233

Chapter 7. Arrays .. 235

In This Chapter .. 235

What Is an "Array"? .. 235

Declaration and Allocation of Memory for Arrays .. 235

Access to the Elements of an Array ... 238

Reading an Array from the Console .. 241

www.manaraa.com

Detailed Table of Contents 7

Printing an Array to the Console ... 243

Iteration through Elements of an Array ... 244

Multidimensional Arrays .. 246

Arrays of Arrays ... 253

Exercises ... 257

Solutions and Guidelines ... 259

Chapter 8. Numeral Systems ... 265

In This Chapter .. 265

History in a Nutshell ... 265

Numeral Systems ... 266

Representation of Numbers ... 276

Exercises ... 289

Solutions and Guidelines ... 290

Chapter 9. Methods ... 293

In This Chapter .. 293

Subroutines in Programming .. 293

What Is a "Method"? ... 293

Why to Use Methods? ... 294

How to Declare, Implement and Invoke a Method? ... 295

Declaring Our Own Method .. 295

Implementation (Creation) of Own Method .. 300

Invoking a Method.. 301

Parameters in Methods ... 303

Returning a Result from a Method .. 328

Best Practices when Using Methods .. 345

Exercises ... 347

Solutions and Guidelines ... 348

Chapter 10. Recursion ... 351

In This Chapter .. 351

What Is Recursion? ... 351

Example of Recursion ... 351

Direct and Indirect Recursion ... 352

Bottom of Recursion ... 352

Creating Recursive Methods ... 352

Recursive Calculation of Factorial ... 353

Recursion or Iteration?.. 355

Simulation of N Nested Loops .. 356

Which is Better: Recursion or Iteration? .. 362

Using Recursion – Conclusions ... 378

Exercises ... 378

Solutions and Guidelines ... 380

Chapter 11. Creating and Using Objects .. 385

www.manaraa.com

8 Fundamentals of Computer Programming with C#

In This Chapter .. 385

Classes and Objects .. 385

Classes in C#... 387

Creating and Using Objects ... 390

Namespaces .. 405

Exercises ... 410

Solutions and Guidelines ... 412

Chapter 12. Exception Handling .. 415

In This Chapter .. 415

What Is an Exception? .. 415

Exceptions Hierarchy .. 424

Throwing and Catching Exceptions ... 426

The try-finally Construct .. 432

IDisposable and the "using" Statement ... 437

Advantages of Using Exceptions ... 439

Best Practices when Using Exceptions ... 445

Exercises ... 453

Solutions and Guidelines ... 454

Chapter 13. Strings and Text Processing ... 457

In This Chapter .. 457

Strings .. 457

Strings Operations.. 462

Constructing Strings: the StringBuilder Class ... 480

String Formatting ... 488

Exercises ... 491

Solutions and Guidelines ... 496

Chapter 14. Defining Classes ... 499

In This Chapter .. 499

Custom Classes .. 499

Usage of Class and Objects.. 502

Organizing Classes in Files and Namespaces .. 505

Modifiers and Access Levels (Visibility) .. 508

Declaring Classes ... 509

The Reserved Word "this" .. 511

Fields .. 512

Methods .. 518

Accessing Non-Static Data of the Class ... 519

Hiding Fields with Local Variables ... 522

Visibility of Fields and Methods... 524

Constructors .. 531

Properties ... 549

Static Classes and Static Members ... 559

www.manaraa.com

Detailed Table of Contents 9

Structures ... 580

Enumerations .. 584

Inner Classes (Nested Classes) .. 590

Generics ... 594

Exercises ... 610

Solutions and Guidelines ... 613

Chapter 15. Text Files .. 615

In This Chapter .. 615

Streams .. 615

Reading from a Text File ... 620

Writing to a Text File .. 628

Input / Output Exception Handling ... 630

Text Files – More Examples ... 631

Exercises ... 636

Solutions and Guidelines ... 638

Chapter 16. Linear Data Structures ... 641

In This Chapter .. 641

Abstract Data Structures ... 641

List Data Structures .. 642

Exercises ... 676

Solutions and Guidelines ... 678

Chapter 17. Trees and Graphs ... 681

In This Chapter .. 681

Tree Data Structures .. 681

Trees .. 681

Graphs .. 714

Exercises ... 722

Solutions and Guidelines ... 723

Chapter 18. Dictionaries, Hash-Tables and Sets 727

In This Chapter .. 727

Dictionary Data Structure .. 727

Hash-Tables .. 735

The "Set" Data Structure ... 760

Exercises ... 765

Solutions and Guidelines ... 767

Chapter 19. Data Structures and Algorithm Complexity 769

In This Chapter .. 769

Why Are Data Structures So Important?.. 769

Algorithm Complexity ... 770

Comparison between Basic Data Structures ... 779

When to Use a Particular Data Structure? .. 779

www.manaraa.com

10 Fundamentals of Computer Programming with C#

Choosing a Data Structure – Examples ... 786

External Libraries with .NET Collections ... 801

Exercises ... 803

Solutions and Guidelines ... 804

Chapter 20. Object-Oriented Programming Principles 807

In This Chapter .. 807

Let’s Review: Classes and Objects .. 807

Object-Oriented Programming (OOP) .. 807

Fundamental Principles of OOP ... 808

Inheritance .. 809

Abstraction .. 824

Encapsulation .. 828

Polymorphism .. 830

Cohesion and Coupling .. 836

Object-Oriented Modeling (OOM) .. 842

UML Notation ... 844

Design Patterns.. 847

Exercises ... 851

Solutions and Guidelines ... 852

Chapter 21. High-Quality Programming Code 853

In This Chapter .. 853

Why Is Code Quality Important? .. 853

What Does Quality Programming Code Mean? .. 854

Why Should We Write Quality Code? ... 854

Identifier Naming ... 857

Code Formatting .. 866

High-Quality Classes ... 874

High-Quality Methods ... 878

Proper Use of Variables ... 883

Proper Use of Expressions ... 890

Use of Constants .. 891

Proper Use of Control Flow Statements ... 894

Defensive Programming .. 898

Code Documentation .. 900

Code Refactoring .. 904

Unit Testing ... 905

Additional Resources... 912

Exercises ... 912

Solutions and Guidelines ... 913

Chapter 22. Lambda Expressions and LINQ 915

In This Chapter .. 915

Extension Methods ... 915

www.manaraa.com

Detailed Table of Contents 11

Anonymous Types .. 918

Lambda Expressions ... 920

LINQ Queries ... 924

Nested LINQ Queries .. 930

LINQ Performance .. 930

Exercises ... 933

Solutions and Guidelines ... 933

Chapter 23. Methodology of Problem Solving 935

In This Chapter .. 935

Basic Principles of Solving Computer Programming Problems 935

Use Pen and Paper ... 936

Generate Ideas and Give Them a Try! ... 937

Decompose the Task into Smaller Subtasks ... 938

Verify Your Ideas! .. 941

If a Problem Occurs, Invent a New Idea! ... 943

Choose Appropriate Data Structures! .. 946

Think about the Efficiency! .. 950

Implement Your Algorithm! ... 953

Write the Code Step by Step! .. 954

Test Your Solution! ... 967

General Conclusions ... 979

Exercises ... 980

Solutions and Guidelines ... 983

Chapter 24. Sample Programming Exam – Topic #1 985

In This Chapter .. 985

Problem 1: Extract Text from HTML Document ... 985

Problem 2: Escape from Labyrinth .. 1012

Problem 3: Store for Car Parts ... 1026

Exercises ... 1038

Solutions and Guidelines ... 1040

Chapter 25. Sample Programming Exam – Topic #2 1041

In This Chapter .. 1041

Problem 1: Counting the Uppercase / Lowercase Words in a Text 1041

Problem 2: A Matrix of Prime Numbers ... 1054

Problem 3: Evaluate an Arithmetic Expression ... 1060

Exercises ... 1069

Solutions and Guidelines ... 1069

Chapter 26. Sample Programming Exam – Topic #3 1071

In This Chapter .. 1071

Problem 1: Spiral Matrix ... 1071

Problem 2: Counting Words in a Text File .. 1078

Problem 3: School .. 1099

www.manaraa.com

12 Fundamentals of Computer Programming with C#

Exercises ... 1117

Solutions and Guidelines ... 1118

Conclusion ... 1119

Did You Solve All Problems? .. 1119

Have You Encountered Difficulties with the Exercises? 1119

How Do You Proceed After Reading the Book? .. 1120

Free Courses at Telerik Software Academy .. 1121

Good Luck to Everyone! .. 1121

www.manaraa.com

Preface

If you want to take up programming seriously, you’ve come across the

right book. For real! This is the book with which you can make your first

steps in programming. It will give a flying start to your long journey into

learning modern programming languages and software development

technologies. This book teaches the fundamental principles and concepts

of programming, which have not changed significantly in the past 15 years.

Do not hesitate to read this book even if C# is not the language you would

like to pursue. Whatever language you move on to, the knowledge we will

give you here will stick, because this book will teach you to think like

programmers. We will show you and teach you how to write programs for

solving practical algorithmic problems, form the skills in you to come up

with (and implement) algorithms, and use various data structures.

As improbable as it might seem to you, the basic principles of writing

computer programs have not changed all that much in the past 15 years.

Programming languages change, technologies get modernized, integrated

development environments get more and more advanced but the

fundamental principles of programming remain the same. When

beginners learn to think algorithmically, and then learn to divide a problem

instinctively into a series of steps to solve it, as well as when they learn to

select the appropriate data structures and write high-quality programming

code that is when they become programmers. Once you acquire these skills,

you can easily learn new languages and various technologies – like Web

programming, HTML5 and JavaScript, mobile development, databases and

SQL, XML, REST, ASP.NET, Java EE, Python, Ruby and hundreds more.

About the Book

This book is designed specifically to teach you to think like a programmer and

the C# language is just a tool that can be replaced by any other modern

programming languages, such as Java, C++, PHP or Python. This is a book

on programming, not a book on C#!

Please Excuse Us for the Bugs in the Translation!

This book was originally written in Bulgarian language by a large team of

volunteer software engineers and later translated into English. None of the

authors, translators, editors and the other contributors is a native English

speaker so you might find many mistakes and imprecise translation. Please,

excuse us! Over 70 people have participated in this project (mostly

Bulgarians): authors, editors, translators, correctors, bug submitters, etc. and

www.manaraa.com

14 Fundamentals of Computer Programming with C#

still the quality could be improved. The entire team congratulates you on your

choice to read this book and we believe the content in it is more important

that the small mistakes and inaccuracies you might find. Enjoy!

Who Is This Book Aimed At?

This book is best suited for beginners. It is intended for anyone who so far

has not engaged seriously in programming and would like to begin doing it.

This book starts from scratch and introduces you step by step into the

fundamentals of programming. It won’t teach you absolutely everything you

might need for becoming a software engineer and working at a software

company, but it will lay the groundwork on which you can build up

technological knowledge and skills, and through them you will be able to turn

programming into your profession.

If you’ve never written a computer program, don’t worry. There is always a

first time. In this book we will teach you how to program from scratch.

We do not expect any previous knowledge or abilities. All you need is some

basic computer literacy and a desire to take up programming. The rest you

will learn from the book.

If you can already write simple programs or if you have studied programming

at school or in college, or you’ve coded with friends, do not assume you

know everything! Read this book and you’ll become aware of how many

things you’ve missed. This book is indeed for beginners, but it teaches

concepts and skills that even experienced professional programmers lack.

Software companies are riddled with a shocking amount of self-taught

amateurs who, despite having programmed on a salary for years, have no

grasp of the fundamentals of programming and have no idea what a hash

table is, how polymorphism works and how to work with bitwise operations.

Don’t be like them! Learn the basics of programming first and then the

technologies. Otherwise you risk having your programming skills crippled,

more or less, for years, if not for life.

If, on the other hand, you have programming experience, examine this book

in details and see if you are familiar with all subjects we have covered, in

order to decide whether it is for you or not. Take a close look especially at the

chapters "Data Structures and Algorithms Complexity", "Object-Oriented

Programming Principles", "Methodology of Problem Solving" and "High-Quality

Programming Code". It is very likely that, even if you have several years of

experience, you might not be able to work well with data structures; you

might not be able to evaluate the complexity of an algorithm; you might

not have mastered in depth the concepts of object-oriented programming

(including UML and design patterns); and you might not be acquainted with

the best practices for writing high-quality programming code. These are

very important topics that are not covered in all books on programming, so

don’t skip them!

www.manaraa.com

Preface 15

Previous Knowledge Is Not Required!

In this book we do not expect any previous programming knowledge

from the readers. It is not necessary for you to have studied information

technology or computer science, in order to read and comprehend the book

content. The book starts from scratch and gradually gets you involved in

programming. All technical terms you will come across will have been

explained beforehand and it is not necessary for you to know them from other

sources. If you don’t know what a compiler, debugger, integrated develop-

ment environment, variable, array, loop, console, string, data structure,

algorithm, algorithm complexity, class or object are, don’t be alarmed. From

this book, you will learn all these terms and many more and gradually get

accustomed to using them constantly in your everyday work. Just read the

book consistently and do the exercises.

Certainly, if, after all, you do have prior knowledge in computer science and

information technologies, they will by all means be of use to you. If, at

university, you major in the field of computer science or if you study

information technology at school, this will only help you, but it is not a must.

If you major in tourism, law or other discipline that has little in common with

computer technology, you could still become a good programmer, as long

as you have the desire. The software industry is full of good developers

without a computer science or related degree.

It is expected for you to have basic computer literacy, since we would not

be explaining what a file, hard disk and network adapter is, nor how to move

the mouse or how to write on a keyboard. We expect you to know how to

work with a computer and how to use the Internet.

It is recommended that the readers have at least some basic knowledge of

English. The entire documentation you will be using every day and almost all

of the websites on programming you would be reading at all times are in

English. In the profession of a programmer, English is absolutely

essential. The sooner you learn it, the better. We hope that you already

speak English; otherwise how do you read this text?

Make no illusion you can become a programmer without

learning even a little English! This is simply a naive

expectation. If you don’t speak English, complete a course of

some sort and then start reading technical literature, make

note of any unfamiliar words and learn them. You will see for

yourselves that Technical English is easy to learn and it

doesn’t take much time.

What Is the Scope of This Book?

This book covers the fundamentals of programming. It will teach you how

to define and use variables, how to work with primitive data structures (such

as numbers), how to organize logical statements, conditional statements and

www.manaraa.com

16 Fundamentals of Computer Programming with C#

loops, how to print on the console, how to use arrays, how to work with

numeral systems, how to define and use methods, and how to create and use

objects. Along with the basic programming knowledge, this book will help

you understand more complicated concepts such as string processing,

exception handling, using complex data structures (like trees and hash

tables), working with text files, defining custom classes and working with

LINQ queries. The concepts of object-oriented programming (OOP) – an

established approach in modern software development – will be covered in

depth. Finally, you’ll be faced with the practices for writing high-quality

programs and solving real-world programming problems. This book presents

a complete methodology for solving programming problems, as well as

algorithmic problems in general, and shows how to implement it with a few

sample subjects and programming exams. This is something you will not find

in any other book on programming!

What Will This Book Not Teach You?

This book will not award you the profession "software engineer"! This

book won’t teach you how to use the entire .NET platform, how to work with

databases, how to create dynamic web sites and develop mobile applications,

how to create window-based graphical user interface (GUI) and rich Internet

applications (RIA). You won’t learn how to develop complex software

applications and systems like Skype, Firefox, MS Word or social networks like

Facebook and retail sites like Amazon.com. And no other single book will.

These kinds of projects require many, many years of work and experience

and the knowledge in this book is just a wonderful beginning for the future

programmer geek.

From this book, you won’t learn software engineering, team work and you

won’t be able to prepare for working on real projects in a software company.

In order to learn all of this, you will need a few more books and extra courses,

but do not regret the time you will spend on this book. You are making the

right choice by starting with the fundamentals of programming rather

than directly with Web development, mobile applications and databases. This

gives you the opportunity to become a master programmer who has in-

depth knowledge of programming and technology. After you acquire the

fundamentals of programming, it will become much easier for you to read and

learn databases and web applications, and you will understand what you read

much easier and in greater depth rather than if you directly begin learning

SQL, ASP.NET, AJAX, XAML or WinRT.

Some of your colleagues directly begin programming with Web or mobile

applications and databases without knowing what an array, a list or hash

table is. Do not envy them! They have set out to do it the hard way,

backwards. They will learn to make low-quality websites with PHP and MySQL,

but they will find it infinitely difficult to become real professionals. You,

too, will learn web technologies and databases, but before you take them up,

learn how to program! This is much more important. Learning one

www.manaraa.com

Preface 17

technology or another is very easy once you know the basics, when you can

think algorithmically and you know how to tackle programming problems.

Starting to program with web applications or/and databases

is just as incorrect as studying up a foreign language from

some classical novel rather than from the alphabet and a

textbook for beginners. It is not impossible, but if you lack

the basics, it is much more difficult. It is highly-probable that

you would end up lacking vital fundamental knowledge and

being the laughing-stock of your colleagues/peers.

How Is the Information Presented?

Despite the large number of authors, co-authors and editors, we have done

our best to make the style of the book similar in all chapters and highly

comprehensible. The content is presented in a well-structured manner; it is

broken up into many titles and subtitles, which make its reception easy and

looking up information in the text quick.

The present book is written by programmers for programmers. The

authors are active software developers, colleagues with genuine experience in

both software development and training future programmers. Due to this, the

quality of the content presentation is at a very good level, as you will see for

yourself.

All authors are distinctly aware that the sample source code is one of the

most important things in a book on programming. Due to this very reason,

the text is accompanied with many, many examples, illustrations and figures.

When every chapter is written by a different author, there is no way to

completely avoid differences in the style of speech and the quality of

chapters. Some authors put a lot of work (for months) and a lot of efforts to

make their chapters perfect. Others could not invest too much effort and

that is why some chapters are not as good as the best ones. Last but not

least, the experience of the authors varies – some have been programming

professionally for 2-3 years, while others – for 15 years. This affects the

quality, no doubt, but we assure you that every chapter has been

reviewed and meets the quality standards of Svetlin Nakov and his team.

C# and .NET Framework

This book is about programming. It is intended to teach you to think as a

programmer, to write code, to think in data structures and algorithms and to

solve problems.

We use C# and Microsoft .NET Framework (the platform behind C#) only

as means for writing programming code and we do not scrutinize the

language’s specifics. This same book can be found in versions for other

languages like Java and C++, but the differences are not very significant.

http://www.nakov.com/

www.manaraa.com

18 Fundamentals of Computer Programming with C#

Nevertheless, let’s give a short account of C# (pronounced "see sharp").

C# is a modern programming language for development of

software applications.

If the words "C#" and ".NET Framework" are unknown to you, you’ll learn in

details about them and their connection in the next chapter. Now let’s explain

briefly what C#, .NET, .NET Framework, CLR and the other technologies

related to C# are.

The C# Programming Language

C# is a modern object-oriented, general-purpose programming

language, created and developed by Microsoft together with the .NET

platform. There is highly diverse software developed with C# and on the .NET

platform: office applications, web applications, websites, desktop applications,

mobile applications, games and many others.

C# is a high-level language that is similar to Java and C++ and, to some

extent, languages like Delphi, VB.NET and C. All C# programs are object-

oriented. They consist of a set of definitions in classes that contain methods

and the methods contain the program logic – the instructions which the

computer executes. You will find out more details on what a class, a method

and C# programs are in the next chapter.

Nowadays C# is one of the most popular programming languages. It is

used by millions of developers worldwide. Because C# is developed by

Microsoft as part of their modern platform for development and execution of

applications, the .NET Framework, the language is widely spread among

Microsoft-oriented companies, organizations and individual developers. For

better or for worse, as of this book writing, the C# language and the .NET

platform are maintained and managed entirely by Microsoft and are not

open to third parties. Because of this, all other large software corporations

like IBM, Oracle and SAP base their solutions on the Java platform and use

Java as their primary language for developing their own software products.

Unlike C# and the .NET Framework, the Java language and platform are

open-source projects that an entire community of software companies,

organizations and individual developers take part in. The standards, the

specifications and all the new features in the world of Java are developed by

workgroups formed out of the entire Java community, rather than a single

company (as the case of C# and .NET Framework).

The C# language is distributed together with a special environment on which

it is executed, called the Common Language Runtime (CLR). This

environment is part of the platform .NET Framework, which includes CLR, a

bundle of standard libraries providing basic functionality, compilers,

debuggers and other development tools. Thanks to the framework CLR

programs are portable and, once written they can function with little or no

changes on various hardware platforms and operating systems. C# programs

www.manaraa.com

Preface 19

are most commonly run on MS Windows, but the .NET Framework and CLR

also support mobile phones and other portable devices based on Windows

Mobile, Windows Phone and Windows 8. C# programs can still be run under

Linux, FreeBSD, iOS, Android, MacOS X and other operating systems through

the free .NET Framework implementation Mono, which, however, is not

officially supported by Microsoft.

The Microsoft .NET Framework

The C# language is not distributed as a standalone product – it is a part of

the Microsoft .NET Framework platform (pronounced "Microsoft dot net

framework"). .NET Framework generally consists of an environment for the

development and execution of programs, written in C# or some other

language, compatible with .NET (like VB.NET, Managed C++, J# or F#). It

consists of:

- the .NET programming languages (C#, VB.NET and others);

- an environment for the execution of managed code (CLR), which

executes C# programs in a controlled manner;

- a set of development tools, such as the csc compiler, which turns C#

programs into intermediate code (called MSIL) that the CLR can

understand;

- a set of standard libraries, like ADO.NET, which allow access to

databases (such as MS SQL Server or MySQL) and WCF which connects

applications through standard communication frameworks and protocols

like HTTP, REST, JSON, SOAP and TCP sockets.

The .NET Framework is part of every modern Windows distribution and is

available in different versions. The latest version can be downloaded and

installed from Microsoft’s website. As of this book’s publishing, the latest

version of the .NET Framework is 4.5. Windows Vista includes out-of-the-

box .NET Framework 2.0, Windows 7 – .NET 3.5 and Windows 8 – .NET 4.5.

Why C#?

There are many reasons why we chose C# for our book. It is a modern

programming language, widely spread, used by millions of programmers

around the entire world. At the same time C# is a very simple and easy to

learn (unlike C and C++). It is natural to start with a language that is

suitable for beginners while still widely used in the industry by many large

companies, making it one of the most popular programming languages

nowadays.

C# or Java?

Although this can be extensively discussed, it is commonly acknowledged that

Java is the most serious competitor to C#. We will not make a

comparison between Java and C#, because C# is undisputedly the better,

www.manaraa.com

20 Fundamentals of Computer Programming with C#

more powerful, richer and just better engineered. But, for the purposes of this

book, we have to emphasize that any modern programming language will be

sufficient to learn programming and algorithms. We chose C#, because it is

easier to learn and is distributed with highly convenient, free integrated

development environment (e.g. Visual C# Express Edition). Those who prefer

Java can prefer to use the Java version of this book, which can be found here:

www.introprogramming.info.

Why Not PHP?

With regards to programing languages popularity, besides C# and Java,

another widely used language is PHP. It is suitable for developing small web

sites and web applications, but it gives rise to serious difficulties when

implementing large and complicated software systems. In the software

industry PHP is used first and foremost for small projects, because it can

easily lead developers into writing code that is bad, disorganized and hard to

maintain, making it inconvenient for more substantial projects. This subject is

also debatable, but it is commonly accepted that, because of its antiquated

concepts and origins it is built on and because of various evolutionary

reasons, PHP is a language that tends towards low-quality

programming, writing bad code and creating hard to maintain software. PHP

is a procedural language in concept and although it supports the paradigms of

modern object-oriented programming, most PHP programmers write

procedurally. PHP is known as the language of "code monkeys" in the

software engineering profession, because most PHP programmers write

terrifyingly low-quality code. Because of the tendency to write low-quality,

badly structured and badly organized programming code, the entire concept

of the PHP language and platform is considered wrong and serious companies

(like Microsoft, Google, SAP, Oracle and their partners) avoid it. Due to this

reason, if you want to become a serious software engineer, start with C# or

Java and avoid PHP (as much as possible).

Certainly, PHP has its uses in the world of programming (for example

creating a blog with WordPress, a small web site with Joomla or Drupal, or a

discussion board with PhpBB), but the entire PHP platform is not well-

organized and engineered for large systems like .NET and Java. When it

comes to non-web-based applications and large industrial projects, PHP is not

by a long shot among the available options. Lots and lots of experience is

necessary to use PHP correctly and to develop high-quality professional

projects with it. PHP developers usually learn from tutorials, articles and low-

quality books and pick up bad practices and habits, which then are hard to

eradicate. Therefore, do not learn PHP as your first development

language. Start with C# or Java.

Based on the large experience of the authors' collective we advise you to

begin programming with C# and ignore languages such as C, C++ and PHP

until the moment you have to use them.

http://www.introprogramming.info/

www.manaraa.com

Preface 21

Why Not C or C++?

Although this is also debatable, the C and C++ languages are considered

complex and requires deep understanding of hardware. They still have their

uses and are suitable for low-level programming (e.g. programming for

specialized hardware devices), but we do not advise you to use C / C++ when

you are beginner who wants to learn programming.

You can program in pure C, if you have to write an operating system, a

hardware device driver or if you want to program an embedded device,

because of the lack of alternatives and the need to control the hardware very

carefully. The C language is very low-level and in no way do we advise

you to begin programming with it. A programmer’s productivity under pure C

is many times lower compared to their productivity under modern general-

purpose programming languages like C# and Java. A variant of C is used

among Apple / iPhone developers, but not because it is a good language, but

because there is no decent alternative. Most Apple-oriented programmers do

not like Objective-C, but they have no choice in writing in something else. In

2014 Apple promoted their new language Swift, which is of higher level and

aims to replace Objective-C for the iOS platform.

C++ is good when you have to program applications that require very close

work with the hardware or that have special performance requirements

(like 3D games). For all other purposes (like Web applications development or

business software) C++ is inadequate. We do not advise you to pursue it, if

you are starting with programming just now. One reason it is still being

studied in some schools and universities is hereditary, because these

institutions are very conservative. For example, the International Olympiad in

Informatics (IOI) continues to promote C++ as the only language permitted

to use at programming contests, although C++ is rarely used in the

industry. If you don’t believe this, look through some job search site and

count the percentage of job advertisements with C++.

The C++ language lost its popularity mainly because of the inability to quickly

write quality software with it. In order to write high-quality software in C++,

you have to be an incredibly smart and experienced programmer, whereas

the same is not strictly required for C# and Java. Learning C++ takes

much more time and very few programmers know it really well. The

productivity of C++ programmers is many times lower than C#’s and that is

why C++ is losing ground. Because of all these reasons, the C++ language

is slowly fading away and therefore we do not advise you to learn it.

Advantages of C#

C# is an object-oriented programming language. Such are all modern

programming languages used for serious software systems (like Java and

C++). The advantages of object-oriented programming are brought up in

many passages throughout the book, but, for the moment, you can think of

object-oriented languages as languages that allow working with objects from

the real world (for example student, school, textbook, book and others).

www.manaraa.com

22 Fundamentals of Computer Programming with C#

Objects have properties (e.g. name, color, etc.) and can perform actions (e.g.

move, speak, etc.).

By starting to program with C# and the .NET Framework platform, you are on

a very perspective track. If you open a website with job offers for

programmers, you’ll see for yourself that the demand for C# and .NET

specialists is huge and is close to the demand for Java programmers. At the

same time, the demand for PHP, C++ and other technology specialists is far

lower than the demand for C# and Java engineers.

For the good programmer, the language they use is of no significant meaning,

because they know how to program. Whatever language and technology

they might need, they will master it quickly. Our goal is not to teach you

C#, but rather teach you programming! After you master the

fundamentals of programming and learn to think algorithmically, when you

acquaint with other programming languages, you will see for yourself how

much in common they have with C# and how easy it will be to learn them.

Programming is built upon principles that change very slowly over the years

and this book teaches you these very principles.

Examples Are Given in C# 5 and Visual Studio 2012

All examples in this book are with regard to version 5.0 of the C# language

and the .NET Framework 4.5 platform, which is the latest as of this book’s

publishing. All examples on using the Visual Studio integrated development

environment are with regard to version 2012 of the product, which were also

the latest at the time of writing this book.

The Microsoft Visual Studio 2012 integrated development environment

(IDE) has a free version, suitable for beginner C# programmers, called

Microsoft Visual Studio Express 2012 for Windows Desktop. The difference

between the free and the full version of Visual Studio (which is a commercial

software product) lies in the availability of some functionalities, which we will

not need in this book.

Although we use C# 5 and Visual Studio 2012, most examples in this book

will work flawlessly under .NET Framework 2.0 / 3.5 / 4.0 and C# 2.0 / 3.5 /

4.0 and can be compiled under Visual Studio 2005 / 2008 / 2010.

It is of no great significance which version of C# and Visual Studio you’ll use

while you learn programming. What matters is that you learn the principles

of programming and algorithmic thinking! The C# language, the .NET

Framework platform and the Visual Studio integrated development

environment are just tools and you can exchange them for others at any time.

If you read this book and VS2012 is not currently the latest, be sure almost

all of this book’s content will still be the same due to backward compatibility.

How То Read This Book?

Reading this book has to be accompanied with lots and lots of practice. You

won’t learn programming, if you don’t practice! It would be like trying to learn

www.manaraa.com

Preface 23

how to swim from a book without actually trying it. There is no other way!

The more you work on the problems after every chapter, the more you will

learn from the book.

Everything you read here, you would have to try for yourself on a computer.

Otherwise you won’t learn anything. For example, once you read about Visual

Studio and how to write your first simple program, you must by all means

download and install Microsoft Visual Studio (or Visual C# Express) and try to

write a program. Otherwise you won’t learn! In theory, everything seems

easy, but programming means practice. Remember this and try to solve

the problems from this book. They are carefully selected – they are neither

too hard to discourage you, nor too easy, so you’ll be motivated to perceive

solving them as a challenge. If you encounter difficulties, look for help at the

discussion group for the "C# Programming Fundamentals" training course

at Telerik Software Academy: http://forums.academy.telerik.com (the forum

is intended for Bulgarian developers but the people "living" in it speak English

and will answer your questions regarding this book, don’t worry). Thousands

students solve the exercises from this book every year so you will find many

solutions to each problem from the book. We will also publish official solutions

+ tests for every exercise in the book at its web site.

Reading this book without practicing is meaningless! You

must spend much more time on writing programs than

reading the text itself. It is just like learning to drive: no one

can learn driving by reading books. To learn driving, you

need to drive many times in different situations, roads, cars,

etc. To learn programming, you need to program!

Everybody has studied math in school and knows that learning how to solve

math problems requires lots of practice. No matter how much they watch and

listen to their teachers, without actually sitting down and solving

problems, they won’t learn. The same goes for programming. You need

lots of practice. You need to write a lot, to solve problems, to experiment, to

endeavor in and to struggle with problems, to make mistakes and correct

them, to try and fail, to try anew and experience the moments when things

finally work out. You need lots and lots of practice. This is the only way you

will make progress.

So people say that to become a developer you might need to write at least

50,000 – 100,000 lines of code, but the correct number can vary a lot. Some

people are fast learners or just have problem-solving experience. Others may

need more practice, but in all cases practicing programming is very

important! You need to solve problems and to write code to become a

developer. There is no other way!

Do Not Skip the Exercises!

At the end of each chapter there is a considerable list of exercises. Do not

skip them! Without exercises, you will not learn a thing. After you read a

http://forums.academy.telerik.com/

www.manaraa.com

24 Fundamentals of Computer Programming with C#

chapter, you should sit in front of the computer and play with the examples

you have seen in the book. Then you should set about solving all problems. If

you cannot solve them all, you should at least try. If you don’t have all the

time necessary, you must at least attempt solving the first few problems from

each chapter. Do not carry on without solving problems after every

chapter, it would just be meaningless! The problems are small feasible

situations where you apply the stuff you have read. In practice, once you

have become programmers, you would solve similar problems every day, but

on a larger and more complex scale.

You must at all cost strive to solve the exercise problems

after every chapter from the book! Otherwise you risk not

learning anything and simply wasting your time.

How Much Time Will We Need for This Book?

Mastering the fundamentals of programming is a crucial task and takes a lot

of time. Even if you’re incredibly good at it, there is no way that you will

learn programming on a good level for a week or two. To learn any human

skill, you need to read, see or be shown how it is done and then try doing it

yourselves and practice a lot. The same goes for programming – you must

either read, see or listen how it is done, then try doing it yourself. Then you

would succeed or you would not and you would try again, until you finally

realize you have learned it. Learning is done step by step, consecutively, in

series, with a lot of effort and consistency.

If you want to read, understand, learn and acquire thoroughly and in-depth

the subject matter in this book, you have to invest at least 2 months for

daylong activity or at least 4-5 months, if you read and exercise a little

every day. This is the minimum amount of time it would take you to be able

to grasp in depth the fundamentals of programming.

The necessity of such an amount of lessons is confirmed by the free trainings

at Telerik Software Academy (http://academy.telerik.com), which follow this

very book. The hundreds of students, who have participated in trainings

based on the lectures from this book, usually learn all subjects from this book

within 3-4 months of full-time work. Thousands of students every year

solve all exercise problems from this book and successfully sit on

programming exams covering the book’s content. Statistics shows that

anyone without prior exposure to programming, who has spent less than the

equivalent of 3-4 months daylong activity on this book and the corresponding

courses at Telerik Academy, fails the exams.

The main subject matter in the book is presented in more than 1100 pages,

which will take you a month (daylong) just to read them carefully and test the

sample programs. Of course, you have to spend enough time on the exercises

(few more months); without them you would hardly learn programming.

http://academy.telerik.com/

www.manaraa.com

Preface 25

Exercises: Complex or Easy?

The exercises in the book consist of about 350 problems with varying

difficulty. For some of them you will need a few minutes, for others several

hours (if you can solve them at all without help). This means you would need

a month or two of daylong exercising or several months, if you do it little by

little.

The exercises at each chapter are ordered in increasing level of difficulty.

The first few exercises are easy, similar to the examples in the chapter. The

last few exercises are usually complex. You might need to use external

resources (like information from Wikipedia) to solve them. Intentionally, the

last few exercises in each chapter require skills outside of the chapter. We

want to push you to perform a search in your favorite search engine. You

need to learn searching on the Internet! This is an essential skill for any

programmer. You need to learn how to learn. Programming is about learning

every day. Technologies constantly change and you can’t know everything. To

be a programmer means to learn new APIs, frameworks, technologies

and tools every day. This cannot be avoided, just prepare yourself. You will

find many problems in the exercises, which require searching on the Internet.

Sometimes you will need the skills from the next chapter, sometimes some

well-known algorithm, sometimes something else, but in all cases searching

on the Internet is an essential skill you need to acquire.

Solving the exercises in the book takes a few months, really. If you don’t

have that much time at your disposal, ask yourselves if you really want to

pursue programming. This is a very serious initiative in which you must invest

a really great deal of efforts. If you really want to learn programming on a

good level, schedule enough time and follow the book or the video lectures

based on it.

Why Are Data Structures and Algorithms
Emphasized?

This book teaches you, in addition to the basic knowledge in programming,

proper algorithmic thinking and using basic data structures in

programming. Data structures and algorithms are a programmer’s most

important fundamental skills! If you have a good grasp of them, you will not

have any trouble becoming proficient in any software technology,

development tool, framework or API. That is what the most serious software

companies rely on when hiring employees. Proof of this are job interviews at

large companies like Google and Microsoft that rely exclusively on

algorithmic thinking and knowledge of all basic data structures and

algorithms.

The information below comes from Svetlin Nakov, the leading author of this

book, who passed software engineering interviews at Microsoft and Google in

2007-2008 and shares his own experience.

www.manaraa.com

26 Fundamentals of Computer Programming with C#

Job Interviews at Google

100% of the questions at job interviews for software engineers at Google,

Zurich, are about data structures, algorithms and algorithmic thinking.

At such an interview you may have to implement on a white board a linked

list (see the chapter "Linear Data Structures") or come up with an algorithm

for filling a raster polygon (given in the form of a GIF image) with some sort

of color (see Breadth-first search in the chapter "Trees and Graphs"). It

seems like Google are interested in hiring people who can think

algorithmically and who have a grasp of basic data structures and computer

algorithms. Any technology that candidates would afterwards use in their line

of work can be quickly learned. Needless to say, do not assume this book will

give you all the knowledge and skills to pass a job interview at Google. The

knowledge in the book is absolutely a necessary minimum, but not completely

sufficient. It only marks the first steps.

Job Interviews at Microsoft

A lot of questions at job interviews for software engineers at Microsoft,

Dublin, focus on data structures, algorithms and algorithmic thinking.

For example, you could be asked to reverse the words in a string (see the

chapter "Strings and Text Processing" or to implement topological sorting in

an undirected graph (see the chapter "Trees and Graphs"). Unlike Google,

Microsoft asks a lot of engineering questions related to software architectures,

multithreading, writing secure code, working with large amounts of data and

software testing. This book is far from sufficient for applying at Microsoft, but

the knowledge in it will surely be of use to you for the majority of questions.

About the LINQ Technology

The book includes a chapter on the popular .NET technology LINQ

(Language Integrated Query), which allows execution of various queries

(such as searching, sorting, summation and other group operations) on

arrays, lists and other objects. It is placed towards the end on purpose, after

the chapters on data structures and algorithms complexity. The reason

behind this is that the good programmer must know what happens when they

sort a list or search in an array according to criteria and how many operations

these actions take. If LINQ is used, it is not obvious how a given query works

and how much time it takes. LINQ is a very powerful and widely-used

technology, but it has to be mastered at a later stage (at the end of the

book), after you are well familiar with the basics of programming, the main

algorithms and data structures. Otherwise you risk learning how to write

inefficient code without realizing how it works and how many operations it

performs in the background.

Do You Really Want to Become a Programmer?

If you want to become a programmer, you have to be aware that true

programmers are serious, persevering, thinking and questioning people who

www.manaraa.com

Preface 27

handle all kinds of problems. It is important for them to master quickly all

modern or legacy platforms, technologies, libraries, APIs, programming tools,

programming languages and development tools necessary for their job and to

feel programming as a part of their life.

Good programmers spend an extraordinary amount of time on

advancing their engineering skills, on learning new technologies, new

programming languages and paradigms, new ways to do their job, new

platforms and new development tools every day. They are capable of logical

thinking; reasoning on problems and coming up with algorithms for solving

them; imagining solutions as a series of steps; modeling the surrounding

world using technological means; implementing their ideas as programs or

program components; testing their algorithms and programs; seeing issues;

foreseeing the exceptional circumstances that can come about and handling

them properly; listening to the advice of more experienced people; adapting

their applications’ user interface to the user’s needs; adapting their algorithms

to the capabilities of the machines and the environment they will be executed

on and interacted with.

Good programmers constantly read books, articles or blogs on

programming and are interested in new technologies; they constantly enrich

their knowledge and constantly improve the way they work and the quality of

software they write. Some of them become obsessed to such an extent that

they even forget to eat or sleep when confronted with a serious problem or

simply inspired by some interesting lecture or presentation. If you have the

tendency to get motivated to such an extent to do something (like playing

video games incessantly), you can learn programming very quickly by getting

into the mindset that programming is the most interesting thing in this world

for you, in this period of your life.

Good programmers have one or more computers, an Internet connection and

live in constant reach with technologies. They regularly visit websites and

blogs related to new technologies, communicate everyday with their

colleagues, visit technology lectures, seminars and other events, even if they

have no use for them at the moment. They experiment with or research the

new means and new ways for making a piece of software or a part of their

work. They examine new libraries, learn new languages, try new frameworks

and play with new development tools. That way they develop their skills

and maintain their level of awareness, competence and professionalism.

True programmers know that they can never master their profession to its full

extent, because it constantly changes. They live with the firm belief that they

have to learn their entire lives; they enjoy this and it satisfies them. True

programmers are curious and questioning people that want to know how

everything works – from a simple analog clock to a GPS system, Internet

technology, programming languages, operation systems, compilers, computer

graphics, games, hardware, artificial intelligence and everything else related

to computers and technologies. The more they learn, the more knowledge and

skills they crave after. Their life is tied to technologies and they change

www.manaraa.com

28 Fundamentals of Computer Programming with C#

with them, enjoying the development of computer science, technologies and

the software industry.

Everything we tell you about true programmers, we know firsthand. We are

convinced that programmer is a profession that requires your full

devotion and complete attention, in order to be a really good specialist –

experienced, competent, informed, thinking, reasoning, knowing, capable and

able to deal with non-standard situations. Anyone who takes up programming

"among other things" is fated to being a mediocre programmer. Programming

requires complete devotion for years. If you are ready for all of this,

continue reading and take into account that the next few months you will

spend on this book on programming are just a small start. And then you will

learn for years until you turn programming into your profession. Once that

happens, you would still learn something every day and compete with

technologies, so that you can maintain your level, until one day programming

develops your thinking and skills enough, so that you may take up another

profession, because few programmers reach retirement; but there are quite

a lot of successful people who have begun their careers with programming.

Motivate Yourself to Become a Programmer or Find

Another Job!

If you still haven’t given up on becoming a good programmer and if you

have already come to the understanding deep down that the next months and

years will be tied every day to constant diligent work on mastering the secrets

of programming, software development, computer science and software

technologies, you may use an old technique for self-motivation and

confident achievement of goals that can be found in many books and ancient

teachings under one form or another. Keep imagining that you are

programmers and that you have succeeded in becoming ones; you engage

every day in programming; it is your profession; you can write all the

software in the world (provided you have enough time); you can solve any

problem that experienced programmers can solve. Keep thinking constantly

and incessantly of your goal. Keep telling yourself, sometimes even out loud:

"I want to become a good programmer and I have to work hard for this, I

have to read a lot and learn a lot, I have to solve a lot of problems, every

day, constantly and diligently". Put programming books everywhere around

you, even stick a sign that says "I’ll become a good programmer" by your

bed, so that you can see it every evening when you go to bed and every

morning when you wake up. Program every day (no exceptions!), solve

problems, have fun, learn new technologies, experiment; try writing a game,

making a website, writing a compiler, a database and hundreds of other

programs you may come up with original ideas for. In order to become good

programmers, program every day and think about programming every day

and keep imagining the future moment when you are an excellent

programmer. You can, as long as you deeply believe that you can! Everybody

can, as long as they believe that they can and pursue their goals constantly

www.manaraa.com

Preface 29

without giving up. No-one would motivate you better than yourselves.

Everything depends on you and this book is your first step.

A great way to really learn programming is to program every

day for a year. If you program every day (without exception)

and you do it for a long time (e.g. year or two) there is no

way to not become a programmer. Anyone who practices

programming every day for years will become good someday.

This is valid for any other skill: if you want to learn it, just

practice every day for a long time.

A Look at the Book’s Contents

Now let’s take a glance at what we are about to encounter in the next

chapters of the book. We will give an account of each of them with a few

sentences, so that you know what you are about to learn.

Chapter 0: Preface

The preface (the current chapter) introduces the readers to the book, its

content, what the reader will learn and what will not, how to read the

book, why we use the C# language, why we focus on data structures and

algorithms, etc. The preface also describes the history of the book, the

content of its chapter one by one, the team of authors, editors and translators

from Bulgarian to English. In contains the full reviews written by famous

software engineers from Microsoft, Google, SAP, VMware, Telerik and other

leading software companies from all over the world.

Author of the preface is Svetlin Nakov (with little contribution from Veselin

Kolev and Mihail Stoynov). Translation to English: by Ivan Nenchovski (edited

by Mihail Stoynov, Veselina Raykova, Yoan Krumov and Hristo Radkov).

Chapter 1: Introduction to Programming

In the chapter "Introduction to Programming", we will take a look at the basic

terminology in programming and write our first program. We will

familiarize ourselves with what programming is and what connection to

computers and programming languages it has. We will briefly review the main

stages in software development, introduce the C# language, the .NET

platform and the different Microsoft technologies used in software

development. We will examine what auxiliary tools we need to program in C#

and use the C# language to write our first computer program, compile it

and run it using the command line, as well as Microsoft Visual Studio

integrated development environment. We will familiarize ourselves with the

MSDN Library – the documentation for the .NET Framework, which will help us

in our study of the language’s capabilities.

Author of the chapter is Pavel Donchev; editors are Teodor Bozhikov and

Svetlin Nakov. The content of the chapter is somewhat based on the work of

www.manaraa.com

30 Fundamentals of Computer Programming with C#

Luchesar Cekov from the book "Introduction to Programming with Java".

Translation to English: by Atanas Valchev (edited by Vladimir Tsenev and

Hristo Radkov).

Chapter 2: Primitive Types and Variables

In the chapter "Primitive Types and Variables", we will examine primitive

types and variables in C# – what they are and how to work with them.

First, we will focus on data types – integer types, real floating-point types,

Boolean, character types, strings and object types. We will continue with

variables, what they and their characteristics are, how to declare them, how

they are assigned a value and what variable initialization is. We will familiarize

ourselves with the main categories of data types in C# – value and reference

types. Finally, we will focus on literals, what they are and what kinds of

literals there are.

Authors of the chapter are Veselin Georgiev and Svetlin Nakov; editor is

Nikolay Vasilev. The content of the entire chapter is based on the work of

Hristo Todorov and Svetlin Nakov from the book "Introduction to

Programming with Java". Translation to English: by Lora Borisova (edited by

Angel Angelov and Hristo Radkov).

Chapter 3: Operators and Expressions

In the chapter "Operators and Expressions", we will familiarize ourselves with

the operators in C# and the operations they perform on the various data

types. We will clarify the priorities of operators and familiarize ourselves with

the types of operators, according to the count of the arguments they take and

the operations they perform. Then, we will examine typecasting, why it is

necessary and how to work with it. Finally, we will describe and illustrate

expressions and how they are utilized.

Authors of the chapter are Dilyan Dimitrov and Svetlin Nakov; editor is

Marin Georgiev. The content of the entire chapter is based on the work of

Lachezar Bozhkov from the book "Introduction to Programming with Java".

Translation to English: by Angel Angelov (edited by Martin Yankov and Hristo

Radkov).

Chapter 4: Console Input and Output

In the chapter "Console Input and Output", we will get familiar with the

console as a means for data input and output. We will explain what it is,

when and how it is used, what the concepts of most programming languages

for accessing the console are. We will familiarize ourselves with some of the

features in C# for user interaction and will examine the main streams for

input-output operations Console.In, Console.Out and Console.Error, the

class Console and the utilization of format strings for printing data in

various formats. We will see how to convert text into a number (parsing),

since this is the way to enter numbers in C#.

www.manaraa.com

Preface 31

Author of the chapter is Iliyan Murdanliev and editor is Svetlin Nakov. The

content of the entire chapter is largely based on the work of Boris Valkov from

the book "Introduction to Programming with Java". Translation to English: by

Lora Borisova (edited by Dyanko Petkov).

Chapter 5: Conditional Statements

In the chapter "Conditional Statements" we will cover the conditional

statements in C#, which we can use to execute different actions depending

on some condition. We will explain the syntax of the conditional operators:

if and if-else with suitable examples and explain the practical applications

of the selection control operator switch. We will focus on the best practices

that must be followed, in order to achieve a better style of programming when

utilizing nested or other types of conditional statements.

Author of the chapter is Svetlin Nakov and editor is Marin Georgiev. The

content of the entire chapter is based on the work of Marin Georgiev from the

book "Introduction to Programming with Java". Translation to English: by

George Vaklinov (edited by Momchil Rogelov).

Chapter 6: Loops

In the chapter "Loops", we will examine the loop mechanisms, through

which we can execute a snippet of code repeatedly. We will discuss how

conditional repetitions (while and do-while loops) are implemented and how

to work with for loops. We will give examples of the various means for

defining a loop, the way they are constructed and some of their key

applications. Finally, we will see how we can use multiple loops within each

other (nested loops).

Author of the chapter is Stanislav Zlatinov and editor is Svetlin Nakov. The

content of the entire chapter is based on the work of Rumyana Topalska from

the book "Introduction to Programming with Java". Translation to English: by

Angel Angelov (edited by Lora Borisova).

Chapter 7: Arrays

In the chapter "Arrays", we will familiarize ourselves with arrays as a means

for working with a sequence of elements of the same type. We will

explain what they are, how we can declare, create and instantiate arrays and

how to provide access to their elements. We will examine one-dimensional

and multidimensional arrays. We will learn the various ways for iterating

through an array, reading from the standard input and writing to the standard

output. We will give many exercises as examples, which can be solved using

arrays, and show you how useful they are.

Author of the chapter is Hristo Germanov and editor is Radoslav Todorov.

The content of the chapter is based on the work of Mariyan Nenchev from the

book "Introduction to Programming with Java". Translation to English: by

Boyan Dimitrov (edited by Radoslav Todorov and Zhelyazko Dimitrov).

www.manaraa.com

32 Fundamentals of Computer Programming with C#

Chapter 8: Numeral Systems

In the chapter "Numeral Systems", we will take a look at the means for

working with various numeral systems and the representation of

numbers in them. We will pay special attention to the way numbers are

represented in decimal, binary and hexadecimal numeral systems, because

they are widely used in computers, communications and programming. We

will also explain the methods for encoding numeral data in a computer and

the types of encodings, namely signed magnitude, one’s complement, two’s

complement and binary-coded decimals.

Author of the chapter is Teodor Bozhikov and editor is Mihail Stoynov. The

content of the entire chapter is based on the work of Petar Velev and Svetlin

Nakov from the book "Introduction to Programming with Java". Translation to

English: by Atanas Valchev (edited by Veselina Raykova).

Chapter 9: Methods

In the chapter "Methods", we will get to know in details the subroutines in

programming, which are called methods in C#. We will explain when and

why methods are used; will show how methods are declared and what a

method signature is. We will learn how to create a custom method and how

to use (invoke) it subsequently, and will demonstrate how we can use

parameters in methods and how to return a result from a method. Finally, we

will discuss some established practices when working with methods. All of this

will be backed up with examples explained in details and with extra exercises.

Author of the chapter is Yordan Pavlov; editors are Radoslav Todorov and

Nikolay Vasilev. The content of the entire chapter is based on the work of

Nikolay Vasilev from the book "Introduction to Programming with Java".

Translation to English: by Ivaylo Dyankov (edited by Vladimir Amiorkov and

Franz Fischbach).

Chapter 10: Recursion

In the chapter "Recursion", we will familiarize ourselves with recursion and

its applications. Recursion is a powerful programming technique where a

method invokes itself. By means of recursion we can solve complicated

combinatorial problems where we can easily exhaust different

combinatorial configurations. We will demonstrate many examples of correct

and incorrect recursion usage and we will convince you how useful it can be.

Author of the chapter is Radoslav Ivanov and editor is Svetlin Nakov. The

content of the entire chapter is based on the work of Radoslav Ivanov and

Svetlin Nakov from the book "Introduction to Programming with Java".

Translation to English: by Vasya Stankova (edited by Yoan Krumov).

www.manaraa.com

Preface 33

Chapter 11: Creating and Using Objects

In the chapter "Creating and Using Objects", we will get to know the basic

concepts of object-oriented programming – classes and objects – and we

will explain how to use classes from the standard libraries of the .NET

Framework. We will focus on some commonly used system classes and will

show how to create and use their instances (objects). We will discuss how to

access properties of an object, how to call constructors and how to work

with static fields in classes. Finally, we will focus on the term "namespaces" –

how they help us, how to include and use them.

Author of the chapter is Teodor Stoev and editor is Stefan Staev. The

content of the entire chapter is based on the work of Teodor Stoev and Stefan

Staev from the book "Introduction to Programming with Java". Translation to

English: by Vasya Stankova (edited by Todor Mitev).

Chapter 12: Exception Handling

In the chapter "Exception Handling", we will get to know exceptions in

object-oriented programming and in C# in particular. We will learn how to

catch exceptions using the try-catch clause, how to pass them to the

calling methods and how to throw standard, custom or caught exceptions

using the throw statement. We will give a number of examples of their

utilization and will look at the types of exceptions and the exceptions

hierarchy they form in the .NET Framework. Finally, we will look at the

advantages of using exceptions and how to apply them in specific situations.

Author of the chapter is Mihail Stoynov and editor is Radoslav Kirilov. The

content of the entire chapter is based on the work of Luchesar Cekov, Mihail

Stoynov and Svetlin Nakov from the book "Introduction to Programming with

Java". Translation to English: by Dimitar Bonev and George Todorov (edited

by Doroteya Agayna).

Chapter 13: Strings and Text Processing

In the chapter "Strings and Text Processing", we will familiarize ourselves with

strings: how they are implemented in C# and how we can process text

content. We will go through different methods for manipulating text; and

learn how to extract substrings according to passed parameters, how to

search for keywords as well as how to split a string by separator

characters. We will provide useful information on regular expressions and

we will learn how to extract data matching a specific pattern. Finally, we will

take a look at the methods and classes for achieving more elegant and strict

formatting of text content on the console, with various ways for printing

numbers and dates.

Author of the chapter is Veselin Georgiev and editor is Radoslav Todorov.

The content of the entire chapter is based on the work of Mario Peshev from

the book "Introduction to Programming with Java". Translation to English: by

Vesselin Georgiev (edited by Todor Mitev and Vladimir Amiorkov).

www.manaraa.com

34 Fundamentals of Computer Programming with C#

Chapter 14: Defining Classes

In the chapter "Defining Classes", we will show how we can define custom

classes and what the elements of a class are. We will learn to declare

fields, constructors and properties in classes and will again recall what a

method is but will broaden our knowledge on methods and their access

modifiers. We will focus on the characteristics of constructors and we will

explain in details how program objects exist in the heap (dynamic memory)

and how their fields are initialized. Finally, will explain what class static

elements – fields (including constants), properties and methods – are and

how to utilize them. In this chapter, we will also introduce generic types

(generics), enumerated types (enumerations) and nested classes.

Authors of the chapter are Nikolay Vasilev, Svetlin Nakov, Mira Bivas and

Pavlina Hadjieva. The content of the entire chapter is based on the work of

Nikolay Vasilev from the book "Introduction to Programming with Java".

Translation to English: by Radoslav Todorov, Yoan Krumov, Teodor Rusev and

Stanislav Vladimirov (edited by Vladimir Amiorkov, Pavel Benov and Nencho

Nenchev). This is the largest chapter in the book, so lots of contributors

worked on it to prepare it to a high quality standard for you.

Chapter 15: Text Files

In the chapter "Text Files", we will familiarize ourselves with working with

text files in the .NET Framework. We will explain what a stream is, what its

purpose is and how it is used. We will describe what a text file is and how to

read and write data in text files and will present and elaborate on the best

practices for catching and handling exceptions when working with text files.

Naturally, we will visualize and demonstrate in practice all of this with a lot of

examples.

Author of the chapter is Radoslav Kirilov and editor is Stanislav Zlatinov.

The content of the entire chapter is based on the work of Danail Alexiev from

the book "Introduction to Programming with Java". Translation to English: by

Nikolay Angelov (edited by Martin Gebov).

Chapter 16: Linear Data Structures

In the chapter "Linear Data Structures", we will familiarize ourselves with

some of the basic representations of data in programming and with linear

data structures, because very often, in order to solve a given problem, we

need to work with a sequence of elements. For example, to read this book

we have to read consecutively every single page, e.g. we have to traverse

consecutively every single element of its set of pages. We are going to see

how for a specific problem some data structure is more efficient and

convenient than another. Then we will examine the linear structures "list",

"stack" and "queue" and their applications and will get to know in details

some implementations of these structures.

www.manaraa.com

Preface 35

Author of the chapter is Tsvyatko Konov and editors are Dilyan Dimitrov and

Svetlin Nakov. The content of the entire chapter is largely based on the work

of Tsvyatko Konov and Svetlin Nakov from the book "Introduction to

Programming with Java". Translation to English: by Vasya Stankova (edited

by Ivaylo Gergov).

Chapter 17: Trees and Graphs

In the chapter "Trees and Graphs", we will look at the so called tree-like

data structures, which are trees and graphs. Knowing the properties of

these structures is important for modern programming. Every one of these

structures is used for modeling real-life problems that can be efficiently solved

with their help. We will examine in details what tree-like data structures are

and show their primary advantages and disadvantages. Also, we will provide

sample implementations and exercises, demonstrating their practical utiliza-

tion. Further, we will scrutinize binary trees, binary search trees and

balanced trees and then examine the data structure "graph", the types of

graphs and their usage. We will also show which parts of the .NET Framework

make use of binary search trees.

Author of the chapter is Veselin Kolev and editors are Iliyan Murdanliev and

Svetlin Nakov. The content of the entire chapter is based on the work of

Veselin Kolev from the book "Introduction to Programming with Java".

Translation to English: by Kristian Dimitrov and Todor Mitev (edited by

Nedjaty Mehmed and Dyanko Petkov).

Chapter 18: Dictionaries, Hash Tables and Sets

In the chapter "Dictionaries, Hash Tables and Sets", we will analyze more

complex data structures like dictionaries and sets, and their implementa-

tions with hash tables and balanced trees. We will explain in details what

hashing and hash tables mean, and why they are such important parts of

programming. We will discuss the concept of "collisions" and how they can

occur when implementing hash tables. We will also suggest various

approaches for solving them. We will look at the abstract data structure "set"

and explain how it can be implemented with a dictionary or a balanced

tree. We will provide examples that illustrate the applications of these data

structures in everyday practice.

Author of the chapter is Mihail Valkov and editors are Tsvyatko Konov and

Svetlin Nakov. The content of the entire chapter is partially based on the work

of Vladimir Tsanev (Tsachev) from the book "Introduction to Programming

with Java". Translation to English: by George Mitev and George K. Georgiev

(edited by martin Gebov and Ivaylo Dyankov).

www.manaraa.com

36 Fundamentals of Computer Programming with C#

Chapter 19: Data Structures and Algorithm

Complexity

In the chapter "Data Structures and Algorithm Complexity", we will compare

the data structures we have learned so far based on their performance for

basic operations (addition, searching, deletion, etc.). We will give

recommendations for the most appropriate data structures in certain cases.

We will explain when it is preferable to use a hash table, an array, a

dynamic array, a set implemented by a hash table or a balanced tree.

There is an implementation in the .NET Framework for every one of these

structures. We only have to learn how to decide when to use a particular data

structure, so that we can write efficient and reliable source code.

Authors of the chapter are Nikolay Nedyalkov and Svetlin Nakov; editor is

Veselin Kolev. The content of the entire chapter is based on the work of

Svetlin Nakov and Nikolay Nedyalkov from the book "Introduction to

Programming with Java". Translation to English: by George Halachev and

Tihomir Iliev (edited by Martin Yankov).

Chapter 20: Object-Oriented Programming Principles

In the chapter "Object-Oriented Programming Principles", we will familiarize

ourselves with the principles of object-oriented programming (OOP): class

inheritance, interfaces implementation, data and behavior abstraction,

data encapsulation and hiding implementation details, polymorphism and

virtual methods. We will explain in detail the principles of cohesion and

coupling. We will also briefly outline object-oriented modeling and object

model creation based on a specific business problem and will get to know

UML and its role in object oriented modeling. Finally, we will briefly discuss

design patterns and provide examples for design patterns commonly used in

practice.

Author of the chapter is Mihail Stoynov and editor is Mihail Valkov. The

content of the entire chapter is based on the work of Mihail Stoynov from the

book "Introduction to Programming with Java". Translation to English: by

Vasya Stankova and Momchil Rogelov (edited by Ivan Nenchovski).

Chapter 21: High-Quality Programming Code

In the chapter "High-Quality Programming Code", we will take a look at the

basic rules for writing high-quality programming code. We will focus on

naming conventions for program elements (variables, methods, classes and

others), formatting and code layout guidelines, best practices for creating

high-quality classes and methods, and the principles of high-quality code

documentation. Many examples of high-quality and low-quality code will be

given. In the course of work, it will be explained how to use an integrated

development environment, in order to automate some operations like

formatting and refactoring existing code, when it is necessary. Unit

testing as an industrial method to automated testing will also be discussed.

www.manaraa.com

Preface 37

Authors of the chapter are Mihail Stoynov and Svetlin Nakov. Editor is

Pavel Donchev. The content of the entire chapter is partially based on the

work of Mihail Stoynov, Svetlin Nakov and Nikolay Vasilev from the book

"Introduction to Programming with Java". Translation to English: by Blagovest

Buyukliev (edited by Dyanko Petkov, Mihail Stoynov and Martin Yankov).

Chapter 22: Lambda Expressions and LINQ

In the chapter "Lambda Expressions and LINQ", we will introduce some of the

more sophisticated capabilities of C#. To be more specific, we will pay special

attention to clarifying how to make queries to collections using lambda

expressions and LINQ. We will explain how to add functionality to already

created classes, using extension methods. We will familiarize ourselves with

anonymous types and briefly describe their nature and usage. We will also

discuss lambda expressions and show in practice how most of the built-in

lambda functions work. Afterwards we will dive into the LINQ’s syntax, which

is part of C#. We will learn what it is, how it works, and what queries we can

make using it. Finally, we will discuss the keywords in LINQ, their meaning

and we will demonstrate their capabilities with a lot of examples.

Author of the chapter is Nikolay Kostov and editor is Veselin Kolev.

Translation to English: by Nikolay Kostov (edited by Zhasmina Stoyanova and

Mihail Stoynov).

Chapter 23: Methodology of Problem Solving

In the chapter "Methodology of Problem Solving", we will discuss an advisable

approach for solving programming problems and we will illustrate it with

concrete examples. We will discuss the engineering principles we should

follow when solving problems (that largely apply to problems in math, physics

and other disciplines) and we will show them in action. We will describe the

steps we must go through while we solve a few sample problems and

demonstrate the mistakes that can be made, if we do not follow these steps.

We will consider some important steps of problem solving (such as

testing) that are usually skipped.

Author of the chapter is Svetlin Nakov and editor is Veselin Georgiev. The

content of the whole chapter is entirely based on the work of Svetlin Nakov

from the book "Introduction to Programming with Java". Translation to

English: by Ventsi Shterev and Martin Radev (edited by Tihomir Iliev and

Nedjaty Mehmed).

Chapters 24, 25, 26: Sample Programming Exam

In the chapters "Sample Programming Exam (Topic #1, Topic #2 and Topic

#3)", we will look at the problem descriptions of nine sample problems

from three sample programming exams and we will propose solutions to

them. In the course of solving them, we will put into practice the methodology

described in the chapter "Methodology of Problem Solving".

www.manaraa.com

38 Fundamentals of Computer Programming with C#

Authors of the chapters are Stefan Staev, Yosif Yosifov and Svetlin Nakov

respectively; their respective editors are Radoslav Todorov, Radoslav Ivanov

and Teodor Stoev. The contents of these chapters are largely based on the

work of Stefan Staev, Svetlin Nakov, Radoslav Ivanov and Teodor Stoev from

the book "Introduction to Programming with Java". Translation to English: by

Stanislav Vladimirov, Ivaylo Gergov, Ivan Nenchovski and Ivaylo Gergov

(edited by Dyanko Petkov, Vladimir Tsenev and Veselina Raykova).

Chapters 28: Conclusion

In the conclusion we give further instruction how to proceed with your

development as a skillful software engineer after this book. We explain

the free courses at Telerik Software Academy – the largest training center for

software development professionals in Bulgaria – how to apply, what you will

learn, how to choose a career path and we mention few other resources.

Author of the chapter is Svetlin Nakov. Translation to English: by Ivan

Nenchovski (edited by Svetlin Nakov).

History: How Did This Book Come to Be?

Often in our teaching practice students ask us from which book to start

learning how to program. There are enthusiastic young people who want to

learn programming, but don’t know what to begin with. Unfortunately, it’s

hard to recommend a good book. We can come up with many books

concerning C#, but none of them teaches programming. Indeed there aren’t

many books that teach the concepts of computer programming,

algorithmic thinking and data structures. Certainly, there are books for

beginners that teach the C# programming language, but those rarely cover

the fundamentals of programming. There are some good books on

programming, but most of them are now outdated and teach languages and

technologies that have become obsolete in the process of evolution. There are

several such books regarding C and Pascal, but not C# or Java. Considering

all aspects, it is hard to come up with a good book which we could highly

recommend to anyone who wants to pick up programming from scratch.

At one point, the lack of good books on programming for beginners

drove the project leader, Svetlin Nakov, to gather a panel of authors set to

finally write such a book. We decided we could help many young people to

take up programming seriously by sharing our knowledge and inspiring them.

The Origins of This Book

This book is actually an adaptation to C# of the free Bulgarian book

“Introduction to Programming with Java”, with some additional content

added, many bug fixes and small improvements, translated later into English.

Svetlin Nakov teaches computer programing, data structures, algorithms

and software technologies since 2000. He is an author and co-author of

several courses in fundamentals of programming taught at Sofia University

www.manaraa.com

Preface 39

(the most prestigious Bulgarian university at this time). Nakov (with

colleagues) teaches programming and software development in the Faculty of

Mathematics and Informatics (FMI) at Sofia University for few years and later

creates his own company for training software engineers. In 2005, he gathers

and leads a team of volunteers who creates a solid curriculum on

fundamentals of programming and data structures (in C#) with

presentation slides and many examples, demonstrations and homework

assignments. These teaching materials are the first very early outline of the

content in this book. Later this curriculum evolves and is translated to Java

and serves as a base for the Java version of this book. Later the Java book is

translated to C# and after its great success in Bulgaria (thousands paper

copies sold and 50,000 downloads) it is translated from Bulgarian to English.

The Java Programming Fundamentals Book

In mid-2008, Svetlin Nakov is inspired to create a book on Java programming,

covering his “Introduction to Programming” course in the National

Academy for Software Development (a private training center in Bulgaria,

founded by Svetlin Nakov). He and a group of authors outline the work that

needs to be done and the subjects that need to be covered and work begins,

with everyone working voluntarily, without any direct profit. Through

delays, pitfalls and improvements, the Java book finally comes out in January

of 2009. It is available both on its website www.introprogramming.info for

free, and in a paper edition.

The C# Programming Fundamentals Book

The interest towards the “Introduction to Programming with Java” book is

huge (for Bulgaria). In late 2009, the project to “translate” the book to C#

begins, under the title “Introduction to Programming with C#”. Again, a

large number of authors, both new and from the Java book group, gather and

begin working. The task seems easier, but turns out to be time-consuming.

About half a year later, the “preview” edition of the book is completed – with

some mistakes and incorrect content. Another year passes as all of the text

and examples are improved, and new content is added. In the summer of

2011, the C# book is released. Its official website stays the same as the

Java book (www.introprogramming.info). A paper version of the book is also

released and sold, with a price covering only the expenses of its printing.

Both books are open-source and their repositories are available at Google

Code: code.google.com/p/introcsharpbook, code.google.com/p/introjavabook.

The Translation of the C# Book: from Bulgarian to

English

In late 2011, following the great success of “Introduction to Programming

with C#”, a project to translate the book to English started. Large group of

volunteers began work on the translation – each of them with good

programming skills. The book you are reading is the result of the successful

http://www.introprogramming.info/
file:///C:/Users/GGeorgiev/Dropbox/Work/translation-to-English/chapters/4-completed/www.introprogramming.info
http://code.google.com/p/introcsharpbook/
http://code.google.com/p/introjavabook/

www.manaraa.com

40 Fundamentals of Computer Programming with C#

translation, review and completion of the original C# Bulgarian book. The

most effort in the translation was given by the leading author Svetlin Nakov.

Some of the authors have ideas to make yet another adaptation of the book –

this time for C++. As of now, these ideas are still foggy. We hope they will

become a reality one day, but we can’t promise anything yet.

Bulgaria? Bulgarian Authors? Is This True?

Bulgaria is a country in Europe, part of the European Union, just like

Germany and France. Did you know this? Bulgaria has very solid traditions in

computer programming and technologies.

The main inventor of the technology behind the modern digital computers is

the famous computer engineer John Atanasoff and he is 50% Bulgarian

(see en.wikipedia.org/wiki/John_Vincent_Atanasoff).

Bulgaria is the founder of the International Olympiad in Informatics

(IOI). The first IOI was organized and held in 1980 in Pravetz, Bulgaria (see

en.wikipedia.org/wiki/International_Olympiad_in_Informatics).

In 2011 Bulgaria was ranked #3 in the world by Internet speed (see

http://mashable.com/2011/09/21/fastest-download-speeds-infographic).

The world’s leading component vendor for the Microsoft ecosystem is a

Bulgarian company called Telerik (www.telerik.com) and almost all of its

products are developed in Bulgaria. The world’s leading software product for

3D rendering (V-Ray), used in most Hollywood movies and by most

automotive producers, is invented and developed in Bulgaria by another

Bulgarian company – Chaos Group (www.chaosgroup.com). A Bulgarian

company Datecs designed and produces the barcode scanner with credit card

swipe for Apple iPhone / iPad / iPod devices used in all Apple stores. Large

international software companies like SAP, VMware, HP, Cisco, Siemens

and CSC have large development centers in Sofia with thousands developers.

Bulgarian software engineers can be found in every major software company

in the software industry like Microsoft, Google, Oracle, SAP, Facebook, Apple,

IBM, Cisco, Siemens, VMware, HP, Adobe, Nokia, Ericsson, Autodesk, etc.

We, the authors, editors and translators of this book are all proud Bulgarian

software developers – some living in Bulgaria, others abroad. We are happy

to be part of the global software industry and to help beginners over the world

to learn computer programming and become skillful software engineers. We

are supporters of the culture of free education (like Coursera, edX, Udacity

and Khan Academy), free education for everyone and everywhere. We are

happy to share our knowledge, skills and expertise and sharing is part of

our culture.

Authors and Contributors

This book is written by volunteer developers from Bulgaria who want to

share their knowledge and skills about computer programming. They have

http://en.wikipedia.org/wiki/John_Vincent_Atanasoff
http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
http://mashable.com/2011/09/21/fastest-download-speeds-infographic/
http://www.telerik.com/
http://www.chaosgroup.com/

www.manaraa.com

Preface 41

worked for months (some for years) for free to help the community to learn

programming, data structures and algorithms in an easy and efficient way:

through this book and the presentations and video tutorials coming with it.

Over 70 people contributed to the project: authors, editors, translators, etc.

The Panel of Authors

The panel of authors of both the old, the new and the translated to English

book is indeed the main drivers behind this book’s existence. Writing content

of this size and quality is a serious task demanding a lot of time.

The idea of having so many authors participating has been well tested, since a

few other books have already been written in a similar manner (e.g.

"Programming for the .NET Framework" – parts 1 and 2). Although all

chapters from the book are written by different authors, they adhere to

the same style and possess the same high quality of content (even though it

might differ a little in some chapters). The text is well structured, has many

titles and subtitles, contains many appropriate examples, follows a good

manner of expression and is uniformly formatted.

The team that wrote this book is made up of people who are strongly

interested in programming and would like to voluntarily share their

knowledge by participating in writing one or more of the chapters. The best

part is that all authors, co-authors and editors in the team working on the

book are working programmers with hands-on experience, which means

that the reader will receive knowledge, a collection of best practices and

advice by people with an active career in the software industry.

The participants in the project made their contribution voluntarily, without

material or any other direct compensation, because they supported the idea

of writing a good book for novice programmers and because they

strongly wanted to help their future colleagues get into programming quickly.

What follows is a brief presentation of the authors of the book "Introduction

to Programming with C#" (in an alphabetical order). The original authors of

the corresponding chapters from the book "Introduction to Programming with

Java" are mentioned accordingly, since their contributions to some chapters

are greater than those authors who adapted the text and examples to C#

afterwards.

Dilyan Dimitrov

Dilyan Dimitrov is a certified software developer with professional experience

in building mid-size and large web-based systems with the .NET Framework.

His interests include development of both web and desktop applications using

Microsoft’s latest technologies. He graduated from the Sofia University "St.

Kliment Ohridski" where he majored in "Informatics" at the Faculty of

Mathematics and Informatics. . He can be reached at

dimitrov.dilqn@gmail.com or you can visit his personal blog at

http://dilyandimitrov.blogspot.com.

http://www.devbg.org/dotnetbook/
mailto:dimitrov.dilqn@gmail.com
http://dilyandimitrov.blogspot.com/

www.manaraa.com

42 Fundamentals of Computer Programming with C#

Hristo Germanov

Hristo Germanov is a software engineer, whose interests are related mainly

to .NET technologies. Architecture and design of web based systems,

algorithms and modern standards for quality code are also his passion. He has

participated in developing both small and large web-based and desktop-based

applications. He likes challenging problems and projects that require strong

logical thinking. He graduated from the Omega College in Plovdiv with a

degree in "Computer Networks". He specialized for a "Core .NET Developer" at

the National Academy for Software Development in Sofia.

You can contact him by e-mail at: hristo.germanov@gmail.com.

Iliyan Murdanliev

Iliyan Murdanliev is a software developer at NearSoft (www.nearsoft.eu).

He currently pursues a master’s degree in "Computer Technologies and

Applied Programming" at the Technical University of Sofia. He has a

bachelor’s degree in "Applied Mathematics" from the same university. He has

graduated from an English language high school.

Iliyan has participated in significant projects and in the development of front-

end visualization, as well as back-end logic. He has prepared and conducted

trainings in C# and other programming languages and technologies. Iliyan’s

interests lie in the field of cutting-edge technologies in .NET, Windows Forms

and Web-based technologies, design patterns, algorithms and software

engineering. He likes out-of-the-box projects that require not only

knowledge, but also logical thinking.

His personal blog is available at: http://imurdanliev.wordpress.com. He can

be reached by e-mail: i.murdanliev@gmail.com.

Mihail Stoynov

Mihail Stoynov has a master’s degree in "Economics and Management" from

the Sofia University "St. Kliment Ohridski". He has obtained his bachelor’s

degree in "Informatics" also from Sofia University.

Mihail is a professional software developer, consultant and instructor with

many years of experience. For the last few years he is an honorary instructor

at the Faculty of Mathematics and Informatics and has delivers lectures in

the "Networks Theory", "Programming for the .NET Framework", "Java Web

Applications Development", "Design Patterns" and "High Quality Programming

Code" courses. He has also been an instructor at New Bulgarian University.

He is an author of a number of articles and publications and a speaker at

many conferences and seminars in the field of software technologies and

information security. Mihail is a co-author of the books "Programming for the

.NET Framework" and "Introduction to Programming with Java". He has

participated in Microsoft’s MSDN Academic Alliance and is a lecturer at the

Microsoft Academic Days.

mailto:hristo.germanov@gmail.com
http://www.nearsoft.eu/
http://imurdanliev.wordpress.com/
mailto:i.murdanliev@gmail.com

www.manaraa.com

Preface 43

Mihail has led IT courses in Bulgaria and abroad. He was a lecturer in the

"Java", "Java EE", "SOA" and "Spring Framework" courses at the National

Academy for Software Development.

Mihail has worked at the international offices of Siemens, HP and EDS in the

Netherlands and Germany, where he has gained a lot of experience in the art

of software, as well as in the quality programming, by taking part in the

development of large software projects. His interests encompass software

architectures and design development, B2B integration of various information

systems, business processes optimization and software systems mainly for

the Java and .NET platforms. Mihail has participated in dozens of software

projects and has extensive experience in web applications and services,

distributed systems, relational databases and ORM technologies, as well as

management of projects and software development teams.

His personal blog is available at: http://mihail.stoynov.com. His twitter

account is available at: https://twitter.com/mihailstoynov.

Mihail Valkov

Mihail Valkov has been a software developer since 2000. Throughout the

years, he has faced numerous technologies and software development

platforms, some of which are MS .NET, ASP, Delphi. Mihail has been

developing software at Telerik (www.telerik.com) ever since 2004. There he

co-develops a number of components targeting ASP.NET, Windows Forms,

Silverlight and WPF. In the last few years, Mihail has been leading some of

the best progressing teams in the company, and currently develops an

online Word-like rich text editor.

He can be reached at: m.valkov@gmail.com.

His blog is at: http://blogs.telerik.com/mihailvalkov/. His twitter account is

available at: https://twitter.com/mvalkov.

Mira Bivas

Mira Bivas is an enthusiastic young programmer in one of Telerik’s ASP.NET

teams (www.telerik.com). She is a student at the Faculty of Mathematics and

Informatics at the Sofia University "St. Kliment Ohridski", where she majors in

"Applied Mathematics". Mira has completed the "Intro C#" and "Core .NET"

courses at the National Academy for Software Development (NASD).

She can be reached by e-mail: mira.bivas@gmail.com.

Nikolay Kostov

Nikolay Kostov works as a senior software developer and trainer at

Telerik’s "Technical Training" department (http://academy.telerik.com). He is

involved deeply with Telerik Academy’s trainings and the courses organized

by Telerik. He currently majors in "Computer Science" at the Faculty of

Mathematics and Informatics at the Sofia University "St. Kliment Ohridski".

http://mihail.stoynov.com/
https://twitter.com/mihailstoynov
http://www.telerik.com/
mailto:m.valkov@gmail.com
http://blogs.telerik.com/mihailvalkov/
https://twitter.com/mvalkov
http://www.telerik.com/
mailto:mira.bivas@gmail.com
http://academy.telerik.com/

www.manaraa.com

44 Fundamentals of Computer Programming with C#

Nikolay has participated in a number of high school and college student

Olympiads and contests in computer science, throughout many years. He

is a two-time champion in the project categories "Desktop Applications" and

"Web Applications" at the Bulgarian National Olympiad in Information

Technologies (NOIT). He has rich experience in designing and developing Web

applications, algorithmic programming and processing large amounts of data.

His main interests lie in developing software applications, data structures,

everything related to .NET technologies, web applications security, data

processing automation, web crawlers, single page applications and others.

Nikolay’s personal blog can be found at: http://nikolay.it.

Nikolay Nedyalkov

Nikolay Nedyalkov is the chairman of The Association for Information

Security, technical director of the eBG.bg’s electronic payments and services

portal and business consultant at other companies. Nikolay is a professional

software developer, consultant and instructor with many years of

experience. He has authored a number of articles and publications and has

lectured at many conferences and seminars in the field of software

technologies and information security. His experience as an instructor ranges

from assisting in "Data Structures in Programming", "Object-oriented

Programming with C++" and "Visual C++" to lecturing at the "Network

Security", "Secure Code", "Web Development with Java", "Creating High

Quality Code", "Programming for the .NET platform" and "Applications

Development with Java" courses. Nikolay’s interests are focused on creating

and managing information and communications solutions, modeling and

managing business processes in large-size organizations and state

administration. Nikolay has a bachelor’s and a master’s degree from the

Faculty of Mathematics and Informatics at the Sofia University "St. Kliment

Ohridski". As a high school student he was a programming contestant

throughout many years and received a number of accolades.

His personal website is located at: http://www.nedyalkov.com.

Nikolay Vasilev

Nikolay Vasilev is a professional software developer, an instructor and a

participant in many open source projects.

He holds a master’s degree in "Software Engineering and Artificial

Intelligence" from University of Malaga (Spain) and is currently pursuing a

master’s degree in "Mathematical Physics Equations and Their Applications" at

Sofia University (Bulgaria). He obtained his bachelor’s degree in "Mathematics

and Informatics" from Sofia University.

In the period 2002-2005, he was instructor in the classes of "Introduction in

Programming with Java" and "Data Structures and Programming with Java" at

Sofia University.

http://nikolay.it/
http://www.nedyalkov.com/
http://www.iseca.org/
http://www.iseca.org/
http://www.ebg.bg/
http://netsec.iseca.org/
http://netsec.iseca.org/
http://netsec.iseca.org/2004/
http://www.nakov.com/inetjava/
http://codecourse.sourceforge.net/
http://codecourse.sourceforge.net/
http://www.nakov.com/dotnet/2003/
http://jse.openfmi.net/
http://jse.openfmi.net/
http://www.nedyalkov.com/

www.manaraa.com

Preface 45

Nikolay is a co-author of the books "Introduction in Programming with

Java" and "Introduction in Programming with C#" and also one of the

initiators, organizers and co-authors of a project for creating an open source

book in Bulgarian, dedicated to the classical (GoF) design patterns in the

software engineering. He is one of the organizers and lecturers of the

"Bulgarian Java User Group".

Nikolay is a certified software developer with nearly 10 years of expertise

in development of Java enterprise applications, gained in international

companies. He participated in large-size systems development from various

domains like e-commerce, banking, visual simulators for nuclear plant sub-

systems, VOD systems, etc.; using cutting-edge technologies and applying

the best up-to-date design and development methodologies and practices. His

interests span across various areas such as software engineering and artificial

intelligence, fluid mechanics, project management and scientific research.

Nikolay Vasilev’s personal blog is available at http://blog.nvasilev.com.

Pavel Donchev

Pavel Donchev is a programmer at Telerik (www.telerik.com), where he

develops web applications mostly for the company internal purposes. He takes

extramural courses in "Theoretical Physics" at the Sofia University "St.

Kliment Ohridski". He was engaged in developing Desktop and Web

Applications for various business sectors – mortgage credits, online stores,

automation and Web UML diagrams. His interests lie mainly in the sphere of

process automation using Microsoft technologies.

His personal blog is located at: http://donchevp.blogspot.com.

Pavlina Hadjieva

Pavlina Hadjieva is a senior enterprise support officer and team lead at

Telerik (www.telerik.com). She currently pursues a master’s degree in

"Distributed Systems and Mobile Technologies" at the Faculty of Mathematics

and Informatics at the Sofia University "St. Kliment Ohridski". She obtained

her bachelor’s degree in "Chemistry and Computer Science" also from Sofia

University.

Her professional interests are oriented towards web technologies, in particular

ASP.NET, as well as the complete development cycle of .NET Framework

applications.

You can contact Pavlina Hadjieva by e-mail: pavlina.hadjieva@gmail.com.

Radoslav Ivanov

Radoslav Ivanov is an experienced software engineer, consultant and

trainer with several years of professional experience in wide range of

technologies and programming languages. He has solid practical and

theoretical background in computer science and excellent writing and

lecturing skills.

http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-csharp-book/
http://blog.nvasilev.com/
http://www.telerik.com/
http://donchevp.blogspot.com/
http://www.telerik.com/
mailto:pavlina.hadjieva@gmail.com

www.manaraa.com

46 Fundamentals of Computer Programming with C#

Radoslav has a bachelor’s degree in "Informatics" and master’s degrees in

"Software Engineering" and "E-learning" from the Sofia University "St.

Kliment Ohridski". For several years he has been an honorary instructor at

the Faculty of Mathematics and Informatics where he was teaching courses in

"Design Patterns in C#", "Programming for the .NET Framework", "Java Web

Applications Development" and "Java EE Development".

He is a co-author of the books "Programming for the .NET Framework" and

"Introduction to Programming with Java".

His professional interests include data warehousing, security, cloud

computing, Java technologies, the .NET platform, software architecture and

design and project management.

Radoslav’s twitter account is available at: https://twitter.com/radoslavi.

Radoslav Kirilov

Radoslav Kirilov is a senior software developer and team leader at Telerik

(www.telerik.com). He graduated from the Technical University of Sofia with a

major in "Computer Systems and Technologies". . His professional interests

are oriented towards web technologies, particularly ASP.NET, and the

complete development cycle of .NET Framework-based applications. Radoslav

is an experienced lecturer who has taken part in putting through, as well as

creating study materials (presentations, examples, exercises) for the

National Academy for Software Development (NASD). Radoslav is a member

of the instructors' team of the "High Quality Programming Code" course

that started in 2010 at the Technical University of Sofia and at the Sofia

University "St. Kliment Ohridski".

He has been maintaining a tech blog since 2009 located at:

radoslavkirilov.blogspot.com. You can contact Radoslav by e-mail at:

radoslav.pkirilov@gmail.com.

Radoslav Todorov

Radoslav Todorov is a software developer who obtained his bachelor’s

degree from the Faculty of Mathematics and Informatics at the Sofia

University "St. Kliment Ohridski" (www.fmi.uni-sofia.bg). He received his

master’s degree in the field of computer science from the Technical University

of Denmark in Lyngby, Denmark (http://www.dtu.dk).

Radoslav has been conducting courses as an instructor-assistant at the IT

University of Copenhagen in Denmark (http://www.itu.dk) and participating in

the research activity of university projects ever since he received his masters’

education. He has rich experience in designing, developing and maintaining

large software products for various companies. He gained working

experience at several companies in Bulgaria. At present, he works as a

software engineer for Canon Handy Terminal Solutions Europe in Denmark

(www.canon-europe.com/Handy_

Terminal_Solutions).

http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/intro-java-book/
https://twitter.com/radoslavi
http://www.telerik.com/
http://radoslavkirilov.blogspot.com/
mailto:radoslav.pkirilov@gmail.com
http://www.fmi.uni-sofia.bg/
http://www.dtu.dk/
http://www.itu.dk/
http://www.canon-europe.com/Handy_Terminal_Solutions
http://www.canon-europe.com/Handy_Terminal_Solutions

www.manaraa.com

Preface 47

Radoslav’s interests are oriented towards software technologies for high-level

programming languages, as well as products integrating complete hardware

and software solutions in the industrial and private sectors.

You can contact Radoslav by e-mail: radoslav_todorov@hotmail.com.

Stanislav Zlatinov

Stanislav Zlatinov is a software developer with professional experience in

web and desktop applications development based on the .NET and Java

platforms.

He has a master’s degree in "Computer Multimedia" from the "St. Cyril and

St. Methodius" University of Veliko Tarnovo.

His personal blog is located at: http://encryptedshadow.blogspot.com.

Stefan Staev

Stefan Staev is a software developer who is occupied with building web

based systems using the .NET platform. His professional interests are related

to the latest .NET technologies, design patterns and databases. He is a

member of the authors' team of the book "Introduction to Programming with

Java".

Stefan currently majors in "Informatics" at the Faculty of Mathematics and

Informatics at the Sofia University "St. Kliment Ohridski". He is a "Core .NET

Developer" graduate from the National Academy for Software Development.

You can contact him by e-mail: stefosv@gmail.com. His Twitter micro blog is

located at: http://twitter.com/stefanstaev.

Svetlin Nakov

Svetlin Nakov is the head of the "Technical Training" department at Telerik

Corp. where he manages the project for free training of software engineers

Telerik Software Academy (http://academy.telerik.com) as well as all other

connected courses and training initiatives, such as Telerik School Academy,

Telerik Algo Academy, Telerik Kids Academy. He is the founder of the

Software University open-education project.

He has achieved a bachelor’s degree in "Computer Science" and a master’s

degree in "Distributed Systems and Mobile Technologies" at the Sofia

University "St. Kliment Ohridski". Later he obtained a Ph.D. in "Computer

Science" after defending a thesis in the field of "Computational Linguistics"

before the Higher Attestation Commission of the Bulgarian Academy of

Sciences (BAS).

His interests encompass software architectures development, the .NET

platform, web applications, databases, Java technologies, training software

specialists, information security, technological entrepreneurship and

managing software development projects and teams.

mailto:radoslav_todorov@hotmail.com
http://encryptedshadow.blogspot.com/
mailto:stefosv@gmail.com
http://twitter.com/stefanstaev
http://academy.telerik.com/
http://schoolacademy.telerik.com/
http://algoacademy.telerik.com/
http://www.telerik-kids.com/
http://softuni.org/

www.manaraa.com

48 Fundamentals of Computer Programming with C#

Svetlin Nakov has nearly 20 years of experience as a software engineer,

programmer, instructor and consultant, moving from Assembler, Basic and

Pascal through C and C++ to PHP, JavaScript, Java and C#. He was involved

as a software engineer, consultant and manager of teams in dozens of

projects for developing information systems, web applications, database

management systems, business applications, ERP systems, cryptographic

modules and trainings of software engineers. At the age of 24, he founded his

first software company for training software engineers, which was

acquired 5 years later by Telerik.

Svetlin has extensive experience in creating study materials, preparing and

conducting trainings in programming and modern software technologies,

gathered during his practice as an instructor. For many years now, he has

been an honored instructor at the Faculty of Mathematics and Informatics

at the Sofia University "St. Kliment Ohridski" (FMI at SU), at the New

Bulgarian University (NBU) and at the Technical University of Sofia (TU-

Sofia), where he held courses in "Design and Analysis of Computer

Algorithms", "Internet and Web Programming with Java", "Network Security",

"Programming for the .NET Framework", "Developing Java Web Applications",

"Design Patterns", "High Quality Programming Code", "Developing Web

Applications with the .NET Framework and ASP.NET", "Developing Java and

Java EE Applications", "Web Front-End Development" and many others (see

http://www.nakov.com/courses/).

Svetlin has dozens of scientific and technical articles focused on software

development in both Bulgarian and foreign publications and is the lead author

of the books "Programming for the .NET Framework (vol. 1 & 2)",

"Introduction to Programming with Java", "Introduction to Programming with

C#", "Internet Development with Java" and "Java for Digitally Signing Web

Documents". He is a regular speaker at technical conferences, trainings and

seminars and up to now has held hundreds of technical lectures at various

technological events in Bulgaria and abroad.

As a high school and a college student, Svetlin was champion in tens of

national contests in programming and was awarded with 4 medals at

International Olympiads in Informatics (IOI).

In 2003, he received the "John Atanasoff" award by the EVRIKA Foundation.

In 2004, he was awarded by the Bulgarian President with the "John

Atanasoff" award for his contribution to the development of the information

technologies and the information society.

He is one of the founders of the Bulgarian Association of Software

Developers (www.devbg.org) and its present chairman.

Apart from computer programming, Svetlin Nakov is founder of NLP Club

Bulgaria (http://nlpclub.devbg.org), a community of NLP (neuro-linguistic

programming) practitioners and successful people who are looking for

personal development and knowledge sharing. The goal for Svetlin is to add

soft skills and personal development to his students at the Software

academy in addition to the profession and job positions they gain.

http://www.nakov.com/courses/
http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.nakov.com/books/inetjava/
http://www.nakov.com/books/signatures/
http://www.nakov.com/books/signatures/
http://www.devbg.org/
http://nlpclub.devbg.org/

www.manaraa.com

Preface 49

The personal website and blog of Svetlin Nakov is: http://www.nakov.com.

His story of life is published at http://www.nakov.com/blog/2011/09/24/.

Teodor Bozhikov

Teodor Bozhikov is a senior software developer and team leader at

Telerik (www.telerik.com). He completed his master’s degree in "Computer

Systems and Technologies" at the Technical University of Varna. Besides his

background as a WPF and Silverlight programmer, he has achieved expertise

in developing ASP.NET web applications. He was involved briefly in the

development of private websites. Within the ICenters project, he took part in

building and maintaining of a local area network for public use at the Festival

and Congressional Center in Varna. He has held courses in computer literacy

and computer networks basics.

Teodor’s professional interests include web and desktop application

development technologies, architecture and design patterns, networks and all

kinds of new technologies.

You can contact Teodor by e-mail: t_bozhikov@yahoo.com. His Twitter micro

blog is located at: http://twitter.com/tbozhikov.

Teodor Stoev

Teodor Stoev has a bachelor’s and a master’s degree in "Informatics" from

the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski". At Sofia University, he mastered in "Software

Technologies". He currently attends a master’s program in "Computer

Science" at the Saarland University (Saarbrücken, Germany).

Teodor is a software designer and developer with many years’ experience.

He has participated in creating financial and insurance software systems, a

number of web applications and corporate websites. He was actively involved

in the development of the TENCompetence project of the European

Commission. He is a co-author of the book "Introduction to Programming

with Java".

His professional interests lie in the field of object-oriented analysis, modeling

and building of software applications, web technologies and, in particular,

building rich internet applications (RIA). He has an extensive background in

algorithmic programming: he has competed at a number of national high

school and collegiate computer science contests.

His personal website is available at: http://www.teodorstoev.com.

You can contact Teodor by e-mail: teodor.stoev@gmail.com.

Tsvyatko Konov

Tsvyatko Konov is a senior software developer and instructor with varied

interests and experience. He is competent in fields such as systems

integration, building software architectures, developing systems with a

number of technologies, such as .NET Framework, ASP.NET, Silverlight,

http://www.nakov.com/
http://www.nakov.com/blog/2011/09/24/
http://www.telerik.com/
mailto:t_bozhikov@yahoo.com
http://twitter.com/tbozhikov
http://www.teodorstoev.com/
mailto:teodor.stoev@gmail.com

www.manaraa.com

50 Fundamentals of Computer Programming with C#

WPF, WCF, RIA, MS SQL Server, Oracle, MySQL, PostgreSQL and PHP. His

experience as an instructor includes a large variety of courses – courses for

beginners and experts in .NET technologies, as well as specialized courses in

individual technologies, such as ASP.NET, Oracle, .NET Compact Framework,

"High Quality Programming Code" and others. Tsvyatko was part of the

authors’ team of the book "Introduction to Programming with Java". His

professional interests include web-based and desktop-based technologies,

client-oriented web technologies, databases and design patterns.

Tsvyatko Konov has a technical blog: http://www.konov.me.

Veselin Georgiev

Veselin Georgiev is a co-founder of Lead IT (www.leadittraining.com) and

software developer at Abilitics (www.abilitics.com). He has a master’s degree

in "E-Business and E-Governance" at the Sofia University "St. Kliment

Ohridski", after obtaining a bachelor’s degree in "Informatics" from the same

university.

Veselin is a Microsoft Certified Trainer and Microsoft Certified Professional

Developer. He lectured at the Microsoft Tech Days conferences in 2011 and

2009, and also takes part as an instructor in various courses at Sofia

University. He is an experienced lecturer who has trained software

specialists for working practical jobs in the IT industry.

His professional interests are oriented towards training, SharePoint and

software architectures. He can be reached at veselin.vgeorgiev@gmail.com.

Veselin Kolev

Veselin "Vesko" Kolev is a leading software engineer with many years’

professional experience. He has worked at various companies where he

managed teams and the development of many different software projects.

As a high school student, he participated in a number of competitions in the

fields of mathematics, computer science and information technology, where

he finished in prestigious places. He currently majors in "Computer Science"

at the Faculty of Mathematics and Informatics at the Sofia University "St.

Kliment Ohridski".

Vesko is an experienced lecturer who has worked on training software

specialists for practical jobs in the IT industry. He is an instructor at the

Faculty of Mathematics and Informatics at the Sofia University "St. Kliment

Ohridski" where he conducts courses in "Modern Java Technologies" and "High

Quality Programming Code". He has delivered similar lectures at the Technical

University of Sofia.

Vesko’s main interests include software projects design, development of

software systems, .NET and Java technologies, Win32 programming (C/C++),

software architectures, design patterns, algorithms, databases, team and

software projects management, specialists training. The projects he has

worked on include large web based systems, mobile applications, OCR,

http://www.konov.me/
http://www.leadittraining.com/
http://www.abilitics.com/
mailto:veselin.vgeorgiev@gmail.com

www.manaraa.com

Preface 51

automated translation systems, economic software and many others. Vesko is

a co-author of the book "Introduction to Programming with Java".

Vesko works on the development of Silverlight and WPF based applications at

Telerik (www.telerik.com). He shares parts of his day-to-day experiences

online on his personal blog at http://veskokolev.blogspot.com.

Yordan Pavlov

Yordan Pavlov has a bachelor’s and a master’s degree in "Computer Systems

and Technologies" from the Technical University of Sofia. He is a software

developer at Telerik (www.telerik.com) with an extensive background in

software components development.

His interests lie mainly in the following fields: object-oriented design, design

patterns, high-quality software development, geographic information

systems (GIS), parallel processing and high performance computing, artificial

intelligence, teams’ management.

Yordan won the Imagine Cup 2008 finals in Bulgaria in the Software Design

category, as well as the world finals in Paris, where he won Microsoft’s

prestigious "The Engineering Excellence Achievement Award". He has worked

with Microsoft engineers at the company headquarters in Redmond, USA,

where he has gathered useful knowledge and experience in the development

of complex software systems.

Yordan has also received a golden mark for "Contributions to the Innovation

and Information Youth Society". He has taken part in many contests and

Olympiads in programming and informatics.

Yordan’s personal blog can be found at http://yordanpavlov.blogspot.com. He

can be reached by e-mail: iordanpavlov@gmail.com.

Yosif Yosifov

Yosif Yosifov is a senior software developer at Telerik (www.telerik.com).

His interests consist mainly of .NET technologies, design patterns and

computer algorithms. He has participated in numerous contests and

Olympiads in programming and informatics. He currently pursues a

bachelor’s degree in "Computer Science" at the Faculty of Mathematics and

Informatics at the Sofia University "St. Kliment Ohridski".

Yosif’s personal blog can be found at http://yyosifov.blogspot.com. He can be

reached by e-mail: cypressx@gmail.com.

The Java Book Authors

This C# fundamentals programming book is based on its original Java

version, the book "Introduction to Programming with Java". Thanks to the

original Java book authors for their work. They have significant contribution to

almost all chapters of the book. Some chapters are entirely based on their

http://www.telerik.com/
http://veskokolev.blogspot.com/
http://www.telerik.com/
http://yordanpavlov.blogspot.com/
mailto:iordanpavlov@gmail.com
http://www.telerik.com/
http://yyosifov.blogspot.com/
mailto:cypressx@gmail.com
http://www.introprogramming.info/intro-java-book/

www.manaraa.com

52 Fundamentals of Computer Programming with C#

work, some partially, but in all cases their original work is the primary origin

of this book:

- Boris Valkov

- Danail Aleksiev

- Hristo Todorov

- Lachezar Bozhkov

- Luchesar Cekov

- Marin Georgiev

- Mario Peshev

- Mariyan Nenchev

- Mihail Stoynov

- Nikolay Nedyalkov

- Nikolay Vasilev

- Petar Velev

- Radoslav Ivanov

- Rumyana Topalska

- Stefan Staev

- Svetlin Nakov

- Teodor Stoev

- Vesselin Kolev

- Vladimir Tsanev

- Yosif Yosifov

The Editors

Apart from the authors, a significant contribution to the making of this

book was made by the editors who voluntarily took part in reviewing the text

and the examples and fixing errors and other problems:

- Dilyan Dimitrov

- Doncho Minkov

- Hristo Radkov

- Iliyan Murdanliev

- Marin Georgiev

- Mihail Stoynov

- Mihail Valkov

- Mira Bivas

- Nikolay Kostov

- Nikolay Vasilev

- Pavel Donchev

- Radoslav Ivanov

- Radoslav Kirilov

- Radoslav Todorov

- Stanislav Zlatinov

- Stefan Staev

- Svetlin Nakov

- Teodor Bozhikov

- Tsvyatko Konov

- Veselin Georgiev

- Veselin Kolev

- Yosif Yosifov

The Translators

This book would have remained only in Bulgarian for many years if these guys

hadn’t volunteered to translate it in English:

- Angel Angelov

- Atanas Valchev

- Blagovest

Buyukliev

- Boyan Dimitrov

- Dimitar Bonev

- Doroteya Agayna

- Dyanko Petkov

- Franz Fischbach

- George Halachev

- George K.

Georgiev

- George S.

Georgiev

- Georgi Mitev

- Georgi Todorov

- Georgi Vaklinov

- Hristo Radkov

- Ivan Nenchovski

- Ivaylo Dyankov

- Ivaylo Gergov

- Zhasmina

Stoyanova

- Kristian Dimitrov

- Lora Borisova

- Martin Gebov

- Martin Radev

- Martin Yankov

- Momchil Rogelov

- Nedjaty Mehmed

- Nencho Nenchev

- Nikolay Angelov

- Nikolay Kostov

- Pavel Benov

- Radoslav Todorov

www.manaraa.com

Preface 53

- Stanislav

Vladimirov

- Svetlin Nakov

- Teodor Rusev

- Tihomir Iliev

- Todor Mitev

- Vasya Stankova

- Ventsi Shterev

- Vesselin Georgiev

- Vesselina Raikova

- Vladimir

Amiorkov

- Vladimir Tsenev

- Yoan Krumov

- Zhelyazko

Dimitrov

Many thanks to George S. Georgiev who was seriously involved in the

translation process and edited the translated text for most of the chapters.

Other Contributors

The authors would also like to thank Kristina Nikolova for her efforts in

working out the book’s cover design. Big thanks to Viktor Ivanov and Peter

Nikov for their work on the project’s web site. Big thanks to Ivaylo Kenov

for fixing few hundreds bugs reported in the Bulgarian edition of the book.

Thanks to Ina Dobrilova and Aneliya Stoyanova for the proofreading of the

first few chapters and their contribution to the marketing of the book. Many

thanks to Hristo Radkov who is proficient in English (lives and works in

London for many years) and who edited and corrected the translation of the

first few chapters.

The Book Is Free of Charge!

The present book is distributed absolutely free of charge in an electronic

format under a license that grants its usage for all kinds of purposes,

including commercial projects. The book is also distributed in paper format for

a charge, covering its printing and distribution costs without any profit.

Reviews

If you don’t fully trust the authors who wrote this book, you can take

inspiration from its reviews written by leading worldwide specialists,

including software engineers at Microsoft, Google, Oracle, SAP and VMware.

Review by Nikola Mihaylov, Microsoft

Programming is an awesome thing! People have been trying for hundreds of

years to make their lives easier, in order to work less. Programming allows

humanity’s tendency towards laziness to continue. If you are a computer

freak or if you’d just like to impress others with a good website or something

of yours "never-seen -before", then you are welcome. No matter if you are

part of the relatively small group of "freaks" who get off on encountering a

nice program or if you’d just like to fulfill yourself professionally and lead your

life outside the workplace, this book is for you.

The fundamental concepts of a car’s engine haven’t changed in years –

something inside it burns (gas, oil or whatever you have filled it with) and the

car rolls along. Likewise, the concepts of programming haven’t changed for

http://introprogramming.info/

www.manaraa.com

54 Fundamentals of Computer Programming with C#

years. Whether you write the next video game, money management software

in a bank or you program the "mind" of a new bio robot, you will use – with

absolute certainty – the concepts and the data structures described in

this book.

In this book, you will find a large part of the programming fundamentals.

An analogical fundamental book in the automobile industry would be titled

"Internal Combustion Engines".

Whatever you do, it’s most important to enjoy it! Before you start reading

this book, think of something you’d like to do as a programmer – a website, a

game or some other program! While reading the book, think of how and what

from the stuff you have read you would use in your program! If you find

something interesting, you would learn it easily!

My first program (of which I’m proud enough to speak of in public) was

simply drawing on the screen using the arrow keys of the keyboard. It took

me quite some time to write it back then, but when it was done, I liked it. I

wish you this: may you like everything related to programming! Have a nice

reading and a successful professional fulfillment!

Nikola Mihaylov is a software engineer at Microsoft in the team developing

Visual Studio. He is the author of the website http://nokola.com and is easily

“turned on” by the topic of programming; he is always ready when it’s

necessary to write something positive! He loves helping people with questions

and a desire for programming, no matter if they are beginners or experts.

When in need, contact him by e-mail: nokola@nokola.com.

Review by Vassil Bakalov, Microsoft

"Introduction to Programming with C#" is a brave effort to not only help the

reader make their first steps in programming, but also to introduce them with

the programming environment and to train for the practical tasks that

occur in a programmer’s day-to-day life. The authors have found a good

combination of theory – to pass over the necessary knowledge for writing and

reading programming code – and practice – all kinds of problems, carefully

selected to assimilate the knowledge and to form a habit in the reader to

always think of the efficient solution to the problem in addition to the syntax

when writing programs.

The C# programming language is a good choice, because it is an elegant

language through which the program’s representation in the computer

memory is of no concern to us and we can concentrate on improving the

efficiency and elegance of our program.

Up until now I haven’t come across a programming book that introduces its

reader with the programming language and develops their problem

solving skills at the same time. I’m happy now that there is such a book and

I’m sure it will be of great use to future programmers.

Vassil Bakalov is a software engineer at Microsoft Corporation (Redmond)

and a participant in the project for the first Bulgarian book for .NET:

http://nokola.com/
mailto:nokola@nokola.com

www.manaraa.com

Preface 55

"Programming for the .NET Framework". His blog is located at:

http://bakalov.com.

Review by Vassil Terziev, Telerik

Skimming through the book, I remembered the time, when I was making my

first steps in PHP programming. I still remember the book I learned from

– four authors, very disorganized and incoherent content and elementary

examples in the chapters for experts and complicated examples in the

chapters for beginners, different coding conventions and emphasis only on the

platform and the language and not on how to use them efficiently for writing

high quality applications.

I’m very glad that "Introduction to Programming with C#" takes an entirely

different approach. Everything is explained in an easy to understand

manner, but with the necessary profundity, and every chapter goes on to

slowly extend the previous ones. As an outside bystander I was a witness of

the efforts put into writing the book and I’m happy that this immense energy

and desire to create a more different book truly has materialized in a subject

matter of very high quality.

I strongly hope that this book will be useful to its readers and that it will

provide them with a strong basis for finding their feet, a basis that will hook

them on to a professional development in the field of computer programming

and that will help them make a more painless and qualitative start.

Vassil Terziev is one of the founders and CEO of Telerik Corporation, leading

provider of developer tools and components for .NET, HTML5 and mobile

development. His blog is located at http://blogs.telerik.com/vassilterziev/.

You can contact him at any time you want by e-mail: terziev@telerik.com.

Review by Veselin Raychev, Google

Perhaps even without reading this, you’ll be able to work as a software

developer, but I think you’ll find it much more difficult.

I have seen cases of reinventing the wheel, often times in a worse shape than

the best in theory and the entire team suffers mostly from this. Everybody

committed to programming must sooner or later read what algorithm

complexity is, what a hash table is, what binary search is and what the

best practices for using design patterns are. Why don’t you start at this very

moment by reading this book?

There are many books on C# and much more on programming. People would

say about many of them that they are the best guides, the fastest way to get

into the swing of the language. This book differs from others mainly because

it will show you what you must know to achieve success and not what the

twists and turns of a given programming language are. If you find the

topics covered in this book uninteresting, then software engineering

might possibly not be for you.

http://bakalov.com/
http://blogs.telerik.com/vassilterziev/
mailto:terziev@telerik.com

www.manaraa.com

56 Fundamentals of Computer Programming with C#

Veselin Raychev is a software engineer at Google where he works on Google

Maps and Google Translate. He has previously worked at Motorola Biometrics

and Metalife AG.

Veselin has won accolades at a number of national and international

contests and received a bronze medal at the International Olympiad in

Informatics (IOI) in South Korea, 2002, and a silver medal at the Balkan

Olympiad in Informatics (BOI). He represented the Sofia University "St.

Kliment Ohridski" twice at the world finals in computer science (ACM ICPC)

and taught at several optional courses at the Faculty of Mathematics and

Informatics at the University of Sofia.

Review by Vassil Popovski, VMware

As an employee at a managing position at VMware and at Sciant before that, I

often have to carry out technical interviews for job candidates at our

company. It’s surprising how many of the candidates for software engineering

positions that come to us for an interview don’t know how a hash table

works, haven’t heard of algorithm complexity, cannot sort an array or sort it

with a complexity of O(n3). It’s hard to believe the amount of self-taught

programmers that haven’t mastered the fundamentals of programming you’ll

find in this book. Many people practicing the software developer profession

are not even familiar with the most basic data structures in programming and

don’t know how to iterate through a tree using recursion. Read this book, so

that you won’t be like these people! It is the first textbook you should

start with during your training as a programmer. The fundamental knowledge

of data structures, algorithms and problem solving will be necessary for

you to build your carrier in software engineering successfully and, of

course, to be successful at job interviews and the workplace afterwards.

If you start with creating dynamic websites using databases and AJAX without

knowing what a linked list, tree or hash table is, one day you’ll find out what

fundamental gaps there are in your skill set. Do you have to make a fool of

yourself at a job interview, in front of your colleagues or in front of your

superior when it becomes clear that you don’t know the purpose of a hash

code, or how the List<T> structure works or how hard drive folders are

traversed recursively?

Most programming books will teach you to write simple programs, but they

won’t take into consideration the quality of the programming code. It is a

topic most authors find unimportant, but writing high quality code is a basic

skill that separates the capable programmers from the mediocre ones.

Throughout the years you might discover the best practices yourself, but do

you have to learn by trial and error? This book will show you the right course

of action the easy way – master the basic data structures and

algorithms; learn to think correctly; and write your code with high-

quality. I wish you beneficial studying.

Vassil Popovski is a software architect at VMware Bulgaria with more than

10 years of experience as a Java developer. At VMware Bulgaria he works on

www.manaraa.com

Preface 57

developing scalable Enterprise Java systems. He has previously worked as

senior manager at VMware Bulgaria, as technical director at Sciant and as

team leader at SAP Labs Bulgaria.

As a high school student Vassil won awards at a number of national and

international contests including a bronze medal at the International

Olympiad in Informatics (IOI) in Setúbal, 1998, and a bronze medal at the

Balkan Olympiad in Informatics (BOI) in Drama, Greece, 1997. As a college

student, Vassil participated in a number of college contests and in the

worldwide interuniversity contest in programming (ACM ICPC). During the

2001/2002 period, he held the course "Transaction Processing" at the Sofia

University "St. Kliment Ohridski". Vassil is one of the founders of the

Bulgarian Association of Software Developers (BASD).

Review by Pavlin Dobrev, ProSyst Labs

The book "Introduction to Programming with C#" is an excellent study

material for beginners that gives you the opportunity to master the

fundamentals of programming in an easy to understand manner. It’s the

seventh book written under the guidance of Svetlin Nakov and just like the

others, it’s oriented exclusively to gaining practical programming skills.

The subject matter includes fundamental topics such as data structures,

algorithms and problem solving and that makes it intransient in technologies’

development. It’s filled with countless examples and practical advice for

solving basic problems from a programmer’s everyday work.

The book "Introduction to Programming with C#" represents an adaptation of

the incredibly successful book "Introduction to Programming with Java" to

the C# programming language and Microsoft’s .NET Framework platform and

is based on its leading author’s, Svetlin Nakov, experience gained while

teaching programming fundamentals – not only at the National Academy

for Software Development (NASD) and later at Telerik Software

Academy, but at the Faculty of Mathematics and Informatics at the Sofia

University "St. Kliment Ohridski", at the New Bulgarian University and at

the Technical University of Sofia as well.

Despite the large number of authors, all of which with differing professional

and training experience, there is a clear logical connection between the

separate chapters from the book. It’s clearly written, with detailed

explanations and many, many examples far from the dull academic style

of most university textbooks.

Oriented towards those making their first steps in programming, the book

delivers carefully, step by step, the most important stuff a programmer

must be proficient in, in order to practice his profession – starting from

variables, loops and arrays, to fundamental data structures and algorithms.

The book also covers important topics like recursive algorithms, trees, graphs

and hash tables. It’s one of the few books that teach a good programming

style and high-quality programming code at the same time. There is enough

www.manaraa.com

58 Fundamentals of Computer Programming with C#

thought put into the object-oriented programming principles and exceptions

handling, without which modern software development is unimaginable.

The book "Introduction to Programming with C#" teaches the most

important principles and concepts in programming in the way

programmers think when solving problems in their everyday work.

This book doesn’t contain everything about programming and won’t make you

.NET software engineers. If you want to become really good programmer,

you need lots and lots of practice. Start from the exercises at the end of each

chapter, but don’t confine yourselves to solving only them. You’ll write

thousands of lines of code until you become really good – that’s the life of

a programmer. This book is indeed a great start! Seize the opportunity to

come across everything of utmost importance in one place without all the

wandering through the thousands of self-instruction books and articles on the

Internet. Good luck!

Dr. Pavlin Dobrev is technical director at ProSyst Labs (www.prosyst.com),

a software engineer with more than 15 years’ experience, consultant and

scientist, Ph.D. in "Computer Systems, Complexes and Networks". Pavlin has

made worldwide contributions in developing modern computer technologies

and technological standards. He is an active member of international

standardization organizations such as the OSGi Alliance (www.osgi.org) and

the Java Community Process (www.jcp.org), as well as open source software

initiatives such as the Eclipse Foundation (www.eclipse.org). Pavlin manages

software projects and consults companies of the likes of Miele, Philips,

Siemens, BMW, Bosch, Cisco Systems, France Telecom, Renault, Telefonica,

Telekom Austria, Toshiba, HP, Motorola, Ford, SAP, etc. in the field of

embedded applications, OSGi based automobile systems, mobile devices and

home networks, integrated development environments and Java Enterprise

servers for applications. He has many scientific and technical publications

and has participated in prestigious international conferences.

Review by Nikolay Manchev, Oracle

To become a skillful software developer, you must be ready to invest in

gaining knowledge in many fields and a particular programming language is

only one of them. A good developer mustn’t only know the syntax and the

application programming interface of the language he’s chosen. He also has to

possess deep knowledge in object-oriented programming, data

structures and quality code writing. He must also back up his knowledge

with serious practical experience.

When I was starting my career as a software developer more than 15 years

ago, finding a comprehensive source for learning these things was

impossible. Yes, there were books on the individual programming languages,

but they only described their syntax. For the API description one had to rely

on the documentation of the libraries. There were individual books devoted

solely on object-oriented programming. The various algorithms and data

http://www.prosyst.com/
http://www.osgi.org/
http://www.jcp.org/
http://www.eclipse.org/

www.manaraa.com

Preface 59

structures were taught at the university. There was not even a word on high-

quality programming code.

Learning all these things, one piece at a time, and making the efforts to put

them into a common context, was up to the one walking "the way of the

programmer". Sometimes a self-taught programmer cannot manage to fill the

huge gaps in their knowledge simply because they have no idea of the gaps’

existence. Let me give you an example to illustrate the problem.

In the year 2000 I picked up the management of a large Java project. The

team developing it consisted of 25 people and at that moment there were

about 4000 classes written for the project. As a team leader, part of my job

was to regularly review the code written by the other programmers. One

day I saw how one of my colleagues had solved a standard array sorting

assignment. He had written a separate, 25 lines long method implementing

the trivial bubble sort algorithm. When I went to see him and asked him why

he would do that instead of solving the problem with a single line of code

using Array.Sort(), he started explaining how the built-in method had been

"sluggish" and that it’s better to write these things yourself. I told him to open

the documentation and showed him that the "sluggish" method works with a

complexity of O(n*log(n)) and his bubble sort is a prime example of bad

performance with its complexity of O(n2). In the next few minutes of our

conversation I made the actual discovery – my colleague had no idea what

algorithm complexity is and his knowledge of standard algorithms was

tragic. Consequently I found out he majored in an entirely different

engineering discipline, not computer science. Of course, there’s nothing wrong

with that. His knowledge of Java was no worse than his co-workers’, who had

longer professional exposures than him. But that very day we noticed a gap in

his professional qualification as a developer that he hadn’t even suspected.

I don’t want to leave you with wrong impressions from this story. Although a

college student who has successfully passed his main exams in "Informatics"

would definitely know the common sorting algorithms and would be able to

calculate their complexity, they would also have gaps in their education.

The sad truth is that the college education in Bulgaria in this discipline is still

theoretically oriented. It has changed very little over the course of the past 15

years. Yes, programs are nowadays written in Java and C#, but these are the

same programs that were written in Pascal and Ada back then.

Somewhere about a year ago I consulted a freshman student who was

majoring in "Informatics" at one of Bulgaria’s top state universities. When we

sat down to go over his notes taken during the "Introduction to Programming"

class, I was amazed at the code his instructor had given. The names of

the methods were a mix of English and transliterated Bulgarian. There was a

method calculate and a method rezultat (the Bulgarian for "result"). The

variables carried the descriptive names a1, a2 and suma (the Bulgarian for

"sum"). Yes, there is nothing tragic in this approach, as long as it’s a ten-

lines-long example, but when this student takes up the job he’s earned at

some large project, he will be harshly rebuked by the project leader, who will

have to explain to him the coding conventions, naming principle,

www.manaraa.com

60 Fundamentals of Computer Programming with C#

cohesion and coupling and variable life span. Then they’ll find out together

about the gap in his knowledge of quality code the same way my colleague

and I found out about his uncertain knowledge in the field of algorithms.

Dear reader, I can boldly state that you are holding a truly unique book in

your hands. Its contents are very carefully selected. It’s well-arranged and

presented with attention to details, of which only people with tremendous

practical experience and solid scientific knowledge, like the book’s chief

authors Svetlin Nakov and Veselin Kolev, are capable of. Over the course of

many years they have also been learning "on the fly", supplementing and

expanding their knowledge. They’ve worked for years on huge projects,

they’ve attended many scientific conferences and they’ve taught hundreds of

students. They know what’s necessary for anybody striving for a career

in software development to learn and they’ve presented it in a manner that

no other book on introduction to programming has done before. Your journey

through the book’s pages will lead you through the C# programming

language’s syntax. You’ll see how to use a large part of its API. You’ll learn

the fundamentals of object-oriented programming and you’ll be able to

work freely with terms such as objects, events and exceptions. You’ll see the

most widely used data structures such as arrays, trees, hash tables and

graphs. You’ll get to know the most widely used algorithms for working with

these structures and you’ll come to know their pros and cons. You’ll

understand the concepts for creating high-quality programming code and

you’ll know what to require from your programmers when one day you

become a team leader. In addition, the book will challenge you with many

practical problems that will help you master, by the way of practice, the

subject matter it covers. And if one of the problems proves too hard for you,

you can always take a look at the solutions and guidelines the authors have

provided.

Computer programmers make mistakes – no one is safe from that. The more

capable ones make mistakes out of oversight or overwork, but the more

incompetent ones – out of lack of knowledge. Whether you become a good

or a bad software developer depends entirely on you and especially on

how much you’re willing to constantly invest in your knowledge – be it by

attending courses, reading or practicing. But I can tell you one thing for sure

– no matter how much time you invest in this book, you won’t make a

mistake. If some years ago someone wanting to become a software developer

had asked me "Where do I start from", I wouldn’t have been able to give

them a definitive answer. Today I can say without worry – "Start from this

very book (in its C# or Java version)!"

I wish you with all my heart success in mastering the secrets of C#, the .NET

Framework and software development!

Nikolay Manchev is a consultant and software developer with many years

of experience in Java Enterprise and Service Oriented Architecture (SOA). He

has worked for BEA Systems and Oracle Corporation. He’s a certified

developer in the programs run by Sun, BEA and Oracle. He teaches

software technologies and holds courses in "Network Programming",

www.manaraa.com

Preface 61

"J2EE", "Data Compression" and "High Quality Programming Code" at the

Plovdiv University "Paisii Hilendarski" and at the Sofia University "St. Kliment

Ohridski". He has held a number of courses for developers on Oracle

technologies in Central and Eastern Europe (Hungary, Greece, Slovakia,

Slovenia, Croatia and others) and has participated in international projects on

incorporating J2EE based systems for security management. Works of his in

the field of data compression algorithms have been accepted and presented in

the USA by IEEE. Nikolay is an honorary member of the Bulgarian Association

of Software Developers (BASD). He is author of the book "Oracle Database

Security: Version 10g & 11g". You can find out more about him on his

personal website: http://www.manchev.org. To contact him, use the e-mail

address: nick@manchev.org.

Review by Panayot Dobrikov, SAP AG

The book at hand is an incredibly good introduction to programming for

beginners and is a primary example of the notion (promoted by Wikipedia

and others) to create and distribute easy to understand knowledge that is not

only *free of charge*, but is of incredibly high quality as well.

Panayot Dobrikov is program director at SAP AG and co-author of the book

"Programming = ++Algorithms;". You can find out more about him on his

personal website: http://indyana.hit.bg.

Review by Lyubomir Ivanov, Mobiltel

If someone had told me 5 or 10 years ago that there would be a book from

which to learn the basics of managing people and projects – budgeting,

finances, psychology, planning, etc., I wouldn’t have believed them. I

wouldn’t even believe them at this very moment. For each of these topics

there are tens of books that must be read.

If someone had told me that there would be a book from which we can learn

the fundamentals of programming essential to every software developer –

I still wouldn’t have believed them.

I remember my time as a novice programmer and a college student – I was

reading several books on programming languages, several others on

algorithms and data structures, and a third set of books on writing high-

quality code. Very few of them helped me to think algorithmically and to

work out an approach for solving the everyday problems I came across

in my practice. None of them gave me an overview of everything I had to

know as a computer programmer and a software engineer. The only things

that helped me were being stubborn and reinventing the wheel.

Today I read this book and I’m happy that finally, although a bit too late for

me, someone got down to writing The Book that will help any beginner

programmer solve the puzzle of programming – a modern programming

language, data structures, quality code, algorithmic thinking and problem

solving. This is the book that you should take up programming from, if you

http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://www.manchev.org/
mailto:nick@manchev.org
http://indyana.hit.bg/

www.manaraa.com

62 Fundamentals of Computer Programming with C#

want to master the art of quality programming. Whether you choose the Java

or C# version of this book, it doesn’t really matter. What matters is that you

must learn to think as a programmer and solve the problems you

encounter when writing software; the programming language is just a tool

you can change for another at any given time.

This book isn’t only for beginners. Even programmers with many years of

experience can learn something from it. I recommend it to every software

developer who would like to realize what they didn’t know up until now.

Have a nice time reading!

Lyubomir Ivanov is the manager of the "Data and Mobile Applications"

department at Mobiltel EAD (part of Mobilkom Austria) where he engages in

developing and integrating IT solutions for the telecommunications industry.

Review by Hristo Deshev, Entrepreneur

It’s surprising what a large percentage of programmers don’t pay attention to

the little things like variable names and good code structure. These

things pile up and, in the end, make the difference between a well-written

piece of software and a bowl of spaghetti. This book teaches discipline and

"hygiene" in code writing along with the very basic concepts in

programming and that will undoubtedly make you a professional.

Hristo Deshev, software craftsman

Review by Hristo Radkov, Clever IT (London, UK)

Fantastic book! It gives the start to any developer geek who wants to develop

into a software prodigy. While you can learn from the quick learning books for

dummies to do coding that “just works” and this is the level expected in many

of the small software development houses around, you can never leave a

trace in the software world without understanding the fundamental

concepts of programming. Yes, you can still develop software applications

and use the goodies of the .NET framework, but just use and not create or

innovate.

If you’d like to ever achieve architectural excellence and be able to

confidently and proudly say you have developed a good piece of software that

will stay there and serve its purpose for years, you need to understand just

how the technologies you use in everyday live (e.g. ASP.NET, MVC, WPF,

WCF, LINQ, Sockets, Task Parallel Library) work, but how they have been

developed and optimized to become what they are. Only then would you save

precious time in finding how to do things efficiently with these technologies,

because that knowledge will naturally come from what you have learned

from this book. And the same applies to understanding the widely

recommended in the world of programming nowadays design patterns,

architectures and techniques.

www.manaraa.com

Preface 63

The book will allow you to prepare yourself to think, design and program

optimally as a concept and mindset with any object oriented language you

might ever use not just C# or .NET Framework.

Many banking systems here in London have a main requirement to be “real-

time” data servers to thousands of users with minimum delays and

interruptions, and this book provides the basics which if you lack you cannot

work on such systems successfully, ever.

This fundamental knowledge distinguishes the excellent and accomplished

developer, whose code would rarely require optimizations and would therefore

save direct and indirect costs to their employer from the general developers

who unfortunately are the prevailing part of the programmers you would meet

in your career. The accomplished specialists evolve and progress into senior

positions much easier when having the technical arguments and the mentality

to be creative and visionary, avoiding the difficulties of technology gap

limitations the mass around you have.

So, read the book carefully and diligently to become one!

Hristo Radkov is a Chief software architect and Co-founder at Clever IT, a

software services, best coding practices and architecture consulting company

based in London, United Kingdom. With over 15 years of experience as a

Developer, Team leader, Development manager, Head of IT and Software

Architect he has done projects professionally with C++, Java and C#,

eventually remaining completely on the side of the Microsoft Technologies

after the very first release of .NET Framework, becoming recognized by the

industry Microsoft Technology Software Development Best Practices and Cloud

Programming Expert, with MCPD, MCSD.NET, MCDBA and MCTS awards.

Hristo is co-author of the books "Programming for the .NET Framework

(vol. 1 & 2)" and has been instructor for .NET and Design Patterns for many

years. His company Clever IT is consulting top financial institutions and FTSE

100 corporations with multibillion valuations on the World Stock Exchanges.

You can find more about him on www.radkov.com or linked-in at Hristo

Radkov. To contact him, use the e-mail address: hradkov@clevit.com.

License

The book and all its study materials are distributed freely under the following

license:

Common Definitions

1. The present license defines the terms and conditions for using and

distributing the "study materials" and the book "Fundamentals of

Computer Programming with C#", developed by a team of

volunteers under the guidance of Svetlin Nakov (www.nakov.com).

2. The study materials consist of:

http://cleverit.info/
http://www.devbg.org/dotnetbook/
http://www.devbg.org/dotnetbook/
http://www.radkov.com/
http://lnkd.in/6YvJZ3
http://lnkd.in/6YvJZ3
mailto:hradkov@clevit.com
http://www.nakov.com/

www.manaraa.com

64 Fundamentals of Computer Programming with C#

- the book (textbook) on "Fundamentals of Computer Programming

with C#"

- sample source code

- demo programs

- exercise problems

- presentation slides

- video materials

3. The study materials are available for free download according to the

terms and conditions specified in this license at the official website of

the project: www.introprogramming.info.

4. Authors of the study materials are the persons who participated in their

creation.

5. User of the study materials is anybody who uses or accesses these

materials or portions of them.

Rights and Limitations of the Users

1. Users may:

- distribute free of charge unaltered copies of the study materials in

electronic or paper format;

- use the study materials or portions of them, including the examples,

demos, exercises and presentation slides or their modifications, for all

intents and purposes, including educational and commercial

projects, provided they clearly specify the original source, the

original author(s) of the corresponding text or source code, this

license and the website www.introprogramming.info;

- distribute free of charge portions of the study materials or modified

copies of them (including translating them into other languages or

adapting them to other programming languages and platforms), but

only by explicitly mentioning the original source and the authors

of the corresponding text, source code or other material, this license

and the official website of the project: www.introprogramming.info.

2. Users may not:

- distribute for profit the study materials or portions of them, with

the exception of the source code;

- remove this license from the study materials when modifying them

for own needs.

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

www.manaraa.com

Preface 65

Rights and Limitations of the Authors

1. Every author has non-exclusive rights on the products of his / her own

work contributing to build the study materials.

2. The authors have the right to use the products of their contribution for

any purpose, including modifying them and distributing them for profit.

3. The rights on all study materials written in joint authorship belong to all

co-authors together.

4. The authors may not distribute for profit study materials they’ve written

in joint authorship without the explicit permission of all other co-

authors.

Resources Coming with the Book

This book "Fundamentals of Computer Programming with C#" comes with a

rich set of resources: official web site, official discussion forum, presentation

slides for each chapter of the book, video lessons for each chapter of the

book and Facebook fan page.

The Book’s Website

The official website of the book "Introduction to programming with C#" is

available at: www.introprogramming.info. At book’s web site you can

freely download the book and many related resources:

- The whole book in several electronic formats (PDF / DOC / DOCX /

HTML / Kindle / etc.)

- The source code of the examples (demos) for each chapter

- Video lessons covering the entire book content with live demos and

detailed explanations (in English and in Bulgarian)

- PowerPoint presentations slides for each chapter, ready for instructors

who want to teach programming (in English)

- The exercises and solutions guidelines for each chapter

- Solutions to all problems from the book + explanation of the

algorithm and the source code for each solution + tests (in Bulgarian)

- Interactive Mind maps for each book chapter

- The book in Bulgarian language (the original)

- A Java version of the book (with all content and examples adapter to

Java programming language).

Discussion Forum

The discussion forum where you can find solutions to almost all problems

from the book is available at: forums.academy.telerik.com.

http://www.introprogramming.info/
http://forums.academy.telerik.com/

www.manaraa.com

66 Fundamentals of Computer Programming with C#

This forum is created for discussions among the participants in Telerik

Software Academy’s courses who go through this book during the first few

months of their training and mandatorily solve all problems in the exercise

sections. Most people "living" in the forum are Bulgarian but everyone speaks

English so you are invited to ask your questions about the book exercises in

English.

In the forum you’ll find comments and solutions submitted by students and

readers of the book, as well as by the trainers at the Software Academy. Just

search thoroughly enough and you’ll find several solutions to all problems in

the book (with no exceptions). Every year thousands of participants in

Telerik Software Academy solve problems from this book and share their

solutions and the difficulties they’ve encountered, so simply search thoroughly

in the forum or ask, if you can’t get to a solution for a particular problem.

Presentation Slides Coming with the Book

This book is used in many universities, colleges, schools and organizations as

a textbook on computer programming, C#, data structures and algorithms. To

help instructors teach the lessons following this book we have prepared

PowerPoint presentation slides for each chapter of the book. Instructors

are welcome to use the slides free of charge under the license agreement

stated above. The authors' team will be happy to find out that this book and

its study materials and presentation slides are helping people all over the

world to learn programming. This is the primary goal of the project: to teach

computer programming fundamentals, in complete, simple, structured,

understandable way, free of charge. You may find the PowerPoint slides in

English at the book’s official web site: www.introprogramming.info.

Video Materials for Self-Education with the Book

As part of the Telerik Software Academy program (academy.telerik.com) and,

in particular, the free course "Fundamentals of C# Programming", videos of

all lectures on the subject matter in this book have been recorded. The video

materials in English and Bulgarian can be found at C# book’s official web site:

introprogramming.info.

If you speak Bulgarian you might be interested in Telerik Software Academy’s

video channel in YouTube: youtube.com/TelerikAcademy. It provides for

free thousands video lessons on programming and software development.

Interactive Mind Maps

As part of the book we created a set of interactive mind maps to visualize its

content and to improve the level of memorization. We have a few mind maps

for each chapter that visually illustrates its content and a global mind map of

the entire book. The mind maps are available at the book’s web site:

http://www.introprogramming.info/english-intro-csharp-book/mind-maps/.

http://www.introprogramming.info/
http://academy.telerik.com/
http://www.introprogramming.info/
http://www.youtube.com/TelerikAcademy/
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

www.manaraa.com

Preface 67

C# Book Fan Club

For the fans of the book "Introduction to Programming with C#" we have a

Facebook page: www.facebook.com/IntroCSharpBook.

Svetlin Nakov, PhD,

Manager of the "Technical Training" Department,

Telerik Software Academy, Telerik Corporation,

August 24th, 2013

http://www.facebook.com/IntroCSharpBook
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

www.manaraa.com

www.devbg.org

Bulgarian Association of Software Developers (BASD) is a

non-profit organization that supports the Bulgarian software

developers through educational and other initiatives.

BASD works to promote exchange of experience between the

developers and improvement of their knowledge and skills in

the area of software development and software technologies.

The Association organizes conferences, seminars and training

courses for software engineers and other professionals

involved in the software industry.

http://www.devbg.org/
http://www.devbg.org

www.manaraa.com

Chapter 1. Introduction
to Programming

In This Chapter

In this chapter we will take a look at the basic programming terminology

and we will write our first C# program. We will familiarize ourselves with

programming – what it means and its connection to computers and

programming languages.

Briefly, we will review the different stages of software development.

We will introduce the C# language, the .NET platform and the different

Microsoft technologies used in software development. We will examine what

tools we need to program in C#. We will use the C# language to write our

first computer program, compile and run it from the command line as well as

from Microsoft Visual Studio integrated development environment. We will

review the MSDN Library – the documentation of the .NET Framework. It will

help us with our exploration of the features of the platform and the language.

What Does It Mean "To Program"?

Nowadays computers have become irreplaceable. We use them to solve

complex problems at the workplace, look for driving directions, have fun and

communicate. They have countless applications in the business world, the

entertainment industry, telecommunications and finance. It’s not an over-

statement to say that computers build the neural system of our contemporary

society and it is difficult to imagine its existence without them.

Despite the fact that computers are so wide-spread, few people know how

they really work. In reality, it is not the computers, but the programs (the

software), which run on them, that matter. It is the software that makes

computers valuable to the end-user, allowing for many different types of

services that change our lives.

How Do Computers Process Information?

In order to understand what it means to program, we can roughly compare a

computer and its operating system to a large factory with all its workshops,

warehouses and transportation. This rough comparison makes it easier to

imagine the level of complexity present in a contemporary computer. There

are many processes running on a computer, and they represent the

workshops and production lines in a factory. The hard drive, along with the

www.manaraa.com

70 Fundamentals of Computer Programming with C#

files on it, and the operating memory (RAM) represent the warehouses, and

the different protocols are the transportation systems, which provide the input

and output of information.

The different types of products made in a factory come from different

workshops. They use raw materials from the warehouses and store the

completed goods back in them. The raw materials are transported to the

warehouses by the suppliers and the completed product is transported from

the warehouses to the outlets. To accomplish this, different types of

transportation are used. Raw materials enter the factory, go through different

stages of processing and leave the factory transformed into products. Each

factory converts the raw materials into a product ready for consumption.

The computer is a machine for information processing. Unlike the

factory in our comparison, for the computer, the raw material and the product

are the same thing – information. In most cases, the input information is

taken from any of the warehouses (files or RAM), to where it has been

previously transported. Afterwards, it is processed by one or more processes

and it comes out modified as a new product. Web based applications serve as

a prime example. They use HTTP to transfer raw materials and products, and

information processing usually has to do with extracting content from a

database and preparing it for visualization in the form of HTML.

Managing the Computer

The whole process of manufacturing products in a factory has many levels of

management. The separate machines and assembly lines have operators, the

workshops have managers and the factory as a whole is run by general

executives. Every one of them controls processes on a different level. The

machine operators serve on the lowest level – they control the machines with

buttons and levers. The next level is reserved for the workshop managers.

And on the highest level, the general executives manage the different aspects

of the manufacturing processes in the factory. They do that by issuing orders.

It is the same with computers and software – they have many levels of

management and control. The lowest level is managed by the processor and

its registries (this is accomplished by using machine programs at a low level)

– we can compare it to controlling the machines in the workshops. The

different responsibilities of the operating system (Windows 7 for example),

like the file system, peripheral devices, users and communication protocols,

are controlled at a higher level – we can compare it to the management of the

different workshops and departments in the factory. At the highest level, we

can find the application software. It runs a whole ensemble of processes,

which require a huge amount of processor operations. This is the level of the

general executives, who run the whole factory in order to maximize the

utilization of the resources and to produce quality results.

www.manaraa.com

Chapter 1. Introduction to Programming 71

The Essence of Programming

The essence of programming is to control the work of the computer on all

levels. This is done with the help of "orders" and "commands" from the

programmer, also known as programming instructions. To "program" means

to organize the work of the computer through sequences of

instructions. These commands (instructions) are given in written form and

are implicitly followed by the computer (respectively by the operating system,

the CPU and the peripheral devices).

To “program” means writing sequences of instructions in

order to organize the work of the computer to perform

something. These sequences of instructions are called

“computer programs” or “scripts”.

A sequence of steps to achieve, complete some work or obtain some result is

called an algorithm. This is how programming is related to algorithms.

Programming involves describing what you want the computer to do by a

sequence of steps, by algorithms.

Programmers are the people who create these instructions, which control

computers. These instructions are called programs. Numerous programs

exist, and they are created using different kinds of programming

languages. Each language is oriented towards controlling the computer on a

different level. There are languages oriented towards the machine level (the

lowest) – Assembler for example. Others are most useful at the system level

(interacting with the operating system), like C. There are also high level

languages used to create application programs. Such languages include C#,

Java, C++, PHP, Visual Basic, Python, Ruby, Perl, JavaScript and others.

In this book we will take a look at the C# programming language – a

modern high level language. When a programmer uses C#, he gives

commands in high level, like from the position of a general executive in a

factory. The instructions given in the form of programs written in C# can

access and control almost all computer resources directly or via the operating

system. Before we learn how to write simple C# programs, let’s take a good

look at the different stages of software development, because programming,

despite being the most important stage, is not the only one.

Stages in Software Development

Writing software can be a very complex and time-consuming task, involving a

whole team of software engineers and other specialists. As a result, many

methods and practices, which make the life of programmers easier, have

emerged. All they have in common is that the development of each software

product goes through several different stages:

- Gathering the requirements for the product and creating a task;

- Planning and preparing the architecture and design;

www.manaraa.com

72 Fundamentals of Computer Programming with C#

- Implementation (includes the writing of program code);

- Product trials (testing);

- Deployment and exploitation;

- Support.

Implementation, testing, deployment and support are mostly accomplished

using programming.

Gathering the Requirements

In the beginning, only the idea for a certain product exists. It includes a list of

requirements, which define actions by the user and the computer. In the

general case, these actions make already existing activities easier –

calculating salaries, calculating ballistic trajectories or searching for the

shortest route on Google maps are some examples. In many cases the

software implements a previously nonexistent functionality such as

automation of a certain activity.

The requirements for the product are usually defined in the form of

documentation, written in English or any other language. There is no

programming done at this stage. The requirements are defined by experts,

who are familiar with the problems in a certain field. They can also write them

up in such a way that they are easy to understand by the programmers. In

the general case, these experts are not programming specialists, and they are

called business analysts.

Planning and Preparing the Architecture and Design

After all the requirements have been gathered comes the planning stage. At

this stage, a technical plan for the implementation of the project is created,

describing the platforms, technologies and the initial architecture (design) of

the program. This step includes a fair amount of creative work, which is done

by software engineers with a lot of experience. They are sometimes called

software architects. According to the requirements, the following parts are

chosen:

- The type of the application – for example console application, desktop

application (GUI, Graphical User Interface application), client-server

application, Web application, Rich Internet Application (RIA), mobile

application, peer-to-peer application or other;

- The architecture of the software – for example single layer, double

layer, triple layer, multi-layer or SOA architecture;

- The programming language most suitable for the implementation –

for example C#, Java, PHP, Python, Ruby, JavaScript or C++, or a

combination of different languages;

- The technologies that will be used: platform (Microsoft .NET, Java EE,

LAMP or another), database server (Oracle, SQL Server, MySQL, NoSQL

www.manaraa.com

Chapter 1. Introduction to Programming 73

database or another), technologies for the user interface (Flash,

JavaServer Faces, Eclipse RCP, ASP.NET, Windows Forms, Silverlight,

WPF or another), technologies for data access (for example Hibernate,

JPA or ADO.NET Entity Framework), reporting technologies (SQL Server

Reporting Services, Jasper Reports or another) and many other

combinations of technologies that will be used for the implementation of

the various parts of the software system.

- The development frameworks that will simplify the development, e.g.

ASP.NET MVC (for .NET), Knockout.js (for JavaScript), Rails (for Ruby),

Django (for Python) and many others.

- The number and skills of the people who will be part of the

development team (big and serious projects are done by large and

experienced teams of developers);

- The development plan – separating the functionality in stages,

resources and deadlines for each stage.

- Others (size of the team, locality of the team, methods of

communication etc.).

Although there are many rules facilitating the correct analysis and planning, a

fair amount of intuition and insight is required at this stage. This step

predetermines the further advancement of the development process. There is

no programming done at this stage, only preparation.

Implementation

The stage, most closely connected with programming, is the implementation

stage. At this phase, the program (application) is implemented (written)

according to the given task, design and architecture. Programmers

participate by writing the program (source) code. The other stages can

either be short or completely skipped when creating a small project, but the

implementation always presents; otherwise the process is not software

development. This book is dedicated mainly to describing the skills used

during implementation – creating a programmer’s mindset and building the

knowledge to use all the resources provided by the C# language and the .NET

platform, in order to create software applications.

Product Testing

Product testing is a very important stage of software development. Its

purpose is to make sure that all the requirements are strictly followed and

covered. This process can be implemented manually, but the preferred way to

do it is by automated tests. These tests are small programs, which

automate the trials as much as possible. There are parts of the functionality

that are very hard to automate, which is why product trials include automated

as well as manual procedures to ensure the quality of the code.

www.manaraa.com

74 Fundamentals of Computer Programming with C#

The testing (trials) process is implemented by quality assurance engineers

(QAs). They work closely with the programmers to find and correct errors

(bugs) in the software. At this stage, it is a priority to find defects in the code

and almost no new code is written.

Many defects and errors are usually found during the testing stage and the

program is sent back to the implantation stage. These two stages are very

closely tied and it is common for a software product to switch between them

many times before it covers all the requirements and is ready for the

deployment and usage stages.

Deployment and Operation

Deployment is the process which puts a given software product into

exploitation. If the product is complex and serves many people, this process

can be the slowest and most expensive one. For smaller programs this is a

relatively quick and painless process. In the most common case, a special

program, called installer, is developed. It ensures the quick and easy

installation of the product. If the product is to be deployed at a large

corporation with tens of thousands of copies, additional supporting software is

developed just for the deployment. After the deployment is successfully

completed, the product is ready for operation. The next step is to train

employees to use it.

An example would be the deployment of a new version of Microsoft Windows

in the state administration. This includes installation and configuration of

the software as well as training employees how to use it.

The deployment is usually done by the team who has worked on the software

or by trained deployment specialists. They can be system administrators,

database administrators (DBA), system engineers, specialized consultants and

others. At this stage, almost no new code is written but the existing code is

tweaked and configured until it covers all the specific requirements for a

successful deployment.

Technical Support

During the exploitation process, it is inevitable that problems will appear.

They may be caused by many factors – errors in the software, incorrect usage

or faulty configuration, but most problems occur when the users change their

requirements. As a result of these problems, the software loses its abilities to

solve the business task it was created for. This requires additional

involvement by the developers and the support experts. The support

process usually continues throughout the whole life-cycle of the software

product, regardless of how good it is.

The support is carried out by the development team and by specially trained

support experts. Depending on the changes made, many different people

may be involved in the process – business analysts, architects, programmers,

QA engineers, administrators and others.

www.manaraa.com

Chapter 1. Introduction to Programming 75

For example, if we take a look at a software program that calculates salaries,

it will need to be updated every time the tax legislation, which concerns the

serviced accounting process, is changed. The support team’s intervention will

be needed if, for example, the hardware of the end user is changed because

the software will have to be installed and configured again.

Documentation

The documentation stage is not a separate stage but accompanies all the

other stages. Documentation is an important part of software development

and aims to pass knowledge between the different participants in the

development and support of a software product. Information is passed along

between different stages as well as within a single stage. The development

documentation is usually created by the developers (architects, program-

mers, QA engineers and others) and represents a combination of documents.

Software Development Is More than Just Coding

As we saw, software development is much more than just coding (writing

code), and it includes a number of other processes such as: requirements

analysis, design, planning, testing and support, which require a wide variety

of specialists called software engineers. Programming is just a small, but

very essential part of software development.

In this book we will focus solely on programming, because it is the only

process, of the above, without which, we cannot develop software.

Our First C# Program

Before we continue with an in depth description of the C# language and the

.NET platform, let’s take a look at a simple example, illustrating how a

program written in C# looks like:

class HelloCSharp
{
 static void Main(string[] args)
 {
 System.Console.WriteLine("Hello C#!");
 }
}

The only thing this program does is to print the message "Hello, C#!" on

the default output. It is still early to execute it, which is why we will only take

a look at its structure. Later we will describe in full how to compile and run a

given program from the command prompt as well as from a development

environment.

www.manaraa.com

76 Fundamentals of Computer Programming with C#

How Does Our First C# Program Work?

Our first program consists of three logical parts:

- Definition of a class HelloCSharp;

- Definition of a method Main();

- Contents of the method Main().

Defining a Class

On the first line of our program we define a class called HelloCSharp. The

simplest definition of a class consists of the keyword class, followed by its

name. In our case the name of the class is HelloCSharp. The content of the

class is located in a block of program lines, surrounded by curly brackets: {}.

Defining the Main() Method

On the third line we define a method with the name Main(), which is the

starting point for our program. Every program written in C# starts from a

Main() method with the following title (signature):

static void Main(string[] args)

The method must be declared as shown above, it must be static and void, it

must have a name Main and as a list of parameters it must have only one

parameter of type array of string. In our example the parameter is called

args but that is not mandatory. This parameter is not used in most cases so it

can be omitted (it is optional). In that case the entry point of the program can

be simplified and will look like this:

static void Main()

If any of the aforementioned requirements is not met, the program will

compile but it will not start because the starting point is not defined correctly.

Contents of the Main() Method

The content of every method is found after its signature, surrounded by

opening and closing curly brackets. On the next line of our sample program

we use the system object System.Console and its method WriteLine() to

print a message on the default output (the console), in this case "Hello, C#!".

In the Main() method we can write a random sequence of expressions and

they will be executed in the order we assigned to them.

More information about expressions can be found in chapter "Operators and

Expressions", working with the console is described in chapter "Console Input

and Output", classes and methods can be found in chapter "Defining Classes".

www.manaraa.com

Chapter 1. Introduction to Programming 77

C# Distinguishes between Uppercase and Lowercase!

The C# language distinguishes between uppercase and lowercase letters so

we should use the correct casing when we write C# code. In the example

above we used some keywords like class, static, void and the names of

some of the system classes and objects, such as System.Console.

Be careful when writing! The same thing, written in upper-

case, lower-case or a mix of both, means different things in

C#. Writing Class is different from class and System.Console

is different from SYSTEM.CONSOLE.

This rule applies to all elements of your program: keywords, names of

variables, class names etc.

The Program Code Must Be Correctly Formatted

Formatting is adding characters such as spaces, tabs and new lines, which are

insignificant to the compiler and they give the code a logical structure and

make it easier to read. Let’s for example take a look at our first program

(the short version of the Main() method):

class HelloCSharp
{
 static void Main()
 {
 System.Console.WriteLine("Hello C#!");
 }
}

The program contains seven lines of code and some of them are indented

more than others. All of that can be written without tabs as well, like so:

class HelloCSharp
{
static void Main()
{
System.Console.WriteLine("Hello C#!");
}
}

Or on the same line:

class HelloCSharp{static void Main(){System.Console.WriteLine(
"Hello C#!");}}

Or even like this:

www.manaraa.com

78 Fundamentals of Computer Programming with C#

 class
 HelloCSharp
{
 static void Main()
 { System .
Console.WriteLine("Hello C#!") ;} }

The examples above will compile and run exactly like the formatted code but

they are more difficult to read and understand, and therefore difficult to

modify and maintain.

Never let your programs contain unformatted code! That

severely reduces program readability and leads to difficulties

for later modifications of the code.

Main Formatting Rules

If we want our code to be correctly formatted, we must follow several

important rules regarding indentation:

- Methods are indented inside the definition of the class (move to the

right by one or more [Tab] characters);

- Method contents are indented inside the definition of the method;

- The opening curly bracket { must be on its own line and placed exactly

under the method or class it refers to;

- The closing curly bracket } must be on its own line, placed exactly

vertically under the respective opening bracket (with the same

indentation);

- All class names must start with a capital letter;

- Variable names must begin with a lower-case letter;

- Method names must start with a capital letter;

Code indentation follows a very simple rule: when some piece of code is

logically inside another piece of code, it is indented (moved) on the right with

a single [Tab]. For example if a method is defined inside a class, it is indented

(moved to the right). In the same way if a method body is inside a method, it

is indented. To simplify this, we can assume that when we have the character

“{“, all the code after it until its closing “}” should be indented on the right.

File Names Correspond to Class Names

Every C# program consists of one or several class definitions. It is

accepted that each class is defined in a separate file with a name

corresponding to the class name and a .cs extension. When these

requirements are not met, the program will still work but navigating the code

www.manaraa.com

Chapter 1. Introduction to Programming 79

will be difficult. In our example, the class is named HelloCSharp, and as a

result we must save its source code in a file called HelloCSharp.cs.

The C# Language and the .NET Platform

The first version of C# was developed by Microsoft between 1999 and 2002

and was officially released to the public in 2002 as a part of the .NET

platform. The .NET platform aims to make software development for

Windows easier by providing a new quality approach to programming, based

on the concepts of the "virtual machine" and "managed code". At that time

the Java language and platform reaped an enormous success in all fields of

software development; C# and .NET were Microsoft’s natural response to the

Java technology.

The C# Language

C# is a modern, general-purpose, object-oriented, high-level prog-

ramming language. Its syntax is similar to that of C and C++ but many

features of those languages are not supported in C# in order to simplify the

language, which makes programming easier.

The C# programs consist of one or several files with a .cs extension, which

contain definitions of classes and other types. These files are compiled by the

C# compiler (csc) to executable code and as a result assemblies are created,

which are files with the same name but with a different extension (.exe or

.dll). For example, if we compile HelloCSharp.cs, we will get a file with the

name HelloCSharp.exe (some additional files will be created as well, but we

will not discuss them at the moment).

We can run the compiled code like any other program on our computer (by

double clicking it). If we try to execute the compiled C# code (for example

HelloCSharp.exe) on a computer that does not have the .NET Framework,

we will receive an error message.

Keywords

C# uses the following keywords to build its programming constructs (the list

is taken from MSDN in March 2013 and may not be complete):

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

www.manaraa.com

80 Fundamentals of Computer Programming with C#

object operator out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual void volatile while

Since the creation of the first version of the C# language, not all keywords

are in use. Some of them were added in later versions. The main program

elements in C# (which are defined and used with the help of keywords) are

classes, methods, operators, expressions, conditional statements,

loops, data types, exceptions and few others. In the next few chapters of

this book, we will review in details all these programming constructs along

with the use of the most of the keywords from the table above.

Automatic Memory Management

One of the biggest advantages of the .NET Framework is the built-in

automatic memory management. It protects the programmers from the

complex task of manually allocating memory for objects and then waiting for

a suitable moment to release it. This significantly increases the developer

productivity and the quality of the programs written in C#.

In the .NET Framework, there is a special component of the CLR that looks

after memory management. It is called a "garbage collector" (automated

memory cleaning system). The garbage collector has the following main

tasks: to check when the allocated memory for variables is no longer in use,

to release it and make it available for allocation of new objects.

It is important to note that it is not exactly clear at what

moment the memory gets cleaned of unused objects (local

variables for example). According to the C# language

specifications, it happens at some moment after a given

variable gets out of scope but it is not specified, whether this

happens instantly, after some time or when the available

memory becomes insufficient for the normal program

operation.

Independence from the Environment and the

Programming Language

One of the advantages of .NET is that programmers using different .NET

languages can easily exchange their code. For example a C# programmer

can use the code written by another programmer in VB.NET, Managed C++

or F#. This is possible because the programs written in different .NET

www.manaraa.com

Chapter 1. Introduction to Programming 81

languages share a common system of data types, execution infrastructure

and a unified format of the compiled code (assemblies).

A big advantage of the .NET technology is the ability to run code, which is

written and compiled only once, on different operating systems and

hardware devices. We can compile a C# program in a Windows environment

and then execute it under Windows, Windows Mobile, Windows RT or Linux.

Officially Microsoft only supports the .NET Framework on Windows, Windows

Mobile and Windows Phone, but there are third party vendors that offer .NET

implementation on other operating systems.

Mono (.NET for Linux)

One example of .NET implementation for non-Windows environment is the

open-source project Mono (www.mono-project.com). It implements the

.NET Framework and most of its accompanying libraries for Linux, FreeBSD,

iPhone and Android. Mono is unofficial .NET implementation and some

features may work not exactly as expected. It does implement well the core

.NET standards (such as C# compiler and CLR) but does not support fully the

latest .NET technologies and framework like WPF and ASP.NET MVC.

Microsoft Intermediate Language (MSIL)

The idea for independence from the environment has been set in the earliest

stages of creation of the .NET platform and is implemented with the help of a

little trick. The output code is not compiled to instructions for a specific

microprocessor and does not use the features of a specific operating system;

it is compiled to the so called Microsoft Intermediate Language (MSIL).

This MSIL is not directly executed by the microprocessor but from a virtual

environment called Common Language Runtime (CLR).

Common Language Runtime (CLR) – the Heart of .NET

In the very center of the .NET platform beats its heart – the Common

Language Runtime (CLR) – the environment that controls the execution of

the managed code (MSIL code). It ensures the execution of .NET programs

on different hardware platforms and operating systems.

CLR is an abstract computing machine (virtual machine). Similarly to

physical computers, it supports a set of instructions, registries, memory

access and input-output operations. CLR ensures a controlled execution of

the .NET programs using the full capabilities of the processor and the

operating system. CLR also carries out the managed access to the memory

and the other resources of the computer, while adhering to the access rules

set when the program is executed.

http://www.mono-project.com/

www.manaraa.com

82 Fundamentals of Computer Programming with C#

The .NET Platform

The .NET platform contains the C# language, CLR and many auxiliary

instruments and libraries ready for use. There are a few versions of .NET

according to the targeted user group:

- .NET Framework is the most common version of the .NET environment

because of its general purpose. It is used in the development of console

applications, Windows applications with a graphical user interface, web

applications and many more.

- .NET Compact Framework (CF) is a "light" version of the standard

.NET Framework and is used in the development of applications for

mobile phones and other PDA devices using Windows Mobile Edition.

- Silverlight is also a "light" version of the .NET Framework, intended to

be executed on web browsers in order to implement multimedia and

Rich Internet Applications.

- .NET for Windows Store apps is a subset of .NET Framework

designed for development and execution of .NET applications in

Windows 8 and Windows RT environment (the so called Windows

Store Apps).

.NET Framework

The standard version of the .NET platform is intended for development and

use of console applications, desktop applications, Web applications, Web

services, Rich Internet Applications, mobile applications for tablets and smart

phones and many more. Almost all .NET developers use the standard version.

.NET Technologies

Although the .NET platform is big and comprehensive, it does not provide

all the tools required to solve every problem in software development. There

are many independent software developers, who expand and add to the

standard functionality offered by the .NET Framework. For example,

companies like the Bulgarian software corporation Telerik develop subsidiary

sets of components. These components are used to create graphical user

interfaces, Web content management systems, to prepare reports and they

make application development easier.

The .NET Framework extensions are software components, which can be

reused when developing .NET programs. Reusing code significantly facilitates

and simplifies software development, because it provides solutions for

common problems, offers implementations of complex algorithms and

technology standards. The contemporary programmer uses libraries and

components every day, and saves a lot of effort by doing so.

Let’s look at the following example – software that visualizes data in the

form of charts and diagrams. We can use a library, written in .NET, which

draws the charts. All that we need to do is input the correct data and the

www.manaraa.com

Chapter 1. Introduction to Programming 83

library will draw the charts for us. It is very convenient and efficient. Also it

leads to reduction in the production costs because the programmers will not

need to spend time working on additional functionality (in our case drawing

the charts, which involves complex mathematical calculations and controlling

the graphics card). The application itself will be of higher quality because the

extension it uses is developed and supported by specialists with more

experience in that specific field.

Software technologies are sets of classes, modules, libraries, programming

models, tools, patterns and best practices addressing some specific problem

in software development. There are general software technologies, such as

Web technologies, mobile technologies, technologies for computer graphics

and technologies related to some platform such as .NET or Java.

There are many .NET technologies serving for different areas of .NET

development. Typical examples are the Web technologies (like ASP.NET and

ASP.NET MVC), allowing fast and easy creation of dynamic Web applications

and .NET mobile technologies (like WinJS), which make possible the creation

of rich user interface multimedia applications working on the Internet.

.NET Framework by default includes as part of itself many technologies and

class libraries with standard functionality, which developers can use. For

example, there are ready-to-use classes in the system library working with

mathematical functions, calculating logarithms and trigonometric functions

(System.Math class). Another example is the library dealing with networks

(System.Net), it has a built-in functionality to send e-mails (using the

System.Net.Mail.MailMessage class) and to download files from the

Internet (using System.Net.WebClient).

A .NET technology is the collection of .NET classes, libraries, tools,

standards and other programming means and established development

models, which determine the technological framework for creating a certain

type of application. A .NET library is a collection of .NET classes, which offer

certain ready-to-use functionality. For example, ADO.NET is a technology

offering standardized approach to accessing relational databases (like

Microsoft SQL Server and MySQL). The classes in the package (namespace)

System.Data.SqlClient are an example of .NET library, which provide

functionality to connect an SQL Server through the ADO.NET technology.

Some of the technologies developed by software developers outside of

Microsoft become wide-spread and as a result establish themselves as

technology standards. Some of them are noticed by Microsoft and later are

added to the next iteration of the .NET Framework. That way, the .NET

platform is constantly evolving and expanding with new libraries and

technologies. For instance, the object-relational mapping technologies

initially were developed as independent projects and products (like the open

code project NHibernate and Telerik’s OpenAccess ORM). After they gained

enormous popularity, their inclusion in the .NET Framework became a

necessity. And this is how the LINQ-to-SQL and ADO.NET Entity Framework

technologies were born, respectively in .NET 3.5 and .NET 4.0.

www.manaraa.com

84 Fundamentals of Computer Programming with C#

Application Programming Interface (API)

Each .NET library or technology is utilized by creating objects and calling their

methods. The set of public classes and methods in the programming libraries

is called Application Programming Interface or just API. As an example

we can look at the .NET API itself; it is a set of .NET class libraries, expanding

the capabilities of the language and adding high-level functionality. All .NET

technologies offer a public API. The technologies are often referred to simply

as API, which adds certain functionality. For example: API for working with

files, API for working with charts, API for working with printers, API for

reading and creating Word and Excel documents, API for creating PDF

documents, Web development API, etc.

.NET Documentation

Very often it is necessary to document an API, because it contains many

namespaces and classes. Classes contain methods and parameters. Their

purpose is not always obvious and needs to be explained. There are also

inner dependencies between the separate classes, which need to be explained

in order to be used correctly. These explanations and technical instructions on

how to use a given technology, library or API, are called documentation. The

documentation consists of a collection of documents with technical content.

The .NET Framework also has a documentation officially developed and

supported by Microsoft. It is publicly available on the Internet and is also

distributed with the .NET platform as a collection of documents and tools for

browsing and searching.

www.manaraa.com

Chapter 1. Introduction to Programming 85

The MSDN Library is Microsoft’s official documentation for all their products

for developers and software technologies. The .NET Framework’s technical

documentation is part of the MSDN Library and can be found here:

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx. The above

screenshot shows how it might look like (for .NET version 4.5).

What We Need to Program in C#?

After we made ourselves familiar with the .NET platform, .NET libraries and

.NET technologies, we can move on to writing, compiling and executing C#

programs.

In order to program in C#, we need two basic things – an installed .NET

Framework and a text editor. We need the text editor to write and edit the

C# code and the .NET Framework to compile and execute it.

.NET Framework

By default, the .NET Framework is installed along with Windows, but in old

Windows versions it could be missing. To install the .NET Framework, we must

download it from Microsoft’s website (http://download.microsoft.com). It is

best if we download and install the latest version.

Do not forget that we need to install the .NET Framework

before we begin! Otherwise, we will not be able to compile

and execute the program.

If we run Windows 8 or Windows 7, the .NET Framework will

be already installed as part of Windows.

Text Editor

The text editor is used to write the source code of the program and to save

it in a file. After that, the code is compiled and executed. There are many text

editing programs. We can use Windows’ built-in Notepad (it is very basic and

inconvenient) or a better free text editor like Notepad++ (notepad-

plus.sourceforge.net) or PSPad (www.pspad.com).

Compilation and Execution of C# Programs

The time has come to compile and execute the simple example program

written in C# we already discussed. To accomplish that, we need to do the

following:

- Create a file named HelloCSharp.cs;

- Write the sample program in the file;

- Compile HelloCSharp.cs to an executable file HelloCSharp.exe using

the console-based C# compiler (csc.exe);

- Execute the HelloCSharp.exe file.

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx
http://download.microsoft.com/
http://notepad-plus.sourceforge.net/
http://notepad-plus.sourceforge.net/
http://www.pspad.com/

www.manaraa.com

86 Fundamentals of Computer Programming with C#

Now, let’s do it on the computer!

The instructions above vary depending on the operating system. Since

programming on Linux is not the focus of this book, we will take a thorough

look at what we need to write and execute the sample program on Windows.

For those of you, who want to program in C# in a Linux environment, we

already explained the Mono project, and you can download it and experiment.

Here is the code of our first C# program:

HelloCSharp.cs

class HelloCSharp
{
 static void Main()
 {
 System.Console.WriteLine("Hello C#!");
 }
}

Creating C# Programs in the Windows Console

First we start the Windows command console, also known as Command

Prompt. In Windows 7 this is done from the Windows Explorer start menu:

Start -> Programs -> Accessories -> Command Prompt.

It is advised that we run the console as administrator (right click on the

Command Prompt icon and choose “Run as administrator”). Otherwise

some operations we want to use may be restricted.

www.manaraa.com

Chapter 1. Introduction to Programming 87

In Windows 8 the “Run as administrator” command is directly available when

you right click the command prompt icon from the Win8 Start Screen:

After opening the console, let’s create a directory, in which we will

experiment. We use the md command to create a directory and cd command

to navigate to it (enter inside it):

www.manaraa.com

88 Fundamentals of Computer Programming with C#

The directory will be named IntroCSharp and will be located in C:\. We

change the current directory to C:\IntroCSharp and create a new file

HelloCSharp.cs, by using the built-in Windows text editor – Notepad.

To create the text file “HelloCSharp.cs”, we execute the following command

on the console:

notepad HelloCSharp.cs

This will start Notepad with the following dialog window, confirming the

creation of a new file:

Notepad will warn us that no such file exists and will ask us if we want to

create it. We click [Yes]. The next step is to rewrite or simply Copy / Paste the

program’s source code.

www.manaraa.com

Chapter 1. Introduction to Programming 89

We save it by pressing [Ctrl+S] and close the Notepad editor with [Alt+F4].

Now we have the initial code of our sample C# program, written in the file

C:\IntroCSharp\HelloCSharp.cs.

Compiling C# Programs in Windows

The only thing left to do is to compile and execute it. Compiling is done by

the csc.exe compiler.

We got our first error – Windows cannot find an executable file or command

with the name "csc". This is a very common problem and it is normal to

appear if it is our first time using C#. Several reasons might have caused it:

- The .NET Framework is not installed;

- The .NET Framework is installed correctly, but its directory

Microsoft.NET\Framework\v4.0.xxx is not added to the system path

for executable files and Windows cannot find csc.exe.

The first problem is easily solved by installing the .NET Framework (in our

case – version 4.5). The other problem can be solved by changing the system

path (we will do this later) or by using the full path to csc.exe, as it is shown

on the figure below. In our case, the full file path to the C# compiler is

C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe (note that this

path could vary depending on the .NET framework version installed). Strange

or not, .NET 4.5 coming with Visual Studio 2012 and C# 5 installs in a

directory named “v4.0.30319” – this is not a mistake.

Compiling and Running C# Programs in Windows

Now let’s invoke the csc compiler through its full path and pass to it the file

we want to compile as a parameter (HelloCSharp.exe):

www.manaraa.com

90 Fundamentals of Computer Programming with C#

After the execution csc is completed without any errors, and we get the

following file as a result: C:\IntroCSharp\HelloCSharp.exe. To run it, we

simply need to write its name. The result of the execution of our program is

the message "Hello, C#!" printed on the console. It is not great but it is a

good start:

Changing the System Paths in Windows

If we know to use the command line C# compiler (csc.exe) without entering

the full path to it, we could add its folder to the Windows system path.

1. We open Control Panel and select "System". As a result this well-

known window appears (the screenshot is taken from Windows 7):

 In Windows 8 it might look a bit different, but is almost the same:

www.manaraa.com

Chapter 1. Introduction to Programming 91

2. We select "Advanced system settings". The dialog window "System

Properties" appears:

www.manaraa.com

92 Fundamentals of Computer Programming with C#

3. We click the button "Environment Variables" and a window with all

the environment variables shows up:

4. We choose "Path" from the list of System variables, as shown on the

figure, and press the "Edit" button. A small window appears, in which we

enter the path to the directory where the .NET Framework is installed:

Of course, first we need to find where our .NET Framework is installed.

By default it is located somewhere inside the Windows system directory

C:\Windows\Microsoft.NET, for example:

www.manaraa.com

Chapter 1. Introduction to Programming 93

C:\Windows\Microsoft.NET\Framework64\v4.0.30319

Adding the additional path to the already existing ones in the Path

variable of the environment is done by adjoining the path name to the

others and using a semicolon (;) as a spacer.

We must be careful because if we delete any of the existing

system paths, some of Windows’ functions or part of the

installed software might fail to operate properly!

5. When we are done with setting the path, we can try running csc.exe,

without entering its full path. To do so, we open a new cmd.exe

(Command Prompt) window (it is important to restart the Command

Prompt) and type in the "csc" command. We should see the C#

compiler version and a message that no input file has been specified:

Visual Studio IDE

So far we have examined how to compile and run C# programs using the

Windows console (Command Prompt). Of course, there is an easier way to

do it – by using an integrated development environment, which will execute

all the commands we have used so far. Let’s take a look at how to work with

development environments (IDE) and how they will make our job easier.

Integrated Development Environments

In the previous examples, we examined how to compile and run a program

consisting of a single file. Usually programs are made of many files,

sometimes even tens of thousands. Writing in a text editor, compiling and

executing a single file program from the command prompt are simple, but to

do all this for a big project can prove to be a very complex and time-

consuming endeavor. There is a single tool that reduces the complexity,

makes writing, compiling and executing software applications easier – the so

called Integrated Development Environment (IDE). Development

environments usually offer many additions to the main development functions

www.manaraa.com

94 Fundamentals of Computer Programming with C#

such as debugging, unit testing, checking for common errors, access to a

repository and others.

What Is Visual Studio?

Visual Studio is a powerful integrated environment (IDE) for developing

software applications for Windows and the .NET Framework platform. Visual

Studio (VS) supports different programming languages (for example C#,

VB.NET and C++) and different software development technologies

(Win32, COM, ASP.NET, ADO.NET Entity Framework, Windows Forms, WPF,

Silverlight, Windows Store apps and many more Windows and .NET

technologies). It offers a powerful integrated environment for writing code,

compiling, executing, debugging and testing applications, designing user

interface (forms, dialogs, web pages, visual controls and others), data and

class modeling, running tests and hundreds of other functions.

IDE means “integrated development environment” – a tool where you write

code, compile it, run it, test it, debug it, etc. and everything is integrated

into a single place. Visual Studio is typical example of development IDE.

.NET Framework 4.5 comes with Visual Studio 2012 (VS 2012). This is the

latest version of Visual Studio as of March 2013. It is designed for C# 5, .NET

4.5 and Windows 8 development.

VS 2012 is a commercial product but has a free version called Visual Studio

Express 2012, which can be downloaded for free from the Microsoft website

at http://microsoft.com/visualstudio/downloads.

Visual Studio 2012 Express has several editions (for Desktop, for Web, for

Windows 8 and others). If you want to write C# code following the content of

this book, you may use Visual Studio 2012 Express for Desktop or check

whether you have a free license of the full Visual Studio from your University

or organization. Many academic institutions (like Sofia University and Telerik

Software Academy) provide free Microsoft DreamSpark accounts to their

students to get licensed Windows, Visual Studio, SQL Server and other

development tools. If you are student, ask your university administration

about the DreamSpark program. Most universities worldwide are members of

this program.

In this book we will take a look at only the most important functions of VS

Express 2012 – the ones related to coding. These are the functions for

creating, editing, compiling, executing and debugging programs.

Note that older Visual Studio versions such as VS 2010 and VS 2008 can

also be used for the examples in this book but their user interface might look

slightly different. Our examples are based on VS 2012 on Windows 8.

Before we continue with an example, let’s take a more detailed look of the

structure of Visual Studio 2012’s visual interface. Windows are the main

part of it. Each of them has a different function tied to the development of

applications. Let’s see how Visual Studio 2012 looks after the default

installation and configuration:

http://microsoft.com/visualstudio/downloads

www.manaraa.com

Chapter 1. Introduction to Programming 95

Visual Studio has several windows that we will explore (see the figures

above and below):

- Start Page – from the start page we can easily open any of our latest

projects or start a new one, to create our first C# program or to get

help how to use C#.

- Code Editor – keeps the program’s source code and allows opening and

editing multiple files.

- Error List – it shows the errors in the program we develop (if any). We

learn how to use this window later when we compile C# programs in

Visual Studio.

- Solution Explorer – when no project is loaded, this window is empty,

but it will become a part of our lives as C# programmers. It will show

the structure of our project – all the files it contains, regardless if they

are C# code, images or some other type of code or resources.

- Properties – holds a list of the current object’s properties. Properties

are used mainly in the component-based programming, e.g. when we

develop WPF, Windows Store or ASP.NET Web Forms application.

www.manaraa.com

96 Fundamentals of Computer Programming with C#

There are many other windows with auxiliary functionality in Visual Studio but

we will not review them at this time.

Creating a New C# Project

Before doing anything else in Visual Studio, we must create a new project

or load an existing one. The project groups many files, designed to implement

a software application or system, in a logical manner. It is recommended that

we create a separate project for each new program.

We can create a project in Visual Studio by following these steps:

- File -> New Project …

- The “New Project” dialog appears and lists all the different types of

projects we can create. We can choose a project type (e.g. Console

Application or WPF Application), programming language (e.g. C# or

VB.NET) and .NET Framework version (e.g. .NET Framework 4.5) and

give a name to our project (in our case “IntroToCSharp”):

www.manaraa.com

Chapter 1. Introduction to Programming 97

- We choose Console Application. Console applications are programs,

which use the console as a default input and output. Data is entered

with the keyboard and when a result needs to be printed it appears on

the console (as text on the screen in the program window). Aside from

console applications, we can create applications with a graphical user

interface (e.g. Windows Forms or WPF), Web applications, web services,

mobile applications, Windows Store apps, database projects and others.

- In the field "Name" we enter the name of the project. In our case we

choose the name IntroToCSharp.

- We press the [OK] button.

The newly created project is now shown in the Solution Explorer. Also, our

first file, containing the program code, is automatically added. It is named

Program.cs. It is very important to give meaningful names to our files,

classes, methods and other elements of the program, so that we can easily

find them and navigate the code. A meaningful name means a name that

answers the question “what is the intent of this file / class / method /

variable?” and helps developers to understand how the code works. Don’t use

Problem3 for a name, even if you are solving the problem 3 from the

exercises. Name your project / class by its purpose. If your project is well

named, after few months or a year you will be able to explain what it is

intended to do without opening it and looking inside. Problem3 says nothing

about what this project actually does.

In order to rename the Program.cs file, we right click on it in the Solution

Explorer and select "Rename". We can name the main file of our C# program
HelloCSharp.cs. Renaming a file can also be done with the [F2] key when

the file is selected in the Solution Explorer:

www.manaraa.com

98 Fundamentals of Computer Programming with C#

A dialog window appears asking us if we want to rename class name as well

as the file name. We select "Yes".

www.manaraa.com

Chapter 1. Introduction to Programming 99

After we complete all these steps we have our first console application named

IntroToCSharp and containing a single class HelloCSharp (stored in the file

HelloCSharp.cs):

All we have to do is add code to the Main() method. By default, the

HelloCSharp.cs code should be loaded and ready for editing. If it is not, we

double click on the HelloCSharp.cs file in the Solution Explorer to load it. We

enter the following source code:

www.manaraa.com

100 Fundamentals of Computer Programming with C#

Compiling the Source Code

The compiling process in Visual Studio includes several steps:

- Syntax error check;

- A check for other errors, like missing libraries;

- Converting the C# code into an executable file (a .NET assembly). For

console applications it is an .exe file.

To compile a file in Visual Studio, we press the [F6] key or [Shift+Ctrl+B].

Usually, errors are underlined in red, to attract the programmer’s attention,

while we are still writing or when compiling, at the latest. They are listed in

the "Error List" window if it is visible (if it is not, we can show it from the

"View" menu of Visual Studio).

If our project has at least one error, it will be marked with a small red "x" in

the "Error List" window. Short info about the problem is displayed for each

error – filename, line number and project name. If we double click any of the

errors in the "Error List", Visual Studio will automatically take us to the file

and line of code where the error has occurred. In the screenshot above the

problem is that we have “using Systema;” instead of “using System”.

Starting the Project

To start the project, we press [Ctrl+F5] (holding the [Ctrl] key pressed and

at the same time pressing the [F5] key).

The program will start and the result will be displayed on the console,

followed by the "Press any key to continue . . ." message:

www.manaraa.com

Chapter 1. Introduction to Programming 101

The last message is not part of the result produced by the program. It is a

reminder by Visual Studio that our program has finished its execution

and it gives us time to see the result. If we run the program by only pressing

[F5], that message will not appear and the result will vanish instantly after

appearing because the program will have finished its execution, and the

window will be closed. That is why we should always start our console

applications by pressing [Ctrl+F5].

Not all project types can be executed. In order to execute a C# project, it

needs to have one class with a Main() method declared in the way described

earlier in this chapter.

Debugging the Program

When our program contains errors, also known as bugs, we must find and

remove them, i.e. we need to debug the program. The debugging process

includes:

- Noticing the problems (bugs);

- Finding the code causing the problems;

- Fixing the code so that the program works correctly;

- Testing to make sure the program works as expected after the changes

are made.

The process can be repeated several times until the program starts working

correctly. After we have noticed the problem, we need to find the code

causing it. Visual Studio can help by allowing us to check step by step

whether everything is working as planned.

To stop the execution of the program at designated positions we can place

breakpoints. The breakpoint is associated with a line of the program. The

program stops its execution on the lines with breakpoints, allowing for the

rest of the code to be executed step by step. On each step we can check and

even change the values of the current variables.

Debugging is a sort of step by step slow motion execution of the program. It

gives us the opportunity to easily understand the details of the code and see

where exactly and why the errors have occurred.

Let’s create an intentional error in our program, to illustrate how to use

breakpoints. We will add a line to the program, which will create an exception

during the execution (we will take a detailed look at exceptions in the

"Exception Handling" chapter).

For now let’s edit our program in the following way:

HelloCSharp.cs

class HelloCSharp

www.manaraa.com

102 Fundamentals of Computer Programming with C#

{
 static void Main()
 {
 throw new System.NotImplementedException(
 "Intended exception.");
 System.Console.WriteLine("Hello C#!");
 }
}

When we start the program again with [Ctrl+F5] we will get an error and it

will be printed on the console:

Let’s see how breakpoints will help us find the problem. We move the

cursor to the line with the opening bracket of the Main() method and press

[F9] (by doing so we place a breakpoint on that line). A red dot appears,

indicating that the program will stop there if it is executed in debug mode:

Now we must start the program in debug mode. We select Debug -> Start

Debugging or press [F5]. The program will start and immediately stop at

the first breakpoint it encounters. The line will be colored in yellow and we

can execute the program step by step. With the [F10] key we move to the

next line.

When we are on a given line and it is colored in yellow, the code on that line

is not executed yet. It executes once we have passed that line. In this case

www.manaraa.com

Chapter 1. Introduction to Programming 103

we have not received the error yet despite the fact that we are on the line we

added and should cause it:

We press [F10] one more time to execute the current line. This time Visual

Studio displays a window specifying the line, where the error occurred as well

as some additional details about it:

www.manaraa.com

104 Fundamentals of Computer Programming with C#

Once we know where exactly the problem in the program is, we can easily

correct it. To do so, first, we need to stop the execution of the program before

it is finished. We select Debug –> Stop Debugging or press [Shift+F5].

After that we delete the problem line and start the program in normal mode

(without debugging) by pressing) [Ctrl+F5].

Alternatives to Visual Studio

As we have seen, in theory, we can do without Visual Studio, but in practice

that is not a good idea. The work required compiling a big project, finding all

the errors in the code and performing numerous other actions would simply

take too much time without Visual Studio.

On the other hand, Visual Studio is not a free software developing

environment (the full version). Many people cannot afford to buy the

professional version (this is also true for small companies and some people

engaged in programming).

This is why there are some alternatives to Visual Studio (except VS Express

Edition), which are free and can handle the same tasks relatively well.

SharpDevelop

One alternative is SharpDevelop (#Develop). We can find it at the following

Internet address: http://www.icsharpcode.NET/OpenSource/SD/. #Develop is

an IDE for C# and is developed as an open-source project. It supports the

majority of the functionalities offered in Visual Studio 2012 but also works in

Linux and other operating systems. We will not review it in details but you

should keep it in mind, in case you need a C# development environment and

Visual Studio is not available.

MonoDevelop

MonoDevelop is an integrated software development environment for the

.NET platform. It is completely free (open source) and can be downloaded at:

http://monodevelop.com. With MonoDevelop, we can quickly and easily write

fully functional desktop and ASP.NET applications for Linux, Mac OS X and

Windows. It also enables programmers to easily transfer projects created in

Visual Studio to the Mono platform and make them functional in other

platforms.

Decompiling Code

Sometimes programmers need to see the code of a given module or program,

not written by them and with no source code available. The process, which

generates source code from an existing executable binary file (.NET

assembly – .exe or .dll) is called decompiling.

We might need to decompile code in the following cases:

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

www.manaraa.com

Chapter 1. Introduction to Programming 105

- We want to check how a given algorithm is implemented but we do not

have the source code, e.g. to check how Array.Sort() internally works.

- There are several options when using some .NET library, and we want to

find the optimal choice. We want to see how to use certain API

digging into some compiled code that uses it.

- We have no information how a given library works, but we have the

compiled code (.NET assembly), which uses it, and we want to find out

how exactly the library works.

- We have lost our source code and we want to recover it. Code

recovery through decompilation will result in lost variable names,

comments, formatting, and others, but is better than nothing.

Decompiling is done with the help of tools, which are not standard part of

Visual Studio. The first popular .NET decompiler was Red Gate’s Reflector

(before it became commercial in early 2011).

Telerik is offering a good and completely free .NET decompiler called

JustDecompile. It can be downloaded from the company’s website:

http://www.telerik.com/products/decompiler.aspx. JustDecompile allows code

decompilation directly in Visual Studio and also has an external stand-alone

GUI application for browsing assemblies and decompile their code:

http://www.telerik.com/products/decompiler.aspx

www.manaraa.com

106 Fundamentals of Computer Programming with C#

Another good decompilation tool for .NET is the ILSpy, which is developed

around the SharpDevelop project. ILSpy can be downloaded at:

http://ilspy.net. The program does not require installation. After we start it,

ILSpy loads some of the standard .NET Framework libraries. Via the menu File

-> Open, we can open a certain .NET assembly. We can also load an assembly

from the GAC (Global Assembly Cache). This is how ILSpy looks like:

In ILSpy there are two ways to find out how a given method is implemented.

For example, if we want to see how the static method

System.Currency.ToDecimal works, first we can use the tree on the left to

find the Currency class in the System namespace and finally select the

ToDecimal method. If we click on any method, we will be able to see its

source code in C#. Another way to find a given class is using the search

engine in ILSpy. It searches through the names of all classes, interfaces,

methods, properties etc. from the loaded assemblies. Unfortunately, the

version at the time of writing of this book (ILSpy 2.1) can decompile only the

languages C#, VB.NET and IL.

JustDecompile and ILSpy are extremely useful tools, which can help almost

every day when developing .NET software and we should definitely download

at least one and play with it. When we are wondering how a certain method

works or how something is implemented in a given assembly, we can always

rely on the decompiler to find out.

http://ilspy.net/

www.manaraa.com

Chapter 1. Introduction to Programming 107

C# in Linux, iOS and Android

C# programming in Linux is not very developed compared to that in Windows.

We do not want to completely skip it, so we will give some guidelines on how

to start programming in C# in Linux, iOS and Android.

The most important thing that we need in order to write C# code in Linux is a

.NET Framework implementation. Microsoft .NET Framework is not available

for Linux but there is an open-source .NET implementation called

“Mono”. We can download Mono at its official website: http://www.mono-

project.com. Mono allows us to compile and execute C# programs in a Linux

environment and on other operating systems. It contains a C# compiler, a

CLR, a garbage collector, the standard .NET libraries and many of the libraries

available for .NET Framework in Windows like Windows Forms and ASP.NET.

Mono supports compiling and running C# code not only in Linux but also in

Solaris, Mac OS X, iOS (iPhone / iPad) and Android. The iOS version

(MonoTouch) and the Android version of Mono (Mono for Android) are

commercial projects, while Mono for Linux is open-source free software.

Of course, Visual Studio does not work in Linux environment but we can use

the #Develop or MonoDevelop as C# IDE in Linux.

Other .NET Languages

C# is the most popular .NET language but there are few other languages that

may be used to write .NET programs:

- VB.NET – Visual Basic .NET (VB) is Basic language adapted to run in

.NET Framework. It is considered a successor of Microsoft Visual Basic 6

(legacy development environment for Windows 3.1 and Windows 95). It

has strange syntax (for C# developers) but generally does the same as

C#, just in different syntax. The only reason VB.NET exists is historical:

it is successor of VB6 and keeps most of its syntax. Not recommended

unless you are VB6 programmer.

- Managed C++ – adaptation of the C++ programming language to .NET

Framework. It can be useful if you need to quickly convert existing C++

code to be used from .NET. Not recommended for new projects. Not

recommended for the readers of this book, even if someone has some

C++ experience, because it makes .NET programming unnecessary

complicated.

- F# – an experiment to put purely functional programming paradigm in

.NET Framework. Not recommended at all (unless you are functional

programming guru).

- JavaScript – it may be used to develop Windows 8 (Windows Store)

applications through the WinJS technology. It might be a good choice

for skillful HTML5 developers who have good JavaScript skills. Not

recommended for the readers of this book because it does not support

Console applications.

http://www.mono-project.com/
http://www.mono-project.com/

www.manaraa.com

108 Fundamentals of Computer Programming with C#

Exercises

1. Install and make yourself familiar with Microsoft Visual Studio and

Microsoft Developer Network (MSDN) Library Documentation.

2. Find the description of the System.Console class in the standard .NET

API documentation (MSDN Library).

3. Find the description of the System.Console.WriteLine() method and its

different possible parameters in the MSDN Library.

4. Compile and execute the sample program from this chapter using the

command prompt (the console) and Visual Studio.

5. Modify the sample program to print a different greeting, for example

"Good Day!".

6. Write a console application that prints your first and last name on the

console.

7. Write a program that prints the following numbers on the console 1,

101, 1001, each on a new line.

8. Write a program that prints on the console the current date and time.

9. Write a program that prints the square root of 12345.

10. Write a program that prints the first 100 members of the sequence 2, -

3, 4, -5, 6, -7, 8.

11. Write a program that reads your age from the console and prints your

age after 10 years.

12. Describe the difference between C# and the .NET Framework.

13. Make a list of the most popular programming languages. How are they

different from C#?

14. Decompile the example program from exercise 5.

Solutions and Guidelines

1. If you have a DreamSpark account (www.dreamspark.com), or your

school or university offers free access to Microsoft products, install the

full version of Microsoft Visual Studio. If you do not have the

opportunity to work with the full version of Microsoft Visual Studio, you

can download Visual Studio Express for free from the Microsoft web

site; it is completely free and works well for educational purposes.

2. Use the address given in the ".NET Documentation" section of this

chapter. Open it and search in the tree on the left side. A Google search

will work just as well and is often the fastest way to find documentation

for a given .NET class.

3. Use the same approach as in the previous exercise.

http://www.dreamspark.com/

www.manaraa.com

Chapter 1. Introduction to Programming 109

4. Follow the instruction from the Compiling and Executing C# Programs

section.

5. Use the code from the sample C# program from this chapter and

change the printed message.

6. Find out how to use the System.Console.Write() method.

7. Use the System.Console.WriteLine() method.

8. Find out what features are offered by the System.DateTime class.

9. Find out what features are offered by the System.Math class.

10. Try to learn on your own how to use loops in C#. You may read about

for-loops in the chapter “Loops”.

11. Use the methods System.Console.ReadLine(), int.Parse() and
System.DateTime.AddYears().

12. Research them on the Internet (e.g. in Wikipedia) and take a closer

look at the differences between them. You will find that C# is a

programming language while .NET Framework is development platform

and runtime for running .NET code. Be sure to read the section “The C#

Language and the .NET Platform” form this chapter.

13. Find out which are the most popular languages and examine some

sample programs written in them. Compare them to C#. You might take

a look at C, C++, Java, C#, VB.NET, PHP, JavaScript, Perl, Python

and Ruby.

14. First download and install JustDecompile or ILSpy (more information

about them can be found in the “Code Decompilation” section). After you

run one of them, open your program’s compiled file. It can be found in

the bin\Debug subdirectory of your C# project. For example, if your

project is named TestCSharp and is located in C:\Projects, then the

compiled assembly (executable file) of your program will be the following

file C:\Projects\TestCSharp\bin\Debug\TestCSharp.exe.

http://www.telerik.com/justdecompile.aspx

www.manaraa.com

www.manaraa.com

Chapter 2. Primitive
Types and Variables

In This Chapter

In this chapter we will get familiar with primitive types and variables in

C# – what they are and how to work with them. First we will consider the

data types – integer types, real types with floating-point, Boolean, character,

string and object type. We will continue with the variables, with their

characteristics, how to declare them, how they are assigned a value and what

a variable initialization is. We will get familiar with the two major sets of data

types in C# – value types and reference types. Finally we will examine

different types of literals and their usage.

What Is a Variable?

A typical program uses various values that change during its execution.

For example, we create a program that performs some calculations on the

values entered by the user. The values entered by one user will obviously be

different from those entered in by another user. This means that when

creating the program, the programmer does not know what values will be

introduced as input, and that makes it necessary to process all possible values

a user may enter.

When a user enters a new value that will be used in the process of calculation,

we can preserve it (temporarily) in the random access memory of our

computer. The values in this part of memory change (vary) throughout

execution and this has led to their name – variables.

Data Types

Data types are sets (ranges) of values that have similar characteristics. For

instance byte type specifies the set of integers in the range of [0 … 255].

Characteristics

Data types are characterized by:

- Name – for example, int;

- Size (how much memory they use) – for example, 4 bytes;

- Default value – for example 0.

www.manaraa.com

112 Fundamentals of Computer Programming with C#

Types

Basic data types in C# are distributed into the following types:

- Integer types – sbyte, byte, short, ushort, int, uint, long, ulong;

- Real floating-point types – float, double;

- Real type with decimal precision – decimal;

- Boolean type – bool;

- Character type – char;

- String – string;

- Object type – object.

These data types are called primitive (built-in types), because they are

embedded in C# language at the lowest level. The table below represents the

above mentioned data types, their range and their default values:

Data

Types

Default

Value
Minimum Value Maximum Value

sbyte 0 -128 127

byte 0 0 255

short 0 -32768 32767

ushort 0 0 65535

int 0 -2147483648 2147483647

uint 0u 0 4294967295

long 0L -9223372036854775808 9223372036854775807

ulong 0u 0 18446744073709551615

float 0.0f ±1.5×10-45 ±3.4×1038

double 0.0d ±5.0×10-324 ±1.7×10308

decimal 0.0m ±1.0×10-28 ±7.9×1028

bool false Two possible values: true and false

char '\u0000' '\u0000' '\uffff'

object null - -

string null - -

www.manaraa.com

Chapter 2. Primitive Types and Variables 113

Correspondence between C# and .NET Types

Primitive data types in C# have a direct correspondence with the types of the

common type system (CTS) in .NET Framework. For instance, int type in C#

corresponds to System.Int32 type in CTS and to Integer type in VB.NET

language, while long type in C# corresponds to System.Int64 type in CTS

and to Long type in VB.NET language. Due to the common types system

(CTS) in .NET Framework there is compatibility between different prog-

ramming languages (like for instance, C#, Managed C++, VB.NET and F#).

For the same reason int, Int32 and System.Int32 types in C# are actually

different aliases for one and the same data type – signed 32-bit integer.

Integer Types

Integer types represent integer numbers and are sbyte, byte, short,

ushort, int, uint, long and ulong. Let’s examine them one by one.

The sbyte type is an 8-bit signed integer. This means that the number of

possible values for it is 28, i.e. 256 values altogether, and they can be both,

positive and negative. The minimum value that can be stored in sbyte is

SByte.MinValue = -128 (-27), and the maximum value is SByte.MaxValue =

127 (27-1). The default value is the number 0.

The byte type is an 8-bit unsigned integer type. It also has 256 different

integer values (28) that can only be nonnegative. Its default value is the

number 0. The minimal taken value is Byte.MinValue = 0, and the maximum

is Byte.MaxValue = 255 (28-1).

The short type is a 16-bit signed integer. Its minimal value is

Int16.MinValue = -32768 (-215), and the maximum is Int16.MaxValue =

32767 (215-1). The default value for short type is the number 0.

The ushort type is 16-bit unsigned integer. The minimum value that it can

store is UInt16.MinValue = 0, and the minimum value is –

UInt16.MaxValue = 65535 (216-1). Its default value is the number 0.

The next integer type that we will consider is int. It is a 32-bit signed

integer. As we can notice, the growth of bits increases the possible values

that a type can store. The default value for int is 0. Its minimal value is

Int32.MinValue = -2,147,483,648 (-231), and its maximum value is

Int32.MaxValue = 2,147,483,647 (231-1).

The int type is the most often used type in programming. Usually

programmers use int when they work with integers because this type is

natural for the 32-bit microprocessor and is sufficiently "big" for most of the

calculations performed in everyday life.

The uint type is 32-bit unsigned integer type. Its default value is the

number 0u or 0U (the two are equivalent). The 'u' letter indicates that the

number is of type uint (otherwise it is understood as int). The minimum

www.manaraa.com

114 Fundamentals of Computer Programming with C#

value that it can take is UInt32.MinValue = 0, and the maximum value is

UInt32.MaxValue = 4,294,967,295 (232-1).

The long type is a 64-bit signed type with a default value of 0l or 0L (the

two are equivalent but it is preferable to use 'L' because the letter 'l' is easily

mistaken for the digit one '1'). The 'L' letter indicates that the number is of

type long (otherwise it is understood int). The minimal value that can be

stored in the long type is Int64.MinValue = -9,223,372,036,854,775,808

(-263) and its maximum value is Int64.MaxValue = 9,223,372,036,854,

775,807 (263-1).

The biggest integer type is the ulong type. It is a 64-bit unsigned type,

which has as a default value – the number 0u, or 0U (the two are equivalent).

The suffix 'u' indicates that the number is of type ulong (otherwise it is

understood as long). The minimum value that can be recorded in the ulong

type is UInt64.MinValue = 0 and the maximum is UInt64.MaxValue =

18,446,744,073,709,551,615 (264-1).

Integer Types – Example

Consider an example in which we declare several variables of the integer

types we know, we initialize them and print their values to the console:

// Declare some variables
byte centuries = 20;
ushort years = 2000;
uint days = 730480;
ulong hours = 17531520;
// Print the result on the console
Console.WriteLine(centuries + " centuries are " + years +
 " years, or " + days + " days, or " + hours + " hours.");

// Console output:
// 20 centuries are 2000 years, or 730480 days, or 17531520
// hours.

ulong maxIntValue = UInt64.MaxValue;
Console.WriteLine(maxIntValue); // 18446744073709551615

You would be able to see the declaration and initialization of a variable in

detail in sections "Declaring Variables" and "Initialization of Variables" below,

and it would become clear from the examples.

In the code snippet above, we demonstrate the use of integer types. For small

numbers we use byte type, and for very large – ulong. We use unsigned

types because all used values are positive numbers.

www.manaraa.com

Chapter 2. Primitive Types and Variables 115

Real Floating-Point Types

Real types in C# are the real numbers we know from mathematics. They are

represented by a floating-point according to the standard IEEE 754 and are

float and double. Let’s consider in details these two data types and

understand what their similarities and differences are.

Real Type Float

The first type we will consider is the 32-bit real floating-point type float. It

is also known as a single precision real number. Its default value is 0.0f

or 0.0F (both are equivalent). The character 'f' when put at the end explicitly

indicates that the number is of type float (because by default all real

numbers are considered double). More about this special suffix we can read

bellow in the "Real Literals" section. The considered type has accuracy up to

seven decimal places (the others are lost). For instance, if the number

0.123456789 is stored as type float it will be rounded to 0.1234568. The

range of values, which can be included in a float type (rounded with accuracy

of 7 significant decimal digits), range from ±1.5 × 10-45 to ±3.4 × 1038.

Special Values of the Real Types

The real data types have also several special values that are not real numbers

but are mathematical abstractions:

- Negative infinity -∞ (Single.NegativeInfinity). It is obtained

when for instance we are dividing -1.0f by 0.0f.

- Positive infinity +∞ (Single.PositiveInfinity). It is obtained

when for instance we are dividing 1.0f by 0.0f.

- Uncertainty (Single.NaN) – means that an invalid operation is

performed on real numbers. It is obtained when for example we divide

0.0f by 0.0f, as well as when calculating square root of a negative

number.

Real Type Double

The second real floating-point type in the C# language is the double type.

It is also called double precision real number and is a 64-bit type with a

default value of 0.0d and 0.0D (the suffix 'd' is not mandatory because by

default all real numbers in C# are of type double). This type has precision of

15 to 16 decimal digits. The range of values, which can be recorded in double

(rounded with precision of 15-16 significant decimal digits), is from

±5.0 × 10-324 to ±1.7 × 10308.

The smallest real value of type double is the constant Double.MinValue =

-1.79769e+308 and the largest is Double.MaxValue = 1.79769e+308. The

closest to 0 positive number of type double is Double.Epsilon = 4.94066e-
324. As with the type float the variables of type double can take the special

www.manaraa.com

116 Fundamentals of Computer Programming with C#

values: Double.PositiveInfinity (+∞), Double.NegativeInfinity (-∞)

and Double.NaN (invalid number).

Real Floating-Point Types – Example

Here is an example in which we declare variables of real number types, assign

values to them and print them:

float floatPI = 3.14f;
Console.WriteLine(floatPI); // 3.14
double doublePI = 3.14;
Console.WriteLine(doublePI); // 3.14
double nan = Double.NaN;
Console.WriteLine(nan); // NaN
double infinity = Double.PositiveInfinity;
Console.WriteLine(infinity); // Infinity

Precision of the Real Types

In mathematics the real numbers in a given range are countless (as opposed

to the integers in that range) as between any two real numbers a and b there

are countless other real numbers c where a < c < b. This requires real

numbers to be stored in computer memory with a limited accuracy.

Since mathematics and physics mostly work with extremely large numbers

(positive and negative) and with extremely small numbers (very close to

zero), real types in computing and electronic devices must be stored and

processed appropriately. For example, according to the physics the mass of

electron is approximately 9.109389*10-31 kilograms and in 1 mole of

substance there are approximately 6.02*1023 atoms. Both these values can

be stored easily in float and double types.

Due to its flexibility, the modern floating-point representation of real

numbers allows us to work with a maximum number of significant digits for

very large numbers (for example, positive and negative numbers with

hundreds of digits) and with numbers very close to zero (for example, positive

and negative numbers with hundreds of zeros after the decimal point before

the first significant digit).

Accuracy of Real Types – Example

The real types in C# we went over – float and double – differ not only by

the range of possible values they can take, but also by their precision (the

number of decimal digits, which they can preserve). The first type has a

precision of 7 digits, the second – 15-16 digits.

Consider an example in which we declare several variables of the known real

types, initialize them and print their values on the console. The purpose of the

example is to illustrate the difference in their accuracy:

www.manaraa.com

Chapter 2. Primitive Types and Variables 117

// Declare some variables
float floatPI = 3.141592653589793238f;
double doublePI = 3.141592653589793238;

// Print the results on the console
Console.WriteLine("Float PI is: " + floatPI);
Console.WriteLine("Double PI is: " + doublePI);

// Console output:
// Float PI is: 3.141593
// Double PI is: 3.14159265358979

We see that the number π which we declared as float, is rounded to the 7-th

digit, and the one we declared double – to 15-th digit. We can conclude that

the real type double retains much greater precision than float, thus if we

need a greater precision after the decimal point, we will use it.

About the Presentation of the Real Types

Real floating-point numbers in C# consist of three components (according to

the standard IEEE 754): sign (1 or -1), mantissa and order (exponent),

and their values are calculated by a complex formula. More detailed

information about the representation of the real numbers is provided in the

chapter "Numeral Systems" where we will take an in-depth look at the

representation of numbers and other data types in computing.

Errors in Calculations with Real Types

In calculations with real floating-point data types it is possible to observe

strange behavior, because during the representation of a given real number

it often happens to lose accuracy. The reason for this is the inability of some

real numbers to be represented exactly as a sum of negative powers of the

number 2. Examples of numbers that do not have an accurate representation

in float and double types are for instance 0.1, 1/3, 2/7 and other. Here is a

sample C# code, which demonstrates errors in calculations with floating-point

numbers in C#:

float f = 0.1f;
Console.WriteLine(f); // 0.1 (correct due to rounding)
double d = 0.1f;
Console.WriteLine(d); // 0.100000001490116 (incorrect)

float ff = 1.0f / 3;
Console.WriteLine(ff); // 0.3333333 (correct due to rounding)
double dd = ff;
Console.WriteLine(dd); // 0.333333343267441 (incorrect)

www.manaraa.com

118 Fundamentals of Computer Programming with C#

The reason for the unexpected result in the first example is the fact that the

number 0.1 (i.e. 1/10) has no accurate representation in the real floating-

point number format IEEE 754 and its approximate value is recorded. When

printed directly the result looks correct because of the rounding. The rounding

is done during the conversion of the number to string in order to be printed

on the console. When switching from float to double the approximate

representation of the number in the IEEE 754 format is more noticeable.

Therefore, the rounding does no longer hide the incorrect representation and

we can observe the errors in it after the eighth digit.

In the second case the number 1/3 has no accurate representation and is

rounded to a number very close to 0.3333333. The value of this number is

clearly visible when it is written in double type, which preserves more

significant digits.

Both examples show that floating-point number arithmetic can produce

mistakes, and is therefore not appropriate for precise financial calculations.

Fortunately, C# supports decimal precision arithmetic where numbers like 0.1

are presented in the memory without rounding.

Not all real numbers have accurate representation in float

and double types. For example, the number 0.1 is represent-

ted rounded in float type as 0.099999994.

Real Types with Decimal Precision

C# supports the so-called decimal floating-point arithmetic, where

numbers are represented via the decimal numeral system rather than the

binary one. Thus, the decimal floating point-arithmetic type in C# does not

lose accuracy when storing and processing floating-point numbers.

The type of data for real numbers with decimal precision in C# is the 128-

bit type decimal. It has a precision from 28 to 29 decimal places. Its minimal

value is -7.9×1028 and its maximum value is +7.9×1028. The default value is

0.0m or 0.0M. The 'm' character at the end indicates explicitly that the number

is of type decimal (because by default all real numbers are of type double).

The closest to 0 numbers, which can be recorded in decimal, are ±1.0 × 10-28.
It is obvious that decimal can store neither very big positive or negative

numbers (for example, with hundreds of digits), nor values very close to 0.

However, this type is almost perfect for financial calculations because it

represents the numbers as a sum of powers of 10 and losses from rounding

are much smaller than when using binary representation. The real numbers of

type decimal are extremely convenient for financial calculations –

calculation of revenues, duties, taxes, interests, payments, etc.

Here is an example in which we declare a variable of type decimal and assign

its value:

www.manaraa.com

Chapter 2. Primitive Types and Variables 119

decimal decimalPI = 3.14159265358979323846m;
Console.WriteLine(decimalPI); // 3.14159265358979323846

The number decimalPI, which we declared of type decimal, is not rounded

even with a single position because we use it with precision of 21 digits,

which fits in the type decimal without being rounded.

Because of the high precision and the absence of anomalies during

calculations (which exist for float and double), the decimal type is

extremely suitable for financial calculations where accuracy is critical.

Despite its smaller range, the decimal type retains precision

for all decimal numbers it can store! This makes it much

more suitable for precise calculations, and very appropriate

for financial ones.

The main difference between real floating-point numbers and real

numbers with decimal precision is the accuracy of calculations and the

extent to which they round up the stored values. The double type allows us

to work with very large values and values very close to zero but at the

expense of accuracy and some unpleasant rounding errors. The decimal type

has smaller range but ensures greater accuracy in computation, as well as

absence of anomalies with the decimal numbers.

If you perform calculations with money use the decimal type

instead of float or double. Otherwise, you may encounter

unpleasant anomalies while calculating and errors as a

result!

As all calculations with data of type decimal are done completely by software,

rather than directly at a low microprocessor level, the calculations of this type

are from several tens to hundreds of times slower than the same

calculations with double, so use this type only when it is really necessary.

Boolean Type

Boolean type is declared with the keyword bool. It has two possible values:

true and false. Its default value is false. It is used most often to store the

calculation result of logical expressions.

Boolean Type – Example

Consider an example in which we declare several variables from the already

known types, initialize them, compare them and print the result on the

console:

// Declare some variables

www.manaraa.com

120 Fundamentals of Computer Programming with C#

int a = 1;
int b = 2;
// Which one is greater?
bool greaterAB = (a > b);
// Is 'a' equal to 1?
bool equalA1 = (a == 1);
// Print the results on the console
if (greaterAB)
{
 Console.WriteLine("A > B");
}
else
{
 Console.WriteLine("A <= B");
}

Console.WriteLine("greaterAB = " + greaterAB);
Console.WriteLine("equalA1 = " + equalA1);

// Console output:
// A <= B
// greaterAB = False
// equalA1 = True

In the example above, we declare two variables of type int, compare them

and assign the result to the bool variable greaterAB. Similarly, we do the

same for the variable equalA1. If the variable greaterAB is true, then A > B
is printed on the console, otherwise A <= B is printed.

Character Type

Character type is a single character (16-bit number of a Unicode table

character). It is declared in C# with the keyword char. The Unicode table is

a technological standard that represents any character (letter, punctuation,

etc.) from all human languages as writing systems (all languages and

alphabets) with an integer or a sequence of integers. More about the Unicode

table can be found in the chapter "Strings and Text Processing". The smallest

possible value of a char variable is 0, and the largest one is 65535. The

values of type char are letters or other characters, and are enclosed in

apostrophes.

Character Type – Example

Consider an example in which we declare one variable of type char, initialize

it with value 'a', then 'b', then 'A' and print the Unicode values of these

letters to the console:

www.manaraa.com

Chapter 2. Primitive Types and Variables 121

// Declare a variable
char ch = 'a';
// Print the results on the console
Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'b';
Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'A';
Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);

// Console output:
// The code of 'a' is: 97
// The code of 'b' is: 98
// The code of 'A' is: 65

Strings

Strings are sequences of characters. In C# they are declared by the

keyword string. Their default value is null. Strings are enclosed in quotation

marks. Various text-processing operations can be performed using strings:

concatenation (joining one string with another), splitting by a given separator,

searching, replacement of characters and others. More information about text

processing can be found in the chapter "Strings and Text Processing", where

you will find detailed explanation on what a string is, what its applications are

and how we can use it.

Strings – Example

Consider an example in which we declare several variables of type string,

initialize them and print their values on the console:

// Declare some variables
string firstName = "John";
string lastName = "Smith";
string fullName = firstName + " " + lastName;
// Print the results on the console
Console.WriteLine("Hello, " + firstName + "!");
Console.WriteLine("Your full name is " + fullName + ".");

// Console output:
// Hello, John!
// Your full name is John Smith.

www.manaraa.com

122 Fundamentals of Computer Programming with C#

Object Type

Object type is a special type, which is the parent of all other types in the .NET

Framework. Declared with the keyword object, it can take values from any

other type. It is a reference type, i.e. an index (address) of a memory area

which stores the actual value.

Using Objects – Example

Consider an example in which we declare several variables of type object,

initialize them and print their values on the console:

// Declare some variables
object container1 = 5;
object container2 = "Five";

// Print the results on the console
Console.WriteLine("The value of container1 is: " + container1);
Console.WriteLine("The value of container2 is: " + container2);

// Console output:
// The value of container1 is: 5
// The value of container2 is: Five.

As you can see from the example, we can store the value of any other type in

an object type variable. This makes the object type a universal data

container.

Nullable Types

Nullable types are specific wrappers around the value types (as int,

double and bool) that allow storing data with a null value. This provides

opportunity for types that generally do not allow lack of value (i.e. value

null) to be used as reference types and to accept both normal values and the

special one null. Thus nullable types hold an optional value.

Wrapping a given type as nullable can be done in two ways:

Nullable<int> i1 = null;
int? i2 = i1;

Both declarations are equivalent. The easiest way to perform this operation is

to add a question mark (?) after the type, for example int?, the more difficult

is to use the Nullable<…> syntax.

Nullable types are reference types i.e. they are reference to an object in the

dynamic memory, which contains their actual value. They may or may not

have a value and can be used as normal primitive data types, but with some

specifics, which are illustrated in the following example:

www.manaraa.com

Chapter 2. Primitive Types and Variables 123

int i = 5;
int? ni = i;
Console.WriteLine(ni); // 5

// i = ni; // this will fail to compile
Console.WriteLine(ni.HasValue); // True
i = ni.Value;
Console.WriteLine(i); // 5

ni = null;
Console.WriteLine(ni.HasValue); // False
//i = ni.Value; // System.InvalidOperationException
i = ni.GetValueOrDefault();
Console.WriteLine(i); // 0

The example above shows how a nullable variable (int?) can have a value

directly added even if the value is non-nullable (int). The opposite is not

directly possible. For this purpose, the nullable types’ property Value can be

used. It returns the value stored in the nullable type variable, or produces an

error (InvalidOperationException) during program execution if the value is

missing (null). In order to check whether a variable of nullable type has a

value assigned, we can use the Boolean property HasValue. Another useful

method is GetValueOrDefault(). If the nullable type variable has a value,

this method will return its value, else it will return the default value for the

nullable type (most commonly 0).

Nullable types are used for storing information, which is not mandatory. For

example, if we want to store data for a student such as the first name and

last name as mandatory and age as not required, we can use type int? for

the age variable:

string firstName = "John";
string lastName = "Smith";
int? age = null;

Variables

After reviewing the main data types in C# let’s see how we can use them. In

order to work with data we should use variables. We have already seen their

usage in the examples, but now let’s look at them in more detail.

A variable is a container of information, which can change its value. It

provides means for:

- storing information;

- retrieving the stored information;

www.manaraa.com

124 Fundamentals of Computer Programming with C#

- modifying the stored information.

In C# programming, you will use variables to store and process information

all the time.

Characteristics of Variables

Variables are characterized by:

- name (identifier), for example age;

- type (of the information preserved in them), for example int;

- value (stored information), for example 25.

A variable is a named area of memory, which stores a value from a

particular data type, and that area of memory is accessible in the program by

its name. Variables can be stored directly in the operational memory of the

program (in the stack) or in the dynamic memory in which larger objects are

stored (such as character strings and arrays).

Primitive data types (numbers, char, bool) are called value types because

they store their value directly in the program stack.

Reference data types (such as strings, objects and arrays) are an address,

pointing to the dynamic memory where their value is stored. They can be

dynamically allocated and released i.e. their size is not fixed in advance

contrary to the case of value types.

More information about the value and reference data types is provided in the

section "Value and Reference Types".

Naming Variables – Rules

When we want the compiler to allocate a memory area for some information

which is used in our program we must provide a name for it. It works like an

identifier and allows referring to the relevant memory area.

The name of the variable can be any of our choice but must follow certain

rules defined in the C# language specification:

- Variable names can contain the letters a-z, A-Z, the digits 0-9 as well as

the character '_'.

- Variable names cannot start with a digit.

- Variable names cannot coincide with a keyword of the C# language.

For example, base, char, default, int, object, this, null and many

others cannot be used as variable names.

A list of the C# keywords can be found in the section "Keywords" in chapter

"Introduction to Programming". If we want to name a variable like a keyword,

we can add a prefix to the name – "@". For example, @char and @null are

valid variable names while char and null are invalid.

www.manaraa.com

Chapter 2. Primitive Types and Variables 125

Naming Variables – Examples

Proper names:

- name

- first_Name

- _name1

Improper names (will lead to compilation error):

- 1 (digit)

- if (keyword)

- 1name (starts with a digit)

Naming Variables – Recommendations

We will provide some recommendations how to name your variables, since not

all names, allowed by the compiler, are appropriate for the variables.

- The names should be descriptive and explain what the variable is used

for. For example, an appropriate name for a variable storing a person’s

name is personName and inappropriate name is a37.

- Only Latin characters should be used. Although Cyrillic is allowed by

the compiler, it is not a good practice to use it in variable names or in

the rest of the identifiers within the program.

- In C# it is generally accepted that variable names should start with a

small letter and include small letters, every new word, however, starts

with a capital letter. For instance, the name firstName is correct and

better to use than firstname or first_name. Usage of the character _

in the variable names is considered a bad naming style.

- Variable names should be neither too long nor too short – they just

need to clarify the purpose of the variable within its context.

- Uppercase and lowercase letters should be used carefully as C#

distinguishes them. For instance, age and Age are different variables.

Here are some examples of well-named variables:

- firstName

- age

- startIndex

- lastNegativeNumberIndex

And here are some examples for poorly named variables (although the names

are correct from the C# compiler’s perspective):

- _firstName (starts with _)

www.manaraa.com

126 Fundamentals of Computer Programming with C#

- last_name (contains _)

- AGE (is written with capital letters)

- Start_Index (starts with capital letter and contains _)

- lastNegativeNumber_Index (contains _)

- a37 (the name is not descriptive and does not clearly provide the

purpose of the variable)

- fullName23, fullName24, etc. (it is not appropriate for a variable name

to contain digits unless this improves the clarity of the variable used; if

you need to have multiple variables with similar names ending in a

different number, storing the same or similar type of data, it may be

more appropriate to create a single collection or array variable and

name it fullNamesList, for example).

Variables should have names, which briefly explain their purpose. When a

variable is named with an inappropriate name, it makes the program very

difficult to read and modify later (after a while, when we have forgotten how

it works). For further explanation on the proper naming of variables refer to

chapter "High-Quality Programming Code".

Always try to use short and precise names when naming the

variables. Follow the rule that the variable name should state

what it is used for, e.g. the name should answer the question

"what value is stored in this variable". When this condition is

not fulfilled then try to find a better name. Digits are not

appropriate to be used in variable names.

Declaring Variables

When you declare a variable, you perform the following steps:

- specify its type (such as int);

- specify its name (identifier, such as age);

- optionally specify initial value (such as 25) but this is not obligatory.

The syntax for declaring variables in C# is as follows:

<data type> <identifier> [= <initialization>];

Here is an example of declaring variables:

string name;
int age;

www.manaraa.com

Chapter 2. Primitive Types and Variables 127

Assigning a Value

Assigning a value to a variable is the act of providing a value that must be

stored in the variable. This operation is performed by the assignment operator

"=". On the left side of the operator we put the variable name and on the right

side – its new value.

Here is an example of assigning values to variables:

name = "John Smith";
age = 25;

Initialization of Variables

The word initialization in programming means specifying an initial value.

When setting value to variables at the time of their declaration we actually

initialize them.

Default Variable Values

Each data type in C# has a default value (default initialization) which is used

when there is no explicitly set value for a given variable. We can use the

following table to see the default values of the types, which we already got

familiar with:

Data Type Default Value Data Type Default Value

sbyte 0 float 0.0f

byte 0 double 0.0d

short 0 decimal 0.0m

ushort 0 bool false

int 0 char '\u0000'

uint 0u string null

long 0L object null

ulong 0u

Let’s summarize how to declare variables, initialize them and assign values to

them with the following example:

// Declare and initialize some variables
byte centuries = 20;
ushort years = 2000;
decimal decimalPI = 3.141592653589793238m;
bool isEmpty = true;
char ch = 'a';

www.manaraa.com

128 Fundamentals of Computer Programming with C#

string firstName = "John";

ch = (char)5;
char secondChar;

// Here we use an already initialized variable and reassign it
secondChar = ch;

Value and Reference Types

Data types in C# are two types: value and reference.

Value types are stored in the program execution stack and directly contain

their value. Value types are the primitive numeric types, the character type

and the Boolean type: sbyte, byte, short, ushort, int, long, ulong,

float, double, decimal, char, bool. The memory allocated for them is

released when the program exits their range, i.e. when the block of code in

which they are defined completes its execution. For example, a variable

declared in the method Main() of the program is stored in the stack until the

program completes execution of this method, i.e. until it finishes (C#

programs terminate after fully executing the Main() method).

Reference types keep a reference (address), in the program execution

stack, and that reference points to the dynamic memory (heap), where

their value is stored. The reference is a pointer (address of the memory cell)

indicating the actual location of the value in the heap. An example of a value

at address in the stack for execution is 0x00AD4934. The reference has a

type. The reference can only point to objects of the same type, i.e. it is a

strongly typed pointer. All reference types can hold a null value. This is a

special service value, which means that there is no value.

Reference types allocate dynamic memory for their creation. They also

release some dynamic memory for a memory cleaning (garbage

collector), when it is no longer used by the program. It is unknown exactly

when a given reference variable will be released of the garbage collector as

this depends on the memory load and other factors. Since the allocation and

release of memory is a slow operation, it can be said that the reference types

are slower than the value ones.

As reference data types are allocated and released dynamically during

program execution, their size might not be known in advance. For example, a

variable of type string can contain text data which varies in length. Actually

the string text value is stored in the dynamic memory and can occupy a

different volume (count of bytes) while the string variable stores the address

of the text value.

Reference types are all classes, arrays and interfaces such as the types:

object, string, byte[]. We will learn about classes, objects, strings, arrays

and interfaces in the next chapters of this book. For now, it is enough to know

www.manaraa.com

Chapter 2. Primitive Types and Variables 129

that all types, which are not value, are reference and their values are stored

in the heap (the dynamically allocated memory).

Value and Reference Types and the Memory

In this example we will illustrate how value and reference types are

represented in memory. Consider the execution of the following

programming code:

int i = 42;
char ch = 'A';
bool result = true;
object obj = 42;
string str = "Hello";
byte[] bytes = { 1, 2, 3 };

At this point the variables are located in the memory as follows:

If we now execute the following code, which changes the values of the

variables, we will see what happens to the memory when changing the

value and reference types:

String@7cdaf2

Int32@9ae764

HeapStack

42

i

ch

result

obj

42

str

Hello

(4 bytes)

A (2 bytes)

true (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]2 3

www.manaraa.com

130 Fundamentals of Computer Programming with C#

i = 0;
ch = 'B';
result = false;
obj = null;
str = "Bye";
bytes[1] = 0;

After these changes the variables and their values are located in the

memory as follows:

As you can see from the figure, a change in a value type (i = 0) changes its

value directly into the stack. When changing a reference type, things are

different: the value is changed in the heap (bytes[1] = 0). The variable

that keeps the array reference remains unchanged (0x00190D11). When

assigning a null value in a reference type, that reference is disconnected

from its value and the variable remains with no value (obj = null).

When assigning new value to an object (a reference type variable) the new

object is allocated in the heap (the dynamic memory) while the old object

remains free (unreferenced). The reference is redirected to the new object

(str = "Bye") while the old objects ("Hello") will be cleaned at some moment

String@9a787b

null

HeapStack

0

i

ch

result

obj

42

str

Hello

(4 bytes)

B (2 bytes)

false (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]0 3

Bye string

www.manaraa.com

Chapter 2. Primitive Types and Variables 131

by the garbage collector (the .NET Framework’s internal system for

automatic memory cleaning) as they are not in use anymore.

Literals

Primitive types, which we already met, are special data types built into the C#

language. Their values specified in the source code of the program are called

literals. One example will make this clearer:

bool result = true;
char capitalC = 'C';
byte b = 100;
short s = 20000;
int i = 300000;

In the above example, literals are true, 'C', 100, 20000 and 300000. They

are variable values set directly in the source code of the program.

Types of Literals

In C# language, there are several types of literals:

- Boolean

- Integer

- Real

- Character

- String

- Object literal null

Boolean Literals

Boolean literals are:

- true

- false

When we assign a value to a variable of type bool we can use only one of

these two values or a Boolean expression (which is calculated to true or

false).

Boolean Literals – Example

Here is an example of a declaration of a variable of type bool and assigning a

value, which represents the Boolean literal true:

bool result = true;

www.manaraa.com

132 Fundamentals of Computer Programming with C#

Integer Literals

Integer literals are sequences of digits, a sign (+, -), suffixes and prefixes.

Using prefixes we can present integers in the program source in decimal or

hexadecimal format. More information about the different numeral systems

we can find in the chapter "Numeral Systems". In the integer literals the

following prefixes and suffixes may take part:

- "0x" and "0X" as prefix indicates hexadecimal values, for example

0xA8F1;

- 'l' and 'L' as suffix indicates long type data, for example 357L.

- 'u' and 'U' as suffix indicates uint or ulong data type, for example 112u.

By default (if no suffix is used) the integer literals are of type int.

Integer Literals – Examples

Here are some examples of using integer literals:

// The following variables are initialized with the same value
int numberInDec = 16;
int numberInHex = 0x10;

// This will cause an error, because the value 234L is not int
int longInt = 234L;

Real Literals

Real literals are a sequence of digits, a sign (+, -), suffixes and the decimal

point character. We use them for values of type float, double and decimal.

Real literals can be represented in exponential format. They also use the

following indications:

- 'f' and 'F' as suffixes mean data of type float;

- 'd' and 'D' as suffixes mean data of type double;

- 'm' and 'm' as suffixes mean data of type decimal;

- 'e' is an exponent, for example, "e-5" means the integer part multiplied

by 10-5.

By default (if there is no suffix), the real numbers are of type double.

Real Literals – Examples

Here are some examples of real literals' usage:

// The following is the correct way of assigning a value:
float realNumber = 12.5f;

www.manaraa.com

Chapter 2. Primitive Types and Variables 133

// This is the same value in exponential format:
realNumber = 1.25e+1f;

// The following causes an error, because 12.5 is double
float realNumber = 12.5;

Character Literals

Character literals are single characters enclosed in apostrophes (single

quotes). We use them to set the values of type char. The value of a character

literal can be:

- a character, for example 'A';

- a character code, for example '\u0065';

- an escaping sequence;

Escaping Sequences

Sometimes it is necessary to work with characters that are not displayed on

the keyboard or with characters that have special meanings, such as the “new

line” character. They cannot be represented directly in the source code of

the program and in order to use them we need special techniques, which we

will discuss now.

Escaping sequences are literals. They are a sequence of special characters,

which describe a character that cannot be written directly in the source code.

This is, for instance, the “new line” character.

There are many examples of characters that cannot be represented directly in

the source code: a double quotation mark, tab, new line, backslash and

others. Here are some of the most frequently used escaping sequences:

- \' – single quote

- \" – double quotes

- \\ – backslash

- \n – new line

- \t – offset (tab)

- \uXXXX – char specified by its Unicode number, for example \u03A7.

The character \ (backslash) is also called an escaping character because it

allows the display on screen (or other output device) of characters that have

special meaning or effect and cannot be represented directly in the source

code.

www.manaraa.com

134 Fundamentals of Computer Programming with C#

Escaping Sequences – Examples

Here are some examples of character literals:

// An ordinary character
char character = 'a';
Console.WriteLine(character);

// Unicode character code in a hexadecimal format
character = '\u003A';
Console.WriteLine(character);

// Assigning the single quotiation character (escaped as \')
character = '\'';
Console.WriteLine(character);

// Assigning the backslash character (escaped as \\)
character = '\\';
Console.WriteLine(character);

// Console output:
// a
// :
// '
// \

String Literals

String literals are used for data of type string. They are a sequence of

characters enclosed in double quotation marks.

All the escaping rules for the char type discussed above are also valid for

string literals.

Strings can be preceded by the @ character that specifies a quoted string

(verbatim string). In quoted strings the rules for escaping are not valid, i.e.

the character \ means \ and is not an escaping character. Only one character

needs to be escaped in the quoted strings – the character " (double-quotes)

and it is escaped in the following way – by repeating it "" (double double-

quotes). All other characters are treated literally, even the new line. Quoted

strings are often used for the file system paths naming.

String Literals – Examples

Here are few examples for string literals usage:

string quotation = "\"Hello, Jude\", he said.";

www.manaraa.com

Chapter 2. Primitive Types and Variables 135

Console.WriteLine(quotation);
string path = "C:\\Windows\\Notepad.exe";
Console.WriteLine(path);
string verbatim = @"The \ is not escaped as \\.
I am at a new line.";
Console.WriteLine(verbatim);
// Console output:
// "Hello, Jude", he said.
// C:\Windows\Notepad.exe
// The \ is not escaped as \\.
// I am at a new line.

More about strings we will find in the chapter "Strings and Text Processing".

Exercises

1. Declare several variables by selecting for each one of them the most

appropriate of the types sbyte, byte, short, ushort, int, uint, long

and ulong in order to assign them the following values: 52,130; -115;

4825932; 97; -10000; 20000; 224; 970,700,000; 112; -44; -1,000,000;

1990; 123456789123456789.

2. Which of the following values can be assigned to variables of type float,

double and decimal: 5, -5.01, 34.567839023; 12.345; 8923.1234857;

3456.091124875956542151256683467?

3. Write a program, which compares correctly two real numbers with

accuracy at least 0.000001.

4. Initialize a variable of type int with a value of 256 in

hexadecimal format (256 is 100 in a numeral system with base 16).

5. Declare a variable of type char and assign it as a value the character,

which has Unicode code, 72 (use the Windows calculator in order to find

hexadecimal representation of 72).

6. Declare a variable isMale of type bool and assign a value to it depending

on your gender.

7. Declare two variables of type string with values "Hello" and "World".

Declare a variable of type object. Assign the value obtained of

concatenation of the two string variables (add space if necessary) to this

variable. Print the variable of type object.

8. Declare two variables of type string and give them values "Hello" and

"World". Assign the value obtained by the concatenation of the two

variables of type string (do not miss the space in the middle) to a

variable of type object. Declare a third variable of type string and

initialize it with the value of the variable of type object (you should use

type casting).

www.manaraa.com

136 Fundamentals of Computer Programming with C#

9. Declare two variables of type string and assign them a value “The

"use" of quotations causes difficulties.” (without the outer quotes).

In one of the variables use quoted string and in the other do not use it.

10. Write a program to print a figure in the shape of a heart by the sign "o".

11. Write a program that prints on the console isosceles triangle which

sides consist of the copyright character "©".

12. A company dealing with marketing wants to keep a data record of its

employees. Each record should have the following characteristic – first

name, last name, age, gender (‘m’ or ‘f’) and unique employee number

(27560000 to 27569999). Declare appropriate variables needed to

maintain the information for an employee by using the appropriate data

types and attribute names.

13. Declare two variables of type int. Assign to them values 5 and 10

respectively. Exchange (swap) their values and print them.

Solutions and Guidelines

1. Look at the ranges of the numerical types in C# described in this chapter.

2. Consider the number of digits after the decimal point. Refer to the table

that describes the sizes of the types float, double and decimal.

3. Two floating-point variables are considered equal if their difference is less

than some predefined precision (e.g. 0.000001):

bool equal = Math.Abs(a - b) < 0.000001;

4. Look at the section about Integer Literals. To easily convert numbers to a

different numeral system use the built-in Windows calculator. For a

hexadecimal representation of the literal use prefix 0x.

5. Look at the section about Character Literals.

6. Look at the section about Boolean Literals.

7. Look at the sections about Strings and Object Data Type.

8. Look at the sections about Strings and Object Data Type. To cast from

object to string use typecasting:

string str = (string)obj;

9. Look at the section about Character Literals. It is necessary to use the

escaping character \" or verbatim strings.

10. Use Console.WriteLine(…), the character 'o' and spaces.

11. Use Console.WriteLine(…), the character © and spaces. Use Windows

Character Map in order to find the Unicode code of the sign "©".

Note that the console may display "c" instead of "©" if it does not

www.manaraa.com

Chapter 2. Primitive Types and Variables 137

support Unicode. If this happens, you might be unable to do anything to

fix it. Some versions of Windows just do not support Unicode in the

console even when you explicitly set the character encoding to UTF-8:

Console.OutputEncoding = System.Text.Encoding.UTF8;

You may need to change the font of your console to some font that

supports the “©” symbol, e.g. “Consolas” or “Lucida Console”.

12. For the names use type string, for the gender use type char (only one

char m/f), and for the unique number and age use some integer type.

13. Use third temporary variable for exchanging the variables:

int a = 5;
int b = 10;

int oldA = a;
a = b;
b = oldA;

To swap integer variables other solutions exist which do not use a third

variable. For example, if we have two integer variables a and b:

int a = 5;
int b = 10;

a = a + b;
b = a - b;
a = a - b;

You might also use the XOR swap algorithm for exchanging integer

values: http://en.wikipedia.org/wiki/XOR_swap_algorithm.

http://en.wikipedia.org/wiki/XOR_swap_algorithm

www.manaraa.com

www.manaraa.com

Chapter 3. Operators
and Expressions

In This Chapter

In this chapter we will get acquainted with the operators in C# and the

actions they can perform when used with the different data types. In the

beginning, we will explain which operators have higher priority and we will

analyze the different types of operators, according to the number of the

arguments they can take and the actions they perform. In the second part,

we will examine the conversion of data types. We will explain when and

why it is needed to be done and how to work with different data types. At the

end of the chapter, we will pay special attention to the expressions and how

we should work with them. Finally, we have prepared exercises to strengthen

our knowledge of the material in this chapter.

Operators

Every programming language uses operators, through which we can perform

different actions on the data. Let’s take a look at the operators in C# and see

what they are for and how they are used.

What Is an Operator?

After we have learned how to declare and set a variable in the previous

chapter, we will discuss how to perform various operations with them. For this

purpose we will get familiar with operators.

Operators allow processing of primitive data types and objects. They take as

an input one or more operands and return some value as a result. Operators

in C# are special characters (such as "+", ".", "^", etc.) and they perform

transformations on one, two or three operands. Examples of operators in C#

are the signs for adding, subtracting, multiplication and division from math

(+, -, *, /) and the operations they perform on the integers and the real

numbers.

Operators in C#

Operators in C# can be separated in several different categories:

- Arithmetic operators – they are used to perform simple mathematical

operations.

www.manaraa.com

140 Fundamentals of Computer Programming with C#

- Assignment operators – allow assigning values to variables.

- Comparison operators – allow comparison of two literals and/or

variables.

- Logical operators – operators that work with Boolean data types and

Boolean expressions.

- Binary operators – used to perform operations on the binary

representation of numerical data.

- Type conversion operators – allow conversion of data from one type to

another.

Operator Categories

Below is a list of the operators, separated into categories:

Category Operators

arithmetic -, +, *, /, %, ++, --

logical &&, ||, !, ^

binary &, |, ^, ~, <<, >>

comparison ==,!=, >, <, >=, <=

assignment =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

string concatenation +

type conversion (type), as, is, typeof, sizeof

other ., new, (), [], ?:, ??

Types of Operators by Number of Arguments

Operators can be separated into different types according to the number of

arguments they could take:

Operator type Number of arguments (operands)

unary takes one operand

binary takes two operands

ternary takes three operands

All binary operators in C# are left-associative, i.e. the expressions are

calculated from left to right, except for the assignment operators. All

assignment operators and conditional operators ?: and ?? are right-

associative, i.e. the expressions are calculated from right to left. The unary

operators are not associative.

Some of the operators in C# perform different operations on the different

data types. For example the operator +. When it is used on numeric data

www.manaraa.com

Chapter 3. Operators and Expressions 141

types (int, long, float, etc.), the operator performs mathematical addition.

However, when we use it on strings, the operator concatenates (joins

together) the content of the two variables/literals and returns the new string.

Operators – Example

Here is an example of using operators:

int a = 7 + 9;
Console.WriteLine(a); // 16

string firstName = "John";
string lastName = "Doe";

// Do not forget the space between them
string fullName = firstName + " " + lastName;
Console.WriteLine(fullName); // John Doe

The example shows how, as explained above, when the operator + is used on

numbers it returns a numerical value, and when it is used on strings it returns

concatenated strings.

Operator Precedence in C#

Some operators have precedence (priority) over others. For example, in

math multiplication has precedence over addition. The operators with a higher

precedence are calculated before those with lower. The operator () is used to

change the precedence and like in math, it is calculated first.

The following table illustrates the precedence of the operators in C#:

Priority Operators

Highest

priority

…

(,)

++, -- (as postfix), new, (type), typeof, sizeof

++, -- (as prefix), +, - (unary), !, ~

*, /, %

+ (string concatenation)

+, -

<<, >>

<, >, <=, >=, is, as

==, !=

&, ^, |

www.manaraa.com

142 Fundamentals of Computer Programming with C#

Lowest

priority
&&

||

?:, ??

=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

The operators located upper in the table have higher precedence than

those below them, and respectively they have an advantage in the calculation

of an expression. To change the precedence of an operator we can use

brackets.

When we write expressions that are more complex or have many operators, it

is recommended to use brackets to avoid difficulties in reading and

understanding the code. For example:

// Ambiguous
x + y / 100

// Unambiguous, recommended
x + (y / 100)

Arithmetical Operators

The arithmetical operators in C# +, -, * are the same like the ones in math.

They perform addition, subtraction and multiplication on numerical values and

the result is also a numerical value.

The division operator / has different effect on integer and real numbers.

When we divide an integer by an integer (like int, long and sbyte) the

returned value is an integer (no rounding, the fractional part is cut). Such

division is called an integer division. Example of integer division: 7 / 3 = 2.

Integer division by 0 is not allowed and causes a runtime exception

DivideByZeroException. The remainder of integer division of integers can be

obtained by the operator %. For example, 7 % 3 = 1, and –10 % 2 = 0.

When dividing two real numbers or two numbers, one of which is real (e.g.

float, double, etc.), a real division is done (not integer), and the result is a

real number with a whole and a fractional part. For example: 5.0 / 2 = 2.5. In

the division of real numbers it is allowed to divide by 0.0 and respectively

the result is +∞ (Infinity), -∞ (-Infinity) or NaN (invalid value).

The operator for increasing by one (increment) ++ adds one unit to the

value of the variable, respectively the operator -- (decrement) subtracts one

unit from the value. When we use the operators ++ and -- as a prefix (when

we place them immediately before the variable), the new value is calculated

first and then the result is returned. When we use the same operators as

post-fix (meaning when we place them immediately after the variable) the

www.manaraa.com

Chapter 3. Operators and Expressions 143

original value of the operand is returned first, then the addition or subtraction

is performed.

Arithmetical Operators – Example

Here are some examples of arithmetic operators and their effect:

int squarePerimeter = 17;
double squareSide = squarePerimeter / 4.0;
double squareArea = squareSide * squareSide;
Console.WriteLine(squareSide); // 4.25
Console.WriteLine(squareArea); // 18.0625

int a = 5;
int b = 4;
Console.WriteLine(a + b); // 9
Console.WriteLine(a + (b++)); // 9
Console.WriteLine(a + b); // 10
Console.WriteLine(a + (++b)); // 11
Console.WriteLine(a + b); // 11
Console.WriteLine(14 / a); // 2
Console.WriteLine(14 % a); // 4

int one = 1;
int zero = 0;
// Console.WriteLine(one / zero); // DivideByZeroException

double dMinusOne = -1.0;
double dZero = 0.0;
Console.WriteLine(dMinusOne / zero); // -Infinity
Console.WriteLine(one / dZero); // Infinity

Logical Operators

Logical (Boolean) operators take Boolean values and return a Boolean result

(true or false). The basic Boolean operators are "AND" (&&), "OR" (||),

"exclusive OR" (^) and logical negation (!).

The following table contains the logical operators in C# and the operations

that they perform:

x y !x x && y x || y x ^ y

true true false true true false

true false false false true true

false true true false true true

www.manaraa.com

144 Fundamentals of Computer Programming with C#

false false true false false false

The table and the following example show that the logical "AND" (&&) returns

true only when both variables contain truth. Logical "OR" (||) returns true

when at least one of the operands is true. The logical negation operator (!)

changes the value of the argument. For example, if the operand has a value

true and a negation operator is applied, the new value will be false. The

negation operator is a unary operator and it is placed before the argument.

Exclusive "OR" (^) returns true if only one of the two operands has the value

true. If the two operands have different values, exclusive "OR" will return the

result true, if they have the same values it will return false.

Logical Operators – Example

The following example illustrates the usage of the logical operators and their

actions:

bool a = true;
bool b = false;
Console.WriteLine(a && b); // False
Console.WriteLine(a || b); // True
Console.WriteLine(!b); // True
Console.WriteLine(b || true); // True
Console.WriteLine((5 > 7) ^ (a == b)); // False

Laws of De Morgan

Logical operations fall under the laws of De Morgan from the mathematical

logic:

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

The first law states that the negation of the conjunction (logical AND) of two

propositions is equal to the disjunction (logical OR) of their negations.

The second law states that the negation of the disjunction of both statements

is equivalent to the conjunction of their negations.

Operator for Concatenation of Strings

The operator + is used to join strings (string). It concatenates (joins) two

or more strings and returns the result as a new string. If at least one of the

arguments in the expression is of type string, and there are other operands

of type different from string, they will be automatically converted to type

string, which allows successful string concatenation.

It is fantastic how .NET runtime handles such operation incompatibilities for

us on the fly, saving us some coding time and allowing us to concentrate on

www.manaraa.com

Chapter 3. Operators and Expressions 145

the main objectives of our programming task! However, it is a good practice

to not miss to cast the variables on which we wish to apply an operation; we

should instead have them converted to the appropriate type for each

operation, so that we are in full control of the end result and prevent implicit

type casts. We will provide more detailed information on casting operations

further down in the section "Type Conversion" of this chapter.

Operator for Concatenation of Strings – Example

Here is an example, which shows concatenations of two strings and a string

with a number:

string csharp = "C#";
string dotnet = ".NET";
string csharpDotNet = csharp + dotnet;
Console.WriteLine(csharpDotNet); // C#.NET
string csharpDotNet4 = csharpDotNet + " " + 5;
Console.WriteLine(csharpDotNet4); // C#.NET 5

In the example we initialize two variables of type string and assign them

values. On the third and fourth row we concatenate both strings and pass the

results to the method Console.WriteLine() to print it on the console. On the

next line we join the resulting string with a space and the number 5. We

assign the returned value to the variable csharpDotNet5, which will

automatically be converted to type string. On the last row we print the

result.

Concatenation (joining, gluing) of strings is a slow operation

and should be used carefully. It is recommended to use the

StringBuilder class for iterative (repetitive) operations on

strings.

In the chapter "Strings" we will explain in detail why the StringBuilder class

must be used for join operations on strings performed in a loop.

Bitwise Operators

A bitwise operator is an operator that acts on the binary representation of

numeric types. In computers all the data and particularly numerical data is

represented as a series of ones and zeros. The binary numeral system is

used for this purpose. For example, number 55 in the binary numeral system

is represented as 00110111.

Binary representation of data is convenient because zero and one in

electronics can be implemented by Boolean circuits, in which zero is

represented as "no electricity" or for example with a voltage of -5V and the

one is presented as "have electricity" or say with voltage +5V.

www.manaraa.com

146 Fundamentals of Computer Programming with C#

We will examine in depth the binary numeral system in the chapter

"Numeral Systems", but just for now we can consider that the numbers in

computers are represented as ones and zeros, and bitwise operators are used

to analyze and change those ones to zeros and vice versa.

Bitwise operators are very similar to the logical ones. In fact, we can

imagine that the logical and bitwise operators perform the same thing but

using different data types. Logical operators work with the values true and

false (Boolean values), while bitwise operators work with numerical values

and are applied bitwise over their binary representation, i.e., they work with

the bits of the number (the digits 0 and 1 of which it consists). Just like the

logical operators in C#, there are bitwise operators "AND" (&), bitwise "OR"

(|), bitwise negation (~) and excluding "OR" (^).

Bitwise Operators and Their Performance

The bitwise operators' performance on binary digits 0 and 1 is shown in the

following table:

x y ~x x & y x | y x ^ y

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

As we see bitwise and logical operators are very much alike. The difference in

the writing of "AND" and "OR" is that the logical operators are written with

double ampersand (&&) and double vertical bar (||), and the bitwise – with a

single ampersand or vertical bar (& and |). Bitwise and logical operators for

exclusive "OR" are the same "^". For logical negation we use "!", while for

bitwise negation (inversion) the "~" operator is used.

In programming there are two bitwise operators that have no analogue in

logical operators. These are the bit shift left (<<) and bit shift right (>>).

Used on numerical values, they move all the bits of the value to the left or

right. The bits that fall outside the number are lost and replaced with 0.

The bit shifting operators are used in the following way: on the left side of

the operator we place the variable (operand) with which we want to use the

operator, on the right side we put a numerical value, indicating how many bits

we want to offset. For example, 3 << 2 means that we want to move the bits

of the number three, twice to the left. The number 3 presented in bits looks

like this: "0000 0011". When you move twice left, the binary value will look

like this: "0000 1100", and this sequence of bits is the number 12. If we look

at the example we can see that actually we have multiplied the number by 4.

Bit shifting itself can be represented as multiplication (bitwise shifting left) or

division (bitwise shifting right) by a power of 2. This occurrence is due to the

www.manaraa.com

Chapter 3. Operators and Expressions 147

nature of the binary numeral system. Example of moving to the right is 6 >>

2, which means to move the binary number "0000 0110" with two positions to

the right. This means that we will lose two right-most digits and feed them

with zeros on the left. The end result will be "0000 0001" which is 1.

Bitwise Operators – Example

Here is an example of using bitwise operators. The binary representation of

the numbers and the results of the bitwise operators are shown in the

comments (green text):

byte a = 3; // 0000 0011 = 3
byte b = 5; // 0000 0101 = 5

Console.WriteLine(a | b); // 0000 0111 = 7
Console.WriteLine(a & b); // 0000 0001 = 1
Console.WriteLine(a ^ b); // 0000 0110 = 6
Console.WriteLine(~a & b); // 0000 0100 = 4
Console.WriteLine(a << 1); // 0000 0110 = 6
Console.WriteLine(a << 2); // 0000 1100 = 12
Console.WriteLine(a >> 1); // 0000 0001 = 1

In the example we first create and initialize the values of two variables a and

b. Then we print on the console the results of some bitwise operations on the

two variables. The first operation that we apply is "OR". The example shows

that for all positions where there was 1 in the binary representation of the

variables a and b, there is also 1 in the result. The second operation is "AND".

The result of the operation contains 1 only in the right-most bit, because the

only place where a and b have 1 at the same time is their right-most bit.

Exclusive "OR" returns ones only in positions where a and b have different

values in their binary bits. Finally, the logical negation and bitwise shifting:

left and right, are illustrated.

Comparison Operators

Comparison operators in C# are used to compare two or more operands. C#

supports the following comparison operators:

- greater than (>)

- less than (<)

- greater than or equal to (>=)

- less than or equal to (<=)

- equality (==)

- difference (!=)

www.manaraa.com

148 Fundamentals of Computer Programming with C#

All comparison operators in C# are binary (take two operands) and the

returned result is a Boolean value (true or false). Comparison operators

have lower priority than arithmetical operators but higher than the

assignment operators.

Comparison Operators – Example

The following example demonstrates the usage of comparison operators in

C#:

int x = 10, y = 5;
Console.WriteLine("x > y : " + (x > y)); // True
Console.WriteLine("x < y : " + (x < y)); // False
Console.WriteLine("x >= y : " + (x >= y)); // True
Console.WriteLine("x <= y : " + (x <= y)); // False
Console.WriteLine("x == y : " + (x == y)); // False
Console.WriteLine("x != y : " + (x != y)); // True

In the example, first we create two variables x and y and we assign them the

values 10 and 5. On the next line we print on the console using the method

Console.WriteLine(…) the result from comparing the two variables x and y

using the operator >. The returned value is true because x has a greater

value than y. Similarly, in the next rows the results from the other 5

comparison operators, used to compare the variables x and y, are printed.

Assignment Operators

The operator for assigning value to a variable is "=" (the character for

mathematical equation). The syntax used for assigning value is as it follows:

operand1 = literal, expression or operand2;

Assignment Operators – Example

Here is an example to show the usage of the assignment operator:

int x = 6;
string helloString = "Hello string.";
int y = x;

In the example we assign value 6 to the variable x. On the second line we

assign a text literal to the variable helloString, and on the third line we

copy the value of the variable x to the variable y.

www.manaraa.com

Chapter 3. Operators and Expressions 149

Cascade Assignment

The assignment operator can be used in cascade (more than once in the

same expression). In this case assignments are carried out consecutively from

right to left. Here’s an example:

int x, y, z;
x = y = z = 25;

On the first line in the example we initialize three variables and on the second

line we assign them the value 25.

The assignment operator in C# is "=", while the comparison

operator is "==". The exchange of the two operators is a

common error when we are writing code. Be careful not to

confuse the comparison operator and the assignment

operator as they look very similar.

Compound Assignment Operators

Except the assignment operator there are also compound assignment

operators. They help to reduce the volume of the code by typing two

operations together with an operator: operation and assignment. Compound

operators have the following syntax:

operand1 operator = operand2;

The upper expression is like the following:

operand1 = operand1 operator operand2;

Here is an example of a compound operator for assignment:

int x = 2;
int y = 4;

x *= y; // Same as x = x * y;
Console.WriteLine(x); // 8

The most commonly used compound assignment operators are += (adds value

of operand2 to operand1), -= (subtracts the value of the right operand from

the value of the left one).Other compound assignment operators are *=, /=

and %=.

The following example gives a good idea of how the compound assignment

operators work:

int x = 6;

www.manaraa.com

150 Fundamentals of Computer Programming with C#

int y = 4;

Console.WriteLine(y *= 2); // 8
int z = y = 3; // y=3 and z=3

Console.WriteLine(z); // 3
Console.WriteLine(x |= 1); // 7
Console.WriteLine(x += 3); // 10
Console.WriteLine(x /= 2); // 5

In the example, first we create the variables x and y and assign them values

6 and 4. On the next line we print on the console y, after we have assigned it

a new value using the operator *= and the literal 2.The result of the operation

is 8. Further in the example we apply the other compound assignment

operators and print the result on the console.

Conditional Operator ?:

The conditional operator ?: uses the Boolean value of an expression to

determine which of two other expressions must be calculated and returned as

a result. The operator works on three operands and that is why it is called

ternary operator. The character "?" is placed between the first and second

operand, and ":" is placed between the second and third operand. The first

operand (or expression) must be Boolean, and the next two operands must

be of the same type, such as numbers or strings.

The operator ?: has the following syntax:

operand1 ? operand2 : operand3

It works like this: if operand1 is set to true, the operator returns as a result

operand2. Otherwise (if operand1 is set to false), the operator returns as a

result operand3.

During the execution, the value of the first argument is calculated. If it has

value true, then the second (middle) argument is calculated and it is

returned as a result. However, if the calculated result of the first argument is

false, then the third (last) argument is calculated and it is returned as a

result.

Conditional Operator "?:" – Example

The following example shows the usage of the operator "?:":

int a = 6;
int b = 4;
Console.WriteLine(a > b ? "a>b" : "b<=a"); // a>b

www.manaraa.com

Chapter 3. Operators and Expressions 151

int num = a == b ? 1 : -1; // num will have value -1

Other Operators

So far we have examined arithmetic, logical and bitwise operators, the

operator for concatenating strings, also the conditional operator ?:. Besides

them in C # there are several other operators worth mentioning.

The "." Operator

The access operator "." (dot) is used to access the member fields or

methods of a class or object. Example of usage of point operator:

Console.WriteLine(DateTime.Now); // Prints the date + time

Square Brackets [] Operator

Square brackets [] are used to access elements of an array by index,

they are the so-called indexer. Indexers are also used for accessing

characters in a string. Example:

int[] arr = { 1, 2, 3 };
Console.WriteLine(arr[0]); // 1
string str = "Hello";
Console.WriteLine(str[1]); // e

Brackets () Operator

Brackets () are used to override the priority of execution of expressions

and operators. We have already seen how the brackets work.

Type Conversion Operator

The operator for type conversion (type) is used to convert a variable from

one type to another. We will examine it in details in the section "Type

Conversion".

Operator "as"

The operator as also is used for type conversion but invalid conversion

returns null, not an exception.

Operator "new"

The new operator is used to create and initialize new objects. We will

examine it in details in the chapter "Creating and Using Objects".

www.manaraa.com

152 Fundamentals of Computer Programming with C#

Operator "is"

The is operator is used to check whether an object is compatible with a given

type (check object's type).

Operator "??"

The operator ?? is similar to the conditional operator ?:. The difference is that

it is placed between two operands and returns the left operand only if its

value is not null, otherwise it returns the right operand. Example:

int? a = 5;
Console.WriteLine(a ?? -1); // 5
string name = null;
Console.WriteLine(name ?? "(no name)"); // (no name)

Other Operators – Examples

Here is an example that shows the operators we just explained:

int a = 6;
int b = 3;

Console.WriteLine(a + b / 2); // 7
Console.WriteLine((a + b) / 2); // 4

string s = "Beer";
Console.WriteLine(s is string); // True

string notNullString = s;
string nullString = null;
Console.WriteLine(nullString ?? "Unspecified"); // Unspecified
Console.WriteLine(notNullString ?? "Specified"); // Beer

Type Conversion and Casting

Generally, operators work over arguments with the same data type. However,

C# has a wide variety of data types from which we can choose the most

appropriate for a particular purpose. To perform an operation on variables of

two different data types we need to convert both to the same data type. Type

conversion (typecasting) can be explicit and implicit.

All expressions in C# have a type. This type can derive from the expression

structure and the types, variables and literals used in it. It is possible to write

an expression which type is inappropriate for the current context. In some

cases this will lead to a compilation error, but in other cases the context can

get a type that is similar or related to the type of the expression. In this case

the program performs a hidden type conversion.

www.manaraa.com

Chapter 3. Operators and Expressions 153

Specific conversion from type S to type T allows the expression of type S to be

treated as an expression of type T during the execution of the program. In

some cases this will require a validation of the transformation. Here are some

examples:

- Conversion of type object to type string will require verification at

runtime to ensure that the value is really an instance of type string.

- Conversion from string to object does not require any verification. The

type string is an inheritor of the type object and can be converted to

its base class without a risk of an error or data loss. We shall examine

inheritance in details in the chapter "Object-Oriented Programming

Principles".

- Conversion of type int to long can be made without verification during

the execution, because there is no risk of data loss since the set of

values of type int is a subset of values of type long.

- Conversion from type double to long requires conversion of 64-bit

floating-point value to 64-bit integer. Depending on the value, data loss

is possible and therefore it is necessary to convert the types explicitly.

In C# not all types can be converted to all other types, but only to some of

them. For convenience, we shall group some of the possible transformations

in C# according to their type into three categories:

- implicit conversion;

- explicit conversion;

- conversion to or from string;

Implicit Type Conversion

Implicit (hidden) type conversion is possible only when there is no risk of data

loss during the conversion, i.e. when converting from a lower range type to a

larger range (e.g. from int to long). To make an implicit conversion it is not

necessary to use any operator and therefore such transformation is called

implicit. The implicit conversion is done automatically by the compiler when

you assign a value with lower range to a variable with larger range or if the

expression has several types with different ranges. In such case the

conversion is executed into the type with the highest range.

Implicit Type Conversion – Examples

Here is an example of implicit type conversion:

int myInt = 5;
Console.WriteLine(myInt); // 5

long myLong = myInt;
Console.WriteLine(myLong); // 5

www.manaraa.com

154 Fundamentals of Computer Programming with C#

Console.WriteLine(myLong + myInt); // 10

In the example we create a variable myInt of type int and assign it the value

5. After that we create a variable myLong of type long and assign it the value

contained in myInt. The value stored in myLong is automatically converted

from type int to type long. Finally, we output the result from adding the two

variables. Because the variables are from different types they are

automatically converted to the type with the greater range, i.e. to type long

and the result that is printed on the console is long again. Indeed, the given

parameter to the method Console.WriteLine() is of type long, but inside

the method it will be converted again, this time to type string, so it can be

printed on the console. This transformation is performed by the method

Long.ToString().

Possible Implicit Conversions

Here are some possible implicit conversions of primitive data types in C#:

- sbyte → short, int, long, float, double, decimal;

- byte → short, ushort, int, uint, long, ulong, float, double,
decimal;

- short → int, long, float, double, decimal;

- ushort → int, uint, long, ulong, float, double, decimal;

- char → ushort, int, uint, long, ulong, float, double, decimal

(although char is a character type in some cases it may be regarded as

a number and have a numeric type of behavior, it can even participate

in numeric expressions);

- uint → long, ulong, float, double, decimal;

- int → long, float, double, decimal;

- long → float, double, decimal;

- ulong → float, double, decimal;

- float → double.

There is no data loss when converting types of smaller range to types

with a larger range. The numerical value remains the same after

conversion. There are a few exceptions. When you convert type int to type

float (32-bit values), the difference is that int uses all bits for a whole

number, whereas float has a part of bits used for representation of a

fractional part. Hence, loss of precision is possible because of rounding when

conversion from int to float is made. The same applies for the conversion of

64-bit long to 64-bit double.

www.manaraa.com

Chapter 3. Operators and Expressions 155

Explicit Type Conversion

Explicit type conversion is used whenever there is a possibility of data loss.

When converting floating point type to integer type there is always a loss of

data coming from the elimination of the fractional part and an explicit

conversion is obligatory (e.g. double to long). To make such a conversion it

is necessary to use the operator for data conversion (type). There may also

be data loss when converting a type with a wider range to type with a

narrower one (double to float or long to int).

Explicit Type Conversion – Example

The following example illustrates the use of explicit type conversion and data

loss that may occur in some cases:

double myDouble = 5.1d;
Console.WriteLine(myDouble); // 5.1

long myLong = (long)myDouble;
Console.WriteLine(myLong); // 5

myDouble = 5e9d; // 5 * 10^9
Console.WriteLine(myDouble); // 5000000000

int myInt = (int)myDouble;
Console.WriteLine(myInt); // -2147483648
Console.WriteLine(int.MinValue); // -2147483648

In the first line of the example we assign a value 5.1 to the variable

myDouble. After we convert (explicitly) to type long using the operator

(long) and print on the console the variable myLong we see that the variable

has lost its fractional part, because long is an integer. Then we assign to the

real double precision variable myDouble the value 5 billion. Finally, we convert

myDouble to int by the operator (int) and print variable myInt. The result is

the same like when we print int.MinValue because myDouble contains a

value bigger than the range of int.

It is not always possible to predict what the value of a

variable will be after its scope overflows! Therefore, use

sufficiently large types and be careful when switching to a

"smaller" type.

Data Loss during Type Conversion

We will give an example for data loss during type conversion:

long myLong = long.MaxValue;

www.manaraa.com

156 Fundamentals of Computer Programming with C#

int myInt = (int)myLong;

Console.WriteLine(myLong); // 9223372036854775807
Console.WriteLine(myInt); // -1

The type conversion operator may also be used in case of an intentional

implicit conversion. This contributes to the readability of code, reducing the

chance for errors and it is considered good practice by many programmers.

Here are some more examples for type conversions:

float heightInMeters = 1.74f; // Explicit conversion
double maxHeight = heightInMeters; // Implicit
double minHeight = (double)heightInMeters; // Explicit
float actualHeight = (float)maxHeight; // Explicit

float maxHeightFloat = maxHeight; // Compilation error!

In the example above at the last line we have an expression that will generate

a compilation error. This is because we try implicitly to convert type double to

float, which can cause data loss. C# is a strongly typed programming

language and does not allow such appropriation of values.

Forcing Overflow Exceptions during Casting

Sometimes it is convenient, instead of getting the wrong result, when a type

overflows during switching from larger to smaller type, to get notification of

the problem. This is done by the keyword checked which includes a check for

overflow in integer types:

double d = 5e9d; // 5 * 10^9
Console.WriteLine(d); // 5000000000
int i = checked((int)d); // System.OverflowException
Console.WriteLine(i);

During the execution of the code fragment above an exception (i.e.

notification of an error) of type OverflowException is raised. More

information about the exceptions and the methods to catch and handle them

can be found in the chapter "Exception Handling".

Possible Explicit Conversions

The explicit conversions between numeral types in C# are possible between

any couple among the following types:

sbyte, byte, short, ushort, char, int, uint, long, ulong, float, double,

decimal

www.manaraa.com

Chapter 3. Operators and Expressions 157

In these conversions data can be lost, like data about the number size or

information about its precision.

Notice that conversion to or from string is not possible through typecasting.

Conversion to String

If it is necessary we can convert any type of data, including the value null, to

string. The conversion of strings is done automatically whenever you use the

concatenation operator (+) and one of the arguments is not of type string. In

this case the argument is converted to a string and the operator returns a

new string representing the concatenation of the two strings.

Another way to convert different objects to type string is to call the method

ToString() of the variable or the value. It is valid for all data types in .NET

Framework. Even calling 3.ToString() is fully valid in C# and the result will

return the string "3".

Conversion to String – Example

Let’s take a look on several examples for converting different data types to

string:

int a = 5;
int b = 7;

string sum = "Sum = " + (a + b);
Console.WriteLine(sum);

String incorrect = "Sum = " + a + b;
Console.WriteLine(incorrect);

Console.WriteLine(
 "Perimeter = " + 2 * (a + b) + ". Area = " + (a * b) + ".");

The result from the example is as follows:

Sum = 12
Sum = 57
Perimeter = 24. Area = 35.

From the results it is obvious, that concatenating a number to a character

string returns in result the string followed by the text representation of the

number. Note that the "+" for concatenating strings can cause unpleasant

effects on the addition of numbers, because it has equal priority with the

operator "+" for mathematical addition. Unless the priorities of the operations

are changed by placing the brackets, they will always be executed from left to

right.

www.manaraa.com

158 Fundamentals of Computer Programming with C#

More details about converting from and to string we will look at the chapter

"Console Input and Output".

Expressions

Much of the program’s work is the calculation of expressions. Expressions

are sequences of operators, literals and variables that are calculated to

a value of some type (number, string, object or other type). Here are some

examples of expressions:

int r = (150-20) / 2 + 5;

// Expression for calculating the surface of the circle
double surface = Math.PI * r * r;

// Expression for calculating the perimeter of the circle
double perimeter = 2 * Math.PI * r;

Console.WriteLine(r);
Console.WriteLine(surface);
Console.WriteLine(perimeter);

In the example three expressions are defined. The first expression calculates

the radius of a circle. The second calculates the area of a circle, and the last

one finds the perimeter. Here is the result from the fragment above:

70
15393.80400259
439.822971502571

Side Effects of Expressions

The calculation of the expression can have side effects, because the

expression can contain embedded assignment operators, can cause increasing

or decreasing of the value and calling methods. Here is an example of such a

side effect:

int a = 5;
int b = ++a;

Console.WriteLine(a); // 6
Console.WriteLine(b); // 6

www.manaraa.com

Chapter 3. Operators and Expressions 159

Expressions, Data Types and Operator Priorities

When writing expressions, the data types and the behavior of the used

operators should be considered. Ignoring this can lead to unexpected results.

Here are some simple examples:

// First example
double d = 1 / 2;
Console.WriteLine(d); // 0, not 0.5

// Second example
double half = (double)1 / 2;
Console.WriteLine(half); // 0.5

In the first example, an expression divides two integers (written this way, 1

and two are integers) and assigns the result to a variable of type double. The

result may be unexpected for some people, but that is because they are

ignoring the fact that in this case the operator "/" works over integers and the

result is an integer obtained by cutting the fractional part.

The second example shows that if we want to do division with fractions in the

result, it is necessary to convert to float or double at least one of the

operands. In this scenario the division is no longer integer and the result is

correct.

Division by Zero

Another interesting example is division by 0. Most programmers think that

division by 0 is an invalid operation and causes an error at runtime

(exception) but this is actually true only for integer division by 0. Here is an

example, which shows that fractional division by 0 is Infinity or NaN:

int num = 1;
double denum = 0; // The value is 0.0 (real number)
int zeroInt = (int) denum; // The value is 0 (integer number)
Console.WriteLine(num / denum); // Infinity
Console.WriteLine(denum / denum); // NaN
Console.WriteLine(zeroInt / zeroInt); // DivideByZeroException

Using Brackets to Make the Code Clear

When working with expressions it is important to use brackets whenever

there is the slightest doubt about the priorities of the operations. Here is an

example that shows how useful the brackets are:

double incorrect = (double)((1 + 2) / 4);
Console.WriteLine(incorrect); // 0

www.manaraa.com

160 Fundamentals of Computer Programming with C#

double correct = ((double)(1 + 2)) / 4;
Console.WriteLine(correct); // 0.75

Console.WriteLine("2 + 3 = " + 2 + 3); // 2 + 3 = 23
Console.WriteLine("2 + 3 = " + (2 + 3)); // 2 + 3 = 5

Exercises

1. Write an expression that checks whether an integer is odd or even.

2. Write a Boolean expression that checks whether a given integer is

divisible by both 5 and 7, without a remainder.

3. Write an expression that looks for a given integer if its third digit (right

to left) is 7.

4. Write an expression that checks whether the third bit in a given integer

is 1 or 0.

5. Write an expression that calculates the area of a trapezoid by given

sides a, b and height h.

6. Write a program that prints on the console the perimeter and the area

of a rectangle by given side and height entered by the user.

7. The gravitational field of the Moon is approximately 17% of that on the

Earth. Write a program that calculates the weight of a man on the

moon by a given weight on the Earth.

8. Write an expression that checks for a given point {x, y} if it is within

the circle K({0, 0}, R=5). Explanation: the point {0, 0} is the center of

the circle and 5 is the radius.

9. Write an expression that checks for given point {x, y} if it is within the

circle K({0, 0}, R=5) and out of the rectangle [{-1, 1}, {5, 5}].

Clarification: for the rectangle the lower left and the upper right corners

are given.

10. Write a program that takes as input a four-digit number in format abcd

(e.g. 2011) and performs the following actions:

- Calculates the sum of the digits (in our example 2+0+1+1 = 4).

- Prints on the console the number in reversed order: dcba (in our

example 1102).

- Puts the last digit in the first position: dabc (in our example 1201).

- Exchanges the second and the third digits: acbd (in our example

2101).

www.manaraa.com

Chapter 3. Operators and Expressions 161

11. We are given a number n and a position p. Write a sequence of

operations that prints the value of the bit on the position p in the

number (0 or 1). Example: n=35, p=5 -> 1. Another example: n=35,

p=6 -> 0.

12. Write a Boolean expression that checks if the bit on position p in the

integer v has the value 1. Example v=5, p=1 -> false.

13. We are given the number n, the value v (v = 0 or 1) and the position p.

write a sequence of operations that changes the value of n, so the bit on

the position p has the value of v. Example: n=35, p=5, v=0 -> n=3.

Another example: n=35, p=2, v=1 -> n=39.

14. Write a program that checks if a given number n (1 < n < 100) is a

prime number (i.e. it is divisible without remainder only to itself and 1).

15. * Write a program that exchanges the values of the bits on positions

3, 4 and 5 with bits on positions 24, 25 and 26 of a given 32-bit unsigned

integer.

16. * Write a program that exchanges bits {p, p+1, …, p+k-1} with bits {q,

q+1, …, q+k-1} of a given 32-bit unsigned integer.

Solutions and Guidelines

1. Take the remainder of dividing the number by 2 and check if it is 0 or

1 (respectively the number is odd or even). Use % operator to calculate

the remainder of integer division.

2. Use a logical "AND" (&& operator) and the remainder operation % in

division. You can also solve the problem by only one test: the division of

35 (think why).

3. Divide the number by 100 and save it in a new variable, which then

divide by 10 and take the remainder. The remainder of the division by 10

is the third digit of the original number. Check if it is equal to 7.

4. Use bitwise "AND" on the current number and the number that has 1

only in the third bit (i.e. number 8, if bits start counting from 0). If the

returned result is different from 0 the third bit is 1:

int num = 25;
bool bit3 = (num & 8) != 0;

5. The formula for trapezoid surface is: S = (a + b) * h / 2.

6. Search the Internet for how to read integers from the console and use

the formula for rectangle area calculation. If you have difficulties see

instructions on the next problem.

7. Use the following code to read the number from the console:

www.manaraa.com

162 Fundamentals of Computer Programming with C#

Console.Write("Enter number: ");
int number = Convert.ToInt32(Console.ReadLine());

Then multiply by 0.17 and print it.

8. Use the Pythagorean Theorem a2 + b2 = c2. The point is inside the circle

when (x*x) + (y*y) ≤ 5*5.

9. Use the code from the previous task and add a check for the

rectangle. A point is inside a rectangle with walls parallel to the axes,

when in the same time it is right of the left wall, left of the right wall,

down from the top wall and above the bottom wall.

10. To get the individual digits of the number you can divide by 10 and

take the remainder of the division by 10:

int a = num % 10;
int b = (num / 10) % 10;
int c = (num / 100) % 10;
int d = (num / 1000) % 10;

11. Use bitwise operations:

int n = 35; // 00100011
int p = 6;
int i = 1; // 00000001
int mask = i << p; // Move the 1-st bit left by p positions

// If i & mask are positive then the p-th bit of n is 1
Console.WriteLine((n & mask) != 0 ? 1 : 0);

12. The task is similar to the previous one.

13. Use bitwise operations by analogy with the previous two problems. You

can reset the bit at position p in the number n as follows:

n = n & (~(1 << p));

You can set bits in the unit at position p in the number n as follows:

n = n | (1 << p);

Think how you can combine the above two hints.

14. Read about loops in the Internet or in the chapter “Loops”. Use a loop

and check the number for divisibility by all integers from 1 to the square

root of the number. Since n < 100, you can find in advance all prime

numbers from 1 to 100 and checks the input over them. The prime

www.manaraa.com

Chapter 3. Operators and Expressions 163

numbers in the range [1…100] are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

15. Use 3 times a combination of getting and setting a bit at a given

position. The first exchange is given below:

int bit3 = (num >> 3) & 1;
int bit24 = (num >> 24) & 1;
num = num & (~(1 << 24)) | (bit3 << 24);
num = num & (~(1 << 3)) | (bit24 << 3);

16. Extend the solution of the previous problem to perform a sequence of

bit exchanges in a loop. Read about loops in the chapter “Loops”.

www.manaraa.com

www.manaraa.com

Chapter 4. Console
Input and Output

In This Chapter

In this chapter we will get familiar with the console as a tool for data input

and output. We will explain what it is, when and how to use it, and how most

programming languages access the console. We will get familiar with some of

the features in C# for user interaction: reading text and numbers from the

console and printing text and numbers. We will also examine the main

streams for input-output operations Console.In, Console.Out and

Console.Error, the Console and the usage of format strings for printing

data in various formats.

What Is the Console?

The Console is a window of the operating system through which users can

interact with system programs of the operating system or with other console

applications. The interaction consists of text input from the standard input

(usually keyboard) or text display on the standard output (usually on the

computer screen). These actions are also known as input-output

operations. The text written on the console brings some information and is a

sequence of characters sent by one or more programs.

For each console application the operating system connects input and output

devices. By default these are the keyboard and the screen but they can be

redirected to a file or other devices.

Communication between the User and the Program

A lot of programs communicate in some way with the user. This is necessary

for the user in order to give instructions to them. Modern communication

methods are many and various: they can be through graphical or web-

based interface, console or others. As we mentioned one of the tools for

communication between programs and users is the console, which is

becoming less and less used. This is because the modern user interface

concepts are more convenient and intuitive to work with, from a user’s

perspective.

www.manaraa.com

166 Fundamentals of Computer Programming with C#

When to Use the Console?

In some cases the console remains an irreplaceable tool for communication

with the user. One of these cases is when writing small and simple

programs where it is necessary to focus the attention on the specific problem

to be solved, rather than the elegant representation of the result to the user.

Then a simple solution is used for entering or printing a result, such as input-

output console. Another use case is when we want to test a small piece of

code for a larger application. Due to simplicity of the operation of the console

application we can isolate this part of the code easily and comfortably without

having to go through a complex user interface and a number of screens to get

to the desired code for testing.

How to Launch the Console?

Each operating system has its own way to launch the console. On Windows for

example, it can be done in the following way:

Start -> (All) Programs -> Accessories -> Command Prompt

After starting the console a black screen (this color can be changed) like the

following should appear:

When starting the console the home directory of the current user (in this case

the username is nakov) is used as a current directory and this is displayed as

a guide for the user.

Console can be launched through pressing the Start button

and typing "cmd" in the search box and pressing [Enter] (on

Windows Vista, Windows 7 and later). For Windows XP, go

through the sequence Start -> Run… ->, type in "cmd" and

press [Enter].

For simplified visualization of the results from now on in this chapter instead

of a console screenshot we will use the form:

Results from console

www.manaraa.com

Chapter 4. Console Input and Output 167

More about Consoles

The system console is the black window shown above which displays text

information. It can display text strings and has a cursor, which moves to the

right after each character is printed. After the cursor passes through the last

column of the console (usually it has 80 columns), it moves to the beginning

of the next line. If the cursor passes through the last line, the console scrolls

its content upwards and shows a new empty line below the last line.

Programs in Windows can be console-based, desktop-based, Web-based and

other. The console-based programs use the console for their input and

output. The desktop-based programs use graphical user interface (GUI). The

Web-based programs have Web-based user interface. In this book we will

write console-based programs almost all the time, so their input will be read

from the keyboard and their output will be printed in the console.

Some console-based programs expect the users to enter text, numbers and

other data, and this is usually done through the keyboard.

The console in Windows is often associated with the system command

interpreter, also called the "Command Prompt" or "shell" or which is a

console-based program in the operating system, which provides access to

system commands as well as a wide range of programs, which are part of the

operating system or are additionally installed to it.

The word "shell" means "wrap" and has a meaning of a wrapper between the

user and the inside of the operating system.

The so called operating system "shells" can be split into two main categories

according to the type of interface they can provide to the operating system:

- CLI – Command Line Interface – is a console for commands (such as

cmd.exe in Windows and bash in Linux).

- GUI – Graphical User Interface – is a graphical work environment (such

as Windows Explorer).

For both types the main purpose of the shell is to run other programs with

which the user works although most of the interpreters also support some

advanced features such as the opportunity to examine the content of

directories with files.

Each operating system has its own command interpreter that

has its own commands.

For example, when starting Windows console, we run the so-called Windows

command interpreter in it (cmd.exe) that executes system programs and

commands in interactive mode. For example, the command dir shows the

files in the current directory:

www.manaraa.com

168 Fundamentals of Computer Programming with C#

Basic Console Commands

We will take a look at some basic commands in the Windows standard

command prompt, which is useful for finding and launching programs.

Windows Console Commands

The command interpreter running in the console is also called "Command
Prompt" or "MS-DOS Prompt" (in older versions of Windows). We will take a

look at some basic commands for this interpreter:

Command Description

dir Displays the content of the current directory.

cd <directory name> Changes the current directory.

mkdir <directory name> Creates a new directory in the current one.

rmdir <directory name> Deletes an existing directory.

type <file name> Prints file content.

copy <src file>
<destination file>

Copies one file into another.

Here is an example of multiple commands executed in the Windows command

shell. The result of the commands’ execution is displayed on the console:

C:\Documents and Settings\User1>cd "D:\Project2009\C# Book"

C:\Documents and Settings\User1>D:

www.manaraa.com

Chapter 4. Console Input and Output 169

D:\Project2008\C# Book>dir
 Volume in drive D has no label.
 Volume Serial Number is B43A-B0D6

 Directory of D:\Project2009\C# Book

26.12.2009 12:24 <DIR> .
26.12.2009 12:24 <DIR> ..
26.12.2009 12:23 537 600 Chapter-4-Console-Input-
Output.doc
26.12.2009 12:23 <DIR> Test Folder
26.12.2009 12:24 0 Test.txt
 2 File(s) 537 600 bytes
 3 Dir(s) 24 154 062 848 bytes free

D:\Project2009\C# Book>

Standard Input-Output

The standard input-output also known as "Standard I/O" is a system input-

output mechanism created since the UNIX operating systems was developed

many years ago. Special peripheral devices for input and output are used,

through which data can be input and output.

When the program is in mode of accepting information and expects action by

the user, there is a blinking cursor on the console showing that the system is

waiting for command entering.

Later we will see how we can write C# programs that expect input data to be

entered from the console.

Printing to the Console

In most programming languages printing and reading the information from

the console is implemented in similar ways and the most of the solutions are

based on the concept of "standard input" and "standard output".

Standard Input and Standard Output

The operating system is required to define standard input-output

mechanisms for user interaction. When starting a given console program,

system code running at the initialization of the program is responsible for

opening (closing) of streams to the allocated by the operating system

mechanisms for input-output. This system code initializes the program

abstraction for user interaction embedded in the respective programming

language. In this way, the application started can automatically read the user

www.manaraa.com

170 Fundamentals of Computer Programming with C#

input from the standard input stream (in C# this is Console.In), print

information on the standard output stream (in C# this is Console.Out) and

can signal for problem situations in the standard error stream (in C# this is

Console.Error).

The concept of the streams will be later examined in details. For now we will

focus on the theoretical basis related to the program input and output in C#.

Devices for Console Input and Output

Besides the keyboard an application input can come from many other places,

such as file, microphone, barcode reader and others. The output of a

program may be on the console (on the screen), as well as in a file or another

output device, such as a printer:

We will show a basic example that illustrates text printing to the console

through the abstraction for accessing the standard input and standard output

provided to us by C#:

Console.Out.WriteLine("Hello World");

The result of the above code execution would be the following:

Hello World

Console.Out Stream

System.Console class has different properties and methods (classes are

considered in details in the chapter "Creating and Using Objects") which are

used to read and display text on the console as well as its formatting. Among

them there are three properties that make impression and they are related to

data entering and displaying, namely the Console.Out, Console.In and

Console.Error. They provide access to the standard streams for printing on

the console, for reading from the console and to the error messages reporting

stream accordingly. Although we could use them directly, the other methods

of System.Console give us the convenience for working with input-output

console operations and actually most often these properties are ignored.

However it is good to remember that this part of the console functionality is

working on these streams. If needed, we can replace the default input /

output / error streams at runtime by using the methods Console.SetOut(…),

Console.SetIn(…) and Console.SetError(…) respectively.

www.manaraa.com

Chapter 4. Console Input and Output 171

Now we will examine the most commonly used methods for text printing on

the console.

Using Console.Write(…) and Console.WriteLine(…)

Work with these methods is easy because they can print all the basic types

(string, numeric and primitive types).

Here are some examples of printing various types of data:

// Print String
Console.WriteLine("Hello World");

// Print int
Console.WriteLine(5);

// Print double
Console.WriteLine(3.14159265358979);

The result of this code execution looks like this:

Hello World
5
3.14159265358979

As we see by using Console.WriteLine(…) it is possible to print various data

types because for each type there is a predefined version of the

methodWriteLine(…) in the Console class.

The difference between Write(…) and WriteLine(…) is that the Write(…)

method prints on the console what it is provided between the parentheses but

does nothing in addition while the method WriteLine(…) means directly

“write line”. This method does what the Write(…) one does but in addition

goes to a new line. In fact the method does not print a new line but simply

puts a “command” for moving cursor to the position where the new line

starts (this command consists of the character \r followed by \n).

Here is an example, which illustrates the difference between Write(…) and

WriteLine(…):

Console.WriteLine("I love");
Console.Write("this ");
Console.Write("Book!");

The output of this example is:

I love
this Book!

www.manaraa.com

172 Fundamentals of Computer Programming with C#

We notice that the output of this example is printed on two lines, even though

the code is on three. This happens because on the first line of code we use

WriteLine(…) which prints "I love" and then goes to a new line. In the next

two lines of the code uses the Write(…) method, which prints without going

on a new line and thus the words "this" and "Book!" remain on the same

line.

Concatenation of Strings

In general C# does not allow the use of operators over string objects. The

only exception to this rule is the addition operation (+) which concatenates

(joins) two strings and returns as result a new string. This allows chaining

of concatenate (+) operations one after another in a sequence. The next

example represents concatenation of three strings.

string age = "twenty six";
string text = "He is " + age + " years old.";
Console.WriteLine(text);

The result of this code execution is again a string:

He is twenty six years old.

Concatenation of Mixed Types

What happens when we want to print larger and more complex text, which

consists of different types? Until now we used versions of the method

WriteLine(…) for a specific type. Is it necessary when we want to print

different types at once to use different versions of the method WriteLine(…)
for each of these types? The answer to this question is “no” because in C# we

can unite text and other data (for instance, numeric) by using the "+"

operator. The following example is like the previous but in it the years (age)

are from integer type:

int age = 26;
string text = "He is " + age + " years old.";
Console.WriteLine(text);

In the example is concatenation and printing on the screen performed. The

result of the example is the following:

He is 26 years old.

On the second line of the example code we see that a concatenation of the

string "He is" and the integer type "age" is performed. We are trying to

combine two different types. This is possible because of the presence of

the following important rule.

www.manaraa.com

Chapter 4. Console Input and Output 173

When a string is involved in concatenation with any other

type the result is always a string.

From the rule it is clear that the result of "He is " + age is again a string and

then the result is added to the last part of the expression " years old.". So

after calling a chain of + operators ultimately the result is a string and thus

the string version of the method WriteLine(…) is invoked.

For short the above example can be written as follows:

int age = 26;
Console.WriteLine("He is " + age + " years old.");

Some Features of String Concatenation

There are some interesting situations with concatenation (addition) of strings

that you need to know and be careful about because they lead to errors. The

following example represents a surprising behavior of the code:

string s = "Four: " + 2 + 2;
Console.WriteLine(s);
// Four: 22

string s1 = "Four: " + (2 + 2);
Console.WriteLine(s1);
// Four: 4

As seen from the example the operators’ execution order (see chapter

"Operator and Expressions") is of great importance! In our example first the

concatenation of "Four: " to "2" is performed and the result of the

operation is string. After that, another concatenation with the second

number is performed and the obtained unexpected result is "Four: 22"

instead of the expected "Four: 4". This is because the operations are

performed from left to right and in this scenario a string participates in each

of them.

In order to avoid this unpleasant situation we can use parentheses that will

change the order of operators’ execution can be used to achieve the desired

result. Parentheses are operators with highest priority and make the

execution of the operation "addition" of the two numbers happen before the

concatenation with the string on the left. Thus first the addition of the two

numbers is done and then they are concatenated with the string.

This mistake is very common for beginner programmers because they do not

consider that string concatenation is performed from left to right because the

addition of numbers is of the same priority than as concatenation.

www.manaraa.com

174 Fundamentals of Computer Programming with C#

When you concatenate strings and also sum numbers, use

parentheses to specify the correct order of operations.

Otherwise they are executed from left to right.

Formatted Output with Write(…) and WriteLine(…)

For printing long and elaborate series of elements, special options (also

known as overloads) of the methods Write(…) and WriteLine(…) have been

introduced. These options have a completely different concept than the

standard methods for printing in C#. Their main idea is to adopt a special

string, formatted with special formatting characters and list of values, which

should be substituted in place of “the format specifiers”. Here is how

Write(…) is defined in the standard C# libraries:

public static void Write(string format, object arg0,
 object arg1, object arg2, object arg3, …);

Formatted Output – Examples

The following example prints twice the same thing but in different ways:

string str = "Hello World!";

// Print (the normal way)
Console.Write(str);

// Print (through formatting string)
Console.Write("{0}", str);

The result of this example execution is:

Hello World!Hello World!

We see as a result "Hello, World!" twice on one line. This is because there

is no printing of a new line in the program.

First we print the string in a well-known way in order to see the difference

with the other approach. The second printing is the formatting Write(…) and

the first argument is the format string. In this case {0} means to put the first

argument after the formatting string in the place of {0}. The expression {0}

is called a placeholder, i.e. a place that will be replaced by a specific value

while printing.

The next example will further explain this concept:

string name = "John";
int age = 18;

www.manaraa.com

Chapter 4. Console Input and Output 175

string town = "Seattle";
Console.Write(
 "{0} is {1} years old from {2}!\n", name, age, town);

The result of this example execution is as follows:

John is 18 years old from Seattle!

From the signature of this Write(…) version we saw that the first argument is

the format string. Following is a series of arguments, which are placed where

we have a number enclosed in curly brackets. The expression {0} means to

put in its place the first of the arguments submitted after the format string

(in this case name). Next is {1} which means to replace with the second of

the arguments (age). The last placeholder is {2}, which means to replace with

the next parameter (town). Last is \n, which is a special character that

indicates moving to a new line.

It is appropriate to mention that actually the new line command on Windows

is \r\n, and on Unix-based operating systems – \n. When working with

the console it does not matter that we use only \n because the standard input

stream considers \n as \r\n but if we write into a file, for example, using only

\n is wrong (on Windows).

Composite Formatting

The methods for formatted output of the Console class use the so-called

composite formatting feature. The composite formatting is used for

console printing as well as in certain operations with strings. We examined the

composite formatting in the simplest of its kind in the previous example but it

has significantly bigger potential than what we have seen so far. Basically the

composite formatting uses two things: composite formatting string and

series of arguments, which are replaced in certain places in the string.

Composite Formatting String

The composite formatting string is a mixture of normal text and formatting

items. In formatting the normal text remains the same as in the string and

the places of formatting items are replaced by the values of the respective

arguments printed according to certain rules. These rules are specified using

the syntax of formatting items.

Formatting Items

The formatting items provide the possibility for powerful control over the

displayed value and therefore can obtain very complicated form. The following

formation scheme represents the general syntax of formatting items:

{index[,alignment][:formatString]}

www.manaraa.com

176 Fundamentals of Computer Programming with C#

As we notice the formatting item begins with an opening curly bracket { and

ends with a closing curly bracket }. The content between the brackets is

divided into three components of which only the index component is

mandatory. Now we will examine each of them separately.

Index Component

The index component is an integer and indicates the position of the

argument from the argument list. The first argument is indicated by "0", the

second by "1", etc. The composite formatting string allows having multiple

formatting items that relate to one and same argument. In this case index

component of these items is one and the same number. There is no restriction

on the sequence of arguments’ calling. For example, we could use the

following formatting string:

Console.Write(
 "{1} is {0} years old from {3}!", 18, "John", 0, "Seattle");

In cases where some of the arguments are not referenced by any of the

formatting items, those arguments are simply ignored and do not play a role.

However it is good to remove such arguments from the list of arguments

because they introduce unnecessary complexity and may lead to confusion.

In the opposite case, when a formatting item refers an argument that does

not exist in the list of arguments, an exception is thrown. This may occur,

for example, if we have formatting placeholder {4} and we submitted a list of

only two arguments.

Alignment Component

The alignment component is optional and indicates the string alignment. It

is a positive or negative integer and the positive values indicate alignment

to the right and the negative – alignment to the left. The value of the number

indicates the number of positions in which to align the number. If the string

we want to represent has a length greater than or equal to the value of the

number, then this number is ignored. If it is less, however, the unfilled

positions are filled in with spaces.

For example, let’s try the following formatting:

Console.WriteLine("{0,6}", 123);
Console.WriteLine("{0,6}", 1234);
Console.WriteLine("{0,6}", 12);
Console.Write("{0,-6}", 123);
Console.WriteLine("--end");

It will output the following result:

 123

www.manaraa.com

Chapter 4. Console Input and Output 177

 1234
 12
123 --end

If we decide to use the alignment component, we must separate it from the

index component by a comma as it is done in the example above.

The "formatString" Component

This component specifies the specific formatting of the string. It varies

depending on the type of argument. There are three main types of

formatString components:

- for numerical types of arguments

- for arguments of type date (DateTime)

- for arguments of type enumeration (listed types)

Format String Components for Numbers

This type formatString component has two subtypes: standard-defined

formats and user-defined formats (custom format strings).

Standard Formats for Numbers

These formats are defined by one of several format specifiers, which are

letters with particular importance. After the format specifier there can be a

positive integer called precision, which has a different meaning for the

different specifiers. When it affects the number of decimal places after the

decimal point, the result is rounded. The following table describes specifiers

and their precision meaning:

Specifier Description

"C" or "c"

Indicates the currency and the result will be displayed

along with the currency sign for the current “culture”

(for example, English). The precision indicates the

number of decimal places after the decimal point.

"D" or "d"

An integer number. The precision indicates the

minimum number of characters for representing the

string and, if necessary, zeroes are supplemented in the

beginning.

"E" or "e"
Exponential notation. The precision indicates the

number of places after the decimal point.

"F" or "f"
Integer or decimal number. The precision indicates

the number of signs after the decimal point.

www.manaraa.com

178 Fundamentals of Computer Programming with C#

"N" or "n"

Equivalent to "F" but represents also the corresponding

separator for thousands, millions, etc. (for example, in

the English language often the number "1000" is

represented as "1,000" – with comma between the

number 1 and the zeroes).

"P" or "p"
Percentage: it will multiply the number by 100 and will

display the percent character upfront. The precision

indicates the number of signs after the decimal point.

"X" or "x"

Displays the number in hexadecimal numeral system.

It works only for integer numbers. The precision

indicates minimum numbers of signs to display the

string as the missing ones are supplemented with zeroes

at the beginning.

Part of the formatting is determined by the current “culture” settings,

which are taken by default from the regional settings of the operating system.

"The cultures" are set of rules that are valid for a given language or a given

country and that indicate which character is to be used as decimal separator,

how the currency is displayed, etc. For example, for the Japanese "culture"

the currency is displayed by adding "¥" after the amount, while for the

American "culture", the character "$" is displayed before the amount. For

Bulgarian currency is suffixed by " лв.".

Standard Formats for Numbers – Example

Let’s see a few examples of usage of the specifiers represented in the table

above. In the code below we assume the regional settings are Bulgarian so

the currency will be printed in Bulgarian, the decimal separator will be "," and

the thousands separator will be space (the regional settings can be changed

from Control Panel in Windows):

StandardNumericFormats.cs

class StandardNumericFormats
{
 static void Main()
 {
 Console.WriteLine("{0:C2}", 123.456);
 //Output: 123,46 лв.
 Console.WriteLine("{0:D6}", -1234);
 //Output: -001234
 Console.WriteLine("{0:E2}", 123);
 //Output: 1,23E+002
 Console.WriteLine("{0:F2}", -123.456);
 //Output: -123,46

www.manaraa.com

Chapter 4. Console Input and Output 179

 Console.WriteLine("{0:N2}", 1234567.8);
 //Output: 1 234 567,80
 Console.WriteLine("{0:P}", 0.456);
 //Output: 45,60 %
 Console.WriteLine("{0:X}", 254);
 //Output: FE
 }
}

If we run the same code with English (United States) culture, the output will

be as follows:

$123.46
-001234
1.23E+002
-123.46
1,234,567.80
45.60 %
FE

Custom Formats for Numbers

All formats that are not standard are assigned to the user (custom) formats.

For the custom formats are again defined a set of specifiers and the

difference with the standard formats is that a number of specifiers can be

used (in standard formats only a single specifier is used). The following table

lists various specifiers and their meaning:

Specifier Description

0
Indicates a digit. If at this position of the result a digit is

missing, a zero is written instead.

Indicates a digit. Does not print anything if at this

position in the result a digit is missing.

. Decimal separator for the respective “culture”.

, Thousands separator for the respective “culture”.

%
Multiplies the result by 100 and prints the character for

percent.

E0 or E+0 or E-0

Indicates an exponential notation. The number of zeroes

indicates the number of signs of the exponent. The sign

"+" means that we always want to represent also the

number’s sign while minus means to display the sign

only if the value is negative.

www.manaraa.com

180 Fundamentals of Computer Programming with C#

There are many characteristics regarding the use of custom formats for

numbers, but they will not be discussed here. You may find more information

in MSDN. Here are some simple examples that illustrate how to use custom

formatting strings (the output is given for the U.S. culture):

CustomNumericFormats.cs

class CustomNumericFormats
{
 static void Main()
 {
 Console.WriteLine("{0:0.00}", 1);
 //Output: 1.00
 Console.WriteLine("{0:#.##}", 0.234);
 //Output: .23
 Console.WriteLine("{0:#####}", 12345.67);
 //Output: 12346
 Console.WriteLine("{0:(0#) ### ## ##}", 29342525);
 //Output: (02) 934 25 25
 Console.WriteLine("{0:%##}", 0.234);
 //Output: %23
 }
}

Format String Components for Dates

When formatting dates we again have separation of standard and custom

formats.

Standard Defined Date Formats

Since the standard defined formats are many we will list only few of them.

The rest can be easily checked on MSDN.

Specifier Format (for English (United States) "culture")

d 2/27/2012

D February 27, 2012

t 17:30 (hour)

T 17:30:22 (hour)

Y or y February 2012 (only month and year)

Custom Date Formats

Similar to custom formats for numbers here we have multiple format

specifiers and we can combine several of them. Since here are many

www.manaraa.com

Chapter 4. Console Input and Output 181

specifiers we will show only some of them, which we will use to demonstrate

how to use custom formats for dates. Consider the following table:

Specifiers Format (for English (United States) "culture")

d Day – from 1 to 31

dd Day – from 01 to 31

M Month – from 1 to 12

MM Month – from 01 to 12

yy The last two digits of the year (from 00 to 99)

yyyy Year written in 4 digits (e.g. 2012)

hh Hour – from 00 to 11

HH Hour – from 00 to 23

m Minutes – from 0 to 59

mm Minutes – from 00 to 59

s Seconds – from 0 to 59

ss Seconds – from 00 to 59

When using these specifiers we can insert different separators between the

different parts of the date, such as "." or "/". Here are few examples:

DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);
Console.WriteLine("{0:dd/MM/yyyy HH:mm:ss}", d);
Console.WriteLine("{0:d.MM.yy}", d);

Execution of these examples gives the following result for the U.K. culture:

27/02/2012 17:30:22
27.02.12

Note that the result can vary depending on the current culture. For example if

we run the same code in the Bulgarian culture, the result will be different:

27.02.2012 17:30:22
27.02.12

Format String Enumeration Components

Enumerations (listed types) are data types that can take as value one of

several predefined possible values (e.g. the seven days of the week). We will

examine them in details in the chapter "Defining Classes".

www.manaraa.com

182 Fundamentals of Computer Programming with C#

In enumerations there is very little to be formatted. Four standard format

specifiers are defined:

Specifier Format

G or g Represents enumeration as a string.

D or d Represents enumeration as a number.

X or x
Represents enumeration as a number in hexadecimal

numeral system and with eight digits.

Here are some examples:

Console.WriteLine("{0:G}", DayOfWeek.Wednesday);
Console.WriteLine("{0:D}", DayOfWeek.Wednesday);
Console.WriteLine("{0:X}", DayOfWeek.Wednesday);

While executing the above code we get the following result:

Wednesday
3
00000003

Formatting Strings and Localization

When using format strings it is possible one and same program to print

different values depending on the localization settings for the operating

system. For example, when printing the month from a given date if the

current localization is English it will print in English, for example “August”,

while if the localization is French it will print in French, for example "Août".

When launching a console application it automatically retrieves the operating

system localization (culture settings) and uses it for reading and writing

formatted data (like numbers, dates, currency, etc.).

Localization in .NET is also called "culture" and can be changed manually by

the class System.Globalization.CultureInfo. Here is an example in which

we print a number and a date by the U.S. and Bulgarian localization:

CultureInfoExample.cs

using System;
using System.Threading;
using System.Globalization;

class CultureInfoExample
{
 static void Main()

www.manaraa.com

Chapter 4. Console Input and Output 183

 {
 DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);

 Thread.CurrentThread.CurrentCulture =
 CultureInfo.GetCultureInfo("en-US");
 Console.WriteLine("{0:N}", 1234.56);
 Console.WriteLine("{0:D}", d);

 Thread.CurrentThread.CurrentCulture =
 CultureInfo.GetCultureInfo("bg-BG");
 Console.WriteLine("{0:N}", 1234.56);
 Console.WriteLine("{0:D}", d);
 }
}

When starting the example the following result is obtained:

1,234.56
Monday, February 27, 2012
1 234,56
27 Февруари 2012 г.

Console Input

As in the beginning of this chapter we explained, the most suitable for small

applications is the console communication because it is easiest to implement.

The standard input device is the part of the operating system that controls

from where the program will receive its input data. By default "the standard

input device" reads its input from a driver "attached" to the keyboard. This

can be changed and the standard input can be redirected to another location,

for example to a file, but this is rarely done.

Each programming language has a mechanism for reading and writing to the

console. The object that controls the standard input stream in C#, is

Console.In.

From the console we can read different data:

- text;

- other types after parsing the text;

Actually for reading the standard input stream Console.In is rarely used

directly. The class Console provides two methods Console.Read() and

Console.ReadLine() that run on this stream and usually reading from the

console is done by them.

www.manaraa.com

184 Fundamentals of Computer Programming with C#

Reading through Console.ReadLine()

The method Console.ReadLine() provides great convenience for reading

from console. How does it work? When this method is invoked, the program

prevents its work and wait for input from the console. The user enters some

string on the console and presses the [Enter] key. At this moment the

console understands that the user has finished entering and reads the string.

The method Console.ReadLine() returns as result the string entered by the

user. Now perhaps it is clear why this method has this name.

The following example demonstrates the operation of Console.ReadLine():

UsingReadLine.cs

class UsingReadLine
{
 static void Main()
 {
 Console.Write("Please enter your first name: ");
 string firstName = Console.ReadLine();

 Console.Write("Please enter your last name: ");
 string lastName = Console.ReadLine();

 Console.WriteLine("Hello, {0} {1}!", firstName, lastName);
 }
}

// Output: Please enter your first name: John
// Please enter your last name: Smith
// Hello, John Smith!

We see how easy it is to read text from the console by using the method

Console.ReadLine():

- We print some text in the console, which asks for a user name (this is

only for the convenience of the user and is not obligatory).

- We execute reading of an entire line from the console using the method

ReadLine(). This leads to blocking the program until the user enters

some text and presses [Enter].

- Then we repeat these two steps for the last name.

- Once we have gathered the necessary information we print it on the

console.

www.manaraa.com

Chapter 4. Console Input and Output 185

Reading through Console.Read()

The method Read() behaves slightly different than ReadLine(). As a

beginning it reads only one character and not the entire line. The other

significant difference is that the method does not return directly the read

character but its code. If we want to use the result as a character we must

convert it to a character or use the method Convert.ToChar() on it. There is

one important characteristic: the character is read only when the [Enter]

key is pressed. Then the entire string written on the console is transferred to

the buffer of the standard input string and the method Read() reads the first

character of it. In subsequent invocations of the method if the buffer is not

empty (i.e. there are already entered in but still unread characters) then the

program execution will not stop and wait, but will directly read the next

character from the buffer and thus until the buffer is empty. Only then the

program will wait again for a user input if Read() is called again. Here is an

example:

UsingRead.cs

class UsingRead
{
 static void Main()
 {
 int codeRead = 0;
 do
 {
 codeRead = Console.Read();
 if (codeRead != 0)
 {
 Console.Write((char)codeRead);
 }
 }
 while (codeRead != 10);
 }
}

This program reads one line entered by the user and prints it character by

character. This is possible due to a small trick – we are previously aware that

the [Enter] key actually enters two characters in the buffer. These are the

"carriage return" code (Unicode 13) followed by the "linefeed" code

(Unicode 10). In order to understand that one line is finished we are looking

for a character with code 10 in the Unicode table. Thus the program reads

only one line and exits the loop.

We should mention that the method Console.Read() is rarely used in

practice if there is an alternative to use Console.ReadLine(). The reason for

this is that the possibility of mistaking with Console.Read() is much greater

www.manaraa.com

186 Fundamentals of Computer Programming with C#

than if we choose an alternative approach and the code will most likely be

unnecessarily complicated.

Reading Numbers

Reading numbers from the console in C# is not done directly. In order to

read a number we should have previously read the input as a string (using

ReadLine()) and then convert this string to a number. The operation of

converting a string into another type is called parsing. All primitive types

have methods for parsing. We will give a simple example for reading and

parsing of numbers:

ReadingNumbers.cs

class ReadingNumbers
{
 static void Main()
 {
 Console.Write("a = ");
 int a = int.Parse(Console.ReadLine());

 Console.Write("b = ");
 int b = int.Parse(Console.ReadLine());

 Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
 Console.WriteLine("{0} * {1} = {2}", a, b, a * b);

 Console.Write("f = ");
 double f = double.Parse(Console.ReadLine());
 Console.WriteLine("{0} * {1} / {2} = {3}",
 a, b, f, a * b / f);
 }
}

The result of program execution might be as follows (provided that we enter

5, 6 and 7.5 as input):

a = 5
b = 6
5 + 6 = 11
5 * 6 = 30
f = 7.5
5 * 6 / 7.5 = 4

In this particular example the specific thing is that we use parsing methods

of numerical types and when wrong a result is passed (such as text) this

www.manaraa.com

Chapter 4. Console Input and Output 187

will cause an error (exception) System.FormatException. This is especially

true when reading real numbers, because the delimiter used between the

whole and fractional part is different in various cultures and depends on

regional settings of the operating system.

The separator for floating point numbers depends on the

current language settings of the operating system (Regional

and Language Options in Windows). In some systems as

separator the character comma can be used, in others – point

(dot). Entering a point (dot) instead of a comma will cause

System.FormatException when the current language settings

use comma.

The exceptions as a mechanism for reporting errors will be discussed in the

chapter "Exception Handling". For now you can consider that when the

program provides an error this is associated with the occurrence of an

exception that prints detailed information about the error on the console. For

example, let’s suppose that the regional settings of the computer are

Bulgarian and we execute the following code:

Console.Write("Enter a floating-point number: ");
string line = Console.ReadLine();
double number = double.Parse(line);
Console.WriteLine("You entered: {0}", number);

If we enter the number "3.14" (with a wrong decimal separator for the

Bulgarian settings) we will get the following exception (error message):

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
 at System.Number.StringToNumber(String str, NumberStyles
options, NumberBuffer& number, NumberFormatInfo info, Boolean
parseDecimal)
 at System.Number.ParseDouble(String value, NumberStyles
options, NumberFormatInfo numfmt)
 at System.Double.Parse(String s, NumberStyles style,
NumberFormatInfo info)
 at System.Double.Parse(String s)
 at ConsoleApplication.Program.Main() in
C:\Projects\IntroCSharpBook\ConsoleExample\Program.cs:line 14

Parsing Numbers Conditionally

When parsing a string to a number using the method Int32.Parse(string)

or by Convert.ToInt32(string) if the submitted string is not a number we

www.manaraa.com

188 Fundamentals of Computer Programming with C#

get an exception. Sometimes it is necessary to catch the failed parsing and to

print an error message or to ask the user to enter in a new value.

Interception of an incorrectly entered number when parsing a sting can be

done in two ways:

- by catching exceptions (see the chapter "Exception Handling");

- by conditional parsing (using the method TryParse(…)).

Let’s consider the conditional parsing of numbers in .NET Framework. The

method Int32.TryParse(…) accepts two parameters – a parsing string and a

variable to record the result of parsing. If the parsing is successful the method

returns value true. For greater clarity, let’s consider an example:

string str = Console.ReadLine();
int intValue;
bool parseSuccess = Int32.TryParse(str, out intValue);
Console.WriteLine(parseSuccess ?
 "The square of the number is " + intValue * intValue + "."
 : "Invalid number!");

In the example, conditional parsing of a string entered from the console to the

integer type Int32 is performed. If we enter as input "2", parsing will be

successful so the result of TryParse() will be true, and the parsed number

will be recorded in the variable intValue and on the console the squared

number will be printed:

Result: The square of the number is 4.

If we try to parse an invalid number such as "abc", TryParse() will return

false as a result and the user that will be notified that he has entered an

invalid number:

Invalid number!

Note that the method TryParse() as a result of its work returns

simultaneously two values: the parsed number (as an output parameter)

and a Boolean value as a result of the method invocation. Returning multiple

values at once is possible because one of the values is returned as an output

parameter (out parameter). The output parameters return value in a

predefined for the purpose variable coinciding with their type. When calling a

method the output parameters must be preceded by the keyword out.

Reading by Console.ReadKey()

The method Console.ReadKey() waits for key pressing on the console and

reads its character equivalent without the need of pressing [Enter]. The

result of invoking ReadKey() is information about the pressed key (or

www.manaraa.com

Chapter 4. Console Input and Output 189

more accurately a key combination) as an object of type ConsoleKeyInfo.

The obtained object contains the character that is entered by the pressed key

combination (property KeyChar) along with information about the keys

[Shift], [Ctrl] and [Alt] (property Modifiers). For example, if we press

[Shift+A] we will read a capital letter 'A' while in the Modifiers property we will

have the Shift flag. Here is an example:

ConsoleKeyInfo key = Console.ReadKey();
Console.WriteLine();
Console.WriteLine("Character entered: " + key.KeyChar);
Console.WriteLine("Special keys: " + key.Modifiers);

If we execute the program and press [Shift+A], we will obtain the following

result:

A
Character entered: A
Special keys: Shift

Simplified Reading of Numbers through Nakov.IO.Cin

There is no standard easy way to read several numbers, located on the same

line, separated by a space. In C# and .NET Framework we need to read a

string, split it into tokens using the space as separator and parse the obtained

tokens to extract the numbers. In other languages and platforms like C++ we

can directly read numbers, characters and text from the console without

parsing. This is not available in C# but we can use an external library or class.

The standard library Nakov.IO.Cin provides a simplified way to read

numbers from the console. You can read about it from the blog of its author

Svetlin Nakov: http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-

read-from-console-nakov-io-cin/. Once we have copied the file Cin.cs from

Nakov.IO.Cin into our Visual Studio C# project, we could write code like this:

using Nakov.IO;
…
int x = Cin.NextInt();
double y = Cin.NextDouble();
decimal d = Cin.NextDecimal();
Console.WriteLine("Result: {0} {1} {2}", x, y, d);

If we execute the code, we can enter 3 numbers by putting any amount of

whitespace separators between them. For example we can enter the first

number, two spaces, the second number, a new line + space and the last

number + space. The numbers will be read correctly and the output will

be as follows:

http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/
http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/

www.manaraa.com

190 Fundamentals of Computer Programming with C#

3 2.5
 3.58
Result: 3 2.5 3.58

Console Input and Output – Examples

We will consider few more examples of console input and output that will

show us some interesting techniques.

Printing a Letter

Next is a practical example representing console input and formatted text in

the form of a letter:

PrintingLetter.cs

class PrintingLetter
{
 static void Main()
 {
 Console.Write("Enter person name: ");
 string person = Console.ReadLine();

 Console.Write("Enter book name: ");
 string book = Console.ReadLine();

 string from = "Authors Team";

 Console.WriteLine(" Dear {0},", person);
 Console.Write("We are pleased to inform " +
 "you that \"{1}\" is the best Bulgarian book. {2}" +
 "The authors of the book wish you good luck {0}!{2}",
 person, book, Environment.NewLine);

 Console.WriteLine(" Yours,");
 Console.WriteLine(" {0}", from);
 }
}

The result of the execution of the above program could be the following:

Enter person name: Readers
Enter book name: Introduction to programming with C#
 Dear Readers,
We are pleased to inform you that "Introduction to programming

www.manaraa.com

Chapter 4. Console Input and Output 191

with C#" is the best Bulgarian book.
The authors of the book wish you good luck Readers!
 Yours,
 Authors Team

In this example we have a letter template. The program "asks" a few

questions to the user and reads from the console information needed to print

the letter by replacing the formatting specifiers with the data filled in by the

user.

Area of a Rectangle or a Triangle

We will consider another example: calculating of an area of a rectangle or a

triangle.

CalculatingArea.cs

class CalculatingArea
{
 static void Main()
 {
 Console.WriteLine("This program calculates " +
 "the area of a rectangle or a triangle");

 Console.WriteLine("Enter a and b (for rectangle) " +
 "or a and h (for triangle): ");

 int a = int.Parse(Console.ReadLine());
 int b = int.Parse(Console.ReadLine());

 Console.WriteLine("Enter 1 for a rectangle or " +
 "2 for a triangle: ");

 int choice = int.Parse(Console.ReadLine());
 double area = (double) (a * b) / choice;
 Console.WriteLine("The area of your figure is " + area);
 }
}

The result of the above example’s execution is as follows:

This program calculates the area of a rectangle or a triangle
Enter a and b (for rectangle) or a and h (for triangle):
5
4

www.manaraa.com

192 Fundamentals of Computer Programming with C#

Enter 1 for a rectangle or 2 for a triangle:
2
The area of your figure is 10

Exercises

1. Write a program that reads from the console three numbers of type int

and prints their sum.

2. Write a program that reads from the console the radius "r" of a circle

and prints its perimeter and area.

3. A given company has name, address, phone number, fax number, web

site and manager. The manager has name, surname and phone number.

Write a program that reads information about the company and its

manager and then prints it on the console.

4. Write a program that prints three numbers in three virtual columns

on the console. Each column should have a width of 10 characters and

the numbers should be left aligned. The first number should be an

integer in hexadecimal; the second should be fractional positive; and

the third – a negative fraction. The last two numbers have to be

rounded to the second decimal place.

5. Write a program that reads from the console two integer numbers (int)

and prints how many numbers between them exist, such that the

remainder of their division by 5 is 0. Example: in the range (14, 25)

there are 3 such numbers: 15, 20 and 25.

6. Write a program that reads two numbers from the console and prints the

greater of them. Solve the problem without using conditional

statements.

7. Write a program that reads five integer numbers and prints their

sum. If an invalid number is entered the program should prompt the user

to enter another number.

8. Write a program that reads five numbers from the console and prints the

greatest of them.

9. Write a program that reads an integer number n from the console. After

that reads n numbers from the console and prints their sum.

10. Write a program that reads an integer number n from the console and

prints all numbers in the range [1…n], each on a separate line.

11. Write a program that prints on the console the first 100 numbers in the

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

12. Write a program that calculates the sum (with precision of 0.001) of

the following sequence: 1 + 1/2 - 1/3 + 1/4 - 1/5 + …

www.manaraa.com

Chapter 4. Console Input and Output 193

Solutions and Guidelines

1. Use the methods Console.ReadLine() and Int32.Parse().

2. Use Math.PI constant and the well-known geometric formulas.

3. Format the text with Write(…) or WriteLine(…) similar to the example

with the letter that we looked at.

4. Use the format strings explained in the “Composite Formatting” section

and the method Console.WriteLine(). Below is a piece of the code:

int hexNum = 2013;
Console.WriteLine("|0x{0,-8:X}|", hexNum);
double fractNum = -1.856;
Console.WriteLine("|{0,-10:f2}|", fractNum);

5. There are two approaches for solving the problem:

First approach: Use mathematical tricks for optimized calculation based

on the fact that every fifth number is divisible by 5. Think how to

implement this correctly and about the borderline cases.

The second approach is easier but it works slower. With a for-loop

each number within the given range can be checked. You should read in

Internet or in the chapter "Loops" how to use for-loops.

6. Since the problem requires a solution, which does not use conditional

statements, you should use a different approach. Two possible solutions

of the problem include the use of functions of class Math. The greater of

the two numbers you can find with the function Math.Max(a, b) and the

smaller with Math.Min(a, b).

Another solution to the problem includes usage of the function for

taking the absolute value of a number Math.Abs(a):

int a = 2011;
int b = 1990;
Console.WriteLine("Greater: {0}", (a + b + Math.Abs(a-b)) / 2);
Console.WriteLine("Smaller: {0}", (a + b - Math.Abs(a-b)) / 2);

The third solution uses bitwise operations:

int a = 1990;
int b = 2011;
int max = a - ((a - b) & ((a - b) >> 31));
Console.WriteLine(max);

There is another solution which is partially correct because it uses a

hidden conditional statement (the ternary ?: operator):

www.manaraa.com

194 Fundamentals of Computer Programming with C#

int a = 1990;
int b = 2013;
int max = a > b ? a : b;
Console.WriteLine(max);

7. You can read the numbers in five different variables and finally sum

them and print the obtained sum. Note that the sum of 5 int values may

not fit in the int type so you should use long.

Another approach is using loops. When parsing the consecutive numbers

use conditional parsing with TryParse(…). When an invalid number is

entered, repeat reading of the number. You can do this through while

loop with an appropriate exit condition. To avoid repetitive code you can

explore the for-loops from the chapter "Loops".

8. You can use the comparison statement "if" (you can read about it on

the Internet or from the chapter "Conditional Statements"). To avoid

repeating code you can use the looping construct "for" (you could read

about it online or in the chapter "Loops").

9. You should use a for-loop (see the chapter "Loops"). Read the numbers

one after another and accumulate their sum in a variable, which then

display on the console at the end.

10. Use a combination of loops (see the chapter "Loops") and the methods

Console.ReadLine(), Console.WriteLine() and Int32.Parse().

11. More about the Fibonacci sequence can be found in Wikipedia at:

http://en.wikipedia.org/wiki/Fibonacci_sequence. For the solution of the

problem use 2 temporary variables in which store the last 2 calculated

values and with a loop calculate the rest (each subsequent number in the

sequence is a sum of the last two). Use a for-loop to implement the

repeating logic (see the chapter "Loops").

12. Accumulate the sum of the sequence in a variable inside a while-loop

(see the chapter "Loops"). At each step compare the old sum with the

new sum. If the difference between the two sums Math.Abs(current_sum
– old_sum) is less than the required precision (0.001), the calculation

should finish because the difference is constantly decreasing and the

precision is constantly increasing at each step of the loop. The expected

result is 1.307.

http://en.wikipedia.org/wiki/Fibonacci_sequence

www.manaraa.com

Chapter 5. Conditional
Statements

In This Chapter

In this chapter we will cover the conditional statements in C#, which we

can use to execute different actions depending on a given condition. We will

explain the syntax of the conditional operators if and if-else with suitable

examples and explain the practical application of the operator for selection

switch-case.

We will focus on the best practices to be followed in order to achieve a

better programming style when using nested or other types of conditional

statements.

Comparison Operators and Boolean Expressions

In the following section we will recall the basic comparison operators in the

C# language. They are important, because we use them to describe

conditions in our conditional statements.

Comparison Operators

There are several comparisons operators in C#, which are used to compare

pairs of integers, floating-point numbers, characters, strings and other types:

Operator Action

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Comparison operators can be used to compare expressions such as two

numbers, two numerical expressions, or a number and a variable. The result

of the comparison is a Boolean value (true or false).

Let’s look at an example of using comparisons:

www.manaraa.com

196 Fundamentals of Computer Programming with C#

int weight = 700;
Console.WriteLine(weight >= 500); // True

char gender = 'm';
Console.WriteLine(gender <= 'f'); // False

double colorWaveLength = 1.630;
Console.WriteLine(colorWaveLength > 1.621); // True

int a = 5;
int b = 7;
bool condition = (b > a) && (a + b < a * b);
Console.WriteLine(condition); // True

Console.WriteLine('B' == 'A' + 1); // True

In the sample code we perform a comparison between numbers and between

characters. The numbers are compared by size while characters are compared

by their lexicographical order (the operation uses the Unicode numbers for the

corresponding characters).

As seen in the example, the type char behaves like a number and can be

subtracted, added and compared to numbers freely. However, this should be

used cautiously as it could make the code difficult to read and understand.

By running the example we will produce the following output:

True
False
True
True
True

In C# several types of data that can be compared:

- numbers (int, long, float, double, ushort, decimal, …)

- characters (char)

- Booleans (bool)

- References to objects, also known as object pointers (string, object,

arrays and others)

Every comparison can affect two numbers, two bool values, or two object

references. It is allowed to compare expressions of different types, like

an integer with a floating-point number for example. However, not every pair

of data types can be compared directly. For example, we cannot compare a

string with a number.

www.manaraa.com

Chapter 5. Conditional Statements 197

Comparison of Integers and Characters

When comparing integers and characters, we directly compare their binary

representation in memory i.e. we compare their values. For example, if we

compare two numbers of type int, we will compare the values of their

respective series of 4 bytes. Here is one example for integer and character

comparisons:

Console.WriteLine("char 'a' == 'a'? " + ('a' == 'a')); // True
Console.WriteLine("char 'a' == 'b'? " + ('a' == 'b')); // False
Console.WriteLine("5 != 6? " + (5 != 6)); // True
Console.WriteLine("5.0 == 5L? " + (5.0 == 5L)); // True
Console.WriteLine("true == false? " + (true == false)); // False

The result of the example is as follows:

char 'a' == 'a'? True
char 'a' == 'b'? False
5 != 6? True
5.0 == 5L? True
true == false? False

Comparison of References to Objects

In .NET Framework there are reference data types that do not contain their

value (unlike the value types), but contain the address of the memory in the

heap where their value is located. Strings, arrays and classes are such types.

They behave like a pointer to some value and can have the value null, i.e. no

value. When comparing reference type variables, we compare the

addresses they hold, i.e. we check whether they point to the same location

in the memory, i.e. to the same object.

Two object pointers (references) can refer to the same object or to different

objects, or one of them can point to nowhere (to have null value). In the

following example we create two variables that point to the same value

(object) in the heap.

string str = "beer";
string anotherStr = str;

After executing the source code above, the two variables str and anotherStr

will point to the same object (string with value "beer"), which is located at

some address in the heap (managed heap).

We can check whether the variables point to the same object with the

comparison operator (==). For most reference types this operator does not

compare the content of the objects but rather checks if they point at the same

www.manaraa.com

198 Fundamentals of Computer Programming with C#

location in memory, i.e. if they are one and the same object. The size

comparisons (<, >, <= and >=) are not applicable for object type variables.

The following example illustrates the comparison of references to objects:

string str = "beer";
string anotherStr = str;
string thirdStr = "bee";
thirdStr = thirdStr + 'r';
Console.WriteLine("str = {0}", str);
Console.WriteLine("anotherStr = {0}", anotherStr);
Console.WriteLine("thirdStr = {0}", thirdStr);
Console.WriteLine(str == anotherStr); // True - same object
Console.WriteLine(str == thirdStr); // True - equal objects
Console.WriteLine((object)str == (object)anotherStr); // True
Console.WriteLine((object)str == (object)thirdStr); // False

If we execute the sample code, we will get the following result:

str = beer
anotherStr = beer
thirdStr = beer
True
True
True
False

Because the strings used in the example (instances of the class

System.String, defined by the keyword string in C#) are of reference type,

their values are set as objects in the heap. The two objects str and thirdStr

have equal values, but are different objects, located at separate addresses in

the memory. The variable anotherStr is also reference type and gets the

address (the reference) of str, i.e. points to the existing object str. So by

the comparison of the variables str and anotherStr, it appears that they are

one and the same object and are equal. The result of the comparison between

str and thirdStr is also equality, because the operator == compares the

strings by value and not by address (a very useful exception to the rule for

comparison by address). However, if we convert the three variables to objects

and then compare them, we will get a comparison of the addresses in the

heap where their values are located and the result will be different.

This above example shows that the operator == has a special behavior

when comparing strings, but for the rest of the reference types (like arrays

or classes) it applies comparison by address.

You will learn more about the class String and the comparison of strings in

the chapter about "Strings".

www.manaraa.com

Chapter 5. Conditional Statements 199

Logical Operators

Let’s recall the logical operators in C#. They are often used to construct

logical (Boolean) expressions. The logical operators are: &&, ||, ! and ^.

Logical Operators && and ||

The logical operators && (logical AND) and || (logical OR) are only used on

Boolean expressions (values of type bool). In order for the result – of

comparing two expressions with the operator && – to be true (true), both

operands must have the value true. For instance:

bool result = (2 < 3) && (3 < 4);

This expression is "true", because both the operands: (2 < 3) and (3 < 4) are

"true". The logical operator && is also called short-circuit, because it does

not lose time in additional unnecessary calculations. It evaluates the left part

of the expression (the first operand) and if the result is false, it does not lose

time for evaluating the second operand – it’s not possible the end result to be

"true" when the first operand is not "true". For this reason it is also called

short-circuit logical operator "and".

Similarly, the operator || returns true if at least one of the two operands has

the value "true". Example:

bool result = (2 < 3) || (1 == 2);

This example is "true", because its first operand is "true". Just like the &&

operator, the calculation is done fast – if the first operand is true, the second

is not calculated at all, as the result is already known. It is also called short-

circuit logical operator "or".

Logical Operators & and |

The operators for comparison & and | are similar to && and ||, respectively.

The difference lies in the fact that both operands are calculated one after the

other, although the final result is known in advance. That’s why these

comparison operators are also known as full-circuit logical operators and

are used very rarely.

For instance, when two operands are compared with & and the first one is

evaluated "false", the calculation of the second operand is still executed. The

result is clearly "false". Likewise, when two operands are compared with | and

the first one is "true", we still evaluate the second operand and the final result

is nevertheless "true".

We must not confuse the Boolean operators & and | with the bitwise

operators & and |. Although they are written in the same way, they take

different arguments (Boolean or integer expressions) and return different

result (bool or integer) and their actions are not identical.

www.manaraa.com

200 Fundamentals of Computer Programming with C#

Logical Operators ^ and !

The ^ operator, also known as exclusive OR (XOR), belongs to the full-

circuit operators, because both operands are calculated one after the other.

The result of applying the operator is true if exactly one of the operands

is true, but not both simultaneously. Otherwise the result is false. Here

is an example:

Console.WriteLine("Exclusive OR: "+ ((2 < 3) ^ (4 > 3)));

The result is as follows:

Exclusive OR: False

The previous expression is evaluated as false, because both operands: (2 <3)

and (4 > 3) are true.

The operator ! returns the reversed value of the Boolean expression to

which it is attached. Example:

bool value = !(7 == 5); // True
Console.WriteLine(value);

The above expression can be read as "the opposite of the truth of the phrase

"7 == 5". The result of this pattern is True (the opposite of False). Note that

when we print the value true it is displayed on the console as "True" (with

capital letter). This "defect" comes from the VB.NET language that also runs

in .NET Framework.

Conditional Statements "if" and "if-else"

After reviewing how to compare expressions, we will continue with conditional

statements, which will allow us to implement programming logic.

Conditional statements if and if-else are conditional control statements.

Because of them the program can behave differently based on a defined

condition checked during the execution of the statement.

Conditional Statement "if"

The main format of the conditional statements if is as follows:

if (Boolean expression)
{
 Body of the conditional statement;
}

It includes: if-clause, Boolean expression and body of the conditional

statement.

www.manaraa.com

Chapter 5. Conditional Statements 201

The Boolean expression can be a Boolean variable or Boolean logical

expression. Boolean expressions cannot be integer (unlike other programming

languages like C and C++).

The body of the statement is the part locked between the curly brackets:

{}. It may consist of one or more operations (statements). When there are

several operations, we have a complex block operator, i.e. series of

commands that follow one after the other, enclosed in curly brackets.

The expression in the brackets which follows the keyword if must return the

Boolean value true or false. If the expression is calculated to the value

true, then the body of a conditional statement is executed. If the result is

false, then the operators in the body will be skipped.

Conditional Statement "if" – Example

Let’s take a look at an example of using a conditional statement if:

static void Main()
{
 Console.WriteLine("Enter two numbers.");
 Console.Write("Enter first number: ");
 int firstNumber = int.Parse(Console.ReadLine());
 Console.Write("Enter second number: ");
 int secondNumber = int.Parse(Console.ReadLine());
 int biggerNumber = firstNumber;
 if (secondNumber > firstNumber)
 {
 biggerNumber = secondNumber;
 }
 Console.WriteLine("The bigger number is: {0}", biggerNumber);
}

If we start the example and enter the numbers 4 and 5 we will get the

following result:

Enter two numbers.
Enter first number: 4
Enter second number: 5
The bigger number is: 5

Conditional Statement "if" and Curly Brackets

If we have only one operator in the body of the if-statement, the curly

brackets denoting the body of the conditional operator may be omitted, as

shown below. However, it is a good practice to use them even if we have only

one operator. This will make the code is more readable.

Here is an example of omitting the curly brackets which leading to confusion:

www.manaraa.com

202 Fundamentals of Computer Programming with C#

int a = 6;
if (a > 5)
 Console.WriteLine("The variable is greater than 5.");
 Console.WriteLine("This code will always execute!");
// Bad practice: misleading code

In this example the code is misleadingly formatted and creates the impression

that both printing statements are part of the body of the if-block. In fact,

this is true only for the first one.

Always put curly brackets { } for the body of “if” blocks even

if they consist of only one operator!

Conditional Statement "if-else"

In C#, as in most of the programming languages there is a conditional

statement with else clause: the if-else statement. Its format is the

following:

if (Boolean expression)
{
 Body of the conditional statement;
}
else
{
 Body of the else statement;
}

The format of the if-else structure consists of the reserved word if,

Boolean expression, body of a conditional statement, reserved word else and

else-body statement. The body of else-structure may consist of one or more

operators, enclosed in curly brackets, same as the body of a conditional

statement.

This statement works as follows: the expression in the brackets (a Boolean

expression) is calculated. The calculation result must be Boolean – true or

false. Depending on the result there are two possible outcomes. If the

Boolean expression is calculated to true, the body of the conditional

statement is executed and the else-statement is omitted and its operators

do not execute. Otherwise, if the Boolean expression is calculated to false,

the else-body is executed, the main body of the conditional statement is

omitted and the operators in it are not executed.

Conditional Statement "if-else" – Example

Let’s take a look at the next example and illustrate how the if-else

statement works:

www.manaraa.com

Chapter 5. Conditional Statements 203

static void Main()
{
 int x = 2;
 if (x > 3)
 {
 Console.WriteLine("x is greater than 3");
 }
 else
 {
 Console.WriteLine("x is not greater than 3");
 }
}

The program code can be interpreted as follows: if x>3, the result at the end

is: "x is greater than 3", otherwise (else) the result is: "x is not greater

than 3". In this case, since x=2, after the calculation of the Boolean

expression the operator of the else structure will be executed. The result of

the example is:

x is not greater than 3

The following scheme illustrates the process flow of this example:

www.manaraa.com

204 Fundamentals of Computer Programming with C#

Nested "if" Statements

Sometimes the programming logic in a program or an application needs to be

represented by multiple if-structures contained in each other. We call them

nested if or nested if-else structures.

We call nesting the placement of an if or if-else structure in the body of

another if or else structure. In such situations every else clause

corresponds to the closest previous if clause. This is how we understand

which else clause relates to which if clause.

It’s not a good practice to exceed three nested levels, i.e. we should not nest

more than three conditional statements into one another. If for some reason

we need to nest more than three structures, we should export a part of the

code in a separate method (see chapter Methods).

Nested "if" Statements – Example

Here is an example of using nested if structures:

int first = 5;
int second = 3;

if (first == second)
{
 Console.WriteLine("These two numbers are equal.");
}
else
{
 if (first > second)
 {
 Console.WriteLine("The first number is greater.");
 }
 else
 {
 Console.WriteLine("The second number is greater.");
 }
}

In the example above we have two numbers and compare them in two steps:

first we compare whether they are equal and if not, we compare again, to

determine which one is the greater. Here is the result of the execution of the

code above:

The first number is greater.

www.manaraa.com

Chapter 5. Conditional Statements 205

Sequences of "if-else-if-else-…"

Sometimes we need to use a sequence of if structures, where the else

clause is a new if structure. If we use nested if structures, the code would

be pushed too far to the right. That’s why in such situations it is allowed to

use a new if right after the else. It’s even considered a good practice. Here

is an example:

char ch = 'X';
if (ch == 'A' || ch == 'a')
{
 Console.WriteLine("Vowel [ei]");
}
else if (ch == 'E' || ch == 'e')
{
 Console.WriteLine("Vowel [i:]");
}
else if (ch == 'I' || ch == 'i')
{
 Console.WriteLine("Vowel [ai]");
}
else if (ch == 'O' || ch == 'o')
{
 Console.WriteLine("Vowel [ou]");
}
else if (ch == 'U' || ch == 'u')
{
 Console.WriteLine("Vowel [ju:]");
}
else
{
 Console.WriteLine("Consonant");
}

The program in the example makes a series of comparisons of a variable to

check if it is one of the vowels from the English alphabet. Every following

comparison is done only in case that the previous comparison was not true. In

the end, if none of the if-conditions is not fulfilled, the last else clause is

executed. Thus, the result of the example is as follows:

Consonant

Conditional "if" Statements – Good Practices

Here are some guidelines, which we recommend for writing if, structures:

www.manaraa.com

206 Fundamentals of Computer Programming with C#

- Use blocks, surrounded by curly brackets {} after if and else in order

to avoid ambiguity

- Always format the code correctly by offsetting it with one tab inwards

after if and else, for readability and avoiding ambiguity.

- Prefer switch-case structure to of a series of if-else-if-else-…

structures or nested if-else statement, if possible. The construct

switch-case we will cover in the next section.

Conditional Statement "switch-case"

In the following section we will cover the conditional statement switch. It is

used for choosing among a list of possibilities.

How Does the "switch-case" Statement Work?

The structure switch-case chooses which part of the programming code to

execute based on the calculated value of a certain expression (most often of

integer type). The format of the structure for choosing an option is as follows:

switch (integer_selector)
{
 case integer_value_1:
 statements;
 break;
 case integer_value_2:
 statements;
 break;
 // …
 default:
 statements;
 break;
}

The selector is an expression returning a resulting value that can be

compared, like a number or string. The switch operator compares the result

of the selector to every value listed in the case labels in the body of the

switch structure. If a match is found in a case label, the corresponding

structure is executed (simple or complex). If no match is found, the default

statement is executed (when such exists). The value of the selector must be

calculated before comparing it to the values inside the switch structure. The

labels should not have repeating values, they must be unique.

As it can be seen from the definition above, every case ends with the

operator break, which ends the body of the switch structure. The C#

compiler requires the word break at the end of each case-section containing

code. If no code is found after a case-statement, the break can be omitted

www.manaraa.com

Chapter 5. Conditional Statements 207

and the execution passes to the next case-statement and continues until it

finds a break operator. After the default structure break is obligatory.

It is not necessary for the default clause to be last, but it’s recommended to

put it at the end, and not in the middle of the switch structure.

Rules for Expressions in Switch

The switch statement is a clear way to implement selection among many

options (namely, a choice among a few alternative ways for executing the

code). It requires a selector, which is calculated to a certain value. The

selector type could be an integer number, char, string or enum. If we want

to use for example an array or a float as a selector, it will not work. For non-

integer data types, we should use a series of if statements.

Using Multiple Labels

Using multiple labels is appropriate, when we want to execute the same

structure in more than one case. Let’s look at the following example:

int number = 6;
switch (number)
{
 case 1:
 case 4:
 case 6:
 case 8:
 case 10:
 Console.WriteLine("The number is not prime!"); break;
 case 2:
 case 3:
 case 5:
 case 7:
 Console.WriteLine("The number is prime!"); break;
 default:
 Console.WriteLine("Unknown number!"); break;
}

In the above example, we implement multiple labels by using case

statements without break after them. In this case, first the integer value of

the selector is calculated – that is 6, and then this value is compared to every

integer value in the case statements. When a match is found, the code block

after it is executed. If no match is found, the default block is executed. The

result of the example above is as follows:

The number is not prime!

www.manaraa.com

208 Fundamentals of Computer Programming with C#

Good Practices When Using "switch-case"

- A good practice when using the switch statement is to put the default

statement at the end, in order to have easier to read code.

- It’s good to place first the cases, which handle the most common

situations. Case statements, which handle situations occurring rarely,

can be placed at the end of the structure.

- If the values in the case labels are integer, it’s recommended that they

be arranged in ascending order.

- If the values in the case labels are of character type, it’s recommended

that the case labels are sorted alphabetically.

- It’s advisable to always use a default block to handle situations that

cannot be processed in the normal operation of the program. If in the

normal operation of the program the default block should not be

reachable, you could put in it a code reporting an error.

Exercises

1. Write an if-statement that takes two integer variables and exchanges

their values if the first one is greater than the second one.

2. Write a program that shows the sign (+ or -) of the product of three real

numbers, without calculating it. Use a sequence of if operators.

3. Write a program that finds the biggest of three integers, using nested

if statements.

4. Sort 3 real numbers in descending order. Use nested if statements.

5. Write a program that asks for a digit (0-9), and depending on the input,

shows the digit as a word (in English). Use a switch statement.

6. Write a program that gets the coefficients a, b and c of a quadratic

equation: ax2 + bx + c, calculates and prints its real roots (if they exist).

Quadratic equations may have 0, 1 or 2 real roots.

7. Write a program that finds the greatest of given 5 numbers.

8. Write a program that, depending on the user’s choice, inputs int, double

or string variable. If the variable is int or double, the program

increases it by 1. If the variable is a string, the program appends "*" at

the end. Print the result at the console. Use switch statement.

9. We are given 5 integer numbers. Write a program that finds those

subsets whose sum is 0. Examples:

- If we are given the numbers {3, -2, 1, 1, 8}, the sum of -2, 1 and 1

is 0.

- If we are given the numbers {3, 1, -7, 35, 22}, there are no subsets

with sum 0.

www.manaraa.com

Chapter 5. Conditional Statements 209

10. Write a program that applies bonus points to given scores in the range

[1…9] by the following rules:

- If the score is between 1 and 3, the program multiplies it by 10.

- If the score is between 4 and 6, the program multiplies it by 100.

- If the score is between 7 and 9, the program multiplies it by 1000.

- If the score is 0 or more than 9, the program prints an error

message.

11. * Write a program that converts a number in the range [0…999] to

words, corresponding to the English pronunciation. Examples:

- 0 --> "Zero"

- 12 --> "Twelve"

- 98 --> "Ninety eight"

- 273 --> "Two hundred seventy three"

- 400 --> "Four hundred"

- 501 --> "Five hundred and one"

- 711 --> "Seven hundred and eleven"

Solutions and Guidelines

1. Look at the section about if-statements.

2. A multiple of non-zero numbers has a positive product, if the negative

multiples are even number. If the count of the negative numbers is

odd, the product is negative. If at least one of the numbers is zero, the

product is also zero. Use a counter negativeNumbersCount to keep the

number of negative numbers. Check each number whether it is

negative and change the counter accordingly. If some of the numbers is

0, print “0” as result (the zero has no sign). Otherwise print “+” or “-”

depending on the condition (negativeNumbersCount % 2 == 0).

3. Use nested if-statements, first checking the first two numbers then

checking the bigger of them with the third.

4. First find the smallest of the three numbers, and then swap it with

the first one. Then check if the second is greater than the third number

and if yes, swap them too.

Another approach is to check all possible orders of the numbers with a

series of if-else checks: a≤b≤c, a≤c≤b, b≤a≤c, b≤c≤a, c≤a≤b and c≤b≤a.

A more complicated and more general solution of this problem is to put

the numbers in an array and use the Array.Sort(…) method. You may

read about arrays in the chapter “Arrays”.

5. Just use a switch statement to check for all possible digits.

6. From math it is known, that a quadratic equation may have one or two

real roots or no real roots at all. In order to calculate the real roots of a

www.manaraa.com

210 Fundamentals of Computer Programming with C#

given quadratic equation, we first calculate the discriminant (D) by the

formula: D = b2 - 4ac. If the discriminant is zero, then the quadratic

equation has one double real root and it is calculated by the formula:

1,2
2

b
x

a

 . If the value of the discriminant is positive, then the equation

has two distinct real roots, which are calculated by the formula:
2

1,2

4

2

b b ac
x

a

 . If the discriminant is negative, the quadratic

equation has no real roots.

7. Use nested if statements. You could use the loop structure for, which

you could read about in the “Loops” chapter of the book or in Internet.

8. First input a variable, which indicates what type will be the input, i.e.

by entering 0 the type is int, by 1 is double and by 2 is string.

9. Use nested if statements or series of 31 comparisons, in order to

check all the sums of the 31 subsets of the given numbers (without the

empty one). Note that the problem in general (with N numbers) is

complex and using loops will not be enough to solve it.

10. Use switch statement or a sequence of if-else constructs and at the

end print at the console the calculated points.

11. Use nested switch statements. Pay special attention to the numbers

from 0 to 19 and those that end with 0. There are many special cases!

You might benefit from using methods to reuse the code you write,

because printing a single digit is part of printing a 2-digit number which is

part of printing 3-digit number. You may read about methods in the

chapter “Methods”.

www.manaraa.com

Chapter 6. Loops

In This Chapter

In this chapter we will examine the loop programming constructs through

which we can execute a code snippet repeatedly. We will discuss how to

implement conditional repetitions (while and do-while loops) and how to

work with for-loops. We will give examples of different possibilities to define

loops, how to construct them and some of their key usages. Finally, we will

discuss the foreach-loop construct and how we can use multiple loops placed

inside each other (nested loops).

What Is a "Loop"?

In programming often requires repeated execution of a sequence of

operations. A loop is a basic programming construct that allows repeated

execution of a fragment of source code. Depending on the type of the loop,

the code in it is repeated a fixed number of times or repeats until a given

condition is true (exists).

Loops that never end are called infinite loops. Using an infinite loop is rarely

needed except in cases where somewhere in the body of the loop a break

operator is used to terminate its execution prematurely. We will cover this

later but now let’s look how to create a loop in the C# language.

While Loops

One of the simplest and most commonly used loops is while.

while (condition)
{
 loop body;
}

In the code above example, condition is any expression that returns a

Boolean result – true or false. It determines how long the loop body will

be repeated and is called the loop condition. In this example the loop body

is the programming code executed at each iteration of the loop, i.e. whenever

the input condition is true. The behavior of while loops can be represented by

the following scheme:

www.manaraa.com

212 Fundamentals of Computer Programming with C#

In the while loop, first of all the Boolean expression is calculated and if it is

true the sequence of operations in the body of the loop is executed. Then

again the input condition is checked and if it is true again the body of the loop

is executed. All this is repeated again and again until at some point the

conditional expression returns value false. At this point the loop stops

and the program continues to the next line, immediately after the body of the

loop.

The body of the while loop may not be executed even once if in the beginning

the condition of the cycle returns false. If the condition of the cycle is never

broken the loop will be executed indefinitely.

Usage of While Loops

Let’s consider a very simple example of using the while loop. The purpose of

the loop is to print on the console the numbers in the range from 0 to 9 in

ascending order:

// Initialize the counter
int counter = 0;

// Execute the loop body while the loop condition holds
while (counter <= 9)
{
 // Print the counter value
 Console.WriteLine("Number : " + counter);
 // Increment the counter
 counter++;
}

When executing the sample code we obtain the following result:

Number : 0

true

Condition

Loop body

false

www.manaraa.com

Chapter 6. Loops 213

Number : 1
Number : 2
Number : 3
Number : 4
Number : 5
Number : 6
Number : 7
Number : 8
Number : 9

Let’s give some more examples in order to illustrate the usefulness of loops

and to show some problems that can be solved by using loops.

Summing the Numbers from 1 to N

In this example we will examine how by using the while loop we can find the

sum of the numbers from 1 to n. The number n is read from the console:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
int num = 1;
int sum = 1;
Console.Write("The sum 1");
while (num < n)
{
 num++;
 sum += num;
 Console.Write(" + " + num);
}
Console.WriteLine(" = " + sum);

First we initialize the variables num and sum with the value of 1. In num we

keep the current number, which we add to the sum of the preceding numbers.

Trough each loop we increase num with 1 to get the next number, then in the

condition of the loop we check whether it is in the range from 1 to n. The sum

variable contains the sum of the numbers from 1 to num at any time. Upon

entering the loop we add to sum the next number stored in num. We print on

the console all num numbers from 1 to n with a separator "+" and the final

result of the summing after the loop’s ending. The result of the program’s

execution is as follows (we enter n = 17):

N = 17
The sum 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 +
14 + 15 + 16 + 17 = 153

www.manaraa.com

214 Fundamentals of Computer Programming with C#

Let’s give another example of using the while loop, before moving on to

other structures for organizing loops.

Check If a Number Is Prime – Example

We will write a program to check whether a given number is prime or

not. We will read the number to check from the console. As we know from the

mathematics, a prime number is any positive integer number, which, is not

divisible by any other numbers except 1 and itself. We can check if the

number num is prime when in a loop we check if it divides by numbers from 2

to √num:

Console.Write("Enter a positive number: ");
int num = int.Parse(Console.ReadLine());
int divider = 2;
int maxDivider = (int)Math.Sqrt(num);
bool prime = true;
while (prime && (divider <= maxDivider))
{
 if (num % divider == 0)
 {
 prime = false;
 }
 divider++;
}
Console.WriteLine("Prime? " + prime);

We use the variable divider to store the value of a potential divisor of the

number. First we initialize it with 2 (the smallest possible divider). The

variable maxDivider is the maximum possible divisor, which is equal to the

square root of the number. If we have a divisor bigger than √num, then num

should also have another divisor smaller than √num and that’s why it’s useless

to check the numbers bigger than √num. This way we reduce the number of

loop iterations.

For the result we use a Boolean variable called prime. Initially, its value is

true. While passing through the loop, if it turns out that the number has a

divisor, the value of prime will become false.

The condition of the while loop consists of two other sub-conditions which are

related to the logical operator (logical and). In order to execute the loop,

these two sub-conditions must be true simultaneously. If at some point we

find a divisor of the number num, the variable prime becomes false and the

condition of the loop is no longer satisfied. This means that the loop is

executed until it finds the first divisor of the number or until it proves the fact

that num is not divisible by any of the numbers in the range from 2 to √num.

www.manaraa.com

Chapter 6. Loops 215

Here is how the result of the above example’s execution looks like if the input

values are respectively the numbers 37 and 34:

Enter a positive number: 37
Prime? True

Enter a positive number: 34
Prime? False

Operator "break"

The break operator is used for prematurely exiting the loop, before it has

completed its execution in a natural way. When the loop reaches the break

operator it is terminated and the program’s execution continues from the line

immediately after the loop’s body. A loop’s termination with the break

operator can only be done from its body, during an iteration of the loop. When

break is executed the code in the loop’s body after it is skipped and not

executed. We will demonstrate exiting from loop with break with an example.

Calculating Factorial – Example

In this example we will calculate the factorial of a number entered from the

console. The calculation is performed by using an infinite while loop and the

operator break. Let’s remember from the mathematics what is factorial and

how it is calculated. The factorial of an integer n is a function that is

calculated as a product of all integers less than or equal to n or equal to it. It

is written down as n! and by definition the following formulas are valid for it:

- N! = 1 * 2 * 3 … (n-1) * n, for n> 1;

- 2! = 1 * 2;

- 1! = 1;

- 0! = 1.

 The product n! can be expressed by a factorial of integers less than n:

- N! = (N-1)! * N, by using the initial value of 0! = 1.

In order to calculate the factorial of n we will directly use the definition:

int n = int.Parse(Console.ReadLine());
// "decimal" is the biggest C# type that can hold integer values
decimal factorial = 1;
// Perform an "infinite loop"
while (true)
{
 if (n <= 1)
 {

www.manaraa.com

216 Fundamentals of Computer Programming with C#

 break;
 }
 factorial *= n;
 n--;
}
Console.WriteLine("n! = " + factorial);

First we initialize the variable factorial with 1 and read n from the console.

We construct an endless while loop by using true as a condition of the loop.

We use the break operator, in order to terminate the loop, when n reaches a

value less than or equal to 1. Otherwise, we multiply the current result by n

and we reduce n with one unit. Practically in the first iteration of the loop the

variable factorial has a value n, in the second – n*(n-1) and so on. In the

last iteration of the loop the value of factorial is the product n*(n-1)*(n-

2)*…*3*2, which is the desired value of n!.

If we execute the sample program and enter 10 as input, we obtain the

following result:

10
n! = 3628800

Do-While Loops

The do-while loop is similar to the while loop, but it checks the condition

after each execution of its loop body. This type of loops is called loops with

condition at the end (post-test loop). A do-while loop looks like this:

do
{
 executable code;
} while (condition);

By design do-while loops are executed according to the following scheme:

true

Condition

Loop body

false

www.manaraa.com

Chapter 6. Loops 217

Initially the loop body is executed. Then its condition is checked. If it is

true, the loop’s body is repeated, otherwise the loop ends. This logic is

repeated until the condition of the loop is broken. The body of the loop is

executed at least once. If the loop’s condition is constantly true, the loop

never ends.

Usage of Do-While Loops

The do-while loop is used when we want to guarantee that the sequence of

operations in it will be executed repeatedly and at least once in the beginning

of the loop.

Calculating Factorial – Example

In this example we will again calculate the factorial of a given number n, but

this time instead of an infinite while loop we will use a do-while. The logic is

similar to that in the previous example:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
decimal factorial = 1;
do
{
 factorial *= n;
 n--;
} while (n > 0);
Console.WriteLine("n! = " + factorial);

At the beginning we start with a result of 1 and multiply consecutively the

result at each iteration by n, and reduce n by one unit, until n reaches 0. This

gives us the product n*(n-1)*…*1. Finally, we print the result on the console.

This algorithm always performs at least one multiplication and that’s why it

will not work properly when n ≤ 0.

Here is the result of the above example’s execution for n=7:

n = 7
n! = 5040

Factorial of a Large Number – Example

You might be wondering what will happen if we set a large value for the

number n in the previous example, say n=100. Then when, calculating the n!

we will overflow the decimal type and the result will be an exception of type

System.OverflowException:

n = 100

www.manaraa.com

218 Fundamentals of Computer Programming with C#

Unhandled Exception: System.OverflowException: Value was either
too large or too small for a Decimal.
 at System.Decimal.FCallMultiply(Decimal& result, Decimal d1,
Decimal d2)
 at System.Decimal.op_Multiply(Decimal d1, Decimal d2)
 at TestProject.Program.Main() in
C:\Projects\TestProject\Program
.cs:line 17

If we want to calculate 100! we can use data type BigInteger (which is new

as of .NET Framework 4.0 and is missing in the older .NET versions). This

type represents an integer, which can be very large (for example 100,000

digits). There is no limit on the size of the numbers recorded in the class

BigInteger (as long as you have enough RAM).

In order to use BigInteger, we must first add a reference from our project

to the assembly System.Numerics.dll (this is a standard .NET library for

working with very large integers, which is not referenced by default by our VS

projects). Adding a reference to it is done by right-clicking on the current

project references in the Solution Explorer window of Visual Studio:

We search and choose the assembly System.Numerics.dll from the list:

www.manaraa.com

Chapter 6. Loops 219

If the assembly is missing from the list, that means that the Visual Studio

project probably does not target .NET Framework 4.0 or above and you

must either create a new project or change the version of the current one:

Then we need to add "using System.Numerics;" before the beginning of the

class of our program and replace decimal with BigInteger. The program

obtains the following form:

using System;
using System.Numerics;

class Factorial
{
 static void Main()
 {
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());
 BigInteger factorial = 1;
 do
 {
 factorial *= n;
 n--;
 } while (n > 0);
 Console.WriteLine("n! = " + factorial);
 }
}

If we now run the program for n=100, we will get the value of 100 factorial,

which is a 158-digit number:

n = 100
n! =
9332621544394415268169923885626670049071596826438162146859296389
5217599993229915608941463976156518286253697920827223758251185210
916864000000000000000000000000

www.manaraa.com

220 Fundamentals of Computer Programming with C#

By BigInteger you can calculate 1000!, 10000! and even 100000! It will take

some time, but OverflowException will not occur. The BigInteger class is

very powerful but it works many times slower than int and long. For our

unpleasant surprise there is no class "big decimal" in .NET Framework, only

"big integer".

Product in the Range [N…M] – Example

Let’s give another, more interesting example of working with do-while loops.

The goal is to find the product of all numbers in the range [n…m]. Here is an

example solution to this problem:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

Console.Write("m = ");
int m = int.Parse(Console.ReadLine());

int num = n;
long product = 1;
do
{
 product *= num;
 num++;
} while (num <= m);

Console.WriteLine("product[n...m] = " + product);

In the example code we consecutively assign to num at each iteration the

values n, n+1, …, m and in the variable product we accumulate the product

of these values. We require the user to enter n, which should be less than m.

Otherwise we will receive as a result the number n.

If we run the program for n=2 and m=6 we will obtain the following result:

n = 2
m = 6
product[n...m] = 720

Be careful: the product grows very fast, so you may need to use BigInteger

instead of long for the calculated result. Also beware of hidden integer

overflow. Unchecked code will silently overflow and the code above will

produce incorrect output instead of showing an error. To overcome this, you

may surround the line holding the multiplication by the checked keyword.

www.manaraa.com

Chapter 6. Loops 221

For Loops

For-loops are a slightly more complicated than while and do-while loops but

on the other hand they can solve more complicated tasks with less code. Here

is the scheme describing for-loops:

They contain an initialization block (A), condition (B), body (D) and

updating commands for the loop variables (C). We will explain them in

details shortly. Before that, let’s look at how the program code of a for-loop

looks like:

for (initialization; condition; update)
{
 loop's body;
}

It consists of an initialization part for the counter (in the pattern int i =
0), a Boolean condition (i < 10), an expression for updating the counter

(i++, it might be i-- or for instance, i = i + 3) and body of the loop.

The counter of the loop distinguishes it from other types of loops. Most

often the counter changes from a given initial value to a final one in ascending

order, for example from 1 to 100. The number of iterations of a given for-

loop is usually known before its execution starts. A for-loop can have one or

several loop variables that move in ascending or descending order or with a

step. It is possible one loop variable to increase and the other – to decrease.

It is even possible to make a loop from 2 to 1024 in steps of multiplication by

2, since the update of the loop variables can contain not only addition, but

any other arithmetic (as well as other) operations.

true

B

D

false

C

for (A; B; C)
{

D;
}

for (int i=0; i<10; i++)
{

/* loop body */
}

A

www.manaraa.com

222 Fundamentals of Computer Programming with C#

Since none of the listed elements of the for-loops is mandatory, we can skip

them all and we will get an infinite loop:

for (; ;)
{
 // Loop body
}

Now let’s consider in details the separate parts of a for-loop.

Initialization of For Loops

For-loops can have an initialization block:

for (int num = 0; …; …)
{
 // The variable num is visible here and it can be used
}
// Here num can not be used

It is executed only once, just before entering the loop. Usually the

initialization block is used to declare the counter-variable (also called a loop

variable) and to set its initial value. This variable is "visible" and can be used

only within the loop. In the initialization block is possible to declare and

initialize more than one variable.

Condition of the For Loop

For-loops can have a loop condition:

for (int num = 0; num < 10; …)
{
 // Loop body
}

The condition (loop condition) is evaluated once before each iteration of the

loop, just like in the while loops. For result true the loop’s body is executed,

for result false it is skipped and the loop ends (the program continues

immediately after the last line of the loop’s body).

Update of the Loop Variables

The last element of a for-loop contains code that updates the loop variable:

for (int num = 0; num < 10; num++)
{
 // Loop body

www.manaraa.com

Chapter 6. Loops 223

}

This code is executed at each iteration, after the loop’s body has been

executed. It is most commonly used to update the value of the counter-

variable.

The Body of the Loop

The body of the loop contains a block with source code. The loop variables,

declared in the initialization block of the loop are available in it.

For-Loop – Example

Here is a complete example of a for-loop:

for (int i = 0; i <= 10; i++)
{
 Console.Write(i + " ");
}

The result of its execution is the following:

0 1 2 3 4 5 6 7 8 9 10

Here is another, more complicated example of a for-loop, in which we have

two variables i and sum, that initially have the value of 1, but we update them

consecutively at each iteration of the loop:

for (int i = 1, sum = 1; i <= 128; i = i * 2, sum += i)
{
 Console.WriteLine("i={0}, sum={1}", i, sum);
}

The result of this loop’s execution is the following:

i=1, sum=1
i=2, sum=3
i=4, sum=7
i=8, sum=15
i=16, sum=31
i=32, sum=63
i=64, sum=127
i=128, sum=255

www.manaraa.com

224 Fundamentals of Computer Programming with C#

Calculating N^M – Example

As a further example we will write a program that raises the number n to a

power of m, and for this purpose we will use a for-loop:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.Write("m = ");
int m = int.Parse(Console.ReadLine());
decimal result = 1;
for (int i = 0; i < m; i++)
{
 result *= n;
}
Console.WriteLine("n^m = " + result);

First we initialize the result (result = 1). The loop starts by setting an initial

value for the counter-variable (int i = 0). We define the condition for the

loop’s execution (i < m). This way the loop will be executed from 0 to m-1 i.e.

exactly m times. During each run of the loop we multiply the result by n and

so n will be raised to the next power (1, 2, …, m) at each iteration. Finally we

print the result to see if the program works properly.

Here is how the outcome of the program for n = 2 and m = 10 looks like:

n = 2
m = 10
n^m = 1024

For-Loop with Several Variables

As we have already seen, in the construct of a for-loop we can use multiple

variables at the same time. Here is an example in which we have two

counters. One of the counters moves up from 1 and the other moves down

from 10:

for (int small=1, large=10; small<large; small++, large--)
{
 Console.WriteLine(small + " " + large);
}

The condition for loop termination is overlapping of the counters. Finally we

get the following result:

1 10
2 9

www.manaraa.com

Chapter 6. Loops 225

3 8
4 7
5 6

Operator "continue"

The continue operator stops the current iteration of the inner loop,

without terminating the loop. With the following example we will examine how

to use this operator.

We will calculate the sum of all odd integers in the range [1…n], which are not

divisible by 7 by using the for-loop:

int n = int.Parse(Console.ReadLine());
int sum = 0;
for (int i = 1; i <= n; i += 2)
{
 if (i % 7 == 0)
 {
 continue;
 }
 sum += i;
}
Console.WriteLine("sum = " + sum);

First we initialize the loop’s variable with a value of 1 as this is the first odd

integer within the range [1…n]. After each iteration of the loop we check if i

has not yet exceeded n (i <= n). In the expression for updating the variable

we increase it by 2 in order to pass only through the odd numbers. Inside the

loop body we check whether the current number is divisible by 7. If so we call

the operator continue, which skips the rest of the loop’s body (it skips adding

the current number to the sum). If the number is not divisible by seven, it

continues with updating of the sum with the current number.

The result of the example for n = 11 is as follows:

11
sum = 29

Foreach Loops

The foreach loop (extended for-loop) is new for the C/C++/C# family of

languages, but is well known for the VB and PHP programmers. This

programming construct serves to iterate over all elements of an array, list

or other collection of elements (IEnumerable). It passes through all the

elements of the specified collection even if the collection is not indexed.

www.manaraa.com

226 Fundamentals of Computer Programming with C#

We will discuss arrays in more details in chapter "Arrays", but for now we can

imagine one array as an ordered sequence of numbers or other elements.

Here is how a foreach loop looks like:

foreach (type variable in collection)
{
 statements;
}

As we see, it is significantly simpler than the standard for-loop and

therefore is very often preferred by developers because it saves writing when

you need to go through all the elements of a given collection. Here is an

example that shows how we can use foreach:

int[] numbers = { 2, 3, 5, 7, 11, 13, 17, 19 };
foreach (int i in numbers)
{
 Console.Write(" " + i);
}
Console.WriteLine();
string[] towns = { "London", "Paris", "Milan", "New York" };
foreach (string town in towns)
{
 Console.Write(" " + town);
}

In the example we create an array of numbers, which are after that went

through with a foreach loop, and its elements are printed on the console.

Then an array of city names (strings) is created and in the same way it is

went through and its elements are printed on the console. The result of the

example is:

2 3 5 7 11 13 17 19
London Paris Milan New York

Nested Loops

The nested loops are programming constructs consisting of several loops

located into each other. The innermost loop is executed more times, and the

outermost – less times. Let’s see how two nested loops look like:

for (initialization, verification, update)
{
 for (initialization, verification, update)
 {

www.manaraa.com

Chapter 6. Loops 227

 executable code
 }
 …
}

After initialization of the first for loop, the execution of its body will start,

which contains the second (nested) loop. Its variable will be initialized, its

condition will be checked and the code within its body will be executed, then

the variable will be updated and execution will continue until the condition

returns false. After that the second iteration of the first for loop will

continue, its variable will be updated and the whole second loop will be

performed once again. The inner loop will be fully executed as many times as

the body of the outer loop.

Let’s now consider a real example that will demonstrate how useful the nested

loops are.

Printing a Triangle – Example

Let’s solve the following problem: for a given number n, to print on the

console a triangle with n number of lines, looking like this:

1
1 2
1 2 3
…
1 2 3 … n

We will solve the problem with two for-loops. The outer loop will traverse

the lines, and the inner one – the elements in them. When we are on the first

line, we have to print "1" (1 element, 1 iteration of the inner loop). On the

second line we have to print "1 2" (2 elements, 2 iterations of the internal

loop). We see that there is a correlation between the line on which we are and

the number of the elements that we print. This tells us how to organize the

inner loop’s structure:

- We initialize the loop variable with 1 (the first number that we will

print): col = 1;

- The repetition condition depends on the line on which we are: col <=

row;

- We increase the loop variable with one unit at each iteration of the

internal loop.

Basically, we need to implement a for-loop (external) from 1 to n (for the

lines) and put another for-loop (internal) in it – for the numbers on the

current line, which should spin from 1 to the number of the current line. The

www.manaraa.com

228 Fundamentals of Computer Programming with C#

external loop should go through the lines while the internal – through the

columns of the current line.

Finally we get the following code:

int n = int.Parse(Console.ReadLine());
for (int row = 1; row <= n; row++)
{
 for (int col = 1; col <= row; col++)
 {
 Console.Write(col + " ");
 }
 Console.WriteLine();
}

If we execute it, we will make sure that it works correctly. Here is how the

result for n=7 looks like:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7

Note: when n > 9 the triangle will have a small defect. Think how to fix it!

Prime Numbers in an Interval – Example

Let’s consider another example of nested loops. We set a goal to print on

the console all prime number in the interval [n…m]. We will limit the interval

by a for-loop and in order to check for a prime number we will use a nested

while loop:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.Write("m = ");
int m = int.Parse(Console.ReadLine());

for (int num = n; num <= m; num++)
{
 bool prime = true;
 int divider = 2;
 int maxDivider = (int)Math.Sqrt(num);
 while (divider <= maxDivider)

www.manaraa.com

Chapter 6. Loops 229

 {
 if (num % divider == 0)
 {
 prime = false;
 break;
 }
 divider++;
 }
 if (prime)
 {
 Console.Write(" " + num);
 }
}

Using the outer for-loop we check each of the numbers n, n+1, …, m if it is

prime. At each iteration of the outer for-loop we check whether its loop

variable num is a prime number. The logic by which we check for a prime

number is already familiar to us. At first we initialize the variable prime with

true. With the internal while loop we check for each of the numbers

[2…√num] if it is a divisor of num and if so, we set prime to false. After

finishing the while loop the Boolean variable prime indicates whether the

number is prime or not. If the number is prime we print it on the console.

If we execute the example for n=3 and m=75, we will obtain the following

result:

n = 3
m = 75
 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73

Lucky Numbers – Example

Let’s consider another example through which we will show that we can put

even more than two loops into each other. Our purpose is to find and

print all four-digit numbers of the type ABCD, where: A+B = C+D (we call

them lucky numbers). We will implement it with four for-loops – one for each

digit. The outermost loop will define the thousands. It will start from 1 and

the rest of the loops – from 0. They will determine the hundreds, the tens and

the units. We will perform a check if our current number in the most inner

loop is a lucky one and if so, we will print it on the console. Here is an

implementation example:

for (int a = 1; a <= 9; a++)
{
 for (int b = 0; b <= 9; b++)

www.manaraa.com

230 Fundamentals of Computer Programming with C#

 {
 for (int c = 0; c <= 9; c++)
 {
 for (int d = 0; d <= 9; d++)
 {
 if ((a + b) == (c + d))
 {
 Console.WriteLine(
 " " + a + " " + b + " " + c + " " + d);
 }
 }
 }
 }
}

Here is a part of the printed result (the entire result is too long):

1 0 0 1
1 0 1 0
1 1 0 2
1 1 1 1
1 1 2 0
1 2 0 3
1 2 1 2
1 2 2 1
…

We leave as homework for the diligent reader to offer a more efficient solution

to the same problem, using only three nested loops rather than four.

Lottery 6/49 – Example

In the following example we will find all possible combinations of the

lottery game "6/49". We have to find and print all possible extracts of 6

different numbers, each of which is in the range [1…49]. We will use 6 for-

loops. Unlike the previous example, the numbers cannot be repeated. To

avoid repetitions we will strive for each subsequent number to be larger than

the previous. Therefore, the internal loops will not start from 1 but from the

number to which the previous loop got + 1. We will have to go through the

first loop until it reaches 44 (and not to 49), the second – 45, etc. The last

loop will be up to 49. If you make all loops to 49 you will receive matching

numbers in certain combinations. For the same reason, each subsequent cycle

starts from the previous loop counter + 1. Let’s see what will happen:

for (int i1 = 1; i1 <= 44; i1++)
{

www.manaraa.com

Chapter 6. Loops 231

 for (int i2 = i1 + 1; i2 <= 45; i2++)
 {
 for (int i3 = i2 + 1; i3 <= 46; i3++)
 {
 for (int i4 = i3 + 1; i4 <= 47; i4++)
 {
 for (int i5 = i4 + 1; i5 <= 48; i5++)
 {
 for (int i6 = i5 + 1; i6 <= 49; i6++)
 {
 Console.WriteLine(i1 + " " + i2 + " " +
 i3 + " " + i4 + " " + i5 + " " + i6);
 }
 }
 }
 }
 }
}

Everything looks correct. Let’s run the program. It seems to work but there is

one problem – there are too many combinations and the program does not

end (it is so slow, that hardly anyone is going to wait). This is correct and it

is one of the reasons why there is Lottery 6/49 – there really are lots of

combinations. We are leaving the curious reader to practice changing the

example above just to calculate all lottery combinations, instead of printing

them. This change will dramatically reduce the volume of the printed results

on the console and the program will end surprisingly quickly.

Printing excessive amount of text on the console is very slow

and should be avoided. A modern computer (as of 2012) can

perform 300,000,000 operations per second but can print

only 10,000 – 20,000 text lines per second.

Exercises

1. Write a program that prints on the console the numbers from 1 to N.

The number N should be read from the standard input.

2. Write a program that prints on the console the numbers from 1 to N,

which are not divisible by 3 and 7 simultaneously. The number N

should be read from the standard input.

3. Write a program that reads from the console a series of integers and

prints the smallest and largest of them.

4. Write a program that prints all possible cards from a standard deck

of cards, without jokers (there are 52 cards: 4 suits of 13 cards).

www.manaraa.com

232 Fundamentals of Computer Programming with C#

5. Write a program that reads from the console number N and print the sum

of the first N members of the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8,

13, 21, 34, 55, 89, 144, 233, 377, …

6. Write a program that calculates N!/K! for given N and K (1<K<N).

7. Write a program that calculates N!*K!/(N-K)! for given N and K

(1<K<N).

8. In combinatorics, the Catalan numbers are calculated by the following

formula:
!)!1(

)!2(2

1

1

nn

n

n

n

n
Cn

 , for n ≥ 0. Write a program that

calculates the nth Catalan number by given n.

9. Write a program that for a given integers n and x, calculates the sum:

nx
n

xx
S !...!2!11 2

10. Write a program that reads from the console a positive integer number

N (N < 20) and prints a matrix of numbers as on the figures below:

 N = 3 N = 4

1 2 3

2 3 4

3 4 5

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

11. Write a program that calculates with how many zeroes the factorial of

a given number ends. Examples:

N = 10 -> N! = 3628800 -> 2

N = 20 -> N! = 2432902008176640000 -> 4

12. Write a program that converts a given number from decimal to binary

notation (numeral system).

13. Write a program that converts a given number from binary to decimal

notation.

14. Write a program that converts a given number from decimal to

hexadecimal notation.

15. Write a program that converts a given number from hexadecimal to

decimal notation.

16. Write a program that by a given integer N prints the numbers from 1 to N

in random order.

17. Write a program that given two numbers finds their greatest common

divisor (GCD) and their least common multiple (LCM). You may use

the formula LCM(a, b) = |a*b| / GCD(a, b).

www.manaraa.com

Chapter 6. Loops 233

18. * Write a program that for a given number n, outputs a matrix in the

form of a spiral:

Example for n=4:

Solutions and Guidelines

1. Use a for-loop.

2. Use a for-loop and the operator % for finding the remainder in integer

division. A number num is not divisible by 3 and 7 simultaneously exactly

when (num % (3*7) == 0).

3. First read the count of numbers, for example in a variable n. Then

consequently enter n numbers with one for loop. While entering each

new number, save in two variables the smallest and the largest number

until this moment. At the start initialize the smallest and the largest

number with Int32.MaxValue and Int32.MinValue respectively.

4. Number the cards from 2 to 14 (these numbers will match the cards 2,

3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A). Number the suits from 1 to 4 (1 –

club, 2 – diamond, 3 – heart and 4 – spades). Now you can use the two

nested loops and print each of the cards with two switch statements.

5. Fibonacci numbers start from 0 and 1, each additional is obtained as

the sum of the previous two. You can find the first n Fibonacci

numbers with a for-loop from 1 to n, and at each iteration calculate the

next number by using the previous two (which you will keep in two

additional variables).

6. Multiply the numbers from K+1 to N (think why this is correct). You

may check the properties of the factorial function in Wikipedia:

http://en.wikipedia.org/wiki/Factorial.

7. One solution is to calculate separately each factorial and at the end to

perform the respective operations with the results.

Think how you can optimize the calculations, in order to not calculate

too many factorials! In fractions of factorials there are many possibilities

to reduce the same factors in the numerator and denominator. These

optimizations will not only reduce the calculations and increase the

performance but will save you from overflows in some situations. You

might need to use arrays num[0..N] and denum[0..n] to hold the factors

in the numerator and in the denominator and to cancel the fraction.

You may read about arrays in the chapter “Arrays”.

1 2 3 4

12 13 14 5

11 16 15 6

10 9 8 7

http://en.wikipedia.org/wiki/Factorial

www.manaraa.com

234 Fundamentals of Computer Programming with C#

8. Use the same concept of canceling the faction of simple factors, like

you probably did in the previous problem.

You may also read more about the Catalan numbers in Wikipedia

(http://en.wikipedia.org/wiki/Catalan_number) and use the recurrent

formula for calculating them.

9. You can solve the problem with a for-loop for k=0…n, by using three

additional variables factorial, power and sum in which you will keep for

the kth iteration of the loop respectively k!, xk and the sum of the first

k members of sequence. If your implementation is good, you should

have only one loop and you should not use external functions to calculate

factorials and to raise power.

10. You should use two nested loops, similar to the problem "Printing a

Triangle". The outer loop must run from 1 to N, and the inner – from the

value of the outer loop to the value of the outer loop + N - 1.

11. The number of zeros at the end of n! depends on how many times the

number 10 is a divisor of the factorial. Because the product 1*2*3…*n

has a greater number of divisors 2, than 5 and because 10 = 2 * 5, then

the number of zeros in n! is exactly as many as the multipliers with

value 5 in the product 1 * 2 * 3 * … * n. Because every fifth number

is divisible by 5, and every 25th number is divisible by 5 two times, etc.,

the number of zeros in n! is the sum: n/5 + n/25 + n/125 + …

12. Read in Wikipedia what numeral systems are: http://en.wikipedia.org/

wiki/Numeral_system. After that consider how you can convert

numbers from decimal numeral system to another. Think about the

opposite – moving from another numeral system to decimal. If you have

difficulty, see the chapter "Numeral Systems".

13. See the previous problem.

14. See the previous problem.

15. See the previous problem.

16. Search in the Internet for information about the class System.Random.

Read in the Internet about arrays (or in the next chapter). Create an

array with N elements and write in it the numbers from 1 to N. After

that a few times (think exactly how many) swap two random pairs of

elements from the array.

17. Search the Internet for the Euclidean algorithm for calculation the

greatest common divisor (CGD) or read about it in Wikipedia:

http://en.wikipedia.org/wiki/Euclidean_algorithm.

18. You should use a two-dimensional array (matrix). Search the Internet

or see the chapter "Arrays". The algorithm of filling a spiral matrix in

not straightforward and may require a bit of thinking. You might find

helpful the “Spiral Matrix” problem from chapter “Sample Programming

Exam – Topic #3”.

http://en.wikipedia.org/wiki/Catalan_number
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Euclidean_algorithm

www.manaraa.com

Chapter 7. Arrays

In This Chapter

In this chapter we will learn about arrays as a way to work with sequences

of elements of the same type. We will explain what arrays are, how we

declare, create, instantiate and use them. We will examine one-dimensional

and multidimensional arrays. We will learn different ways to iterate

through the array, read from the standard input and write to the standard

output. We will give many example exercises, which can be solved using

arrays and we will show how useful they really are.

What Is an "Array"?

Arrays are vital for most programming languages. They are collections of

variables, which we call elements:

An array’s elements in C# are numbered with 0, 1, 2, … N-1. Those numbers

are called indices. The total number of elements in a given array we call

length of an array.

All elements of a given array are of the same type, no matter whether they

are primitive or reference types. This allows us to represent a group of

similar elements as an ordered sequence and work on them as a whole.

Arrays can be in different dimensions, but the most used are the one-

dimensional and the two-dimensional arrays. One-dimensional arrays are

also called vectors and two-dimensional are also known as matrices.

Declaration and Allocation of Memory for Arrays

In C# the arrays have fixed length, which is set at the time of their

instantiation and determines the total number of elements. Once the length of

an array is set we cannot change it anymore.

0 1 2 3 4

… … … … …
Array of 5

elements

Element

index

Element of

an array

www.manaraa.com

236 Fundamentals of Computer Programming with C#

Declaring an Array

We declare an array in C# in the following way:

int[] myArray;

In this example the variable myArray is the name of the array, which is of

integer type (int[]). This means that we declared an array of integer

numbers. With [] we indicate, that the variable, which we are declaring, is an

array of elements, not a single element.

When we declare an array type variable, it is a reference, which does not

have a value (it points to null). This is because the memory for the elements

is not allocated yet.

The figure below shows how a declared array variable looks, when the

memory for elements of the array is not allocated yet:

In the program’s execution stack the variable with the name myArray is

created and its value is set to null (meaning it holds no value).

Creation of an Array – the Operator "new"

In C# we create an array with the help of the keyword new, which is used to

allocate memory:

int[] myArray = new int[6];

In this example we allocate an array with length of 6 elements of type int.

This means that in the dynamic memory (heap) an area of 6 integer numbers

is allocated and they all are initialized with the value 0:

HeapStack

myArray

HeapStack

myArray

.

.

.
0 0 0 0 0 0

0 1 2 3 4 5

www.manaraa.com

Chapter 7. Arrays 237

The figure shows, that after the allocation of memory for the array the

variable myArray points to an address in the dynamic memory, where the

values are. In C#, the elements of an array are always stored in the dynamic

memory (called also heap).

During the allocation of the memory for an array we set the total number of

the elements in the brackets (a non-negative integer number), defining its

length. The type of the elements is written after the reserved word new, so we

indicate what type of elements are going to be allocated in the memory.

Array Initialization and Default Values

Before we can use an element of a given array, it has to be initialized or to

have a default value. In some programming languages there are no default

values and then if we try to access an element, which is not initialized, this

may cause an error. In C# all variables, including the elements of arrays have

a default initial value. This value is either 0 for the numeral types or its

equivalent for the non-primitive types (for example null for a reference type

and false for the bool type).

Of course we can set initial values explicitly. We can do this in different ways.

Here is one of them:

int[] myArray = { 1, 2, 3, 4, 5, 6 };

In this case we create and initialize the elements of the array at the time of

the declaration. On the figure below we see how the array is allocated in the

memory when its values are initialized at the moment of its declaration:

With this syntax we use curly brackets instead of the operator new. Between

the brackets we list the initial values of the array, separated by commas.

Their count defines the length of the array.

Declaration and Initialization of an Array – Example

Here is one more example how to declare and initialize an array:

string[] daysOfWeek =
 { "Monday", "Tuesday", "Wednesday","Thursday", "Friday",
 "Saturday", "Sunday" };

HeapStack

myArray

.

.

.
1 2 3 4 5 6

0 1 2 3 4 5

www.manaraa.com

238 Fundamentals of Computer Programming with C#

In this case we allocate an array of seven elements of type string. The type

string is a reference type (object) and its values are stored in the dynamic

memory. The variable daysOfWeek is allocated in the stack memory, and

points to a section of the dynamic memory containing the elements of the

array. The type of each of these seven elements is string, which itself points

to a different section of the dynamic memory, where the real value is stored.

On this figure we see how the array is allocated in the memory:

Boundaries of an Array

Arrays are by default zero-based, which means the enumeration of the

elements starts from 0. The first element has the index 0, the second – 1,

etc. In an array of N elements, the last element has the index N-1.

Access to the Elements of an Array

We access the array elements directly using their indices. Each element can

be accessed through the name of the array and the element’s index

(consecutive number) placed in the brackets. We can access given elements

of the array both for reading and for writing, which means we can treat

elements as variables.

Here is an example for accessing an element of an array:

myArray[index] = 100;

In the example above we set a value of 100 to the element, which is at

position index.

HeapStack

daysOfWeek

…

…

…

…

…

…

…

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

0

1

2

3

4

5

6

www.manaraa.com

Chapter 7. Arrays 239

Here is an example, where we allocate an array of numbers and then we

change some of them:

int[] myArray = new int[6];
myArray[1] = 1;
myArray[5] = 5;

After the change, the array is allocated in the memory as shown below:

As we can see, all elements, except those for which values are explicitly set,

are initialized with the value 0 when the memory of the array was allocated.

We can iterate through the array using a loop statement. The most common

form of such iteration is by using a for-loop:

int[] arr = new int[5];
for (int i = 0; i < arr.Length; i++)
{
 arr[i] = i;
}

Going Out of Bounds of the Array

The .NET Framework does an automatic check on each element access

attempt, whether the index is valid or it is out of the range of the array.

When we try to access an invalid (not existing) element in an array, a

System.IndexOutOfRangeException is thrown. The automatic check really

helps the developers find errors while working with arrays. Of course,

checking for exceptions has its price. Checks affect the performance, but

that’s nothing compared to avoiding errors like "out of range", "access to

unallocated memory", etc.

Here is an example, where we are trying to access an element, which is out of

the range of the array:

IndexOutOfRangeExample.cs

class IndexOutOfRangeExample
{

HeapStack

myArray

.

.

.

0 1 0 0 0 5

0 1 2 3 4 5

www.manaraa.com

240 Fundamentals of Computer Programming with C#

 static void Main()
 {
 int[] myArray = { 1, 2, 3, 4, 5, 6 };
 Console.WriteLine(myArray[6]);
 }
}

In the example above we allocate an array, which contains six integer

numbers. The first index is 0, and the last index is 5. We are trying to print to

the console an element with index 6, but because there is no such element

this leads to an exception:

Reversing an Array – Example

In the next example we will access elements and change them using their

indices. The task is to print the elements in reversed order. We will reverse

the elements of the array using a second, auxiliary array, where we will keep

the elements of the first one, but in a reversed order. Note that the length of

both arrays is the same and it stays unchanged after the first allocation:

ArrayReverseExample.cs

class ArrayReverseExample
{
 static void Main()
 {
 int[] array = { 1, 2, 3, 4, 5 };
 // Get array size
 int length = array.Length;
 // Declare and create the reversed array
 int[] reversed = new int[length];

 // Initialize the reversed array
 for (int index = 0; index < length; index++)
 {
 reversed[length - index - 1] = array[index];
 }

www.manaraa.com

Chapter 7. Arrays 241

 // Print the reversed array
 for (int index = 0; index < length; index++)
 {
 Console.Write(reversed[index] + " ");
 }
 }
}
// Output: 5 4 3 2 1

The example works in the following way: initially we allocate a one-

dimensional array of type int and we initialize it with the numbers from 1 to

5. After that we keep the length of the array in the variable length. Note that

we are using the property Length, which returns the total count of the

elements of the array. In C# each array has a length property.

After that we declare the array reversed with the same length, where we

will keep elements of the original array, but in a reversed order.

To reverse the elements we use a for-loop. At each iteration we increment

the index variable by one and we make sure we access all consecutive

elements of the array. The loop condition ensures that the array will be

iterated from end to end.

Let’s follow what happens when we iterate through the array. On the first

iteration, index has a value of 0. Using array[index] we access the first

element of the array, and respectively with reversed[length - index - 1]
we access the last element of the new array reversed where we assign the

values. Thus, we appropriated the value of the first element of the array to

the last element of the reversed array. At each iteration index is

incremented by one. This way, we access the next element in the order of

array and the previous element in the order of reversed.

As a result we reversed the array and printed it. In the example we showed

consecutive iterations through the array, which can also be done with

different types of loop constructs (e.g. while and foreach).

Reading an Array from the Console

Let’s see how we can read values of an array from the console. We will use a

for-loop and the .NET Framework tools for reading from the console.

Initially we read a line from the console using Console.ReadLine(), and then

we parse that line to an integer number using int.Parse() and we set it to

the variable n. We then use the number n as length of the array.

int n = int.Parse(Console.ReadLine());
int[] array = new int[n];

www.manaraa.com

242 Fundamentals of Computer Programming with C#

Again we use a loop to iterate through the array. At each iteration we set the

current element to what we have read from the console. The loop will

continue n times, which means it will iterate through the array and so we will

read a value for each element of the array:

for (int i = 0; i < n; i++)
{
 array[i] = int.Parse(Console.ReadLine());
}

Check for Symmetric Array – Example

An array is symmetric if the first and the last elements are equal and at the

same time the second element and the last but one are equal as well and so

on. On the figure a few examples for symmetric arrays are shown:

In the next example we will check whether an array is symmetric:

Console.Write("Enter a positive integer: ");
int n = int.Parse(Console.ReadLine());
int[] array = new int[n];

Console.WriteLine("Enter the values of the array:");

for (int i = 0; i < n; i++)
{
 array[i] = int.Parse(Console.ReadLine());
}

bool symmetric = true;
for (int i = 0; i < array.Length / 2; i++)
{
 if (array[i] != array[n - i - 1])
 {
 symmetric = false;
 break;
 }
}

Console.WriteLine("Is symmetric? {0}", symmetric);

12321 123211221 1221 32 3 121 32 3 121

www.manaraa.com

Chapter 7. Arrays 243

We initialize an array and we read its elements from the console. We need to

iterate through half of the array to check whether it is symmetric. The middle

element of the array has an index array.Length / 2. If the length is an odd

number this index is exactly the middle one, but if it is an even number, the

index is to the right of the middle (the middle is between two elements). Thus

the loop runs from 0 to array.Length / 2 (non-inclusive).

To check whether an array is symmetric, we use a bool variable, and initially

assume that the array is symmetric. During the iteration through the array we

compare the first with the last element, the second with the last but one and

so on. If at some point the compared elements are not equal, then we set the

bool variable to false, which means the array is not symmetric.

In the end we print the value of the bool variable to the console.

Printing an Array to the Console

Often we have to print the elements of a given array to the console, after

we have finished working with it.

We print elements of an array to the console similarly to the initializing of the

elements, i.e. by using a loop to iterate through the array. There are no strict

rules for printing, but often some sort of suitable formatting is used.

A frequent mistake is an attempt to print an array like a number:

string[] array = { "one", "two", "three", "four" };
Console.WriteLine(array);

Unfortunately this code does not print the elements of an array, just its

type. Here is what we get after the execution of this code:

We print the elements of an array by hand, by using a for-loop:

string[] array = { "one", "two", "three", "four" };

for (int index = 0; index < array.Length; index++)
{
 // Print each element on a separate line
 Console.WriteLine("Element[{0}] = {1}", index, array[index]);
}

www.manaraa.com

244 Fundamentals of Computer Programming with C#

We are iterating through the array using the for-loop, which will go

array.Length times, and we will print the current element using

Console.WriteLine() and a formatted string. Here is the result:

Element[0] = one
Element[1] = two
Element[2] = three
Element[3] = four

Iteration through Elements of an Array

As we can see, the iteration through the elements of an array is one of the

most used techniques when we work with arrays. Consecutive iterating

using a loop will allow us to access each element through its index and we will

be able to modify it as we want. We can do that with different loop constructs,

but the most appropriate loop is the for-statement. We will examine in

details how this type of iteration works.

Iteration with a For Loop

It is a good practice to use for-loops, when we work with arrays and

structures with indices. In the following example we will double the values of

all elements of an array of numbers and we will print them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");
for (int index = 0; index < array.Length; index++)
{
 // Doubling the number
 array[index] = 2 * array[index];
 // Print the number
 Console.Write(array[index] + " ");
}
// Output: 2 4 6 8 10

Using a for-loop we keep track of the current index of the array and we

access the elements as needed. We do not have to iterate consecutively

through all of them, which means the index that we are using in the for-loop

may iterate through the elements in a way that our algorithm requires. For

example we can iterate through some of the elements of the array, not

through all of them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");

www.manaraa.com

Chapter 7. Arrays 245

for (int index = 0; index < array.Length; index += 2)
{
 array[index] = array[index] * array[index];
 Console.Write(array[index] + " ");
}
// Output: 1 9 25

In this example we are iterating through all elements at even positions and

we square their values.

Sometimes we want to iterate through the array in a reverse order. We

do that in a similar way, except that the for-loop will start with the index of

the last element and the index will decrease on each step until its value gets

to 0 (inclusive). Here is an example:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Reversed: ");
for (int index = array.Length - 1; index >= 0; index--)
{
 Console.Write(array[index] + " ");
}
// Reversed: 5 4 3 2 1

In this example we are iterating through the array in reverse order and we

print each element to the console.

Iteration with "foreach" Loop

One of the most used constructs for iterating through elements of an array is

foreach. The foreach-loop construct in C# is as follows:

foreach (var item in collection)
{
 // Process the value here
}

In this programming construct var is the type of the elements, which we

iterate through. The collection is the array (or any other collection of

elements) and item is the current element of the array on each step.

In general the foreach loop construct has the same properties like the for-

loop. The main difference is that the iteration is made always through all

elements – from the start to the end. We cannot access the current index,

we are just iterating through the collection in a way, defined by the collection

itself. For arrays the order of iteration is consecutive from the first element to

www.manaraa.com

246 Fundamentals of Computer Programming with C#

the last one. The loop variable in foreach-loops is read-only so we cannot

modify the current loop item from the loop body.

The foreach-loop statement is used, when we do not need to change the

elements, but just to read them.

Iteration with "foreach" Loop – Example

In the next example we will learn how to use the foreach loop to iterate

through the array:

string[] capitals =
 { "Sofia", "Washington", "London", "Paris" };

foreach (string capital in capitals)
{
 Console.WriteLine(capital);
}

After we declared an array of strings capitals, we iterate through the array

using foreach loop and we print the elements to the console. The current

element on each step is stored in a variable capital. We get the following

result when we execute the code:

Sofia
Washington
London
Paris

Multidimensional Arrays

The one-dimensional arrays are known also as vectors in mathematics.

Often we need arrays with more than one dimension. For example we can

easily represent the standard chess board as a two-dimensional array with

size 8 by 8 (8 cells in a horizontal direction and 8 cells in a vertical direction).

What Is a Multidimensional Array? What Are

Matrices?

Every valid type in C# can be used for a type of an array. So, we can have an

array of arrays, which we will discuss later.

We declare a one-dimensional array of integer numbers using int[], and we

declare a two-dimensional with int[,]. This example shows that:

int[,] twoDimensionalArray;

www.manaraa.com

Chapter 7. Arrays 247

Those arrays we will call two-dimensional, because they have two

dimensions. They are also known as matrices (it is mathematical term). In

general arrays with more than one dimension we will call multidimensional.

This way we can declare three-dimensional arrays as we add one more

dimension:

int[,,] threeDimensionalArray;

In theory there is no limit for an array dimensions, but in practice we do

not use much arrays with more than two dimensions therefore we will focus

on two-dimensional arrays.

Multidimensional Array Declaration and Allocation

We declare multidimensional arrays in a way similar to one-dimensional

arrays. Each dimension except the first is marked with comma:

int[,] intMatrix;
float[,] floatMatrix;
string[,,] strCube;

In the example above we create two-dimensional and three-dimensional

arrays. Each dimension is represented by a comma in the square brackets [].

We are allocating memory for multidimensional arrays by using the keyword

new and for each dimension we set a length in the brackets as shown:

int[,] intMatrix = new int[3, 4];
float[,] floatMatrix = new float[8, 2];
string[,,] stringCube = new string[5, 5, 5];

In this example intMatrix is a two-dimensional array with 3 elements of type

int[] and each of those 3 elements has a length of 4. Two-dimensional

arrays are difficult to understand explained that way. Therefore we can

imagine them as two-dimensional matrices, which have rows and columns

for the dimensions:

The rows and the columns of the square matrices are numbered with indices

from 0 to n-1. If a two-dimensional array has a size of m by n, there are

exactly m*n elements.

1 3 6 2

8 5 9 1

4 7 3 0

0

1

0

2

1 2 3

www.manaraa.com

248 Fundamentals of Computer Programming with C#

Two-Dimensional Array Initialization

We initialize two-dimensional arrays in the same way as we initialize one-

dimensional arrays. We can list the element values straight after the

declaration:

int[,] matrix =
{
 {1, 2, 3, 4}, // row 0 values
 {5, 6, 7, 8}, // row 1 values
};
// The matrix size is 2 x 4 (2 rows, 4 cols)

In the example above we initialize a two-dimensional array of type

integer with size of 2 rows and 4 columns. In the outer brackets we place the

elements of the first dimension, i.e. the rows of the array. Each row contains

one dimensional array, which we know how to initialize.

Accessing the Elements of a Multidimensional Array

Matrices have two dimensions and respectively we access each element by

using two indices: one for the rows and one for the columns. Multidimensional

arrays have different indices for each dimension.

Each dimension in a multidimensional array starts at index 0.

Let’s examine the next example:

int[,] matrix =
{
 {1, 2, 3, 4},
 {5, 6, 7, 8},
};

The array matrix has 8 elements, stored in 2 rows and 4 columns. Each

element can be accessed in the following way:

matrix[0, 0] matrix[0, 1] matrix[0, 2] matrix[0, 3]
matrix[1, 0] matrix[1, 1] matrix[1, 2] matrix[1, 3]

In this example we can access each element using indices. If we assign the

index for rows to row, and the index for columns to col, then we can access

any element as shown:

matrix[row, col]

www.manaraa.com

Chapter 7. Arrays 249

When we use multidimensional arrays each element is unique and can be

identified with indices from the array:

nDimensionalArray[index1, …, indexN]

Length of Multidimensional Arrays

Each dimension of a multidimensional array has its own length, which can be

accessed during the execution of the program. Let’s look at an example for a

two-dimensional array:

int[,] matrix =
{
 {1, 2, 3, 4},
 {5, 6, 7, 8},
};

We can get the number of the rows of this two-dimensional array by using

matrix.GetLength(0) and the number of all columns per row with

matrix.GetLength(1). So, in this case matrix.GetLength(0) returns 2 and

matrix.GetLength(1) returns 4.

Printing Matrices – Example

In the next example we will demonstrate how we can print two-dimensional

arrays to the console:

// Declare and initialize a matrix of size 2 x 4
int[,] matrix =
{
 {1, 2, 3, 4}, // row 0 values
 {5, 6, 7, 8}, // row 1 value
};

// Print the matrix on the console
for (int row = 0; row < matrix.GetLength(0); row++)
{
 for (int col = 0; col < matrix.GetLength(1); col++)
 {
 Console.Write(matrix[row, col]);
 }
 Console.WriteLine();
}

First we declare and initialize an array, which we want to iterate through and

print to the console. The array is two-dimensional, therefore we use a for-

www.manaraa.com

250 Fundamentals of Computer Programming with C#

loop which will iterate through the rows and a nested for loop which for each

row will iterate through the columns. At each iteration we will print the

current element using the appropriate method to access this element by using

its two indices (row and column). Finally, if we execute this piece of code we

will get the following result:

1 2 3 4
5 6 7 8

Reading Matrices from the Console – Example

In this example we will learn how to read a two-dimensional array from

the console. First, we read the values (lengths) of the two-dimensions and

then by using two nested loops we assign the value of each element (and in

the end we print out the values of the array):

Console.Write("Enter the number of the rows: ");
int rows = int.Parse(Console.ReadLine());

Console.Write("Enter the number of the columns: ");
int cols = int.Parse(Console.ReadLine());

int[,] matrix = new int[rows, cols];

Console.WriteLine("Enter the cells of the matrix:");

for (int row = 0; row < rows; row++)
{
 for (int col = 0; col < cols; col++)
 {
 Console.Write("matrix[{0},{1}] = ",row, col);
 matrix[row, col] = int.Parse(Console.ReadLine());
 }
}

for (int row = 0; row < matrix.GetLength(0); row++)
{
 for (int col = 0; col < matrix.GetLength(1); col++)
 {
 Console.Write(" " + matrix[row, col]);
 }
 Console.WriteLine();
}

The program output when we execute it (in this case the array consists of

three rows and two columns) is:

www.manaraa.com

Chapter 7. Arrays 251

Enter the number of the rows: 3
Enter the number of the columns: 2
Enter the cells of the matrix:
matrix[0,0] = 2
matrix[0,1] = 3
matrix[1,0] = 5
matrix[1,1] = 10
matrix[2,0] = 8
matrix[2,1] = 9
 2 3
 5 10
 8 9

Maximal Platform in a Matrix – Example

In the next example we will solve another interesting problem: we are given a

two-dimensional rectangular array (matrix) of integers and our task is to find

the sub-matrix of size of 2 by 2 with maximum sum of its elements and

to print it to the console.

One solution to the problem might be the following:

MaxPlatform2x2.cs

class MaxPlatform2x2
{
 static void Main()
 {
 // Declare and initialize the matrix
 int[,] matrix = {
 { 0, 2, 4, 0, 9, 5 },
 { 7, 1, 3, 3, 2, 1 },
 { 1, 3, 9, 8, 5, 6 },
 { 4, 6, 7, 9, 1, 0 }
 };

 // Find the maximal sum platform of size 2 x 2
 long bestSum = long.MinValue;
 int bestRow = 0;
 int bestCol = 0;

 for (int row = 0; row < matrix.GetLength(0) - 1; row++)
 {
 for (int col = 0; col < matrix.GetLength(1) - 1; col++)
 {

www.manaraa.com

252 Fundamentals of Computer Programming with C#

 long sum = matrix[row, col] + matrix[row, col + 1] +
 matrix[row + 1, col] + matrix[row + 1, col + 1];
 if (sum > bestSum)
 {
 bestSum = sum;
 bestRow = row;
 bestCol = col;
 }
 }
 }

 // Print the result
 Console.WriteLine("The best platform is:");
 Console.WriteLine(" {0} {1}",
 matrix[bestRow, bestCol],
 matrix[bestRow, bestCol + 1]);
 Console.WriteLine(" {0} {1}",
 matrix[bestRow + 1, bestCol],
 matrix[bestRow + 1, bestCol + 1]);
 Console.WriteLine("The maximal sum is: {0}", bestSum);
 }
}

If we execute the program, we will see that it works properly:

The best platform is:
 9 8
 7 9
The maximal sum is: 33

We will explain the algorithm. First we create a two-dimensional array, which

contains integer numbers. We declare our auxiliary variables bestSum,

bestRow, bestCol and we initialize bestSum with the minimal value of type

long (so any other value is greater than this one). Note that sum of 4

integers may not fit in int, so we use long.

In the variable bestSum we keep the current maximal sum and in bestRow

and bestCol we keep the current best sub-matrix. This means the current

row and current column describe the start element for the sub-matrix of size

2 x 2, which is currently found to have the maximal sum of its elements.

To access all elements of a sub-array with a size of 2 by 2 we need the indices

of the first element. Having them we can easily access the rest 3 elements:

matrix[row, col]
matrix[row, col + 1]

www.manaraa.com

Chapter 7. Arrays 253

matrix[row + 1, col]
matrix[row + 1, col + 1]

In this example row and col are the indices of the first element of the sub-

matrix with a size of 2 by 2, which is part of the array matrix.

After we know how to access all four elements of the matrix with a size of 2

by 2, starting from a particular row and column, we can look at the algorithm,

which we will use to find the maximal sub-matrix.

We need to iterate through each 2 x 2 platform in the matrix until we reach

the platform with the best sum. We will do this using two nested for-loops

and two variables row and col. Note that we are not iterating through the

entire matrix, because if we try to access index row + 1 or col + 1, as we

are at the last row or column we will go out of the range of the matrix,

respectively System.IndexOutOfRangeException will be thrown.

We access the neighbor elements of each current element of the sub-matrix

and we sum them. Then we check if our current sum is bigger than our

current highest sum for the moment. If it is so, our current sum becomes our

best sum and our current indices will update bestRow and bestCol. So, after

the entire iteration through the main matrix we will find the maximal sum and

the first element of the sub-matrix of size 2 by 2 and its indices.

If there is more than one sub-matrix with the same maximal sum, we will find

the one, which appears first.

At the end of the example we are printing to the console the requested sub-

matrix of size 2 x 2 and its sum of elements in an appropriate way.

Arrays of Arrays

In C# we can have arrays of arrays, which we call jagged arrays.

Jagged arrays are arrays of arrays, or arrays in which each row contains an

array of its own, and that array can have length different than those in the

other rows.

Declaration and Allocation an Array of Arrays

The only difference in the declaration of the jagged arrays compared to the

regular multidimensional array is that we do not have just one pair of

brackets. With the jagged arrays we have a pair brackets per dimension. We

allocate them this way:

int[][] jaggedArray;
jaggedArray = new int[2][];
jaggedArray[0] = new int[5];
jaggedArray[1] = new int[3];

www.manaraa.com

254 Fundamentals of Computer Programming with C#

Here is how we declare, allocate and initialize an array of arrays (a jagged

array whose elements are arrays of integer values):

int[][] myJaggedArray = {
 new int[] {5, 7, 2},
 new int[] {10, 20, 40},
 new int[] {3, 25}
};

Memory Allocation

The figure below depicts how the now declared jagged array myJaggedArray

is allocated in the memory. As we see the jagged arrays are an aggregation of

references. A jagged array does not directly contain any arrays, but rather

has elements pointing to them. The size is unknown and that is why CLR

just keeps references to the internal arrays. After we allocate memory for one

array-element of the jagged array, then the reference starts pointing to the

newly created block in the dynamic memory. The variable myJaggedArray is

stored in the execution stack of the program and points to a block in the

dynamic memory, which contains a sequence of three references to other

three blocks in memory; each of them contains an array of integer numbers –

the elements of the jagged array:

Initialization and Access to the Elements

We can access elements of the arrays, which are part of the jagged array by

using their index. In next example we will access the element with index 3 of

the array stored at index 0 in the myJaggedArray declared above:

myJaggedArray[0][2] = 45;

The elements of the jagged array can be one-dimensional and multi-

dimensional arrays. Here is an example for jagged array of two-dimensional

arrays:

int[][,] jaggedOfMulti = new int[2][,];

2010 40

75 2

253

HeapStack

myJaggedArray

www.manaraa.com

Chapter 7. Arrays 255

jaggedOfMulti[0] = new int[,] { { 5, 15 }, { 125, 206 } };
jaggedOfMulti[1] = new int[,] { { 3, 4, 5 }, { 7, 8, 9 } };

Pascal’s Triangle – Example

In the next example we will use a jagged array to generate and visualize the

Pascal’s triangle. As we know from mathematics, the first row of the

triangle contains the number 1 and each next number is generated by sum of

the two numbers on the row above it. The Pascal’s triangle looks like this:

 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1
 . . .

To have a Pascal’s triangle with a given height, for example 12, we allocate a

jagged array triangle[][], which contains 1 element on the zero row, 2 –

on first, 3 – on second and so on. First we initialize triangle[0][0] = 1 and

the rest of the cells will have a default value than 0 by allocation. Then we

loop through the rows and from row we will get the values for row+1. It works

with nested for loop through the columns on the current row and the

following Pascal definitions for values in the triangle: we add the value of the

current cell of the current row (triangle[row][col]) to the cell below

(triangle[row+1][col]) and to the cell below on the right (triangle
[row+1][col+1]). We print using an appropriate number of spaces (using

method PadLeft () of class String), because we want the result to be

aligned.

Here is the code of the described algorithm:

PascalTriangle.cs

class PascalTriangle
{
 static void Main()
 {
 const int HEIGHT = 12;

 // Allocate the array in a triangle form
 long[][] triangle = new long[HEIGHT + 1][];

 for (int row = 0; row < HEIGHT; row++)
 {

www.manaraa.com

256 Fundamentals of Computer Programming with C#

 triangle[row] = new long[row + 1];
 }

 // Calculate the Pascal's triangle
 triangle[0][0] = 1;
 for (int row = 0; row < HEIGHT - 1; row++)
 {
 for (int col = 0; col <= row; col++)
 {
 triangle[row + 1][col] += triangle[row][col];
 triangle[row + 1][col + 1] += triangle[row][col];
 }
 }

 // Print the Pascal's triangle
 for (int row = 0; row < HEIGHT; row++)
 {
 Console.Write("".PadLeft((HEIGHT - row) * 2));
 for (int col = 0; col <= row; col++)
 {
 Console.Write("{0,3} ", triangle[row][col]);
 }
 Console.WriteLine();
 }
 }
}

If we execute the program, we will see that it is working properly and it

generates a Pascal’s triangle by a given numbers of rows (in our case the

HEIGHT is 12):

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1
 1 8 28 56 70 56 28 8 1
 1 9 36 84 126 126 84 36 9 1
 1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

www.manaraa.com

Chapter 7. Arrays 257

Exercises

1. Write a program, which creates an array of 20 elements of type

integer and initializes each of the elements with a value equals to the

index of the element multiplied by 5. Print the elements to the console.

2. Write a program, which reads two arrays from the console and checks

whether they are equal (two arrays are equal when they are of equal

length and all of their elements, which have the same index, are equal).

3. Write a program, which compares two arrays of type char

lexicographically (character by character) and checks, which one is first

in the lexicographical order.

4. Write a program, which finds the maximal sequence of consecutive
equal elements in an array. E.g.: {1, 1, 2, 3, 2, 2, 2, 1} {2, 2, 2}.

5. Write a program, which finds the maximal sequence of consecutively

placed increasing integers. Example: {3, 2, 3, 4, 2, 2, 4} {2, 3, 4}.

6. Write a program, which finds the maximal sequence of increasing

elements in an array arr[n]. It is not necessary the elements to be

consecutively placed. E.g.: {9, 6, 2, 7, 4, 7, 6, 5, 8, 4} {2, 4, 6, 8}.

7. Write a program, which reads from the console two integer numbers N

and K (K<N) and array of N integers. Find those K consecutive

elements in the array, which have maximal sum.

8. Sorting an array means to arrange its elements in an increasing (or

decreasing) order. Write a program, which sorts an array using the

algorithm "selection sort".

9. Write a program, which finds a subsequence of numbers with
maximal sum. E.g.: {2, 3, -6, -1, 2, -1, 6, 4, -8, 8} 11

10. Write a program, which finds the most frequently occurring element in

an array. Example: {4, 1, 1, 4, 2, 3, 4, 4, 1, 2, 4, 9, 3} 4 (5 times).

11. Write a program to find a sequence of neighbor numbers in an array,

which has a sum of certain number S. Example: {4, 3, 1, 4, 2, 5, 8},
S=11 {4, 2, 5}.

12. Write a program, which creates square matrices like those in the

figures below and prints them formatted to the console. The size of the

matrices will be read from the console. See the examples for matrices

with size of 4 x 4 and make the other sizes in a similar fashion:

www.manaraa.com

258 Fundamentals of Computer Programming with C#

13. Write a program, which creates a rectangular array with size of n by m
elements. The dimensions and the elements should be read from the

console. Find a platform with size of (3, 3) with a maximal sum.

14. Write a program, which finds the longest sequence of equal string

elements in a matrix. A sequence in a matrix we define as a set of

neighbor elements on the same row, column or diagonal.

15. Write a program, which creates an array containing all Latin letters.

The user inputs a word from the console and as result the program

prints to the console the indices of the letters from the word.

16. Write a program, which uses a binary search in a sorted array of

integer numbers to find a certain element.

17. Write a program, which sorts an array of integer elements using a "merge

sort" algorithm.

18. Write a program, which sorts an array of integer elements using a "quick

sort" algorithm.

19. Write a program, which finds all prime numbers in the range

[1…10,000,000].

20. * Write a program, which checks whether there is a subset of given

array of N elements, which has a sum S. The numbers N, S and the array

values are read from the console. Same number can be used many times.

Example: {2, 1, 2, 4, 3, 5, 2, 6}, S = 14 yes (1 + 2 + 5 + 6 = 14)

21. Write a program which by given N numbers, K and S, finds K elements out

of the N numbers, the sum of which is exactly S or says it is not possible.

Example: {3, 1, 2, 4, 9, 6}, S = 14, K = 3 yes (1 + 2 + 4 = 14)

1010663311

1313995522

151512128844

16161414111177

1010663311

1313995522

151512128844

16161414111177

77665544

881515141433

991616131322

10101111121211

77665544

881515141433

991616131322

10101111121211

131312125544

141411116633

151510107722

1616998811

131312125544

141411116633

151510107722

1616998811

161612128844

151511117733

141410106622

1313995511

161612128844

151511117733

141410106622

1313995511

b)b)b)

d)*d)*d)*c)c)c)

a)a)a)

ha fifi ho hi

fo ha hi xx

xxx ho ha xx

s qq s

pp pp s

pp qq s

ha, ha, ha s, s, s

www.manaraa.com

Chapter 7. Arrays 259

22. Write a program, which reads an array of integer numbers from the

console and removes a minimal number of elements in such a way

that the remaining array is sorted in an increasing order.

Example: {6, 1, 4, 3, 0, 3, 6, 4, 5} {1, 3, 3, 4, 5}

23. Write a program, which reads the integer numbers N and K from the

console and prints all variations of K elements of the numbers in the

interval [1…N]. Example: N = 3, K = 2 {1, 1}, {1, 2}, {1, 3}, {2, 1},

{2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}.

24. Write a program, which reads an integer number N from the console and

prints all combinations of K elements of numbers in range [1 … N].

Example: N = 5, K = 2 {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},

{2, 5}, {3, 4}, {3, 5}, {4, 5}.

25. *Write a program, which finds in a given matrix the largest area of

equal numbers. We define an area in the matrix as a set of neighbor

cells (by row and column). Here is one example with an area containing

13 elements with equal value of 3:

Solutions and Guidelines

1. Use an int[] array and a for-loop.

2. Two arrays are equal if they have the same value for the length and the

values for their elements. You can check for the second condition

using a for-loop.

3. In lexicographic order the elements are compared one by one

starting from the very left. If the elements are not the same, the array,

whose element is smaller (comes earlier in the alphabet), comes first. If

the elements are equal, the next character is compared. If the end of one

of the arrays is reached, without finding different elements, the shorter

array is the smaller (comes earlier lexicographically). If all elements are

equal, the arrays are equal.

4. Scan the array from left to right. Every time when the current number

is different from the one before it, a new sequence starts. If the

current element is equal to the one before it, it is a continuation of the

same sequence. So, if we keep the index of the start position of the

current sequence (in the beginning it is 0) in start and the length of

the current sequence (in the beginning it is 1) in len, we can find all

33

33

33

33

33

33

11

11

33

22

33332244

11333344

11113344

44442233

44222211

33

33

33

33

33

33

11

11

33

22

33332244

11333344

11113344

44442233

44222211

131313

www.manaraa.com

260 Fundamentals of Computer Programming with C#

sequences of equal elements and their lengths. We can easily keep the

shortest one in two additional variables – bestStart and bestLen.

5. This exercise is very similar to the previous one, but we have a

continuation of the current sequence when the next element is bigger.

6. We can solve the problem with two nested loops and one more array

len[0…n-1]. In the array len[i] we can keep the length of the longest

consecutively increasing sequence, which starts somewhere in the array

(it does not matter where exactly) and ends with the element arr[i].

Therefore len[0]=1, len[x] is the maximal sum max(1 + len[prev]),

where prev < x and arr[prev] < arr[x]. Following the definition, we can

calculate len[0…n-1] with two nested loops: the outer loop will iterate

through the array from left to right with the loop variable x. The inner

loop will iterate through the array from the start to position x-1 and

searches for the element prev with maximal value of len[prev], where

arr[prev] < arr[x]. After the search, we initialize len[x] with 1 + the

biggest found value of len[prev] or with 1, if such a value is not found.

The described algorithm finds the lengths of all maximal ascending

sequences, which end at each of the elements. The biggest one of these

values is the length of the longest increasing sequence. If we need to

find the elements themselves, which compose that longest sequence,

we can start from the element, where the sequence ends (at index x), we

can print it and we can search for a previous element (prev). By

definition prev < x and len[x] = 1 + len[prev] so we can find prev with

a for-loop from 1 to x-1. After that we can repeat the same for x=prev.

By finding and printing the previous element (prev) many times until it

exists, we can find the elements, which compose the longest

sequence in reversed order (from the last to the first).

7. You can find out which sequence of the sequences of K numbers has the

biggest sum by checking the sums of all of those sequences. The

first sequence starts at index 0 and finishes at index K-1 and has sum S.

Then the second one starts at index 1 and ends at index K and we can

find its sum using S by subtracting the element at index 0 and adding the

element at index K. In this way we can reach the end of the sequence.

8. Find in Internet information about "Selection sort" and its C#

implementations. Briefly the idea is to find the smallest element and to

place it at position 0 (through swapping) then to find the smallest

number excluding the first and place it at position 1 and so on, until the

entire array is arranged in ascending order.

9. There are two ways to solve this problem. The first way is to use brute

force method, which in this case means that using two nested loops

we check every possible start and end and its corresponding sum.

The second way is to use one loop through the array to scan it from

left to right and sum the elements. Once we get a negative sum, we can

www.manaraa.com

Chapter 7. Arrays 261

restart summing from the next element. Think why this is correct! At

each step we check if the current sum is greater than the current max.

10. This exercise can be solved in a couple of ways. One of them is the

following: get the first number and check how many times it is repeated

in the array and store this number in a variable. After a repeated number

is found we change its value to int.MinValue. Then pass to the next

number and do the same with it. The current number is remembered if

its occurrences are maximal. As you may guess, when a number equal to

int.MinValue is found (already processed number) we should skip it.

Another solution is to sort the numbers in ascending order and then the

elements with same value will be placed next to each other. So, basically

we then find the longest sequence of neighbor equal elements.

11. This exercise can be solved with two nested loops. The first loop

assigns a starting index. The second loop sums the elements from the

starting index to the right until this partial sum reaches or is greater than

S. If the sum is equal to S, we will remember the starting index (from the

first loop) and the ending index (from the second loop).

If all numbers are positive, there is a much faster algorithm. We sum

all numbers from left to the right, starting from zero. If the current

sum becomes greater than S during the summation, we remove the

leftmost number in the sequence and we subtract it from the sum. If the

current sum is still greater than S, we remove the next leftmost number

and do that until the current sum becomes smaller than S. When the sum

becomes smaller than S we add the next number on right. If we find a

sum equal to S, we print the sum and the sequence to the console. So

this solution uses just with one scan through the elements in the array.

12. a), b), c) Think about appropriate ways for iterating through the

matrices with two nested loops.

d) We can start from (0, 0) and go down N times. Therefore, go to the

right N-1 times, after that up N-1 times, after that left N-2 times,

after that down N-2 times and etc. At each iteration we place the next

number in a sequence 1, 2, 3, …, N in the cell, which we are leaving.

13. Modify the example about maximal platform with size of 2 by 2.

14. Check every element in a diagonal line, a row and a column until you get

a sequence. If you get a sequence, check whether this sequence is

longer than the currently longest sequence.

15. We can solve this problem with two nested for-loops (one for the

words and one for the letters of the current word). There is a solution

without using an array: we can calculate the index of a given uppercase

Latin letter ch using the expression: (int) ch – (int) 'A'.

16. Find on the Internet information about the algorithm "binary search".

Note that binary search works only on sorted arrays.

www.manaraa.com

262 Fundamentals of Computer Programming with C#

17. Find on the Internet information about the algorithm "merge sort" and

its implementations in C#. It is a bit complicated to write merge sort

efficiently. You can have 3 preallocated arrays when merging arrays:

two arrays for keeping the numbers for merging and а result

array. Thus you will never allocate new arrays during the algorithm’s

execution. The arrays will be allocated just once at the start and you will

just change their purpose (swap them) during the algorithm execution.

18. Find information about the "quick sort" algorithm in Internet and its

C# implementations. It can be best implemented by using recursion.

See the chapter “Recursion” to read about recursive algorithms.

Generally at each step you choose an element called pivot and reorder

the array into two sections: at the left side move all elements ≤ pivot

and at the right side move all elements > pivot. Finally run the

quicksort algorithm recursively over the left and the right sides.

19. Find on the Internet information about "The sieve of Erathostenes"

(you have probably heard about it in math classes in high-school).

20. Generate all possible sums this way: take all the numbers and mark

them as "possible sum". Then take every number ko, k2, …, kn-1 and for

each already marked "possible sum" p, mark as possible the sum p+ki. If
at some step you get S, a solution is found. You can keep track of the

"possible sums" either in a bool[] array possible[], where each index

is a possible sum, or in a more complex data structure like Set<int>.

Once you have possible[S] == true, you can find a number ki such

that possible[S-ki] == true, print ki and subtract it from S. Repeat the

same to find the next ki and print and subtract is again, until S reaches 0.

Another algorithm: generate all possible subsets of the numbers by

a for-loop from 0 to 2N-1. If we have a number p, take its binary

representation (which consists of exactly N bits) and sum the numbers

that correspond to 1 in the binary representation of p (with a nested

loop from 0 to N-1). Thus all possible sums will be generated and if some

of them is S, it can be printed. Note that this algorithm is slow (needs

exponential time and cannot run for 100 or 1000 elements). It also does

not allow using the same array element twice in the sum.

21. See the previous problem. Generate all subsets of exactly K

elements (the second algorithm) and check if their sum is equal to S.

Try in the first algorithm to think how to keep the count of the numbers

used in the sum in order to take exactly K numbers. Can you define a

matrix possible[p, n] to keep whether the number p can be obtained as

a sum of the first n numbers (the numbers ko, k2, …, kn-1)?

22. Use dynamic programming to find the longest increasing sub-

sequence in the input sequence arr[], just like in problem #6. The

elements not included in the maximal increasing sequence should be

removed in order the array to become sorted.

www.manaraa.com

Chapter 7. Arrays 263

23. Start from the first variation in the lexicographical order: {1, 1, …} K

times. Think of this as k-digit number. To obtain the next variation,

increase the last digit. If it becomes greater than N, change it to 1 and

increase the next digit on the left. Do the same on the left until the first

digit goes greater than N.

24. Modify the algorithm from the previous problem in the following way:

start from {1, 2, …, N} and increase the last digit (with the digits at the

left when required), but always keep all elements in the array in

ascending order (element p[i] should start increasing from p[i-1]+1).

25. This is a little bit more difficult. You can use different graph traversal

algorithms like "DFS" (Depth-First-Search) and "BFS" (Breadth-

First-Search) to go through all the cells in certain area starting from any

cell that belongs to it. If you have an area traversal algorithm (like

DFS), run it several times starting from unvisited cell and mark the cells

of the traversed area as visited. Repeat this until all cells become

visited. Read later in this book about DFS and BFS in the chapter “Trees

and Graphs” or find information about these algorithms in Internet.

www.manaraa.com

www.manaraa.com

Chapter 8. Numeral Systems

In This Chapter

In this chapter we will take a look at working with different numeral

systems and how numbers are represented in them. We will pay more

attention to how numbers are represented in decimal, binary and

hexadecimal numeral systems, since they are most widely used in

computers and programming. We will also explain the different ways for

encoding numeral data in computers – signed or unsigned integers and the

different types of real numbers.

History in a Nutshell

Different numeral systems have been used since the ancient times. This

claim is supported by the fact that in ancient Egypt people used sun dials,

which measure time with the help of numeral systems. Most historians believe

that ancient Egyptians are the first civilization, which divided the day into

smaller parts. They accomplished this by using the first sun dials, which were

nothing more than a simple pole stuck in the ground, oriented by the length

and direction of the shadow.

Later a better sundial was invented, which looked like the letter T and

divided the time between sunrise and sunset into 12 parts. This proves the

use of the duodecimal system in ancient Egypt, the importance of the number

12 is usually related to the fact that moon cycles in a single year are 12 or the

number of phalanxes found in the fingers of one hand (four in each finger,

excluding the thumb).

In modern times, the decimal system is the most widely spread numeral

system. Maybe this is due to the fact that it enables people to count by using

the fingers on their hands.

Ancient civilizations divided the day into smaller parts by using different

numeral systems – duodecimal and sexagesimal with bases 12 and 60

respectively. Greek astronomers such as Hipparchus used astronomical

approaches, which were earlier used by the Babylonians in Mesopotamia. The

Babylonians did astronomical calculations using the sexagesimal system,

which they had inherited from the Sumerians, who had developed it on their

own around 2000 B.C. It is not known exactly why the number 60 was chosen

for a base of the numeral system but it is important to note that this system

is very appropriate for the representation of fractions, because the number 60

is the smallest number that can be divided by 1, 2, 3, 4, 5, 6, 10, 12, 15, 20

and 30 without a remainder.

www.manaraa.com

266 Fundamentals of Computer Programming with C#

Applications of the Sexagesimal Numeral System

The sexagesimal system is still used today for measuring angles,

geographical coordinates and time. It still finds application on the watch dial

and the sphere of the geographical globe. The sexagesimal system was used

by Eratosthenes for dividing a circumference into 60 parts in order to create

an early system of geographical latitudes, made up from horizontal lines

passing through places well known in the past.

One century after Eratosthenes, Hipparchus standardized these lines by

making them parallel and conformable to the geometry of the Earth. He

introduced a system of geographical longitude lines, which included 360

degrees and respectively passed from north to south and pole to pole. In the

book "Almagest" (150 A.D.), Claudius Ptolemy further developed Hipparchus’

studies by dividing the 360 degrees of geographical latitude and longitude into

other smaller parts. He divided each of the degrees into 60 equal parts, each

of which was later divided again into 60 smaller and equal parts. The parts

created by the division were called partes minutiae primae, or "first minute"

and respectively partes minutiae secundae, or "second minute". These parts

are still used today and are called "minutes" and "seconds" respectively.

Short Summary

We took a short historical trip through the millennia, which helped us learn

that numeral systems were created, used and developed as far back as the

Sumerians. The presented facts explain why a day contains (only) 24

hours, the hour has 60 minutes and the minute has 60 seconds. This is

a result of the fact that the ancient Egyptians divided the day after they had

started using the duodecimal numeral system. The division of hours and

minutes into 60 equal parts is a result of the work of ancient Greek

astronomers, who did their calculations using the sexagesimal numeral

system, which was created by the Sumerians and used by the Babylonians.

Numeral Systems

So far we have taken a look at the history of numeral systems. Let’s now take

a detailed look at what they really are and what is their role in computing.

What Are Numeral Systems?

Numeral systems are a way of representing numbers by a finite type-set of

graphical signs called digits. We must add to them the rules for depicting

numbers. The characters, which are used to depict numbers in a given

numeral system, can be perceived as that system’s alphabet.

During the different stages of the development of human civilization, various

numeral systems had gained popularity. We must note that today the most

widely spread one is the Arabic numeral system. It uses the digits 0, 1, 2,

3, 4, 5, 6, 7, 8 and 9, as its alphabet. (An interesting fact is that the depiction

of Arabic numerals in modern times is different from the ten digits mentioned

www.manaraa.com

Chapter 8. Numeral Systems 267

above but in spite of all they are still referred to the same numeral system –

the decimal one).

Beside an alphabet, every numeral system has a base. The base is a number

equal to the different digits used by the system for depicting the numbers in

it. For example, the Arabic numeral system is decimal because it has 10

digits. A random number can be chosen as a base, which has an absolute

value different than 1 and 0. It can also be a real or a complex number with a

sign.

A practical question we can ask is: which is the best numeral system that

we should use? To answer it, we must decide what the optimal way to depict

a number (the digit count in the number) is and the number of digits the

given numeral system uses – its base. Mathematically it can be proven that

the best ratio between the length of depiction and the number of used digits

is accomplished by using Euler's number (e = 2,718281828), which is the

base of natural logarithms.

Working in a system with such base e is extremely inconvenient and

impractical because that number cannot be represented as a ratio of two

natural numbers. This gives us grounds to conclude that the optimal base of a

numeral system is either 2 or 3.

Although the number 3 is closer to the Neper number, it is unsuitable for

technical implementation. Because of that the binary numeral system is the

only one suitable for practical use and it is used in the modern computers and

electronic devices.

Positional Numeral Systems

A positional numeral system is a system, in which the position of the

digits is significant for the value of the number. This means that the value of

the digits in the number is not strictly defined and depends on which position

the given digit is. For example, in the number 351 the digit 1 has a value of 1,

while in the number 1024 it has a value of 1000. We must note that the bases

of the numeral systems are applicable only with positional numeral systems.

In a positional numeral system the number A(p) = (a(n)a(n-1)…a(0),a(-1)a(-2)…a(-k))

can be represented in the following way:

k

nm

mmp TaA)(

In this sum Tm has the meaning of a weight factor for the mth digit of the

number. In most cases Tm = Pm, which means that:

k

nm

m

mp PaA)(

www.manaraa.com

268 Fundamentals of Computer Programming with C#

Formed using the sum above, the number A(p) is respectively made up from

its whole part (a(n)a(n-1)…a(0)) and its fraction (a(-1)a(-2)…a(-k)), where every a

belongs to the multitude of the natural numbers M={0, 1, 2, …, p-1}. We can

easily see that in positional numeral systems the value of each digit is the-

base-of-the-system times bigger than the one before it (the digit to the right,

which is the lower-order digit). As a direct result from this we must add one

to the left (higher-order) digit, if we need to note a digit in the current digit

that is bigger than the base. The systems with bases of 2, 8, 10 and 16 have

become wide spread in computing devices. In the table below we can see

their notation of the numbers from 0 to 15:

Binary Octal Decimal Hexadecimal

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

Non-Positional Numeral Systems

Besides the positional numeral systems, there are also non-positional

numeral systems, in which the value of each digit is a constant and does not

strictly depend on its position in the number. Such numeral systems are the

Roman and Greek numeral systems. All non-positional numeral systems

have a common drawback – the notation of big numbers in them is very

inefficient. As a result of this drawback, they have gained only limited use.

This could often lead to inaccuracy when determining the value of numbers.

We will take a very brief look at the Roman and Greek numeral systems.

www.manaraa.com

Chapter 8. Numeral Systems 269

Roman Numeral System

The Roman numeral system uses sequences of the following symbols to

represent the numbers:

Roman Digit Decimal Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

As we have already mentioned, in this numeral system the position of the

digit has no significance for the value of the number and for determining the

value, the following rules are applied:

1. If two consecutively represented Roman digits are in such order that the

value of the first one is bigger or equal to the value of the second one,

their values are added. Examples:

The number III = 3 (1 + 1 + 1). The number MMD = 2500 (2000 + 2000

+ 500).

2. If two consecutively represented roman digits are in increasing order of

their values, they are subtracted. This is done from right to left. Examples:

The number IX = 9 (-1 + 10), the number MXL=1040 (1000 – 10 + 50),

but the number MXXIV = 1024 (1000 + 10 + 10 – 1 + 5).

Greek Numeral System

The Greek numeral system is a decimal system, in which a grouping of fives

is done. It uses the following digits:

Greek Digit Decimal Value

Ι 1

Г 5

Δ 10

Η 100

Χ 1,000

Μ 10,000

www.manaraa.com

270 Fundamentals of Computer Programming with C#

As we can see in the table, one is represented with a vertical line, five with

the letter Г, and the powers of 10 with the first letter of the corresponding

Greek word.

Here are some examples of numbers in this system:

- ΓΔ = 50 = 5 x 10

- ΓH = 500 = 5 x 100

- ΓX = 5000 = 5 x 1,000

- ΓM = 50,000 = 5 x 10,000

The Binary Numeral System – Foundation of
Computing Technology

The binary numeral system is the system, which is used to represent and

process numbers in modern computing machines. The main reason it is so

widely spread is explained with the fact that devices with two stable states

are very simple to implement and the production costs of binary arithmetic

devices are very low.

The binary digits 0 and 1 can be easily represented in the computing

machines as "current" and "no current", or as "+5V" and "-5V".

Along with its advantages, the binary system for number notation in

computers has its drawbacks, too. One of its biggest practical flaws is that

numbers represented in binary numeral system are very long, meaning they

have a large number of bits. This makes it inconvenient for direct use by

humans. To avoid this disadvantage, systems with larger bases are used in

practice.

Decimal Numbers

Numbers represented in the decimal numeral system, are given in a primal

appearance, meaning that they are easy to be understood by humans. This

numeral system has the number 10 for a base. The numbers represented in it

are ordered by the powers of the number 10. The lowest-order digit (first

from right to left) of the decimal numbers is used to represent the ones

(100=1), the next one to represent the tens (101=10), the next one to

represent the hundreds (102=100), and so on. In other words – every

following digit is ten times bigger than the one preceding it. The sum of the

separate digits determines the value of the number. We will take the number

95031 as an example, which can be represented in the decimal numeral

system as:

95031 = (9×104) + (5×103) + (0×102) + (3×101) + (1×100)

Represented that way, the number 95031 is presented in a natural way for

humans because the principles of the decimal numeral system have been

accepted as fundamental for people.

www.manaraa.com

Chapter 8. Numeral Systems 271

The discussed approaches are valid for the other numeral

systems, too. They have the same logical setting but are

applied to a system with a different base. The last statement

is true for the binary and hexadecimal numeral systems,

which we will discuss in details in a little bit.

Binary Numbers

The numbers represented in the binary numeral system are represented in

a secondary aspect – which means that they are easy to be understood by the

computing machine. They are a bit harder to be understood by people. To

represent a binary number, the binary numeral system is used, which has the

number 2 for a base. The numbers represented in it are ordered by the

powers of two. Only the digits 0 and 1 are used for their notation.

Usually, when a number is represented in a numeral system other than

decimal, the numeral system’s base is added as an index in brackets next to

the number. For example, with this notation 1110(2) we indicate a number in

the binary numeral system. If no numeral system is explicitly specified, it is

accepted that the number is in the decimal system. The number is

pronounced by reading its digits in sequence from left to right (we read from

the highest-order to the lowest-order bit).

Like with decimal numbers, each binary number being looked at from right to

left is represented by a power of the number 2 in the respected sequence.

The lowest-order position in a binary number corresponds to the zero power

(20=1), the second position corresponds to 2 to the first power (21=2), the

third position corresponds to 2 to the second power (22=4), and so on. If the

number is 8 bits long, the last bit is 2 to the seventh power (27=128). If the

number has 16 bits, the last bit is 2 to the fifteenth power. By using 8 binary

digits (0 or 1) we can represent a total of 256 numbers, because 28=256. By

using 16 binary digits we can represent a total of 65536 numbers, because

216=65536.

Let’s look at some examples of numbers in the binary numeral system. Take,

for example, the decimal number 148. It is composed of three digits: 1, 4

and 8, and it corresponds to the following binary number:

10010100(2)

148 = (1×27) + (1×24) + (1×22)

The full notation of the number is depicted in the following table:

Number 1 0 0 1 0 1 0 0

Power 27 26 25 24 23 22 21 20

Value
1×27

= 128

0×26

= 0

0×25

= 0

1×24

= 16

0×23

= 0

1×22

= 4

0×21

= 0

0×20

= 0

www.manaraa.com

272 Fundamentals of Computer Programming with C#

The sequence of eight zeros or ones represents one byte, an ordinary eight

bit binary number. All numbers from 0 to 255 including can be represented in

a single byte. In most cases this is not enough; as a result several

consecutive bytes can be used to represent a big number. Two bytes form the

so called "machine word" (word), which corresponds to 16 bits (in 16-bit

computing machines). Besides it, computing machines use the so called

double word or dword, corresponding to 32 bits.

If a binary number ends in 0 it is even, if it ends in 1 it is

odd.

Converting From Binary to Decimal Numeral System

When turning from binary to decimal numeral system, we do a conversion of

a binary number to a decimal number. Every number can be converted

from one numeral system to another by doing a sequence of operations that

are possible in both numeral systems. As we have already mentioned,

numbers in the binary system consist of binary digits, which are ordered by

the powers of 2. Let’s take the number 11001(2). Converting into decimal is

done by calculating the following sum:

11001(2) = 1×24
 + 1×23

 + 0×22 + 0×21
 + 1×20 =

= 16(10) + 8(10) + 1(10) = 25(10)

From this follows that 11001(2) = 25(10)

In other words – every single binary digit is multiplied by 2 raised to the

power of the position it is in. In the end all of the numbers resulting from

the binary digits are added up to get the decimal value of the binary number.

Horner Scheme

Another method of conversion exists, known as the Horner Scheme. When

using it, we multiply the left most digit by 2 and add it to the one to its right.

We multiply this result by two and the neighboring digit (one to the right) is

added. This is repeated until all the digits in the number have been exhausted

and we add the last digit without multiplying it. Here is an example:

1001(2) = ((1 × 2 + 0) × 2 + 0) × 2 + 1 = 2 × 2 × 2 + 1 = 9

Converting from Decimal to Binary Numeral System

When transitioning from decimal to binary numeral system, we convert a

decimal number into a binary one. To accomplish this, we divide it by 2 with a

remainder. This is how we get the quotient and the remainder, which is

separated.

Let’s use the number 148 again as an example. We do an integer division by

the base we want to convert to (in this case it is 2). After that using the

remainders of the division (they will always be either zero or one), we

www.manaraa.com

Chapter 8. Numeral Systems 273

represent the converted number. We continue dividing until we get a zero

quotient. Here is an example:

148:2=74 with remainder 0;

74:2=37 with remainder 0;

37:2=18 with remainder 1;

18:2=9 with remainder 0;

9:2=4 with remainder 1;

4:2=2 with remainder 0;

2:2=1 with remainder 0;

1:2=0 with remainder 1;

After we are done with the division, we represent the remainders in reverse

order as follows:

10010100

i.e. 148(10) = 10010100 (2)

Operations with Binary Numbers

The arithmetical rules of addition, subtraction and multiplication are valid for a

single digit of binary numbers:

0 + 0 = 0 0 - 0 = 0 0 × 0 = 0

1 + 0 = 1 1 - 0 = 1 1 × 0 = 0

0 + 1 = 1 1 - 1 = 0 0 × 1 = 0

1 + 1 = 10 10 - 1 = 1 1 × 1 = 1

In addition, with binary numbers we can also do logical operations such as

logical multiplication (conjunction), logical addition (disjunction) and the sum

of modulo two (exclusive or).

We must also note that when we are doing arithmetic operations with multi-

order numbers we must take into account the connection between the

separate orders by transfer or loan, when doing addition or subtraction

respectively. Let’s take a look at some details regarding bitwise operators.

Bitwise "and"

The bitwise AND operator can be used for checking the value of a given bit in

a number. For example, if we want to check if a given number is even (we

check if the lowest-order bit is 1):

10111011 AND 00000001 = 00000001

The result is 1, which means that the number is odd (if the result was 0 the

number would be even).

www.manaraa.com

274 Fundamentals of Computer Programming with C#

In C# the bitwise "and" is represented with & and is used like this:

int result = integer1 & integer2;

Bitwise "or"

The bitwise OR operator can be used if we want, for example, to "raise" a

given bit to 1:

10111011 OR 00000100 = 10111111

Bitwise "or" in C# is represented with | and is used like this:

int result = integer1 | integer2;

Bitwise "exclusive or"

The bitwise operator XOR – every binary digit is processed separately, and

when we have a 0 in the second operand, the corresponding value of the bit

in the first operand is copied in the result. At every position that has a value

of 1 in the second operand, we reverse the value of the corresponding

position in the first operand and represent it in the result:

10111011 XOR 01010101 = 11101110

In C# the notation of the "exclusive or" operator is ^:

int result = integer1 ^ integer2;

Bitwise Negation

The bitwise operator NOT – this is a unary operator, which means that it is

applied to a single operand. What it does is to reverse every bit of the given

binary number to its opposite value:

NOT 10111011 = 01000100

In C# the bitwise negation is represented with ~:

int result = ~integer1;

Hexadecimal Numbers

With hexadecimal numbers we have the number 16 for a system base,

which implies the use of 16 digits to represent all possible values from 0 to 15

inclusive. As we have already shown in one of the tables in the previous

sections, for notating numbers in the hexadecimal system, we use the digits

from 0 to 9 and the Latin numbers from A to F. Each of them has the

corresponding value:

A=10, B=11, C=12, D=13, E=14, F=15

www.manaraa.com

Chapter 8. Numeral Systems 275

We can give the following example for hexadecimal numbers: D2, 1F2F1, D1E

and so on.

Transition to decimal system is done by multiplying the value of the right

most digit by 160, the next one to the left by 161, the next one to the left by

162 and so on, and adding them all up in the end. Example:

D1E(16) = E*160 + 1*161 + D*162 = 14*1 + 1*16 + 13*256 = 3358(10).

Transition from decimal to hexadecimal numeral system is done by dividing

the decimal number by 16 and taking the remainders in reverse order.

Example:

3358 / 16 = 209 + remainder 14 (E)

209 / 16 = 13 + remainder 1 (1)

13 / 16 = 0 + remainder 13 (D)

We take the remainders in reverse order and get the number D1E(16).

Fast Transition from Binary to Hexadecimal Numbers

The fast conversion from binary to hexadecimal numbers can be quickly

and easily done by dividing the binary number into groups of four bits

(splitting it into half-bytes). If the number of digits is not divisible by four,

leading zeros in the highest-orders are added. After the division and the

eventual addition of zeros, all the groups are replaced with their

corresponding digits. Here is an example:

Let’s look at the following: 1110011110(2).

1. We divide it into half-bytes and add the leading zeros

Example: 0011 1001 1110.

2. We replace every half-byte with the corresponding hexadecimal digit

and we get 39E(16).

Therefore 1110011110 (2) = 39E(16).

Numeral Systems – Summary

As a summary, we will formulate again in a short but clear manner the

algorithms used for transitioning from one positional numeral system to

another:

- Transitioning from a decimal to a k-based numeral system is done

by consecutively dividing the decimal to the base of the k system and

the remainders (their corresponding digit in the k based system) are

accumulated in reverse order.

- Transitioning from a k-based numeral system to decimal is done by

multiplying the last digit of the k-based number by k0, the one before it

by k1, the next one by k2 and so on, and the products are the added up.

www.manaraa.com

276 Fundamentals of Computer Programming with C#

- Transitioning from a k-based numeral system to a p-based

numeral system is done by intermediately converting to the decimal

system (excluding hexadecimal and binary numeral systems).

- Transitioning from a binary to hexadecimal numeral system and

back is done by converting each sequence of 4 binary bits into its

corresponding hexadecimal number and vice versa.

Representation of Numbers

Binary code is used to store data in the operating memory of computing

machines. Depending on the type of data we want to store (strings, integers

or real numbers with an integral and fractal part) information is represented

in a particular manner. It is determined by the data type.

Even a programmer using a high level language must know how the data is

allocated in the operating memory of the machine. This is also relevant to the

cases when the data is stored on an external carrier, because when it is

processed, it will be situated in the operating memory.

In the current section we will take a look at the different ways to present

and process different types of data. In general they are based on the

concepts of bit, byte and machine word.

Bit is a binary unit of information with a value of either 0 or 1.

Information in the memory is grouped in sequences of 8 bits, which form a

single byte.

For an arithmetic device to process the data, it must be presented in the

memory by a set number of bytes (2, 4 or 8), which form a machine word.

These are concepts, which every programmer must know and understand.

Representing Integer Numbers in the Memory

One of the things we have not discussed so far is the sign of numbers.

Integers can be represented in the memory in two ways: with a sign or

without a sign. When numbers are represented with a sign, a signed order is

introduced. It is the highest-order and has the value of 1 for negative

numbers and the value of 0 for positive numbers. The rest of the orders are

informational and only represent (contain) the value of the number. In the

case of a number without a sign, all bits are used to represent its value.

Unsigned Integers

For unsigned integers 1, 2, 4 or 8 bytes are allocated in the memory.

Depending on the number of bytes used in the notation of a given number,

different scopes of representation with variable size are formed. Through n

bytes all integers in the range [0, 2n-1] can be represented. The following

table shows the range of the values of unsigned integers:

www.manaraa.com

Chapter 8. Numeral Systems 277

Number of bytes

for representing

the number in

the memory

Range

Notation

with order
Regular notation

1 0 ÷ 28-1 0 ÷ 255

2 0 ÷ 216-1 0 ÷ 65,535

4 0 ÷ 232-1 0 ÷ 4,294,967,295

8 0 ÷ 264-1 0 ÷ 18,446,744,073,709,551,615

We will give as an example a single-byte and a double-byte representation of

the number 158, whose binary notation is the following 10011110(2):

1. Representation with 1 byte:

1 0 0 1 1 1 1 0

2. Representation with 2 bytes:

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0

Representing Negative Numbers

For negative numbers 1, 2, 4 or 8 bytes are allocated in the memory of the

computer, while the highest-order (the left most bit) has a signature

meaning and carries the information about the sign of the number. As we

have already mentioned, when the signature bit has a value of 1, the number

is negative, otherwise it is positive.

The next table shows the range of the values of the signed integer numbers in

the computer according to the number of bytes used for their notation:

Number of bytes

for representing

the number in the

memory

Rank

Notation

with order
Regular notation

1 -27 ÷ 27-1 -128 ÷ 127

2 -215 ÷ 215-1 -32,768 ÷ 32,767

4 -231 ÷ 231-1 -2,147,483,648 ÷ 2,147,483,647

8 -263 ÷ 263-1
-9,223,372,036,854,775,808 ÷

9,223,372,036,854,775,807

To encode negative numbers, straight, reversed and additional code is

used. In all these three notations signed integers are within the range: [-2n-1,

www.manaraa.com

278 Fundamentals of Computer Programming with C#

2n-1-1]. Positive numbers are always represented in the same way and the

straight, reversed and additional code all coincide for them.

Straight code (signed magnitude) is the simplest representation of the

number. The highest-order bit carries the sign and the rest of the bits hold

the absolute value of the number. Here are some examples:

The number 3 in signed magnitude is represented as an eight-bit-long number

00000011.

The number -3 in signed magnitude is represented in an eight-bit-long

number as 10000011.

Reversed code (one’s complement) is formed from the signed magnitude

of the number by inversion (replacing all ones with zeros and vice-versa). This

code is not convenient for the arithmetical operations addition and subtraction

because it is executed in a different way if subtraction is necessary. Moreover

the sign carrying bits need to be processed separately from the information

carrying ones. This drawback is avoided by using additional code, which

instead of subtraction implements addition with a negative number. The latter

is depicted by its addition, i.e. the difference between 2n and the number

itself. Example:

The number -127 in signed magnitude is represented as 1 1111111 and in

one’s complement as 1 0000000.

The number 3 in signed magnitude is represented as 0 0000011, and in one’s

complement looks like 0 1111100.

Additional code (two’s complement) is a number in reversed code to

which one is added (through addition). Example:

The number -127 is represented with additional code as 1 0000001.

In the Binary Coded Decimal, also known as BCD code, in one byte two

decimal digits are recorded. This is achieved by encoding a single decimal

digit in each half-byte. Numbers presented in this way can be packed, which

means that they can be represented in a packed format. If we represent a

single decimal digit in one byte we get a non-packed format.

Modern microprocessors use one or several of the discussed codes to present

negative numbers, the most widespread method is using two’s complement.

Integer Types in C#

In C# there are eight integer data types either signed or unsigned.

Depending on the amount of bytes allocated for each type, different value

ranges are determined. Here are descriptions of the types:

Type Size Range
Type in .NET

Framework

sbyte 8 bits -128 ÷ 127 System.SByte

www.manaraa.com

Chapter 8. Numeral Systems 279

byte 8 bits 0 ÷ 255 System.Byte

short 16 bits -32,768 ÷ 32,767 System.Int16

ushort 16 bits 0 ÷ 65,535 System.UInt16

int 32 bits -2,147,483,648 ÷ 2,147,483,647 System.Int32

uint 32 bits 0 ÷ 4,294,967,295 System.UInt32

long 64 bits
–9,223,372,036,854,775,808 ÷

9,223,372,036,854,775,807
System.Int64

ulong 64 bits 0 ÷ 18,446,744,073,709,551,615 System.UInt64

We will take a brief look at the most used ones. The most commonly used

integer type is int. It is represented as a 32-bit number with two’s

complement and takes a value in the range [-231, 231-1]. Variables of this

type are most frequently used to operate loops, index arrays and other

integer calculations. In the following table an example of a variable of the

type int is being declared:

int integerValue = 25;
int integerHexValue = 0x002A;
int y = Convert.ToInt32("1001", 2); // Converts binary to int

The type long is the largest signed integer type in C#. It has a size of 64 bits

(8 bytes). When giving value to the variables of type long the Latin letters "l"

or "L" are placed at the end of the integer literal. Placed at that position, this

modifier signifies that the literal has a value of the type long. This is done

because by default all integer literals are of the type int. In the next

example, we declare and give 64-bit value to variables of type long:

long longValue = 9223372036854775807L;
long newLongValue = 932145699054323689l;

An important condition is not to exceed the range of numbers that can be

represented in the used type. However, C# offers the ability to control what

happens when an overflow occurs. This is done via the checked and

unchecked blocks. The first are used when the application needs to throw an

exception (of the type System.OverflowException) in case that the range of

the variable is exceeded. The following programming code does exactly that:

www.manaraa.com

280 Fundamentals of Computer Programming with C#

checked
{
 int a = int.MaxValue;
 a = a + 1;
 Console.WriteLine(a);
}

In case the fragment is in an unchecked block, an exception will not be

thrown and the output result will be wrong:

-2147483648

In case these blocks are not used, the C# compiler works in unchecked mode

by default.

C# includes unsigned types, which can be useful when a larger range is

needed for the variables in the scope of the positive numbers. Below are some

examples for declaring variables without a sign. We should pay attention to

the suffixes of ulong (all combinations of U, L, u, l).

byte count = 50;
ushort pixels = 62872;
uint points = 4139276850; // or 4139276850u, 4139276850U
ulong y = 18446744073709551615; // or UL, ul, Ul, uL, Lu, lU

Big-Endian and Little-Endian Representation

There are two ways for ordering bytes in the memory when representing

integers longer than one byte:

- Little-Endian (LE) – bytes are ordered from left to right from the

lowest-order to the highest. This representation is used in the Intel x86

and Intel x64 microprocessor architecture.

- Big-Endian (BE) – bytes are ordered from left to right starting with the

highest-order and ending with the lowest. This representation is used in

the PowerPC, SPARC and ARM microprocessor architecture.

Here is an example: the number A8B6EA72(16) is presented in both byte orders

in the following way:

There are some classes in C# that offer the opportunity to define which order

standard to be used. This is important for operations like sending / receiving

www.manaraa.com

Chapter 8. Numeral Systems 281

streams of information over the internet or other types of communication

between devices made by different standards. The field IsLittleEndian of

the BitConverter class for example shows what mode the class is working in

and how it stores data on the current computer architecture.

Representing Real Floating-Point Numbers

Real numbers consist of a whole and fraction parts. In computers, they are

represented as floating-point numbers. Actually this representation comes

from the Standard for Floating-Point Arithmetic (IEEE 754), adopted by the

leading microprocessor manufacturers. Most hardware platforms and

programming languages allow or require the calculations to be done according

to the requirements of this standard. The standard defines:

- Arithmetical formats: a set of binary and decimal data with a floating-

point, which consists of a finite number of digits.

- Exchange formats: encoding (bit sequences), which can be used for

data exchange in an effective and compact form.

- Rounding algorithms: methods, which are used for rounding up

numbers during calculations.

- Operations: arithmetic and other operations of the arithmetic formats.

- Exceptions: they are signals for extraordinary events such as division

by zero, overflowing and others.

According to the IEEE-754 standard a random real number R can be

presented in the following way:

R = M * qp

where M is the mantissa of the number, p is the order (exponent), and q

accordingly is the base of the numeral system the number is in. The mantissa

must be a positive or negative common fraction |M|<1, and the exponent – a

positive or negative integer.

In the mentioned method of representation of numbers, every floating-point

number will have the following summarized format ±0,M*q±p.

When notating numbers in the floating-point format using the binary numeral

system in particular, we will have R = M * 2p. In this representation of real

numbers in the computer memory, when we change the exponent, the

decimal point in the mantissa moves ("floats"). The floating-point

representation format has a semi-logarithmic form. It is depicted in the

following figure:

http://en.wikipedia.org/wiki/IEEE_754

www.manaraa.com

282 Fundamentals of Computer Programming with C#

Representing Floating-Point Numbers – Example

Let’s give an example of how a floating-point number is represented in the

memory. We want to write the number -21.15625 in 32-bit (single precision)

floating-point format according to the IEEE-754 standard. In this format, 23

bits are used for the mantissa, 8 bits for the exponent and 1 bit for the sign.

The notation of the number is as follows:

The sign of the number is negative, which means that the mantissa has a

negative sign:

S = -1

The exponent has a value of 4 (represented with a shifted order):

p = (20 + 21 + 27) - 127 = (1+2+128) – 127 = 4

For transitioning to the real value we subtract 127 from the additional code

because we are working with 8 bits (127 = 27-1) starting from the zero

position.

The mantissa has the following value (without taking the sign into account):

M = 1 + 2-2 + 2-4 + 2-7 + 2-9 =

= 1 + 0.25 + 0.0625 + 0.0078125 + 0.001953125 =

= 1.322265625

We should note that we added a one, which was missing from the binary

notation of the mantissa. We did it because the mantissa is always normalized

and starts with a one by default.

The value of the number is calculated using the formula R = M * 2p, which in

our example looks like the following:

R = -1,3222656 * 24 = -1,322265625 * 16 = -21,1562496 ≈ -21,15625

Mantissa Normalization

To use the order grid more fully, the mantissa must contain a one in its

highest-power order. Every mantissa fulfilling this condition is called

normalized. In the IEEE-754 standard, the one in the whole part of the

mantissa is by default, meaning the mantissa is always a number between 1

and 2.

If during the calculations a result that does not fulfill this condition is reached,

it means that the normalization is violated. This requires the normalization of

www.manaraa.com

Chapter 8. Numeral Systems 283

the number prior to its further processing, and for this purpose the decimal

point in the mantissa is moved and the corresponding order change is made.

The Float and Double Types in C#

In C# we have at our disposal two types, which can represent floating-point

numbers. The float type is a 32-bit real number with a floating-point and it

is accepted to be called single precision floating-point number. The double is

a 64-bit real number with a floating-point and it is accepted that it has a

double precision floating-point. These real data types and the arithmetic

operations with them correspond to the specification outlined by the IEEE

754-1985 standard. In the following table are presented the most important

characteristics of the two types:

Type Size Range
Significant

Digits

Type in .NET

Framework

float 32 bits
±1.5 × 10−45 ÷

±3.4 × 1038
7 System.Single

double 64 bits
±5.0 × 10−324 ÷

±1.7 × 10308
15-16 System.Double

In the float type we have a mantissa, which contains 7 significant digits,

while in the double type it stores 15-16 significant digits. The remaining bits

are used for specifying the sign of the mantissa and the value of the

exponent. The double type, aside from the larger number of significant digits,

also has a larger exponent, which means that it has a larger scope of the

values it can assume. Here is an example how to declare variables of the

float and double types:

float total = 5.0f;
float result = 5.0f;
double sum = 10.0;
double div = 35.4 / 3.0;
double x = 5d;

The suffixes placed after the numbers on the right side of the equation, serve

the purpose of specifying what type the number should be treated as (f for

float, d for double). In this case they are in place because by default 5.0 will

be interpreted as a double and 5 – as an int.

In C#, floating-point numbers literals by default are of the

double type.

Integers and floating-point numbers can both be present in a given

expression. In that case, the integer variables are converted to floating-point

variables and the result is defined according to the following rules:

www.manaraa.com

284 Fundamentals of Computer Programming with C#

1. If any of the floating-point types is a double, the result will be double

(or bool).

2. If there is no double type in the expression, the result is float (or

bool).

Many of the mathematical operations can yield results, which have no specific

numerical value, like the value "+/- infinity" or NaN (which means "Not a

Number"), these values are not numbers. Here is an example:

double d = 0;
Console.WriteLine(d);
Console.WriteLine(1/d);
Console.WriteLine(-1/d);
Console.WriteLine(d/d);

If we execute it we get the following result:

0.0
Infinity
-Infinity
NaN

If we execute the code above using int instead of double, we will receive a

System.DivideByZeroException, because integer division by 0 is not an

allowed operation.

Errors When Using Floating-Point Numbers

Floating-point numbers (presented according to the IEEE 754 standard) are

very convenient for calculations in physics, where very big numbers are used

(with several hundred digits) and also numbers that are very close to zero

(with hundreds of digits after the decimal point before the first significant

digit). When working with these numbers, the IEEE 754 format is

exceptionally convenient because it keeps the number’s order in the exponent

and the mantissa is only used to store the significant digits. In 64-bit floating-

point numbers accuracy of 15-16 digits, as well as exponents displacing the

decimal point with 300 positions left or right can be achieved.

Unfortunately not every real number has an exact representation in the

IEEE 754 format, because not each number can be presented as a

polynomial of a finite number of addends, which are negative powers of two.

This is fully valid even for numbers, which are used daily for the simplest

financial calculations. For example the number 0.1 represented as a 32-bit

floating-point value is presented as 0.099999994. If the appropriate rounding

is used, the number can be accepted as 0.1, but the error can be accumulated

and cause serious deviations, especially in financial calculations. For example

when adding up 1000 items with a unit price of 0.1 EUR each, we should get a

sum of 100 EUR but if we use a 32-bit floating-point numbers for the

www.manaraa.com

Chapter 8. Numeral Systems 285

calculations the result will be 99.99905. Here is C# example in action, which

proves the errors caused by the inaccurate presentation of decimal real

numbers in the binary numeral system:

float sum = 0f;
for (int i = 0; i < 1000; i++)
{
 sum += 0.1f;
}
Console.WriteLine("Sum = {0}", sum);
// Sum = 99.99905

We can easily see the errors in such calculations if we execute the example or

modify it to get even more striking errors.

Precision of Floating-Point Numbers

The accuracy of the results from floating-point calculations depends on the

following parameters:

1. Precision of the number representation.

2. Precision of the used number methods.

3. Value of the errors resulting from rounding up, etc.

Calculations with them can be inaccurate because they are represented in the

memory with some kind of precision. Let’s look at the following code fragment

as an example:

double sum = 0.0;
for (int i = 1; i <= 10; i++)
{
 sum += 0.1;
}
Console.WriteLine("{0:r}", sum);
Console.WriteLine(sum);

During the execution, in the loop we add the value 1/10 to the variable sum.

When calling the WriteLine() method, we use the round-trip format specifier

"{0:r}" to print the exact (not rounded) value contained in the variable, and

after that we print the same value without specifying a format. We expect

that when we execute the program we will get 1.0 as a result but in reality,

when rounding is turned off, the program returns a value very close to the

correct one but still different:

0.99999999999999989
1

www.manaraa.com

286 Fundamentals of Computer Programming with C#

As we can see in the example, by default, when printing floating-point

numbers in .NET Framework, they are rounded, which seemingly reduces

the errors of their inaccurate notation in the IEEE 754 format. The result of

the calculation above is obviously wrong but after the rounding it looks

correct. However, if we add 0.1 a several thousand times, the error will

accumulate and the rounding will not be able to compensate it.

The reason for the wrong answer in the example is that the number 0.1 does

not have an exact representation in the double type and it has to be rounded.

Let’s replace double with float:

float sum = 0.0f;
for (int i = 1; i <= 10; i++)
{
 sum += 0.1f;
}
Console.WriteLine("{0:r}", sum);

If we execute the code above, we will get an entirely different sum:

1.00000012

Again the reason for this is rounding.

If we investigate why the program yields these results, we will see that the

number 0.1 of the float type is represented in the following manner:

All this looks correct except for the mantissa, which has a value slightly bigger

than 1.6, not exactly 1.6 because this number cannot be presented as sum of

the negative powers of 2. If we have to be very precise, the value of the

mantissa is 1 + 1 / 2 + 1 / 16 + 1 / 32 + 1 / 256 + 1 / 512 + 1 / 4096 + 1 /

8192 + 1 / 65536 + 1 / 131072 + 1 / 1048576 + 1 / 2097152 + 1 / 8388608

≈ 1.60000002384185791015625 ≈ 1.6. Thus the number 0.1 presented in

the IEE 754 is slightly more than 1.6 × 2-4 and the error occurs not during the

addition but before that, when 0.1 is recorded in the float type.

Double and Float types have a field called Epsilon, which is a constant, and

it contains the smallest value larger than zero, which can be represented by

an instance of System.Single or System.Double respectively. Each value

smaller than Epsilon is considered to be equal to 0. For example, if we

www.manaraa.com

Chapter 8. Numeral Systems 287

compare two numbers, which are different after all, but their difference is

smaller than Epsilon, they will be considered equal.

The Decimal Type

The System.Decimal type in .NET Framework uses decimal floating-point

arithmetic and 128-bit precision, which is very suitable for big numbers and

precise financial calculations. Here are some characteristics of the decimal

type:

Type Size Range
Significant

numbers

Type in .NET

framework

decimal 128 bits
±1.0 × 10−28 ÷

±7.9 × 1028
28-29 System.Decimal

Unlike the floating-point numbers, the decimal type retains its precision for

all decimal number in its range. The secret to this excellent precision when

working with decimal numbers lies in the fact that the internal representation

of the mantissa is not in the binary system but in the decimal one. The

exponent is also a power of 10, not 2. This enables numbers to be

represented precisely, without them being converted to the binary numeral

system.

Because the float and double types and the operations on them are

implementer by the arithmetic coprocessor, which is part of all modern

computer microprocessors, and decimal is implemented by the software in

.NET CLR, it is tens of times slower than double, but is irreplaceable for the

execution of financial calculations.

In case our target is to assign a given literal to variable of type decimal, we

need to use the suffixes m or M. For example:

decimal calc = 20.4m;
decimal result = 5.0M;

Let’s use decimal instead of float / double in the example from before:

decimal sum = 0.0m;
for (int i = 1; i <= 10000000; i++)
{
 sum += 0.0000001m;
}
Console.WriteLine(sum);

This time the result is exactly what we expected:

1.0000000

www.manaraa.com

288 Fundamentals of Computer Programming with C#

Even though the decimal type has a higher precision than the floating-point

types, it has a smaller value range and, for example, it cannot be used to

represent the following value 1e-50. As a result, an overflow may occur when

converting from floating-point numbers to decimal.

Character Data (Strings)

Character (text) data in computing is text, encoded using a sequence of

bytes. There are different encoding schemes used to encode text data. Most

of them encode one character in one byte or in a sequence of several bytes.

Such encoding schemes are ASCII, Windows-1251, UTF-8 and UTF-16.

Encoding Schemes (Encodings)

The ASCII encoding scheme compares the unique number of the letters from

the Latin alphabet and some other symbols and special characters and writes

them in a single byte. The ASCII standard contains a total of 127 characters,

each of which is written in one byte. A text, written as a sequence of bytes

according to the ASCII standard, cannot contain Cyrillic or characters from

other alphabets such as the Arabian, Korean and Chinese ones.

Like the ASCII standard, the Windows-1251 encoding scheme compares the

unique number of the letters in the Latin alphabet, Cyrillic and some other

symbols and specialized characters and writes them in one byte. The

Windows-1251 encoding defines the numbers of 256 characters – exactly as

many as the different values that can be written in one byte. A text written

according to the Windows-1251 standard can contain only Cyrillic and Latin

letters, Arabian, Indian or Chinese are not supported.

The UTF-8 encoding is completely different. All characters in the Unicode

standard – the letters and symbols used in all widely spread languages in the

world (Cyrillic, Latin, Arabian, Chinese, Japanese, Korean and many other

languages and writing systems) – can be encoded in it. The UTF-8 encoding

contains over half a million symbols. In the UTF-8 encoding, the more

commonly used symbols are encoded in 1 byte (Latin letters and digits for

example), the second most commonly used symbols are coded in 2 bytes

(Cyrillic letters for example), and the ones that are used even more rarely are

coded in 3 or 4 bytes (like the Chinese, Japanese and Korean alphabet).

The UTF-16 encoding, like UTF-8 can depict text of all commonly used

languages and writing systems, described in the Unicode standard. In UTF-16,

every symbol is written in 16 bits (2 bytes) and some of the more rarely used

symbols are presented as a sequence of two 16-bit values.

Presenting a Sequence of Characters

Character sequences can be presented in several ways. The most common

method for writing text in the memory is to write in 2 or 4 bytes its length,

followed by a sequence of bytes, which presents the text itself in some sort of

encoding (for example Windows-1251 or UTF-8).

www.manaraa.com

Chapter 8. Numeral Systems 289

Another, less common method of writing texts in the memory, typical for the

C language, represents texts as a sequence of characters, usually coded in 1

byte, followed by a special ending character, most frequently a 0. When using

this method, the length of the text saved at a given position in the memory is

not known in advance. This is considered a disadvantage in many situations.

Char Type

The char type in the C# language is a 16-bit value, in which a single

Unicode character or part of it is coded. In most alphabets (for example the

ones used by all European languages) one letter is written in a single 16-bit

value, and thus it is assumed that a variable of the char type represents a

single character. Here is an example:

char ch = 'A';
Console.WriteLine(ch);

String Type

The string type in C# holds text, encoded in UTF-16. A single string in

C# consists of 4 bytes length and a sequence of characters written as 16-bit

values of the char type. The string type can store texts written in all

widespread alphabets and human writing systems – Latin, Cyrillic, Chinese,

Japanese, Arabian and many, many others. Here is an example of the usage

of the string:

string str = "Example";
Console.WriteLine(str);

Exercises

1. Convert the numbers 151, 35, 43, 251, 1023 and 1024 to the binary

numeral system.

2. Convert the number 1111010110011110(2) to hexadecimal and decimal

numeral systems.

3. Convert the hexadecimal numbers FA, 2A3E, FFFF, 5A0E9 to binary and

decimal numeral systems.

4. Write a program that converts a decimal number to binary one.

5. Write a program that converts a binary number to decimal one.

6. Write a program that converts a decimal number to hexadecimal one.

7. Write a program that converts a hexadecimal number to decimal one.

8. Write a program that converts a hexadecimal number to binary one.

9. Write a program that converts a binary number to hexadecimal one.

www.manaraa.com

290 Fundamentals of Computer Programming with C#

10. Write a program that converts a binary number to decimal using the

Horner scheme.

11. Write a program that converts Roman digits to Arabic ones.

12. Write a program that converts Arabic digits to Roman ones.

13. Write a program that by given N, S, D (2 ≤ S, D ≤ 16) converts the number

N from an S-based numeral system to a D based numeral system.

14. Try adding up 50,000,000 times the number 0.000001. Use a loop

and addition (not direct multiplication). Try it with float and double and

after that with decimal. Do you notice the huge difference in the

results and speed of calculation? Explain what happens.

15. * Write a program that prints the value of the mantissa, the sign of the

mantissa and exponent in float numbers (32-bit numbers with a

floating-point according to the IEEE 754 standard). Example: for the

number -27.25 should be printed: sign = 1, exponent = 10000011,

mantissa = 10110100000000000000000.

Solutions and Guidelines

1. Use the methods for conversion from one numeral system to

another. You can check your results with the help of the Windows built-

in calculator, which supports numeral systems in "Programmer" mode.

The results are: 10010111, 100011, 101011, 11111011, 1111111111 and

10000000000.

2. Like the previous exercise. Result: F59E(16) and 62878(10).

3. Like the previous exercise. The results are: FA(16) = 250(10) =

11111010(2), 2A3E(16) = 10814(10) = 10101000111110(2), FFFF(16) =

65535(10) = 1111111111111111(2) and 5A0E9(16) = 368873(10) =

1011010000011101001(2).

4. The rule is "divide by 2 and concatenate the remainders in

reversed order". For division with a remainder we use the % operator.

You can cheat by invoking Convert.ToString(numDecimal, 2).

5. Start with a sum of 0. Multiply the right-most bit with 1 and add it to

the sum. Multiply the next bit on the left by 2 and add it to the sum.

Multiply the next bit on the left by 4, the next by 8 and so on. You can

cheat by invoking Convert.ToInt32(binaryNumAsString, 2).

6. The rule is "divide by the base of the system (16) and concatenate

the remainders in reversed order". A logic that gets a hexadecimal

digit (0…F) by decimal number (0…15) should also be implemented. You

can cheat by invoking num.ToString("X").

7. Start with a sum of 0. Multiply the right-most digit with 1 and add it to

the sum. Multiply the next digit to the left by 16 and add it to the sum.

www.manaraa.com

Chapter 8. Numeral Systems 291

Multiply the next digit by 16*16, the next by 16*16*16 and so on. You

can cheat by invoking Convert.ToInt32(hexNumAsString, 16).

8. Use the fast method for transitioning between hexadecimal and binary

numeral system (each hexadecimal digit turns to 4 binary bits).

9. Use the fast method for transitioning from binary to hexadecimal numeral

system (each 4 binary bits correspond to a hexadecimal digit).

10. Directly apply the Horner scheme.

11. Scan the digits of the Roman number from left to right and add them

up to a sum, which is initialized with a 0. When processing each Roman

digit, take it with a positive or negative sign, depending on the digit

after it (whether it has a bigger or smaller decimal value).

12. Take a look at the numbers from 1 to 9 and their corresponding Roman

representation with the digits "I", "V" and "X":

1 -> I

2 -> II

3 -> III

4 -> IV

5 -> V

6 -> VI

7 -> VII

8 -> VIII

9 -> IX

We have exactly the same correspondence for the numbers 10, 20, …,

90 with their Roman representation "X", "L" and "C". The same is valid

for the numbers 100, 200, …, 900 and their Roman representation with

"C", "D" and "M" and so on.

We are now ready to convert the number N into the Roman numeral

system. It must be in the range [1…3999], otherwise we should report

an error. First we separate the thousands (N / 1000) and replace them

with their Roman counterpart. After that we separate the hundreds (N /

100) % 10) and separate them with their Roman counterpart and so on.

13. You can convert first from S-based system to decimal number and

then from decimal number to D-based system.

14. If you execute the calculations correctly, you will get 32.00 (for float),

49.9999999657788 (for double) and 50.00 (for decimal) respectively.

The differences come from the fact that 0.000001 has no exact

representation as float and double. You may notice also that adding

decimal values is at least 10 times slower than adding double values.

15. Use the special method for conversion of single precision floating-point

numbers to a sequence of 4 bytes: System.BitConverter.GetBytes(
<float>). Then use bitwise operations (shifting and bit masks) to

extract the sign, mantissa and exponent following the IEEE 754 standard.

www.manaraa.com

www.manaraa.com

Chapter 9. Methods

In This Chapter

In this chapter we will get more familiar with what methods are and why we

need to use them. The reader will be shown how to declare methods, what

parameters are and what a method’s signature is, how to call a method,

how to pass arguments of methods and how methods return values. At the

end of this chapter we will know how to create our own method and how to

use (invoke) it whenever necessary. Eventually, we will suggest some good

practices in working with methods. The content of this chapter accompanied

by detailed examples and exercises that will help the reader practice the

learned material.

Subroutines in Programming

To solve a certain task, especially if it is a complex one, we apply the method

that ancient Romans did “divide and conquer”. According to this principle,

the problem we solve must be divided into small subproblems. Taken

separately they are well defined and easy to be resolved compared to the

original problem. At the end by finding solutions for all the small problems we

solve the complex one.

Using the same analogy, whenever we write a software program we aim to

solve particular task. To do it in an efficient and “easy-to-make” way we use

the same mentioned above principle “divide and conquer”. We separate the

given task into smaller tasks, then develop solutions for them and put them

together into one program. Those smaller tasks we call subroutines.

In some other programming languages subroutines can be named as

functions or procedures. In C#, they are called methods.

What Is a "Method"?

A method is a basic part of a program. It can solve a certain problem,

eventually take parameters and return a result.

A method represents all data conversion a program does, to resolve a

particular task. Methods consist of the program’s logic. Moreover they are

the place where the “real job” is done. That is why methods can be taken as a

base unit for the whole program. This on the other hand, gives us the

opportunity, by using a simple block, to build bigger programs, which resolve

more complex and sophisticated problems. Below is a simple example of a

method that calculates rectangle’s area:

www.manaraa.com

294 Fundamentals of Computer Programming with C#

static double GetRectangleArea(double width, double height)
{
 double area = width * height;
 return area;
}

Why to Use Methods?

There are many reasons we should use methods. Some of them are listed

below, and by gaining experience, you will assure yourself that methods are

something that cannot be avoided for a serious task.

Better Structured Program and More Readable Code

Whenever a program has been created, it is always a good practice to use

methods, in a way to make your code better structured and easy to

read, hence to be maintained by other people.

A good reason for this is the fact, that of the time that a program exists, only

about 20% of the effort is spent on creating and testing the program. The rest

is for maintenance and adding new features to the initial version. In most of

the cases, once the code has been released, it is maintained not only from its

creator, but by many other developers. That is why it is very important for the

code to be as well structured and readable as possible.

Avoid Duplicated Code

Another very important reason to use methods is that methods help us to

avoid code repeating. This has a strong relationship to the idea of code

reuse.

Code Reuse

If a piece of code is used more than once in a program, it is good to separate

it in a method, which can be called many times – thus enabling reuse of the

same code, without rewriting it. This way we avoid code repeating, but this

is not the only advantage. The program itself becomes more readable and

well structured.

Repeating code may become very noxious and hazardous, because it impedes

the maintenance of the program and leads to errors. Often, whenever change

of repeating code is needed, the developer fixes only some of the blocks, but

the problems is still alive in the others, about which they forgot. So for

example if a defect is found into a piece of 50 lines code, that is copied to 10

different places over the program, to fix the defect, the repeated code must

be fixed for the all 10 places. This, however, is not what really happens.

Often, due to lack of concentration or some other reasons, the developer

fixes only some of the pieces of code, but not all of them. For example,

www.manaraa.com

Chapter 9. Methods 295

let’s say that in our case the developer has fixed 8 out of 10 blocks of code.

This eventually, will lead to unexpected behavior of our program, only in rare

cases and, moreover, it will be very a difficult task to find out what is going

wrong with the program.

How to Declare, Implement and Invoke a Method?

This is the time to learn how to distinguish three different actions related to

existing of a method: declaring, implementation (creation) and calling of a

method.

Declaring a method we call method registration in the program, so it can be

successfully identified in the rest of the program.

Implementation (creation) of a method is the process of typing the code

that resolves a particular task. This code is in the method itself and

represents its logic.

Method call is the process that invokes the already declared method, from a

part of the code, where a problem, that the method resolves, must be solved.

Declaring Our Own Method

Before we learn how to declare our own method, it is important to know

where we are allowed to do it.

Where Is Method Declaration Allowed?

Although we still haven’t explained how to declare a class, we have seen it in

the exercises before. We know that every class has opening and closing curly

brackets – "{" and "}", between which the program code is placed. More

detailed description for this can be found in the chapter "Defining Classes",

however we mention it here, because a method exists only if it is declared

between the opening and closing brackets of a class – "{" and "}". In

addition a method cannot be declared inside another method's body (this will

be clarified later).

In the C# language, a method can be declared only between

the opening "{" and the closing "}" brackets of a class.

A typical example for a method is the already known method Main(…) – that

is always declared between the opening and the closing curly brackets of our

class. An example for this is shown below:

HelloCSharp.cs

public class HelloCSharp
{ // Opening brace of the class

www.manaraa.com

296 Fundamentals of Computer Programming with C#

 // Declaring our method between the class' body braces
 static void Main(string[] args)
 {
 Console.WriteLine("Hello C#!");
 }
} // Closing brace of the class

Method Declaration

To declare a method means to register the method in our program. This is

shown with the following declaration:

[static] <return_type> <method_name>([<param_list>])

There are some mandatory elements to declare method:

- Type of the result, returned by the method – <return_type>.

- Method’s name – <method_name>.

- List of parameters to the method – <param_list> – it can be empty list

or it can consist of a sequence of parameters declarations.

To clarify the elements of method’s declaration, we can use the Main(…)

method from the example HelloCSharp show in the previous block:

static void Main(string[] args)

As can be seen the type of returned value is void (i.e. that method does

not return a result), the method’s name is Main, followed by round brackets,

between which is a list with the method’s parameters. In the particular

example it is actually only one parameter – the array string[] args.

The sequence, in which the elements of a method are written, is strictly

defined. Always, at the very first place, is the type of the value that method

returns <return_type>, followed by the method’s name <method_name> and

list of parameters at the end <param_list> placed between in round brackets

– "(" and ")". Optionally the declarations can have access modifiers (as

public and static).

When a method is declared keep the sequence of its

elements description: first is the type of the value that the

method returns, then is the method’s name, and at the end is

a list of parameters placed in round brackets.

The list with parameters is allowed to be void (empty). In that case the only

thing we have to do is to type "()" after the method’s name. Although the

www.manaraa.com

Chapter 9. Methods 297

method has not parameters the round brackets must follow its name in the

declaration.

The round brackets – "(" and ")", are always placed after the

method’s name, no matter whether it has or has not any

parameters.

For now we will not focus at what <return_type> is. For now we will use

void, which means the method will not return anything. Later, we will see

how that can be changed

The keyword static in the description of the declaration above is not

mandatory but should be used in small simple programs. It has a special

purpose that will be explained later in this chapter. Now the methods that we

will use for example, will include the keyword static in their declaration.

More about methods that are not declared as static will be discussed in the

chapter "Defining Classes", section "Static Members".

Method Signature

Before we go on with the basic elements from the method’s declaration, we

must pay attention to something more important. In object-oriented

programming a method is identified by a pair of elements of its declaration:

name of the method, and list of parameters. These two elements define the

so-called method specification (often can be found as a method

signature).

C#, as a language used for object oriented programming, also distinguishes

the methods using their specification (signature) – method’s name

<method_name> and the list with parameters – <param_list>.

Here we must note that the type of returned value of a method is only part of

its declaration, not of its signature.

What identifies a method is its signature. The return type is

not part of the method signature. The reason is that if two

methods differ only by their return value types, for the

program is not clear enough which of them must be called.

A more detailed explanation on why the type of the returned value is not part

of the method signature, you will find later in this chapter.

Method Names

Every method solves a particular task from the whole problem that our

program solves. Method’s name is used when method is called. Whenever

we call (start) a particular method, we type its name and if necessary we pass

values (if there are any).

In the example below, the name of our method is PrintLogo:

www.manaraa.com

298 Fundamentals of Computer Programming with C#

static void PrintLogo()
{
 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");
}

Rules to Name a Method

It is recommended, when declare a method, to follow the rules for method

naming suggested by Microsoft:

- The name of a method must start with capital letter.

- The PascalCase rule must be applied, i.e. each new word, that

concatenates so to form the method name, must start with capital

letter.

- It is recommended that the method name must consist of verb, or verb

and noun.

Note that these rules are not mandatory, but recommendable. If we aim our

C# code to follow the style of all good programmers over the globe, we must

use Microsoft’s code convention. A more detailed recommendation about

method naming will be given in the chapter "High-Quality Code", section

"Naming Methods".

Here some examples for well named methods:

Print
GetName
PlayMusic
SetUserName

And some examples for bad named methods:

Abc11
Yellow___Black
foo
_Bar

It is very important that the method name describes the method’s purpose.

All behind this idea is that when a person that is not familiar with our program

reads the method name, they can easily understand what that method does,

without the need to look at the method’s source code.

To name a method it is good to follow these rules:

- Method name must describe the method’s purpose.

- Method name must begin with capital letter.

www.manaraa.com

Chapter 9. Methods 299

- The PascalCase rule must be applied.

- The method name must consist of verb, or verb and

noun.

Modifiers

A modifier is a keyword in C#, which gives additional information to the

compiler for a certain code.

We have already met some modifiers – public and static. Now we will

briefly describe what modifiers are actually. Detailed description will be given

later in the chapter "Defining Classes", section "Access Modifiers". So let’s

begin with an example:

public static void PrintLogo()
{
 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");
}

With this example we define a public method by the modifier public. It is a

special type modifier, called also access modifier and is used to show that

method can be called by any C# class, no matter where it is. Public modifiers

are not restricted in the meaning of “who” can call them.

Another example for access modifier, that we can meet, is the modifier

private. Its function is opposite to that of the public, i.e. if a method is

declared by access modifier private, it cannot be called from anywhere,

except from the class in which it is declared.

If a method is declared without an access modifier (either public or

private), it is accessible from all classes in the current assembly, but not

accessible for any other assemblies (let say from other projects in Visual

Studio). For the same reason, when we are writing small programs, like those

in this chapter, we will not specify access modifiers.

For now, the only thing that has to be learned is that in method declaration

there cannot be more than one access modifier.

When a method has a keyword static, in its declaration, this method is

called static. To call a static method there is no need to have an instance of a

class in which the static method is declared. For now the reader can accept

that, the methods must be static. Dealing with non-static methods will be

explained in the chapter "Defining Classes", section "Methods".

www.manaraa.com

300 Fundamentals of Computer Programming with C#

Implementation (Creation) of Own Method

After a method had been declared, we must write its implementation. As we

already explained above, implementation (body) of the method consists of

the code, which will be executed by calling the method. That code must be

placed in the method’s body and it represents the method’s logic.

The Body of a Method

Method body we call the piece of code, that is placed in between the curly

brackets "{" and "}", that directly follow the method declaration.

static <return_type> <method_name>(<parameters_list>)
{
 // … code goes here – in the method's body …
}

The real job, done by the method, is placed exactly in the method body. So,

the algorithm used in the method to solve the particular task is placed in the

method body.

So far we have seen many examples of method body however, we will show

one more with the code below:

static void PrintLogo()
{ // Method's body starts here
 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");
} // … And finishes here

Let’s consider one more time one rule about method declaration:

Method can NOT be declared inside the body of another

method.

Local Variables

Whenever we declare a variable inside the body of a method, we call that

variable local variable for the method. To name a variable we should follow

the identifiers rules in C# (refer to chapter "Primitive Types and Variables").

The area where a local variable exists, and can be used, begins from the line

where the variable is declared and ends at the closing curly bracket "}" of the

method body. This is the so-called area of visibility of the variable

(variable scope). If we try to declare variable, after we have already

declared a variable with the same name, the code will not compile due to an

error. Let’s look at the example below:

www.manaraa.com

Chapter 9. Methods 301

static void Main()
{
 int x = 3;
 int x = 4;
}

Compiler will not let’s use the name x for two different variables, and will

return a message similar to the one below:

A local variable named 'x' is already defined in this scope.

A block of code we call a code that is placed between opening and closing

curly brackets "{" and "}".

If a variable is declared within a block, it is also called local (for this block).

Its area of visibility begins from the line where the variable is declared, and

ends at the line where block’s closing bracket is.

Invoking a Method

Invoking or calling a method is actually the process of execution of the

method’s code, placed into its body.

It is very easy to invoke a method. The only thing that has to be done is to

write the method’s name <method_name>, followed by the round brackets and

semicolon ";" at the end:

<method_name>();

Later will see an example for when the invoked method has a parameter list

(in the case here the method has no parameters).

To clarify how method invocation works, the next fragment shows how the

method PrintLogo() will be called:

PrintLogo();

Result of method’s execution is:

Microsoft
www.microsoft.com

Who Takes Control over the Program when We

Invoke a Method?

When a method executes it takes control over the program. If in the caller

method, however, we call another one, the caller will give the control to the

called method. The called method will return back the control to the caller

www.manaraa.com

302 Fundamentals of Computer Programming with C#

right after its execution finishes. The execution of the caller will continue from

that line, where it was before calling the other method.

For example, let’s call PrintLogo() from the Main() method:

First the code of method Main(), that is marked with (1) will be executed,

then the control of the program will be given to the method PrintLogo() –

the dotted arrow (2). This will cause the execution of the code in method

PrintLogo(), numbered with (3). When the method PrintLogo() work is

done, the control over the program is returned back to the method Main() –

dotted arrow (4). Execution of Main() will continue from the line after

PrintLogo() call – marked with (5).

Where a Method Can Be Invoked From?

A method can be invoked from the following places:

- From the main program method – Main():

static void Main()
{
 PrintLogo();
}

- From some other method:

static void PrintLogo()
{
 Console.WriteLine("Microsoft");

www.manaraa.com

Chapter 9. Methods 303

 Console.WriteLine("www.microsoft.com");
}

static void PrintCompanyInformation()
{
 // Invoking the PrintLogo() method
 PrintLogo();

 Console.WriteLine("Address: One, Microsoft Way");
}

- A method can be invoked from its own body. Such a call is referred to as

recursion. We will discuss it in details in the chapter "Recursion".

Method Declaration and Method Invocation

In C# the order of the methods in the class is not important. We are allowed

to invoke (call) a method before it is declared in code:

static void Main()
{
 // …
 PrintLogo();
 // …
}

static void PrintLogo()
{
 Console.WriteLine("Microsoft");
 Console.WriteLine("www.microsoft.com");
}

If we create a class that contains the code above, we will see that the code

will compile and run successfully. It doesn’t matter whether we declared the

method before or after the main method. In some other languages (like

Pascal), invocation of a method that is declared below the line of the

invocation is not allowed.

If a method is called in the same class, where it is declared

and implemented, it can be called at a line before the line at

which it is declared.

Parameters in Methods

Often to solve certain problem, the method may need additional information,

which depends on the environment in what the method executes.

www.manaraa.com

304 Fundamentals of Computer Programming with C#

So if there is a method, that has to find the area of a square, in its body there

must be the algorithm that finds that area (equation S = a2). Since the area

depends on the square side length, to calculate that equation for each square,

the method will need to pass a value for the square side length. That is why

we have to pass somehow that value, and for this purpose we use

parameters.

Declaring Methods with Parameters

To pass information necessary for our method we use the parameters list.

As was already mentioned, we must place it between the brackets following

the method name, in method the declaration:

static <return_type> <method_name>(<parameters_list>)
{
 // Method's body
}

The parameters list <parameters_list> is a list with zero or more

declarations of variables, separated by a comma, so that they will be used

for the implementation of the method’s logic:

<parameters_list> = [<type1> <name1>[, <typei> <namei>]],
where i = 2, 3, …

When we create a method, and we need certain information to develop the

particular algorithm, we choose that variable from the list, which is of type

<typei> and so we use it by its name <namei>.

The parameters from the list can be of any type. They can be primitive types

(int, double, …) or object types (for example string or array – int[],

double[], string[], …).

Method to Display a Company Logo – Example

To make the mentioned above more clear, we will change the example that

shows the logo of "Microsoft":

static void PrintLogo(string logo)
{
 Console.WriteLine(logo);
}

Now, executing our method, we can display the logo of other companies, not

only of "Microsoft". This is possible because we used a parameter of type

string to pass the company name. The example shows how to use the

information given in the parameters list – the variable logo, which is defined

www.manaraa.com

Chapter 9. Methods 305

in the parameters list, is used in the method’s body by the name given in the

definition.

Method to Calculate the Sum of Prices of Books – Example

We mentioned above, that whenever it is necessary we can use arrays as

parameters for a certain method (int[], double[], string[], …). So let’s

take a look at another example to illustrate this.

Imagine we are in a bookstore and we want to calculate the amount of money

we must pay for all the books we bought. We will create a method that gets

the prices of all the books as an array of type decimal[], and then returns

the total amount we must pay:

static void PrintTotalAmountForBooks(decimal[] prices)
{
 decimal totalAmount = 0;
 foreach (decimal singleBookPrice in prices)
 {
 totalAmount += singleBookPrice;
 }
 Console.WriteLine("The total amount for all books is:" +
 totalAmount);
}

Method Behavior According to Its Input

When a method with parameters is declared, our purpose is that every time

we invoke the method, its result changes according to its input. Said with

another word, the algorithm is the same, but due to input change, the result

changes too.

When a method has parameters, its behavior depends upon

parameters values.

Method to Show whether a Number is Positive – Example

To clarify the way method execution depends upon its input let’s take look at

another example. The method gets as input a number of type int, and

according to it returns to the console "Positive", "Negative" or "Zero":

static void PrintSign(int number)
{
 if (number > 0)
 {
 Console.WriteLine("Positive");
 }
 else if (number < 0)

www.manaraa.com

306 Fundamentals of Computer Programming with C#

 {
 Console.WriteLine("Negative");
 }
 else
 {
 Console.WriteLine("Zero");
 }
}

Method with Multiple Parameters

So far we had some examples for methods with parameter lists that consist of

a single parameter. When a method is declared, however, it can have as

multiple parameters as the method needs.

If we are asking for maximal of two values, for example, the method needs

two parameters:

static void PrintMax(float number1, float number2)
{
 float max = number1;

 if (number2 > max)
 {
 max = number2;
 }
 Console.WriteLine("Maximal number: " + max);
}

Difference in Declaration of Methods with Multiple Parameters

When a method with multiple parameters is declared, we must note that even

if the parameters are of the same type, usage of short way of variable

declaration is not allowed. So the line below in the methods declaration is

invalid and will produce compiler error:

float var1, var2;

Type of the parameters has to be explicitly written before each parameter, no

matter if some of its neighbors are of the same type.

Hence, declaration like one shown below is not valid:

static void PrintMax(float var1, var2)

Correct way to do so is:

www.manaraa.com

Chapter 9. Methods 307

static void PrintMax(float var1, float var2)

Invoking Methods with Parameters

Invocation of a method with one or several parameters is done in the same

way as invocation of methods without parameters. The difference is that

between the brackets following the method name, we place values. These

values (called arguments) will be assigned to the appropriate parameters

form the declaration and will be used when method is executed.

Several examples for methods with parameters are show below:

PrintSign(-5);
PrintSign(balance);

PrintMax(100.0f, 200.0f);

Difference between Parameters and Arguments of a Method

Before we continue with this chapter, we must learn how to distinguish

between parameters naming in the parameters list in the methods declaration

and the values that we pass when invoking a method.

To clarify, when we declare a method, any of the elements from the

parameters list we will call parameters (in other literature sources they can

be named as formal parameters).

When we call a method the values we use to assign to its parameters are

named as arguments.

In other words, the elements in the parameters list (var1 and varr2) are

called parameters:

static void PrintMax(float var1, float var2)

Accordingly, the values by the method invocation (-23.5 and 100) are called

arguments:

PrintMax(100.0f, -23.5f);

Passing Arguments of a Primitive Type

As just was explained, in C# when a variable is passed as a method

argument, its value is copied to the parameter from the declaration of the

method. After that, the copy will be used in the method body.

There is, however, one thing we should be aware of. If the declared

parameter is of a primitive type, the usage of the arguments does not

www.manaraa.com

308 Fundamentals of Computer Programming with C#

change the argument itself, i.e. the argument value will not change for the

code after the method has been invoked.

So if we have piece of code like that below:

static void PrintNumber(int numberParam)
{
 // Modifying the primitive-type parameter
 numberParam = 5;

 Console.WriteLine("in PrintNumber() method, after " +
 "modification, numberParam is: {0}", numberParam);
}

Invocation of the method from Main():

static void Main()
{
 int numberArg = 3;

 // Copying the value 3 of the argument numberArg to the
 // parameter numberParam
 PrintNumber(numberArg);

 Console.WriteLine("in the Main() method numberArg is: " +
 numberArg);
}

The value 3 of numberArg, is copied into the parameter numberParam. After

the method PrintNumber() is invoked, to numberParam is assigned value 5.

This does not affect the value of variable numberArg, because by invocation of

that method, the variable numberParam keeps a copy of the argument value.

That is why the method PrintNumber() prints the number 5. Hence, after

invocation of method PrintNumber() in the method Main() what is printed is

the value of numberArg and as it can be seen that value is not changed. The

result from the above line is printed below:

in PrintNumber() method, after modification, numberParam is: 5
in the Main() method numberArg is: 3

Passing Arguments of Reference Type

When we need to declare (and so to invoke) a method, that has parameters

of reference type (as arrays), we must be very careful.

Before explaining the reason for the above consideration, we have to remind

ourselves something from chapter "Arrays". An array, as any other reference

www.manaraa.com

Chapter 9. Methods 309

type, consists of a variable-pointer (object reference) and a value – the

real information kept in the computer’s memory (we call it an object). In our

case the object is the real array of elements. The address of this object,

however, is kept in the variable (i.e. the address where the array elements

are placed in the memory):

So whenever we operate with arrays in C#, we always access them by that

variable (the address / pointer / reference) we used to declare the particular

array. This is the principle for any other reference type. Hence, whenever an

argument of a reference type is passed to a method, the method’s parameter

receives the reference itself. But what happens with the object then (the real

array)? Is it also copied or no?

To explain this, let’s have the following example: assume we have method

ModifyArray(), that modifies the first element of an array that is passed as a

parameter, so it is reinitialized the first element with value 5 and then prints

the elements of the array, surrounded by square brackets and separated by

commas:

static void ModifyArray(int[] arrParam)
{
 arrParam[0] = 5;
 Console.Write("In ModifyArray() the param is: ");
 PrintArray(arrParam);
}

static void PrintArray(int[] arrParam)
{
 Console.Write("[");
 int length = arrParam.Length;

 if (length > 0)
 {
 Console.Write(arrParam[0].ToString());
 for (int i = 1; i < length; i++)
 {
 Console.Write(", {0}", arrParam[i]);
 }
 }
 Console.WriteLine("]");
}

arrArg: int[]

1 2 31 2 3[I@e48e1b

variable object

arrArg: int[]

1 2 31 2 31 2 31 2 3

www.manaraa.com

310 Fundamentals of Computer Programming with C#

Let’s also declare a method Main(), from which we invoke the newly created

method ModifyArray():

static void Main()
{
 int[] arrArg = new int[] { 1, 2, 3 };

 Console.Write("Before ModifyArray() the argument is: ");
 PrintArray(arrArg);

 // Modifying the array's argument
 ModifyArray(arrArg);

 Console.Write("After ModifyArray() the argument is: ");
 PrintArray(arrArg);
}

What would be the result of the code execution? Let’s take a look:

Before ModifyArray() the argument is: [1, 2, 3]
In ModifyArray() the param is: [5, 2, 3]
After ModifyArray() the argument is: [5, 2, 3]

It is apparent that after execution of the method ModifyArray(), the array to

which the variable arrArg refer, does not consists of [1,2,3], but [5,2,3]

instead. What does this mean?

The reason for such result is the fact that by passing arguments of reference

type, only the value of the variable that keeps the address to the object is

copied. Note that this does not copy the object itself.

By passing the argument that are of reference type, the only

thing that is copied is the variable that keeps the reference

to the object, but not the object data.

Let’s try to illustrate what just was explained. We will use few drawings for

the example we used above. By invocation of the method ModifyArray(), the

value of the parameter arrParam is not defined and it does not keep a

reference to any particular object (not a real array):

arrParam: int[]

arrArg: int[]

[I@e48e1b 321 321

www.manaraa.com

Chapter 9. Methods 311

By the time of ModifyArray() invocation, the value that is kept in the

argument arrArg is copied to the parameter arrParam:

This way, copying the reference to the elements of the array in the memory

from the argument into the parameter, we tell the parameter to point to the

same object, to which the argument points:

This actually is where we have to be very careful. If the invoked method

modifies the object, to which a reference is passed, this may affect the

execution of the code after the method invocation (as we have seen in the

example – the method PrintArray() does not print the array, that was

initially passed).

The difference between dealing with arguments of primitive and reference

type is in the way they are passed: primitive types are passed by their

values, the objects, however, are passed by reference.

Passing of Expressions as Method Arguments

When a method is invoked, we can pass a whole expression instead of

arguments. By doing so, C# calculates the values for those expressions and

by the time of code execution (if it is possible this is done at compile time)

replaces the expression with its result, when the method is invoked. The

following code shows methods invocation, by passing expressions as

method arguments:

PrintSign(2 + 3);

float oldQuantity = 3;
float quantity = 2;
PrintMax(oldQuantity * 5, quantity * 2);

The result of those methods execution is:

arrParam: int[]

arrArg: int[]

[I@e48e1b 321 321

(copy)

arrParam: int[]

[I@e48e1b

arrParam: int[]

[I@e48e1b

arrArg: int[]

[I@e48e1b 321 321

www.manaraa.com

312 Fundamentals of Computer Programming with C#

Positive
Maximal number: 15.0

When a method with parameters is invoked, we must be aware of some

specific rules, which will be explained in the next few subsections.

Passing of Arguments Compatible with the Parameter Type

We must know that we can pass only arguments that are of type compatible

with the related parameter, declared in the method’s parameters list.

For example, if the parameter that the method expects in its declaration is of

type float, by invocation of the method we can pass a value that is of type

int. It will be converted by the compiler to a value of type float and then

will be passed to the method for its execution:

static void PrintNumber(float number)
{
 Console.WriteLine("The float number is: {0}", number);
}

static void Main()
{
 PrintNumber(5);
}

In the example, by invocation of PrintNumber() in the method Main(), first

the integer literal 5 (that implicitly is of type int) is converted to the related

floating point value 5.0f. Then the so converted value is passed to the

method PrintNumber().

As can be expected, the result of that code execution is:

The float number is: 5.0

Compatibility of the Method Parameter and the Passed Value

The result from the calculation of an expression, passed as argument, must

be of the same type, as the type of the declared parameter is, or

compatible with that type (refer to the passage above).

So if a parameter of type float is required, we can pass the value calculated

by an expression that is of a type int. E.g. in the example above, if instead of

PrintNumber(5), we called the method, with 5 replaced by the expression

2+3, the result of the calculation of that expression must be of type float

(one that the method expects), or of a type that can be converted to float

with no loss (in our case this is int). So let’s modify a little the method

Main() from the passage above, to illustrate what just was explained:

www.manaraa.com

Chapter 9. Methods 313

static void Main()
{
 PrintNumber(2 + 3);
}

In this example first the summing will be executed. Then the integer result 5

will be converted to its floating point equivalent 5.0f. When this is done the

method PrintNumber(…) will be invoked with argument 5.0f. The result

again will be:

The float number is: 5.0

Keeping the Declaration Sequence of the Arguments Types

Values, that are passed to the method, in the time of its invocation, must be

in the same order as the parameters are declared in the parameters list. This

is due to the method signature, mentioned above.

To clarify, let’s discuss the following example: we have a method

PrintNameAndAge(), in which method declaration is a parameters list, with

parameters of type’s string and int, ordered as shown below:

Person.cs

class Person
{
 static void PrintNameAndAge(string name, int age)
 {
 Console.WriteLine("I am {0}, {1} year(s) old.", name, age);
 }
}

Let’s add a method Main() to our class, in that method we will invoke the

PrintNameAndAge() method. Now let’s try to pass parameters in reverse (as

types) order, so instead "John" and 25, we will use 25 and "John":

static void Main()
{
 // Wrong sequence of arguments
 Person.PrintNameAndAge(25, "John");
}

The compiler in this case will not be able to find a method that is called

PrintNameAndAge, which accepts parameters in the sequence int and

string. That is why, the compiler will notify for an error:

www.manaraa.com

314 Fundamentals of Computer Programming with C#

The best overloaded method match for
'Person.PrintNameAndAge(string, int)' has some invalid arguments

Variable Number of Arguments (var-args)

So far, we examined declaration of methods for which the parameters list

coincides with the count of the arguments we pass to that method, by its

invocation.

Now we will see how to declare methods that allow the count of arguments to

be different any time the method is invoked, so to meet the needs of the

invoking code. Such methods are often called methods with a variable

number of arguments.

Let’s we look at the example, that calculates the sum of a given array of book

prices, the one that already was explained above. In that example, as a

parameter we passed an array of type decimal that consists of the prices of

the chosen books:

static void PrintTotalAmountForBooks(decimal[] prices)
{
 decimal totalAmount = 0;

 foreach (decimal singleBookPrice in prices)
 {
 totalAmount += singleBookPrice;
 }
 Console.WriteLine(
 "The total amount of all books is:" + totalAmount);
}

Defined in this way, the method suppose, that always before its invocation,

we will have created an array with numbers of type decimal and they will be

initialized with certain values.

After we created a C# method that accepts variable number of parameters, is

possible, whenever a list of parameters from the same type must be

passed, instead of passing the array that consists of those values, to pass

them directly, as arguments, separated by comma.

In our case with the books, we need to create a new array, especially for that

method invocation:

decimal[] prices = new decimal[] { 3m, 2.5m };
PrintTotalAmountForBooks(prices);

www.manaraa.com

Chapter 9. Methods 315

However, if we add some code (we will see it in a moment) to the method

declaration, we will be able to directly pass list with the books prices, as

method arguments:

PrintTotalAmountForBooks(3m, 2.5m);
PrintTotalAmountForBooks(3m, 5.1m, 10m, 4.5m);

Such invocation is possible only if we have declared the method in a way, so it

accepts variable number of arguments (var-args).

How to Declare Method with Variable Number of Arguments

Formally the declaration of a method with variable number of arguments is

the same as the declaration of any other method:

static <return_type> <method_name>(<parameters_list>)
{
 // Method's body
}

The difference is that the <parameters_list> is declared with the keyword

params in the way shown below:

<parameters_list> =
 [<type1> <name1>[, <typei> <namei>], params <var_type>[]
<var_name>]
where i= 2, 3, …

The last element from the list declaration – <params>, is the one that

allows passing of random count of arguments of type <var_type>, for each

invocation of the method.

In the declaration of that element, before its type <var_type> we must add

params: "params <var_type>[]". The type <var_type> can be either

primitive or by reference.

Rules and special characteristics for the other elements from the method’s

parameters list, that precede the var-args parameter <var_name>, are the

same, as those we discussed in the section "Method Parameters".

To clarify what was explained so far, we will discuss an example for

declaration and invocation of a method with variable number if arguments:

static long CalcSum(params int[] elements)
{
 long sum = 0;
 foreach (int element in elements)
 {

www.manaraa.com

316 Fundamentals of Computer Programming with C#

 sum += element;
 }
 return sum;
}

static void Main()
{
 long sum = CalcSum(2, 5);
 Console.WriteLine(sum);

 long sum2 = CalcSum(4, 0, -2, 12);
 Console.WriteLine(sum2);

 long sum3 = CalcSum();
 Console.WriteLine(sum3);
}

The example sums the numbers, as their count is not known in advance. The

method can be invoked with one, two or more parameters, as well as with no

parameters at all. If we execute the example we will get the following result:

7
14
0

Variable Number of Arguments: Arrays vs. "params"

From the formal definition, given above, of parameter that allows passing of

variable number of arguments by the method invocation – <var_name>, is

actually a name of an array of type <var_type>. By the method invocation,

the arguments of type <var_type> or compatible type that we pass to the

method (with no care for their count) will be kept into this array. Then they

will be used in the method body. The access and dealing with these

parameters is in the same way we do when we work with arrays.

To make it clearer we will modify the method that calculates the sum of the

prices of chosen books, to get variable number of arguments:

static void PrintTotalAmountForBooks(params decimal[] prices)
{
 decimal totalAmount = 0;

 foreach (decimal singleBookPrice in prices)
 {
 totalAmount += singleBookPrice;
 }

www.manaraa.com

Chapter 9. Methods 317

 Console.WriteLine("The total amount of all books is:" +
 totalAmount);
}

As we can see the only change is to change the declaration of the array

prices with adding params before decimal[]. In the body of our method,

"prices" is still an array of type decimal, so we use it in the same way as

before.

Now we can invoke our method, with no need to declare in advance an array

of number and pass it as an argument:

static void Main()
{
 PrintTotalAmountForBooks(3m, 2.5m);
 PrintTotalAmountForBooks(1m, 2m, 3.5m, 7.5m);
}

The result of the two invocations will be:

The total amount of all books is: 5.5
The total amount of all books is: 14.0

Since prices is an array, it can be assumed that we can declare and initialize

an array before invocation of our method. Then to pass that array as an

argument:

static void Main()
{
 decimal[] pricesArr = new decimal[] { 3m, 2.5m };

 // Passing initialized array as var-arg:
 PrintTotalAmountForBooks(pricesArr);
}

The above is legal invocation, and the result from that code execution is the

following:

The total amount of all books is: 5.5

Position and Declaration of a Method with Variable Arguments

A method, that has a variable number of its arguments, can also have other

parameters in its parameters list.

The following code, for example, has as a first parameter an element of type

string, and right after it there can be one or more parameters of type int:

www.manaraa.com

318 Fundamentals of Computer Programming with C#

static void DoSomething(string strParam, params int[] x)
{
}

The one thing that we must consider is that the element from the parameters

list in the method’s definition, that allows passing of a variable number of

arguments, must always be placed at the end of the parameters list.

The element of the parameters list, that allows passing of

variable number of arguments by invocation of a method,

must always be declared at the end of the method’s

parameters list.

So, if we try to put the declaration of the var-args parameter x, shown in the

last example, not at the last place, like so:

static void DoSomething(params int[] x, string strParam)
{
}

The compiler will return the following error message:

A parameter array must be the last parameter in a formal
parameter list

Limitations on the Count for the Variable Arguments

Another limitation, for the methods with variable number of arguments, is

that the method cannot have in its declaration more than one parameter that

allows passing of variable numbers of arguments. So if we try to compile a

method declared in the following way:

static void DoSomething(params int[] x, params string[] z)
{
}

The compiler will return the already known error message:

A parameter array must be the last parameter in a formal
parameter list

This rule can be taken as a special case of the rule for the var-args position,

i.e. the related parameter to be at the end of the parameters list.

www.manaraa.com

Chapter 9. Methods 319

Specifics of Empty Parameter List

After we got familiar with the declaration and invocation of methods with

variable number of arguments, one more question arises. What would happen

if we invoke such method, but with no parameters?

For example, what would be the result of the invocation of our method that

calculates the sum of books prices, in a case we did not liked any book:

static void Main()
{
 PrintTotalAmountForBooks();
}

As can be seen this code is compiled with no errors and after its execution the

result is as follow:

The total amount of all books is: 0

This happens because, although, we did not pass any value to our method, by

its invocation, the array decimal[] prices is created, but it is empty (i.e. it

does not consists of any elements).

This has to be remembered, because even if we did not initialize the array,

C# takes care to do so for the array that has to keep the parameters.

Method with Variable Number of Arguments – Example

Bearing in mind how we define methods with variable number of arguments,

we can write the Main() method of a C# program in the following way:

static void Main(params string[] args)
{
 // Method body comes here
}

The definition above is valid and is accepted without any errors by the

compiler.

Optional Parameters and Named Arguments

Named arguments and optional parameters are two different functionalities of

the C# language. However, they often are used together. These parameters

are introduced in C#, version 4.0. Optional parameters allow some

parameters to be skipped when a method is invoked. Named arguments on

their side, allow method parameter values to be set by their name, instead of

their exact position in the parameters list. These two features in the C#

language syntax are very useful in cases, when we invoke a method with a

different combination of its parameters.

www.manaraa.com

320 Fundamentals of Computer Programming with C#

Declaration of optional parameters can be done just by using a default value

in the way shown below:

static void SomeMethod(int x, int y = 5, int z = 7)
{
}

In the example above y and z are optional and can be skipped upon method’s

invocation:

static void Main()
{
 // Normal call of SomeMethod
 SomeMethod(1, 2, 3);

 // Omitting z - equivalent to SomeMethod(1, 2, 7)
 SomeMethod(1, 2);

 // Omitting both y and z – equivalent to SomeMethod(1, 5, 7)
 SomeMethod(1);
}

We can pass a value by a particular parameter name, by setting the

parameter’s name, followed by a colon and the value of the parameter. An

example of using named arguments is shown below:

static void Main()
{
 // Passing z by name and x by position
 SomeMethod(1, z: 3);

 // Passing both x and z by name
 SomeMethod(x: 1, z: 3);

 // Reversing the order of the arguments passed by name
 SomeMethod(z: 3, x: 1);
}

All invocations in the sample above are equivalent to each other – parameter

y is skipped, but x and z are set to 1 and 3. The only difference between the

second and third call is that the parameter values are calculated in the same

order they are passed to the method, in the last invocation 3 will be

calculated before 1. In this example all parameters are constants and their

purpose is only to clarify the idea of named and optional parameters.

However, the mentioned consideration may lead to some unexpected behavior

when the order of parameters calculation matters.

www.manaraa.com

Chapter 9. Methods 321

Method Overloading

When in a class a method is declared and its name coincides with the name of

another method, but their signatures differ by their parameters list (count

of the method’s parameters or the way they are arranged), we say that there

are different variations / overloads of that method (method

overloading).

As an example, let’s assume that we have to write a program that draws

letters and digits to the screen. We also can assume that our program has

methods for drawing strings DrawString(string str), integers –

DrawInt(int number), and floating point digits – DrawFloat(float number)

and so on:

static void DrawString(string str)
{
 // Draw string
}

static void DrawInt(int number)
{
 // Draw integer
}

static void DrawFloat(float number)
{
 // Draw float number
}

As we can see the C# language allows us to create variations of the same

method Draw(…), called overloads. The method below gets combinations of

different parameters, depending of what we want to write on the screen:

static void Draw(string str)
{
 // Draw string
}

static void Draw(int number)
{
 // Draw integer
}

static void Draw(float number)
{
 // Draw float number

www.manaraa.com

322 Fundamentals of Computer Programming with C#

}

The definitions of the methods above are valid and will compile without error

messages. The method Draw(…) is also called overloaded.

Method Parameters and Method Signature

As mentioned above, there are only two things required in C# to specify a

method signature: the parameter type and the order in which the

parameters are listed. The names of the method’s parameters are not

significant for the method’s declaration.

The most important aspect of creating an unambiguous

declaration of a method in C# is the definition of its

signature and the type of the method’s parameters in

particular.

For example in C#, the following two declarations are actually declarations of

one and the same method. That’s because the parameter type in each of their

parameters is the same – int and float. So the names of the variables we

are using – param1 and param2 or p1 and p2, are not significant:

// These two lines will cause an error
static void DoSomething(int param1, float param2) { }
static void DoSomething(int p1, float p2) { }

If we declare two or more methods in one class, in the way shown above, the

compiler will show an error message, which will look something like the one

below:

Type '<the_name_of_your_class>' already defines a member called
'DoSomething' with the same parameter types.

If we change the parameter type from a given position of the parameter

list to a different type, in C# they will count as two absolutely different

methods, or more precisely said, different variations of a method with

the same name.

For example if in the second method, the second parameter from the

parameter list of any of the methods – float p2, is declared not as float,

but as int for example, we will have two different methods with two

different signatures – DoSomething(int, float) and DoSomething(int,

int). Now the second element from their signature – parameter list, is

different, due to difference of their second element type:

static void DoSomething(int p1, float p2) { }
static void DoSomething(int param1, int param2) { }

www.manaraa.com

Chapter 9. Methods 323

In this case even if we type the same name for the parameters, the compiler

will accept this declaration, because they are practically different methods:

static void DoSomething(int param1, float param2) { }
static void DoSomething(int param1, int param2) { }

The compiler will accept the code again if we declare two variations of the

method, but this time we are going to change the order of the parameters

instead of their type.

static void DoSomething(int param1, float param2) { }
static void DoSomething(float param2, int param1) { }

In the example above the order of the parameter types is different and

this makes the signature different too. Since the parameter lists are different,

it plays no role that the name (DoSomething) is the same for both methods.

We still have different signatures for both methods.

Overloaded Methods Invocation

Since we have declared methods with the same name and different

signatures, we can invoke each of them as any other method – just by using

their name and arguments. Here is an example:

static void PrintNumbers(int intValue, float floatValue)
{
 Console.WriteLine(intValue + "; " + floatValue);
}

static void PrintNumbers(float floatValue, int intValue)
{
 Console.WriteLine(floatValue + "; " + intValue);
}

static void Main()
{
 PrintNumbers(2.71f, 2);
 PrintNumbers(5, 3.14159f);
}

When the code executes, we will see, that the first invocation refers to the

second method, and the second invocation refers to the first method. Which

method will be invoked depends on the type of the used parameters. The

result after executing the code above is:

2.71; 2
5; 3.14159

www.manaraa.com

324 Fundamentals of Computer Programming with C#

The lines below, however, will not compile and execute:

static void Main()
{
 PrintNumbers(2, 3);
}

The reason for this not to work is that the compiler tries to convert both

integer numbers to suitable types before passing them to any of the methods

named PrintNumbers. In this case, however, these conversions are not equal.

There are two possible options – either to convert the first parameter to

float and call the method PrintNumbers(float, int) or to convert the

second parameter to float and call the method PrintNumbers(int, float).

This ambiguity has to be manually resolved, and one way to do so is shown in

the example below:

static void Main()
{
 PrintNumbers((float)2, (short)3);
}

The code above will be compiled without errors, because after the arguments

are transformed, it is clearly decided which method we refer to –

PrintNumbers(float, int).

Methods with Coinciding Signatures

We will discuss some other interesting examples that show how to use

methods. Let’s take a look at an example of an incorrect redefinition

(overload) of methods:

static int Sum(int a, int b)
{
 return a + b;
}

static long Sum(int a, int b)
{
 return a + b;
}

static void Main()
{
 Console.WriteLine(Sum(2, 3));
}

www.manaraa.com

Chapter 9. Methods 325

The code from the example will show an error message upon compilation

process, because there are two methods with same parameters lists (i.e. with

same signature) which return results of different types. This makes the

method invocation ambiguous, so it is not allowed by the compiler.

Triangles with Different Size – Example

It would be a good time now to give a little bit more complex example, since

we know now how to declare methods with parameters, how to invoke them

as well as how to get result back from those methods. Let’s assume we want

to write a program, which prints triangles on the console, as those shown

below:

n = 5
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

n = 6
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

A possible solution of this task is given below:

Triangle.cs

using System;

class Triangle
{

www.manaraa.com

326 Fundamentals of Computer Programming with C#

 static void Main()
 {
 // Entering the value of the variable n
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());
 Console.WriteLine();

 // Printing the upper part of the triangle
 for (int line = 1; line <= n; line++)
 {
 PrintLine(1, line);
 }

 // Printing the bottom part of the triangle
 // that is under the longest line
 for (int line = n - 1; line >= 1; line--)
 {
 PrintLine(1, line);
 }
 }

 static void PrintLine(int start, int end)
 {
 for (int i = start; i <= end; i++)
 {
 Console.Write(i + " ");
 }
 Console.WriteLine();
 }
}

Let’s discuss how the example code works. We should think of the triangles as

sequences of numbers, placed on separate lines, since we can print each line

directly on the console. In order to print each line of the triangle on the

console we need a tool. For this purpose we created the method

PrintLine(…).

In this method, by using a for-loop, we print a line of consequent numbers.

The first number from this sequence is the first parameter from the method’s

parameter list (the variable start). The last element of the sequence is the

number, passed to the method, as second parameter (the variable end).

Notice that since the numbers are sequential, the length (count of the

numbers) of each line corresponds to the difference between the second

parameter end and the first one – start, from the methods parameters list

(this will be useful later, when we build the triangles).

www.manaraa.com

Chapter 9. Methods 327

Then we implement an algorithm that prints the triangles, as whole figures, in

the Main() method. With another method int.Parse, we get the n variable

and print the empty line.

Now with two sequential for-loops we build the triangle according to the

entered n. With the first loop we print all the lines that draw the upper part of

the triangle and the middle (longest) line inclusively. With the second loop, we

print the rest of the triangle’s lines that lie below the middle line.

As we mentioned above, the line number, corresponds to the element count

placed on the appropriate line. And since we always start from 1, the line

number will always be equal to the last element in the sequence, which has to

be printed on that line. So, we can use this when we call PrintLine(…), as it

requires exactly that for its parameters.

Note that, the count of the elements on each next line, increases with one and

so the last element of each sequent line must be greater (one is added) than

the last element of the preceding line. That’s why at each loop iteration of the

first for-loop, we pass to the PrintLine(…) method, as first parameter 1, and

as a second – the current value of the variable line. Since, on each execution

of the body of the loop, line increases with one, at each iteration

PrintLine(…) the method prints a line that has more than one element than

the preceding line.

With the second loop, that draws the part under the middle triangle line, we

follow the reverse logic. The downward we print lines, the shorter lines we

print. Each line decreases with one element according to its preceding line.

Hence, we set the initial value for the variable line in the second loop: line =

n-1. After each iteration of the loop line decreases with one and pass it as

second parameter to the PrintLine(…).

We can improve the program, as we take the logic that prints the triangle, in

a separate method. It can be noticed that, logically, the triangle print is

clearly defined, that is why we can declare a method with one parameter (the

value that we get from the keyboard) and to invoke it from the Main()
method:

static void Main()
{
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());
 Console.WriteLine();

 PrintTriangle(n);
}

static void PrintTriangle(int n)
{
 // Printing the upper part of the triangle

www.manaraa.com

328 Fundamentals of Computer Programming with C#

 for (int line = 1; line <= n; line++)
 {
 PrintLine(1, line);
 }

 // Printing the bottom part of the triangle
 // that is under the longest line
 for (int line = n - 1; line >= 1; line--)
 {
 PrintLine(1, line);
 }
}

If we execute the program and enter for n the value 3, we will get the

following result:

n = 3

1
1 2
1 2 3
1 2
1

Returning a Result from a Method

So far, we always were given examples, in which the method does something

like printing on the console, and nothing more. Methods, however, usually do

not just execute a simple code sequence, but in addition they often return

results. So let’s take a look at how this actually happens.

Declaring a Method that Returns a Result

Let’s see again how to declare a method.

static <return_type> <method_name>(<parameters_list>)

Earlier we said that at the place of <return type> we will always put void.

Now we will extend this definition, as we will see, that void is not the only

choice. Instead of void we can return any type either primitive (int, float,

double, …) or by reference (as string or array), depending on the type of

the result that the method shall return after its execution.

For example, take a method that calculates the area of a square and instead

of printing it to the console returns it as a result. So, the declaration would

look as follows:

www.manaraa.com

Chapter 9. Methods 329

static double CalcSquareSurface(double sideLength)

As can be seen the result of the calculation of the area is of type double.

How to Use the Returned Value?

When the method is executed and returns a value, we can imagine that C#

puts this value where this method has been invoked from. Then the program

continues work with that value. Respectively, that returned value, we can use

for any purpose from the calling method.

Assigning to a Variable

We can also assign the result of the method execution to a variable of an

appropriate type:

// GetCompanyLogo() returns a string
string companyLogo = GetCompanyLogo();

Usage in Expressions

After a method returns a result, it can be used then in expressions too.

So for example, to find the total price for invoice calculation, we must get the

single price and to multiply it by the quantity:

float totalPrice = GetSinglePrice() * quantity;

Using the Returned Value as Method Parameter

We can pass the result from the method execution as value in the parameters

list from another method:

Console.WriteLine(GetCompanyLogo());

In this example, in the beginning we invoke the method GetCompanyLogo(),

and write it as an argument of the method WriteLine(). Right after the

GetCompanyLogo() method finishes its execution it will return a result. Let’s

say that the result will be "Microsoft Corporation". Then C# will put the

result returned by the method’s execution in the method’s place. So we can

assume that this is represented in the code in the following way:

Console.WriteLine("Microsoft Corporation");

Returned Value Type

As it was already explained above, the result that a method returns can be of

any type – int, string, array and so on. When, however, instead of a type

www.manaraa.com

330 Fundamentals of Computer Programming with C#

we use the keyword void instead of a type, this mean that method does not

return value.

The Operator "return"

To make a method return value, the keyword return must be placed in the

method’s body, followed by an expression that will be returned as a result

by the method:

static <return_type> <method_name>(<parameters_list>)
{
 // Some code that is preparing the method's result comes here
 return <method's_result>;
}

Respectively <method's_result>, is of type <return_type>. For example:

static long Multiply(int number1, int number2)
{
 long result = number1 * number2;
 return result;
}

In this method after the multiplication, by using the return the method will

produce as a result of its execution the integer variable result.

Compatibility of the Result and the Retuning Type

The result returned by the method, can be of a type that is compatible (the

one that can be implicitly converted) with the type of the returned value

<return_type>.

For example, we can modify the following example, in which the type of the

returned value to be of type float, but not int and to keep the following

code in the shown way:

static float Multiply(int number1, int number2)
{
 int result = number1 * number2;
 return result;
}

In this case after the multiplication execution, the result will be of type int.

Even though the type of the expression after the return keyword is not of

type float, it can be returned, because it can be implicitly converted to

float.

www.manaraa.com

Chapter 9. Methods 331

Using an Expression after the Return Operator

It is allowed (whenever this will not make the code look complicated / ugly) to

directly put some expression after the keyword return:

static int Multiply(int number1, int number2)
{
 return number1 * number2;
}

In this situation, after the calculation of number1 * number2, the result that

this expression produces will be replaced where the expression is, and hence

will be returned by the return operator.

Features of the Return Operator

The execution of return does two things:

- Stops immediately the method execution.

- Returns the result of the executed method to the calling method.

In relation to the first feature of return operator, we must note that, since it

stops the method’s execution (and no code after it and before the method

body’s closing bracket will be executed), we should not put any code after the

return operation.

Though, if we do so, the compiler will show a warning message:

static int Add(int number1, int number2)
{
 int result = number1 + number2;
 return result;

 // Let’s try to "clean" the result variable here:
 result = 0;
}

In this example the compilation will be successful, but for the lines after

return, the compiler will output a warning message like this:

Unreachable code detected

When the method has void for returned value type, then after return, there

would be no expression to be returned. In that case return usage is only

used to stop the method’s execution:

static void PrintPositiveNumber(int number)
{

www.manaraa.com

332 Fundamentals of Computer Programming with C#

 if (number <= 0)
 {
 // If the number is NOT positive, terminate the method
 return;
 }
 Console.WriteLine(number);
}

Multiple Return Statements

The last thing that must be said about the operator return is that it can be

called from several places in the code of our method, but should be

guaranteed that at least one of the operators return that we have used, will

be reached while executing the method.

So let’s take a look, at the example for a method that gets two numbers, and

then upon their values return 1 if the first is greater than the second, 0 if both

are equal, or -1 if the second is greater than the first:

static int CompareTo(int number1, int number2)
{
 if (number1 > number2)
 {
 return 1;
 }
 else if (number1 == number2)
 {
 return 0;
 }
 else
 {
 return -1;
 }
}

Having multiple return statements is usual in programming and is typical

for methods that check several cases, like the above.

Why Is the Returned Value Type not a Part of the
Method Signature?

In C# it is not allowed to have several methods that have equal name and

parameters, but different type of returned value. This means that the

following code will fail to compile:

static int Add(int number1, int number2)

www.manaraa.com

Chapter 9. Methods 333

{
 return (number1 + number2);
}

static double Add(int number1, int number2)
{
 return (number1 + number2);
}

The reason for this limitation is that the compiler doesn’t know which of both

methods must be invoked. Both methods have the same signature

(sequence of parameters along with their types). Note that the return value is

not part of the method’s signature. That is why on the declaration of the

methods an error message like the one below will be returned:

Type '<the_name_of_your_class>' already defines a member called
'Add' with the same parameter types

Where <the_name_of_your_class> is the name of the class in which we have

tried to declare those methods.

Fahrenheit to Celsius Conversion – Example

Now we have to write a program that for a given (by the user) body

temperature, measured in Fahrenheit degrees, has to convert that

temperature and output it in Celsius degrees, with the following message:

"Your body temperature in Celsius degrees is X", where X is respectively

the Celsius degrees. In addition if the measured temperature in Celsius is

higher than 37 degrees, the program should warn the user that they are ill,

with the following message "You are ill!".

For starters, we can make fast research in Internet and find out that the

Celsius to Fahrenheit formula is like this one: °C = (°F - 32) * 5 / 9,

where respectively with °C we mark the temperature measured in Celsius,

and with °F – the temperature in Fahrenheit.

After analysis of the current task, we can see that it can be divided to

subtasks as follow:

- Take the temperature measured in Fahrenheit degrees as an input from

the console (the user must enter it).

- Convert that number to its corresponding value, for temperature

measured in Celsius.

- Print a message for the converted temperature in Celsius.

- If the temperature is found to be higher than 37 ºC, print a message

that the user is ill.

www.manaraa.com

334 Fundamentals of Computer Programming with C#

A sample implementation of the above described algorithm is given below in

the class TemperatureConverter:

TemperatureConverter.cs

using System;

class TemperatureConverter
{
 static double ConvertFahrenheitToCelsius(double temperatureF)
 {
 double temperatureC = (temperatureF - 32) * 5 / 9;
 return temperatureC;
 }

 static void Main()
 {
 Console.Write(
 "Enter your body temperature in Fahrenheit degrees: ");
 double temperature = double.Parse(Console.ReadLine());

 temperature = ConvertFahrenheitToCelsius(temperature);

 Console.WriteLine(
 "Your body temperature in Celsius degrees is {0}.",
 temperature);

 if (temperature >= 37)
 {
 Console.WriteLine("You are ill!");
 }
 }
}

The operations for input of the temperature and output of the messages are

trivial, so we will skip their explanation, as we will focus on the approach to

convert the temperatures. As we can see this is a logical unit that can be

separated in its own method. By doing so, not only the program source code

will get clearer, but moreover, we will have the opportunity to reuse that

piece of code, whenever we need it, so we just will use the same method. So

we declare the method ConvertFahrenheitToCelsius(…), with list of one

parameter with the name temperatureF that represents the measured value

of the temperature in Fahrenheit. Then the method returns a result of type

double, which represents the calculated body temperature in Celsius degrees.

In the method’s body we use the formula we found on Internet (and write it

according to the C# syntax).

www.manaraa.com

Chapter 9. Methods 335

Since we are done with this step from our task solution, we have decided that

the rest of the steps we will not need to be in separate methods, so we just

implement them in the Main() method of the class.

By the method double.Parse(…), we get the user’s body temperature as we

have previously asked him for it, by the following message: "Enter your

body temperature in Fahrenheit degrees".

Then we invoke the method ConvertFahrenheitToCelsius() and we store

the returned result in the variable temperature.

By the method Console.WriteLine() we print the message "Your body

temperature in Celsius degrees is X", where X is replaced with the value

of temperature.

The last step we must make is to check whether the temperature is higher

than 37 degrees in Celsius or no. This can be done by using a conditional

statement if. So if the temperature is higher than 37 degrees Celsius a

message that the user is ill must be printed.

Below is shown a possible output of the program:

Enter your body temperature in Fahrenheit degrees: 100
Your body temperature in Celsius degrees is 37,777778.
You are ill!

Difference between Two Months – Example

Let’s take a look at the following task: we have to write a program which, by

given two numbers, that are between 1 and 12 (so to correspond to a

particular month) prints the count of months between these months. The

message that must be printed to the console must be "There is X months

period from Y to Z.", where X is the count of the months, that we must

calculate, and Y and Z, are respectively the names of the months that mark

start and end of the period.

By reading carefully the task we will try to divide it into subtasks, that can be

more easily solved, and then by combining them to get the whole solution.

We can see that we have to solve the following subtasks:

- To enter the months numbers that mark beginning and end of the

period.

- To calculate the period between the input months.

- To print the message.

- In the message instead of the numbers we entered, for beginning and

end of the period, we must write their corresponding month names in

English.

A possible solution of the given task is shown below:

www.manaraa.com

336 Fundamentals of Computer Programming with C#

Months.cs

using System;

class Months
{
 static string GetMonthName(int month)
 {
 string monthName;
 switch (month)
 {
 case 1:
 monthName = "January";
 break;
 case 2:
 monthName = "February";
 break;
 case 3:
 monthName = "March";
 break;
 case 4:
 monthName = "April";
 break;
 case 5:
 monthName = "May";
 break;
 case 6:
 monthName = "June";
 break;
 case 7:
 monthName = "July";
 break;
 case 8:
 monthName = "August";
 break;
 case 9:
 monthName = "September";
 break;
 case 10:
 monthName = "October";
 break;
 case 11:
 monthName = "November";
 break;

www.manaraa.com

Chapter 9. Methods 337

 case 12:
 monthName = "December";
 break;
 default:
 Console.WriteLine("Invalid month!");
 return null;
 }
 return monthName;
 }

 static void SayPeriod(int startMonth, int endMonth)
 {
 int period = endMonth - startMonth;
 if (period < 0)
 {
 // Fix negative distance
 period = period + 12;
 }
 Console.WriteLine(
 "There is {0} months period from {1} to {2}.",
 period, GetMonthName(startMonth),
 GetMonthName(endMonth));
 }

 static void Main()
 {
 Console.Write("First month (1-12): ");
 int firstMonth = int.Parse(Console.ReadLine());

 Console.Write("Second month (1-12): ");
 int secondMonth = int.Parse(Console.ReadLine());

 SayPeriod(firstMonth, secondMonth);
 }
}

The first task solution is trivial. In the Main() method we will use

int.Parse(…) so we get the months for the period, the length of which we

aim to calculate.

Then we see that period calculation and message printing can be logically

separated as a subtask, so we create a method SayPeriod(…) that has two

parameters – numbers representing month numbers that mark the beginning

and the end of the period. This method will not return a value but it will

calculate period and print the message, described in the task, to the console,

by the standard output – Console.WriteLine(…).

www.manaraa.com

338 Fundamentals of Computer Programming with C#

Apparently, to find the length of the period between two months, we have to

subtract the number of the beginning month from that of the end month. We

consider also, that if the second month has number less that the number of

the first month, then the user most probably has had the assumption that the

second month is not in the current year, but in the next one. That is why, if

the difference between the two months is negative, we must add 12 to it –

the length of a year in months, and so to find the length of the given period.

Then we must print the message, as for the months names we use the

method GetMonthName(…).

The method that gets the month’s name by its number can be easily created

with conditional switch-case statement, in which we could get the months

for each of the input numbers. If the value is not in the range of [1…12], the

program will report an error. Later in the chapter "Exception Handling" we

will discuss in details how to notify for an error occurring. You will be shown

how to catch and deal with the exceptions (error notifications). However, for

now we just will print an error message to the console. This is generally an

incorrect behavior and we will learn how to avoid it in the chapter "High-

Quality Code", section "What Should a Method Do".

At the end, in the Main() method we invoke the SayPeriod() method, by

entered numbers for beginning and end of the period. By doing so, we have

completely solved the task.

A possible output, if the input was 2 and 6, is shown below:

First month (1-12): 2
Second month (1-12): 6
There is 4 months period from February to June.

Input Data Validation – Example

In this task we must write a program that asks the user what time it is, by

printing on the console "What time is it?". Then the user must enter two

numbers – one for hours and one for minutes. If the input data represents a

valid time, the program must output the message "The time is hh:mm now.",

where hh respectively means the hours, and mm – the minutes. If the entered

hours or minutes are not valid, the program must print the message

"Incorrect time!".

After we read the task carefully, we see that it can be divided into the

following subtasks:

- Get input data for hours and minutes.

- Check if input data is valid (input validation).

- Print the corresponding message – either an error message, or the valid

time message.

www.manaraa.com

Chapter 9. Methods 339

We consider that getting the input data and printing the output messages will

not be a problem anymore, so we will focus on input data validation, i.e.

validation the numbers for hours and minutes. We know that the hours are in

the range from 0 to 23 inclusive, and the minutes respectively from 0 to 59

inclusive. Since the data (for hours and for minutes) has not the same nature,

we decide to create two separate methods. One of them will check the validity

of hours, while the other will check the validity for minutes.

A solution is shown below:

DataValidation.cs

using System;

class DataValidation
{
 static void Main()
 {
 Console.WriteLine("What time is it?");

 Console.Write("Hours: ");
 int hours = int.Parse(Console.ReadLine());

 Console.Write("Minutes: ");
 int minutes = int.Parse(Console.ReadLine());

 bool isValidTime =
 ValidateHours(hours) && ValidateMinutes(minutes);
 if (isValidTime)
 {
 Console.WriteLine("The time is {0}:{1} now.",
 hours, minutes);
 }
 else
 {
 Console.WriteLine("Incorrect time!");
 }
 }

 static bool ValidateHours(int hours)
 {
 bool result = (hours >= 0) && (hours < 24);
 return result;
 }

 static bool ValidateMinutes(int minutes)

www.manaraa.com

340 Fundamentals of Computer Programming with C#

 {
 bool result = (minutes >= 0) && (minutes <= 59);
 return result;
 }
}

The method that checks the hours is named ValidateHours(), and it gets a

number of type int for the hours, and returns result of type bool, i.e. true if

the input number is a valid hour, otherwise – false:

static bool ValidateHours(int hours)
{
 bool result = (hours >= 0) && (hours < 24);
 return result;
}

We use simple logic to declare method, which checks the validity of the

minutes. We named it ValidateMinutes(), since it gets a parameter that is

integer value and represents the minutes, and returns a value of type bool. If

the input number is a valid minute value, the method will return as result

true, otherwise – false:

static bool ValidateMinutes(int minutes)
{
 bool result = (minutes >= 0) && (minutes <= 59);
 return result;
}

Since we are done with the most complicated part of the task, we declare the

Main() method. In its body we print out the question according to the task –

"What time is it?". Then by the method int.Parse(…), we read from the

console the numbers for hours and minutes, then the results are kept in the

integer variables hours and minutes:

Console.WriteLine("What time is it?");

Console.Write("Hours: ");
int hours = int.Parse(Console.ReadLine());

Console.Write("Minutes: ");
int minutes = int.Parse(Console.ReadLine());

The result from the validation is kept in a variable of type bool –

isValidTime, as we sequentially invoke the methods we have already

declared – ValidateHours() and ValidateMinutes(), as of course we pass

www.manaraa.com

Chapter 9. Methods 341

the appropriate variables hours and minutes to each of them. To validate the

input data as a whole, we unite the results from the methods invocation with

the operator for logical "and" &&:

bool isValidTime =
 ValidateHours(hours) && ValidateMinutes(minutes);

After we stored the result, telling us whether the input data is valid or not, in

the variable isValidTime, we use the conditional statement if, cope with the

last problem for the given task – Printing the information to the user, whether

the input is valid or not. With the method Console.WriteLine(…), if

isValidTime is true, we print on the console "The time is hh:mm now."

where hh is respectively the value of the variable hours, and mm – of the

variable minutes. In the else part of the conditional statement we print that

the input time was invalid – "Incorrect time!".

A possible output of the program, with correct data, is shown below:

What time is it?
Hours: 17
Minutes: 33
The time is 17:33 now.

And here’s how the program behaves, when the data is incorrect:

What time is it?
Hours: 33
Minutes: -2
Incorrect time!

Sorting – Example

Let’s try to create a method that sorts (puts in order) a set of values in

ascending order. The result will be a string with the sorted numbers.

With this in mind, we suppose that the subtasks we have to cope with are

two:

- How to give the numbers to our method, so it could sort them

- How to sort those numbers

Our method has to take an array on numbers as a parameter, create a sort of

that array and return it:

static int[] Sort(int[] numbers)
{
 // The sorting logic comes here …

www.manaraa.com

342 Fundamentals of Computer Programming with C#

 return numbers;
}

This solution seems to satisfy the task requirements. However, it seems that

we could optimize it more, and instead of the argument to be an integer

array, we can declare it in such way that it could accept a variable count of

integer parameters.

This will save us the need to initialize the array in advance when we invoke

the method with a small set of numbers. In case of bigger sets of input

numbers, as we saw in the subsection for method declaration with a variable

number of arguments, we could directly pass an already initialized array of

integers, instead of passing them as parameters of the method. Hence, the

initial declaration turns into:

static int[] Sort(params int[] numbers)
{
 // The sorting logic comes here …

 return numbers;
}

Now we must to decide how to sort our array. One of the easiest ways for this

to be done is to use the so-called "selection sort" algorithm. This method

considers the array as two parts – sorted and unsorted. The sorted part is in

the left side of the array, while the unsorted is in the right. For each step of

the algorithm, the sorted part expands to the right with one element and the

unsorted shrinks with one element from its left part.

Let’s take a look at an example. So assume we have the following unsorted

array and we want to order its elements by selection sorting:

On each step our algorithms must find the minimal element in the unsorted

part of the array:

Then the minimal element must swap with the first element from the unsorted

part of the array:

10 3 5 -1 0 12 810 3 5 -1 0 12 8

10 3 5 -1 0 12 8

min

10 3 5 -1 0 12 8

min

www.manaraa.com

Chapter 9. Methods 343

Then we look for the minimal element again, from the rest of the unsorted

part of the array (all elements except the first one):

That minimal element now exchanges with the first from the unsorted part:

So this step is repeated until the unsorted part of the array reaches a length

of 0, i.e. it is empty:

As a result the array is sorted:

This is a variant of a code, which implements the algorithm explained above

(selection sort):

static int[] Sort(params int[] numbers)
{
 // The sorting logic:

10 3 5 -1 0 12 8

min

10 3 5 -1 0 12 810 3 5 -1 0 12 8

minmin

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

minmin

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

min

-1 3 5 10 0 12 8

minmin

-1 0 5 10 3 12 8

min

-1 0 5 10 3 12 8

minmin

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10-1 0 3 5 8 12 10

minmin

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10

min

-1 0 3 5 8 12 10-1 0 3 5 8 12 10

minmin

-1 0 3 5 8 10 12-1 0 3 5 8 10 12

www.manaraa.com

344 Fundamentals of Computer Programming with C#

 for (int i = 0; i < numbers.Length - 1; i++)
 {
 // Loop operating over the unsorted part of the array
 for (int j = i + 1; j < numbers.Length; j++)
 {
 // Swapping the values
 if (numbers[i] > numbers[j])
 {
 int temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;
 }
 }
 } // End of the sorting logic
 return numbers;
}

Let’s declare a method PrintNumbers(params int[]) that outputs the list

with numbers to the console, and then to test this example by writing a few

lines directly into the Main(…) method:

SortingEngine.cs

using System;

class SortingEngine
{
 static int[] Sort(params int[] numbers)
 {
 // The sorting logic:
 for (int i = 0; i < numbers.Length - 1; i++)
 {
 // Loop that is operating over the un-sorted part of
 // the array
 for (int j = i + 1; j < numbers.Length; j++)
 {
 // Swapping the values
 if (numbers[i] > numbers[j])
 {
 int oldNum = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = oldNum;
 }
 }

www.manaraa.com

Chapter 9. Methods 345

 } // End of the sorting logic
 return numbers;
 }

 static void PrintNumbers(params int[] numbers)
 {
 for (int i = 0; i < numbers.Length; i++)
 {
 Console.Write("{0}", numbers[i]);
 if (i < (numbers.Length - 1))
 {
 Console.Write(", ");
 }
 }
 }

 static void Main()
 {
 int[] numbers = Sort(10, 3, 5, -1, 0, 12, 8);
 PrintNumbers(numbers);
 }
}

After this code is compiled and executed, the result is exactly as the one that

was expected – the array is ordered ascending:

-1, 0, 3, 5, 8, 10, 12

Best Practices when Using Methods

In the chapter "High-Quality Programming Code" we will explain in details

about the good practices for writing methods. None the less, we will look at

some of them right now, so we can start applying the good practices and start

developing a good programming style:

- Each method must resolve a distinct, well defined task. This feature

is also known as strong cohesion, i.e. to give a focus onto one single

task, not to several tasks no strongly related logically. A single method

should perform a single task, its code should be well structured, easy to

understand, and easy to be maintained. One method must NOT solve

several tasks!

- A method has to have a good name, i.e. name that is descriptive and

from which becomes clear what the method does. As an example: a

method that sorts numbers should be named SortNumbers(), but

should not be named Number() or Processing() or Method2(). If it

www.manaraa.com

346 Fundamentals of Computer Programming with C#

cannot be given a good name, this may indicate that the method solves

more than one task and, hence, it must be separated into sub-methods.

- Method names should describe an action, so they should contain a

verb or a verb + noun (possibly with an adjective to supplement the

noun). For example good method names are FindSmallestElement(),

Sort(int[] arr) and ReadInputData().

- It is assumed that all the method names in C# will start with capital

letter. PascalCase rule is used, i.e. each new word that is concatenated

to the end of the method name must start with capital letter. For

example: SendEmail(…), but not sendEmail(…) or send_email(…).

- A method must do whatever is described with its name, or it must

return an error (throws an exception). It is not correct that the methods

return wrong or unusual result when it has received invalid input data.

The method resolves the task it is created for, or returns an

error. Any other behavior is incorrect. We will discuss this principle in

"High-Quality Programming Code", section "What a Method Should Do".

- A method must have minimum dependency to the class in which the

method is declared and to other methods and classes. This feature of

the methods is also known as loose coupling. This means that the

method must do its job by using the data that passed to it as

parameters, but not data that can be accessed from other places.

Methods should not have side effects (for example to change some

global variable or print something on the console in the meantime).

- It is recommended that the methods must be short. Methods that are

longer than a computer screen must be avoided. To do so, the logic

implemented in the method is divided by functionality, to several

smaller sub-methods. These sub-methods are then called from the

original place they were cut off.

- To improve the readability of a method and the code structure, it is good

idea a functionality that is well detached logically, to be placed in a

separate method. For example if we have a method that calculates the

volume of a dam lake, the process of calculating the volume of a

parallelepiped can be defined in a separate method. Then that new

method can be invoked as many times as necessary. Hence, the sub-

task is separated from the main task. Since the dam lake can be

taken as set of many different parallelepipeds, calculating the volume of

each one of them is logical detached functionality.

- The last but most important rule is that a method should either do

what it name says or throw an exception. If a method cannot

perform its job (e.g. due to incorrect input), it should throw an

exception, not return invalid or neutral result. How to throw an

exception will be explained in the chapter “Exception Handling”, but for

now you should remember that returning an incorrect result or

having a side effect are bad practices. If a method cannot do its job,

www.manaraa.com

Chapter 9. Methods 347

it should inform its caller about this by throwing appropriate exception.

Methods should never return wrong result!

Exercises

1. Write a code that by given name prints on the console "Hello, <name>!"

(for example: "Hello, Peter!").

2. Create a method GetMax() with two integer (int) parameters, that

returns maximal of the two numbers. Write a program that reads three

numbers from the console and prints the biggest of them. Use the

GetMax() method you just created. Write a test program that validates

that the methods works correctly.

3. Write a method that returns the English name of the last digit of a

given number. Example: for 512 prints "two"; for 1024 "four".

4. Write a method that finds how many times certain number can be

found in a given array. Write a program to test that the method works

correctly.

5. Write a method that checks whether an element, from a certain position

in an array is greater than its two neighbors. Test whether the

method works correctly.

6. Write a method that returns the position of the first occurrence of an

element from an array, such that it is greater than its two neighbors

simultaneously. Otherwise the result must be -1.

7. Write a method that prints the digits of a given decimal number in a

reversed order. For example 256, must be printed as 652.

8. Write a method that calculates the sum of two very long positive

integer numbers. The numbers are represented as array digits and

the last digit (the ones) is stored in the array at index 0. Make the

method work for all numbers with length up to 10,000 digits.

9. Write a method that finds the biggest element of an array. Use that

method to implement sorting in descending order.

10. Write a program that calculates and prints the n! for any n in the range

[1…100].

11. Write a program that solves the following tasks:

- Put the digits from an integer number into a reversed order.

- Calculate the average of given sequence of numbers.

- Solve the linear equation a * x + b = 0.

Create appropriate methods for each of the above tasks.

Make the program show a text menu to the user. By choosing an option

of that menu, the user will be able to choose which task to be invoked.

www.manaraa.com

348 Fundamentals of Computer Programming with C#

Perform validation of the input data:

- The integer number must be a positive in the range [1…50,000,000].

- The sequence of numbers cannot be empty.

- The coefficient a must be non-zero.

12. Write a method that calculates the sum of two polynomials with integer

coefficients, for example (3x2 + x - 3) + (x - 1) = (3x2 + 2x - 4).

13. * Write a method that calculates the product of two polynomials with

integer coefficients, for example (3x2 + x - 3) * (x - 1) = (3x3 -
2x2 - 4x + 3).

Solutions and Guidelines

1. Use a method that takes the name as parameter of type string.

2. Use the expression Max(a, b, c) = Max(Max(a, b), c).

To test the code check whether the results from the invoked methods is

correct for a set of examples that cover the most interesting cases, e.g.

Max(1,2)=2; Max(3,-1)=3; Max(-1,-1)=-1; Max(1,2,444444)=444444;

Max(5,2,1)=5; Max(-1,6,5)=6; Max(0,0,0)=0; Max(-10,-10,-10)=-10;

Max(2000000000,-2000000001,2000000002)=2000000002; etc.

You may write a generic method that works not just for int but for any

other type T using the following declaration:

static T Max<T>(T a, T b) where T : IComparable<T> { … }

Read more about the concept of generic methods in the section

“Generic Methods” of chapter “Defining Classes”.

Instead of creating a program that checks whether the method works

correctly, you can search in Internet for information about "unit testing"

and write unit tests for your methods. You may also read about unit

testing in the section “Unit Testing” of chapter “High-Quality Code”.

3. Use the reminder of division by 10 and then a switch statement.

4. The method must take as parameter an array of integer numbers (int[])

and the number that has to be counted (int). Test it with few examples

like this: CountOccurences(new int[]{3,2,2,5,1,-8,7,2}, 2) 3.

5. Just perform a check. The elements of the first and the last position in

the array will be compared only with their left and right neighbor. Test

examples like GreaterThanNeighbours(new int[]{1,3,2}, 1) true

and GreaterThanNeighbours(new int[]{1}, 0) true.

6. Invoke the method from the previous problem in a for-loop.

7. There are two solutions:

www.manaraa.com

Chapter 9. Methods 349

First solution: Let the number is num. So while num ≠ 0 we print its last

digit (num % 10) and then divide num by 10.

Second solution: Convert the number into a string string and print it

in a reverse order with a for-loop. This is a bit cheater’s approach.

8. The reader must implement own method that calculates the sum of

very big numbers. The digits on position zero will keep the ones; the

digit on the first position will keep the tenths and so on. When two very

big numbers are about to be calculated, the ones of their sum will be

equal to (firstNumber[0] + secondNumber[0]) % 10, the tenths on

other side will be equal to (firstNumber[1] + secondNumber[1]) % 10

+ (firstNumber[0] + secondNumber[0])/10 and so on.

9. First write a method that finds the biggest element in array and then

modify it to find the biggest element in given range of the array, e.g.

in the elements at indexes [3…10]. Finally find the biggest number in

the range [1…n-1] and swap it with the first element, then find the

biggest element in the range [2…n-1] and swap it with the second

element of the array and so on. Think when the algorithm should finish.

10. The reader must implement own method that calculates the product of

very big numbers, because the value of 100! does not fit in variable of

type ulong or decimal. The numbers can be represented in an array of

reversed digits (one digit in each element). For example, the number 512

can be represented as {2, 1, 5}. Then the multiplication can be

implemented in the way done in the elementary school (multiply digit by

digit and then calculate the sum).

Another easier way to work with extremely large numbers such as 100! is

by using the library System.Numerics.dll (you have to add a reference

to it in your project). Look for Information in internet about how to use

the class System.Numerics.BigInteger.

Finally calculate in a loop k! for k = 1, 2, …, n.

11. Firstly, create the necessary methods. To create the menu display a

list in which the actions are represented as numbers (1 – reverse, 2 –

average, 3 – equation). Ask the user to choose from 1 to 3.

12. Use arrays to represent the polynomial and the arithmetic rules that

you know from math. For example the polynomial (3x2 + x - 5) can be

represented as an array of the numbers {-5, 1, 3}. Bear in mind that it

is useful at the zero position to put the coefficient for x0 (in our case -5),

at the first position – the coefficient for x1 (in our case 1) and so on.

13. Use the instructions from the previous task and the rules for polynomial

multiplication that you know from math. How to multiple polynomials

can be read here: http://www.purplemath.com/modules/polymult.htm.

http://www.purplemath.com/modules/polymult.htm

www.manaraa.com

www.manaraa.com

Chapter 10. Recursion

In This Chapter

In this chapter we are going to get familiar with recursion and its

applications. Recursion represents a powerful programming technique in

which a method makes a call to itself from within its own method body. By

means of recursion we can solve complicated combinatorial problems, in

which we can easily exhaust different combinatorial configurations, e.g.

generating permutations and variations and simulating nested loops.

We are going to demonstrate many examples of correct and incorrect usage

of recursion and convince you how useful it can be.

What Is Recursion?

We call an object recursive if it contains itself, or if it is defined by itself.

Recursion is a programming technique in which a method makes a call to

itself to solve a particular problem. Such methods are called recursive.

Recursion is a programming technique whose correct usage leads to elegant

solutions to certain problems. Sometimes its usage could considerably

simplify the programming code and its readability.

Example of Recursion

Let’s consider the Fibonacci numbers. These are the elements of the

following sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Each element of the sequence is formed by the sum of the previous two

elements. The first two elements are equal to 1 by definition, i.e. the next two

rules apply:

F1 = F2 = 1

Fi = Fi-1 + Fi-2 (for i > 2)

Proceeding directly from the definition, we can implement the following

recursive method for finding the nth Fibonacci number:

static long Fib(int n)
{
 if (n <= 2)
 {

www.manaraa.com

352 Fundamentals of Computer Programming with C#

 return 1;
 }
 return Fib(n - 1) + Fib(n - 2);
}

This example shows how simple and natural the implementation of a solution

can be when using recursion.

On the other hand, it can serve as an example of how attentive we have to be

while programming with recursion. Although it is intuitive, the present

solution is one of the classical examples when the usage of recursion is

highly inefficient as there are many excessive calculations (of one and the

same element of the sequence) due to the recursive calls.

We are going to consider the advantages and the disadvantages of using

recursion later in this chapter.

Direct and Indirect Recursion

When in the body of a method there is a call to the same method, we say that

the method is directly recursive.

If method A calls method B, method B calls method C, and method C calls

method A we call the methods A, B and C indirectly recursive or mutually

recursive.

Chains of calls in indirect recursion can contain multiple methods, as well as

branches, i.e. in the presence of one condition one method to be called, and

provided a different condition another to be called.

Bottom of Recursion

When using recursion, we have to be totally sure that after a certain count of

steps we get a concrete result. For this reason we should have one or more

cases in which the solution could be found directly, without a recursive call.

These cases are called bottom of recursion.

In the example with Fibonacci numbers the bottom of recursion is when n is

less than or equal to 2. In this base case we can directly return result without

making recursive calls, because by definition the first two elements of the

sequence of Fibonacci are equal to 1.

If a recursive method has no base case, i.e. bottom, it will become infinite

and the result will be StackOverflowException.

Creating Recursive Methods

When we create recursive methods, it is necessary that we break the task we

are trying to solve in subtasks, for the solution of which we can use the

www.manaraa.com

Chapter 10. Recursion 353

same algorithm (recursively). The combination of solutions of all subtasks

should lead to the solution of the initial problem.

In each recursive call the problem area should be limited so that at some

point the bottom of the recursion is reached, i.e. breaking of each subtask

must lead eventually to the bottom of the recursion.

Recursive Calculation of Factorial

The usage of recursion we will illustrate with a classic example – recursive

calculation of factorial.

Factorial of n (written n!) is the product of all integers between 1 and n

inclusive. By definition 0! = 1.

n! = 1.2.3…n

Recurrent Definition

When creating our solution, it is much more convenient to use the

corresponding recurrent definition of factorial:

n! = 1, for n = 0

n! = n.(n-1)!, for n>0

Finding a Recurrent Dependence

The presence of recurrent dependence is not always obvious. Sometimes we

have to find it ourselves. In our case we can do this by analyzing the problem

and calculating the values of the factorial for the first few integers.

0! = 1

1! = 1 = 1.1 = 1.0!

2! = 2.1 = 2.1!

3! = 3.2.1 = 3.2!

4! = 4.3.2.1 = 4.3!

5! = 5.4.3.2.1 = 5.4!

From here you can easily see the recurrent dependability:

n! = n.(n-1)!

Algorithm Implementation

The bottom of our recursion is the simplest case n = 0, in which the value of

the factorial is 1.

In the other cases we solve the problem for n-1 and multiply the result by n.

Thus after a certain count of steps we are definitely going to reach the bottom

www.manaraa.com

354 Fundamentals of Computer Programming with C#

of the recursion, because between 0 and n there is a certain count of integer

numbers.

Once we have these substantial conditions we can write a method, which

computes factorial:

static decimal Factorial(int n)
{
 // The bottom of the recursion
 if (n == 0)
 {
 return 1;
 }
 // Recursive call: the method calls itself
 else
 {
 return n * Factorial(n - 1);
 }
}

By using this method we can create an application, which reads an integer

from the console computes its factorial and then prints the obtained value:

RecursiveFactorial.cs

using System;

class RecursiveFactorial
{
 static void Main()
 {
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());

 decimal factorial = Factorial(n);
 Console.WriteLine("{0}! = {1}", n, factorial);
 }

 static decimal Factorial(int n)
 {
 // The bottom of the recursion
 if (n == 0)
 {
 return 1;
 }
 // Recursive call: the method calls itself

www.manaraa.com

Chapter 10. Recursion 355

 else
 {
 return n * Factorial(n - 1);
 }
 }
}

Here is what the result of the execution of the application would be like if we

enter 5 for n:

n = 5
5! = 120

Recursion or Iteration?

The calculation of factorial is often given as an example when explaining the

concept of recursion, but in this case, as in many others, recursion is not the

best approach.

Very often, if we are given a recurrent definition of the problem, the

recurrent solution is intuitive and not posing any difficulty, while iterative

(consecutive) solution is not always obvious.

In this particular case the implementation of the iterative solution is as short

and simple, but is a bit more efficient:

static decimal Factorial(int n)
{
 decimal result = 1;

 for (int i = 1; i <= n; i++)
 {
 result = result * i;
 }

 return result;
}

We are going to consider the advantages and disadvantages of using

recursion and iteration later in this chapter.

For the moment we should remember that before proceeding with recursive

implementation we should think about an iterative variant, after which we

should choose the better solution according to the situation.

Let’s look at another example where we could use recursion to solve the

problem. This time we are going to consider an iterative solution, too.

www.manaraa.com

356 Fundamentals of Computer Programming with C#

Simulation of N Nested Loops

Very often we have to write nested loops. It is very easy when they are two,

three or any number previously assigned. However, if their count is not

known in advance, we have to think of an alternative approach. This is the

case with the following task.

Write a program that simulates the execution of N nested loops from 1 to K,

where N and K are entered by the user. The result of the performance of the

program should be equivalent to the execution of following fragment:

for (a1 = 1; a1 <= K; a1++)
 for (a2 = 1; a2 <= K; a2++)
 for (a3 = 1; a3 <= K; a3++)
 …
 for (aN = 1; aN <= K; aN++)
 Console.WriteLine("{0} {1} {2} … {N}",
 a1, a2, a3, …, aN);

For example, when N = 2 and K = 3 (which is equivalent to 2 nested loops

from 1 to 3) and when N = 3 and K = 3, the results would be as follows:

 1 1 1 1 1
 1 2 1 1 2
 1 3 1 1 3
 N = 2 2 1 N = 3 1 2 1
 K = 3 -> 2 2 K = 3 -> …
 2 3 3 2 3
 3 1 3 3 1
 3 2 3 3 2
 3 3 3 3 3

The algorithm for solving this problem is not as obvious as in the previous

example. Let’s consider two different solutions – one recursive, and one

iterative.

Each row of the result can be regarded as ordered sequence of N numbers.

The first one represents the current value of the counter of the loop, the

second one – of the second loop, etc. On each position we can have value

between 1 and K. The solution of our task boils down to finding all ordered

sequences of N elements for N and K given.

Nested Loops – Recursive Version

If we are looking for a recursive solution to the problem, the first problem we

are going to face is finding a recurrent dependence. Let’s look more carefully

at the example from the assignment and put some further consideration.

www.manaraa.com

Chapter 10. Recursion 357

Notice that, if we have calculated the answer for N = 2, then the answer for N

= 3 can be obtained if we put on the first position each of the values of K (in

this case from 1 to 3), and on the other two positions we put each of the

couples of numbers, produced for N = 2. We can check that this rule applies

for numbers greater than 3.

This way we have obtained the following dependence – starting from the first

position, we put on the current position each of the values from 1 to K and

continue recursively with the next position. This goes on until we reach

position N, after which we print the obtained result (bottom of the

recursion). Here is how the method looks implemented in C#:

static void NestedLoops(int currentLoop)
{
 if (currentLoop == numberOfLoops)
 {
 PrintLoops();
 return;
 }

 for (int counter=1; counter<=numberOfIterations; counter++)
 {
 loops[currentLoop] = counter;
 NestedLoops(currentLoop + 1);
 }
}

We are going to keep the sequence of values in an array called loops, which

would be printed on the console by the method PrintLoops() when needed.

The method NestedLoops(…) takes one parameter, indicating the position in

which we are going to place values.

Solution for N = 3

1 x x

Solution for N = 2

2 x x

Solution for N = 2

3 x x

Solution for N = 2

Solution for N = 2

1 x

Solution for N = 1

2 x

Solution for N = 1

3 x

Solution for N = 1

Solution for N = 1

1

2

3

www.manaraa.com

358 Fundamentals of Computer Programming with C#

In the loop we place consecutively on the current position each of the possible

values (the variable numberOfIterations contains the value of K entered by

the user), after which we call recursively the method NestedLoops(…) for the

next position.

The bottom of the recursion is reached when the current position becomes N

(the variable numberOfIterations contains the value of N, entered by the

user). In this moment we have values on all positions and we print the

sequence.

Here is a complete implementation of the recursive nested loops solution:

RecursiveNestedLoops.cs

using System;

class RecursiveNestedLoops
{
 static int numberOfLoops;
 static int numberOfIterations;
 static int[] loops;

 static void Main()
 {
 Console.Write("N = ");
 numberOfLoops = int.Parse(Console.ReadLine());

 Console.Write("K = ");
 numberOfIterations = int.Parse(Console.ReadLine());

 loops = new int[numberOfLoops];

 NestedLoops(0);
 }

 static void NestedLoops(int currentLoop)
 {
 if (currentLoop == numberOfLoops)
 {
 PrintLoops();
 return;
 }

 for (int counter=1; counter<=numberOfIterations; counter++)
 {
 loops[currentLoop] = counter;

www.manaraa.com

Chapter 10. Recursion 359

 NestedLoops(currentLoop + 1);
 }
 }

 static void PrintLoops()
 {
 for (int i = 0; i < numberOfLoops; i++)
 {
 Console.Write("{0} ", loops[i]);
 }
 Console.WriteLine();
 }
}

If we run the application and enter for N and K respectively 2 and 4 as

follows, we are going to obtain the following result:

N = 2
K = 4
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4
4 1
4 2
4 3
4 4

In the Main() method we enter values for N and K, create an array in which

we are going to keep the sequence of values, after which we call the method

NestedLoops(…), starting from the first position.

Notice that as a parameter of the array we give 0 because we keep the

sequence of values in an array, and as we already know, counting of array

elements starts from 0.

The method PrintLoops() iterates all elements of the array and prints them

on the console.

www.manaraa.com

360 Fundamentals of Computer Programming with C#

Nested Loops – Iterative Version

For the implementation of an iterative solution of the nested loops we can

use the following algorithm, which finds the next sequence of numbers and

prints it at each iteration:

1. In the beginning on each position place the number 1.

2. Print the current sequence of numbers.

3. Increment with 1 the number on position N. If the obtained value is

greater than K replace it with 1 and increment with 1 the value on

position N – 1. If its value has become greater then K, too, replace it

with 1 and increment with 1 the value on position N – 2, etc.

4. If the value on the first position has become greater than K, the

algorithm ends its work.

5. Go on with step 2.

Below we propose a straightforward implementation of the described

iterative nested loops algorithm:

IterativeNestedLoops.cs

using System;

class IterativeNestedLoops
{
 static int numberOfLoops;
 static int numberOfIterations;
 static int[] loops;

 static void Main()
 {
 Console.Write("N = ");
 numberOfLoops = int.Parse(Console.ReadLine());

 Console.Write("K = ");
 numberOfIterations = int.Parse(Console.ReadLine());

 loops = new int[numberOfLoops];

 NestedLoops();
 }

 static void NestedLoops()
 {
 InitLoops();

www.manaraa.com

Chapter 10. Recursion 361

 int currentPosition;

 while (true)
 {
 PrintLoops();

 currentPosition = numberOfLoops - 1;
 loops[currentPosition] = loops[currentPosition] + 1;

 while (loops[currentPosition] > numberOfIterations)
 {
 loops[currentPosition] = 1;
 currentPosition--;

 if (currentPosition < 0)
 {
 return;
 }
 loops[currentPosition] = loops[currentPosition] + 1;
 }
 }
 }

 static void InitLoops()
 {
 for (int i = 0; i < numberOfLoops; i++)
 {
 loops[i] = 1;
 }
 }

 static void PrintLoops()
 {
 for (int i = 0; i < numberOfLoops; i++)
 {
 Console.Write("{0} ", loops[i]);
 }
 Console.WriteLine();
 }
}

The methods Main() and PrintLoops() are the same as in the

implementation of the recursive solution.

www.manaraa.com

362 Fundamentals of Computer Programming with C#

The NestedLoops() method is different. It now implements the algorithm for

iterative solution of the problem and for this reason does not get any

parameters, unlike in the recursive version.

In the very beginning of this method we call the method InitLoops(), which

iterates the elements of the array and places in each position 1.

The steps of the algorithm we perform in an infinite loop, from which we are

going to escape in an appropriate moment by ending the execution of the

methods via the operator return.

The way we implement step 3 of the algorithm is very interesting. The

verification of the values greater than K, their substitution with 1 and the

incrementing with 1 the value on the previous position (after which we make

the same verification for it too) we implement by using one while loop, which

we enter only if the value is greater than K.

For this purpose we first replace the value of the current position with 1. After

that the position before it becomes current. Next we increment the value on

the new position with 1 and go back to the beginning of the loop. These

actions continue until the value on the current position is not less than or

equal to K (the variable numberOfIterations contains the value of K), which

is when we escape the loop.

When the value on the first position becomes greater than K (this is the

moment when we have to end the execution), on its place we put 1 and try to

increment the value on the previous position. In this moment the value of the

variable currentPosition becomes negative (as the first position of the array

is 0) and we end the execution of the method using the operator return. This

is the end of our task.

We can now test it whit N = 3 and K = 2, for example:

N = 3
K = 2
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

Which is Better: Recursion or Iteration?

If the algorithm solving of the problem is recursive, the implementation of

recursive solution can be much more readable and elegant than iterative

solution to the same problem.

www.manaraa.com

Chapter 10. Recursion 363

Sometimes defining equivalent algorithm is considerably more difficult and it

is not easy to be proven that the two algorithms are equivalent.

In certain cases by using recursion we can accomplish much simpler,

shorter and easy to understand solutions.

On the other hand, recursive calls can consume much more resources (CPU

time and memory). On each recursive call in the stack new memory is set

aside for arguments, local variables and returned results. If there are too

many recursive calls, a stack overflow could happen because of lack of

memory.

In certain situations the recursive solutions can be much more difficult to

understand and follow than the relevant iterative solutions.

Recursion is powerful programming technique, but we have to think

carefully before using it. If used incorrectly, it can lead to inefficient and

tough to understand and maintain solutions.

If by using recursion we reach a simpler, shorter and easier

for understanding solution, not causing inefficiency and

other side effects, then we can prefer recursive solution.

Otherwise, it is better to think of iteration.

Fibonacci Numbers – Inefficient Recursion

Let’s go back to the example with finding the nth Fibonacci number and

look more carefully at the recursive solution:

static long Fib(int n)
{
 if (n <= 2)
 {
 return 1;
 }
 return Fib(n - 1) + Fib(n - 2);
}

This solution is intuitive, short and easy to understand. At first sight it seems

that this is a great example for applying recursion. The truth is that this is one

of the classical examples of inappropriate usage of recursion. Let’s run the

following application:

RecursiveFibonacci.cs

using System;

class RecursiveFibonacci

www.manaraa.com

364 Fundamentals of Computer Programming with C#

{
 static void Main()
 {
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());

 long result = Fib(n);
 Console.WriteLine("fib({0}) = {1}", n, result);
 }

 static long Fib(int n)
 {
 if (n <= 2)
 {
 return 1;
 }
 return Fib(n - 1) + Fib(n - 2);
 }
}

If we set the value of n = 100, the calculations would take so much time that

no one would wait to see the result. The reason is that similar implementation

is extremely inefficient. Each recursive call leads to two more calls and each

of these calls causes two more calls and so on. That's why the tree of calls

grows exponentially as shown on the figure below.

The count of steps for computing of fib(100) is of the order of 1.6 raised to

the power 100 (this could be mathematically proven), whereas, if the solution

is linear, the count of steps would be only 100.

The problem comes from the fact that there are a lot of excessive

calculations. You can notice that fib(2) appears below many times on the

Fibonacci tree:

www.manaraa.com

Chapter 10. Recursion 365

Fibonacci Numbers – Efficient Recursion

We can optimize the recursive method for calculating the Fibonacci

numbers by remembering (saving) the already calculated numbers in an array

and making recursive call only if the number we are trying to calculate has

not been calculated yet. Thanks to this small optimization technique (also

known in computer science and dynamic optimization as memoization (not

to be confused with memorization) the recursive solution would work for

linear count of steps. Here is a sample implementation:

RecursiveFibonacciMemoization.cs

using System;

class RecursiveFibonacciMemoization
{
 static long[] numbers;

 static void Main()
 {
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());

 numbers = new long[n + 2];
 numbers[1] = 1;
 numbers[2] = 1;

 long result = Fib(n);
 Console.WriteLine("fib({0}) = {1}", n, result);
 }

 static long Fib(int n)
 {
 if (0 == numbers[n])
 {
 numbers[n] = Fib(n - 1) + Fib(n - 2);
 }

 return numbers[n];
 }
}

Do you notice the difference? While with the initial version if n = 100 it seems

like the computation goes on forever, with the optimized solution we get an

answer instantly. As we will learn later in chapter "Algorithm Complexity", the

first solution runs in exponential time while the second is linear.

www.manaraa.com

366 Fundamentals of Computer Programming with C#

n = 100
fib(100) = 3736710778780434371

Fibonacci Numbers – Iterative Solution

It is not hard to notice that we can solve the problem without using recursion,

by calculating the Fibonacci numbers consecutively. For this purpose we are

going to keep only the last two calculated elements of the sequence and use

them to get the next element. Bellow you can see an implementation of the

iterative Fibonacci numbers calculation algorithm:

IterativeFibonacci.cs

using System;

class IterativeFibonacci
{
 static void Main()
 {
 Console.Write("n = ");
 int n = int.Parse(Console.ReadLine());

 long result = Fib(n);
 Console.WriteLine("fib({0}) = {1}", n, result);
 }

 static long Fib(int n)
 {
 long fn = 0;
 long fnMinus1 = 1;
 long fnMinus2 = 1;

 for (int i = 2; i < n; i++)
 {
 fn = fnMinus1 + fnMinus2;

 fnMinus2 = fnMinus1;
 fnMinus1 = fn;
 }

 return fn;
 }
}

www.manaraa.com

Chapter 10. Recursion 367

This solution is as short and elegant, but does not hide risks of using

recursion. Besides, it is efficient and does not require extra memory.

Concluding the previous examples we can give you the next recommendation:

Avoid recursion, unless you are certain about how it works

and what has to happen behind the scenes. Recursion is a

great and powerful weapon, with which you can easily shoot

yourself in the leg. Use it carefully!

If you follow this rule, you considerably will reduce the possibility of incorrect

usage of recursion and the consequences, created by it.

More about Recursion and Iteration

Generally, when we have a linear computational process, we do not have

to use recursion, because iteration can be constructed easily and leads to

simple and efficient calculations. An example of linear computational

process is the calculation of factorial. In it we calculate the elements of the

sequence in which every next element depends only on the previous ones.

What is distinctive about the linear computational processes is that on each

step of the calculating recursion is called only once, only in one direction.

Schematically, a linear computational process we can describe as follows:

void Recursion(parameters)
{
 do some calculations;
 Recursion(some parameters);
 do some calculations;
}

In such a process, when we have only one recursive call in the body of the

recursive method, it is not necessary to use recursion, because the iteration

is obvious.

Sometimes, however, we have a branched computational process (like a

tree). For example, the imitation of N nested loops cannot be easily replaced

with iteration. You have probably noticed that our iterative algorithm, which

imitates nested loops, works in a completely different principle. Try to

implement the same without recursion and you will see it is not easy.

Ordinarily each recursion could boil down to iteration by using a stack of

the calls (which is created through program execution), but this is

complicated and there is no benefit from doing this. Recursion has to be used

when it provides simple, easy-to-understand and efficient solution to a

problem, for which we have no obvious iterative solution.

In tree-like (branched) computational processes on each step of the

recursion a couple of recursive calls are made and the scheme of calculations

www.manaraa.com

368 Fundamentals of Computer Programming with C#

could be visualized as a tree (and not as a list like in linear calculations). For

example, we saw what the tree of recursive calls would be like when we

calculate the Fibonacci numbers.

A typical scheme of a tree computational process could be described with a

pseudo-code in the following way:

void Recursion(parameters)
{
 do some calculations;
 Recursion(some parameters);
 …
 Recursion(some other parameters);
 do some calculations;
}

Tree computational processes could not be directly boiled down to

recursive (unlike the linear processes). The case of Fibonacci is simple,

because each next number is calculated via the previous, which we can

calculate in advance. Sometimes, however, each next number is calculated

not only via the previous, but via the next, and the recursive dependence is

not so simple. In this case recursion turns out very efficient, if implemented

correctly by avoiding duplicated calculations through memoization.

Use recursion for branched recursive calculations (and

ensure each value is calculated only once). For linear

recursive calculations prefer using iteration.

We are going to demonstrate the last statement with one classic example.

Searching for Paths in a Labyrinth – Example

We are given a labyrinth with a rectangular shape, consisting of N*M

squares. Each square is either passable or impassable. An adventurer enters

the labyrinth from its top left corner (there is the entrance) and has to reach

the bottom right corner of the labyrinth (there is the exit). At each turn the

adventurer can move up, down, left or right with one position and he has no

right to go outside the binderies of the labyrinth, or step on impassable

square. Passing through one and the same position is also forbidden (it is

considered that the adventurer is lost if after a several turns he goes back to

a position he has already been).

Write a computer program, which prints all possible paths from the

beginning of the labyrinth to the exit.

This is a typical example of a problem, which can be easily solved with

recursion, while with iteration the solution will be more complex and harder to

implement.

www.manaraa.com

Chapter 10. Recursion 369

Let’s first draw an example in order to illustrate the problem and think about

finding a solution:

s

 e

You can see that there are 3 different paths from the starting position to the

end, which meets the requirements of the task (movement only on passable

squares and not passing twice through any of the squares). Here you can see

how these three paths look like:

s 1 2

 3

6 5 4

7

8 9 10 11 12 13 14

s 1 2 8 9 10

 3 7 11

 4 5 6 12

 13

 14

s 1 2

 3

 4 5 6 7 8

 9

 10

On the figure above with numbers from 1 to 14 are marked the numbers of

the corresponding turns of the paths.

Paths in a Labyrinth – Recursive Algorithm

How can we solve the problem? We can consider searching from a position in

the labyrinth to the end of the labyrinth as a recursive process as follows:

- Let the current position in the labyrinth be (row, col). In the beginning

we go from the starting position (0, 0).

- If the current position is the searched position (N-1, M-1), then we have

found a path and we should print it.

- If the current position is impassable, we go back (we have no right to

step on it).

- If the current position is already visited, we go back (we have no right

to step on it twice.

- Otherwise, we look for a path in four possible directions. We search

recursively (with the same algorithm) a path to the exit from the

labyrinth by trying to go in all possible directions:

- We try left: position (row, col-1).

- We try up: position (row-1, col).

- We try right: position (row, col+1).

- We try down: position (row+1, col).

www.manaraa.com

370 Fundamentals of Computer Programming with C#

In order to reach this algorithmic solution we think recursively. We have the

problem "searching for a path from given position to the exit". It can be boiled

down to the following four sub problems:

- searching for a path from the position on the left from the current

position to the exit;

- searching for a path from the position above the current position to the

exit;

- searching for a path from the position on the right from the current

position to the exit;

- searching for a path from the position below the current position to the

exit.

If from each possible position, which we reach, we check the four possible

directions and do not move in a circle (avoid passing through positions, on

which we have already stepped on), we should find a path to the exit sooner

or later (if such exists).

This time the recursion is not as simple as in the previous problems. On each

step we have to check whether we have reached the exit and whether we are

on a forbidden position; after that we should mark the position as visited and

recursively call searching in the four directions. After returning from the

recursive calls we have to mark as unvisited the starting point. In informatics

such crawl is known as searching with backtracking.

Paths in a Labyrinth – Implementation

For the implementation of the algorithm we need to represent the labyrinth in

a suitable way. We are going to use a two-dimensional array of characters, as

in it we are going to mark with the character ' ' (space) the passable

positions, with 'e' the exit from the labyrinth and with '*' the impassable

positions. The starting position is marked as passable position. The positions

we have already visited we are going to mark with the character 's'. Here is

how the definition of the labyrinth is going to look like for our example:

static char[,] lab =
{
 {' ', ' ', ' ', '*', ' ', ' ', ' '},
 {'*', '*', ' ', '*', ' ', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', ' '},
 {' ', '*', '*', '*', '*', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', 'e'},
};

Let’s try to implement the recursive method for searching in a labyrinth. It

should be something like this:

www.manaraa.com

Chapter 10. Recursion 371

static char[,] lab =
{
 {' ', ' ', ' ', '*', ' ', ' ', ' '},
 {'*', '*', ' ', '*', ' ', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', ' '},
 {' ', '*', '*', '*', '*', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', 'e'},
};

static void FindPath(int row, int col)
{
 if ((col < 0) || (row < 0) ||
 (col >= lab.GetLength(1)) || (row >= lab.GetLength(0)))
 {
 // We are out of the labyrinth
 return;
 }

 // Check if we have found the exit
 if (lab[row, col] == 'e')
 {
 Console.WriteLine("Found the exit!");
 }

 if (lab[row, col] != ' ')
 {
 // The current cell is not free
 return;
 }

 // Mark the current cell as visited
 lab[row, col] = 's';

 // Invoke recursion to explore all possible directions
 FindPath(row, col - 1); // left
 FindPath(row - 1, col); // up
 FindPath(row, col + 1); // right
 FindPath(row + 1, col); // down

 // Mark back the current cell as free
 lab[row, col] = ' ';
}

static void Main()

www.manaraa.com

372 Fundamentals of Computer Programming with C#

{
 FindPath(0, 0);
}

The implementation strictly follows the description from the above. In this

case the size of the labyrinth is not stored in variables N and M, but is derived

from the two-dimensional array lab, which stores the labyrinth: the count of

the columns is lab.GetLength(1), and the count of the rows is

lab.GetLength(0).

When entering the recursive method for searching, firstly we check if we go

outside the labyrinth. In this case the searching is terminated, because going

outside the boundaries of the labyrinth is forbidden.

After that we check whether we have found the exit. If we have, we print

an appropriate message and the searching from the current position onward is

terminated.

Next, we check if the current square is available. The square is available if

the position is passable and we have not been on it on some of the previous

steps (if it is not part of the current path from the starting position to the

current cell of the labyrinth).

If the cell is available, we step on it. This is performed by marking it as

visited (with the character 's'). After that we recursively search for a path in

the four possible directions. After returning from the recursive search of the

four possible directions, we step back from the current cell and mark it as

available.

The marking back of the current position as available when leaving the

current position is substantial because, when we go back, it is not a part of

the current path. If we skip this action, not all paths to the exit would be

found, but only some of them.

This is how the recursive method for searching for the exit from the labyrinth

looks like. We should now only call the method from the Main() method,

beginning the search from the starting position (0, 0).

If we run the program, we are going to see the following result:

Found the exit!
Found the exit!
Found the exit!

You can see that the exit has been found exactly three times. It seems that

the algorithm works correctly. However, we are missing the printing of the

path as a sequence of positions.

www.manaraa.com

Chapter 10. Recursion 373

Paths in a Labyrinth – Saving the Paths

In order to print the paths we have found by our recursive algorithm, we can

use an array, in which at every step we keep the direction taken (L – left, U –

up, R – right, D – down). This array will keep in every moment the current

path from the start of the labyrinth to the current position.

We are going to need an array of characters and a counter for the steps

we have taken. The counter will keep how many times we have moved to the

next position recursively, i.e. the current depth of recursion.

In order to work correctly, our program has to increment the counter when

entering recursion and save the direction we have taken in the position in the

array. When returning from a recursion, the counter should be reduced by 1.

When an exit I found, the path can be printed (it consists of all the characters

in the array from 0 to the position pointed by the counter).

What should be the size of the array? The answer to this question is easy;

since we can enter one cell at most once, than the path would never be longer

than the count of all cells (N*M). In our case the size of the maze is 7*5, i.e.

the size of the array has to be 35.

Note: if you know the List<T> data structure is might be more appropriate to

use List<char> instead of the array of chars. We will learn about lists in the

chapter "Linear Data Structures".

This is an example implementation of the described idea:

static char[,] lab =
{
 {' ', ' ', ' ', '*', ' ', ' ', ' '},
 {'*', '*', ' ', '*', ' ', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', ' '},
 {' ', '*', '*', '*', '*', '*', ' '},
 {' ', ' ', ' ', ' ', ' ', ' ', 'e'},
};

static char[] path =
 new char[lab.GetLength(0) * lab.GetLength(1)];
static int position = 0;

static void FindPath(int row, int col, char direction)
{
 if ((col < 0) || (row < 0) ||
 (col >= lab.GetLength(1)) || (row >= lab.GetLength(0)))
 {
 // We are out of the labyrinth
 return;
 }

www.manaraa.com

374 Fundamentals of Computer Programming with C#

 // Append the direction to the path
 path[position] = direction;
 position++;

 // Check if we have found the exit
 if (lab[row, col] == 'e')
 {
 PrintPath(path, 1, position - 1);
 }

 if (lab[row, col] == ' ')
 {
 // The current cell is free. Mark it as visited
 lab[row, col] = 's';

 // Invoke recursion to explore all possible directions
 FindPath(row, col - 1, 'L'); // left
 FindPath(row - 1, col, 'U'); // up
 FindPath(row, col + 1, 'R'); // right
 FindPath(row + 1, col, 'D'); // down

 // Mark back the current cell as free
 lab[row, col] = ' ';
 }

 // Remove the last direction from the path
 position--;
}

static void PrintPath(char[] path, int startPos, int endPos)
{
 Console.Write("Found path to the exit: ");
 for (int pos = startPos; pos <= endPos; pos++)
 {
 Console.Write(path[pos]);
 }
 Console.WriteLine();
}

static void Main()
{
 FindPath(0, 0, 'S');
}

www.manaraa.com

Chapter 10. Recursion 375

To make it easier we added one more parameter to the recursive method for

searching path to the exit of the labyrinth: the direction we have taken to in

order to reach the current position. This parameter has no meaning when

going from the starting position. For this reason in the beginning we put a

meaningless value 'S'. After that, when printing, we skip the first element of

the path.

If we start the program, we are going to get the three possible paths from the

beginning to the end of the labyrinth:

Found path to the exit: RRDDLLDDRRRRRR
Found path to the exit: RRDDRRUURRDDDD
Found path to the exit: RRDDRRRRDD

Paths in a Labyrinth – Testing the Program

It seems like the algorithm works properly. It remains to test it with some

more examples in order to make sure we have not made a stupid mistake. We

can test the program with an empty labyrinth with size 1x1, with an empty

labyrinth with size 3x3, or for instance with a labyrinth in which there is no

path to the exit, and in the end with an enormous labyrinth, where there are

a lot of paths.

If we run the tests, we are going to be convinced that in each case the

program is working correctly.

Example input (labyrinth 1 x 1):

static char[,] lab =
{
 {'e'},
};

Example output:

Found path to the exit:

You can see that the output is correct, but the path is empty (with length 0),

because the starting position coincides with the exit. We could improve the

visualization in this case (for example print "Empty path"). Example input

(empty labyrinth 3x3):

static char[,] lab =
{
 {' ', ' ', ' '},
 {' ', ' ', ' '},
 {' ', ' ', 'e'},
};

www.manaraa.com

376 Fundamentals of Computer Programming with C#

Example output for the above labyrinth:

Found path to the exit: RRDLLDRR
Found path to the exit: RRDLDR
Found path to the exit: RRDD
Found path to the exit: RDLDRR
Found path to the exit: RDRD
Found path to the exit: RDDR
Found path to the exit: DRURDD
Found path to the exit: DRRD
Found path to the exit: DRDR
Found path to the exit: DDRUURDD
Found path to the exit: DDRURD
Found path to the exit: DDRR

You can check that the output is correct – these are all the paths to the exit.

Let’s try another example input (labyrinth 5x3 without a path to the exit):

static char[,] lab =
{
 {' ', '*', '*', ' ', ' '},
 {' ', ' ', ' ', '*', ' '},
 {'*', ' ', ' ', '*', 'e'},
};

Example output:

(there is no output)

You can see that the output is correct, but again we could add a more friendly

message (for example "No exit!"), instead of any output.

Now we have to check what would happen when we have an enormously big

labyrinth. Here is a sample input (labyrinth with size 15x9):

static char[,] lab =
{{' ','*',' ',' ',' ',' ','*',' ',' ',' ',' ','*','*',' ',' '},
 {' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ','*','*','*',' ','*',' ',' ',' ',' ',' ','*','*','*','*'},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ','e'}};

www.manaraa.com

Chapter 10. Recursion 377

We run the program and it starts typing paths to the exit, but it does not

end because there are too many paths. Here is how a small part of the

output looks like:

Found path to the exit:
DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRURDRR
Found path to the exit:
DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRRURRD
Found path to the exit:
DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRRURDR
…

Now, let’s try one last example – labyrinth with big size (15x9), in which there

is no path to the exit:

static char[,] lab =
{
 {' ','*',' ',' ',' ',' ','*',' ',' ',' ',' ','*','*',' ',' '},
 {' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ',' ',' '},
 {' ','*','*','*',' ','*',' ',' ',' ',' ',' ','*','*','*','*'},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ','*','*',' ',' '},
 {' ',' ',' ',' ',' ','*',' ',' ',' ',' ',' ',' ',' ','*','e'},
};

We run the program and it hangs, without printing anything. It actually

works very long for us to wait for it. It seems like there is a problem.

What is the problem? The problem is that the possible paths, analyzed by the

algorithm are too many and their research takes too much time. Let’s think

how many these paths are. If a path to the exit is average 20 steps long and

on each step there are 4 possible directions to be take, then 420 paths have to

be researched, which is a very big number. This evaluation of the count of

possibilities is very inaccurate, but it gives orientation on the approximate

order of possibilities.

What is the conclusion? The backtracking method does not work, when the

variants are too many, and the fact they are too many can be easily

concluded.

We are not going to torture you by making you find solution to the task. The

problem of searching all paths in a labyrinth has no efficient solution

for big labyrinths.

The problem has an efficient solution if it is formulated in a slightly different

way: find at least one exit from the labyrinth. This task is far easier and

www.manaraa.com

378 Fundamentals of Computer Programming with C#

can be solved with one very small correction in the sample code: when

escaping the recursion, we do not mark the current cell as available. This

means to delete the following lines from the code:

// Mark back the current cell as free
lab[row, col] = ' ';

We can convince ourselves that after this change the program finds out very

quickly if there is no path to the exit, and if there is, it very quickly finds one

of them. It is not the shortest or longest, just the first path found.

Using Recursion – Conclusions

The general conclusion from the problem searching a path in a labyrinth is

already formulated: if you do not understand how recursion works,

avoid using it!

Be careful when you write recursive methods. Recursion is a powerful

programming technique for solving combinatorial problems (problems in

which we have to go through all variants), but it is not for everyone. We

can easily make mistakes when using recursion. You may make the program

"hang", or cause stack overflow with bottomless recursion. Always look for

iterative solutions, unless you deeply understand how to use recursion.

As to the problem searching shortest path in a labyrinth you can solve it

elegantly without recursion with the so called BFS (breadth-first search),

also known as the wavefront algorithm, which is elementary implemented

with a queue. You can read more about the "BFS" algorithm in this article in

Wikipedia: http://en.wikipedia.org/wiki/Breadth-first_search.

Exercises

1. Write a program to simulate n nested loops from 1 to n.

2. Write a program to generate all variations with duplicates of n

elements class k. Sample input:

n = 3
k = 2

Sample output:

(1 1), (1 2), (1 3), (2 1), (2 2), (2 3), (3 1), (3 2), (3 3)

Think about and implement an iterative algorithm for the same task.

3. Write a program to generate and print all combinations with

duplicates of k elements from a set with n elements. Sample input:

http://en.wikipedia.org/wiki/Breadth-first_search

www.manaraa.com

Chapter 10. Recursion 379

n = 3
k = 2

Sample output:

(1 1), (1 2), (1 3), (2 2), (2 3), (3 3)

Think about and implement an iterative algorithm for the same task.

4. You are given a set of strings. Write a recursive program, which

generates all subsets, consisting exactly k strings chosen among the

elements of this set. Sample input:

strings = {'test', 'rock', 'fun'}
k = 2

Sample output:

(test rock), (test fun), (rock fun)

Think about and implement an iterative algorithm as well.

5. Write a recursive program, which prints all subsets of a given set of

N words. Example input:

words = {'test', 'rock', 'fun'}

Example output:

(), (test), (rock), (fun), (test rock), (test fun),
(rock fun), (test rock fun)

Think about and implement an iterative algorithm for the same task.

6. Implement the merge-sort algorithm recursively. In it the initial array

is divided into two equal in size parts, which are sorted (recursively via

merge-sort) and after that the two sorted parts are merged in order to

get the whole sorted array.

7. Write a recursive program, which generates and prints all permutations

of the numbers 1, 2, …, n, for a given integer n. Example input:

n = 3

Example output:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

Try to find an iterative solution for generating permutations.

www.manaraa.com

380 Fundamentals of Computer Programming with C#

8. You are given an array of integers and a number N. Write a recursive

program that finds all subsets of numbers in the array, which have a

sum N. For example, if we have the array {2, 3, 1, -1} and N=4, we can

obtain N=4 as a sum in the following two ways: 4=2+3-1; 4=3+1.

9. You are given an array of positive integers. Write a program that checks

whether there is one or more numbers in the array (subset), whose

sum is equal to S. Can you solve the task efficiently for large arrays?

10. You are given a matrix with passable and impassable cells. Write a

recursive program that finds all paths between two cells in the matrix.

11. Implement the algorithm BFS (breadth-first search) for finding the

shortest path in a labyrinth.

12. Modify the previous program to check whether a path exists between

two cells without finding all possible paths. Test the program with a

matrix 100x100 filled only with passable cells.

13. You are given a matrix with passable and impassable cells. Write a

program that finds the largest area of neighboring passable cells.

14. Write a recursive program that traverses the whole hard disk C:\
recursively and prints all folders and files.

Solutions and Guidelines

1. Create a recursive method Loops(int k), perform a for-loop from 1 to

n and make a recursive call Loops(k-1) in the loop. The bottom of the

recursion is when k < 0. Initially invoke Loops(n-1).

2. The recursive solution is to modify the algorithm for generating N

nested loops. In fact you need k nested loops from 1 to n.

The iterative solution is as follows: start from the first variation in the

lexicographical order: {1, 1, …, 1} k times. To obtain the next

variation, increase the last number. If it becomes greater than n,

change it to 1 and increase the next number on the left. Do the same on

the left until the first number goes greater than n.

3. Modify the algorithms from the previous problem and always keep

each number equal or greater than the number on the left of it. The

easiest way to achieve this is to generate k nested loops from 1 to n

and print only these combinations in which each number is greater or

equal than the number on its left. You may optimize this approach to get

generate directly an increasing sequence for better performance.

4. Let the strings’ count be n. Use the implementation of k nested loops

(recursive or iterative) with additional limitation that each number is

greater than the previous one. Thus you will generate all different

subsets of k elements in the range [0…n-1]. For each set consider the

numbers from it as indices in the array of strings and print for each

www.manaraa.com

Chapter 10. Recursion 381

number the corresponding string. For the example above, the set {0, 2}

corresponds to the strings at position 0 and position 2, i.e. (test, fun).

The iterative algorithm is similar to the iterative algorithm for

generating n nested loops, but is more complicated because it needs to

guarantee that each number is greater than the number on its left.

5. You can use the previous task and call it N times in order to generate

consequently the empty set (k=0), followed by the all subsets with one

element (k=1), all subsets with 2 elements (k=2), all subsets with 3

elements (k=3), etc.

The problem has another very smart iterative solution: run a loop

from 0 to 2N-1 and convert each of these numbers to binary numeral

system. For example, for N=3 you will have the following binary

representations of the numbers between 0 to 2N-1:

000, 001, 010, 011, 100, 101, 110, 111

Now for each binary representation take those words from the subset for

which have bit 1 on the corresponding position in the binary

representation. For instance, for the binary representation "101" take

the first and the last string (at these positions there is 1) and omit the

second string (at this position there is 0). Smart, isn’t it?

6. In case you have any difficulties search in Internet for "merge sort".

You are going to find hundreds of implementations, including in C#. The

challenge is to avoid allocating a new array for the result at each

recursive call, because this is inefficient, and to use only three arrays

in the whole program: two arrays to be merged merge and a third for

the result from the merging. You will have to implement merging of two

ranges of an array into a range of another array.

7. Recursive algorithm: suppose that the method Perm(k) permutes in all

possible ways the elements of the array p[] at positions from 0 to k-1

(inclusive). Firstly, initialize the array p with the numbers from 1 to N.

Implement recursively Perm(k) in the following way:

1. If k == 0, print the current permutation and exit the recursion (bottom

of the recursion).

2. Call Perm(k-1).

3. For each position i from 0 to k-1 do the following:

a. Swap p[i] with p[k].

b. Recursively call Perm(k-1).

c. Swap back p[i] with p[k].

In the beginning call Perm(n-1) to start the recursive generation.

www.manaraa.com

382 Fundamentals of Computer Programming with C#

Iterative algorithm: read in Wikipedia how to generate from given

permutation the next permutation in the lexicographic order iteratively:

en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order.

8. The problem is not very different from the task with finding all subsets

among a given list of strings. Shall it work fast enough with 500

numbers? Pay attention that we have to print all subsets with sum N

which can be really big amount if N is very big and proper numbers exist

in the array. For this reason the task has no efficient solution.

9. If we approach the problem by the method of generating of all

possibilities, the solution will not work for more than 20-30

numbers. That’s why we may approach it in a very different way in case

the elements of the array are only positive, or are limited in a certain

range (for example [-50…50]). Then we could use the following

optimized algorithm based on dynamic programming:

Assume we are given an array of numbers p[]. Let’s denote by

possible(k, sum) whether we could obtain sum by using only the

numbers first k numbers (p[0], p[1], …, p[k]). Then, the following

recurrent dependencies are valid:

- possible(0, sum) = true if p[0] == sum

- possible(k, sum) = true if possible[k-1, sum] == true or

possible[k-1, sum-p[k]] == true

The formula above shows that we can obtain sum from the elements of

the array at positions 0 to k if one of the following two statements

remains:

- The element p[k] does not participate in the sum and the sum is

obtained from the rest of the elements (from 0 to k-1);

- The element p[k] participates in sum and the remainder sum-p[k] is

obtained from the rest of the elements (from 0 to k-1).

The implementation is not complex. Just calculate the recursive formulas

by recursive method. We should be careful and not let already

calculated values from the two-dimensional array possible[,] to be

calculated twice. For this purpose we should keep for each possible k and

sum the value possible[k, sum]. Otherwise the algorithm will not work

for more than 20-30 elements.

The regeneration of the numbers, which compose the found sum, may be

implemented if we go backwards from the sum n, obtained from the

first k numbers. At each step we examine how this sum can be obtained

from the first k–1 numbers (by taking the kth number or omitting it).

Bear in mind that in the general case all possible sums of the numbers

from the input array may be an awful lot. For instance, possible sums of

50 int numbers in the range [Int32.MinValue … Int32.MaxValue] are

http://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

www.manaraa.com

Chapter 10. Recursion 383

enough so that we could not sum them in whatever data structure. If,

however, all numbers in the input array are positive (as in our case), we

could keep the sums in the range [1…S] because from the rest we could

not obtain sum S by adding one or more numbers from the input array.

If the numbers in the input array are not mandatory positive, but are

limited in a range, then all possible sums are limited in some range too

and we could use the algorithm described above. For example, if the

range of numbers is from -50 to 50, then the least sum is -50*S and the

greatest is 50*S.

If the numbers in the input array are random and not limited in a range,

then the problem has no efficient solution.

You could read more about this classical optimization problem in

computer science called “Subset Sum Problem” in the following article

in Wikipedia: http://en.wikipedia.org/wiki/Subset_sum_problem.

10. Follow the algorithms described in the section “Searching for Paths in a

Labyrinth”. Note that you need to find all possible paths (not just one

of them) so don’t expect your program to run fast for large input data.

11. Read the article about BFS in Wikipedia: http://en.wikipedia.org/wiki/

Breadth-first_search. There are enough explanations and sample code. In

order to implement a queue in C#, just an array or the .NET system class

System.Collections.Generics.Queue<T>. For the elements of the

queue you could use your own structure Point, containing x and y

coordinates, or use two queues (one for each of the coordinates). You

may also check the section BFS in the chapter “Trees and Graphs”.

12. Follow the algorithms described in the section “Searching for Paths in a

Labyrinth”. You should run some graph traversal algorithm like Depth-

First Search (DFS) or Breadth-First Search (BFS). You may read

about them in Internet or check the sections about DFS and BFS in the

chapter “Trees and Graphs”. Your program should visit each cell at most

once and should be fast, even on large matrices (like 1,000 x 1,000).

13. The same like the previous exercise: use DFS or BFS. By a recursive

traversal or BFS traversal, find the areas of neighbor cells in the matrix

one after another and mark each area’s cells as visited. Do not visit again

a visited cell. From all the areas found, remember the largest.

14. For each folder (starting from C:\) print the name and the files from the

current folder and call a recursion for each subfolder. The problem is

solved as example in the sections DFS and BFS in the chapter “Trees and

Graphs”. Your program may crash with UnauthorizedAccessException

in case you do not have access permissions for some folders on the hard

disk. This is typical for some Windows installations so you could start the

traversal from another directory or catch the exception (see the

“Catching Exceptions” section in the “Exception Handling” chapter).

http://en.wikipedia.org/wiki/Subset_sum_problem
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

www.manaraa.com

www.manaraa.com

Chapter 11. Creating
and Using Objects

In This Chapter

In this chapter we are going to get familiar with the basic concepts of object-

oriented programming – classes and objects – and we are going to explain

how to use classes from the standard libraries of .NET Framework. We are

going to mention some commonly used system classes and see how to create

and use their instances (objects). We are going to discuss how we can

access fields of an object, how to call constructors and how to work with

static fields in classes. Finally, we are going to get familiar with the term

"namespaces" – how they help us, how to include them and use them.

Classes and Objects

Over the last few decades programming and informatics have experienced

incredible growth and concepts, which have changed the way programs, are

built. Object-oriented programming (OOP) introduces such radical idea.

We are going to make a short introduction to the principles of OOP and the

concepts used in it. Firstly, we are going to explain what classes and objects

are. These two terms are basic for OOP and inseparable part from the life of

any modern programmer.

What Is Object-Oriented Programming?

Object-oriented programming (OOP) is a programming paradigm, which uses

objects and their interactions for building computer programs. Thus an easy

to understand, simple model of the subject area is achieved, which gives an

opportunity to the programmer to solve intuitively (by simple logic) many of

the problems, which occur in the real world.

For now we are not going to get into details what the goals and the

advantages of OOP are, as well as explaining in details the principles for

building hierarchies of classes and objects. We are going to mention only that

programming techniques of OOP often include encapsulation, abstraction,

polymorphism and inheritance. These techniques are out of the goals of

the current chapter and we are going to consider them later in the chapter

"Principles of Object-Oriented Programming". Now we will focus on objects as

a basic concept in OOP.

www.manaraa.com

386 Fundamentals of Computer Programming with C#

What Is an Object?

We are going to introduce the concept object in the context of OOP. Software

objects model real world objects or abstract concepts (which are also

regarded as objects).

Examples of real-world objects are people, cars, goods, purchases, etc.

abstract objects are concepts in an object area, which we have to model and

use in a computer program. Examples of abstract objects are the data

structures stack, queue, list and tree. They are not going to be a subject in

this chapter, but we are going to see them in details in the next chapters.

In objects from the real world (as well as in the abstract objects) we can

distinguish the following two groups of their characteristics:

- States – these are the characteristics of the object which define it in a

way and describe it in general or in a specific moment

- Behavior – these are the specific distinctive actions, which can be done

by the object.

Let’s take for example an object from the real world – "dog". The states of the

dog can be "name", "fur color" and "breed", and its behavior – "barking",

"sitting" and "walking".

Objects in OOP combine data and the means for their processing in one. They

correspond to objects in real world and contain data and actions:

- Data members – embedded in objects variables, which describe their

states.

- Methods – we have already considered them in details. They are a tool

for building the objects.

What Is a Class?

The class defines abstract characteristics of objects. It provides a structure

for objects or a pattern which we use to describe the nature of something

(some object). Classes are building blocks of OOP and are inseparably

related to the objects. Furthermore, each object is an instance of exactly

one specific class.

We are going to give as an example a class and an object, which is its

instance. We have a class Dog and an object Lassie, which is an instance of

the class Dog (we say it is an object of type Dog). The class Dog describes the

characteristics of all dogs whereas Lassie is a certain dog.

Classes provide modularity in object-oriented programs. Their characteristics

have to be meaningful in a common context so that they could be understood

by people who are familiar with the problem area and are not programmers.

For instance, the class Dog cannot have (or at least should not) a

characteristic "RAM" because in the context of this class such characteristic

has no meaning.

www.manaraa.com

Chapter 11. Creating and Using Objects 387

Classes, Attributes and Behavior

The class defines the characteristics of an object (which we are going to

call attributes) and its behavior (actions that can be performed by the

object). The attributes of the class are defined as its own variables in its body

(called member variables). The behavior of objects is modeled by the

definition of methods in classes.

We are going to illustrate the foregoing explanations through an example of

a real-world definition of a class. Let’s return to the example with the dog.

We would like to define a class Dog that models the real object "dog". The

class is going to include characteristics which are common for all dogs (such

as breed and fur color), as well as typical for the dog behavior (such are

barking, sitting, walking). In this case we are going to have attributes breed

and furColor, and the behavior is going to be implemented by the methods

Bark(), Sit() and Walk().

Objects – Instances of Classes

From what has been said till now we know that each object is an instance of

just one class and is created according to a pattern of this class. Creating the

object of a defined class is called instantiation (creation). The instance is

the object itself, which is created runtime.

Each object is in instance of a specific class. This instance is characterized by

state – set of values, associated with class attributes.

In the context of such behavior the object consists of two things: current

state and behavior defined in the class of the object. The state is specific for

the instance (the object), but the behavior is common for all objects which

are instances of this class.

Classes in C#

So far we have considered several common characteristics of OOP. A great

part of the modern programming languages are object-oriented. Each of

them has particular features for working with classes and objects. In this book

we are going to focus only one of these languages – C#. It is good to know

that the knowledge of OOP in C# would be useful to the reader no matter

which object-oriented language he uses in practice. That is because OOP is a

fundamental concept in programming, used by virtually all modern prog-

ramming languages.

What Are Classes in C#?

A class in C# is defined by the keyword class, followed by an identifier

(name) of the class and a set of data members and methods in a separate

code block.

Classes in C# can contain the following elements:

www.manaraa.com

388 Fundamentals of Computer Programming with C#

- Fields – member-variables from a certain type;

- Properties – these are a special type of elements, which extend the

functionality of the fields by giving the ability of extra data management

when extracting and recording it in the class fields. We are going to

focus on them in the chapter "Defining Classes";

- Methods – they implement the manipulation of the data.

An Example Class

We are going to give an example of a class in C#, which contains the listed

elements. The class Cat models the real-world object "cat" and has the

properties name and color. The given class defines several fields, properties

and methods, which we are going to use later. You can now see the definition

of the class (we are not going to consider in details the definition of the

classes – we are going to focus on that in the chapter "Defining Classes"):

public class Cat
{
 // Field name
 private string name;
 // Field color
 private string color;

 public string Name
 {
 // Getter of the property "Name"
 get
 {
 return this.name;
 }
 // Setter of the property "Name"
 set
 {
 this.name = value;
 }
 }

 public string Color
 {
 // Getter of the property "Color"
 get
 {
 return this.color;
 }
 // Setter of the property "Color"

www.manaraa.com

Chapter 11. Creating and Using Objects 389

 set
 {
 this.color = value;
 }
 }

 // Default constructor
 public Cat()
 {
 this.name = "Unnamed";
 this.color = "gray";
 }

 // Constructor with parameters
 public Cat(string name, string color)
 {
 this.name = name;
 this.color = color;
 }

 // Method SayMiau
 public void SayMiau()
 {
 Console.WriteLine("Cat {0} said: Miauuuuuu!", name);
 }
}

The example class Cat defines the properties Name and Color, which keep

their values in the hidden (private) fields name and color. Furthermore, two

constructors are defined for creating instances of the class Cat, respectively

with and without parameters, and a method of the class SayMiau().

After the example class is defined we can now use it in the following way:

static void Main()
{
 Cat firstCat = new Cat();
 firstCat.Name = "Tony";
 firstCat.SayMiau();

 Cat secondCat = new Cat("Pepy", "red");
 secondCat.SayMiau();
 Console.WriteLine("Cat {0} is {1}.",
 secondCat.Name, secondCat.Color);
}

www.manaraa.com

390 Fundamentals of Computer Programming with C#

If we execute the example, we are going to get the following output:

Cat Tony said: Miauuuuuu!
Cat Pepy said: Miauuuuuu!
Cat Pepy is Red.

We saw a simple example for defining and using classes, and in the section

"Creating and Using Objects" we are going to explain in details how to create

objects, how to access their properties and how to call their methods and this

is going to allow us to understand how this example works.

System Classes

Calling the method Console.WriteLine(…) of the class System.Console is

an example of usage of a system class in C#. We call system classes the

classes defined in standard libraries for building applications with C# (or

another programming language). They can be used in all our .NET

applications (in particular those written in C#). Such are for example the

classes String, Environment and Math, which we are going to consider later.

As we already know from chapter "Introduction to Programming" the .NET

Framework SDK comes with a set of programming languages (like C# and

VB.NET), compilers and standard class library which provides thousands of

system classes for accomplishing the most common tasks in programming like

console-based input / output, text processing, collection classes, parallel

execution, networking, database access, data processing, as well as creating

Web-based, GUI and mobile applications.

It is important to know that the implementation of the logic in classes is

encapsulated (hidden) inside them. For the programmer it is important what

they do, not how they do it and for this reason a great part of the classes is

not publicly available (public). With system classes the implementation is

often not available at all to the programmer. Thus, new layers of

abstraction are created which is one of the basic principles in OOP.

We are going to pay special attention to system classes later. Now it is time to

get familiar with creating and using objects in programs.

Creating and Using Objects

For now we are going to focus on creating and using objects in our

programs. We are going to work with already defined classes and mostly with

system classes from .NET Framework. The specificities of defining our own

classes we are going to consider later in the chapter "Defining Classes".

Creating and Releasing Objects

The creation of objects from preliminarily defined classes during program

execution is performed by the operator new. The newly created object is

usually assigned to the variable from type coinciding with the class of the

www.manaraa.com

Chapter 11. Creating and Using Objects 391

object (this, however, is not mandatory – read chapter "Principles of Object-

Oriented Programming"). We are going to note that in this assignment the

object is not copied, and only a reference to the newly created object is

recorded in the variable (its address in the memory). Here is a simple

example of how it works:

Cat someCat = new Cat();

The variable someCat of type Cat we assign the newly created instance of

the class Cat. The variable someCat remains in the stack, and its value (the

instance of the class Cat) remains in the managed heap:

Creating Objects with Set Parameters

Now we are going to consider a slightly different variant of the example above

in which we set parameters when creating the object:

Cat someCat = new Cat("Johnny", "brown");

In this case we would like the objects someCat to represent a cat whose name

is "Johnny" and is brown. We indicate this by using the words "Johnny" and

"brown", written in the brackets after the name of the class.

When creating an object with the operator new, two things happen: memory is

set aside for this object and its data members are initialized. The

initialization is performed by a special method called constructor. In the

example above the initializing parameters are actually parameters of the

constructor of the class.

We are going to discuss constructors after a while. As the member variables

name and color of the class Cat are of reference type (of the class String),

they are also recorded in the dynamic memory (heap) and in the object

itself are kept their references (addresses / pointers).

The following figure illustrates how the Cat object is represented in the

computer memory (arrows illustrated the references from one object to

another):

HeapStack

Cat@6e278a

someCat

(Cat members)

www.manaraa.com

392 Fundamentals of Computer Programming with C#

Releasing the Objects

An important feature of working with objects in C# is that usually there is no

need to manually destroy them and release the memory taken up by them.

This is possible because of the embedded in .NET CLR system for cleaning the

memory (garbage collector) which takes care of releasing unused objects

instead of us. Objects to which there is no reference in the program at certain

moment are automatically released and the memory they take up is

released. This way many potential bugs and problems are prevented. If we

would like to manually release a certain object, we have to destroy the

reference to it, for example this way:

someCat = null;

This does not destroy the object immediately, but puts it in a state in which it

is inaccessible to the program and the next time the garbage collector cleans

the memory it is going to be released:

HeapStack

Cat@6e278a

someCat
name:

String@a272e8

color:

String@852fa4

Johny

brown

HeapStack

Cat@6e278a

someCat
name:

String@a272e8

color:

String@852fa4

Johny

brown

www.manaraa.com

Chapter 11. Creating and Using Objects 393

Access to Fields of an Object

The access to the fields and properties of a given object is done by the

operator . (dot) placed between the names of the object and the name of

the field (or the property). The operator . is not necessary in case we access

field or property of given class in the body of a method of the same class.

We can access the fields and the properties either to extract data from

them, or to assign new data. In the case of a property the access is

implemented in exactly the same way as in the case of a field – C# give us

this ability. This is achieved by the keywords get and set in the definition of

the property, which perform respectively extraction of the value of the

property and assignment of a new value. In the definition of the class Cat

(given above) the properties are Name and Color.

Access to the Memory and Properties of an Object – Example

We are going to give an example of using a property of an object, as well as

using the already defined above class Cat. We create an instance myCat of the

class Cat and assign "Alfred" to the property Name. After that we print on

the standard output a formatted string with the name of our cat. You can see

an implementation of the example:

class CatManipulating
{
 static void Main()
 {
 Cat myCat = new Cat();
 myCat.Name = "Alfred";

 Console.WriteLine("The name of my cat is {0}.",
 myCat.Name);
 }
}

Calling Methods of Objects

Calling the methods of a given object is done through the invocation

operator () and with the help of the operator . (dot). The operator dot is

not obligatory only in case the method is called in the body of another method

of the same class. Calling a method is performed by its name followed by ()

or (<parameters>) for the case when we pass it some arguments. We

already know how to invoke methods from the chapter "Methods".

Now is the moment to mention the fact that methods of classes have access

modifiers public, private or protected with which the ability to call them

could be restricted. We are going to consider these modifiers in the chapter

"Defining Classes". For now it enough to know that the access modifier

www.manaraa.com

394 Fundamentals of Computer Programming with C#

public does not introduce any restrictions for calling the method, i.e. makes

it publicly available.

Calling Methods of Objects – Example

We are going to complement the example we already gave as we call the

method SayMiau of the class Cat. Here is the result:

class CatManipulating
{
 static void Main()
 {
 Cat myCat = new Cat();
 myCat.Name = "Alfred";

 Console.WriteLine("The name of my cat is {0}.",myCat.Name);
 myCat.SayMiau();
 }
}

After executing the program above the following text is going to be printed on

the standard output:

The name of my cat is Alfred.
Cat Alfred said: Miauuuuuu!

Constructors

The constructor is a special method of the class, which is called

automatically when creating an object of this class, and performs

initialization of its data (this is its purpose). The constructor has no type of

returned value and its name is not random, and mandatorily coincides with

the class name. The constructor can be with or without parameters. A

constructor without parameters is also called parameterless constructor.

Constructor with Parameters

The constructor can take parameters as well as any other method. Each

class can have different count of constructors with one only restriction – the

count and type of their parameters have to be different (different signature).

When creating an object of this class, one of the constructors is called.

In the presence of several constructors in a class naturally occurs the question

which of them is called when the object is created. This problem is solved in a

very intuitive way as with methods. The appropriate constructor is chosen

automatically by the compiler according to the given set of parameters when

creating the object. We use the principle of the best match.

www.manaraa.com

Chapter 11. Creating and Using Objects 395

Calling Constructors – Example

Lets' take a look again at the definition of the class Cat and more particularly

at the two constructors of the class:

public class Cat
{
 // Field name
 private string name;
 // Field color
 private string color;

 …

 // Parameterless constructor
 public Cat()
 {
 this.name = "Unnamed";
 this.color = "gray";
 }

 // Constructor with parameters
 public Cat(string name, string color)
 {
 this.name = name;
 this.color = color;
 }

 …
}

We are going to use these constructors to illustrate the usage of constructors

with and without parameters. For the class Cat defined that way we are going

to give an example of creating its instances by each of the two constructors.

One of the objects is going to be an ordinary undefined cat, and the other –

our brown cat Johnny. After that we are going to execute the method SayMiau
for each of the cats and analyze the result. Source code follows:

class CatManipulating
{
 static void Main()
 {
 Cat someCat = new Cat();

 someCat.SayMiau();
 Console.WriteLine("The color of cat {0} is {1}.",

www.manaraa.com

396 Fundamentals of Computer Programming with C#

 someCat.Name, someCat.Color);

 Cat someCat = new Cat("Johnny", "brown");

 someCat.SayMiau();
 Console.WriteLine("The color of cat {0} is {1}.",
 someCat.Name, someCat.Color);
 }
}

As a result of the program’s execution the following text is printed on the

standard output:

Cat Unnamed said: Miauuuuuu!
The color of cat Unnamed is gray.
Cat Johnny said: Miauuuuuu!
The color of cat Johnny is brown.

Static Fields and Methods

The data members, which we considered up until, now implement states of

the objects and are directly related to specific instances of the classes. In

OOP there are special categories fields and methods, which are associated

with the data type (class), and not with the specific instance (object). We call

them static members because are independent of concrete objects.

Furthermore, they are used without the need of creating an instance of the

class in which they are defined. They can be fields, methods and constructors.

Let’s consider shortly static members in C#.

A static field or method in a given class is defined with the keyword

static, placed before the type of the field or the type of returned value of the

method. When defining a static constructor, the word static is placed before

the name of the constructor. Static constructors are not going to be discussed

in this chapter – for now we are going to consider only static fields and

methods (the more curious readers can look up in MSDN).

When to Use Static Fields and Methods?

To find the answers of this question we have to understand very well the

difference between static and non-static members. We are going to consider

into details what it is.

We have already explained the main difference between the two types of

members. Let’s interpret the class as a category of objects, and the

object as a representative of this category. Then the static members

reflect the state and the behavior of the category itself, and the non-static the

state and the behavior of the separate representatives of the category.

www.manaraa.com

Chapter 11. Creating and Using Objects 397

Now we are going to pay special attention to the initialization of static and

non-static fields. We already know that non-static fields are initialized with

the call to the constructor of the class when creating an instance of it – either

inside the body of the constructor, or outside. However, the initialization of

static fields cannot be performed when the object of the class is created,

because they can be used without a created instance of the class. It is

important to know the following:

Static fields are initialized when the data type (the class) is

used for the first time, during the execution of the program.

Now we shall see how to use static fields and methods in practice.

Static Fields and Methods – Example

The example, which we are going to give, solves the following simple

problem: we need a method that every time returns a value greater with one

than the value returned at the previous call of the method. We choose the

first returned value to be 0. Obviously this method generates the sequence of

natural number. Similar functionality is widely used in practice, for example,

for uniform numbering of objects. Now we are going to see how this could be

implemented with the means of OOP.

Let’s assume that the method is called NextValue() and is defined in a class

called Sequence. The class has a field currentValue from type int, which

contains the last returned value by the method. We would like the following

two actions to be performed consecutively in the method body: the value of

the field to be increased and its new value to be returned as a result.

Obviously the returned by the method value does not depend on the concrete

instance of the class Sequence. For this reason the method and the field are

static. You can now see the described implementation of the class:

public class Sequence
{
 // Static field, holding the current sequence value
 private static int currentValue = 0;

 // Intentionally deny instantiation of this class
 private Sequence()
 {
 }

 // Static method for taking the next sequence value
 public static int NextValue()
 {
 currentValue++;
 return currentValue;

www.manaraa.com

398 Fundamentals of Computer Programming with C#

 }
}

The observant reader has noticed that the so defined class has a default

constructor, which is declared as private. This usage of a constructor may

seem strange, but is quite deliberate. It is good to know the following:

A class that has only private constructors cannot be

instantiated. Such class usually has only static members and

is called "utility class".

For now we are not going to go into details about the access modifiers

public, private and protected. We shall explain them comprehensively in

the chapter "Defining Classes".

Let’s take a look at a simple program, which uses the class Sequence:

class SequenceManipulating
{
 static void Main()
 {
 Console.WriteLine("Sequence[1...3]: {0}, {1}, {2}",
 Sequence.NextValue(), Sequence.NextValue(),
 Sequence.NextValue());
 }
}

The example prints on the standard output the first three natural numbers by

triple consecutive call of the method NextValue() of the class Sequence. The

result from this code is the following:

Sequence[1...3]: 1, 2, 3

If we try to create several different sequences, as the constructor of the class

Sequence is declared private, we are going to get compile time error.

Examples of System C# Classes

After we got acquainted with the basic functionality of objects, we are going

to consider briefly several commonly used system classes from the

standard library of .NET Framework. This way we are going to see in practice

the so far explained material, and also show how system classes ease our

every-day work.

The System.Environment Class

We start with one of the basic system classes in .NET Framework:

System.Environment. It contains a set of useful fields and methods, which

www.manaraa.com

Chapter 11. Creating and Using Objects 399

ease getting information about the hardware and the operating system, and

some of them, give the ability to interact with the program environment. Here

is a part of the functionality provided by this class:

- Information about the processors count, the computer network name,

the version of the operating system, the name of the current user, the

current directory, etc.

- Access to externally defined properties and environment variables,

which we are not going to consider in this book.

Now we are going to show one interesting application of a method of the class

Environment, which is commonly used in practice when developing programs

with critical fast performance. We are going to detect the time needed for the

execution of the source code with the help of the property TickCount. Here it

is how it works:

class SystemTest
{
 static void Main()
 {
 int sum = 0;
 int startTime = Environment.TickCount;

 // The code fragment to be tested
 for (int i = 0; i < 10000000; i++)
 {
 sum++;
 }

 int endTime = Environment.TickCount;
 Console.WriteLine("The time elapsed is {0} sec.",
 (endTime - startTime) / 1000.0);
 }
}

The static property TickCount of the class Environment returns as a result

the count of milliseconds that have passed since the computer is on until the

time of the method call. With its help we detect the milliseconds past before

and after the execution of the source code. Their difference is the wanted

time for the execution of the fragment source code measured in milliseconds.

As a result of the execution of the program on the standard output we print

the result of the following type (the measured time varies according to the

current computer configuration and its load):

The time elapsed is 0.031 sec.

www.manaraa.com

400 Fundamentals of Computer Programming with C#

In the example we have used two static members of two system classes: the

static property Environment.TickCount and the static method Console.
WriteLine(…).

The System.String Class

We have already met the String (System.String) class of .NET Framework,

which represents strings. Let’s recall that we can think of strings as a

primitive data type in C#, although the work with them is different from the

work with different primitive data types (integers, floating point numbers,

Boolean variables, etc.). We are going to describe them in details in the

chapter "Strings and Text Processing".

The System.Math Class

The System.Math class contains methods for performing basic numeric and

mathematical operations such as raising a number to a power, taking a

logarithm and square root, and some trigonometric functions. We are going to

give a simple example, which illustrates its usage.

We want to make a program, which calculates the area of a triangle by given

two sides and an angle between them in degrees. Therefore we need the

method Sin(…) and the constant PI of the class Math. With the help of the π

number we can easily convert to radians the entered in degrees angle. You

can see an example implementation of the described logic:

class MathTest
{
 static void Main()
 {
 Console.WriteLine("Length of the first side:");
 double a = double.Parse(Console.ReadLine());
 Console.WriteLine("Length of the second side:");
 double b = double.Parse(Console.ReadLine());
 Console.WriteLine("Size of the angle in degrees:");
 int angle = int.Parse(Console.ReadLine());

 double angleInRadians = Math.PI * angle / 180.0;
 Console.WriteLine("Area of the triangle: {0}",
 0.5 * a * b * Math.Sin(angleInRadians));
 }
}

We can easily test the program if we check whether it calculates correctly the

area of an equilateral triangle. For further convenience we choose the

length of the side to be 2 – then we find the area with the well-known

formula:

www.manaraa.com

Chapter 11. Creating and Using Objects 401

...7320508,132
4

3 2 S

We enter consecutively the numbers 2, 2, 60 and on the standard output we

can see:

Face of the triangle: 1.73205080756888

Depending on your system localization (Region and Language Settings) your

output might be "1,73205080756888" or "1.73205080756888". You might fix

the decimal point to "." by this line of code, executed at your program start:

System.Threading.Thread.CurrentThread.CurrentCulture =
 System.Globalization.CultureInfo.InvariantCulture;

The System.Math Class – More Examples

As we already saw, apart from mathematical methods, the Math class also

defines two well known in mathematics constants: the trigonometric constant

π and the Euler’s number e. Here is an example with them:

Console.WriteLine(Math.PI);
Console.WriteLine(Math.E);

When executing the code above, we get the following output:

3.141592653589793
2.718281828459045

The System.Random Class

Sometimes in programming we have to use random numbers. For instance,

we would like to generate 6 random numbers in the range 1 to 49 (not

necessarily unequal). This could be done by using the System.Random class

and its method Next(). Before we use the Random class we have to create

instance of it, at which point it is initialized with a random value (derived from

the current system time in the operating system). After that we can randomly

generate a number in the range [0…n) by calling the method Next(n). Notice

that this method can return zero, but always returns a random number

smaller than the set value n. Therefore, if we would like to get a number in

the range [1…49], we have to use the expression Next(49) + 1.

Below is an example source code of a program, which generates 6 random

numbers in the range from 1 to 49 by using the Random class (note that it is

not guaranteed that the numbers are unique like in the classical Bulgarian

lottery TOTO 6/49):

www.manaraa.com

402 Fundamentals of Computer Programming with C#

class RandomNumbersBetween1And49
{
 static void Main()
 {
 Random rand = new Random();
 for (int number = 1; number <= 6; number++)
 {
 int randomNumber = rand.Next(49) + 1;
 Console.Write("{0} ", randomNumber);
 }
 }
}

Here is how a possible output of the program looks like:

16 49 7 29 1 28

The System.Random Class – Generating a Random Password

To show you how useful the random numbers generator in .NET

Framework can be, we are going to set as a task to generate a random

password which is between 8 and 15 characters long, contains at least two

capital letters, at least two small letters, at least one digit and at least three

special chars. For this purpose we are going to use the following algorithm:

1. We start with an empty password. We create a generator of random

numbers.

2. We generate twice a random capital letter and place it at a random

position in the password.

3. We generate twice a random small letter and place it at a random

position in the password.

4. We generate twice a random digit and place it at a random position in

the password.

5. We generate three times a random special character and place it at a

random position in the password.

6. Until this moment the password should consist of 8 characters. In order

to supplement it to 15 characters at most, we can insert random count

of times (between 0 and 7) at a random position in the password a

random character (a capital letter, a small letter or a special char).

An implementation of the described algorithm is given below:

class RandomPasswordGenerator
{
 private const string CapitalLetters =

www.manaraa.com

Chapter 11. Creating and Using Objects 403

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 private const string SmallLetters =
 "abcdefghijklmnopqrstuvwxyz";
 private const string Digits = "0123456789";
 private const string SpecialChars =
 "~!@#$%^&*()_+=`{}[]\\|':;.,/?<>";
 private const string AllChars =
 CapitalLetters + SmallLetters + Digits + SpecialChars;

 private static Random rnd = new Random();

 static void Main()
 {
 StringBuilder password = new StringBuilder();

 // Generate two random capital letters
 for (int i = 1; i <= 2; i++)
 {
 char capitalLetter = GenerateChar(CapitalLetters);
 InsertAtRandomPosition(password, capitalLetter);
 }

 // Generate two random small letters
 for (int i = 1; i <= 2; i++)
 {
 char smallLetter = GenerateChar(SmallLetters);
 InsertAtRandomPosition(password, smallLetter);
 }

 // Generate one random digit
 char digit = GenerateChar(Digits);
 InsertAtRandomPosition(password, digit);

 // Generate 3 special characters
 for (int i = 1; i <= 3; i++)
 {
 char specialChar = GenerateChar(SpecialChars);
 InsertAtRandomPosition(password, specialChar);
 }

 // Generate few random characters (between 0 and 7)
 int count = rnd.Next(8);
 for (int i = 1; i <= count; i++)
 {

www.manaraa.com

404 Fundamentals of Computer Programming with C#

 char specialChar = GenerateChar(AllChars);
 InsertAtRandomPosition(password, specialChar);
 }

 Console.WriteLine(password);
 }

 private static void InsertAtRandomPosition(
 StringBuilder password, char character)
 {
 int randomPosition = rnd.Next(password.Length + 1);
 password.Insert(randomPosition, character);
 }

 private static char GenerateChar(string availableChars)
 {
 int randomIndex = rnd.Next(availableChars.Length);
 char randomChar = availableChars[randomIndex];
 return randomChar;
 }
}

Let’s explain several unclear moments in the source code. Let’s start from the

definition of the constants:

private const string CapitalLetters =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
private const string SmallLetters =
 "abcdefghijklmnopqrstuvwxyz";
private const string Digits = "0123456789";
private const string SpecialChars =
 "~!@#$%^&*()_+=`{}[]\\|':;.,/?<>";
private const string AllChars =
 CapitalLetters + SmallLetters + Digits + SpecialChars;

Constants in C# are immutable variables whose values are assigned during

their initialization in the source code of the program and after that they

cannot be changed. They are declared with the modifier const. They are used

for defining a number or a string, which afterwards is used many times in the

program. This way repetition of certain values in the code is avoided and

these values can be easily altered by changing only one place in the code. For

example, if in a certain moment we decide that the character "," (comma)

should not be used when generating a password, we can change only one row

in the program (the corresponding constant) and the change is going to

reflect on every row where the constant is being used. In C# constants are

www.manaraa.com

Chapter 11. Creating and Using Objects 405

written in Pascal Case (the words in the name, merged together, each of

them starts with an uppercase letter, and the rest of them are lowercase).

More about constants we will learn in the section "Constants" in the chapter

"Defining Classes".

Let’s explain how the other parts of the program work. In the beginning, as a

static member variable in the class RandomPasswordGenerator is created the

random number generator rnd. As this variable rnd is defined in the class

(not in the Main() method), it is accessible by the whole class (by each of its

methods), and as it is defined static, it is accessible by the static methods,

too. Thus, anywhere the program needs a random integer variable the same

random number generator is used. It is initialized when the class

RandomPasswordGenerator is loaded.

The method GenerateChar() returns a randomly chosen character in a set of

characters given as a parameter. It works very simply: it chooses a random

position in the set of characters (between 0 and the count of characters minus

1) and returns the characters at this position.

The method InsertAtRandomPosition() is not complicated too. It chooses a

random position in the StringBuilder object, which is passed and inserts on

this position the returned character. We are going to pay special attention to

the class StringBuilder in the chapter "Strings and Text Processing".

Here is a sample output of the program for generating passwords, which we

just considered (this output is different at each program run due to its

randomness by nature):

8p#Rv*yTl{tN4

Namespaces

Namespace (package) in OOP we call a container for a group of classes,

which are united by a common feature or are used in a common context. The

namespaces contribute to a better logical organization of the source code by

creating a semantic division of the classes in categories and makes easier

their usage in the source code. Now we are going to consider namespaces in

C# and are going to see how we can use them.

What Are Namespaces in C#?

Namespaces in C# are named groups of classes, which are logically

related without any specific requirement on how to be placed in the file

system. However, it is considered that the folder name should match the

namespace name and the names of the files should match the names of the

classes, which are defined in them. We have to note that in some

programming languages the compilation of the source code in a given

namespace depends on the distribution of the elements of the namespace in

folders and files on the disk. In Java, for instance, the described file

www.manaraa.com

406 Fundamentals of Computer Programming with C#

organization is mandatory (if it is not followed, compilation errors occur). C#

is not so strict regarding this.

Now, let’s consider the mechanism for defining namespaces.

Defining Namespaces

In case we like to create a new namespace or a new class which belongs to a

given namespace, in Visual Studio this happens automatically by the

commands in the context menu of the Solution Explorer (on right click on the

corresponding folder). By default the Solution Explorer is visualized like a

Dock in the right part of the integrated environment. We are going to

illustrate how we could add a new class in the already existing namespace

MyNamespace by the context menu of Solution Explorer in Visual Studio:

As the project is called MyConsoleApplication and we are adding in its folder

MyNamespace, the newly created class is going to be in the following

namespace:

namespace MyConsoleApplication.MyNamespace

If we have defined a class in its own file and we like to add it in a new or

already existing namespace, it is not hard to do it manually. It is enough to

change the named block with a keyword namespace in the class:

www.manaraa.com

Chapter 11. Creating and Using Objects 407

namespace <namespace_name>
{
 …
}

In the definition we use the keyword namespace, followed by the full name of

the namespace. It is considered that the namespaces in C# start with a

capital letter and are written in Pascal Case. For example, if we have to make

a namespace containing classes for string processing, it is desirable we name

it StringUtils, and not string_utils.

Nested Namespaces

Except classes, namespaces can contain other namespaces in themselves

(nested namespaces). This way, intuitively we create a hierarchy of

namespaces, which allows even more precise distribution of classes according

to their semantics.

When naming namespaces in the hierarchy we use the character . as a

separator (dot notation). For example, the namespace System from .NET

Framework contains in itself the sub-namespace Collections and thus the

full name of the nested namespace Collections is System.Collections.

Full Names of Classes

In order to absolutely understand the meaning of namespaces, it is important

for us to know the following:

Classes are required to have unique names only within the

namespaces, in which they are defined.

Outside a given namespace we can have classes with random names

regardless of whether they match with any of the names of classes in the

namespace. This is because classes in the namespace are uniquely defined in

its context. It is time to see how to define syntactically this uniqueness.

Full name of the class we call the first name of the class, preceded by the

name of the namespace in which it is defined. The full name of each class is

unique. Again we use dot notation:

<namespace_name>.<class_name>

Let’s take, for example, the system class CultureInfo, defined in the

namespace System.Globalization (we have already used it in the chapter

"Console Input and Output"). According to the definition, the full name of the

class is System.Globalization.CultureInfo.

www.manaraa.com

408 Fundamentals of Computer Programming with C#

In .NET Framework sometimes there are classes from different namespaces

with matching names, for example:

System.Windows.Forms.Control
System.Web.UI.Control
System.Windows.Controls.Control

Inclusion of a Namespace

When building an application according to the object area, very often it is

necessary to use the classes of a namespace multiple times. For the

programmer’s convenience there is a mechanism for inclusion of a

namespace in the current file with a source code. After the given namespace

is included, all classes defined in it may be used without the need to use their

full names.

The inclusion of a namespace in the current source code file is executed with

the keyword using in the following way:

using <namespace_name>;

We are going to pay attention to an important feature of including

namespaces in the described way. All classes defined directly in the

namespace <namespace_name> are included and can be used, but we have to

know the following:

Inclusion of namespaces is not recursive, i.e. when including

a namespace the classes from the nested namespaces are

not included.

For example, the inclusion of namespaces System.Collections does not

automatically include the classes from its nested namespace System.
Collections.Generic. When used, either we have to apply their full names,

or to include the namespace, which contains them.

Using a Namespace – Example

In order to illustrate the principle of inclusion of a namespace, we are going to

consider the following program which reads numbers, saves them in lists and

counts how many of them are integer numbers and how many are double:

class NamespaceImportTest
{
 static void Main()
 {
 System.Collections.Generic.List<int> ints =
 new System.Collections.Generic.List<int>();

www.manaraa.com

Chapter 11. Creating and Using Objects 409

 System.Collections.Generic.List<double> doubles =
 new System.Collections.Generic.List<double>();

 while (true)
 {
 int intResult;
 double doubleResult;
 Console.WriteLine("Enter an int or a double:");
 string input = Console.ReadLine();

 if (int.TryParse(input, out intResult))
 {
 ints.Add(intResult);
 }
 else if (double.TryParse(input, out doubleResult))
 {
 doubles.Add(doubleResult);
 }
 else
 {
 break;
 }
 }

 Console.Write("You entered {0} ints:", ints.Count);
 foreach (var i in ints)
 {
 Console.Write(" " + i);
 }
 Console.WriteLine();

 Console.Write("You entered {0} doubles:", doubles.Count);
 foreach (var d in doubles)
 {
 Console.Write(" " + d);
 }
 Console.WriteLine();
 }
}

For this purpose the program uses the class System.Collections.
Generic.List as it calls it by its full name.

Let’s see how the program above works: we enter consecutively the values 4,

1.53, 0.26, 7, 2, end. We get the following result on the standard output:

www.manaraa.com

410 Fundamentals of Computer Programming with C#

You entered 3 ints: 4 7 2
You entered 2 doubles: 1.53 0.26

The program does the following: it gives the user the opportunity to enter

consecutively numbers, which may be integer or double. This continues until

the moment in which a value different from a number is entered. Then on the

standard output two rows are displayed, respectively with integer and double

numbers.

For the implementation of the described actions we use two helping objects

respectively of type System.Collections.Generic.List<int> and System.
Collections.Generic.List<double>. Obviously, the full names of the

classes make the code unreadable, and cause inconveniences. We can easily

avoid this effect by including the namespace System.Collections.Generic
and use directly the classes by name. You can now see the shortened version

of the program above:

using System.Collections.Generic;

class NamespaceImportTest
{
 static void Main()
 {
 List<int> ints = new List<int>();
 List<double> doubles = new List<double>();
 …
 }
}

Exercises

1. Write a program, which reads from the console a year and checks if it is

a leap year.

2. Write a program, which generates and prints on the console 10 random

numbers in the range [100, 200].

3. Write a program, which prints, on the console which day of the week is

today.

4. Write a program, which prints on the standard output the count of days,

hours, and minutes, which have passes since the computer is

started until the moment of the program execution. For the

implementation use the class Environment.

5. Write a program which by given two sides finds the hypotenuse of a

right triangle. Implement entering of the lengths of the sides from the

www.manaraa.com

Chapter 11. Creating and Using Objects 411

standard input, and for the calculation of the hypotenuse use methods of

the class Math.

6. Write a program which calculates the area of a triangle with the

following given:

- three sides;

- side and the altitude to it;

- two sides and the angle between them in degrees.

7. Define your own namespace CreatingAndUsingObjects and place in it

two classes Cat and Sequence, which we used in the examples of the

current chapter. Define one more namespace and make a class, which

calls the classes Cat and Sequence, in it.

8. Write a program which creates 10 objects of type Cat, gives them names

CatN, where N is a unique serial number of the object, and in the end call

the method SayMiau() for each of them. For the implementation use the

namespace CreatingAndUsingObjects.

9. Write a program, which calculates the count of workdays between

the current date and another given date after the current (inclusive).

Consider that workdays are all days from Monday to Friday, which are not

public holidays, except when Saturday is a working day. The program

should keep a list of predefined public holidays, as well as a list of

predefined working Saturdays.

10. You are given a sequence of positive integer numbers given as string

of numbers separated by a space. Write a program, which calculates

their sum. Example: "43 68 9 23 318" 461.

11. Write a program, which generates a random advertising message for

some product. The message has to consist of laudatory phrase, followed

by a laudatory story, followed by author (first and last name) and city,

which are selected from predefined lists. For example, let’s have the

following lists:

- Laudatory phrases: {"The product is excellent.", "This is a great

product.", "I use this product constantly.", "This is the best product

from this category."}.

- Laudatory stories: {"Now I feel better.", "I managed to change.",

"It made some miracle.", "I can’t believe it, but now I am feeling

great.", "You should try it, too. I am very satisfied."}.

- First name of the author: {"Dayan", "Stella", "Hellen", "Kate"}.

- Last name of the author: {"Johnson", "Peterson", "Charls"}.

- Cities: {"London", "Paris", "Berlin", "New York", "Madrid"}.

Then the program would print randomly generated advertising message

like the following:

www.manaraa.com

412 Fundamentals of Computer Programming with C#

I use this product constantly. You should try it, too. I am
very satisfied. -- Hellen Peterson, Berlin

12. * Write a program, which calculates the value of a given numeral

expression given as a string. The numeral expression consists of:

- real numbers, for example 5, 18.33, 3.14159, 12.6;

- arithmetic operations: +, -, *, / (with their standard priorities);

- mathematical functions: ln(x), sqrt(x), pow(x, y);

- brackets for changing the priorities of the operations: (and).

Note that the numeral expressions have priorities, for example the expression

-1 + 2 + 3 * 4 - 0.5 = (-1) + 2 + (3 * 4) - 0.5 = 12.5.

Solutions and Guidelines

1. Use DateTime.IsLeapYear(year).

2. Use the class Random. You may generate random numbers in the range

[100, 200] by calling Random.Next(100, 201).

3. Use DateTime.Today.DayOfWeek.

4. Use the property Environment.TickCount, in order to get the count of

passed milliseconds. Use the fact that one second has 1,000 milliseconds;

one minute has 60 seconds; one hour has 60 minutes and one day has

24 hours.

5. The hypotenuse of a rectangular triangle could be found with the

Pythagorean Theorem a2 + b2 = c2, where a and b are the two sides,

and c is the hypotenuse. Take square root of the two sides of the

equation in order to get the length of the hypotenuse. Use the Sqrt(…)

methods of the Math class.

6. For the first sub-problem of the task use the Heron’s Formula 𝑆 =

 √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐), where 𝑝 =
𝑎+𝑏+𝑐

2
. For the second sub-problem use

the formula: 𝑆 =
𝑎∗ℎ𝑎

2
. For the third sub-problem use the formula: 𝑆 =

𝑎 ∗ 𝑏 ∗ 𝑠𝑖𝑛(𝛾)

2
. For the sine use the System.Math class.

7. Make a new project in Visual Studio, right click on the folder and
choose the menu Add New Folder. Then enter the name of the folder

and press [Enter], right click on the newly made folder and choose Add
 New Item… from the list choose Class, for the name of the new class

enter Cat and press [Add]. Change the definition of the newly created

class with the definition, which we gave to this chapter, to put the classes

in a namespace. Make the same to the class Sequence.

www.manaraa.com

Chapter 11. Creating and Using Objects 413

8. Create an array with 10 elements of type Cat. Create 10 objects of type

Cat in a loop (use a constructor with parameters) and assign them to the

corresponding element of the array. For the serial number of the objects

use the method NextValue() of the Sequence class. In the end again in

an array use the method SayMiau() for each of the array elements.

9. Use the class System.DateTime and the methods in it. You can execute a

loop from the current date (DateTime.Now.Date) to the end date,

consecutively incrementing the day by the method AddDays(1) and count

the working days according to your country (e.g. all days except

Saturday and Sunday and a few fixed non-working official holidays).

Another approach that might work is to subtract the dates to find the

TimeSpan between them (DateTime values can be subtracted, just like a

numbers). This will give you the count of days between the dates. You

will need to perform some additional calculations to find how much

weekends are included in this count and discard them.

10. Use String.Split(' ') to split the string by spaces. Then use

Int32.Parse(…) to extract the separate numbers from the obtained

string array as int values and sum them.

11. Use the class System.Random and its method Next(…) to select a random

laudatory phrase, laudatory story, first name, last name and city and

combine them.

12. Calculating a numeral expression is quite hard and is unlikely a

beginner programmer to solve it correctly without external help. As a

start check out the article in Wikipedia about the "Shunting-yard

algorithm" (en.wikipedia.org/wiki/Shunting-yard_algorithm) describing

how to convert an expression from to postfix notation (reversed Polish

notation), and the article about calculating a postfix expression

(en.wikipedia.org/wiki/Reverse_Polish notation). There are really much

special cases, so be sure to test your solution carefully.

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://en.wikipedia.org/wiki/Reverse_Polish_notation

www.manaraa.com

www.manaraa.com

Chapter 12. Exception
Handling

In This Chapter

In this chapter we will discuss exceptions in the object-oriented

programming and in C# in particular. We will learn how to handle

exceptions using the try-catch construct, how to pass them to the calling

methods and how to throw standard or our own exceptions using the

throw construct. We will give various examples for using exceptions. We will

look at the types of exceptions and the exceptions hierarchy in the .NET

Framework. At the end, we will look at the advantages of using exceptions,

best practices and how to apply them in different situations.

What Is an Exception?

When we write a program, we describe step-by-step what the computer must

do (at least in imperative programming; in the functional programming things

look a bit different) and in most of the cases we rely that the program will

execute normally. Indeed, most of the time, programs are following this

normal pattern, but there are some exceptions. Let’s say we want to read a

file and display its contents on the screen. Let’s assume the file is located on

a remote server and during the process of reading it, the connection goes

down. The file then will be only partially loaded. The program will not be able

to execute normally and show file’s contents on the screen. In this case, we

have an exception from the normal (and correct) program execution and this

exception must be reported to the user and/or the administrator.

Exceptions

Exception is a notification that something interrupts the normal

program execution. Exceptions provide a programming paradigm for

detecting and reacting to unexpected events. When an exception arises, the

state of the program is saved, the normal flow is interrupted and the control

is passed to an exception handler (if such exists in the current context).

Exceptions are raised or thrown by programming code that must send a

signal to the executing program about an error or an unusual situation.

For example, if we try to open a file, which doesn’t exist, the code responsible

for opening the file will detect this and will throw an exception with a proper

error message.

www.manaraa.com

416 Fundamentals of Computer Programming with C#

Exceptions are one of the main paradigms of object-oriented programming

(OOP), which is described in details in the chapter "Object-Oriented

Programming Principles".

Catching and Handling Exceptions

Exception handling is a mechanism, which allows exceptions to be

thrown and caught. This mechanism is provided internally by the CLR

(Common Language Runtime). Parts of the exception handling infrastructure

are the language constructs in C# for throwing and catching exceptions.

CLR takes care to propagate each exception to the code that can handle it.

Exceptions in the Object-Oriented Programming

In Object-Oriented Programming (OOP), exceptions are a powerful mecha-

nism for centralized processing of errors and exceptional situations. This

mechanism replaces the procedure-oriented method of error handling in which

each function returns a code indicating an error or a successful execution.

Usually in OOP, a code executing some operation will cause an exception if

there is a problem and the operation could not be successfully

completed. The method causing the operation could catch the exception

(and handle the error) or pass the exception through to the calling method.

This allows handling errors to be delegated to some upper level in the call

stack and in general, allows flexible management of errors and unexpected

situations.

Another fundamental concept is exceptions hierarchy. In OOP, exceptions

are classes and they can be inherited to build hierarchies. When an exception

is handled (caught), the handling mechanism could catch a whole class of

exceptions and not just a particular error (as in the traditional procedural

programming).

In OOP, it is recommended to use exceptions for managing error

situations or unexpected events that may arise during a program

execution. This replaces the procedural error-handling approach and gives

important advantages such as centralized error processing, handling multiple

errors in one place and ability to pass errors to a higher-level handler.

Another important advantage is that exceptions self-describe themselves and

can create hierarchies.

Sometimes exceptions are used not so much to signal a problem but to

handle some expected event. This is not considered a good practice as

exceptions should not control the normal flow of the program. At the end of

the chapter we will look in more details into this.

Exceptions in .NET

Exception in .NET is an object, which signals an error or an event, which is

not anticipated in the normal program flow. When such unusual event takes

place, the executing method ’throws' a special object containing information

www.manaraa.com

Chapter 12. Exception Handling 417

about the type of the error, the place in the program where the error occurred

as well as the program state at the moment of the error.

Each exception in .NET contains the so-called stack trace, which gives

information of where exactly the error occurred. This will be discussed in more

details later in this chapter.

An Example Code Throwing an Exception

Here is an example for a code that will throw an exception:

class ExceptionsDemo
{
 static void Main()
 {
 string fileName = "WrongTextFile.txt";
 ReadFile(fileName);
 }

 static void ReadFile(string fileName)
 {
 TextReader reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 reader.Close();
 }
}

This program will compile successfully but if you run it, the result will look like

the following (FileNotFoundException dumped on the console):

www.manaraa.com

418 Fundamentals of Computer Programming with C#

In this example, we have a code trying to open a text file for reading and then

display the first line of this file on the screen. We will discuss working with

files in more details in the chapter "Text Files".

The first two lines of ReadFile() contain code that throws an exception. In

this example, if the file WrongTextFile.txt doesn’t exist, the constructor

StreamReader(string, fileName) will throw a FileNotFoundException. If

an unexpected problem occurs during the input-output operations, the stream

methods, such as ReadLine() will throw an IOException.

The code above will successfully compile but at run-time it will throw an

exception if the WrongTextFile.txt file does not exist. The end result in this

case is an error message displayed on the console. The console output also

contains information of where and how the error occurred.

How Do Exceptions Work?

If during the normal program execution one of the methods throws an

exception, the normal flow of the program is interrupted. In the example

above this happens when the StreamReader is initialized. Let’s take a look on

the following line:

TextReader reader = new StreamReader("WrongTextFile.txt");

If this line triggers an error, the reader local variable will not be initialized and

it will have its default value of null. None of the lines that follow in the

method will be executed. The program will be interrupted until the CLR finds a

handler that can process the exception.

Catching Exceptions in C#

After a method throws an exception, CLR is looking for an exception handler

that can process the error. To understand how this works, we will take a

closer look on the concept of a call-stack. The program call-stack is a stack

structure that holds information about method calls, their local variables,

method parameters and the memory for value types.

.NET programs start from the Main(…) method, which is the entry point of

the program. Another method, let’s name it "Method 1" could be called from

Main. Let "Method 1" call "Method 2" and so on until "Method N" is called.

When "Method N" finishes, the program flow returns back to its calling

method (in our example it would be "Method N-1"), then back to its calling

method and so on. This goes on until the Main(…) method is reached. Once

Main(…) finishes, the entire program exits.

The general principle is that when a new method is called, it is pushed on

top of the stack. When the method finishes, it is pulled back from the

stack. At any given point in time, the call-stack contains all the methods

called during the execution – from the starting method Main(…) to the last

www.manaraa.com

Chapter 12. Exception Handling 419

called method, which is currently executing, along with their local variables

and arguments taken as input.

The exception handling mechanism follows a reversed process. When an

exception is thrown, CLR begins searching an exception handler in the call-

stack starting from the method that has thrown the exception. This is

repeated for each of the methods down the call-stack until a handler is found

which catches the exception. If Main(…) is reached and no handler is found,

CLR catches the exception and usually displays an error message (either in

the console or in a special error dialog box).

The described method call and exception handling process could be

visualized in the following diagram (steps 1 through 5):

The try-catch Programming Construct

To handle an exception, we must surround the code that could throw an

exception with a try-catch block:

try
{
 // Some code that may throw an exception
}
catch (ExceptionType objectName)

2. Method call

3. Method call

4. Method call

8. Find handler

7. Find handler

6. Find handler

5. Throw an exception

Main()

Method 1

Method 2

Method N

…

Main()

Method 1

Method 2

Method N

…

.NET
CLR

www.manaraa.com

420 Fundamentals of Computer Programming with C#

{
 // Code handling an Exception
}
catch (ExceptionType objectName)
{
 // Code handling an Exception
}

The try-catch construct consists of one try block and one or more catch

blocks. Within the try block we put the code that could throw exceptions. The

ExceptionType in the catch block must be a type, derived from

System.Exception or the code wouldn’t compile. The expression within

brackets after catch is also a declaration of a variable, thus inside the catch

block we can use objectName to use the properties of the exception or call its

methods.

Catching Exceptions – Example

Let’s now modify the code in our previous example to make it handle its

exceptions. To do this, we wrap the code that could create problems in try-
catch and then we add catch blocks to handle the two types of exceptions we

know could arise.

static void ReadFile(string fileName)
{
 // Exceptions could be thrown in the code below
 try
 {
 TextReader reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 reader.Close();
 }
 catch (FileNotFoundException fnfe)
 {
 // Exception handler for FileNotFoundException
 // We just inform the user that there is no such file
 Console.WriteLine(
 "The file '{0}' is not found.", fileName);
 }
 catch (IOException ioe)
 {
 // Exception handler for other input/output exceptions
 // We just print the stack trace on the console
 Console.WriteLine(ioe.StackTrace);

www.manaraa.com

Chapter 12. Exception Handling 421

 }
}

Now our method works in a different way. When FileNotFoundException is

thrown during the StreamReader initialization when executing the constructor

new StreamReader(filename), the CLR will not execute the following lines

but will jump to the row where we catch the exception catch
(FileNotFoundException fnfe):

catch (FileNotFoundException fnfe)
{
 // Exception handler for FileNotFoundException
 // We just inform the user that there is no such file
 Console.WriteLine("The file '{0}' is not found.", fileName);
}

In our example, users will simply be informed that such file does not exist by

a message printed on the standard output:

The file 'WrongTextFile.txt' is not found.

Similarly, if an IOException is thrown during reader.ReadLine(), it is

handled by the block below:

catch (IOException ioe)
{
 // Exception handler for FileNotFoundException
 // We just print the stack trace on the screen
 Console.WriteLine(ioe.StackTrace);
}

In this case, we display the exception stack trace on the standard output.

The lines between where the exception is thrown and the catch block that

processed it are not executed.

Showing the full information about the exception to the end

user is not always a good practice!

We will discuss the best practices in exception handling later in this chapter.

Stack Trace

The stack trace contains detailed information about the exception

including where exactly it occurred in the program. The stack trace is very

useful for programmers when they try to understand the problem causing the

exception. The information in the stack trace is very technical and is designed

www.manaraa.com

422 Fundamentals of Computer Programming with C#

to be used by programmers and system administrators and not by the end

users. During debugging the stack trace is a priceless tool.

Stack Trace – Example

Here is the stack trace from our first example:

Unhandled Exception: System.IO.FileNotFoundException: Could not
find file '…\WrongTextFile.txt'.
 at System.IO.__Error.WinIOError(Int32 errorCode, String
maybeFullPath)
 at System.IO.FileStream.Init(String path, FileMode mode,
FileAccess access, Int32 rights, Boolean useRights, FileShare
share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean
bFromProxy, Boolean useLongPath)
 at System.IO.FileStream..ctor(String path, FileMode mode,
FileAccess access, FileShare share, Int32 bufferSize,
FileOptions options)
 at System.IO.StreamReader..ctor(String path, Encoding
encoding, Boolean detectEncodingFromByteOrderMarks, Int32
bufferSize)
 at System.IO.StreamReader..ctor(String path)
 at Exceptions.Demo1.ReadFile(String fileName) in
Program.cs:line 17
 at Exceptions.Demo1.Main() in Program.cs:line 11

The system cannot find the file named “WrongTextfile.txt” and the

FileNotFoundException is thrown.

Reading the Stack Trace

To be able to use the stack trace, we must be familiar with its structure.

The stack trace contains the following information:

- The full name of the exception class;

- A message with additional information about the error;

- Information about the call-stack;

In our example above, the full name of the exception is

System.IO.FileNotFoundException. The error message follows: "Could not

find file '…\WrongTextFile.txt'." What follows is a full call-stack dump,

which is usually the longest part of the stack trace. Each line of the call stack

dump contains something similar to the following:

 at <namespace>.<class>.<method> in <source file>.cs:line <line>

www.manaraa.com

Chapter 12. Exception Handling 423

Every method is shown in a separate line. On the first line is the method that

threw the exception and on the least line – the Main() method (notice that

the Main() method might not be present in case of an exception thrown by a

thread which is not the main thread of the program). Every method is given

with full information about the class that contains it and (if possible) even the

line in the source code:

 at Exceptions.Demo1.ReadFile(String fileName) in
…\Program.cs:line 17

The line numbers are included only if the respective class is compiled with

debug information (this information contains line numbers, variable names

and other technical information). The debug information is not included in the

.NET assemblies but is in separate files called 'debug symbols' (.pdb). As you

can see in the example stack trace, debug information is available for some

assemblies, while for others (like the .NET assemblies) it is not. This is why

some entries in the stack trace have line numbers and others – not.

If the method throwing the exception is a constructor, then instead of method

name, the stack trace contains the word .ctor, like in System.IO.
StreamReader..ctor(String path).

This rich information in the stack trace allows quickly and easily to find the

class, the method and even the source line where the error has occurred.

Then usually it is relatively straightforward to analyze the problem causing the

error and fixing it. This is not the same in primitive languages such as C and

Pascal where the concept of stack trace is not supported.

Throwing Exceptions (the throw Construct)

Exceptions in C# are thrown using the keyword throw. We need to provide an

instance of the exception, containing all the necessary information about the

error. Exceptions are normal classes and the only requirement is that they

inherit directly or indirectly from the System.Exception class.

Here is an example:

static void Main()
{
 Exception e = new Exception("There was a problem");
 throw e;
}

The result from running this program is:

Unhandled Exception: System.Exception: There was a problem
 at Exceptions.Demo1.Main() in Program.cs:line 11

www.manaraa.com

424 Fundamentals of Computer Programming with C#

Exceptions Hierarchy

There are two types of exceptions in .NET Framework: exceptions thrown by

the applications we develop (ApplicationException) and exceptions thrown

by the runtime (SystemException). Each of these is a base class for a

hierarchy of exception classes:

As all of these classes have different characteristics, we will examine them

one by one.

The Exception Class

In .NET Framework, Exception is the base class for all exceptions. Several

classes inherit directly from it, including ApplicationException and

SystemException. These two classes are base classes for almost all

exceptions that occur during the program execution.

The Exception class contains a copy of the call-stack at the time the

exception instance was created. The class also has a (usually) short message

describing the error (filled in by the method throwing the exception). Every

exception could have a nested exception also sometimes called an inner

exception, wrapped exception or internal exception.

The ability to wrap an exception with another exception is very useful in some

cases and allows exceptions to be linked in the so called exception chain.

Exception – Constructors, Methods and Properties

Here is how the System.Exception class looks like:

[SerializableAttribute]
[ComVisibleAttribute(true)]
[ClassInterfaceAttribute(ClassInterfaceType.None)]
public class Exception : ISerializable, _Exception
{
 public Exception();
 public Exception(string message);

System
Exception

Exception

Application
Exception

www.manaraa.com

Chapter 12. Exception Handling 425

 public Exception(string message, Exception innerException);
 public virtual IDictionary Data { get; }
 public virtual string HelpLink { get; set; }
 protected int HResult { get; set; }
 public Exception InnerException { get; }
 public virtual string Message { get; }
 public virtual string Source { get; set; }
 public virtual string StackTrace { get; }
 public MethodBase TargetSite { get; }
 public virtual Exception GetBaseException();
}

The full specification of the Exception class given above is complex to be

explained, so we will discuss only its most important methods and properties

as they are inherited by all exceptions in .NET Framework.

- We have three constructors with different combinations for message and

inner exception.

- The Message property returns a text description of the exception. For

example if the exception is FileNotFoundException, the message could

provide information which file was not found. In most of the cases, the

code throwing the exception passes the message in the constructor.

Once set, the Message property cannot be changed.

- The InnerException property returns the inner (wrapped, nested)

exception or null if such doesn’t exist.

- The GetBaseException() returns the innermost exception from a given

exception chain. By definition, calling this method for every exception

within an exception chain will always yield the same result – the first

exception that happened.

- The StackTrace property returns information for the entire stack

contained in the exception (we have already seen how this information

looks like).

Application vs. System Exceptions

Exceptions in .NET are two types – system and application. System exceptions

are defined in .NET libraries and are used by the framework, while application

exceptions are defined by application developers and are used by the

application software. When we, as developers, design our own exception

classes, it is a good practice to inherit from ApplicationException and not

directly from SystemException (or even worse – directly from Exception).

SystemException should only be inherited internally within the .NET

Framework.

www.manaraa.com

426 Fundamentals of Computer Programming with C#

Some of the worst system exceptions include ExecutionEngineException

(which is thrown on internal error within CLR), StackOverflowException

(call-stack overflow, most probably due to infinite recursion) and

OutOfMemoryException (insufficient memory). In all of these cases, our

application could hardly recover or react in some reasonable manner. Most

frequently, when such exception occurs, the application just crashes.

Exceptions related to interaction with external components (like COM

components) inherit from ExternalException. Examples are COMException

and Win32Exception.

Throwing and Catching Exceptions

Let’s look in more details at throwing and catching exceptions.

Nested Exceptions

We’ve already seen that each exception could contain a nested (inner)

exception. Let’s explain in more details why it is a common practice in OOP

error handling to wrap exceptions in this way.

In software engineering, it is a good practice for every software component to

define small number of specific application exceptions. The component

then would throw only these specific application exceptions and not the

standard .NET exceptions. In this way the users of the software component

would know what exceptions could expect from it.

For instance, if we have a banking software and we have a component dealing

with interests, this component would define (and throw) exceptions like

InterestCalculationException and InvalidPeriodException. The interest

component should not throw exceptions like FileNotFoundException,

DivideByZeroException and NullReferenceException. When an error

occurs, which is not directly related to interest calculation, the respective

exception is wrapped in InterestCalculationException and the calling code

will be informed that the interest calculation was not correctly done.

Still, these business application exceptions usually do not have detailed

technical information about the nature of the problem. This is why, it is

considered a good practice to include technical details about the problem and

this is where inner exceptions come in handy. When the component throws its

application exception, it should keep the original exception as an inner

exception in order to preserve the technical details about the error.

Another example is when a software component (let’s call it Component A)

defines its own application exceptions (A-exceptions). This component

internally uses another component (called Component B). If for some reason B

throws a B exception (an exception defined in B), perhaps A will have to

propagate the error because it will not be able to do its task. And because A

cannot simply throw a B-exception, it must throw an A-exception, containing

the B-exception as a nested exception.

www.manaraa.com

Chapter 12. Exception Handling 427

There could be various reasons why A cannot simply throw a B exception:

- Component A users should not even know Component B exists (see the

discussion regarding abstractions in the "Principles of OOP" chapter);

- Component A had not declared it would throw Component B exceptions;

- Component A users are not prepared to receive Component B

exceptions. They expect component A exceptions only.

How to Read the Stack Trace with Nested Exceptions?

Below we have an example that creates an exception chain. We will

demonstrate how such exception chain is created and how the stack trace

looks like in the output:

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

static void Main()
{
 try
 {
 string fileName = "WrongFileName.txt";
 ReadFile(fileName);
 }
 catch (Exception e)
 {
 throw new ApplicationException("Smth. bad happened", e);
 }
}
static void ReadFile(string fileName)
{
 TextReader reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 reader.Close();
}

In this example, we call the ReadFile() method (line 42), which will throw an

exception (line 51) because the file "WrongFileName.txt" does not exist. In

the Main() method we catch all exceptions (line 44), wrap them into a new

exception of type ApplicationException and throw them again (line 46). As

we shall see later in the section "Grouping Different Error Types", caching an

Exception also catches all its descendant exceptions in its hierarchy. Finally

the thrown exception (at line 46) is caught by .NET Framework and its stack

trace is dumped on the console.

The result of running the above example is shown below:

www.manaraa.com

428 Fundamentals of Computer Programming with C#

Let’s look more carefully at the stack trace. We now see an additional section

marking the end of the nested exception:

--- End of inner exception stack trace ---

This gives useful information about how the exception was thrown.

If you look more closely on the first line, you will notice it contains information

in the following format:

This shows that an exception of type Exception1 is wrapped around an

exception of type Exception2. After each exception type, we can see the

message of the respective exception (as contained in the Message property).

Using the information in the stack-trace (the file name, the method and the

line number), we can find out how the exceptions occurred and where.

Visualizing Exceptions

In console applications errors are usually printed in the output although

this might not be the most user-friendly way to notify the user for problems.

Unhandled Exception: Exception1: Msg1 ---> Exception2: Msg2

www.manaraa.com

Chapter 12. Exception Handling 429

In Web applications, errors are frequently shown in the beginning or at the

bottom of the page or near the UI field related to the error.

In GUI applications we should show the errors in a dialog window containing

user-friendly description of the error. An example of user-friendly error

message dialog box is given below:

As you can see, there is no single 'right' way to handle and visualize

exceptions as it depends on the type of the application and its intended

audience. Still there are some recommendations regarding how to handle

exceptions and what is the best way to show them to the users. We will

discuss these recommendations in the "Best Practices" section.

Which Exceptions to Handle and Which Not?

There is one universal rule regarding exception handling:

A method should only handle exceptions which it expects and

which it knows how to process. All the other exceptions must

be left to the calling method.

If we follow this rule and every method leaves the exceptions it is not

competent to process to the calling method, eventually we would reach the

Main() method (or the starting method of the respective thread of execution)

and if this method does not catch the exception, the CLR will display the error

www.manaraa.com

430 Fundamentals of Computer Programming with C#

on the console (or visualize it in some other way) and will terminate the

program.

A method is competent to handle an exception if it expects this exception, it

has the information why the exception has been thrown and what to do in this

situation. If we have a method that must read a text file and return its

contents as a string, that method might catch FileNotFoundException and

return an empty string in this case. Still, this same method will hardly be able

to correctly handle OutOfMemoryException. What should the method do in

case of insufficient memory? Return an empty string? Throw some other

exception? Do something completely different? So apparently the method is

not competent to handle such exception and thus the best way is to pass the

exception up to the calling method so it could (hopefully) be handled at some

other level by a method competent to do it. Using this simple philosophy

allows exception handling to be done in a structured and systematic way.

Throwing Exceptions from the Main() Method –

Example

Throwing exceptions from the Main() method is generally not a good

practice. Instead, it is better all exceptions to be caught in Main(). Still it is of

course possible to throw exceptions from Main() just as from any other

method:

static void Main()
{
 throw new Exception("Ooops!");
}

Every exception which is not handled in Main() is eventually caught by the

CLR and visualized by printing the stack trace on the console output or in

some other way. While for small applications it is not such a problem, big and

complex applications generally should not crash in such ungraceful manner.

Catching Exceptions at Different Levels – Example

The ability to pass (or bubble) exceptions through a given method up to the

calling method allows structured exception handling to be done at multiple

levels. This means that we can catch certain types of exceptions in given

methods and pass all other exceptions to the previous levels in the call-stack.

In the example below, the exceptions in the ReadFile() method are handled

at two levels (in the try-catch block of the ReadFile() method itself and in

the try-catch block of the Main() method):

static void Main()
{
 try

www.manaraa.com

Chapter 12. Exception Handling 431

 {
 string fileName = "WrongFileName.txt";
 ReadFile(fileName);
 }
 catch (Exception e)
 {
 throw new ApplicationException("Bad thing happened", e);
 }
}

static void ReadFile(string fileName)
{
 try
 {
 TextReader reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 reader.Close();
 }
 catch (FileNotFoundException fnfe)
 {
 Console.WriteLine("The file {0} does not exist!",
 filename);
 }
}

In this example the ReadFile() method catches and handles only

FileNotFoundException while passing all other exceptions up to the Main()

method. In the Main() method we handle only exceptions of type

IOException and will let the CLR to handle all other exceptions (for instance,

if OutOfMemoryException is thrown during program’s execution, it will be

handled by the CLR).

If the Main() method passes a wrong filename, FileNotFoundException will

be thrown while initializing the TextReader in ReadFile(). This exception will

be handled by the ReadFile() method itself. If on the other hand the file

exists but there is some problem reading it (insufficient permissions, damaged

file contents etc.), the respective exception that will be thrown will be handled

in the Main() method.

Handling exceptions at different levels allows the error conditions to be

handled at the most suitable place for the particular error. This allows the

program code to be clear and structured and the flexibility achieved is

enormous.

www.manaraa.com

432 Fundamentals of Computer Programming with C#

The try-finally Construct

Every try block could contain a respective finally block. The code within the

finally block is always executed, no matter how the program flow leaves the

try block. This guarantees that the finally block will be executed even if an

exception is thrown or a return statement is executed within the try block.

The code in the finally block will not be executed if while

executing the try block, CLR is unexpectedly terminated, e.g.

if we stop the program through Windows Task Manager.

The basic form of the finally block is given below:

try
{
 // Some code that could or could not cause an exception
}
finally
{
 // Code here will always execute
}

Every try block may have zero or more catch blocks and at most one

finally block. It is possible to have multiple catch blocks and a finally

block in the same try-catch-finally construct.

try
{
 some code
}
catch (…)
{
 // Code handling an exception
}
catch (…)
{
 // Code handling another exception
}
finally
{
 // This code will always execute
}

www.manaraa.com

Chapter 12. Exception Handling 433

When Should We Use try-finally?

In many applications we have to work with external for our programs

resources. Examples for external resources include files, network

connections, graphical elements, pipes and streams to or from different

hardware devices (like printers, card readers and others). When we deal with

such external resources, it is critically important to free up the resources as

early as possible when the resource is no longer needed. For example, when

we open a file to read its contents (let’s say to load a JPG image), we must

close the file right after we have read the contents. If we leave the file open,

the operating system will prevent other users and applications to make

certain operations on the file. Perhaps you faced such a situation when you

could not delete some directory or a file because it is being used by a running

process.

The finally block is priceless when we need to free an external resource or

make any other cleanup. The finally block guarantees that the cleanup

operations will not be accidentally skipped because of an unexpected

exception or because of execution of return, continue or break.

Because proper resource management is an important concept in

programming, we will look at it in some more details.

Resource Cleanup – Defining the Problem

In our example, we want to read a file. To accomplish this, we have a reader

that must be closed when the file has been read. The best way to do this is to

surround the lines using the reader in a try-finally block. Here is a refresh

of how our example looks like:

static void ReadFile(string fileName)
{
 TextReader reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 reader.Close();
}

What is the problem with this code? Well, what the code is supposed to do

is to open up a file reader, read the data and then close the reader before the

method returns. This last part is a problem because the method could finish in

one of several ways:

- An exception could be thrown when the reader is initialized (say if the

file is missing).

- During reading the file, an exception could arise (imagine a file on a

remote network device which goes offline during file reading).

www.manaraa.com

434 Fundamentals of Computer Programming with C#

- A return statement could be executed before the reader is closed (in

our trivial example this would be obvious but it is not always as

apparent).

- Everything goes as expected and the method is executed normally.

So our method as written in the example above has a critical flaw: it will

close the reader only in the last scenario. In all of the other cases, the code

closing the reader will not be executed. And if this code is within a loop,

things get even more complex as continue and break operators must be

considered too.

Resource Cleanup – Solving the Problem

In the previous section we explained the fundamental flaw of the solution
'open the file read close'. If an error occurs during opening or reading

the file, we will leave the file open.

To solve this, we can use the try-finally construct. We will first discuss the

case in which we have one resource to clean-up (in this case a file). Then we

will give an example when we have two or more resources.

Closing a file stream could be done using the following pattern:

static void ReadFile(string fileName)
{
 TextReader reader = null;
 try
 {
 reader = new StreamReader(fileName);
 string line = reader.ReadLine();
 Console.WriteLine(line);
 }
 finally
 {
 // Always close "reader" (if it was opened)
 if (reader != null)
 {
 reader.Close();
 }
 }
}

In this example we first declare the reader variable, and then initialize the

TextReader in a try block. Then in the finally block we close the reader.

Whatever happens during TextReader’s initialization or during reading, it is

guaranteed that the file will be closed. If there is a problem initializing the

reader (say the file is missing), then reader will remain null and this is why

we do a check for null in the finally block before calling Close(). If the value

www.manaraa.com

Chapter 12. Exception Handling 435

is indeed null, then the reader has not been initialized and there is no need

to close it. The code above guarantees that if the file has been opened, then it

will be closed no matter how the method exits.

The example above should, in principle, properly handle all exceptions related

to opening and initialization of the reader (like FileNotFoundException). In

our example, these exceptions are not handled and are simply propagated to

the caller.

We have chosen file streams for our example for freeing resources up but the

same principle applies to all resources that require proper cleanup. These

could be remote connections, operating system resources, database

connections and so on.

Resource Cleanup – Better Solution

While the above solution is correct, it is unnecessary complex. Let’s look at a

simplified version:

static void ReadFile(string fileName)
{
 TextReader reader = new StreamReader(fileName);
 try
 {
 string line = reader.ReadLine();
 Console.WriteLine(line);
 }
 finally
 {
 reader.Close();
 }
}

This code has the advantage of being simpler and shorter. We avoid the

preliminary declaration of the reader variable and the check for null in the

finally block. The null check is now not necessary because the initialization of

the reader is outside of the try block and if an exception occurs during the

initialization, the finally block will not be executed at all.

This code is cleaner, shorter and clearer and is known as "dispose pattern".

However, note that this way the exception will go up to the method calling

ReadFile(…).

Multiple Resources Cleanup

Sometimes we need to free more than one resource. It is a good practice to

free the resources in in reverse order in respect to their allocation.

www.manaraa.com

436 Fundamentals of Computer Programming with C#

We can use the same approach outlined above, nesting the try-finally

blocks inside each other:

static void ReadFile(string filename)
{
 Resource r1 = new Resource1();
 try
 {
 Resource r2 = new Resource2();
 try
 {
 // Use r1 and r2
 }
 finally
 {
 r2.Release();
 }
 }
 finally
 {
 r1.Release();
 }
}

Another option is to declare all of the resources in advance and then make the

cleanup in a single finally block with respective null checks:

static void ReadFile(string filename)
{
 Resource r1 = null;
 Resource r2 = null;
 try
 {
 Resource r1 = new Resource1();
 Resource r2 = new Resource2();

 // Use r1 and r2
 }
 finally
 {
 if (r1 != null)
 {
 r1.Release();
 }
 if (r2 != null)

www.manaraa.com

Chapter 12. Exception Handling 437

 {
 r2.Release();
 }
 }
}

Both of these options are correct and both are applied depending on the

situation and programmer’s preference. The second approach is a little bit

riskier as if an exception occurs in the finally block, some of the resources

will not be cleaned up. In the example above, if an exception is thrown during

r1.Release(), r2 will not be cleaned up. If we use the first option, there is

no such problem but the code is a bit longer.

IDisposable and the "using" Statement

It is time to present a new shorter and simplified way to release some kinds

of resources in C#. We will demonstrate which resources can use this special

programming construct and how it looks like.

IDisposable

The main use of IDisposable interface is to release resources. In .NET

such resources are window handles, files, streams and others. We will talk

about interfaces in “OOP Principles” chapter. Now we may consider interface

as an indication that given type of objects (for example streams for reading

files) support a certain number of operations (for example closing the stream

and releasing related resources).

We will not go into details how to implement IDisposable since we have to

go much deeper and explain how the garbage collector works, how to use

destructors, unmanaged resources and so on.

The important method in IDisposable interface is Dispose(). The main thing

we need to know about the method is that it releases the resources of the

class that implements it. In cases when resources are streams, readers or

files releasing resources can be done using the Dispose() method from

IDisposable interface, which calls their Close() method. This method closes

them and releases their resources. So to close a stream we can do the

following:

StreamReader reader = new StreamReader(fileName);
try
{
 // Use the reader here
}
finally
{

www.manaraa.com

438 Fundamentals of Computer Programming with C#

 if (reader != null)
 {
 reader.Dispose();
 }
}

The Keyword "using"

The previous example can be written in shorter form with the help of the

using keyword in C#, as shown in the following example:

using (StreamReader reader = new StreamReader(fileName))
{
 // Use the reader here
}

The above simplified form of the "dispose pattern" is simple to write,

simple to use and simple to read and is guaranteed to release correctly the

allocated resources specified in the brackets of the using statement.

It is not necessary to have try-finally or to explicitly call any method to

release the resources. The compiler takes care to automatically put try-

finally block and the used resources are released by calling the Dispose()

method after leaving the using block.

Later in chapter "Text Files" we will extensively use the using statement to

correctly read and write text files.

Nested "using" Statements

The using statements can be nested one within another:

using (ResourceType r1 = …)
 using (ResourceType r2 = …)
 …
 using (ResourceType rN = …)
 statements;

The previous example can be written like this:

using (ResourceType r1 = …, r2 = …, …, rN = …)
{
 statements;
}

www.manaraa.com

Chapter 12. Exception Handling 439

It is important to mention that using statement is not related to exception

handling. Its only purpose is to release the resources no matter whether

exceptions are thrown or not. It does not handle exception.

When to Use the "using" Statement?

There is a simple rule when to use using with .NET classes:

Use the using statement with all classes that implement the

IDisposable interface. Look for IDisposable in MSDN.

When a class implements IDisposable interface this means that the creator

of this class expects it can be used with the using statement and the class

contains some expensive resource that should not be left unreleased.

Implementing IDisposable also means that it should be released

immediately after we finish using the class and the easiest way to do this in

C# is with using statement.

Advantages of Using Exceptions

So far we reviewed the exceptions in details, their characteristics and how to

use them. Now let’s find out why they were introduced and why they are so

widely used.

Separation of the Exception Handling Code

Using exceptions allow us to separate the code, which describes the normal

execution of the program from the code required for unexpected execution

and the code for error handling. We will demonstrate this separation

concept in the following example:

void ReadFile()
{
 OpenTheFile();
 while (FileHasMoreLines)
 {
 ReadNextLineFromTheFile();
 PrintTheLine();
 }
 CloseTheFile();
}

Let’s explore the example step by step. It does the following:

- Open the file;

- While the file has more lines:

- Read the next line from the file;

www.manaraa.com

440 Fundamentals of Computer Programming with C#

- Print the line;

- Close the file;

The method looks good but a closer look brings up some questions:

- What will happen if the file does not exist?

- What will happen if the file cannot be opened?

- What will happen if reading a line fails?

- What will happen if the file cannot be closed?

Error Handling without Exceptions

Let’s change the method having these questions in mind without using

exceptions. Let’s use error codes returned by any method that we use.

Using error codes is standard way for handling errors in procedure oriented

programming, where every method returns int, which provides information

whether the method was executed correctly. Error code 0 means that

everything is correct. Any other code means some error. Different kinds of

errors have different codes (usually it is a negative number).

int ReadFile()
{
 errorCode = 0;
 openFileErrorCode = OpenTheFile();

 // Check whether the file is open
 if (openFileErrorCode == 0)
 {
 while (FileHasMoreLines)
 {
 readLineErrorCode = ReadNextLineFromTheFile();
 if (readLineErrorCode == 0)
 {
 // Line has been read properly
 PrintTheLine();
 }
 else
 {
 // Error during line reading
 errorCode = -1;
 break;
 }
 }
 closeFileErrorCode = CloseTheFile();
 if (closeFileErrorCode != 0 && errorCode == 0)

www.manaraa.com

Chapter 12. Exception Handling 441

 {
 errorCode = -2;
 }
 else
 {
 errorCode = -3;
 }
 }
 else if (openFileErrorCode == -1)
 {
 // File does not exist
 errorCode = -4;
 }
 else if (openFileErrorCode == -2)
 {
 // File can't be open
 errorCode = -5;
 }
 return errorCode;
}

As a result we have a hard to understand and easy to break “spaghetti”

code. Program logic is mixed with the error handling logic. Big parts of the

code are the rules for error handling. Errors don’t have type, description or

stack trace and we have to wonder what the different error codes mean.

Error Handling with Exceptions

We can avoid all of the above spaghetti code just by using exceptions. Here

is how the same method will look like using exceptions instead:

void ReadFile()
{
 try
 {
 OpenTheFile();
 while (FileHasMoreLines)
 {
 ReadNextLineFromTheFile();
 PrintTheLine();
 }
 }
 catch (FileNotFoundException)
 {
 DoSomething();

www.manaraa.com

442 Fundamentals of Computer Programming with C#

 }
 catch (IOException)
 {
 DoSomethingElse();
 }
 finally
 {
 CloseTheFile();
 }
}

In fact exceptions don’t save us the effort in finding and processing errors but

give us more elegant, short, clear and efficient way to do it.

Grouping Different Error Types

The hierarchical nature of exceptions allows us to catch and handle whole

groups of exceptions at one time. When using catch we are not only catching

the given type of exception but the whole hierarchy of exception types

that are inheritors of the declared type.

catch (IOException e)
{
 // Handle IOException and all its descendants
}

The example above will catch not only the IOException, but all of its

descendants including FileNotFoundException, EndOfStreamException,

PathTooLongException and many others. In the same time exceptions like

UnauthorizedAccessException and OutOfMemoryException will not be

caught, because they don’t inherit from IOException. We can look in MSDN

for the exceptions hierarchy if we wander which exceptions to catch.

It is not a good practice, but it is possible to catch all exceptions:

catch (Exception e)
{
 // A (too) general exception handler
}

Catching Exception and all of its inheritors is not a good practice. It is better

to catch more specific groups of exceptions like IOException or just one type

of exception like for example FileNotFoundException.

www.manaraa.com

Chapter 12. Exception Handling 443

Catching Exceptions at the Most Appropriate Place

The ability to catch exceptions at multiple locations is extremely

comfortable. It allows us to handle the exception at the most appropriate

place. Let’s demonstrate this with a simple comparison with the old approach

using error codes. Let’s have the following method structure:

Method3()
{
 Method2();
}

Method2()
{
 Method1();
}

Method1()
{
 ReadFile();
}

The method Method3() calls Method2(), which calls Method1() where

ReadFile() is called. Let’s suppose that Method3() is the method interested

in eventual error in the ReadFile() method. If such error occurs in

ReadFile() it wouldn’t be easy to transfer the error to Method3() using the

traditional approach with error codes:

void Method3()
{
 errorCode = Method2();
 if (errorCode != 0)
 process the error;
 else
 DoTheActualWork();
}

int Method2()
{
 errorCode = Method1();
 if (errorCode != 0)
 return errorCode;
 else
 DoTheActualWork();
}

www.manaraa.com

444 Fundamentals of Computer Programming with C#

int Method1()
{
 errorCode = ReadFile();
 if (errorCode != 0)
 return errorCode;
 else
 DoTheActualWork();
}

First in Method1() we have to analyze the error code returned by

ReadFile() method and eventually pass it to Method2(). In Method2() we

have to analyze the error code returned by Method1() and eventually pass it

to Method3() where to handle the error itself.

How can we avoid all this? Let’s remember that that the CLR searches for

exceptions back in the call stack of the methods and lets each of them to

define catching and handling of the exceptions. If the method is not interested

in catching some exception it is simply sent back in the stack:

void Method3()
{
 try
 {
 Method2();
 }
 catch (Exception e)
 {
 process the exception;
 }
}

void Method2()
{
 Method1();
}

void Method1()
{
 ReadFile();
}

If an error occurs during reading the file it will be ignored in Method1() and
Method2() and will be caught and handled in Method3() where is the most

appropriate place to handle the error. Let’s remember again the most

www.manaraa.com

Chapter 12. Exception Handling 445

important rule: every method should catch only exceptions that can handle

and skip all the others.

Best Practices when Using Exceptions

In this section we will give some recommendations and best practices for

correctly using exceptions for error handling and unexpected situations.

These are important rules that should be remembered and followed.

When to Rely on Exceptions?

To understand when it is good to rely on exceptions let’s see the following

example: we have a program that opens a file by given path and file name.

While writing the user can write the file name wrong. This should rather be

considered normal and not exceptional.

We can be prepared and first check if the file exists before we try to open it:

static void ReadFile(string fileName)
{
 if (!File.Exists(fileName))
 {
 Console.WriteLine(
 "The file '{0}' does not exist.", fileName);
 return;
 }

 StreamReader reader = new StreamReader(fileName);
 using (reader)
 {
 while (!reader.EndOfStream)
 {
 string line = reader.ReadLine();
 Console.WriteLine(line);
 }
 }
}

If we call the method and the file is missing we will see the following message

in the console:

The file 'WrongTextFile.txt' does not exist.

The other way to implement this is the following:

static void ReadFile(string filename)
{

www.manaraa.com

446 Fundamentals of Computer Programming with C#

 StreamReader reader = null;
 try
 {
 reader = new StreamReader(filename);
 while (!reader.EndOfStream)
 {
 string line = reader.ReadLine();
 Console.WriteLine(line);
 }
 reader.Close();
 }
 catch (FileNotFoundException)
 {
 Console.WriteLine(
 "The file '{0}' does not exist.", filename);
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }
 }
}

We can consider the second option as worse because exceptions should be

used for unexpected situations and missing file is more or less usual.

It is not a good practice to rely on exceptions for expected events for another

reason: performance. Throwing an exception is time consuming operation.

An object has to be created to hold the exception, the stack trace has to be

initialized and handler for this exception has to be found and so on.

It is hard to define the exact border between expected and

unexpected. In general expected event is something related

to the program functionality. Input of wrong file name for

example. Power cut during the execution of the program,

from the other hand, is unexpected event.

Throw Exceptions to the End User?

Exceptions are confusing for most users. They give the impression of a

poorly written program that “has bugs”. What will the user of our application

entering invoices think if suddenly the program shows this dialogue?

www.manaraa.com

Chapter 12. Exception Handling 447

This dialogue is very suitable for a developers or administrators for example,

but it is extremely inappropriate for the end users.

Instead of this dialogue we can show another one, much more user friendly

and understandable for the user:

www.manaraa.com

448 Fundamentals of Computer Programming with C#

This is the good way to show the error message to the end user. The

message is easy to understand from the user and also contains technical

details that can be used if required but is not visible at the beginning.

It is recommended when exceptions are not caught by anyone (such

exceptions can only be runtime errors) to be caught by a global exception

handler which saves them on the disk and shows user friendly message such

as “An error occurred, please try again later”. It is a good a practice to show

not only a user friendly message but also technical information (stack trace)

available on demand (e.g. through an additional button or link).

Throw Exceptions at the Appropriate Level of
Abstraction!

When we throw our own exceptions we must keep in mind the abstractions in

the context our methods work. For example if our method works with arrays

we can throw IndexOutOfRangeException or NullReferenceException

because our method works at low level and directly operates with the memory

and the array elements. But if our method is doing accumulating of interests

at all accounts in a bank it should not throw IndexOutOfRangeException

because this exception is not from the business area of the banking sector. It

would be normal accumulation of interests in a bank software to throw

InvalidInterestException exception with an appropriate error message

where the original IndexOutOfRangeException exception to be attached.

Let’s give another example: we call a method that sorts an array of integers

and throws an exception TransactionAbortedException. This is also an

inappropriate exception just as NullReferenceException was in accumu-

lation of interests in the bank software. That is why we should consider the

abstraction level where our method works when we throw our exception.

If Your Exception Has a Source, Use It!

When we catch an exception and throw a new one with a higher level of

abstraction we should always attach the original exception to it. This way

the user of our code will be able to easily find the exact reason for the error

and the location where it occurred at the first place.

This rule is a special case of more general rule:

Each exception should carry detailed information about the

problem.

From the rule above many more rules come out: we should have a relevant

error message, the error type should match the problem and the exceptions

should hold its source as inner exception.

www.manaraa.com

Chapter 12. Exception Handling 449

Give a Detailed Descriptive Error Message!

The error message that every exceptions holds is extremely important. In

most cases it is enough to give us information what is the problem. If the

message is not good enough the users of your methods will not be able to

quickly solve the problem.

Let’s take the following example: we have a method that reads the

applications settings from a file. For example size and position of all windows

in the application and others. There is a problem while reading the settings

file and we receive the following error message:

Error.

Is this enough to find the problem? Obviously not. What should be the

message so it is descriptive enough? Is this one better?

Error reading settings file.

Obviously the message above is better but it is still not good enough. It

explains what the error is but does not tell us what causes it. Let’s suppose

we change the program so it gives the following error information:

Error reading settings file:
C:\Users\Administrator\MyApp\MyApp.settings

This error message is better because it tells us which file caused the problem

(something that would save us time, especially if we are not familiar with the

application and don’t know where it keeps its settings files).

The situation could be even worse – we may not have the source code of the

application and don’t have the access to the stack trace (if we have compiled

without debug information). That is why the error message should be even

better. For example like the following:

Error reading settings file:
C:\Users\Administrator\MyApp\MyApp.settings. Number expected at
line 17.

This message fully describes the problem. Obviously we have an error on line

17, in MyApp.settings file, which is in C:\Users\Administrator\MyApp

folder. On this line a number is expected but is not provided. If we open the

file we could quickly find the problem.

Always give adequate, detailed and correct error message

when throwing exceptions! The user of your code should be

able to tell what and where is the problem and what caused

it when reading the error message.

www.manaraa.com

450 Fundamentals of Computer Programming with C#

Let’s give some examples:

- We have a method that searches for an integer in an array. If it throws

IndexOutOfRangeException it is important to mention the index that

cannot be reached in the error message. For example index 18 when the

length of the array is 7. If we don’t know the position we will hardly

understand why we are outside the array.

- We have a method that reads integers from a file. If in the file we have

a row without an integer we should get an error, which explains that at

row 17 for example an integer is expected instead of a string (and prints

the string).

- We have a method that calculates the sum of numeric expression. If we

find an error in the expression the exception should say what error

occurred and at what position. The code that causes the error may use

String.Format(…) to build the error message. Here is an example how

to implement this:

throw new FormatException(
 string.Format("Invalid character at position {0}. " +
 "Number expected but character '{1}' found.", index, ch));

Error Messages with Wrong Content

Even worse than throwing an exception with not enough information is

throwing one with wrong information. If in the last example we say the error

is at row 3 instead of row 17 this will be misleading and will be worse than

just showing an error and give no details.

Be careful not to show messages with incorrect content!

Use English for All Exception Messages

Use English for the error messages when throwing an exception. This rule

is a sub-rule of the rule “use English in your entire source code. The reason:

English is the only language that is understood by programmers around the

world. One day your code could be used by foreigners. If you live in France

you probably won’t be happy to get error messages in Chinese and vice-

versa, would you?

Note that error messages shown to the end user could be in his native

language, but the error messages in the exceptions should always be in

English. The exceptions are for the developer. The developers around the

world use English. The messages (errors / notifications / warnings) for the

end user are different story. These messages could be in the language which

is best suited for the end-users and may be customized through localization

techniques like resources, embedded resource files and resource strings (see

www.manaraa.com

Chapter 12. Exception Handling 451

http://msdn.microsoft.com/en-us/magazine/cc163609.aspx for additional

information).

Never Ignore the Exceptions You Catch!

Never ignore the exceptions you catch without handling them. Here is an

example what we should not do:

try
{
 string fileName = "WrongTextFile.txt";
 ReadFile(fileName);
}
catch (Exception e)
{ }

In the example the exception is caught and ignored. This means that if the file

is missing the program will not read anything and there will not be any error

message. This gives the user wrong impression the file is read when it is in

fact missing. Don't do this!

If we ever need to ignore an exception on purpose we should add a comment,

which will help us when reading the code later. Here is an example:

int number = 0;
try
{
 string line = Console.ReadLine();
 number = Int32.Parse(line);
}
catch (Exception)
{
 // Incorrect numbers are intentionally considered 0
}
Console.WriteLine("The number is: " + number);

We can improve the code above by using Int32.TryParse(…) or by

initializing the number variable with 0 in the catch block, not outside of it. In

the second case the comment in the code and empty catch block are not

necessary.

Dump the Error Messages in Extreme Cases Only!

Let’s take our method, which is reading the application settings from a file. If

an error occurs it could print it in the console but what will happen with the

calling method? It will suppose that the settings are read correctly.

There is an important concept in programming:

http://msdn.microsoft.com/en-us/magazine/cc163609.aspx

www.manaraa.com

452 Fundamentals of Computer Programming with C#

A method should either do the work it is created for or throw

an exception. Any other behavior is incorrect!

This is a very important rule that is why we will repeat it and even extend it:

A method should either do the work it is created for or throw

an exception. In case of wrong input the method should

throw an exception and should not return a wrong result!

We can explain the rule in details: A method is created to do a certain job.

What the method is doing should be clear from its name. If we cannot give an

appropriate name to the method means that it is doing many things and we

should split it so everything is in separate method. If the method cannot do

the work it is created for it should throw an exception. For example if we have

a method for sorting of an array of integers. If the array is empty the method

should either return an empty array or return an error. Wrong input should

cause an exception and not return a wrong result! For example if we try to

take a substring from index 7 to 12 from a string with length 10, it should

cause an exception and not return fewer characters. This is how the

Substring() method in String works.

We will give another example, which confirms the rule that a method should

do the work it is created for or throw an exception. Let’s suppose we copy a

big file from the local disk to an USB flash drive. It could happen so that the

space on the flash drive is not enough and the file cannot be copied. Which of

the following is correct and the program for coping files (for example

Windows Explorer) should do?

- The file is not copied and no error message is shown.

- The file is partially copied and no error message is shown.

- The file is partially copied and error message is shown.

- The file is not copied and error message is shown.

From the user point of view the only correct behavior of the program is the

last one: if a problem occurs the file should not be copied partially and an

error message should be shown. We should do the same if we have to write a

method that copy files. It should fully copy the given file or throw an

exception. At the same time it should not leave any traces – it should delete

any partial result if such was created.

Don’t Catch All Exceptions!

A very common mistake with exceptions is to catch all exceptions no matter

what type they are. Here is an example where all exceptions are handled

wrong:

try

www.manaraa.com

Chapter 12. Exception Handling 453

{
 ReadFile("CorrectTextFile.txt");
}
catch (Exception)
{
 Console.WriteLine("File not found.");
}

In the code we suppose that there is a method ReadFile(), which reads a

text file and returns the content as string. The catch block catches all

exceptions (regardless of their type), not only FileNotFoundException, and

in all cases prints that file is not found. There are unexpected situations such

as when file is locked by another process in the operating system. In such

case the CLR will generate UnauthorizedAccessException, but the message

that the program will show to the user will be wrong and misleading. The file

exists but the program will claim it is not there. The same will happen when

during the file opening we are out of memory and OurOfMemoryException is

generated. The message will be incorrect again.

Only Catch Exceptions You Know How to Process!

We should handle only errors that we expect and we are prepared for. We

should leave the other errors (exceptions) so they are caught by another

method that knows how to handle them.

A method should not catch all exceptions – it should only

catch the ones it can process correctly.

This is a very important rule that should be followed. If you don’t know how to

handle an exception do not catch it or wrap it with your exception and pass it

on for additional handling.

Exercises

1. Find out all exceptions in the System.IO.IOException hierarchy.

2. Find out all standard exceptions that are part of the hierarchy holding

the class System.IO.FileNotFoundException.

3. Find out all standard exceptions from System.ApplicationException

hierarchy.

4. Explain the concept of exceptions and exception handling, when they

are used and how to catch exceptions.

5. Explain when the statement try-finally is used. Explain the relationship

between the statements try-finally and using.

6. Explain the advantages when using exceptions.

www.manaraa.com

454 Fundamentals of Computer Programming with C#

7. Write a program that takes a positive integer from the console and prints

the square root of this integer. If the input is negative or invalid print

"Invalid Number" in the console. In all cases print "Good Bye".

8. Write a method ReadNumber(int start, int end) that reads an integer

from the console in the range [start…end]. In case the input integer is

not valid or it is not in the required range throw appropriate exception.

Using this method, write a program that takes 10 integers a1, a2, …, a10
such that 1 < a1 < … < a10 < 100.

9. Write a method that takes as a parameter the name of a text file, reads

the file and returns its content as string. What should the method

do if and exception is thrown?

10. Write a method that takes as a parameter the name of a binary file,

reads the content of the file and returns it as an array of bytes. Write a

method that writes the file content to another file. Compare both files.

11. Search for information in Internet and define your own class for exception

FileParseException. The exception has to contain the name of the

processed file and the number of the row where the problem is occurred.

Add appropriate constructors in the exception. Write a program that

reads integers from a text file. If the during reading a row does not

contain an integer throw FileParseException and pass it to the calling

method.

12. Write a program that gets from the user the full path to a file (for

example C:\Windows\win.ini), reads the content of the file and prints it

to the console. Find in MSDN how to us the System.IO.File.
ReadAllText(…) method. Make sure all possible exceptions will be

caught and a user-friendly message will be printed on the console.

13. Write a program to download a file from Internet by given URL, e.g.

http://introprogramming.info/wp-content/themes/introprograming_en/

images/Intro-Csharp-Book-front-cover-big_en.png.

Solutions and Guidelines

1. Search in MSDN. The easiest way to do this is to search in Google for

"IOException MSDN" (without the quotes).

2. Look at the instructions for the previous task.

3. Look at the instructions for the previous task.

4. Use the information from the section “What Is an Exception?” earlier

in this chapter.

5. When having difficulties use the information from the section "try-

finally Construct".

6. When having difficulties use the information from the section

"Exceptions Advantages".

http://introprogramming.info/wp-content/themes/introprograming_en/images/Intro-Csharp-Book-front-cover-big_en.png
http://introprogramming.info/wp-content/themes/introprograming_en/images/Intro-Csharp-Book-front-cover-big_en.png

www.manaraa.com

Chapter 12. Exception Handling 455

7. Create try-catch-finally statement.

8. When invalid number is used we can throw Exception because there is

no other exception that can better describe the problem. As an

alternative we can define our own exception class called in a way that

better describes the problem, e.g. InvalidNumberException.

9. First read the chapter "Text Files". Read the file line by line with

System.IO.StreamReader class and add the rows in System.Text.
StringBuilder. Throw all exceptions from the method without catching

them. You may cheat and solve the problem in one line of code by using

the static method System.IO.File.ReadAllText().

10. It is not too likely to write this method correctly without external help.

Search in Internet to learn more about binary streams. After that follow

the instructions below for reading a file:

- For reading use FileStream and write the data in a MemoryStream.

You have to read the file in parts, for example on portions with 64 KB

each, the last one can be smaller.

- Be careful with the method for reading the bytes FileStream.Read(
byte[] buffer, int offset, int count). This method can read

less bytes than requested. You have to write as many bytes as you

read from the input stream. Create a loop that ends when zero bytes

are read.

- Use using to correctly closing the streams.

Saving an array of bytes in a file is a simpler task. Open FileStream and

start writing the bytes inside from the MemoryStream. Use using to

correctly close the streams.

Use a big ZIP archive to test (for example 300 MB). If the program is

not working correctly it will break the structure of the archive and an

error will occur when trying to open it.

You can cheat by using the system methods System.IO.File.
ReadAllBytes() and System.IO.File.WriteAllBytes(byte[]).

11. Inherit from Exception class and add a constructor to it. For example

FileParseException(string message, string filename, int line).

Use this exception the same way as using any other exception. The

number can be read with StreamReader class.

12. Search for all possible exceptions that the method could throw and for all

of them define a catch block and print user-friendly message.

13. Search for articles in Internet for “downloading a file with C#” or

search for information and examples about using the WebClient class.

Make sure you catch and process all exceptions that can be thrown.

www.manaraa.com

www.manaraa.com

Chapter 13. Strings
and Text Processing

In This Chapter

In this chapter we will explore strings. We are going to explain how they are

implemented in C# and in what way we can process text content.

Additionally, we will go through different methods for manipulating a text:

we will learn how to compare strings, how to search for substrings, how to

extract substrings upon previously settled parameters and last but not least

how to split a string by separator chars. We will demonstrate how to

correctly build strings with the StringBuilder class. We will provide a

short but very useful information for the most commonly used regular

expressions. We will discuss some classes for efficient construction of

strings. Finally, we will take a look at the methods and classes for achieving

more elegant and stricter formatting of the text content.

Strings

In practice we often come to the text processing: reading text files,

searching for keywords and replacing them in a paragraph, validating user

input data, etc… In such cases we can save the text content, which we will

need in strings, and process them using the C# language.

What Is a String?

A string is a sequence of characters stored in a certain address in memory.

Remember the type char? In the variable of type char we can record only

one character. Where it is necessary to process more than one character then

strings come to our aid.

In. NET Framework each character has a serial number from the Unicode

table. The Unicode standard is established in the late 80s and early 90s in

order to store different types of text data. Its predecessor ASCII is able to

record only 128 or 256 characters (respective ASCII standard with 7-bit or 8-

bit table). Unfortunately, this often does not meet user needs – as we can fit

in 128 characters only digits, uppercase and lowercase Latin letters and some

specific individual characters. When you have to work with text in Cyrillic or

other specific language (e.g. Chinese or Arabian), 128 or 256 characters are

extremely insufficient. Here is why .NET uses 16-bit code table for the

characters. With our knowledge of number systems and representation of

information in computers, we can calculate that the code table store 2^16 =

www.manaraa.com

458 Fundamentals of Computer Programming with C#

65,536 characters. Some characters are encoded in a specific way, so it is

possible to use two characters of the Unicode table to create a new character

– the resulting signs exceed 100,000.

The System.String Class

The class System.String enables us to handle strings in C#. For declaring

the strings we will continue using the keyword string, which is an alias in

C# of the System.String class from .NET Framework. The work with string

facilitates us in manipulating the text content: construction of texts, text

search and many other operations.

Example of declaring a string:

string greeting = "Hello, C#";

We have just declared the variable greeting of type string whose content is
the text phrase "Hello, C#". The representation of the content in the string

looks closely to this:

H e l l o , C #

The internal representation of the class is quite simple – an array of

characters. We can avoid the usage of the class by declaring a variable of

type char[] and fill in the array’s elements character by character. However,

there are some disadvantages too:

1. Filling in the array happens character by character, not at once.

2. We should know the length of the text in order to be aware whether it

will fit into the already allocated space for the array.

3. The text processing is manual.

The String Class: Universal Solution?

The usage of System.String is not the ideal and universal solution –

sometimes it is appropriate to use different character structures.

In C# we there are other classes for text processing – we will become familiar

with some of them later in this chapter.

The type string is more special from other data types. It is a class and as

such it complies with the principles of object-oriented programming. Its

values are stored in the dynamic memory (managed heap), and the

variables of type string keeps a reference to an object in the heap.

Strings are Immutable

The string class has an important feature – the character sequences stored

in a variable of the class are never changing (immutable). After being

assigned once, the content of the variable does not change directly – if we try

www.manaraa.com

Chapter 13. Strings and Text Processing 459

to change the value, it will be saved to a new location in the dynamic memory

and the variable will point to it. Since this is an important feature, it will be

illustrated later.

Strings and Char Arrays

Strings are very similar to the char arrays (char[]), but unlike them, they

cannot be modified. Like the arrays, they have properties such as Length,

which returns the length of the string and allows access by index. Indexing,

as it is used in arrays, takes indices from 0 to Length-1. Access to the

character of a certain position in a string is done with the operator []

(indexer), but it is allowed only to read characters (and not to write to them):

string str = "abcde";
char ch = str[1]; // ch == 'b'
str[1] = 'a'; // Compilation error!
ch = str[50]; // IndexOutOfRangeException

Strings – Simple Example

Let’s give an example for using variables from the type string:

string message = "This is a sample string message.";

Console.WriteLine("message = {0}", message);
Console.WriteLine("message.Length = {0}", message.Length);

for (int i = 0; i < message.Length; i++)
{
 Console.WriteLine("message[{0}] = {1}", i, message[i]);
}
// Console output:
// message = This is a sample string message.
// message.Length = 31
// message[0] = T
// message[1] = h
// message[2] = i
// message[3] = s
// …

Please note the string value – the quotes are not part of the text, they are

enclosing its value. The example demonstrates how to print a string, how to

extract its length and how to extract the character from which it is composed.

www.manaraa.com

460 Fundamentals of Computer Programming with C#

Strings Escaping

As we already know, if we want to use quotes into the string content, we

must put a slash before them to identify that we consider the quotes

character itself and not using the quotation marks for ending the string:

string quote = "Book's title is \"Intro to C#\"";
// Book's title is "Intro to C#"

The quotes in the example are part of the text. They are added in the variable

by placing them after the escaping character backslash (\). In this way the

compiler recognizes that the quotes are not used to start or end a string, but

are a part of the data. Displaying special characters in the source code is

called escaping.

Declaring a String

We can declare variables from the type string by the following rule:

string str;

Declaring a string represents a variable declaration of type string. This is

not equivalent to setting a variable and allocating memory for it! With the

declaration we inform the compiler that the variable str will be used and the

expected type for it is string. We do not create a variable in the memory and

it is not available for processing yet (value is null, which means no value).

Creating and Initializing a String

In order to process the declared string variable, we must create it and

initialize it. Creating a variable of certain class (also known as instantiating)

is a process associated with the allocation of the dynamic memory area (the

heap). Before setting a specific value to the string, its value is null. This can

be confusing to the beginner programmers: uninitialized variables of type

string do not contain empty values, it contains the special value null – and

each attempt for manipulating such a string will generate an error (exception

for access to a missing value NullReferenceException)!

We can initialize variables in the following three ways:

1. By assigning a string literal.

2. By assigning the value of another string.

3. By passing the value of an operation which returns a string.

Setting a String Literal

Setting a string literal means to assign a predefined textual content to a

variable of type string. We use this type of initialization, when we know the

value that must be stored in the variable. Example for setting a string literal:

www.manaraa.com

Chapter 13. Strings and Text Processing 461

string website = "http://www.wikipedia.org";

In this example we created the variable website with value the above stated

string literal.

Assigning Value of Another String

Assigning a value is equivalent to directing a string value or a variable to a

variable of type string. An example is the following code snippet:

string source = "Some source";
string assigned = source;

First, we declare and initialize the variable source. Then the variable

assigned takes the value of source. Since the string class is a reference

type, the text "Some source" is stored in the dynamic memory (heap) on an

address defined by the first variable.

In the second line we redirect the variable assigned to the same place, which

the other variable points to. In this way the two objects receive the same

address in dynamic memory and hence the same value.

The change of either variable will affect only itself because of the

immutability of the type string, as when a change occurs, a copy of the

changed string will be created. This is not true for the rest of the reference

types (the normal, mutable types) because with them the changes are made

directly in the address in memory and all references point to this changed

address.

Passing a String Expression

The third option to initialize a string is to pass the value of a string

expression or operation, which returns a string result. This can be a result

from a method, which validates data; adding together the values of a number

of constants and variables; transforming an existing variable, etc.

Example of an expression, which returns a string:

string email = "some@gmail.com";

HeapStack

string@42e816

source

Some source

string@42e816

assigned

www.manaraa.com

462 Fundamentals of Computer Programming with C#

string info = "My mail is: " + email;
// My mail is: some@gmail.com

The info variable has been created from the concatenation of literals and a

variable.

Reading and Printing to the Console

Let’s now take a look at the ways of reading strings, entered by the user and

how we print strings to the console.

Reading Strings

Reading strings can be accomplished through the methods of the well-known

System.Console class:

string name = Console.ReadLine();

In this example we read from the console the input data through the method
ReadLine(). It waits for the user to input a value and to press [Enter]. After

pressing the [Enter] key the variable name will contain the input name typed

at the console (read from the keyboard).

What can we do after the variable has been created and it has a value itself?

We can use it, for example, in expressions with other strings, to pass it as a

method’s parameter, to write it in text documents, etc. First, we can write it

to the console in order to be sure that the data has been correctly read.

Printing Strings

Taking the data to the standard output is made also by the well-known class
System.Console:

Console.WriteLine("Your name is: " + name);

By using the method WriteLine(…) we are getting the message "Your name

is: " followed by the value of the name variable. After the end of the message

a new line character is added. If we want to run away from the new line,

which means the messages will appear at one and the same line then we use

the method, Write(…).

We can refresh our knowledge on the System.Console class from the chapter

"Console Input and Output".

Strings Operations

After getting familiar with the strings semantics and how we can create and

print them, next comes to learn how to deal with them and how to process

www.manaraa.com

Chapter 13. Strings and Text Processing 463

them. The C# language gives us a number of operations ready for use, which

we will use for manipulating the strings.

Comparing Strings in Alphabetical Order

There are many ways to compare strings and depending on what exactly

we need in the particular case, we can take advantage of the various features

of the string class.

Comparison for Equality

If the requirements are to compare the two strings in order to determine

whether their values are equal or not, the most convenient method is the

Equals(…), which works equivalently to the operator ==. It returns a

Boolean result with either true value, if the strings have the same values, or

false value, if they are different. The method Equals(…) checks letter by

letter for equality of string values, as it makes distinction between small and

capital letters, i.e. comparing the "c#" and "C#" with the Equals(…) method

will return the value false. Consider the following example:

string word1 = "C#";
string word2 = "c#";
Console.WriteLine(word1.Equals("C#"));
Console.WriteLine(word1.Equals(word2));
Console.WriteLine(word1 == "C#");
Console.WriteLine(word1 == word2);

// Console output:
// True
// False
// True
// False

In practice, we often are interested of only the actual text content when

comparing two strings, regardless of the character casing (uppercase /

lowercase). To ignore the difference between small and capital letters in string

comparison we can use the method Equals(…) with the parameter

StringComparison.CurrentCultureIgnoreCase. So now in the same

example of comparing "C#" with "c#" the method will return the value true:

Console.WriteLine(word1.Equals(word2,
 StringComparison.CurrentCultureIgnoreCase));
// True

StringComparison.CurrentCultureIgnoreCase is a constant of the

enumerated type StringComparison. What is enumerated type and how we

can use it, we will learn in the chapter "Defining Classes".

www.manaraa.com

464 Fundamentals of Computer Programming with C#

Comparing Strings in Alphabetical Order

It has become clear how we compare strings for equality, but how we are

going to establish the lexicographical order of several strings? If we try to

use the operators < and > which work great for comparing numbers, we find

out that they cannot be used for strings.

If you want to compare two words and get information which one of them is

before the other according to their alphabetical order of letters, here comes

the method CompareTo(…). It allows us to compare the values of two strings

in order to determine their lexicographical order. In order two strings to have

the same values, they must have the same length (number of characters) and

the all their characters should match accordingly. For example, the strings

"give" and "given" are different because they differ in their lengths, and

"near" and "fear" differ in their first character.

The method CompareTo(…) from the String class returns a negative value, 0

or positive value depending on the lexical order of the two compared strings.

A negative value means that the first string is lexicographically before the

second, zero means that the two strings are equal and positive value means

that the second string is lexicographically before the first. To clarify better

how to compare strings lexicographically, let’s go through a few examples:

string score = "sCore";
string scary = "scary";

Console.WriteLine(score.CompareTo(scary));
Console.WriteLine(scary.CompareTo(score));
Console.WriteLine(scary.CompareTo(scary));

// Console output:
// 1
// -1
// 0

The first experiment is called the method CompareTo(…) of the string score,

as passed parameter is the variable scary. The first digit returns equal sign.

Because the method does not ignore the casing of small and capital letters,

it finds mismatch in the second character (in the first string it is "C", while in

the second it is "c"). This is enough to determine the arrangement of strings

and CompareTo(…) returns +1. Calling the same method with swapped places

of the strings returns -1, because then the starting point is the string scary.

His final call returns a logical 0, because we compare scary with itself.

If we have to compare the strings lexicographically, namely to ignore

the letters casing, then we could use string.Compare(string strA,

string strB, bool ignoreCase). This is a static method, which works in the

same way as CompareTo(…), but it has an ignoreCase option for ignoring the

casing of capital and small letters. Let’s look at the method in action:

www.manaraa.com

Chapter 13. Strings and Text Processing 465

string alpha = "alpha";
string score1 = "sCorE";
string score2 = "score";

Console.WriteLine(string.Compare(alpha, score1, false));
Console.WriteLine(string.Compare(score1, score2, false));
Console.WriteLine(string.Compare(score1, score2, true));
Console.WriteLine(string.Compare(score1, score2,
 StringComparison.CurrentCultureIgnoreCase));
// Console output:
// -1
// 1
// 0
// 0

In the last example the method Compare(…) takes as a third parameter

StringComparison.CurrentCultureIgnoreCase – already well-known from

the method Equals(…) through which we can also compare strings, without

having to register the difference between the small and capital letters.

Please note that according to the methods Compare(…) and CompareTo(…)

the small letters are lexicographically before the capital ones. The

correctness of this rule is quite controversial as in the Unicode table the

capital letters are before the small ones. For example due to the standard

Unicode, the letter “A” has a code 65, which is smaller than the code of the

letter “a” (97).

When you want just to consider whether the values of two

strings are equal or not, please use the method Equals(…) or

the operator ==. The methods CompareTo(…) and string.
Compare(…) are designed to be used when the lexicographical

order is needed.

Therefore, you should consider that the lexicographical comparison does

not follow the letter arrangement in the Unicode table. Other

abnormalities can also be caused by special features of the current culture.

For some languages like German the characters "ss" and "ß" are considered

equal. For example the words "Straße" and "Strasse" are considered the same

by CompareTo(…) and equal when compared through the == operator:

string first = "Straße";
string second = "Strasse";

Console.WriteLine(first == second); // False
Console.WriteLine(first.CompareTo(second)); // 0 – equal strings

www.manaraa.com

466 Fundamentals of Computer Programming with C#

The == and != Operators

In the C# language the operators == and =! work for strings through an

internal calling of Equals(…). We will go through some examples for using

those two operators with variables from the string type:

string str1 = "Hello";
string str2 = str1;

Console.WriteLine(str1 == str2);
// Console output:
// True

The comparison of matching strings str1 and str2 returns true. This is a

fully expected result, since the target variable str2 is pointed to the dynamic

memory that is reserved for the variable str1. Thus, both variables have the

same address and the check for equality returns true. Presented is how the

memory looks like with the two variables:

Let’s look at another example:

string hel = "Hel";
string hello = "Hello";
string copy = hel + "lo";

Console.WriteLine(copy == hello);
// True

Pay attention to the comparison between the strings hello and copy. The

first variable takes directly the value "Hello". The second takes its value as a

result of joining a variable with literal, and the final result is equivalent to the

value of the first variable. At this stage the two variables point to different

areas of memory, but the contents of the memory blocks are identical. The

comparison made with the operator == returns a result true, although both

variables point to different areas of memory.

Here is how the memory looks like at this point:

HeapStack

string@8a4fe6

str1

Hello

string@8a4fe6

str2

www.manaraa.com

Chapter 13. Strings and Text Processing 467

Memory Optimization for Strings (Interning)

Let’s consider the following example:

string hello = "Hello";
string same = "Hello";

Let’s create a variable with value "Hello". We also create a second variable

assigning it a value the same literal. It is logical when creating the variable

hello, to allocate space in the heap, to write its value and the variable to

point to that location. When creating the same a new place to record should be

allocated too, the value should be written and the reference to the memory

should be directed.

But the truth is that there is an optimization in the C# compiler and in CLR,

which saves the memory from creating duplicated strings. This

optimization is called strings interning and thanks to it the two variables in

the memory will be pointed to the same common block of memory. This

reduces the memory space usage and optimizes certain operations such as

comparing two completely matching strings. They are written in the memory

in the following way:

When we initialize a variable of type string with a string literal, the memory

checks invisibly for us whether this value already exists. If the value already

exists, the new variable is simply pointed to it. If not, a new block of memory

is allocated, the value is stored in it and the reference is changed to point to

HeapStack

string@6e278a

hel

Hel

string@2fa8fc

hello

Hello

string@a7b46e

copy

Hello

HeapStack

string@a8fe24

hello

Hello

string@a8fe24

same

www.manaraa.com

468 Fundamentals of Computer Programming with C#

the new block. The string interning in .NET is possible because strings are

immutable by design and it is not likely that the memory block referenced

by several string variables will simultaneously be changed by someone.

When not initializing the strings with literals, no interning is used. However, if

we want to use interning specifically, we can make it through the use of the

method Intern(…):

string declared = "Intern pool";
string built = new StringBuilder("Intern pool").ToString();
string interned = string.Intern(built);

Console.WriteLine(object.ReferenceEquals(declared, built));
Console.WriteLine(object.ReferenceEquals(declared, interned));
// Console output:
// False
// True

Here is the memory situation at this moment:

In the example we used the static method Object.ReferenceEquals(…),

which compares two objects in memory and returns whether they point to the

same memory block. We used the class StringBuilder, which serves to

efficiently build strings. When and how to use StringBuilder we will explain

in details shortly, but now let’s get familiar with the basic operations on

strings.

Operations for Manipulating Strings

Once we got familiar with the fundamentals of strings and their structure, the

next thing to explore are the tools for their processing. We will review string

concatenation, searching in a string, extracting substrings, change the

character casing, splitting a string by separator and other string operations

that will help us solve various problems from the everyday practice.

HeapStack

string@6e278a

declared

Intern pool

string@6e278a

interned

string@a7b46e

built

Intern pool

www.manaraa.com

Chapter 13. Strings and Text Processing 469

Strings are immutable! Any change of a variable of type

string creates a new string in which the result is stored.

Therefore, operations that apply to strings return as a result

a reference to the result.

It is possible to process strings without creating new objects in the memory

every time a modification is made but for this purpose the class

StringBuilder should be used. We will introduce it a bit later.

Strings Concatenation

Gluing two strings and obtaining a new one as a result is called

concatenation. It could be done in several ways: through the method

Concat(…) or with the operators + and +=.

Example of using the method Concat(…):

string greet = "Hello, ";
string name = "reader!";
string result = string.Concat(greet, name);

By calling the method, we will concatenate the string variable name, which is

passed as an argument, to the string variable greet. The result string will be

the text "Hello, reader!".

The second way for concatenation is via the operators + and +=. Then the

above example can be implemented in the following way:

string greet = "Hello, ";
string name = "reader!";
string result = greet + name;

In both cases those variables will be presented in the memory as follows:

HeapStack

0x00122F680

greet

Hello,

0x003456FF

name

reader!

0x00AD4934

result

Hello, reader!

www.manaraa.com

470 Fundamentals of Computer Programming with C#

Please note that string concatenation does not change the existing strings

but returns a new string as a result. If we try to concatenate two strings

without storing them in a variable, the changes would not be saved. Here is a

typical mistake:

string greet = "Hello, ";
string name = "reader!";
string.Concat(greet, name);

In the given example the two variables are concatenated but the result of it

has not been saved anywhere, so it is lost:

If we want to add a value to an existing variable, for example the variable

result, we can do it with the well-known code:

result = result + " How are you?";

In order to avoid the double writing of the above declared variable, we can

use the operator +=:

result += " How are you?";

The result will be the same in both cases: "Hello, reader! How are you?".

We can concatenate other data with strings. Any data, which can be

presented in a text form, can be appended to a string. Concatenation is

possible with numbers, characters, dates, etc. Here is an example:

string message = "The number of the beast is: ";
int beastNum = 666;
string result = message + beastNum;
// The number of the beast is: 666

As we understood from the above example, there is no problem in

concatenating strings with other data, which is not from a string type. Let’s

have another full example for string concatenation:

public class DisplayUserInfo
{
 static void Main()
 {
 string firstName = "John";
 string lastName = "Smith";
 string fullName = firstName + " " + lastName;

 int age = 28;
 string nameAndAge = "Name: " + fullName + "\nAge: " + age;

www.manaraa.com

Chapter 13. Strings and Text Processing 471

 Console.WriteLine(nameAndAge);
 }
}
// Console output:
// Name: John Smith
// Age: 28

Switching to Uppercase and Lowercase Letters

Sometimes we need to change the casing of a string so that all the

characters in it to be entirely uppercase or lowercase. The two methods

that would work best in this case are ToLower(…) and ToUpper(…). The first

converts all capital letters to small ones:

string text = "All Kind OF LeTTeRs";

Console.WriteLine(text.ToLower());
// all kind of letters

The example shows that all capital letters of the text change their casing and

the entire text goes in lowercase. Such a shift to lowercase is convenient for

storing usernames in various online systems. Upon registration the users may

use a mixture of uppercase and lowercase letters, but the system can then

make them all small to unify them and to avoid matches on points with

differences in the casing.

Here is another example. We want to compare entered by the user input but

we are not sure exactly how it was written – in small or capital letters or

mixed. One possible approach is to standardize capitalization and compare it

with the constant defined by us. Thus, we make no distinction of small

and capital letters. For example, if we have a user input panel where we

enter name and password and it does not matter if the password is written

with capital letters or small, we can make a similar check on the password:

string pass1 = "PasswoRd";
string pass2 = "PaSSwoRD";
string pass3 = "password";

Console.WriteLine(pass1.ToUpper() == "PASSWORD");
Console.WriteLine(pass2.ToUpper() == "PASSWORD");
Console.WriteLine(pass3.ToUpper() == "PASSWORD");

// Console output:
// True

www.manaraa.com

472 Fundamentals of Computer Programming with C#

// True
// True

In the example we are comparing three passwords with the same content but

with a different casing. When checking their contents, always verify if it

equals to the string "PASSWORD" (letter by letter). Of course, we could do

the above verification and by the method Equals(…) in the version with

ignoring the character casing, which we already discussed.

Searching for a String within Another String

When we have a string with a specified content, it is often necessary to

process only a part of its value. The .NET platform provides us with two

methods to search a string within another string: IndexOf(…) and

LastIndexOf(…). They search into the string and check whether the passed

as a parameter substring occurs in its content. The result of those methods is

an integer. If the result is not a negative value, then this is the position where

the first character of the substring is found. If the method returns value of -1,

it means that the substring was not found. Remember that in C# indexing

into strings start from 0.

The methods IndexOf(…) and LastIndexOf(…) search the contents of the

text sequence, but in a different direction. The search with the first method

starts from the beginning of the string towards the end, while the second

method – the search is done backwards. If we are interested in the first

encountered match, then we use IndexOf(…). If we want to search the string

from its end (for example to detect the last dot in a file name or the last slash

in an URL address), then we use LastIndexOf(…).

When calling IndexOf(…) and LastIndexOf(…) a second parameter could be

passed, which will specify the position, which the searching should start from.

This is useful if we want to search part of a string, not the entire string.

Searching into a String – Example

Let’s consider an example with the IndexOf(…) method:

string book = "Introduction to C# book";
int index = book.IndexOf("C#");

Console.WriteLine(index);
// index = 16

In the example, the variable book has a value "Introduction to C# book".

The search for the substring "C" in this variable will return the value 16,

because the substring will be found and the first character "C" of the searched

word is in 16th position.

www.manaraa.com

Chapter 13. Strings and Text Processing 473

Searching with IndexOf(…) – Example

Let’s look into great details one more example for searching for a separate

characters or strings in a text:

string str = "C# Programming Course";

int index = str.IndexOf("C#"); // index = 0
index = str.IndexOf("Course"); // index = 15
index = str.IndexOf("COURSE"); // index = -1
index = str.IndexOf("ram"); // index = 7
index = str.IndexOf("r"); // index = 4
index = str.IndexOf("r", 5); // index = 7
index = str.IndexOf("r", 10); // index = 18

Look how the string we are searching looks like in the memory:

If we look at the results of the third search, we will note that the search for

the word "COURSE" in the text returned a result of -1, i.e. no match has

been found. Although the word is in the text, it has been written in a different

case of letters. The methods IndexOf(…) and LastIndexOf(…) distinguish

between uppercase and lowercase letters. If we want to ignore this difference,

we can write text in a new variable and turn it to a text with entirely lower or

entirely uppercase, and then we can perform the search in it, independently

from the letters casing.

Finding All Occurrences of a Substring – Example

Sometimes we want to find all occurrences of a particular substring

within another string. Using both methods with only one searched string

passed as an argument would not work for us, because it will always return

only the first occurrence of the substring. We can pass a second parameter for

an index that indicates the starting position from which the searching should

begin. Of course, we need to loop through it in order to move from the first

occurrence of the searched string to the next, to the next, and the next, etc.,

until the last one.

Here is an example how we can use the method IndexOf(…) by a given word

and start index: finding all occurrences of the word "C#" in a given text:

string quote = "The main intent of the \"Intro C#\"" +
 " book is to introduce the C# programming to newbies.";

HeapStack

string@821a48

str

C # P r o g r a m m i n g C o u r s e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21

www.manaraa.com

474 Fundamentals of Computer Programming with C#

string keyword = "C#";
int index = quote.IndexOf(keyword);

while (index != -1)
{
 Console.WriteLine("{0} found at index: {1}", keyword, index);
 index = quote.IndexOf(keyword, index + 1);
}

The first step is to make a search for the keyword "C#". If the word is found

in the text (i.e. the returned value is different than -1), it prints it on the

console and we continue our search rightwards, starting from the position on

which we have found the word plus one. We repeat this operation until

IndexOf(…) returns value -1.

Note: If we miss setting an initial index, then the search will always start from

the beginning and will return one and the same value. This will lead to

hanging of the program. If we search directly from the index without

adding plus one each time, we will come across again and again to the last

result, whose index we have already found. Therefore, proper search of the

next result should start from a starting position index + 1.

Extracting a Portion of a String

For now we know how to check whether a substring occurs in a text and

which are the occurrence positions. But how can we extract a portion of a

string in a separate variable?

The solution of this problem is the method Substring(…). By using it, we can

extract a part of the string (substring) by a given starting position in the

text and its length. If the length is omitted, a portion from the text will be

extracted, starting from the initial position to the string’s end.

Presented is an example of extracting a substring from a string:

string path = "C:\\Pics\\CoolPic.jpg";
string fileName = path.Substring(8, 7);
// fileName = "CoolPic"

We manipulate the variable path. It contains the path to a file from our file

system. To assign the file name to a new variable, we use Substring(8, 7)

and take a sequence of 7 characters starting from the 8th position, i.e.

character positions from 8 to 14 inclusively.

Calling the method Substring(startIndex, length), extracts a

substring from a string, which is located between startIndex

and (startIndex + length – 1) inclusively. The character at

www.manaraa.com

Chapter 13. Strings and Text Processing 475

the position startIndex + length is not taken into considera-

tion! For example, if we point Substring(8, 3), the characters

between index 8 and 10 inclusively will be extracted.

Here are presented the characters, which form the text from which we extract

a substring:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C : \ P i c s \ C o o l P i c . j p g

Sticking to the scheme, the method that has been called must write the

characters from the positions 8 to 14 (as the last index is not included),

namely "CoolPic".

Extracting a File Name and File Extension – Example

Let’s consider a more interesting task. How can we print the filename and

its extension from given full path to a file in Windows-based file system? As

we know how the path is recorded in the file system, we can proceed with the

following plan:

- Looking for the last backslash in the text;

- Keeping the position of the last backslash;

- Extracting the substring starting from the obtained position +1;

Let’s consider again the example of the well-known file path. If we have no

information about the exact contents of the variable, but we know that it

contains a file path, we can stick to the above scheme:

string path = "C:\\Pics\\CoolPic.jpg";
int index = path.LastIndexOf("\\");
// index = 7
string fullName = path.Substring(index + 1);
// fullName = "CoolPic.jpg"

Splitting the String by a Separator

One of the most flexible methods for working with strings is Split(…). It

allows us to split a string by a separator or an array of possible separators.

For example, we can process a variable, which has the following content:

string listOfBeers = "Amstel, Heineken, Tuborg, Becks";

How can we split each beer in a separate variable or extract all beers in an

array? At first glance it may seem difficult – we must seek with IndexOf(…)

for a special character, then to extract a substring with Substring(…), to

www.manaraa.com

476 Fundamentals of Computer Programming with C#

iterate all this in a loop and to write the result in a variable. Since the splitting

of a string by a separator is a main task of text processing, ready to use

methods for it can be found in .NET Framework.

Splitting Strings by Multiple Separators – Example

The easiest and more flexible method for resolving this issue is the following:

char[] separators = new char[] {' ', ',', '.'};
string[] beersArr = listOfBeers.Split(separators);

Using the built-in functionality of the method Split(…) from the class String,

we will split the contents of a given string by array of characters – separators,

which are passed as an argument of the method. All substrings among which

are space, comma or dot will be removed and stored in the beersArr array.

If we iterate the array and print its elements one by one, the result will be:

"Amstel", "", "Heineken", "", "Tuborg", "" and "Becks". We get 7 results,

instead of the expected 4. The reason is that during the text splitting, three

substrings are found which contain two separator characters one next to the

other (for example a comma, followed by a space). In this case the empty

string between the two separators is also part of the returned result.

How to Remove the Empty Elements after Splitting?

If we want to ignore the empty strings from the splitting results, one possible

solution is to make checks on their printing:

foreach (string beer in beersArr)
{
 if (beer != "")
 {
 Console.WriteLine(beer);
 }
}

But this approach does not remove the empty strings from the array. It just

does not print them. So we can change the arguments we are passing to the

method Split(…), by passing a special option:

string[] beersArr = listOfBeers.Split(
 separators, StringSplitOptions.RemoveEmptyEntries);

After this change, the beersArr array will contain 4 elements – the 4 words

from the listOfBeers variable.

When splitting strings and adding as a second parameter the

constant StringSplitOptions.RemoveEmptyEntries we instruct

www.manaraa.com

Chapter 13. Strings and Text Processing 477

the method Split(…) to work in the following way: “Return

all substrings from the variable that are split by given list of

separators. If you meet two or more neighboring separators,

consider them as one.”

Replacing a Substring

The text processing in .NET Framework provides ready methods for replacing

a substring with another. For example, if we have made one and the same

technical mistake when typing the email address of a user in an official

document, we can replace it by using the method Replace(…):

string doc = "Hello, some@gmail.com, " +
 "you have been using some@gmail.com in your registration.";
string fixedDoc =
 doc.Replace("some@gmail.com", "john@smith.com");
Console.WriteLine(fixedDoc);

// Console output:
// Hello, john@smith.com, you have been using
// john@smith.com in your registration.

As it can be seen from the example, the method Replace(…) replaces all

occurrences of a given substring with another substring, not just the first.

Regular Expressions

The regular expressions are a powerful tool for text processing and allow

searching matches by a pattern. An example for a pattern is [A-Z0-9]+,

which means not an empty series of capital Latin letters and numbers.

Regular expressions make text processing easier and more accurate:

extracting some resources from texts, searching for phone numbers, finding

email addresses in a text, splitting all the words in a sentence, data

validation, etc.

Regular Expressions – Example

If we have an official document that is used only in the office and it contains a

lot of personal data, then we should censor it before sending it to the client.

For example, we can censor all mobile numbers and replace them with

asterisks. By using regular expressions, this could be done as follows:

string doc = "Smith's number: 0898880022\nFranky can be " +
 "found at 0888445566.\nSteven's mobile number: 0887654321";
string replacedDoc = Regex.Replace(
 doc, "(08)[0-9]{8}", "$1********");

www.manaraa.com

478 Fundamentals of Computer Programming with C#

Console.WriteLine(replacedDoc);

// Console output:
// Smith's number: 08********
// Franky can be found at 08********.
// Steven' mobile number: 08********

Explaining the Arguments of Regex.Replace(…)

In the above code fragment by using a regular expression, we find all the

phone numbers specified in the text and replace them by a pattern. We use

the class System.Text.RegularExpressions.Regex, which is intended for

use with regular expressions in .NET Framework. The variable, which imitates

the document text, is doc. Several names of customers are recorded there. If

we want to protect the contacts from an improper use and wish to censor the

phone numbers, then we can replace all mobile phones with asterisks.

Assuming that the phones are saved in the following format: "08 + 8 digits",

the method Regex.Replace(…) finds all matches by a given format and

replaces them with: "08********".

The regular expression that finds all of the numbers is the following: "(08)[0-
9]{8}". It finds all substrings in the text, constructed by the constant "08"

and followed exactly by 8 characters ranging from 0 to 9. The example can be

further improved by selecting the numbers only from a given mobile operator,

for phones on foreign networks, etc., but in this case we used the simplified

version.

The literal "08" is surrounded by parentheses. They serve for forming a

separate group in the regular expression. The groups can be used for handling

only a certain part of the expression instead of the entire expression. In our

example, the group is used in the substitution. Through it, the founded

matches are replaced by the pattern "$1********", i.e. the text which was

found in the first group of the regular expression ($1) + 8 consecutive

asterisks for censorship. As the defined group is always a constant (08), so

the text replaced will always be: 08 ********.

This chapter is not intended to explain in details how to use regular

expressions in .NET Framework, as it is a huge and complex field, but only

to turn the reader’s attention that the regular expressions exist and they are a

powerful tool for text processing. Anyone who wants to learn more, can

search for articles, books and tutorials in order to learn how to construct

regular expressions, how to look for matches, how validation is made, how to

make substitutions by patterns, etc. In particular, we recommend you to visit

the websites http://www.regular-expressions.info and http://regexlib.com.

More information about the classes in .NET Framework for working with

regular expressions can be found at: http://msdn.microsoft.com/en-

us/library/system.text.regularexpressions.regex%28VS.100%29.aspx.

http://www.regular-expressions.info/
http://regexlib.com/
http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex%28VS.100%29.aspx

www.manaraa.com

Chapter 13. Strings and Text Processing 479

Removing Unnecessary Characters at the Beginning

and at the End of a String

When entering text in a file or to the console, you can find sometimes some

"parasitic" spaces (white-space) at the beginning or at the end of the text –

some other space or a tab that cannot be observed at first glance. This may

not be essential but if we do not validate the user data, there would be a

problem in terms of checking the contents of the input information. In order

to solve this problem we can use the method Trim(). It is responsible for

eliminating (trimming) the white spaces at the beginning or at the end of a

string. The white spaces can be spaces, tabs, line breaks etc.

Let’s assume in the variable fileData we have read the contents of a file

where is written a name of a student. There may have emerged parasitic

spaces when writing the text or reversing it from one format to another. In

that case the variable will look the following way:

string fileData = " \n\n David Allen ";

If we print the contents to the console, we get two blank lines followed by

some spaces, the requested name and some additional spaces at the end. We

can reduce the information just to the required name, in the following way:

string reduced = fileData.Trim();

When we print the information to the console for the second time, the content

will be "David Allen", without any unwanted white spaces.

Removing Unnecessary Characters by a Given List

The method Trim(…) can accept an array of characters, which we want to

remove from the string. We can make it in the following way:

string fileData = " 111 $ % David Allen ### s ";
char[] trimChars = new char[] {' ', '1', '$', '%', '#', 's'};
string reduced = fileData.Trim(trimChars);
// reduced = "David Allen"

Again, we get the desired result "David Allen".

Please note that we must list all the characters we want to

eliminate, including the empty spaces (spaces, tabs, new

line, etc.). Without a ' ' in the array trimChars, we would

not get the desired result!

If we want to remove the white spaces only at the beginning or in end of the

string, we can use the methods TrimStart(…) and TrimEnd(…):

www.manaraa.com

480 Fundamentals of Computer Programming with C#

string reduced = fileData.TrimEnd(trimChars);
// reduced = " 111 $ % David Allen"

Constructing Strings: the StringBuilder Class

As explained above, strings in C# are immutable. This means that any

adjustments applied to an existing string do not change it but return a new

string. For example, using methods like Replace(…), ToUpper(…), Trim(…) do

not change the string, which they are called for. They allocate a new area in

the memory where the new content is saved. This behavior has many

advantages but in some cases can cause performance problems.

Strings Concatenation in a Loop: Never Do This!

Serious performance problems may be encountered when trying to

concatenate strings in a loop. The problem is directly related to the strings

handling and dynamic memory, which is used to store them. To understand

why we have poor performance when concatenating strings in a loop,

we must first consider what happens when using operator "+" for strings.

How Does the String Concatenation Works?

We already got familiar with the ways to do string concatenation in C#. Let’s

now examine what happens in memory when concatenating strings.

Consider two variables str1 and str2 of type string, which have values of

"Super" and "Star". There are two areas in the heap (dynamic memory) in

which the values are stored. The task of str1 and str2 is to keep a reference

to the memory addresses where our data is stored. Let’s create a variable

result and give it a value of the other two strings by concatenation. A code

fragment for creating and defining the three variables would look like this:

string str1 = "Super";
string str2 = "Star";
string result = str1 + str2;

What will happen with the memory? Creating the variable result will allocate

a new area in dynamic memory, which will record the outcome of the str1 +
str2, which is "SuperStar". Then the variable itself will keep the address of

the allocated area. As a result we will have three areas in memory and three

references to them. This is convenient, but allocating a new area, recording a

value, creating a new variable and referencing it in the memory is time-

consuming process that would be a problem when repeated many times,

typically inside a loop.

Unlike other programming languages, in C# is not necessary to manually

dispose the objects stored in memory. There is a special mechanism called a

garbage collector (memory cleaning system), which takes care of

clearing the unused memory and resources. The garbage collector is

www.manaraa.com

Chapter 13. Strings and Text Processing 481

responsible for disposing of objects in dynamic memory when they are no

longer used. Creation of many objects containing multiple references in

dynamic memory is bad, because it fills memory and then the garbage

collector is automatically enforced to start execution. It takes quite some time

and slows the overall performance of the process. Furthermore,

transferring characters from one place to another in memory (when string

concatenation is executed) is slow, especially if the strings are long.

Why Concatenating Strings in a Loop is a Bad Practice?

Assume that we have a task to store the numbers from 1 to 20,000

consecutively to each other in a variable of type string. How can we solve

the problem with our already existing knowledge? One of the easiest ways for

implementation is to create a variable that stores the numbers and execute a

loop from 1 to 20,000 in which each number is concatenated to the variable.

Implemented in C#, the solution would look like this:

string collector = "Numbers: ";
for (int index = 1; index <= 20000; index++)
{
 collector += index;
}

Execution of the above code will loop 20,000 times and after each iteration

will add the current index to the collector variable. collector’s value after

implementation would be: "Numbers: 12345678910111213141516…" (the

numbers from 17 to 20,000 are replaced with dots because we don’t have the

space to write something that long here).

Probably you have not noticed the delay in the fragment’s execution. Indeed,

using concatenation in the loop has delayed significantly the normal

calculation process. On an average PC (as of January 2012) the loop iteration

takes 1-2 seconds. The user of our program would be very skeptical if he

has to wait a few seconds for something so simple such as concatenating the

numbers from 1 to 20,000. Moreover, in this case 20,000 is just an example

endpoint. What will be the delay if instead of 20,000 the user needs to

concatenate numbers to 200,000? Try it!

Concatenating in Loop of 200,000 Iterations – Example

Let’s develop further the example above. First, we will change the endpoint of

the loop from 20,000 to 200,000. Second, in order to account properly the

execution time, we will display on the console the current date and time

before and after execution of the loop. Third, to see whether the variable

contains the desired value, we will also display part of it on the console. If you

want to make sure that the whole value is stored, you can remove the

method Substring(…), but the print itself in this case will take a long time.

The final version of the example would look like this:

www.manaraa.com

482 Fundamentals of Computer Programming with C#

class SlowNumbersConcatenator
{
 static void Main()
 {
 Console.WriteLine(DateTime.Now);

 string collector = "Numbers: ";
 for (int index = 1; index <= 200000; index++)
 {
 collector += index;
 }

 Console.WriteLine(collector.Substring(0, 1024));
 Console.WriteLine(DateTime.Now);
 }
}

When executing the example implementation on the console, the program

starting date and time, the first 1024 characters of the variable and program

completion date and time are displayed on the console. The reason to show

only the first 1024 characters is that we want to measure only the calculation

time without the time for printing the results. Printing the whole result will be

time consuming. Let’s see sample output from the execution:

Program start is marked with a green line and its end – with red. Note the

execution time – about 5-6 minutes (on our computer from January 2012)!

Such a delay is unacceptable for such a task and will not only make the user

nervous but will make him stop the program without waiting for it to end.

www.manaraa.com

Chapter 13. Strings and Text Processing 483

Processing Strings in the Memory

The problem with time-consuming Loop processing is related to the way

strings work in memory. Each iteration creates a new object in the heap and

point the reference to it. This process requires a certain physical time.

Several things happen at each step:

1. An area of memory is allocated for recording the next number

concatenation result. This memory is used only temporarily while

concatenating, and is called a buffer.

2. The old string is moved into the new buffer. If the string is long (say

500 KB, 5 MB or 50 MB), it can be quite slow!

3. Next number is concatenated to the buffer.

4. The buffer is converted to a string.

5. The old string and the temporary buffer become unused. Later they are

destroyed by the garbage collector. This may also be a slow

operation.

Much more elegant and appropriate way to concatenate strings in a Loop is

using the StringBuilder class. Let’s see how it works.

Building and Changing Strings with StringBuilder

StringBuilder is a class that serves to build and change strings. It

overcomes the performance problems that arise when concatenating

strings of type string. The class is built in the form of an array of characters

and what we need to know about it is that the information in it can be freely

changed. Changes that are required in the variables of type StringBuilder,

are carried out in the same area of memory (buffer), which saves time and

resources. Changing the content does not create a new object but simply

changes the current.

Let’s rewrite the code above in which we concatenated strings in a loop. If you

remember, the operation previously took 5 minutes. Let’s measure how long

will take the same operation if we use StringBuilder:

class ElegantNumbersConcatenator
{
 static void Main()
 {
 Console.WriteLine(DateTime.Now);

 StringBuilder sb = new StringBuilder();
 sb.Append("Numbers: ");

 for (int index = 1; index <= 200000; index++)

www.manaraa.com

484 Fundamentals of Computer Programming with C#

 {
 sb.Append(index);
 }

 Console.WriteLine(sb.ToString().Substring(0, 1024));
 Console.WriteLine(DateTime.Now);
 }
}

This example is based on the previous one, with only minor adjustments.

Return value is the same, but what about the execution time?

The time required to concatenate 200,000 characters with StringBuilder is

now less than a second (perhaps few milliseconds)!

Reversing a String – Example

Consider another example: we want to reverse an existing string

(backwards). For example, if we have the string "abcd", the returned result

should be "dcba". We get the original string, iterate it backwards character by

character and add each character to a variable of type StringBuilder:

public class WordReverser
{
 static void Main()
 {
 string text = "EM edit";
 string reversed = ReverseText(text);

www.manaraa.com

Chapter 13. Strings and Text Processing 485

 Console.WriteLine(reversed);

 // Console output:
 // tide ME
 }

 static string ReverseText(string text)
 {
 StringBuilder sb = new StringBuilder();
 for (int i = text.Length - 1; i >= 0; i--)
 {
 sb.Append(text[i]);
 }
 return sb.ToString();
 }
}

In this example we have a variable text, which contains the value "EM edit".

We pass the variable to the ReverseText(…) method and set the new value in

a variable named reversed. The method, in turn, iterates the characters of

the variable in reverse order and stores them in a new variable of type

StringBuilder, but now back ordered. Ultimately, the result is "tide ME".

How Does the StringBuilder Class Work?

The StringBuilder class is an implementation of a string in C#, but different

than the class String. Unlike the already familiar for us strings, the objects of

the StringBuilder class are not immutable, namely edit operations do not

require creating a new object in the memory. This reduces the

unnecessary transfer of data in memory when performing basic operations

such as string concatenation.

StringBuilder keeps a buffer with a certain capacity (16 characters by

default). The buffer is implemented as an array of characters that is provided

to the developer by a user-friendly interface – methods that quickly and easily

add and edit elements of the string. At any moment part of the characters in

the buffer are used and the rest stay in reserve. This allows the addition to

work very quickly. Other operations also operate faster than the class string,

because the changes do not create a new object.

Once the internal buffer of the StringBuilder is full, it automatically is

doubled (the internal buffer is resized to increase its capacity while its content

is kept unchanged). Resizing is a slow operation but is happens rarely so

the total performance is good. We will discuss this in more details in the

chapter about "Algorithms Complexity".

www.manaraa.com

486 Fundamentals of Computer Programming with C#

Let’s create an object of the StringBuilder class with 15 characters long

buffer. We add the string: "Hello, C#!" to it and we get the following code:

StringBuilder sb = new StringBuilder(15);
sb.Append("Hello, C#!");

After creating the object and storing the value in it, the StringBuilder will

look as follows:

Colored elements are the filled with our content part of the buffer. Normally,

adding a new character to the variable does not create a new object in the

memory but use the already allocated and unused space. If the entire

capacity of the buffer is filled, then the buffer is doubled as we already

explained.

StringBuilder – More Important Methods

The StringBuilder class provides us with a set of methods that help us to

easily and efficiently edit text data and construct text. We met some of them

in the examples. The most important are:

- StringBuilder(int capacity) – constructor with an initial capacity

parameter. It may be used to set the buffer size in advance if we have

estimates of the number of iterations and concatenations, which will be

performed. This way we can save unnecessary dynamic memory

allocations.

- Capacity – returns the buffer size (total number of used and unused

positions in the buffer).

- Length – returns length of string saved in the variable (number of used

positions in the buffer)

- Indexer [int index] – return the character stored in given position.

- Append(…) – appends string, number or other value after the last

character in the buffer.

- Clear(…) – removes all characters from the buffer (deletes it).

- Remove(int startIndex, int length) – removes (deletes) string from

the buffer with a given start position and length.

www.manaraa.com

Chapter 13. Strings and Text Processing 487

- Insert(int offset, string str) – inserts a string in a given start

position (offset).

- Replace(string oldValue, string newValue) – replaces all occurren-

ces of a given substring with another substring.

- ToString() – returns the StringBuilder object content as a string

object.

Extracting All Capital Letters from a Text – Example

The next task is to extract all capital letters from a text. We can

implement it in different ways – using an array, counter and filling the array

with all capital letters found; creating an object of type string and

concatenate capitals one by one to it; using the class StringBuilder.

Turning to the option of using an array, we have a problem: we do not know

what will be array size, as we have no idea in advance how many are the

capital letters in the text. We can create an array as large as the text, but

thus wasting unnecessary space in memory and we must also maintain a

counter that keeps where the array is full to.

Another option is to use a variable of type string. As we will iterate the

whole text and concatenate all capital letters to the variable, probably we will

lose efficiency again due to the strings concatenation.

StringBuilder: the Right Solution

The most viable solution to the task again is to use StringBuilder. We can

start with an empty StringBuilder, iterate the letters of the given text

character by character, verify that the current character is uppercase and

concatenate the character at the end of our StringBuilder. Finally, we can

return the final result by calling the ToString() method. Below is a sample

implementation:

public static string ExtractCapitals(string str)
{
 StringBuilder result = new StringBuilder();
 for (int i = 0; i < str.Length; i++)
 {
 char ch = str[i];
 if (char.IsUpper(ch))
 {
 result.Append(ch);
 }
 }
 return result.ToString();
}

www.manaraa.com

488 Fundamentals of Computer Programming with C#

Calling ExtractCapitals(…) method and passing a specified text as a

parameter to it, the return value is a string of all capital letters in the text,

namely the initial string without all characters that are not capitalized. To

check whether a character is uppercase we are using char.IsUpper(…) – a

method from the standard .NET classes. You can view the char class

documentation, because it offers other useful methods for handling

characters.

String Formatting

.NET Framework provides the developer with mechanisms for formatting

strings, numbers and dates. We have already met some of them in the

chapter "Console Input and Output". Now we will extend our knowledge with

methods for formatting and converting strings of the string class.

The ToString(…) Method

One of the interesting concepts in .NET is that practically every object of a

class and primitive variables can be presented as text. This is done by the

method ToString(…), which is present in all .NET objects. It is implicit in the

definition of the object class – the base class that all .NET data types inherit

directly or indirectly. Thus the definition of the method appears in each class

and we can use it to bring the content of each object in some text form.

The method ToString(…) is called automatically when we print objects from

different classes to the console. For example, when printing dates the

submitted date is converted to text by calling the ToString(…):

DateTime currentDate = DateTime.Now;
Console.WriteLine(currentDate);
// Output: 01.02.2012 13:34:27 (depends on the culture settings)

When we pass currentDate as a parameter of the WriteLine(…) method, we

don’t have an accurate statement that handles dates. The method has a

particular implementation for all primitive types and strings. For all other

objects WriteLine(…) calls their ToString(…) method, which first converts

them to text and then displays the resulting text content. In fact, the sample

code above is equivalent to the following:

DateTime currentDate = DateTime.Now;
Console.WriteLine(currentDate.ToString());

The default implementation of the ToString(…) method in the object class

returns the full name of the class. All classes that do not explicitly redefine

the behavior of the ToString(…) are using this implementation. Most classes

in C# have their own implementation of the method, which represents

readable and understandable content in text form. For example, converting a

number to text is using the standard format for numbers in the current

www.manaraa.com

Chapter 13. Strings and Text Processing 489

culture. Converting a date to text is also using the standard format for dates

in the current culture.

Using of String.Format(…)

String.Format(…) is a static method by which we can format text and

other data through a template (formatting string). The templates contain

text and declared parameters (placeholders) and are used to obtain

formatted text after replacing the parameters with specific values. You can

make a direct association with the Console.WriteLine(…) method, which

also formats a string through a template:

Console.WriteLine("This is a template from {0}", "David");

How to use the String.Format(…) method? Consider an example in order to

clarify this:

DateTime date = DateTime.Now;
string name = "David Scott";
string task = "Introduction to C# book";
string location = "his office";

string formattedText = String.Format(
 "Today is {0:MM/dd/yyyy} and {1} is working on {2} in {3}.",
 date, name, task, location);
Console.WriteLine(formattedText);

// Output: Today is 01.02.2012 and David Scott is working on
// Introduction to C# book in his office.

As it is seen from the example, formatting with String.Format() uses

placeholders (parameters like {0}, {1}, etc.) and accepts formatting strings

(such as :dd.MM.yyyy). It accepts as first parameter a formatting string

containing text with parameters, followed by values for each parameter and

returns the formatted text as a result. More information about formatting

strings can be found on the Internet and in the Composite Formatting

article in MSDN (http://msdn.microsoft.com/en-us/library/txafckwd.aspx).

Note that the exact formatting of the output could slightly vary depending on

your default culture and internationalization.

Parsing Data

The reverse operation of data formatting is data parsing. Parsing of data

(data parsing) means to obtain a value of a given type from the text

representation of this value in a specific format, i.e. converting from text to

some other data type, the opposite of ToString(). For example, from the

http://msdn.microsoft.com/en-us/library/txafckwd.aspx

www.manaraa.com

490 Fundamentals of Computer Programming with C#

text "10/22/2010" we can get an instance of DateTime type, containing the

relevant date.

Often working with applications with graphical user interface requires the user

input to be passed in variables of type string. This way we can work well

with numbers and characters as well as text and dates, formatted in a user’s

preferred way. It is up to the developer’s experience to represent the

expected input data into the right way for the user. The data are then

converted to a specific data type and processed. For example, numbers

can be converted to int or double variables and then participate in

mathematical expressions for calculations.

When converting types, we should not rely only on trusting

the user. Always check the correctness of the input user

data! Otherwise there could be an exception that could

change the normal program logic.

Parsing Numeric Types

To parse a string to a number we can use the Parse(…) method of the

primitive types. Let’s see an example of parsing a string to an integer value:

string text = "53";
int intValue = int.Parse(text);
// intValue = 53

We can also parse variables of Boolean type:

string text = "True";
bool boolValue = bool.Parse(text);
// boolValue = true

Return value is true, when the passed parameter is initialized (not an object

with null value), and its content is "true" regardless of the casing of letters

in it. For example, any text such as "true", "True" or "tRUe" will set the

variable boolValue to true. If the parameter’s content is "false", no matter

the casing of letters, the return value will be false. In all other cases it throws

FormatException.

In case the passed to the Parse(…) method value is invalid for the type (e.g.

we pass "John!" when parsing a number), an exception is thrown.

Parsing Dates

Parsing to a date is similar to parsing to a numeric type, but it is

recommended to set a specific date format. Here is an example of how this

can happen:

www.manaraa.com

Chapter 13. Strings and Text Processing 491

string text = "11/11/2001";
DateTime parsedDate = DateTime.Parse(text);
Console.WriteLine(parsedDate);
// 11-Nov-01 0:00:00 AM

Whether the date will be parsed successfully and in what format exactly it will

be printed on the console depends strongly on the current culture of Windows.

In the example, a modified version of the U.S. culture (en-US) is used. If we

want to set a format explicitly, which does not depend on the culture, we can

use the method DateTime.ParseExact(…) and specify particular formatting

pattern of our choice:

string text = "11/12/2001";
string format = "MM/dd/yyyy";
DateTime parsedDate = DateTime.ParseExact(
 text, format, CultureInfo.InvariantCulture);
Console.WriteLine("Day: {0}\nMonth: {1}\nYear: {2}",
 parsedDate.Day, parsedDate.Month, parsedDate.Year);
// Day: 12
// Month: 11
// Year: 2001

When parsing with an explicitly set format, it is required to pass a specific

culture from which to take information about date format and separators

between days and years. Since we want the parsing not to depend on a

particular culture, we explicitly specify the neutral culture to be used:

CultureInfo.InvariantCulture. To use the class CultureInfo, we must

include the namespace System.Globalization in the beginning of our C#

source code.

Exercises

1. Describe the strings in C#. What is typical for the string type?

Explain which the most important methods of the string class are.

2. Write a program that reads a string, reverse it and prints it to the

console. For example: "introduction" "noitcudortni".

3. Write a program that checks whether the parentheses are placed

correctly in an arithmetic expression. Example of expression with

correctly placed brackets: ((a+b)/5-d). Example of an incorrect

expression:)(a+b)).

4. How many backslashes you must specify as an argument to the method

Split(…) in order to split the text by a backslash?

Example: one\two\three.

www.manaraa.com

492 Fundamentals of Computer Programming with C#

Note: In C# backslash is an escaping character.

5. Write a program that detects how many times a substring is contained in

the text. For example, let’s look for the substring "in" in the text:

We are living in a yellow submarine. We don't have anything
else. Inside the submarine is very tight. So we are drinking
all the day. We will move out of it in 5 days.

The result is 9 occurrences.

6. A text is given. Write a program that modifies the casing of letters to

uppercase at all places in the text surrounded by <upcase> and

</upcase> tags. Tags cannot be nested.

Example:

We are living in a <upcase>yellow submarine</upcase>. We
don't have <upcase>anything</upcase> else.

Result:

We are living in a YELLOW SUBMARINE. We don't have ANYTHING
else.

7. Write a program that reads a string from the console (20 characters

maximum) and if shorter complements it right with "*" to 20 characters.

8. Write a program that converts a given string into the form of array of

Unicode escape sequences in the format used in the C# language.

Sample input: "Test". Result: "\u0054\u0065\u0073\u0074".

9. Write a program that encrypts a text by applying XOR (excluding or)

operation between the given source characters and given cipher code.

The encryption should be done by applying XOR between the first letter

of the text and the first letter of the code, the second letter of the text

and the second letter of the code, etc. until the last letter of the code,

then goes back to the first letter of the code and the next letter of the

text. Print the result as a series of Unicode escape characters \xxxx.

Sample source text: "Test". Sample cipher code: "ab". The result should

be the following: "\u0035\u0007\u0012\u0016".

10. Write a program that extracts from a text all sentences that contain

a particular word. We accept that the sentences are separated from

each other by the character "." and the words are separated from one

another by a character which is not a letter. Sample text:

We are living in a yellow submarine. We don't have anything
else. Inside the submarine is very tight. So we are drinking

www.manaraa.com

Chapter 13. Strings and Text Processing 493

all the day. We will move out of it in 5 days.

Sample result:

We are living in a yellow submarine.
We will move out of it in 5 days.

11. A string is given, composed of several "forbidden" words separated by

commas. Also a text is given, containing those words. Write a program

that replaces the forbidden words with asterisks. Sample text:

Microsoft announced its next generation C# compiler today.
It uses advanced parser and special optimizer for the
Microsoft CLR.

Sample string containing the forbidden words: "C#,CLR,Microsoft".

Sample result:

********* announced its next generation ** compiler today.
It uses advanced parser and special optimizer for the
********* ***.

12. Write a program that reads a number from console and prints it in 15-

character field, aligned right in several ways: as a decimal number,

hexadecimal number, percentage, currency and exponential (scientific)

notation.

13. Write a program that parses an URL in following format:

[protocol]://[server]/[resource]

It should extract from the URL the protocol, server and resource parts.

For example, when http://www.cnn.com/video is passed, the result is:

[protocol]="http"
[server]="www.cnn.com"
[resource]="/video"

14. Write a program that reverses the words in a given sentence without

changing punctuation and spaces. For example: "C# is not C++ and
PHP is not Delphi" "Delphi not is PHP and C++ not is C#".

15. A dictionary is given, which consists of several lines of text. Each line

consists of a word and its explanation, separated by a hyphen:

.NET – platform for applications from Microsoft

http://www.cnn.com/video/

www.manaraa.com

494 Fundamentals of Computer Programming with C#

CLR – managed execution environment for .NET
namespace – hierarchical organization of classes

Write a program that parses the dictionary and then reads words from

the console in a loop, gives an explanation for it or writes a message

on the console that the word is not into the dictionary.

16. Write a program that replaces all hyperlinks in a HTML document

consisting of … and hyperlinks in "forum" style, which

look like [URL=…]…[/URL].

Sample text:

<p>Please visit our site to
choose a training course. Also visit <a href=
"http://forum.softuni.org">our forum to discuss the
courses.</p>

Sample result:

<p>Please visit [URL=http://softuni.org]our site[/URL] to
choose a training course. Also visit [URL=
http://forum.softuni.org]our forum[/URL] to discuss the
courses.</p>

17. Write a program that reads two dates entered in the format

"day.month.year" and calculates the number of days between them.

Enter the first date: 27.02.2006
Enter the second date: 3.03.2006
Distance: 4 days

18. Write a program that reads the date and time entered in the format

"day.month.year hour:minutes:seconds" and prints the date and time

after 6 hours and 30 minutes in the same format.

19. Write a program that extracts all e-mail addresses from a text. These

are all substrings that are limited on both sides by text end or separator

between words and match the shape <sender>@<host>…<domain>.

Sample text:

Please contact us by phone (+001 222 222 222) or by email at
example@gmail.com or at test.user@yahoo.co.uk. This is not
email: test@test. This also: @gmail.com. Neither this:
a@a.b.

Extracted e-mail addresses from the sample text:

mailto:test.user@yahoo.co.uk

www.manaraa.com

Chapter 13. Strings and Text Processing 495

example@gmail.com
test.user@yahoo.co.uk

20. Write a program that extracts from a text all dates written in format

DD.MM.YYYY and prints them on the console in the standard format for

Canada. Sample text:

I was born at 14.06.1980. My sister was born at 3.7.1984. In
5/1999 I graduated my high school. The law says (see section
7.3.12) that we are allowed to do this (section 7.4.2.9).

Extracted dates from the sample text:

14.06.1980
3.7.1984

21. Write a program that extracts from a text all words which are

palindromes, such as ABBA", "lamal", "exe".

22. Write a program that reads a string from the console and prints in

alphabetical order all letters from the input string and how many

times each one of them occurs in the string.

23. Write a program that reads a string from the console and prints in

alphabetical order all words from the input string and how many

times each one of them occurs in the string.

24. Write a program that reads a string from the console and replaces every

sequence of identical letters in it with a single letter (the repeating

letter). Example: "aaaaabbbbbcdddeeeedssaa" "abcdedsa".

25. Write a program that reads a list of words separated by commas from the

console and prints them in alphabetical order (after sorting).

26. Write a program that extracts all the text without any tags and

attribute values from an HTML document.

Sample text:

<html>
 <head><title>News</title></head>
 <body><p>Software
 Universityaims to provide free real-world practical
 training for young people who want to turn into
 skillful software engineers.</p></body>
</html>

Sample result:

www.manaraa.com

496 Fundamentals of Computer Programming with C#

News
Software University aims to provide free real-world
practical training for young people who want to turn into
skillful software engineers.

Solutions and Guidelines

1. Read in MSDN or refer to the start of this chapter.

2. Use StringBuilder and for (or foreach) loop.

3. Use counting of the brackets: For an opening bracket increase the

counter by 1 and for closing bracket decrease it by 1. Watch the counter

not to become a negative number and always ends with 0.

4. If you do not know how many slashes you must use, try Split(…) with

an increasing number of slashes until you reach the desired result.

5. Reverse the casing of letters in text to small and search the given

substring in a loop. Remember to use IndexOf(…) with a start index in

order to avoid infinite loop.

6. Use regular expressions or IndexOf(…) method for opening and closing

tag. Calculate the start and end index of the text. Change the text in all

capital letters and replace the entire substring opening tag + text +

closing tag with the text in uppercase.

7. Use the PadRight(…) method from the String class.

8. Use format string "\u{0:x4}" for the Unicode character code for each

character of the input string (you can get it by converting char to

ushort).

9. Let the cipher cipher consists of cipher.Length letters. Iterate through

all letters in the text and encrypt the letter at position index in the text

with cipher[index % cipher.Length]. If you have a letter from the

text and letter from the cipher, we can perform XOR operation between

them by transforming in advance the two letters into numbers of type

ushort. We can print the result with "\u{0:x4}" format string.

10. First split the sentences from each other by using the Split(…)

method. Then make sure that each sentence contains the searched

word by searching for it as a substring with IndexOf(…) and if you find it

check whether there is a separator (character, which is not a letter or

start / end of the string) on the left and on the right of the found

substring.

11. First, split the forbidden words with the method Split(…) in order to

get them as an array. For each forbidden word, iterate through the text

and search for an occurrence. If a forbidden word is found, replace it

with as many asterisks as letters contained in the forbidden word.

www.manaraa.com

Chapter 13. Strings and Text Processing 497

Another, easier approach is to use RegEx.Replace(…) with a suitable

regular expression and a suitable MatchEvaluator method.

12. Use appropriate formatting strings.

13. Use a regular expression or search for the respective splitters – two

slashes for a protocol and one slash as a separator between the server

and the resource. Test the special cases like missing parts of the URL.

14. You can solve the problem in two steps: reverse the input string;

reverse each word in the result string.

Another interesting approach is to split the input text by punctuation

marks between words, in order to get just the words of the text and then

split by the letters to get the punctuation marks of the text. Thus,

given a list of words and a list of punctuation marks between them, you

can easily reverse the words, preserving the punctuation marks.

15. You can parse the text by splitting it by the new line character, then a

second time by the "-" character. The most appropriate way to record the

dictionary is in a hash table (Dictionary<string, string>), which will

provide a quick search for a given word. Read on the Internet for hash-

tables and the Dictionary<K,T> class. You might also check the chapter

“Dictionaries, hash-Tables and Sets”.

16. Using a regular expression is the easiest way to solve the task.

If you still choose not to use regular expressions, you can find all

substrings that start with "<a href=" and end with "" and within

them to replace "" with

"]" and then "" with "[/URL]".

17. Use the methods in the DateTime structure. For parsing the dates you

can use splitting by "." or parsing with the DateTime.ParseExact(…)

method.

18. Use the DateTime.ToString() and DateTime.ParseExact() methods

with suitable formatting strings.

19. Use RegEx.Match(…) with an appropriate regular expression.

If you want to solve the task without regular expressions, you will need

to process the text letter by letter from start to finish and process the

next character, depending on the current mode, which can be one of

OutsideOfEmail, ProcessingSender or ProcessingHostOrDomain. If a

separator or the end of the text is reached and host or domain is

processed (mode ProcessingHostOrDomain), then you have found an e-

mail, otherwise potentially a new e-mail is starting and mode must be

changed to ProcessingSender. If @ character is reached in

ProcessingSender mode, ProcessingSender is switched on. When

meeting letters or dot in ProcessingSender or ProcessingHostOrDomain

mode, they ate accumulated in a buffer. You can look at all possible

www.manaraa.com

498 Fundamentals of Computer Programming with C#

groups of characters encountered respectively in each of the three modes

and process them appropriately. We come to something like a final

automaton (state machine), which detects e-mail addresses. All found e-

mail addresses must be checked whether they have nonempty recipient,

host, and domain with a length between 2 and 4 letters, as well as not

beginning or ending with a dot.

Another easier approach to this problem is to split the text by all

characters that are not letters and dots and to verify that the extracted

"words" are valid e-mail addresses. Check can be done through an

attempt to split them to nonempty parts: <sender>, <host>, <domain>,

meeting the listed conditions.

20. Use RegEx.Match(…) with an appropriate regular expression.

Alternative option is to implement a state-machine that has several

states OutOfDate, ProcessingDay, ProcessingMonth, ProcessingYear

and while processing the text letter by letter to move between states

according to the current letter which you are processing. As in the

previous task, you can extract all "words" from the text in advance and

then check which ones correspond to the date template.

21. Split the text into words and check whether each word is a palindrome.

22. Use an array of integers int[65536], which will keep how many times

each letter occurs. Initially, all array elements are zeros. After

processing the input string letter by letter you can write in the array how

many times each letter occurs. For example, if you meet the letter 'A',

the number of occurrences in the array index of 65 (Unicode code 'A') will

increase by one. Finally, all non-zero elements (convert array index to

char, to get the letter) and their number of occurrences can be printed

with one scan of the array.

23. Use a hash table (Dictionary<string, int>) which keeps how many

times each word occurs in the input string. Read on the Internet for class

System.Collections.Generic.Dictionary<K,T>. With iteration through

words you can accumulate information for each word occurrences in the

hash table and with hash table iteration you can print the result.

24. You can scan text from left to right and when the current letter is

identical with the previous one, miss it, but otherwise concatenate it in

StringBuilder.

25. Use the static method Array.Sort(…) after parsing the input text into

array of strings.

26. Scan the text letter by letter and at all times keep in a variable

whether currently there is an opening tag which has not been closed or

not. If you have "<", enter in "opening tag" mode. If you have ">", exit

the "opening tag" mode. If you have a letter, add it to the result only if

the program is not in "opening tag". After closing a tag you can add a

space in order not to "stick" the text before and after the tag.

www.manaraa.com

Chapter 14. Defining Classes

In This Chapter

In this chapter we will understand how to define custom classes and their

elements. We will learn to declare fields, constructors and properties for

the classes. We will revise what a method is and we will broaden our

knowledge about access modifiers and methods. We will observe the

characteristics of the constructors and we will set out how the program

objects coexist in the dynamic memory and how their fields are initialized.

Finally, we will explain what the static elements of a class are – fields

(including constants), properties and methods and how to use them

properly. In this chapter we will also introduce generic types (generics),

enumerated types (enumerations) and nested classes.

Custom Classes

The aim of every program written by the programmer is to solve a given

problem based on the implementation of a certain idea. In order to create a

solution, first, we sketch a simplified actual model, which does not represent

everything, but focuses on these facts, which are significant for the end

result. Afterwards, based on the sketched model, we are looking for an

answer (i.e. to create an algorithm) for our problem and the solution we

describe via given programming language.

Nowadays, the most used programming languages are the object-oriented.

And because the object-oriented programming (OOP) is close to the way

humans think, using one easily allows us to describe models of the

surrounding life. Certain reason for this behavior is, because OOP offers tools

to draw the set of concepts, which outline classes of objects in every model.

The term – class and the definition of custom classes, different from the .NET

system framework’s, is built-in feature of the C# programming language. The

purpose of this chapter is to get us know with it.

Let’s Recall: What Does It Mean Class and Object?

Class in the OOP is called a definition (specification) of a given type of

objects from the real-world. The class represents a pattern, which describes

the different states and behavior of the certain objects (the copies), which are

created from this class (pattern).

Object is a copy created from the definition (specification) of a given class,

also called an instance. When one object is created by the description of one

class we say the object is from type "name of the class".

www.manaraa.com

500 Fundamentals of Computer Programming with C#

For example, if we have a class type Dog, which describes some of the

characteristics of a real dog, then, the objects based on the description of the

class (e.g. the doggies "Fido" and "Rex") are from type class Dog. It means

the same when the string "some string" is from class type String. The

difference is that objects from type Dog is are copies of the class, which is

not part of the system library classes of the .NET Framework, but defined by

ourselves (the users of the programming language).

What Does a Class Contain?

Every class contains a definition of what kind of data types and objects has in

order to be described. The object (the certain copy of this class) holds the

actual data. The data defines the object’s state.

In addition to the state, in the class is described the behavior of the objects.

The behavior is represented by actions, which can be performed by the

objects themselves. The resource in OOP, through which we can describe this

behavior of the objects from a given class, is the declaration of methods in

the class body.

Elements of the Class

Now, we will go through the main elements of every class, and we will explain

them in details latter. The main elements of a C# classes are the following:

- Class declaration – this is the line where we declare the name of the

class, e.g.:

public class Dog

- Class body – similar to the method idioms in the language, the classes

also have single class body. It is defined right after the class declaration,

enclosed in curly brackets "{" and "}". The content inside the brackets is

known as body of the class. The elements of the class, which are

numbered below, are part of the body.

public class Dog
{
 // … The body of the class comes here …
}

- Constructor – it is used for creating new objects. Here is a typical

constructor:

public Dog()
{
 // … Some code …
}

www.manaraa.com

Chapter 14. Defining Classes 501

- Fields – they are variables, declared inside the class (somewhere in the

literature are known as member-variables). The data of the object,

which these variables represent, and are retained into them, is the

specific state of an object, and one is required for the proper work of

object’s methods. The values, which are in the fields, reflect the specific

state of the given object, but despite of this there are other types of

fields, called static, which are shared among all the objects.

// Field definition
private string name;

- Properties – this is the way to describe the characteristics of a given

class. Usually, the value of the characteristics is kept in the fields of the

object. Similar to the fields, the properties may be held by certain object

or to be shared among the rest of the objects.

// Property definition
private string Name { get; set; }

- Methods – from the chapter "Methods" we know that methods are

named blocks of programming code. They perform particular actions and

through them the objects achieve their behavior based on the class

type. Methods execute the implemented programming logic (algorithms)

and the handling of data.

Sample Class: Dog

Here is how a class looks like. The class Dog defined here owns all the

elements, which we described so far:

// Class declaration
public class Dog
{ // Opening bracket of the class body

 // Field declaration
 private string name;

 // Constructor declaration (peremeterless empty constructor)
 public Dog()
 {
 }

 // Another constructor declaration
 public Dog(string name)
 {
 this.name = name;

www.manaraa.com

502 Fundamentals of Computer Programming with C#

 }

 // Property declaration
 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 // Method declaration (non-static)
 public void Bark()
 {
 Console.WriteLine("{0} said: Wow-wow!",
 name ?? "[unnamed dog]");
 }
} // Closing bracket of the class body

At the moment we will not explain in greater details this code, because the

related information will be presented later in this chapter.

Usage of Class and Objects

In the chapter "Creating and Using Objects" we saw in details how new

objects of a given class are created and how they can be used. Now, shortly

we will revise this programming technique.

How to Use a Class Defined by Us (Custom Class)?

In order to be able to use a given class, first we need to create an object of it.

This is done by the reserved word new in combination with some of the

constructors of the class. This will create an object from a given class (type).

If we want to manipulate the newly created object, we will have to assign it to

a variable from its class type. By doing it, in this variable we will keep the

connection (reference) to the object.

Using the variable, and the “dot” notation, we can call the methods and the

properties of the object, and as well as gain access to the fields (member-

variables).

Example – A Dog Meeting

Let’s have the example from the previous section where we defined the class

Dog, describing a dog, and let’s add a method Main() to the class. In this

method we will demonstrate how to use the mentioned elements until here:

create few Dog objects, assign properties to these objects and call methods on

these objects:

www.manaraa.com

Chapter 14. Defining Classes 503

static void Main()
{
 string firstDogName = null;
 Console.Write("Enter first dog name: ");
 firstDogName = Console.ReadLine();

 // Using a constructor to create a dog with specified name
 Dog firstDog = new Dog(firstDogName);

 // Using a constructor to create a dog wit a default name
 Dog secondDog = new Dog();

 Console.Write("Enter second dog name: ");
 string secondDogName = Console.ReadLine();

 // Using property to set the name of the dog
 secondDog.Name = secondDogName;

 // Creating a dog with a default name
 Dog thirdDog = new Dog();

 Dog[] dogs = new Dog[] { firstDog, secondDog, thirdDog };

 foreach (Dog dog in dogs)
 {
 dog.Bark();
 }
}

The output from the execution will be the following:

Enter first dog name: Axl
Enter second dog name: Bobby
Axl said: Wow-wow!
Bobby said: Wow-wow!
[unnamed dog] said: Wow-wow!

In the example program, with the help of Console.ReadLine(), we got the

name of the objects of type dog, which the user should input.

We assigned the first entered string to the variable firstDogName. Afterwards

we used this variable when we created the first object from class type Dog –

firstDog, by assigning it to the parameter of the constructor.

We created the second object Dog, without using a string for the name of the

dog in the constructor. With the help of Console.ReadLine() we got the

www.manaraa.com

504 Fundamentals of Computer Programming with C#

name of the dog and then the value was assigned to the property Name. This

is done by using a “dot” convention, applied to the variable, which keeps the

reference to the second object from type Dog – secondDog.Name.

When we created the third object from class type Dog, we used for the name

of the dog its default value which is null. Note that in the Bark() method

dogs whthout name (name == null) are printed as “[unnamed dog]”.

Afterward we created an array from type Dog, by initializing it with the three

newly created objects.

At the end, we used a loop, to go through the array of objects from type Dog.

For every element from the array we again used the “dot” notation, be calling

the method Bark() for the particular object: dog.Bark().

Nature of Objects

Let’s revise, when we create an object in .NET, one consists from two parts –

the significant part (data), which contains its data and it is located in the

memory of the operating system called a dynamic memory (heap) and a

reference part to this object, which resides in the other part of the operating

system’s memory, where are stored the local variable and parameters of the

methods (the program execution stack).

For example, let’s have a class called Dog, which has the properties for name,

kind and age. Let’s create a variable dog from this class. This variable is a

reference to the object and is in the dynamic memory (heap).

The reference is a variable, which can access objects. The figure below

depicts an example reference, which has link to the real object in the heap,

and is called with the name dog. One, compare to the variable from primitive

(value type), does not contain the real value (i.e. the data of the object), but

the address, where one is located in the heap memory:

When we declare one variable from type a particular class, and we do not

want the variable to be associated with a specific object, then we assign to it

the value null. The reserved word null in the C# language means, that the

variable does not point to any object (there is a missing value):

HeapStack

Dog@a8fe24

dog

dog reference

name

kind

age

dog object

www.manaraa.com

Chapter 14. Defining Classes 505

Organizing Classes in Files and Namespaces

In C# the only one limitation regarding the saving of our own custom classes

is: they have to be saved in files with file extension .cs. In such a file

several classes, structures and other types can be defined. Although it is not a

requirement of the compiler, it is recommended every class to be stored in

exactly one file, which corresponds to its name, i.e. the class Dog should

be saved in a file Dog.cs.

Organizing Classes in Namespaces

As we should know from the chapter "Creating and Using Objects", the

namespaces in C# are named group of classes, which are logically

connected, without a requirement how they are stored in the file system.

If we want to include in our code namespaces for the operation in our classes,

declared in some file or set of files, this should be done by the so named

using directives. They are not required, but if they exist, they are on the

first lines in the class file, before the declaration of the classes or other types.

In the next paragraphs we will understand how they exactly are used.

After the insertion of the used namespaces, the next is the declaration of the

namespace of the classes in the file. As we know, there is no requirement to

declare classes in a namespace, but it is a good programming technique if we

do it, because the class distribution in the namespace is used for better

organization of the code and determination of the classes with equal names.

The namespaces contain classes, structure, interfaces and other types of

data, and as well other namespaces. An example of nested namespace is

System, which contains the namespace Data. The full name of the second

namespace is System.Data and one is nested in the namespace System.

The full name of a class in .NET Framework is the class name, preceded by

the namespace in which the class is declared, e.g.: <namespace_name>.
<class_name>. By the using reserved word we can use types from certain

namespace, without writing the full name, e.g.:

using System;
…
DateTime date;

HeapStack

null

dog

null reference null

www.manaraa.com

506 Fundamentals of Computer Programming with C#

Instead of:

System.DateTime date;

One typical declaration sequence, which we should follow when we create

custom classes in .cs files, is:

// Using directives – optional
using <namespace1>;
using <namespace2>;

// Namespace definition - optional
namespace <namespace_name>
{
 // Class declaration
 class <first_class_name>
 {
 // … Class body …
 }

 // Class declaration
 class <second_class_name>
 {
 // … Class body …
 }

 // …

 // Class declaration
 class <n-th_class_name>
 {
 // … Class body …
 }
}

The declaring of the namespace and the relevant include of it is already

explained in the chapter "Creating and Using Objects" and therefore we will

not discuss it again.

Before we continue, let’s look into the first line of the previous snippet.

Instead include of namespace it is a source code comment. This is not a

problem in compilation time, the comments are "removed" from the code and

thus the first line is still the including statement.

www.manaraa.com

Chapter 14. Defining Classes 507

Encoding of Files and Using of Cyrillic and Unicode

While we are creating a .cs file, in which to declare our classes, it is good to

think about its character encoding in the file system.

In the .NET Framework the compiled code is represented in Unicode so it is

possible to use characters in our code from alphabets other than Latin. In the

next example we use Cyrillic letters for identifiers in Bulgarian language as

well as comments in the code, written in Bulgarian (in Cyrillic letters):

using System;

public class EncodingTest
{
 // Тестов коментар
 static int години = 4;

 static void Main()
 {
 Console.WriteLine("years: " + години);
 }
}

This code will compile and execute without a problem, but to keep the

characters readable in the Visual Studio editor we need to provide an

appropriate encoding of the file.

As we know from the "Strings" chapter, some not all characters can be stored

in all encodings. If we use non-standard characters such as Chinese, Cyrillic

or Arabic letters, we can use UTF-8 or other character encoding that supports

these characters. By default Visual Studio uses the default character encoding

(system locale) defined in the regional settings in Windows. This might be

ISO-8859-1 in U.K. or U.S. and Windows-1251 in Bulgaria.

To use a different encoding other than the system’s default encoding in Visual

Studio, we need to choose the appropriate encoding of the file when opening

it in the editor:

1. From the File menu we choose Open and then File.

2. In the Open File window we click on the option next to the button

Open and we choose Open With…

3. From the list in the Open With window we choose an editor with

encoding support, for example CSharp Editor with Encoding.

4. Then press [OK].

5. In the window Encoding we choose the appropriate encoding from the

dropdown menu Encoding.

6. Then press [OK].

www.manaraa.com

508 Fundamentals of Computer Programming with C#

The steps for saving files in the file system with a specific encoding are:

1. From the File menu we choose Save As.

2. In the window Save File As we press the drop-down box next to the

button Save and choose Save with Encoding.

3. In Advanced Save Options we select the desired encoding from the

list (preferably the universal UTF-8).

4. From the Line Endings we select the desired line ending type.

Although we have the ability to use characters from any non-English alphabet,

in .cs files it is highly recommended to write all the identifiers and

comments in English, because this way our code will be readable for more

people in the world.

Imagine that you live in Germany and you need to type a code written by a

Vietnamese person, where the names of all variables and comments are in

Vietnamese. You will prefer English, right? Then think about how a developer

from Vietnam will handle variables and comments in German.

Modifiers and Access Levels (Visibility)

Let’s revise, from the chapter "Methods” we know that a modifier is a

reserved word and with the help of it we add additional information for the

compiler and the code related to the modifier.

In C# there are four access modifiers: public, private, protected and

internal. The access modifiers can be used only in front the following

elements of the class: class declaration, fields, properties and methods.

Modifiers and Access Levels

As we explained, in C# there are four access modifiers – public, private,

protected and internal. Based on them we control the access (visibility) to

the elements of the class, in front of which they are used. The levels of access

www.manaraa.com

Chapter 14. Defining Classes 509

in .NET are public, protected, internal, protected internal and

private. In this chapter we will review in details only public, private and

internal. More about protected and protected internal we will learn in

"Object-Oriented Programming Principles".

Access Level "public"

When we use the modifier public in front of some element, we are telling the

compiler, that this element can be accessed from every class, no matter

from the current project (assembly), from the current namespace. The access

level public defines the miss of restrictions regarding the visibility. This

access level is the least restricted access level in C#.

Access Level "private"

The access level private is the one, which defines the most restrictive

level of visibility of the class and its elements. The modifier private is used

to indicate, that the element, to which is issued, cannot be accessed from

any other class (except the class, in which it is defined), even if this class

exists in the same namespace. This is the default access level, i.e. it is used

when there is no access level modifier in front of the respective element of a

class (this is true only for elements inside a class).

Access Level "internal"

The modifier internal is used to limit the access to the elements of the class

only to files from the same assembly, i.e. the same project in Visual Studio.

When we create several projects in Visual Studio, the classes from will be

compiled in different assemblies.

Assembly

.NET assemblies are collections of compiled types (classes and other

types) and resources, which form a logical unit. Assemblies are stored in a

binary file of type .exe or .dll. All types in C# and as general in .NET

Framework can reside only inside assemblies. By every compilation of a .NET

application one or several assemblies are created by the C# compiler and

each assembly is stored inside an .exe or .dll file.

Declaring Classes

The definition of a class is based on strict syntactical rules:

[<access_modifier>] class <class_name>

When we declare a class, it is mandatory to use the reserved word class.

After it must stay the name of the class <class_name>.

www.manaraa.com

510 Fundamentals of Computer Programming with C#

Besides the reserved word class and the name of the class, in the declaration

of the class can be used several modifiers, e.g. the reviewed until now

modifiers.

Class Visibility

Let’s consider two classes – A and B. We say that, class A accesses the

elements of class B, if the first class can do one of the following:

1. Creates an object (instance) from class type B.

2. Can access distinct methods and fields in the class B, based on the

access level assigned to the particular methods and fields.

There is also another operation, which can be done over the classes, when the

visibility allows it. The operation is called inheritance of a class, but we will

discuss it later in the chapter Object-Oriented Programming Principles.

As we understood, the access level term means "visibility". If the class A

cannot "see" the class B, the access level of the methods and the fields in B

does not matter.

The access levels, which an outer class can have, are only public and

internal. Inner classes can be defined with other access levels.

Access Level "public"

If we declare a class access modifier as public, we can reach it from every

class and from every namespace, regardless of where it exists. It means

that every other class can create objects from this type and has access to the

methods and the fields of the public class.

Just to know, if we want to use a class with access level public from other

namespace, different from the current, we should use the reserved word for

including different namespaces using or every time we should write the full

name of the class.

Access Level "internal"

If we declare one class with access modifier internal, one will be accessible

only from the same namespace. It means that only the classes from the

same assembly can create objects from this type class and to have access to

the methods and fields (with related access level) of the class. This access

level is the default, where it is not used access modifier by the declaration of

the class.

If we have two projects in common solution in Visual Studio and we want to

use a class from one project into the other one then the referenced class

should be declared as public.

www.manaraa.com

Chapter 14. Defining Classes 511

Access Level "private"

If we want to be exhaustive, we have to mention that as access modifier for a

class can be used the visibility modifier private, but this is related to the

term "inner class" (nested class), which we will review in the "Nested Classes"

section. Private classes like other private members are accessible only inside

the class which defined them.

Body of the Class

By similarity to the methods, after the declaration of the class follows its

body, i.e. the part of the class where resides the following programming code:

[<access_modifier>] class <class_name>
{
 // … Class body – the code of the class goes here …
}

The body of the class begins with opening curly bracket "{" and ends with

closing one – "}". The class always should have a body.

Class Naming Convention

Equal to the methods, for creation of the class names there are the following

common standards:

1. The names of the classes begin with capital letter, and the rest of the

letters are lower case. If the name of the class consists of several

words, every word begins with capital letter, without separator to be

used. This is the well-known PascalCase convention.

2. For name of the classes nouns are usually used.

3. It is recommended the name of the class to be in English language.

Here are some example class names, which are following the guidelines:

Dog
Account
Car
BufferedReader

More about the name of the classes we will learn in the chapter "High-Quality

Programming Code".

The Reserved Word "this"

The reserved word this in C# is used to reference the current object,

when one is used from method in the same class. This is the object, which

method or constructor is called. The reserved word can be deemed as an

www.manaraa.com

512 Fundamentals of Computer Programming with C#

address (reference), given priory from the language authors, with which we

access the elements (fields, methods, constructor) of the own class:

this.myField; // access a field in the class
this.DoMyMethod(); // access a method in the class
this(3, 4); // access a constructor with two int parameters

Currently, we will not explain the given code above. Later, we will do it in

other sections of this chapter, dedicated to the elements of the class (fields,

methods, constructors) and as well related to the reserved word this.

Fields

Objects describe things from the real world. In order to describe an object, we

focus on its characteristics, which are related to the problems solved in our

program. These characteristics of the real-world object we will hold in the

declaration of the class in special types of variables. These variables, called

fields (or member-variables), are holding the state of the object. When we

create an object based on certain class definition, the values of the fields are

containing the characteristics of the created object (its state). These

characteristics have different values different for the different objects.

Declaring Fields in a Class

Until now we have discussed only two types of variables (see "Methods")

depending on where they are declared:

1. Local variables – these are the variables declared in the body of some

method (or block).

2. Parameters – these are the variables in the list of parameters, which

one method can have.

In C# a third type of variable exists, called field or instance variable.

Fields are declared in the body of the class, outside the body of a single

method or constructor.

Fields are declared in the body of the class but not in the

bodies of the methods or the constructors.

This is a sample code declaring several fields:

class SampleClass
{
 int age;
 long distance;
 string[] names;
 Dog myDog;

www.manaraa.com

Chapter 14. Defining Classes 513

}

More formal, the declaration of a field is done in the following way:

[<modifiers>] <field_type> <field_name>;

The <field_type> part determinates the type of a given field. This type can

be primitive (byte, short, char and so on), an array, or also some class type

(e.g. Dog or string).

The <field_name> part is the name of the field. As the name of the normal

variables, when we declare the name of the instance-variables, we should

obey the rules for naming of identifiers in C# (see chapter "Primitive Types

and Variables").

The <modifiers> part is a definition, which describes the access modifiers

and as well other modifiers. The last ones are not a mandatory part of the

field declaration.

Modifiers and the access modifiers, allowed in the declaration of one field, are

explained in chapter "Primitive Types and Variables".

In this chapter, from the other modifiers, which are not based on access

levels, and can be used in the declaration of fields, we will discuss static,

const and readonly.

Scope

The scope of a class field starts from the line where is declared and ends at

the closing bracket of the body of the class.

Initialization during Declaration

When we declare one field it is possible to assign to it an initial value. We do

this similarly to an assignment of normal local variable:

[<modifiers>] <field_type> <field_name> = <initial_value>;

Of course, the <initial_value> has to be a type compatible with the field’s

type, e.g.:

class SampleClass
{
 int age = 5;
 long distance = 234; // The literal 234 is of integer type

 string[] names = new string[] { "Peter", "Martin" };
 Dog myDog = new Dog();

www.manaraa.com

514 Fundamentals of Computer Programming with C#

 // … Other code …
}

Default Values of the Fields

Every time, when we create a new object of a given class, it is allocated

memory in the heap for every field from the class. In order this to be done

the memory is initialized automatically with the default values for the

certain field. The fields, which do not have explicitly a default value in the

code, use the default value specified for the .NET type, to which they belong.

This is different for the local variables defined in methods. If a local variable in

a method does not have a value assigned, the code will not compile. If a

member variable (field) in a class does not have a value assigned, it will be

automatically zeroed by the compiler.

When an object is created all of the fields are initialized with

their respective default values in .NET, except if they are not

explicitly initialized with some other value.

In some languages (as C and C++) the newly created objects are not

initialized with default values of theirs data and this creates conditions for

hard-to-find errors. The last leads to uncontrolled behavior, where the

program sometimes works correctly (when the allocated memory by chance

has good values), and sometimes does not work (when the allocated memory

does not contain the proper values). In C# and generally in .NET Framework

this problem is solved by the default values for each type coming from the

framework.

The value of all types is 0 or something similar. For the most used types these

values are as the follows:

Type of the Field Default Value

bool false

byte 0

char '\0'

decimal 0.0M

double 0.0D

float 0.0F

int 0

object reference null

For more detailed information you can check chapter "Primitive Types and

Variables" and its section about the primitive types and their default values.

www.manaraa.com

Chapter 14. Defining Classes 515

For example, if we create a class Dog and we define for it fields name, age and

length and check for the gender isMale, without explicitly initializing them,

they will be automatically zeroed when we create an object of this class:

public class Dog
{
 string name;
 int age;
 int length;
 bool isMale;

 static void Main()
 {
 Dog dog = new Dog();

 Console.WriteLine("Dog's name is: " + dog.name);
 Console.WriteLine("Dog's age is: " + dog.age);
 Console.WriteLine("Dog's length is: " + dog.length);
 Console.WriteLine("Dog is male: " + dog.isMale);
 }
}

Respectively, when we execute the program we will have as output the

following:

Dog's name is:
Dog's age is: 0
Dog's length is: 0
Dog is male: False

Automated Initialization of Local Variables and Fields

If we define a local variable in one method, without initializing it, and

afterward we try to use it (e.g. printing its value), this will trigger a

compilation error, because the local variables are not initialized with default

values when they are declared.

Unlike fields, local variables are not initialized with default

values when they are declared.

Let’s have look into one example:

static void Main()
{
 int notInitializedLocalVariable;
 Console.WriteLine(notInitializedLocalVariable);

www.manaraa.com

516 Fundamentals of Computer Programming with C#

}

If we try to compile, we will receive the following error:

Use of unassigned local variable 'notInitializedLocalVariable'

Custom Default Values

A good programming practice is, when we declare fields in the class, to

explicitly initialize them with some default value, even if the default value is

zero. This will make our code clearer and easy to read.

One example for such initialization is the modified example class SampleClass

from the previous section:

class SampleClass
{
 int age = 0;
 long distance = 0;
 string[] names = null;
 Dog myDog = null;

 // … Other code …
}

Modifiers "const" and "readonly"

As was explained in the beginning in this section, in the declaration of one

field is allowed to use the modifications const and readonly. The fields,

declared as const or readonly are called constants. They are used when a

certain value is used several times. These values are declared only ones

without repetitions. Examples of constants in the .NET Framework are the

mathematical constants Math.PI and Math.E, and as well the constants

String.Empty and Int32.MaxValue.

Constants Based on "const"

The fields, declared with const, have to be initialized during the de facto

declaration and afterwards theirs value cannot be changed. They can be

accessed without to create an instance (an object) of the class and they are

common for all created objects in our program. Something more, when we

compile the code, the places where const fields are referred are replaced with

theirs particular values directly without to use the constant variable at all. For

this reason the const fields are called compile-time constants, because

they are replaced with the value during the compilation process.

www.manaraa.com

Chapter 14. Defining Classes 517

Constants Based on "readonly"

The modifier readonly creates fields, which values cannot be changed once

they are assigned. Fields, declared as readonly, allow one-time initialization

either in the moment of the declaration or in the class constructors. Later

theirs values cannot be changed. Because of this reason, the readonly fields

are called run-time constants – constants, because their values cannot be

changed after assignment and run-time, because this process happens during

the execution of the program (in runtime).

Let’s illustrate the foregoing with the following example:

public class ConstAndReadOnlyExample
{
 public const double PI = 3.1415926535897932385;
 public readonly double Size;

 public ConstAndReadOnlyExample(int size)
 {
 this.Size = size; // Cannot be further modified!
 }

 static void Main()
 {
 Console.WriteLine(PI);
 Console.WriteLine(ConstAndReadOnlyExample.PI);
 ConstAndReadOnlyExample instance =
 new ConstAndReadOnlyExample(5);
 Console.WriteLine(instance.Size);

 // Compile-time error: cannot access PI like a field
 Console.WriteLine(instance.PI);

 // Compile-time error: Size is instance field (non-static)
 Console.WriteLine(ConstAndReadOnlyExample.Size);

 // Compile-time error: cannot modify a constant
 ConstAndReadOnlyExample.PI = 0;

 // Compile-time error: cannot modify a readonly field
 instance.Size = 0;
 }
}

www.manaraa.com

518 Fundamentals of Computer Programming with C#

Methods

In chapter "Methods" we have discussed how to declare and use a method.

In this section we will revise how we do this and we will focus on some

additional features from the process of creating methods. Till now we have

used static methods only. Now it is time to start using non-static (instance)

methods.

Declaring of Class Method

The declaration of methods is done in the following way:

// Method definition
[<modifiers>] [<return_type>] <method_name>([<parameters_list>])
{
 // … Method's body …
 [<return_statement>];
}

The mandatory elements for declaration of a method are the type of the

return value <return_type>, the name of the method <method_name> and

the opening and the closing brackets – "(" and ")".

The parameter list <params_list> is not mandatory. We use it to pass data

to the method, which we declare, when this is required.

We know, if the return type <return_type> is void, then

<return_statement> can be declared without the return statement. If

<return_type> is different from void, the method has to return a result with

the help of the reserved word return and an expression, which is from the

type <return_type> or a compatible one.

The work, which the method has to do, is situated in the method body,

enclosed in curly brackets – "{" and "}".

We already discussed some of the access modifiers that can be used in the

declaration of a method in the section "Visibility of Methods and Fields" we will

review in details this again.

The static modifier will be explained in depth in the section "Static Classes

and Static Members".

Example – Method Declaration

Let’s see the declaration of a method, which sums two values:

int Add(int number1, int number2)
{
 int result = number1 + number2;
 return result;

www.manaraa.com

Chapter 14. Defining Classes 519

}

The name of the method is Add and the return value type is int. The

parameter list consists of two elements – the variables number1 and number2.

Accordingly, the return value is the sum of the two parameters as a result.

Accessing Non-Static Data of the Class

In "Creating and Using Objects", we have discussed how based on the "dot"

operator we can access fields and to call the methods of a given class. Now,

let’s recall how we use conventional non-static methods of a given class, i.e.

the methods do not have the modifier static in theirs declaration.

E.g. let’s have the class Dog with the field age. To print the value of this field

we need to create a Dog instance and access the field of this instance via a

“dot” notation:

public class Dog
{
 int age = 2;

 static void Main()
 {
 Dog dog = new Dog();
 Console.WriteLine("Dog's age is: " + dog.age);
 }
}

The result will be:

Dog's age is: 2

Accessing Non-Static Fields from Non-Static Method

The access to the value of one field can be done via the “dot” notation (as in

the last example dog.age), or via a method or property. Now, let’s create in

the class Dog a method, which will return the value of age:

public int GetAge()
{
 return this.age;
}

As we see, to access the value of the age field, inside, from the owner class,

we use the reserved word this. We know that the word this is a reference

to the current object, in which the method resides. Therefore, in our example,

www.manaraa.com

520 Fundamentals of Computer Programming with C#

with "return this.age", we say "from the current object (this) take (the

use of the operator “dot”), the value of the field age, and return it as result

from the method (with the help of the reserved word return). Then, instead

from the Main() method to access the values of the field age of the object

dog, we simple call the method GetAge():

static void Main()
{
 Dog dog = new Dog();
 Console.WriteLine("Dog's age is: " + dog.GetAge());
}

The result of the execution based on the change will be the same.

Formally, the declaration of access to a field in the boundaries of a class is the

following:

this.<field_name>

Let’s emphasize, that this access option is possible only from non-static code,

i.e. method or block, which is without static modifier.

Except for retrieving of the value of one field, we can use the reserved word

this for modification of the field.

E.g., let’s declare a method MakeOlder(), which will be called every year on

the date of the birthday of our pet and this method will increment the age

with one year:

public void MakeOlder()
{
 this.age++;
}

To check if this is correct in the Main() method we add the following lines:

// One year later, at the birthday date…
dog.MakeOlder();
Console.WriteLine("After one year dog's age is: " + dog.age);

After the execution of the program, the result is the following:

Dog's age is: 2
After one year dog's age is: 3

www.manaraa.com

Chapter 14. Defining Classes 521

Calling Non-Static Methods

Like the fields, which do not have static modifier in theirs declarations, the

methods, which are also non-static, can be called in the body of a class via

the reserved word this. This is happening again with the "dot" notation and

more specifically with the required arguments (if there are any):

this.<method_name>(…)

For example, let’s create a method PrintAge(), which prints the age of the

object from type Dog, and for this purpose calls the method GetAge():

public void PrintAge()
{
 int myAge = this.GetAge();
 Console.WriteLine("My age is: " + myAge);
}

The first line of the example is indicating that we want to receive the age (the

value of the field age) of the current object, using the method GetAge(). This

is done via the reserved word this.

The access to the non-static elements of a class (fields and

methods) is done via the reserved word this and the

operator for access – "dot".

Skip "this" Keyword When Accessing Non-Static Data

When we access the fields of a class or we call its non-static methods, it is

possible to omit the reserved word this. Then both methods, which we

already declared will be written in this way:

public int GetAge()
{
 return age; // The same like this.age
}

public void MakeOlder()
{
 age++; // The same like this.age++
}

The reserved word this is used to indicate explicitly that we want to have

access to a non-static field of a class or to call some of its non-static methods.

When this explicit clarification is not needed, it can be skipped and directly to

access the elements of the class.

www.manaraa.com

522 Fundamentals of Computer Programming with C#

Although it is understood clearly, the reserved word this is often used for

access to fields in the class, because it helps to make the code easier to read,

understand and maintain, by explicitly stating that we access a field and not a

local variable.

When it is not required explicitly the reserved word this can

be skipped when we access the elements of the class. For

better readability use this keyword even when not required.

Hiding Fields with Local Variables

From the section "Declaring Fields" above, we know that the scope of one

field starts from the line where the declaration is made to the closing curly

bracket of the class. For example let's see the OverlappingScopeTest class:

public class OverlappingScopeTest
{
 int myValue = 3;

 void PrintMyValue()
 {
 Console.WriteLine("My value is: " + myValue);
 }

 static void Main()
 {
 OverlappingScopeTest instance = new OverlappingScopeTest();
 instance.PrintMyValue();
 }
}

This code will have the following result on the console:

My value is: 3

On the other hand, when we implement the body of one method we have to

declare local variables which we will use for the work of the method. As we

know, the scope of a local variable begins from the line where it is declared

to the closing bracket of the body of the method. For example, let’s add this

method to the class OverlappingScopeTest:

Int CalculateNewValue(int newValue)
{
 int result = myValue + newValue;
 return result;

www.manaraa.com

Chapter 14. Defining Classes 523

}

In this case, the local variable, which we will use to calculate the new value, is

result.

Sometimes the name of the local variable can overlap with the name of some

field. In this case there is a collision.

Let’s first look at one example, before we explain what it is about. Let’s

modify the method PrintMyValue() in the following way:

void PrintMyValue()
{
 int myValue = 5;
 Console.WriteLine("My value is: " + myValue);
}

If we declare in this way the method, could it be possible to compile this

code? And if it is compiled, is it possible to execute it? If it is compiled and

executed which value will be printed – the one of the field or the one of the

local variable?

After the execution of the Main() method, the result will be:

My value is: 5

This is so, because C# allows defining local variables, which names

match with fields of the class. If this happens, we say that the scope of

the local variable overlays the field variable (scope overlapping).

Therefore the scope of the local variable myValue with value 5 overlapped the

scope of the field variable in the class. Then, when we print we will get the

local variable value.

Despite this, sometimes it is required use the field instead the local variable

with the same name. In this case, to retrieve the value of the field, we use

the reserved word this. For this purpose we access the field by using the

"dot" operator, applied to the reserved word this. In this way, we say

deliberately that we want to use the field of the class, and not the local

variable with the same name.

Let’s take a look again at our example relate to the printing of the value

myValue:

void PrintMyValue()
{
 int myValue = 5;
 Console.WriteLine("My value is: " + this.myValue);
}

www.manaraa.com

524 Fundamentals of Computer Programming with C#

This time, after we applied the changes, the result from the call of the method

is different:

My value is: 3

Visibility of Fields and Methods

In the beginning of this chapter we have discussed the generality of the

modifiers and the access levels for the elements in one class in C#. Later

we have discussed the access level in the declaration for one class.

Now we will discuss the visibility levels of fields and methods in a class.

Because the fields and the methods are elements of the class (members) and

have similar rules for access levels, we will expose these rules simultaneously.

Differently from the declaration of a class, when we declare fields and

methods in the class we can use the four access levels – public, protected,

internal and private. The access level protected will not be discussed in

this chapter, because it is related to class inheritance and is explained in

details in the chapter "Object-Oriented Programming Principles".

Before we continue, let’s revise, if one class A is not visible (does not have

access) from other class B, then none of its elements (fields and method) can

be accessed from class B.

If two classes are not visible one to other, then their

members (fields and methods) are not visible also,

regardless of what kind of access levels their elements have.

In the next subsections, to the explanations until now, we will review

examples, in which we have two classes (Dog and Kid) and which are visible

one to other, i.e. every from the classes can create objects from the other

type – the other class and to access its elements depending from the defined

access level declared. Here is how the first class Dog looks like:

public class Dog
{
 private string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 public void Bark()
 {
 Console.WriteLine("wow-wow");

www.manaraa.com

Chapter 14. Defining Classes 525

 }

 public void DoSomething()
 {
 this.Bark();
 }
}

In addition to the fields and the methods the property Name is used, which

just returns the field’s value. We will discuss in details the property concept

later, so currently we will just focus on everything else except the properties.

The code of the class Kid looks like this:

public class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.Name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

Currently, all elements (fields and methods) of both classes are declared with

access modifier public, but when we discuss the other access modifiers we

will change some of them accordingly. What we would like to find is how the

change in the access levels of the elements (fields and methods) of the class

Dog will be reflected, when the access is made with:

- The own body of the class Dog.

- The body of the class Kid, respectively, taking into account that Kid is

in the same namespace (or assembly), in which the Dog class is defined

or not.

Access Level "public"

When a method or a value of a class is declared with access level public, the

last can be used from other classes, independently from the fact if another

class is declared in the same namespace, assembly or outside of it.

Let’s review both type of access to members of a class, which are matched in

our classes Dog and Kid:

www.manaraa.com

526 Fundamentals of Computer Programming with C#

The access to the member of the class is done inside the

same class directly (the class refers itself).

The access to the member of the class is done via a

reference to an object created in the body of another class

(the class refers another class).

When the members of both classes are public, we have the following:

Dog.cs

class Dog
{
 public string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 public void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

D

R

D

D

R

R

www.manaraa.com

Chapter 14. Defining Classes 527

As we can see, we implement without problem the access to the field name

and the method Bark() of the class Dog from the body of the same class.

Independently, if the namespace of the class Kid is the same as Dog, we can,

from its body, access the field name and to call the method Bark() via the

“dot” operator, applied to the reference dog of the object from type Dog.

Access Level "internal"

When a member of some class is declared with access level internal, then

this element from the class can be accessed from every class in the same

assembly (i.e. in the same project in Visual Studio), but not from classes

outside it (i.e. from other projects in Visual Studio – from the same solution

or from a different solution).

Not that if we have a Visual Studio project, all classes in it are from the same

assembly and classes defined in different Visual Studio projects (in the same

or in a different solution) are from different assemblies.

Below is the explanation about the access level internal:

Dog.cs

class Dog
{
 internal string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 internal void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Respectively, for the class Kid, we discuss two cases:

- When the class in the same assembly, then the access to the elements

of Dog will be allowed, independent of whether the classes are in the

same namespace or not:

D

D

www.manaraa.com

528 Fundamentals of Computer Programming with C#

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

- When the class Kid is external for the assembly, in which Dog is

declared, then the access to the field name and the method Bark() will

be denied:

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

Actually the access level internal for members of the class Dog is impossible

for two reasons: insufficient visibility of the class and insufficient visibility of

its members. To allow access from other assembly to the class Dog, one is

required to be declared public and in the same time its members to be

declared as public. If the class or its members have lower visibility, the

access to it from other assemblies is denied (i.e. from other Visual Studio

projects which compile to different .dll / .exe file).

If we try to compile the class Kid, when one is external for the assembly, in

which the class Dog resides, we will get a compilation error.

R

R

R

R

www.manaraa.com

Chapter 14. Defining Classes 529

Access Level "private"

The access level, which is the most restrictive, is private. The elements of

the class, which are declared with access modifier private (or without any,

because private is the default one), cannot be accessed outside of the

class in which they are declared.

Therefore, if we declare the field name and the method Bark() of the class

Dog with access modifier private, there is no problem to access them from

the same instance of the class Dog, but access from any other classes is not

permitted. If you try to access a private method from external class, a

compilation error occur. Below is the figure about the access level private:

Dog.cs

class Dog
{
 private string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 private void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Accessing the name fields from the same class is permitted, but accessing it

from a different class (Kid) is restricted:

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

D

D

R

www.manaraa.com

530 Fundamentals of Computer Programming with C#

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

We should know, when we assign access modifier to a filed, one in most of

the cases has to be private, because this ensures the highest level of

security applied to the field. Respectively, the access and the modification of

the value from other classes (if it is required) will be done only via properties

or methods. More about this technique we will learn in the section "Properties

and Encapsulation of Fields" as well as in the "Encapsulation" section of the

chapter "Object-Oriented Programming Principles".

How to Decide Which Access Level to Use?

Before we end up the section regarding visibility of the elements of a class,

let’s try something. Let’s define in the class Dog the field name and the method

Bark() witch access modifier private. Let’s also declare the method Main()
with the following body:

public class Dog
{
 private string name = "Doggy";

 // …

 private void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 // …

 static void Main()
 {
 Dog myDog = new Dog();
 Console.WriteLine("My dog's name is " + myDog.name);
 myDog.Bark();
 }
}

The question is, if the class Dog can compile when we have declared the

elements with access modifier private and in the same time is applied a

”dot” notation to myDog in Main()?

R

www.manaraa.com

Chapter 14. Defining Classes 531

The compilation finished successfully. Respectively, the result from the

execution of the method Main() which is declared in the class Dog will be the

following:

My dog's name is Rolf
Wow-wow

Everything works, because the access modifiers for the elements of the class

are applied to the class and not to a level objects. Because the variable myDog

is defined in the body of the class Dog (where also is situated Main() – the

start method of the program), we can access its elements (fields and

methods) via “dot” notation, regardless we have declared the access level as

private. If we try to do the same in the body of the class Kid, this will be not

possible, because the access to private fields from outside class is forbidden.

Constructors

In object-oriented programming, when creating an object from a given class,

it is necessary to call a special method of the class known as a constructor.

What Is a Constructor?

Constructor of a class is a pseudo-method, which does not have a return

type, has the name of the class and is called using the keyword new. The

task of the constructor is to initialize the memory, allocated for the object,

where its fields will be stored (those which are not static ones).

Calling a Constructor

The only one way to call a constructor in C# is through the keyword new.

It allocates memory for the new object (in the stack or in the heap, depending

on whether the object is a value type or a reference type), resets its fields to

zero, calls their constructors (or chain of constructors, formed in succession),

and at the end returns a reference to the newly created object.

Consider an example, which will clarify how the constructor works. We know

from chapter "Creating and Using Objects" how to create an object:

Dog myDog = new Dog();

In this case by using the keyword new we call the constructor of the class Dog

and by doing this, memory is allocated, needed for the newly created object

of the Dog type. When it comes to classes they are allocated in the dynamic

memory (in the so called "managed heap").

Let’s follow the process of calling a constructor during the creation of new

object step by step.

First, memory is allocated for the object:

www.manaraa.com

532 Fundamentals of Computer Programming with C#

Next, its fields (if any) are initialized with the default values for their

respective types:

If the creation of the new object is successfully completed, the constructor

returns a reference to it, which is assigned to the variable myDog, from class

type Dog:

www.manaraa.com

Chapter 14. Defining Classes 533

Declaring a Constructor

If we have the class Dog, here is how its most simplified constructor (without

parameters) will look like:

public Dog()
{
}

Formally, the declaration of the constructor appears in the following way:

[<modifiers>] <class_name>([<parameters_list>])

As we already know, the constructors are similar to methods, but they do not

have a return type (therefore we called them pseudo-methods).

Constructor’s Name

In C# it is mandatory that the name of every constructor matches the

name of the class in which it resides – <class_name>. In the example

above the name of the constructor is the same as the name of the class –

Dog. We should know that, as with methods, the name of the constructor is

always followed by round brackets – "(" and ")".

In (C#) it is not allowed to declare a method whose name matches the

name of the class (hence the name of the constructors). If nevertheless, a

method is declared with the class name, this will cause a compilation error.

public class IllegalMethodExample
{
 // Legal constructor
 public IllegalMethodExample ()
 {
 }

 // Illegal method
 private string IllegalMethodExample()
 {
 return "I am illegal method!";
 }
}

When we try to compile this class the compiler will display the following

compilation error message:

SampleClass: member names cannot be the same as their enclosing
type

www.manaraa.com

534 Fundamentals of Computer Programming with C#

Parameter List

Similar to the methods, if we need extra data to create an object, the

constructor gets it through a parameter list – <parameters_list>. In the

example constructor of the class Dog there is no need of additional data to

create an object of this type and therefore there is no parameter list. More

about the parameter list will be explained in one of the later sections –

"Declaring a Constructor with Parameters".

Of course, after the declaration of the constructor its body is following, which

is like every method body in C#, but generally contains mostly initialization

logic, i.e. setting the initial values of the fields of the class.

Modifiers

It is evident that modifiers can be added in the declaration of the

constructors – <modifiers>. For modifiers that we know and which are not

access modifiers, i.e. const and static, we should know that only const is

not allowed to be used in constructors. Later in this chapter, in the "Static

Constructors" section we will learn more about the constructors declared with

modifier static.

Visibility of the Constructors

Similar to the methods and the fields, the constructors can be declared with

levels of visibility: public, protected, internal, protected, internal

and private. The access levels protected and protected internal will be

explained in chapter "Object-Oriented Programming Principles". The rest of

the access levels have the same meaning and behavior as with fields and

methods.

Initialization of the Fields in the Constructor

As explained earlier when creating a new object and calling its constructor, a

new memory is allocated for the non-static fields of the object of the class and

they are initialized with the default values for their types (see the section

"Calling a Constructor").

Furthermore, through the constructors we mainly initialize the fields of the

class with values set by us and not with the default ones.

E.g., in the examples we discussed so far, the field name of the object from

type Dog is always initialized during its declaration:

string name = "Sharo";

Instead of doing this during the declaration of the field, a better programming

style is to assign its value in the constructor:

public class Dog

www.manaraa.com

Chapter 14. Defining Classes 535

{
 private string name;

 public Dog()
 {
 this.name = "Sharo";
 }

 // … The rest of the class body …
}

Although we initialize the fields in the constructor, some people recommend

explicitly assigning their type’s default values during initialization with

the purpose of improving the readability of the code, but it is a matter of

personal choice:

public class Dog
{
 private string name = null;

 public Dog()
 {
 this.name = "Sharo";
 }

 // … The rest of the class body …
}

Fields Initialization in the Constructor

Let’s see in details what the constructor does after being called and the class

fields have been initialized in its body. We know that, when called, it will

allocate memory for each field and this memory will be initialized with

the default values.

If the fields are of primitive type, then after the default values, we shall

assign new values.

In case the fields are from reference type, such as our field name, the

constructor will initialize them with null. It will then create the object of the

corresponding type, in this case the string "Sharo" and at the end a reference

will be assigned to the new object in the respective field, in our case the field

name.

The same will happen if we have other fields, which are not primitive types,

and then initialize them in the constructor. E.g. let’s have a class called Collar,

which describes a dog’s accessory – Collar:

www.manaraa.com

536 Fundamentals of Computer Programming with C#

public class Collar
{
 private int size;

 public Collar()
 {
 }
}

Let our class Dog has a field called collar, which is from type Collar and

which is initialized in the constructor of the class:

public class Dog
{
 private string name;
 private int age;
 private double length;
 private Collar collar;

 public Dog()
 {
 this.name = "Sharo";
 this.age = 3;
 this.length = 0.5;
 this.collar = new Collar();
 }

 static void Main()
 {
 Dog myDog = new Dog();
 }
}

Representation in the Memory

Let’s follow the steps through which the constructor goes, after being called in

the Main() method.

As we know, as a first step it will allocate memory in the heap for all the

fields and will initialize them with their default values:

www.manaraa.com

Chapter 14. Defining Classes 537

Then, the constructor will have to ensure the creation of the object for the

field name. It will call the constructor of the class string, which will do the

work on the string creation):

Now the constructor will keep the reference to the new string in the field name

of the Dog object:

www.manaraa.com

538 Fundamentals of Computer Programming with C#

Then is the creation of the object from type Collar. Our constructor (of the

class Dog) calls the constructor of the class Collar, which allocates memory

for the object:

Next, the constructor will initialize it with the default value for the

respective type. The size of the Collar is not explicitly assigned so it will

take the default value for its type (0 for int):

www.manaraa.com

Chapter 14. Defining Classes 539

After that the reference to the newly created object, which the constructor of

the class Collar returns as a result, will be assigned to the field collar:

Finally, the reference to the new object from type Dog will be assigned to

the local variable myDog in the method Main():

www.manaraa.com

540 Fundamentals of Computer Programming with C#

Order of Initialization of the Fields

To avoid confusion, let’s explain the order in which the fields of a class

are initialized regardless of whether we have assigned to them values and /

or initialized them in the constructor.

First memory is allocated for the respective field in the heap and this

memory is initialized with the default value of the field type. E.g. let’s again

consider the example with the class Dog:

public class Dog
{
 private string name;

 public Dog()
 {
 Console.WriteLine(
 "this.name has value of: \"" + this.name + "\"");
 // … No other code here …
 }
 // … Rest of the class body …
}

When we try to create a new object of our class type the console will show:

www.manaraa.com

Chapter 14. Defining Classes 541

this.name has value of: ""

After the initialization of the fields with the default value for the respective

type, the second step in CLR (Common Language Runtime) is to assign a

value to the field if such has been set when declaring the field.

So, if we change the line in the class Dog, where we declare the field name, it

will first be initialized with the value null and then it will be assigned the

value "Rex".

private string name = "Rex";

Respectively, for every creation of a new object of the class:

static void Main()
{
 Dog dog = new Dog();
}

The following will be printed:

this.name has value of: "Rex"

Only after these two steps of initializing the fields of the class (default value

initialization and possibly the value set by the programmer during the

declaration of the field) the constructor of the class is called. At this time,

the fields get the values, which are set in the body of the constructor.

Declaring a Constructor with Parameters

In the previous section, we saw how we can set values to the fields, other

than the default values. Very often, however, during the declaration of the

constructor, we don’t know what values the various fields will take. To tackle

this problem, the required information, similar to the methods with

parameters, the fields are assigned the values, given to them in the body of

the constructor. For example:

public Dog(string dogName, int dogAge, double dogLength)
{
 name = dogName;
 age = dogAge;
 length = dogLength;
 collar = new Collar();
}

www.manaraa.com

542 Fundamentals of Computer Programming with C#

Similarly, the call of a constructor with parameters is done in the same

way as the call of method with parameters – the required values are supplied

as a list, the elements of which are separated with commas:

static void Main()
{
 Dog myDog = new Dog("Moby", 2, 0.4); // Passing parameters

 Console.WriteLine("My dog " + myDog.name +
 " is " + myDog.age + " year(s) old. " +
 " and it has length: " + myDog.length + " m.");
}

The result of the execution of this Main() method is the following:

My dog Moby is 2 year(s) old. It has length: 0.4 m.

There is no limitation for the number of the constructors of a class in C#. The

only requirement is that they differ in their signature (what signature is we

already explained in chapter "Methods").

Scope of Parameters of the Constructor

By analogy with the scope of the variables in the parameter list of a method,

the variables in the parameter list of one constructor have a scope

from the opening bracket of the constructor to the closing bracket, i.e.

throughout the body of the constructor.

Very often, when we declare a constructor with parameters it is possible to

name the variables from the parameter list with the same names as the

names of the fields, which are going to be initialized. Let’s, for example,

consider the constructor of the class Dog:

public Dog(string name, int age, double length)
{
 name = name;
 age = age;
 length = length;
 collar = new Collar();
}

Let’s compile and execute the Main() method declared a little bit above:

My dog is 0 year(s) old. It has length: 0 m

Strange result, isn’t it? In fact this result is not so awkward. The explanation

is the following: the scope, in which the variables from the list of the

constructor parameters are acting, overlaps the scope of acting of the fields

www.manaraa.com

Chapter 14. Defining Classes 543

with the same names in the constructor. Thus, we do not assign any value

to the fields because in practice we have no access to them. For example,

instead of assigning the variable value to the field age, we assign the value of

the variable age to the variable itself:

age = age;

As we saw from the section "Hiding Fields with Local Variables", to avoid this

problem we should access the field, to which we want to assign a value,

using the keyword this:

public Dog(string name, int age, double length)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = new Collar();
}

Now, assuming we execute again the Main() method:

static void Main()
{
 Dog myDog = new Dog("Moby", 2, 0.4);

 Console.WriteLine("My dog " + myDog.name +
 " is " + myDog.age + " year(s) old. " +
 " and it has length: " + myDog.length + " m");
}

The result will be exactly what we expect it to be:

My dog Moby is 2 year(s) old. It has length: 0.4 m

Constructor with Variable Number of Arguments

Similar to methods with variable number of arguments, discussed in

chapter "Methods", constructors can also be declared with a parameter for a

variable number of arguments. The rules for declaring and calling constructors

with a variable number of arguments are the same as the ones, described for

declaring and calling with the methods:

1. When we declare a constructor with variable number of arguments, we

must use the reserved word params, and then insert the type of the

parameters, followed by square parentheses. Finally the name of the

array follows, in which array the arguments used for the calling of the

www.manaraa.com

544 Fundamentals of Computer Programming with C#

method are stored. For example for whole number arguments we can

use params int[] numbers.

2. It is allowed for the constructor with a variable number of arguments to

have other parameters too in the parameter list.

3. The parameter for the variable number of arguments must be the last in

the parameter list of the constructor.

Consider a sample declaration of a constructor of a class, which describes a

lecture:

public Lecture(string subject, params string[] studentsNames)
{
 // … Initialization of the instance variables …
}

The first parameter in the declaration is the name of the subject of the lecture

and the next parameter represents a variable number of arguments – the

names of the students. Here is how a sample object of this class would be

constructed:

Lecture lecture =
 new Lecture("Biology", "Peter", "Mike", "Steven");

Accordingly, as the first parameter is the name of the subject – "Biology",

and all the rest arguments – the names of the attending students.

Constructor Overloading

As we saw, we can declare constructors with parameters. This gives us a

possibility to declare constructors with different signatures (number and order

of the parameters) with the purpose of providing convenience to those who

will create objects from our class. Creating constructors with different

signatures is called constructor overloading.

Consider, for example, the class Dog. We can declare different constructors:

// No parameters
public Dog()
{
 this.name = "Axl";
 this.age = 1;
 this.length = 0.3;
 this.collar = new Collar();
}

// One parameter

www.manaraa.com

Chapter 14. Defining Classes 545

public Dog(string name)
{
 this.name = name;
 this.age = 1;
 this.length = 0.3;
 this.collar = new Collar();
}

// Two parameters
public Dog(string name, int age)
{
 this.name = name;
 this.age = age;
 this.length = 0.3;
 this.collar = new Collar();
}

// Three parameters
public Dog(string name, int age, double length)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = new Collar();
}

// Four parameters
public Dog(string name, int age, double length, Collar collar)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = collar;
}

Reusing Constructors

In our last example we saw that, depending on the needs for creating objects

of our class, we can declare different variants of the constructors. It is easy to

notice that a large part of the constructor code is repeated. This leads us

to the question whether there is an alternative way for a constructor, which is

already doing an initializing, to be reused by the others to perform the same

initialization. On the other hand, at the beginning of the chapter it was

mentioned that a constructor cannot be called in the manner in which the

www.manaraa.com

546 Fundamentals of Computer Programming with C#

methods are called but by the keyword new. There should be a way –

otherwise a lot of code will be repeated unnecessarily.

In C# a mechanism exists through which one constructor can call another

one declared in the same class. This is done again with the keyword this, but

used in another syntax structure in declaring the constructors:

[<modifiers>] <class_name>([<parameters_list_1>])
 : this([<parameters_list_2>])

To the well-known form of declaring a constructor (the first line of the

declaration above), we can add a colon, followed by the keyword this,

followed by parentheses. If the constructor we want to call has parameters, in

the brackets we need to add a list of parameters parameters_list_2 to be

supplied.

Here is how the code from the section about constructor overloading would

look like, in which instead of repeating the initialization of each of the fields,

we will call the constructors declared in the same class:

// No parameters
public Dog()
 : this("Axl") // Constructor call
{
 // More code could be added here
}

// One parameter
public Dog(string name)
 : this(name, 1) // Constructor call
{
}

// Two parameters
public Dog(string name, int age)
 : this(name, age, 0.3) // Constructor call
{
}

// Three parameters
public Dog(string name, int age, double length)
 : this(name, age, length, new Collar()) // Constructor call
{
}

// Four parameters

www.manaraa.com

Chapter 14. Defining Classes 547

public Dog(string name, int age, double length, Collar collar)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = collar;
}

As indicated by comments in the first constructor in the example above, if

necessary, in addition to calling any of the other constructors with certain

parameters, every constructor can add into its body a code, which performs

additional initializations or other actions.

Default Constructor

Consider the following question – what happens if we don’t declare a

constructor in our class? How can we create objects from this type?

As it often happens, when a class is without a single constructor, this issue is

resolved by C#. When we do not declare any constructors, the compiler will

create one for us and this one will be used to create objects such as our class.

This constructor is called default implicit constructor and it will not have

any parameters and will be empty (i.e. it will not do anything in addition to

the default zeroing of the object fields).

When we do not declare any constructor in a given class, the

compiler will create one, known as a default implicit

constructor.

For example, let’s declare the class Collar, without declaring any constructor

in it:

public class Collar
{
 private int size;

 public int Size
 {
 get { return size; }
 }
}

Although we do not have an explicitly declared constructor without

parameters, we can create objects of this class in the following way:

Collar collar = new Collar();

www.manaraa.com

548 Fundamentals of Computer Programming with C#

The default parameterless constructor looks the following way:

<access_level> <class_name>() { }

We should know that the default constructor is always named like the class

<class_name>, and its parameter list is always empty as well as its body. The

compiler simply adds one if there is no constructor in the class. The default

constructor is usually public (except for some very specific situations, where

it is protected).

The default constructor is always without parameters.

To make sure that the default constructor is always without parameters let’s

try to call the default constructor by setting it with parameters:

Collar collar = new Collar(5);

The compiler will display the following error message:

'Collar' does not contain a constructor that takes 1 arguments

How the Default Constructor Works?

As we can guess, the only thing the default constructor will do when creating

objects of our class, is to zero the fields of the class. For example, if in the

class Collar we have not declared any constructor and we create an object

from it, and later we try to print the value in the field size:

static void Main()
{
 Collar collar = new Collar();
 Console.WriteLine("Collar's size is: " + collar.Size);
}

The result will be:

Collar's size is: 0

We see that the value saved in the field size of the object collar is just the

default value of the whole number type – int.

When a Default Constructor Will Not Be Created?

We have to know that if we declare at least one constructor in a given class

then the compiler will not create a default constructor.

To investigate this, consider the following example:

www.manaraa.com

Chapter 14. Defining Classes 549

public Collar(int size)
 : this()
{
 this.size = size;
}

Let this be the only constructor in the class Collar. We try to call a

constructor without parameters in it, hoping that the compiler will have

created a default parameterless constructor for us. After we try to compile,

we will find out that what we are trying to do is not possible. The compiler will

show the following error:

'Collar' does not contain a constructor that takes 0 arguments

The rule about the default implicit parameterless constructor is:

If we declare at least one constructor in a given class, the

compiler will not create a default constructor for us.

Difference between a Default Constructor and a Constructor
without Parameters

Before we finish this section for the constructors, we will clarify something

very important:

Although the default constructor and the one without

parameters are similar in signature, they are completely

different.

The difference is that the default implicit constructor is created by the

compiler, if we do not declare any constructor in our class, and the

constructor without parameters is declared by us.

Moreover, as explained earlier, the default constructor will always have access

level protected or public, depending on the access modifier of the class,

while the level of access of the constructor without parameters all depends on

us – we define it.

Properties

In the world of object-oriented programming there is an element of the

classes called property, which is somewhere between a field and a

method and serves to better protect the state in the class. In some

languages for object-oriented programming, like C#, Delphi / Pascal, Visual

Basic, Python, JavaScript, and others, the properties are a part of the

language, i.e. there is a special mechanism to declare and use them. Other

languages like Java do not support the property concept and for this purpose

www.manaraa.com

550 Fundamentals of Computer Programming with C#

the programmers should declare a pair of methods (for reading and modifying

the property) to provide this functionality.

Properties in C# – Introduction by Example

Using the properties is a good and proven practice and an important part of

the concepts for object-oriented programming. The creation of a property in

programming is done by declaring two methods – one for access (reading)

and one for modifying (setting) the value of the respective property.

Consider an example. Assume we have again class Dog, which describes a

dog. A characteristic of a dog is, for example, its color. The access to the

property "color" of a dog and its corresponding modification can be

accomplished in the following way:

// Getting (reading) a property
string colorName = dogInstance.Color;

// Setting (modifying) a property
dogInstance.Color = "black";

Properties – Encapsulation of Fields

The main objective of the properties is to ensure the encapsulation of the

state of the class in which they are declared, i.e. to protect the class from

falling into invalid state.

Encapsulation is hiding of the physical representation of data in one

class so that if we subsequently change this presentation, it will not reflect on

other classes, which use this class.

Though the C# syntax this is done by declaring the fields (physical

presentation of data) with possibly the most limited level of visibility (mostly

with the modifier private) and declaring that access to these fields (reading

and modifying) is to take place only through special accessor methods.

Example of Encapsulation

To illustrate what the encapsulation, which provides properties to a class, is

and what the properties themselves represent, we shall consider an example.

Let’s have a class, which represents a point from the 2D space with

properties representing the coordinates {x, y}. Here is how it would look like

if we declare each of the coordinates as a field:

Point.cs

class Point
{

www.manaraa.com

Chapter 14. Defining Classes 551

 private double x;
 private double y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public double X
 {
 get { return this.x; }
 set { this.x = value; }
 }

 public double Y
 {
 get { return this.y; }
 set { this.y = value; }
 }
}

The fields of the objects of our class (i.e. the point’s coordinates) are declared

as private and cannot be accessed by a "dot" notation. If we create an

object from class Point, we can modify and read the properties (the

coordinates) of the point only through the properties for access to them:

PointTest.cs

using System;

class PointTest
{
 static void Main()
 {
 Point myPoint = new Point(2, 3);

 double myPointXCoord = myPoint.X; // Access a property
 double myPointYCoord = myPoint.Y; // Access a property

 Console.WriteLine("The X coordinate is: " + myPointXCoord);
 Console.WriteLine("The Y coordinate is: " + myPointYCoord);
 }
}

www.manaraa.com

552 Fundamentals of Computer Programming with C#

The result of the execution of the Main() method will be:

The X coordinate is: 2
The Y coordinate is: 3

If, however, we decide to change the internal representation of the point’s

properties, e.g. instead of two fields, we declare them as a one-dimensional

array with two elements; we can do it without affecting in any way of the

other classes of our project:

Point.cs

using System;

class Point
{
 private double[] coordinates;

 public Point(int xCoord, int yCoord)
 {
 this.coordinates = new double[2];

 // Initializing the x coordinate
 coordinates[0] = xCoord;

 // Initializing the y coordinate
 coordinates[1] = yCoord;
 }

 public double X
 {
 get { return coordinates[0]; }
 set { coordinates[0] = value; }
 }

 public double Y
 {
 get { return coordinates[1]; }
 set { coordinates[1] = value; }
 }
}

The result of the implementation of the Main() method will not be changed

and will be the same even without changing a single character in the code of

the class PointTest.

www.manaraa.com

Chapter 14. Defining Classes 553

The demonstration is a good example of data encapsulation of an object,

provided by the mechanism of the properties. Through them we hide the

internal representation of the information by declaring properties and

methods for accessing it, and if later a change occurs in the representation,

this will not affect the other classes using our class, because they only use its

properties and do not know how the information is represented “behind the

scene”.

Of course, the example shows only one of the benefits of class fields wrapping

(packing) into properties. Properties allow further control over the data

in the class and they can check whether the assigned values are correct

according to some criteria. For example, if we have a property “maximum

speed” for a class Car, it is possible, through properties, to require its value to

be within the range of 1 to 300 km/h.

Physical Presentation of the Properties in a Class

As we saw above, the properties may have different presentation in one

class at a physical level. In our example, the information about the properties

of the class Point initially was stored in two fields and later in one field–array.

However, if we decide instead of keeping the information about the properties

of the point in a field, to save it in a file or a database and every time we

need to access the respective property, we can read or write from the file or

the database rather than use the fields of the class as in the previous

examples. Since the properties are accessed by special methods (called

methods for access and modification or accessor methods) to be discussed

later, for the classes that will use our class the question how the information

will be stored would not matter (because of the good encapsulation).

In the most common case, however, the information about the properties of

the class is saved in a field of the class, which has the most rigorous level of

visibility – private.

It does not matter how the information for the properties in

a class in C# is saved, but usually this is done by a class field

with the most restrictive access level (private).

Property without Declaration of a Field

Consider an example, in which the property is stored neither in the field, nor

anywhere else, but recalculated when trying to access it.

Let’s have the class Rectangle, which represents the geometric shape of a

rectangle. Accordingly, this class has two fields – for width and for height.

Assume our class has one more property – area. Because we always can

calculate the property “area” of a rectangle based on the width and the

height, it is not required to define a separate field in the class to keep this

value. Therefore, we can simply declare a method for obtaining the area

through which we calculate the area of a rectangle:

www.manaraa.com

554 Fundamentals of Computer Programming with C#

Rectangle.cs

using System;

class Rectangle
{
 private float height;
 private float width;

 public Rectangle(float height, float width)
 {
 this.height = height;
 this.width = width;
 }

 // Obtaining the value of the property area
 public float Area
 {
 get { return this.height * this.width; }
 }
}

As we will see later, a property does not necessarily have an accessing and a

modifying method at the same time. Therefore, it is allowed to declare only a

method for reading the property Area of the rectangle. There is no point to

have a method, which modifies the value of the area of a rectangle because

the area is always one and the same based on given lengths of the sides.

Declaring Properties in C#

To declare a property in C#, we have to declare access methods (for reading

and changing) of the respective property and to decide how we will store the

information related to the property in the class.

Before we declare the methods, however, we have to declare the property of

the class. Formal declaration of properties appears in the following way:

[<modifiers>] <property_type> <property_name>

With <modifiers> we have denoted both the access modifiers and other

modifiers (e.g. static, to be discussed in the next section of this chapter).

They are not a mandatory part of the declaration of a field.

The type of the property <property_type> specifies the type of the values

of the property. It may be either a primitive type (e.g. int), or a reference

type (e.g. array).

www.manaraa.com

Chapter 14. Defining Classes 555

Respectively, <property_name> is the name of the property. It must begin

with a capital letter and to satisfy the PascalCase rule, i.e. every new word

that is adjoined to the end part of the property name, starts with a capital

letter. Here are some examples of properly named properties:

// MyValue property
public int MyValue { get; set; }

// Color property
public string Color { get; set; }

// X-coordinate property
public double X { get; set; }

The Body of a Property

Like classes and methods in C# properties also have bodies, where the

methods for access are declared (accessors).

[<modifiers>] <property_type> <property_name>
{
 // … Property's accessors methods go here
}

The body of a property begins with an opening bracket "{" and ends with a

closing bracket – "}". Properties should always have a body.

Method for Reading the Value of a Property (Getter)

As we explained, the declaration of a method for reading a value of a

property (in the literature called a getter) is made in the body of a property

by using the following syntaxes:

get { <accessor_body> }

The content of the block surrounded by the braces (<accessor_body>) is

similar to the contents of any method. The actions, which should be

performed to return the result of the method, are declared in it.

The method of reading the value of a property must end with a return or

throw operation. The type of the value, which is returned as a result of this

method, has to be the same as <property_type> described in the property

declaration.

Although earlier in this section we considered many examples of declared

properties with a method for reading their values, let’s consider another

example of a property – Age, which is of type int and is declared via a field in

the same class:

www.manaraa.com

556 Fundamentals of Computer Programming with C#

private int age; // Field declaration

public int Age // Property declaration
{
 get { return this.age; } // Getter declaration
}

Calling a Method for Reading Property’s Value

Assume that the property Age from the last example is declared in the class

Dog. Then calling the method for reading the value of the property is done by

a “dot” notation, applied to a variable of the type, in the class of which the

property is declared:

Dog dogInstance = new Dog();
// …
int dogAge = dogInstance.Age; // Getter invocation
Console.WriteLine(dogInstance.Age); // Getter invocation

The last two lines of the example show that when accessing through a dot

notation the name of the property, its getter method (method for reading its

value) is called automatically.

Method for Modifying Property’s Value (Setter)

Like the method of reading the property’s value we can also declare the

method of changing (modifying) the value of a property (in the literature

known as setter). It is declared in the body of a property with void return

value and the assigned value is accessible through an implicit parameter

value.

The declaration is made in the body of the property through the following

syntax:

set { <accessor_body> }

The contents of the block surrounded by arrow brackets – <accessor_body>

are similar to the content of any method. It declares the actions that must be

performed to change the value of the property. The method uses a hidden

parameter called value, which is available in C# by default and contains the

new value of the property. The type of the parameter is the same as the type

of the property.

Let’s add the example for the property Age in the class Dog to illustrate what

we discussed so far:

private int age; // Field declaration

www.manaraa.com

Chapter 14. Defining Classes 557

public int Age // Property declaration
{
 get { return this.age; }
 set { this.age = value; } // Setter declaration
}

Calling a Method for Modifying the Property’s Value

Calling the method to modify the property’s value is performed via the “dot”

notation, applied to the variable of the type, in the class of which the property

is declared:

Dog dogInstance = new Dog();
// …
dogInstance.Age = 3; // Setter invocation

In the last line where the value 3 is assigned the setter method of the

property Age is called. In this way the value is saved in the parameter value

and is assigned to the setter method of the property Age. In our example, the

value of the variable value is assigned to the field age from the class Dog, but

in the general case this can be handled in a more complicated way.

Assertion of the Input Values

It is a good practice in the programming process to check the validity of

the input values for the setter method of modifying a property and if they

are not valid to take the necessary “measures”. Mostly, in case of incorrect

input data an exception is caused.

Consider again the example with the age of the dog. As we know the age has

to be a positive number. To prevent someone from assigning a negative

number or a zero to the property Age, we add the following validation at the

beginning of the setter method:

public int Age
{
 get { return this.age; }
 set
 {
 // Take precaution: perform check for correctness
 if (value < 0)
 {
 throw new ArgumentException(
 "Invalid argument: Age should be a positive number.");
 }
 // Assign the new correct value
 this.age = value;

www.manaraa.com

558 Fundamentals of Computer Programming with C#

 }
}

In case someone tries to assign a value to Age, which is a negative number or

0, the code will throw an exception from the type ArgumentException, with

details of the problem.

To protect itself from invalid data a class must verify the input values for

all properties and constructors submitted to the setter methods, as well as

all methods, which can change a field of a class. This programming practice to

protect classes from invalid data and invalid internal states is widely used and

is a part of the "Defensive Programming" concept, which we will discuss in

chapter "High-Quality Programming Code".

Automatic Properties in C#

In C# we could define properties without explicitly defining the underlying

field behind them. This is called automatic properties:

Point.cs

using System;

class Point
{
 public double X { get; set; }
 public double Y { get; set; }

 public Point(int x, int y)
 {
 this.X = x;
 this.Y = y;
 }
}

class PointTest
{
 static void Main()
 {
 Point myPoint = new Point(2, 3);
 Console.WriteLine("The X coordinate is: " + myPoint.X);
 Console.WriteLine("The Y coordinate is: " + myPoint.Y);
 }
}

www.manaraa.com

Chapter 14. Defining Classes 559

The above example declares a class Point with two automatic properties: X

and Y. These properties do not have explicitly defined underlying fields and

the compiler defines them during the compilation. It looks like the get and

set methods are empty but in fact the compiler defines an underlying field

and fills the body of the get and set accessors with some code to read / write

the automatically defined underlying field.

Use automatic properties for simple classes where you want to write less

code but have in mind that when you use automatic properties your control

over the assigned values is limited. You might have difficulties to add checks

for invalid data.

Types of Properties

Depending on their definition we can classify the properties as follows:

1. Read-only, i.e. these properties have only a get method as shown by

the area of the rectangle.

2. Write-only, i.e. these properties have only a set method, but no

method for reading the value of the property.

3. And the most common case is read-write, where the property has

methods both for reading and for changing the value.

Some properties are designed to be read-only. Others are supposed to

support both read and write operations. The developers should decide

whether someone should be able to change the value of given property and

define it as read-only or read / write. Write-only properties are used very

rarely.

Static Classes and Static Members

We call an element static when it is declared with the modifier static. In C#

we can declare fields, methods, properties, constructors and classes as static.

We will first consider the static elements of a class or in other words we will

look at the fields, methods, properties and constructors of a class and then we

will study the concept of the static class.

What the Static Elements Are Used For?

Before we study the working principle of the static elements, let’s see the

reasons why we need to use them.

Method to Sum Two Numbers

Let’s imagine that we have a class with a single method that always works in

the same manner. For example, its task is to get two numbers and return

their sum as a result. In this scenario there is no matter exactly which object

of that class is going to implement that method since it will always do the

same thing – adding two numbers together, independent of the calling object.

www.manaraa.com

560 Fundamentals of Computer Programming with C#

In practice the behavior of the method does not depend of the object

state (the values in the object field). So why the need to create an object to

accomplish that method provided that the method does not depend on any of

the objects of that class? Why not just get the class to implement that

method?

Instance Counter for Given Class

Consider a different scenario. Let’s say we want to keep in our program the

current number of objects, which have been created by a given class. How will

we keep that variable, which stores the number of created objects?

As we know, we will not be able to store the variable as a class field because

for each created object there will be created a copy of that field, initialized

with default value. Every single object will store its own field for indication of

the number of objects and the objects will not be able to share information.

It looks like the counter should be outside a class field rather than inside it. In

the following subsections we will find out how to deal with such a problem.

What Is a Static Member?

Formally speaking, a static member of the class is every field, property,

method or other member, which has a static modifier in its declaration1. That

means that fields, methods and properties, marked as static, belong to the

particular class rather than to any particular object of the given class.

Therefore, when we mark a field, method or property as static, we can use

them without creating any object of the given class. All we need is to have

access (visibility) to the class so that we can call the object’s static methods

or its static fields and properties.

Static elements of the class can be used without creating an

object of the given class.

On the other hand if we have created objects of the given class then its static

fields and properties will be shared and there will be only one copy of the

static field or property which will be shared among all objects of the given

class. Because of that reason in the VB.NET language we have the keyword

shared instead of the static keyword.

Static Fields

When we create objects from a given class, each of them holds different

values in its fields. For example, consider again the class Dog:

public class Dog
{
 // Instance variables
 private string name;

www.manaraa.com

Chapter 14. Defining Classes 561

 private int age;
}

There are two fields in the class, one for the name – name and another one for

the age – age. Every object, each of these fields, has its own value, which is

stored in a different place in the memory for every object.

Sometimes, however, we want to have common fields for all objects of a

given class. To achieve that, we have to use the static modifier in the field

declarations. As we already said, such fields are called static fields. In the

literature they are also called class variables.

We say that the static fields are class associated, rather than associated

with any object from the particular class. That means that all objects, created

by the description of a class share the static fields of the class.

All objects, created by the description of a given class (that

is, instances of a given class), share the static fields of the

class.

Declaration of Static Fields

The static fields are declared the same way as the class fields. If there is

access modifier, the keyword static should be added after it.

[<access_modifier>] static <field_type> <field_name>

Here is how a field named dogCount would look like. The field stores

information about the count of the created objects from the class Dog:

Dog.cs

public class Dog
{
 // Static (class) variable
 static int dogCount;

 // Instance variables
 private string name;
 private int age;
}

The static fields are created when we try to access them for the first time

(read / modify). After their creation they are initialized with their default

values of their types.

www.manaraa.com

562 Fundamentals of Computer Programming with C#

Initialization during Declaration

If during the static field declaration we set an initialization value, it will be

assigned to the particular static field. The initialization executes only once

when the field is accessed for the first time right after the assignment has

finished. The next time when the field is accessed that field initialization will

not execute.

We can append the static field initialization in the example above:

// Static variable – declaration and initialization
static int dogCount = 0;

This initialization will complete during the first invocation to the static field.

When we access some static field, an amount of memory will be reserved for

it and it will be initialized with its default values. If the field has initialization

during declaration (like it is in our case with the dogCount field) this

initialization will execute. If we try later to access the field from other part of

our program this process will not repeat, because the static field already

exists and is initialized.

Accessing Static Fields

In contrast to the common (non-static) class fields, the static fields that are

associated with the particular class can be accessed through an external class.

In order to do that we need to put a "dot" notation this way:

<class_name>.<static_field_name>

For example, if we want to print the value of the static field that holds the

number of created objects of our class Dog we should do that:

static void Main()
{
 // Access to the static variable through class name
 Console.WriteLine("Dog count is now " + Dog.dogCount);
}

The result of the Main() method is:

Dog count is now 0

If we have a method in the class, which is defined as a static field, we can

access it directly without the class name, because it is known by default.

<static_field_name>

www.manaraa.com

Chapter 14. Defining Classes 563

Modification of the Static Field Values

As we said before, the static variables are shared between all objects of

the class and do not belong to any object of the particular class. That way any

object can access and modify the static field values and in the same time

other objects can “see” the modified values.

That’s why if we want to count the number of created objects of the class Dog,

we should use a static field and increment it by one every time the

constructor is invoked, i.e. every time we create and object of our class.

public Dog(string name, int age)
{
 this.name = name;
 this.age = age;

 // Modifying the static counter in the constructor
 Dog.dogCount += 1;
}

We access static field from the class Dog so we can use the following code in

order to access the field dogCount:

public Dog(string name, int age)
{
 this.name = name;
 this.age = age;

 // Modifying the static counter in the constructor
 dogCount += 1;
}

The first way is preferable, it is clear that the field in the class Dog is static.

The code is more readable.

Let’s create some objects of the class Dog and print out their number in order

to check if we are right:

static void Main()
{
 Dog dog1 = new Dog("Jackie", 1);
 Dog dog2 = new Dog("Lassy", 2);
 Dog dog3 = new Dog("Rex", 3);

 // Access to the static variable
 Console.WriteLine("Dog count is now " + Dog.dogCount);
}

www.manaraa.com

564 Fundamentals of Computer Programming with C#

The output of the example is:

Dog count is now 3

Constants

Before we finish with the static fields we should get familiar with one more

specific type of static fields.

Like the constants of mathematics, in C# special fields of a class called

constants can be created. Once declared and initialized constants always

have the same value for all objects of a particular type.

In C# constants are of two types:

1. Constants the values of which are extracted during the compilation of

the program (compile-time constants).

2. Constants the values of which are extracted during the execution of the

program (run-time constants).

Compile-Time Constants (const)

Constants, which are calculated at compile time (compile-time constants), are

declared as follows, using modifier const:

[<access_modifiers>] const <type> <name>;

Constants, which are declared with special word const, are static fields.

Nevertheless, the use of modifier static is not required (nor allowed by the

compiler) in their declaration.

Although the constants declared with a modifier const are

static fields, they must not and cannot use the static
modifier in their declaration.

For example, if we want to declare as a constant the number "PI", which is

known to us from mathematics, this can be done as follows:

public const double PI = 3.141592653589793;

The value we assign to a particular constant can be an expression, which has

to be calculated by the compiler at compile time. For example, as we know

from mathematics, the constant "PI" can be represented as the approximate

result of the division of numbers 22 and 7:

public const double PI = 22d / 7;

When we try to print the value of the constant:

www.manaraa.com

Chapter 14. Defining Classes 565

static void Main()
{
 Console.WriteLine("The value of PI is: " + PI);
}

The command line will display:

The value of PI is: 3.14285714285714

If we do not give a value to a constant at its declaration, but later, we will get

a compilation error. For example, if we take the example of the constant PI,

we first declare the constant and later try to give it a value:

public const double PI;

// … Some code …

public void SetPiValue()
{
 // Attempting to initialize the constant PI
 PI = 3.141592653589793;
}

The compiler will issue an error like this one, indicating the line, where the

constant is declared:

A const field requires a value to be provided

Let’s pay attention, again:

Constants declared with modifier const must be initialized at

the moment of their declaration.

Assigning Constant Values at Runtime

Having learned how to declare constants that are being initialized at compile

time, let’s consider the following example: we want to create a class for color

(Color). We will use the so-called Red-Green-Blue (RGB) color model,

according to which, each color is represented by mixing the three primary

colors – red, green and blue. These three primary colors are represented as

three integers in the range from 0 to 255. For example, black is represented

as (0, 0, 0), white as (255, 255, 255), blue – (0, 0, 255) etc.

In our class we declare three integer fields for red, green and blue light and a

constructor that accepts values for each of them:

www.manaraa.com

566 Fundamentals of Computer Programming with C#

Color.cs

class Color
{
 private int red;
 private int green;
 private int blue;

 public Color(int red, int green, int blue)
 {
 this.red = red;
 this.green = green;
 this.blue = blue;
 }
}

As some colors are used more frequently than others (for example, black and

white) we can declare constants for them, with the idea that the users of

our class will take them for granted, instead of creating their own objects for

these particular colors every time. To do this, we modify the code of our class

as follows, adding the declaration of the following color-constants:

Color.cs

class Color
{
 public const Color Black = new Color(0, 0, 0);
 public const Color White = new Color(255, 255, 255);

 private int red;
 private int green;
 private int blue;

 public Color(int red, int green, int blue)
 {
 this.red = red;
 this.green = green;
 this.blue = blue;
 }
}

Strangely, when we try to compile, we get the following error:

'Color.Black' is of type 'Color'. A const field of a reference
type other than string can only be initialized with null.

www.manaraa.com

Chapter 14. Defining Classes 567

'Color.White' is of type 'Color'. A const field of a reference
type other than string can only be initialized with null.

This is so because in C#, constants, declared with the modifier const, can be

only of the following types:

1. Primitive types: sbyte, byte, short, ushort, int, uint, long, ulong,

char, float, double, decimal, bool.

2. Enumerated types (discussed in section "Enumerations" at the end of

this chapter).

3. Reference types (mostly the type string).

The problem with the compilation of the class in our example is connected

with the reference types and the restriction on the compiler not to allow

simultaneous use of the operator new when declaring a constant when this

constant is declared with the modifier const, unless the reference type can be

calculated at compile time.

As we can guess, the only reference type, which can be calculated at compile

time while using the operator new is string.

Therefore, the only possibilities for reference type constants that are declared

with modifier const are, as follows:

1. The constants must be of type string.

2. The value, which we assign to the constant of reference type, other than

string, is null.

We can formulate the following definition:

Constants declared with modifier const must be of primitive,

enumeration or reference type, and if they are of reference

type, this type must be either a string or the value, that we

assign to the constant, must be null.

Thus, using the modifier const, we will not be able to declare the constants

Black and White of type Color in our color class because they aren’t null.

The next section will show us how to deal with this problem.

Runtime Constants (readonly)

When we want to declare reference type constants, which cannot be

calculated during compilation of the program, we must use a combination of

static readonly modifiers, instead of const modifier.

[<access_modifiers>] static readonly <reference-type> <name>;

www.manaraa.com

568 Fundamentals of Computer Programming with C#

Accordingly, <reference-type> is a type the value of which cannot be

calculated at compilation time.

The compilation is successful if we replace const by static readonly in the

last example of the previous section:

public static readonly Color Black = new Color(0, 0, 0);
public static readonly Color White = new Color(255, 255, 255);

Naming the Constants

The constants names in C# follow the PascalCase rule according to the

Microsoft’s official C# coding convention. If the constant is composed of

several words, each new word after the first one begins with a capital letter.

Here are some examples of correctly named constants:

// The base of the natural logarithms (approximate value)
public const double E = 2.718281828459045;
public const double PI = 3.141592653589793;
public const char PathSeparator = '/';
public const string BigCoffee = "big coffee";
public const int MaxValue = 2147483647;
public static readonly Color DeepSkyBlue = new Color(0,104,139);

Sometimes naming in style ALL-CAPS is used but it is not officially supported

by the Microsoft code conventions, even though it is widely distributed in

programming:

public const double FONT_SIZE_IN_POINTS = 14; // 14pt font size

The examples made it clear that the difference between const and static
readonly fields is in the moment of their value assignments. The compile-

time constants (const) must be initialized at the moment of declaration, while

the run-time constants (static readonly) can be initialized at a later stage,

for example in one of the constructors of the class in which they are defined.

Using Constants

Constants are used in programming to avoid repetition of numbers,

strings or other common values (literals) in the program and to enable

them to change easily. The use of constants instead of brutally hardcoded

repeating values facilitates readability and maintenance of the code and is

highly recommended practice. According to some authors all literals other

than 0, 1, -1, empty string, true, false and null must be declared as

constants, but this can make it difficult to read and maintain the code instead

of making it simple. Therefore, it is believed that values, which occur more

than once in the program or are likely to change over time, must be

declared as constants.

www.manaraa.com

Chapter 14. Defining Classes 569

In the chapter "High-Quality Programming Code" will we learn in details when

and how to use constants efficiently.

Static Methods

Like static fields, we declare a method as static if we want it to be associated

only with the class and not with a particular class object.

Declaration of Static Methods

To declare a static method syntactically means that we must add the

keyword static in the method’s declaration:

[<access_modifier>] static <return_type> <method_name>()

Let’s for example declare the method of summing two numbers, which we

discussed at the beginning of this section:

public static int Add(int number1, int number2)
{
 return (number1 + number2);
}

Accessing Static Methods

Like static fields, static methods can be accessed with the "dot" notation

(the dot operator) applied to the name of the class and the class name can be

skipped if the calling is performed by the same class, in which the static

method is declared. Here is an example of calling the static method Add(…):

static void Main()
{
 // Call the static method through its class
 int sum = MyMathClass.Add(3, 5);

 Console.WriteLine(sum);
}

Access between Static and Non-Static Members

In most cases static methods are used to access static fields in the class

they have been defined. For example, if we want to declare a method, which

returns the number of the created objects of the Dog class, it must be static,

because our counter will be static too:

public static int GetDogCount()
{

www.manaraa.com

570 Fundamentals of Computer Programming with C#

 return dogCount;
}

But when we examine how static and non-static methods and fields can be

accessed, not all combinations are allowed.

Accessing Non-Static Members from Non-Static Method

Non-static methods can access non-static fields and other non-static methods

of the class. For example, in the Dog class we can declare method

PrintInfo(), which displays information about our dog:

Dog.cs

public class Dog
{
 // Static variable
 static int dogCount;

 // Instance variables
 private string name;
 private int age;

 public Dog(string name, int age)
 {
 this.name = name;
 this.age = age;

 dogCount += 1;
 }

 public void Bark()
 {
 Console.Write("wow-wow");
 }

 // Non-static (instance) method
 public void PrintInfo()
 {
 // Accessing instance variables – name and age
 Console.Write("Dog's name: " + this.name + "; age: "
 + this.age + "; often says: ");

 // Calling instance method
 this.Bark();

www.manaraa.com

Chapter 14. Defining Classes 571

 }
}

Of course, if we create an object of the Dog class and call his PrintInfo()
method:

static void Main()
{
 Dog dog = new Dog("Doggy", 1);
 dog.PrintInfo();
}

The result will be the following:

Dog's name: Doggy; age: 1; often says: wow-wow

Accessing Static Elements from Non-Static Method

We can access static fields and static methods of the class from non-static

method. As we learned earlier, this is because static methods and variables

are bound by class, rather than a specific method and the static elements can

be accessed from any object of the class, even of external classes (as long as

they are visible to them).

For example:

Circle.cs

public class Circle
{
 public static double PI = 3.141592653589793;

 private double radius;

 public Circle(double radius)
 {
 this.radius = radius;
 }

 public static double CalculateSurface(double radius)
 {
 return (PI * radius * radius);
 }

 public void PrintSurface()
 {

www.manaraa.com

572 Fundamentals of Computer Programming with C#

 double surface = CalculateSurface(radius);
 Console.WriteLine("Circle's surface is: " + surface);
 }
}

In the example, we provide access to the value of the static field PI of the

non-static method PrintSurface(), by calling the static method

CalculateSurface(). Let’s try to call this non-static method:

static void Main()
{
 Circle circle = new Circle(3);
 circle.PrintSurface();
}

After the compilation and the execution, the following result will be printed on

the console:

Circle's surface is: 28.2743338823081

Accessing Static Elements of the Class from Static Method

We can call a static method or static field of the class from another static

method without any problems.

For example, let’s consider our class for mathematical calculations. We have

declared the constant PI, in it. We can declare a static method for finding the

length of the circle (the formula for finding perimeter of a circle is 2πr, where

r is the radius of the circle), that uses the constant PI for calculating the

perimeter of a circle. Then, to show that static method can call another static

method, we can call the static method for finding the perimeter of a circle

from the static method Main():

MyMathClass.cs

public class MyMathClass
{
 public const double PI = 3.141592653589793;

 // The method applies the formula: P = 2 * PI * r
 static double CalculateCirclePerimeter(double r)
 {
 // Accessing the static variable PI from static method
 return (2 * PI * r);
 }

www.manaraa.com

Chapter 14. Defining Classes 573

 static void Main()
 {
 double radius = 5;

 // Accessing static method from other static method
 double circlePerimeter = CalculateCirclePerimeter(radius);

 Console.WriteLine("Circle with radius " + radius +
 " has perimeter: " + circlePerimeter);
 }
}

The code is compiled without errors and displays the following output:

Circle with radius 5.0 has perimeter: 31.4159265358979

Accessing Non-Static Elements from Static Method

Let’s look at the most interesting case of a combination of accessing non-

static and static elements of the class – accessing non-static elements

form a static method.

We should know that from static method we can neither access non-static

fields, nor call non-static methods. This is because static methods are bound

to the class and do not “know” any object of the class. Therefore, the keyword

this cannot be used in static methods – it is bound to a specific instance of

the class. When we try to access non-static elements of the class (fields or

methods) from static method, we will always get a compilation error.

Unauthorized Access to Non-Static Field – Example

If in our class Dog we try to declare a static method PrintName(), which

returns as a result the value of the non-static field name declared in the class:

public static void PrintName()
{
 // Trying to access non-static variable from static method
 Console.WriteLine(name); // INVALID
}

Accordingly, the compiler will respond with an error message:

An object reference is required for the non-static field,
method, or property 'Dog.name'

If we try to access the field in the method, via the keyword this:

www.manaraa.com

574 Fundamentals of Computer Programming with C#

public void string PrintName()
{
 // Trying to access non-static variable from static method
 Console.WriteLine(this.name); // INVALID
}

The compiler will still not be satisfied and this time will fail to compile the

class and will display the following message:

Keyword 'this' is not valid in a static property, static method,
or static field initializer

Illegal Call of Non-Static Method from Static Method – Example

Now we will try to call non-static method from static method. Let declare in

our class Dog, the non-static method PrintAge(), which prints the value of

the field age:

public void PrintAge()
{
 Console.WriteLine(this.age);
}

Accordingly, let’s try from the method Main(), which we declare in the class

Dog, to call this method without creating an object of our class:

static void Main()
{
 // Attempt to invoke non-static method from a static context
 PrintAge(); // INVALID
}

When we try to compile we will get the following error:

An object reference is required for the non-static field,
method, or property 'Dog.PrintAge()'

The result is similar, if we try to cheat the compiler, trying to call the method

via the keyword this:

static void Main()
{
 // Attempt to invoke non-static method from a static context
 this.PrintAge(); // INVALID
}

www.manaraa.com

Chapter 14. Defining Classes 575

Accordingly, as with the attempt to access the non-static field of a static

method using the keyword this, the compiler displays the following error

message and fails to compile our class:

Keyword 'this' is not valid in a static property, static method,
or static field initializer

From the examples, we can make the following conclusion:

Non-static elements of the class may NOT be used in a static

context.

The problem with the access to non-static elements of the class of static

method has a single solution – these non-static elements are accessed by

reference to an object:

static void Main()
{
 Dog myDog = new Dog("Lassie", 2);
 string myDogName = myDog.name;
 Console.WriteLine("My dog \"" + myDogName +"\" has age of ");
 myDog.PrintAge();
 Console.WriteLine("years");
}

Accordingly, this code is compiled and the result is:

My dog "Lassie" has age of 2 years

Static Properties of the Class

Although rare, it is sometimes convenient to use and declare not the object

characteristics, but the ones of the class. They possess the same

characteristics like the properties related to the particular object of a

particular class, which we discussed above, but with the difference that the

static properties refer to the class (not its objects).

As we can guess, all we need to do to turn a simple property into a static one,

is to add the static keyword in its declaration.

The static properties are declared as follows:

[<modifiers>] static <property_type> <property_name>
{
 // … Property's accessors methods go here
}

www.manaraa.com

576 Fundamentals of Computer Programming with C#

Let’s consider an example. We have a class that describes a system. We can

create many objects from it, but the model of the system has a version and a

vendor, which are common to all instances created from this class. We can

make the version and the vendors as static properties of the class:

SystemInfo.cs

public class SystemInfo
{
 private static double version = 0.1;
 private static string vendor = "Microsoft";

 // The "version" static property
 public static double Version
 {
 get { return version; }
 set { version = value; }
 }

 // The "vendor" static property
 public static string Vendor
 {
 get { return vendor; }
 set { vendor = value; }
 }

 // … More (non)static code here …
}

In this example we have chosen to keep the value of static properties in static

variables (which are logical, since they are bound only to the class). The

properties that we consider are Version and Vendor, respectively. For each of

them we have created static methods for reading and modification. Thus, all

objects of this class will be able to retrieve the current version and vendor of

the system, which describes the class. Accordingly, if one day an upgrade of

the system version is done and the value becomes 0.2, as a result each

object will receive the new version by accessing the class property.

Static Properties and the Keyword “this”

Like static methods, the keyword this cannot be used in the static properties,

as the static property is associated only with the class and does not

“recognize” objects of a class.

The keyword this cannot be used in static properties.

www.manaraa.com

Chapter 14. Defining Classes 577

Accessing Static Properties

Like the static fields and methods, static properties can be accessed by "dot"

notation, applied only to the name of the class in which they are declared.

To be sure, let’s try to access the property Version through a variable of the

class SystemInfo:

static void Main()
{
 SystemInfo sysInfoInstance = new SystemInfo();
 Console.WriteLine("System version: " +
 sysInfoInstance.Version);
}

When we try to compile the above code, we get the following error message:

Member 'SystemInfo.Version.get' cannot be accessed with an
instance reference; qualify it with a type name instead

Accordingly, if we try to access the static properties through class name, the

code compiles and works correctly:

static void Main()
{
 // Invocation of static property setter
 SystemInfo.Vendor = "Microsoft Corporation";

 // Invocation of static property getters
 Console.WriteLine("System version: " + SystemInfo.Version);
 Console.WriteLine("System vendor: " + SystemInfo.Vendor);
}

The code is compiled and the result of its execution is:

System version: 0.1
System vendor: Microsoft Corporation

Before proceeding to the next section, let’s look at the printed value of the

property Vendor. It is "Microsoft Corporation", although we have initialized

it with the value "Microsoft" in the SystemInfo class. This is because we

changed the value of the property Vendor of the first line of the Main()
method, by calling its method of modification.

Static properties can be accessed only through dot notation,

applied to the name of the class in which they are declared.

www.manaraa.com

578 Fundamentals of Computer Programming with C#

Static Classes

For complete understanding we have to explain that we can also declare

classes as static. Similar to static members, a class is static, when the

keyword static is used in its declaration.

[<modifiers>] static class <class_name>
{
 // … Class body goes here
}

When a class is declared as static, it is an indication that this class contains

only static members (i.e. static fields, methods, properties) and cannot be

instantiated.

The use of static classes is rare and most often associated with the use of

static methods and constants, which do not belong to any particular

object. For this reason, the details of static classes go beyond the scope of

this book. Curious reader can find more information on the site of the

Microsoft Developer Network (MSDN): http://msdn.microsoft.com/en-

us/library/79b3xss3.aspx.

Static Constructors

To finish the section on static class members, we should mention that classes

may also have static constructor (i.e. constructor that has the static

keyword in its declaration):

[<modifiers>] static <class_name>([<parameters_list>])
{
}

Static constructors can be declared both in static and in non-static classes.

They are executed only once when the first of the following two events

occurs for the first time:

1. An object of class is created.

2. A static element of the class is accessed (field, method, property).

Most often static constructors are used for initialization of static fields.

Static Constructor – Example

Consider an example for the use of a static constructor. We want to make

a class that quickly calculates the square root of an integer and returns the

whole part of the result, which is also an integer. Since calculating the square

root is a time-consuming mathematical operation involving calculations with

real numbers and calculating convergent series, it is a good idea these

calculations to be done once at program startup and then to use the already

http://msdn.microsoft.com/en-us/library/79b3xss3.aspx
http://msdn.microsoft.com/en-us/library/79b3xss3.aspx

www.manaraa.com

Chapter 14. Defining Classes 579

calculated values. Of course, to make such pre-computing of all square

roots in a given range, we must first define this range and it should not be

too wide (e.g. from 1 to 1000). Then we need, at first request for a square

roots of a number, to recalculate all the square roots in this range and then to

return the already calculated value. Upon a following request for a square

root, all values in this range will have already been calculated and returned

directly. If the program is never required to calculate the square root,

preliminary calculations should not be fulfilled at all.

Through the described process initially some CPU time is invested for

preliminary calculations, but then the extraction of the square root later is

done very quickly. If we have multiple calculations of the square root, the

pre-calculation will significantly increase the performance.

All this can be implemented in one static class with a static constructor,

in which the square roots will be recalculated. The results, which have already

been calculated, can be stored in a static array. A static method can be

used to extract the already pre-calculated value. Since the preliminary

calculations are being performed in the static constructor, if the class for pre-

calculated square roots is not used, they will not be executed and CPU time

and memory will be saved.

This is how the implementation might look like:

static class SqrtPrecalculated
{
 public const int MaxValue = 1000;

 // Static field
 private static int[] sqrtValues;

 // Static constructor
 static SqrtPrecalculated()
 {
 sqrtValues = new int[MaxValue + 1];
 for (int i = 0; i < sqrtValues.Length; i++)
 {
 sqrtValues[i] = (int)Math.Sqrt(i);
 }
 }

 // Static method
 public static int GetSqrt(int value)
 {
 if ((value < 0) || (value > MaxValue))
 {
 throw new ArgumentOutOfRangeException(String.Format(

www.manaraa.com

580 Fundamentals of Computer Programming with C#

 "The argument should be in range [0...{0}].",
 MaxValue));
 }
 return sqrtValues[value];
 }
}

class SqrtTest
{
 static void Main()
 {
 Console.WriteLine(SqrtPrecalculated.GetSqrt(254));
 // Result: 15
 }
}

Structures

In C# and .NET Framework there are two implementations of the concept of

"class" from the object-oriented programming: classes and structures.

Classes are defined through the keyword class while the structures are

defined through the keyword struct. The main difference between a

structure and a class is that:

- Classes are reference types (references to some address in the heap

which holds their members).

- Structures (structs) are value types (they directly hold their

members in the program execution stack).

Structure (struct) – Example

Let’s define a structure to hold a point in the 2D space, similar to the class

Point defined in the section "Example of Encapsulation":

Point2D.cs

struct Point2D
{
 private double x;
 private double y;

 public Point2D(int x, int y)
 {
 this.x = x;
 this.y = y;

www.manaraa.com

Chapter 14. Defining Classes 581

 }

 public double X
 {
 get { return this.x; }
 set { this.x = value; }
 }

 public double Y
 {
 get { return this.y; }
 set { this.y = value; }
 }
}

The only difference is that now we defined Point2D as struct, not as class.

Point2D is a structure, a value type, so its instances behave like int and

double. They are value types (not objects), which means they cannot be null

and they are passed by value when taken as a method parameters.

Structures are Value Types

Unlike classes, the structures are value types. To illustrate this we will play

a bit with the Point2D structure:

class PlayWithPoints
{
 static void PrintPoint(Point2D p)
 {
 Console.WriteLine("({0},{1})", p.X, p.Y);
 }

 static void TryToChangePoint(Point2D p)
 {
 p.X++;
 p.Y++;
 }

 static void Main()
 {
 Point2D point = new Point2D(3, -2);
 PrintPoint(point);
 TryToChangePoint(point);
 PrintPoint(point);
 }

www.manaraa.com

582 Fundamentals of Computer Programming with C#

}

If we run the above example, the result will be as follows:

(3,-2)
(3,-2)

Obviously the structures are value types and when passed as parameters

to a method their fields are copied (just like int parameters) and when

changed inside the method, the change affects only the copy, not the original.

This can be illustrated by the next few figures.

First, the point variable is created which holds a value of (3, -2):

Next, the method TryToChangePoint(Point2D p) is called and it copies the

value of the variable point into another place in the stack, allocated for

the parameter p of the method. When the parameter p is changed in the

method’s body, it is modified in the stack and this does not affect the

original variable point which was previously passed as argument when

calling the method:

HeapStack

3

point

Point2D instance

(nothing is stored

in the heap)
-2

HeapStack

3

point

Point2D instance

(nothing is stored

in the heap)
-2

4

p

Point2D (copy)

-1

www.manaraa.com

Chapter 14. Defining Classes 583

If we change Point2D from struct to class, the result will be very different:

(3,-2)
(4,-1)

This is because the variable point will be now passed by reference (not by

value) and its value will be shared between point and p in the heap. The

figure below illustrates what happens in the memory at the end of the method

TryToChangePoint(Point2D p) when Point2D is a class:

Class or Structure?

How to decide when to use a class and when a structure? We will give

you some general guidelines.

Use structures to hold simple data structures consisting of few fields that

come together. Examples are coordinates, sizes, locations, colors, etc.

Structures are not supposed to have functionality inside (no methods except

simple ones like ToString() and comparators). Use structures for small data

structures consisting of set of fields that should be passed by value.

Use classes for more complex scenarios where you combine data and

programming logic into a class. If you have logic, use a class. If you have

more than few simple fields, use a class. If you need to pass variables by

reference, use a class. If you need to assign a null value, prefer using a

class. If you prefer working with a reference type, use a class.

Classes are used more often than structures. Use structs as exception, and

only if you know well what are you doing!

There are few other differences between class and structure in addition

that classes are reference types and structures are values types, but we will

not going to discuss them. For more details refer to the following article in

MSDN: http://msdn.microsoft.com/en-us/library/ms173109.aspx.

HeapStack

point (reference variable)

Point2D@a8fe24

3 -2

Point2D object
p (parameter by reference)

Point2D@a8fe24

http://msdn.microsoft.com/en-us/library/ms173109.aspx

www.manaraa.com

584 Fundamentals of Computer Programming with C#

Enumerations

Earlier in this chapter we discussed what constants are, how to declare and

use them. In this connection we will now consider a part of the C# language,

in which a variety of logically connected constants can be linked by means of

language. These language constructs are the so-called enumerated types.

Declaration of Enumerations

Enumeration is a structure, which resembles a class but differs from it in

that in the class body we can declare only constants. Enumerations can

take values only from the constants listed in the type. An enumerated variable

can have as a value one of the listed in the type constants but cannot have

value null.

Formally speaking, the enumerations can be declared using the reserved word

enum instead of class:

[<modifiers>] enum <enum_name>
{
 constant1 [, constant2 [, [, … [, constantN]]
}

Under <modifiers> we understand the access modifiers public, internal

and private. The identifier <enum_name> follows the rules for class names in

C#. Constants separated by commas are declared in the enumeration block.

Consider an example. Let’s define an enumeration for the days of the week

(we will call it Days). As we can guess, the constants that will appear in this

particular enumeration are the names of the week days:

Days.cs

enum Days
{
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
}

Naming of constants in one particular enumeration follows the same principles

of naming of which we already explained in the "Naming Constants" section.

Note that each of the constants listed in the enumeration is of type this

enumeration, i.e. in our case Mon belongs to type Days, as well as each of the

other constants.

In other words, if we execute the following line:

Console.WriteLine(Days.Mon is Days);

www.manaraa.com

Chapter 14. Defining Classes 585

This will be printed as a result:

True

Let’s repeat again:

The enumerations are a set of constants of type – this listed

type.

Nature of Enumerations

Each constant, which is declared in one enumeration, is being associated with

a certain integer. By default, for this hidden integer representation of

constants in one enumeration int is being used.

To show “the integer nature” of constants in the listed types let’s try to

figure out what’s the numerical representation of the constant, which

corresponds to “Monday” from the example of the previous subsection:

int mondayValue = (int)Days.Mon;
Console.WriteLine(mondayValue);

After we execute it, the result will be:

0

The values, associated with constants of a particular enumerated type by

default are the indices in the list of constants of this type, i.e. numbers from 0

to the number of constants in the type less 1. In this way, if we consider the

example with the enumeration type for the week days, used in the previous

subsection, the constant Mon is associated with the numerical value 0, the

constant Tue with the integer value 1, Wed – with 2, etc.

Each constant in one enumeration is actually a textual

representation of an integer. By default this number is the

constant’s index in the list of constants of a particular

enumeration type.

Despite the integer nature of constants in a particular enumeration, when we

try to print a particular constant, its textual representation at the time of the

constant’s declaration will be printed:

Console.WriteLine(Days.Mon);

After we execute the code above we will get the following result:

Mon

www.manaraa.com

586 Fundamentals of Computer Programming with C#

Hidden Numerical Value of Constants in Enumeration

As we can guess it is possible to change the numerical value of constants

in an enumeration. This is done when we assign the values we prefer to

each of the constants at the time of declaration.

[<modifiers>] enum <enum_name>
{
 constant1[=value1] [, constant2[=value2] [, …]]
}

Accordingly value1, value2, etc. must be integers.

To get a clearer idea of the given definition consider the following example:

let’s have a class Coffee, which represents a cup of coffee that customers

order in a coffee shop:

Coffee.cs

public class Coffee
{
 public Coffee()
 {
 }
}

In this facility customers can order different amounts of coffee, as the coffee

machine has predefined values “small” – 100 ml, “normal” – 150 ml and

“double” – 300 ml. Therefore, we can declare one enumeration CoffeeSize,

which has respectively three constants – Small, Normal and Double, the

correspondent qualities of which will be assigned:

CoffeeSize.cs

public enum CoffeeSize
{
 Small=100, Normal=150, Double=300
}

Now we can add a field and property to the class Coffee, which reflect the

type of coffee the customer has ordered:

Coffee.cs

public class Coffee
{
 public CoffeeSize size;

www.manaraa.com

Chapter 14. Defining Classes 587

 public Coffee(CoffeeSize size)
 {
 this.size = size;
 }

 public CoffeeSize Size
 {
 get { return size; }
 }
}

Let’s try to print the values of the coffee quantity for a normal and for one

double coffee:

static void Main()
{
 Coffee normalCoffee = new Coffee(CoffeeSize.Normal);
 Coffee doubleCoffee = new Coffee(CoffeeSize.Double);

 Console.WriteLine("The {0} coffee is {1} ml.",
 normalCoffee.Size, (int)normalCoffee.Size);
 Console.WriteLine("The {0} coffee is {1} ml.",
 doubleCoffee.Size, (int)doubleCoffee.Size);
}

As we compile and execute this method, the following will be printed:

The Normal coffee is 150 ml.
The Double coffee is 300 ml.

Use of Enumerations

The main purpose of the enumerations is to replace the numeric values,

which we would use, if there were no enumeration types. In this way the code

becomes simpler and easier to read.

Another very important application of the enumerations is the pressure

exercised by the compiler to use constants from the enumerations and not

just numbers. Thus we minimize future errors in the code. For example, if we

use an int variable instead of a variable from enumerations and a set of

constants for the valid values, nothing prevents us from assigning the variable

any value, e.g. -6723.

To make this clearer, consider the following example: create a class "coffee

price calculator", which is calculating the price of each type of coffee,

offered in the coffee shop:

www.manaraa.com

588 Fundamentals of Computer Programming with C#

PriceCalculator.cs

public class PriceCalculator
{
 public const int SmallCoffeeQuantity = 100;
 public const int NormalCoffeeQuantity = 150;
 public const int DoubleCoffeeQuantity = 300;

 public CashMachine() { }

 public double CalcPrice(int quantity)
 {
 switch (quantity)
 {
 case SmallCoffeeQuantity:
 return 0.20;
 case NormalCoffeeQuantity:
 return 0.30;
 case DoubleCoffeeQuantity:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + quantity);
 }
 }
}

We have three constants for the capacity of the coffee cups in the coffee

shop, respectively 100, 150 and 300 ml. Furthermore, we expect that users

of our class will diligently use the defined constants, instead of numbers –

SmallCoffeeQuantity, NormalCoffeeQuantity and DoubleCoffeeQuantity.

The method CalcPrice(int) returns the respective price, calculating it by

the submitted amount.

The problem lies in the fact that someone may decide not to use the

constants defined by us and may submit an invalid number as a parameter of

our method, for example: -1 or 101. In this case, if the method does not

check for invalid quantity, it will likely return a wrong price, which is incorrect

behavior.

To avoid this problem we will use one feature of these enumerations, namely

constants in the enumeration type can be used in switch-case structures.

They can be submitted as values of the operator switch and accordingly – as

operands of the operator case.

www.manaraa.com

Chapter 14. Defining Classes 589

The constants of enumerations can be used in switch-case

structures.

Let’s rework the method, which calculates the price for a cup of coffee,

depending on the capacity of the cup. This time we will use the enumeration

type CoffeeSize, which we declared in previous examples:

public double CalcPrice(CoffeeSize coffeeSize)
{
 switch (coffeeSize)
 {
 case CoffeeSize.Small:
 return 0.20;
 case CoffeeSize.Normal:
 return 0.40;
 case CoffeeSize.Double:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + (int)coffeeSize);
 }
}

As we can see in this example, the possibility for the users of our method to

provoke unexpected behavior of the method is negligible, because we force

them to use specific values which to be used as arguments, namely constants

of enumerated CoffeeSize type. This is one of the advantages of constants,

which are declared in enumeration types to constants declared in any class.

Whenever possible, use enumerations instead of set of

constants declared in a class.

Before we finish with the enumeration section we should mention that the

enumerations are to be used with caution when working with the switch-
case construct. For example, if one day the owner of the coffee shop buys

many big cups (mugs) for coffee, we will need to add a new constant in the

constant list of the enumeration CoffeeSize, which may be called, for

example, Overwhelming:

CoffeeSize.cs

public enum CoffeeSize
{
 Small=100, Normal=150, Double=300, Overwhelming=600
}

www.manaraa.com

590 Fundamentals of Computer Programming with C#

When we try to calculate the coffee price with the new quantity, the method,

which calculates the price, will throw an exception, informing the user that

such amount of coffee is not available in the coffee shop.

What we should do to solve this problem is to add a new case-condition,

which reflects the new constant in the enumerated CoffeeSize type.

When we modify the list of constants in an existing

enumeration, we should be careful not to break the logic of

the code that already exists and uses the constants, declared

so far.

Inner Classes (Nested Classes)

In C# an inner (nested) class is called a class that is declared inside the

body of another class. Accordingly, the class that encloses the inner class is

called an outer class.

The main reason to declare one class into another are:

1. To better organize the code when working with objects in the real

world, among which have a special relationship and one cannot exist

without the other.

2. To hide a class in another class, so that the inner class cannot be

used outside the class wrapped it.

In general, inner classes are used rarely, because they complicate the

structure of the code and increase the nested levels.

Declaration of Inner Classes

The inner classes are declared in the same way as normal classes, but are

located within another class. Allowed modifiers in the declaration of the

class are:

1. public – an inner class is accessible from any assembly.

2. internal – an inner class is available in the current assembly, in which

is located the outer class.

3. private – access is restricted only to the class holding the inner class.

4. static – an inner class contains only static members.

There are four more permitted modifiers – abstract, protected, protected

internal, sealed and unsafe, which are outside the scope and subject of

this chapter and will not be considered here.

The keyword this to an inner class has relation only to the internal class, but

not to the outside. Fields of the outside class cannot be accessed using the

reference this. If necessary fields of the outer class can be accessed by the

www.manaraa.com

Chapter 14. Defining Classes 591

internal, it needs in creating the internal class to submit a reference to an

outer class.

Static members (fields, methods, properties) of the outer class are

accessible from the inner class regardless of their level of access.

Inner Classes – Example

Consider the following example:

OuterClass.cs

public class OuterClass
{
 private string name;

 private OuterClass(string name)
 {
 this.name = name;
 }

 private class NestedClass
 {
 private string name;
 private OuterClass parent;

 public NestedClass(OuterClass parent, string name)
 {
 this.parent = parent;
 this.name = name;
 }

 public void PrintNames()
 {
 Console.WriteLine("Nested name: " + this.name);
 Console.WriteLine("Outer name: " + this.parent.name);
 }
 }

 static void Main()
 {
 OuterClass outerClass = new OuterClass("outer");
 NestedClass nestedClass = new
 OuterClass.NestedClass(outerClass, "nested");
 nestedClass.PrintNames();
 }
}

www.manaraa.com

592 Fundamentals of Computer Programming with C#

In the example the outer class OuterClass defines into itself as a member

the class InnerClass. Non-static inner class methods have access to their

own body this as well as the instance of outside class parent (through

syntax this.parent, if the parent reference is added by the developer). In

the example while creating the inner class, parent reference is set to

constructor of the outer class.

If we run the above example, we will obtain the following result:

Nested name: nested
Outer name: outer

Usage of Inner Classes

Consider an example. Let’s have a class for car – Car. Each car has an engine

and doors. Unlike the car’s door, however, the engine makes no sense

regarded as being outside the car, because without it, the car cannot run, i.e.

we have composition (see the section "Class Diagrams: Composition" in the

chapter "Principles of Object-Oriented Programming").

When the connection between the two classes is a

composition, the class, which consequently is a part of

another class, is convenient to be declared as inner class.

Therefore, if you declare the class for a car: Car would be appropriate to

create an inner class Engine, which will reflect the appropriate concept for the

car engine:

Car.cs

class Car
{
 Door FrontRightDoor;
 Door FrontLeftDoor;
 Door RearRightDoor;
 Door RearLeftDoor;
 Engine engine;

 public Car()
 {
 engine = new Engine();
 engine.horsePower = 2000;
 }

 public class Engine
 {

www.manaraa.com

Chapter 14. Defining Classes 593

 public int horsePower;
 }
}

Declare Enumeration in a Class

Before proceeding to the next section that refers to generic types, it should be

noticed, that sometimes enumeration should and can be declared within

a class in order of better encapsulation of the class.

For example, the enumeration of type CoffeeSize, we have created in the

previous section, can be declared inside the body of the class Coffee, thereby

it improves its encapsulation:

Coffee.cs

class Coffee
{
 // Enumeration declared inside a class
 public static enum CoffeeSize
 {
 Small = 100, Normal = 150, Double = 300
 }

 // Instance variable of enumerated type
 private CoffeeSize size;

 public Coffee(CoffeeSize size)
 {
 this.size = size;
 }

 public CoffeeSize Size
 {
 get { return size; }
 }
}

Respectively, the method for calculation of the price of coffee will be slightly

modified slightly:

public double CalcPrice(Coffee.CoffeeSize coffeeSize)
{
 switch (coffeeSize)
 {

www.manaraa.com

594 Fundamentals of Computer Programming with C#

 case Coffee.CoffeeSize.Small:
 return 0.20;
 case Coffee.CoffeeSize.Normal:
 return 0.40;
 case Coffee.CoffeeSize.Double:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + ((int)coffeeSize));
 }
}

Generics

In this section we will explain the concept of generic classes (generic data

types, generics). Before we begin, however, let’s look through an example

that will help us understand more easily the idea.

Shelter for Homeless Animals – Example

Let’s assume that we have two classes. A class Dog, which describes a dog:

Dog.cs

public class Dog
{
}

And let a class Cat, which describes a cat:

Cat.cs

public class Cat
{
}

Then we want to create a class that describes a shelter for homeless

animals – AnimalShelter. This class has a specific number of free cells,

which determines the number of animals, which could find refuge in the

shelter. The special feature of the class, that we want to create, is that it only

needs to accommodate animals of the same kind, in our case, dogs or cats

only, because the coexistence of different species is not always a good idea.

If we think about how to solve the task with the knowledge that we have until

here, we will come to the following conclusion – to ensure that our class will

contain elements only from one and the same type we need to use an array of

www.manaraa.com

Chapter 14. Defining Classes 595

identical objects. These objects may be dogs, cats or simply instances of the

universal type object.

For instance, if we want to make a shelter for dogs, here is how our class

would look like:

AnimalsShelter.cs

public class AnimalShelter
{
 private const int DefaultPlacesCount = 20;

 private Dog[] animalList;
 private int usedPlaces;

 public AnimalShelter() : this(DefaultPlacesCount)
 {
 }

 public AnimalShelter(int placesCount)
 {
 this.animalList = new Dog[placesCount];
 this.usedPlaces = 0;
 }

 public void Shelter(Dog newAnimal)
 {
 if (this.usedPlaces >= this.animalList.Length)
 {
 throw new InvalidOperationException("Shelter is full.");
 }
 this.animalList[this.usedPlaces] = newAnimal;
 this.usedPlaces++;
 }

 public Dog Release(int index)
 {
 if (index < 0 || index >= this.usedPlaces)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid cell index: " + index);
 }
 Dog releasedAnimal = this.animalList[index];
 for (int i = index; i < this.usedPlaces - 1; i++)
 {
 this.animalList[i] = this.animalList[i + 1];

www.manaraa.com

596 Fundamentals of Computer Programming with C#

 }
 this.animalList[this.usedPlaces - 1] = null;
 this.usedPlaces--;

 return releasedAnimal;
 }
}

Shelter capacity (number of animals, which it is capable to accommodate) is

set when the object is created. By default it is the value of the constant

DefaultPlacesCount. We use the field usedPlaces to monitor the occupied

cells (at the same time we use it to index into the array for "pointing" to the

first space from left to right in the array).

We have created a method for adding a new dog into the shelter –

Shelter() and respectively for releasing from the shelter – Release(int).

The method Shelter() adds each new animal in the first free cell in the right

side of the array (if there is any free).

The method Release(int) accepts the number of cell from which the dog will

be released (i.e. the index number in the array, where it is stored a link to the

object of type Dog).

usedPlaces

Occupied

0

Occupied

1

Empty

2

Empty

3

Empty

4

usedPlacesusedPlaces

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Empty

2

Empty

2

Empty

3

Empty

3

Empty

4

Empty

4

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

release usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Occupied

2

Occupied

2

Occupied

3

Occupied

3

releaserelease

www.manaraa.com

Chapter 14. Defining Classes 597

Then it moves all animals which are having a bigger cell number then the

current cell, from which we will release a dog, with a position to the left (steps

2 and 3 are shown in the diagram below).

Released cell at position usedPlaces-1 is marked as free, and a value null is

assigned to it. This provides release of the reference to it and respectively

allows the system to clean memory (garbage collector), to release the object

if it is not used anywhere else in the program at this moment. This prevents

from indirect loss of memory (memory leak).

Finally, it assigns the number of the last free cell to a usedPlaces field

(steps 4 and 5 of the scheme above).

It is visible that the “removal” of an animal from a cell could be a slow

operation, because it requires the transfer of all animals from the next cells

with one position left. In the chapter "Linear Data Structures" we will discuss

also more efficient ways of presenting the animal shelter, but for now let’s

focus on the topic about generic types.

So far we succeed implementing functionality of the shelter – the class

AnimalShelter. When we work with objects of type Dog, everything compiles

and executes smoothly:

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4

5
usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4

5
usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4

5
usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal
usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Occupied

2

Occupied

2

Occupied

3

Occupied

3

releasedAnimalreleasedAnimal

1

2 3 4

5

usedPlaces

Empty

4

Occupied

0

Occupied

1

Empty

3

Occupied

2

releasedAnimal
usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Empty

3

Empty

3

Occupied

2

Occupied

2

releasedAnimalreleasedAnimal

www.manaraa.com

598 Fundamentals of Computer Programming with C#

static void Main()
{
 AnimalShelter dogsShelter = new AnimalShelter(10);
 Dog dog1 = new Dog();
 Dog dog2 = new Dog();
 Dog dog3 = new Dog();

 dogsShelter.Shelter(dog1);
 dogsShelter.Shelter(dog2);
 dogsShelter.Shelter(dog3);

 dogsShelter.Release(1); // Releasing dog2
}

What happens, however, if we attempt to use an AnimalShelter class for

objects of type Cat:

static void Main()
{
 AnimalShelter dogsShelter = new AnimalShelter(10);

 Cat cat1 = new Cat();

 dogsShelter.Shelter(cat1);
}

As expected, the compiler displays an error:

The best overloaded method match for 'AnimalShelter.Shelter(
Dog)' has some invalid arguments. Argument 1: cannot convert
from 'Cat' to 'Dog'

Consequently, if we want to create a shelter for cats, we will not be able to

reuse the class that we already created, although the operations of adding

and removing animals from the shelter will be identical. Therefore, we have to

literally copy AnimalShelter class and change only the type of the objects,

which are handled – Cat.

Yes, but if we decide to make a shelter for other species? How many classes

of shelters for the particular type of animals we shall create?

We can see that this solution of the problem is not sufficiently

comprehensive and does not fully meets the terms, which we were set – to

exist a single class that describes our shelter for any kind of animal (i.e.

for all objects) and by working with it, it should contain only one kind of

animals (i.e. only objects of one and the same type).

www.manaraa.com

Chapter 14. Defining Classes 599

We could use instead of the type Dog, the universal type object, which can

take values as Dog, Cat and all other data types, but this will create some

inconvenience, associated with the need to convert back from the object to

the Dog, when creating a shelter for dogs and it contains cells of type object,

instead of type Dog.

To solve the task efficiently, we have to use a feature of the C# language that

allows us to satisfy all required conditions simultaneously. It is called

generics (template classes).

What Is a Generic Class?

As we know if a method needs additional information to operate properly, this

information is passed to the method using parameters. During the execution

of the program, when calling this particular method, we pass arguments to

the method, which are assigned to its parameters and then used in the

method’s body.

Like the methods, when we know, that the functionality (actions)

encapsulated into a class, can be applied not only to objects of one, but to

many (heterogeneous) types, and these types are not known at the time of

declaring the class, we can use a functionality of the language C# called

generics (generic types).

It allows us to declare parameters of this class, by indicating an

unknown type that the class will work eventually with. Then, when we

instantiate our generic class, we replace the unknown with a particular.

Accordingly, the newly created object will only work with objects of this type

that we have assigned at its initialization. The specific type can be any data

type that the compiler recognizes, including class, structure, enumeration or

another generic class.

To get a cleaner picture of the nature of the generic types, let’s return to our

task from the previous section. As you might guess, the class that describes

the animal shelter (AnimalShelter) can operate with different types of

animals. Consequently, if we want to create a general solution of the task,

during the declaration of class AnimalShelter, we cannot know what type of

animals will be sheltered to shelter. This is sufficient indication, that we can

typify our class, adding to the declaration of the class as a parameter, the

unknown type of animals.

Later, when we want to create a dog’s shelter for example, this parameter of

the class will pass the name of our type – class Dog. Accordingly, if you create

a shelter for cats, we will pass the type Cat, etc.

Typifying a class (creating a generic class) means to add to

the declaration of a class a parameter (replacement) of

unknown type, which the class will use during its operation.

Subsequently, when the class is instantiated, this parameter

is replaced with the name of some specific type.

www.manaraa.com

600 Fundamentals of Computer Programming with C#

In the following sections we will introduce the syntax of generic classes and

we will modify our previous example to use generics.

Declaration of Generic Class

Formally, the parameterizing of a class is done by adding <T> to the

declaration of the class, after its name, where T is the substitute (parameter)

of the type, which will be used later:

[<modifiers>] class <class_name><T>
{
}

It should be noticed that the characters '<' and '>', which surround the

substitution T are an obligatory part of the syntax of language C# and must

participate in the declaration of a generic class.

The declaration of generic class, which describes a shelter for homeless

animals, should look like as follows:

class AnimalShelter<T>
{
 // Class body here …
}

Let’s can imagine that we are creating a template of our class

AnimalShelter, which we will specify later, replacing T with a specific type,

for instance a Dog.

A particular class may have more than one substitute (to be parameterized by

more than one type), depending on its needs:

[<modifiers>] class <class_name><T1 [, T2, [… [, Tn]]]>
{
}

If the class needs several different unknown types, these types should be

listed by a comma between the characters '<' and '>' in the declaration of the

class, as each of the substitutes used must be different identifier (e.g. a

different letter) – in the definition they are indicated as T1, T2, …, Tn.

In case, we should to create a shelter for animals of a mixed type, one that

accommodates both – dogs and cats, we should declare the class as follows:

class AnimalShelter<T, U>
{
 // Class body here …
}

www.manaraa.com

Chapter 14. Defining Classes 601

If this were our case, we would use the first parameter T, to indicate objects

of type Dog, which our class would operate with, and with U – to indicate

objects of type Cat.

Specifying Generic Classes

Before we present more details about generics, we should look at how to use

generic classes. The using of generic classes should be done as follows:

<class_name><concrete_type><variable_name> =
 new <class_name><concrete_type>();

Again, similar to T substitution in the declaration of our class, the characters

'<' and '>' surrounding a particular class concrete_type, are required.

If we want to create two shelters, one for dogs and one for cats, we should

use the following code:

AnimalShelter<Dog> dogsShelter = new AnimalShelter<Dog>();
AnimalShelter<Cat> catsShelter = new AnimalShelter<Cat>();

In this way, we ensure that the shelter dogsShelter will always contain

objects of a type Dog and the variable catsShelter will always operate with

objects of type Cat.

Using Unknown Types by Declaring Fields

Once used during the class declaration, the parameters that are used to

indicate the unknown types are visible in the whole body of the class,

therefore they can be used to declare the field as each other type:

[<modifiers>] T <field_name>;

As we can guess, in our example with shelter for homeless animals, we can

use this feature provided by language C#, to declare the type of field

animalsList, which holds references to objects for the housed animals,

instead of a specific type of Dog, with parameter T:

private T[] animalList;

Let’s assume when we create an object of our class, setting a specific type

(e.g. Dog) during the execution of the program, the unknown type T will

be replaced with the above type. If we choose to create a shelter for dogs,

we can consider that our field is declared as follows:

private Dog[] animalList;

www.manaraa.com

602 Fundamentals of Computer Programming with C#

Accordingly, when we want to initialize a particular field in the constructor of

our class, we should do it as usual – creating an array, using substitution of

the unknown type – T:

public AnimalShelter(int placesNumber)
{
 animalList = new T[placesNumber]; // Initialization
 usedPlaces = 0;
}

Using Unknown Types in a Method’s Declaration

As an unknown type used in the declaration of a generic class is visible from

opening to closing brace of the class body, except for field’s declaration, it

can be used in a method declaration, namely:

As a parameter in the list of parameters of the method:

<return_type> MethodWithParamsOfT(T param)

- As a result of implementation of the method:

T MethodWithReturnTypeOfT(<params>)

As we already guessed, using our example, we can adapt the methods

Shelter(…) and Release(…), respectively:

- As a method of unknown type parameter T:

public void Shelter(T newAnimal)
{
 // Method's body goes here …
}

- And a method, which returns a result of unknown type T:

public T Release(int i)
{
 // Method's body goes here …
}

As we already know when we create an object from our class shelter and

replace the unknown type with a specific one (e.g. Cat), during the execution

of the program, the above methods will have the following form:

- The parameter of method Shelter will be of type Cat:

www.manaraa.com

Chapter 14. Defining Classes 603

public void Shelter(Cat newAnimal)
{
 // Method's body goes here …
}

- The method Release will return a result of type Cat:

public Cat Release(int i)
{
 // Method's body goes here …
}

Typifying (Generics) – Behind the Scenes

Before we continue, let’s us explain what happens into the memory of the

computer, when we work with generic classes.

First we declare our generic class MyClass<T> (generic class description in

the scheme above). Then the compiler translates our code to an intermediate

language (MSIL), as translated code contains information that the class is

generic, i.e. it works with undefined types until now. At runtime, when

someone tries to work with our generic class and tries to use it with a specific

type, a new description of the class is created (specific type class

description in the diagram above), which is identical to the generic class, with

the difference that where it has been used T, now is replaced by a specific

type. For example, if you try to use MyClass<int>, everywhere in your code,

where the unknown parameter T is used, it will be replaced with int. Only

then we can create object of a generic class with a specific type int. The

interesting thing here is that to create this object, the description of the class,

which was created in the meantime (specific type class description), will be

used. Instantiating of a generic class by given specific types of its parameters

is called "specialization of the type" or "extension of generic class".

Using our example, if we create an object of type AnimalShelter<T>, which

works only with objects of type Dog, if we try to add an object of type Cat,

this will cause a compile error almost identical to the errors, that were derived

by an attempt to add an object of type Cat, into an object of type

AnimalShelter, which we have created in section "Shelter for Homeless

Animals – Example":

MyClass<T> MyClass<concrete_type>
MyClass<concrete_type>

instance

generic class

description

concrete type

class description

concrete type

class instance

MyClass<T> MyClass<concrete_type>
MyClass<concrete_type>

instance

generic class

description

concrete type

class description

concrete type

class instance

www.manaraa.com

604 Fundamentals of Computer Programming with C#

static void Main()
{
 AnimalShelter<Dog> dogsShelter = new AnimalShelter<Dog>(10);

 Cat cat1 = new Cat();

 dogsShelter.Shelter(cat1);
}

As expected, we get the following compilation error messages:

The best overloaded method match for 'AnimalShelter<
Dog>.Shelter(Dog)' has some invalid arguments

Argument 1: cannot convert from 'Cat' to 'Dog'

Generic Methods

Like classes, when the type of method’s parameters cannot be specified, we

can parameterize (typify) the method. Accordingly, the indication of a

specific type will happen during the invocation of the method, replacing the

unknown type with a specific one, as we did in the classes.

Typifying of a method is done, when after the name and before the opening

bracket of the method, we add <K>, where K is the replacement of the type

that will be used later:

<return_type><methods_name><K>(<params>)

Accordingly, we can use unknown type K for parameters in the parameter’s

list of method <params>, whose type is unknown and also for return value or

to declare variables of type substitute K in the body of the method.

For example, consider a method that swaps the values of two variables:

public void Swap<K>(ref K a, ref K b)
{
 K oldA = a;
 a = b;
 b = oldA;
}

This is a method that swaps the values of two variables, without carrying of

their types. That is why we define it as a generic, so we can use it for all

types of variables.

www.manaraa.com

Chapter 14. Defining Classes 605

Accordingly, if we want to swap the values of two integers and then two string

variables, we should use our method:

int num1 = 3;
int num2 = 5;
Console.WriteLine("Before swap: {0} {1}", num1, num2);
// Invoking the method with concrete type (int)
Swap<int>(ref num1, ref num2);
Console.WriteLine("After swap: {0} {1}\n", num1, num2);

string str1 = "Hello";
string str2 = "There";
Console.WriteLine("Before swap: {0} {1}!", str1, str2);
// Invoking the method with concrete type (string)
Swap<string>(ref str1, ref str2);
Console.WriteLine("After swap: {0} {1}!", str1, str2);

When you run this code, the result is as expected:

Before swap: 3 5
After swap: 5 3

Before swap: Hello There!
After swap: There Hello!

We notice that in the list of parameters we have used also the keyword ref.

This concerns the specification of the method – namely, to exchange the

values of two references. By using the keyword ref, the method will use the

same reference that was given by the calling method. This way, all changes

on this variable made by our method, will remain after the method exits.

We should know that by calling a generic method, we can miss the explicit

declaration of a specific type (in our example <int>), because the compiler

will detect it automatically, recognizing the type of the given parameters. In

other words, our code can be simplified using the following calls:

Swap(ref num1, ref num2); // Invoking the method Swap<int>
Swap(ref str1, ref str2); // Invoking the method Swap<string>

We should know that the compiler will be able to recognize what is the

specific type, only if this type is involved in the parameter’s list. The

compiler cannot recognize what is the specific type of a generic method only

by the type its return value or if it does not have parameters. In both cases,

this specific type will have to be given explicitly. In our example, it will be

similar to the original method call, or by adding <int> or <string>.

www.manaraa.com

606 Fundamentals of Computer Programming with C#

It should be noticed that static methods can also be typified, unlike the

properties and constructors of the class.

Static methods can also be typified, but properties and

constructors of the class cannot.

Features by Declaration of Generic Methods in

Generic Classes

As we have already seen in the section "Using Unknown Types in a

Declaration of Methods", non-generic methods can use unknown types,

described in the generic class declaration (e.g. methods Shelter() and

Release() from the example “Shelter for Homeless Animals”):

AnimalShelter.cs

public class AnimalShelter<T>
{
 // … The rest of the code …

 public void Shelter(T newAnimal)
 {
 // Method body here
 }

 public T Release(int i)
 {
 // Method body here
 }
}

If we try to reuse the variable, which is used to mark the unknown type of the

generic class, for example as T, in the declaration of generic method, then

when we try to compile the class, we will get a warning CS0693. This is

happening because the scope of action of the unknown type T, defined in

declaration of the method, overlaps the scope of action of the unknown type

T, in class declaration:

CommonOperations.cs

public class CommonOperations<T>
{
 // CS0693
 public void Swap<T>(ref T a, ref T b)
 {

www.manaraa.com

Chapter 14. Defining Classes 607

 T oldA = a;
 a = b;
 b = oldA;
 }
}

When you try to compile this class, you receive the following message:

Type parameter 'T' has the same name as the type parameter from
outer type 'CommonOperations<T>'

So if we want our code to be flexible, and our generic method safely to be

called with a specific type, different from that in the generic class by

instantiating it, we just have to declare the replacement of the unknown type

in the declaration of the generic method to be different than the

parameter for the unknown type in the class declaration, as shown below:

CommonOperations.cs

public class CommonOperations<T>
{
 // No warning
 public void Swap<K>(ref K a, ref K b)
 {
 K oldA = a;
 a = b;
 b = oldA;
 }
}

Thus, always make sure that there will be no overlapping of substitutes of the

unknown types of method and class.

Using a Keyword "default" in a Generic Source Code

Once we have introduced the basics of generic types, let’s try to redesign

our first example in this section (Shelter for Homeless Animals). The only

thing we need to do is to replace the type Dog with some parameter T:

AnimalsShelter.cs

public class AnimalShelter<T>
{
 private const int DefaultPlacesCount = 20;

 private T[] animalList;

www.manaraa.com

608 Fundamentals of Computer Programming with C#

 private int usedPlaces;

 public AnimalShelter() : this(DefaultPlacesCount)
 {
 }

 public AnimalShelter(int placesCount)
 {
 this.animalList = new T[placesCount];
 this.usedPlaces = 0;
 }

 public void Shelter(T newAnimal)
 {
 if (this.usedPlaces >= this.animalList.Length)
 {
 throw new InvalidOperationException("Shelter is full.");
 }
 this.animalList[this.usedPlaces] = newAnimal;
 this.usedPlaces++;
 }

 public T Release(int index)
 {
 if (index < 0 || index >= this.usedPlaces)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid cell index: " + index);
 }
 T releasedAnimal = this.animalList[index];
 for (int i = index; i <this.usedPlaces - 1; i++)
 {
 this.animalList[i] = this.animalList[i + 1];
 }
 this.animalList[this.usedPlaces - 1] = null;
 this.usedPlaces--;

 return releasedAnimal;
 }
}

Everything looks to work properly, until we try to compile the class. Then we

get the following error:

www.manaraa.com

Chapter 14. Defining Classes 609

Cannot convert null to type parameter 'T' because it could be a
non-nullable value type. Consider using 'default(T)' instead.

The error is inside the method Release() and it is related to the recording a

null value in the last released (rightmost) cell in the shelter. The problem is

that we are trying to use the default value for a reference type, but we are

not sure whether this type is a reference type or a primitive. Therefore

the compiler displays the errors above. If the type AnimalShelter is

instantiated by a structure and not by a class, then the null value is not valid.

To handle this problem, in our code we have to use the construct default(T)

instead of null, which returns the default value for the particular type that

will be used instead of T. As we know, the default value for reference type is

null, and for numeric types – zero. We can make the following change:

// this.animalList[this.usedPlaces - 1] = null;
this.animalList[this.usedPlaces - 1] = default(T);

Finally the compilation runs smoothly and the class AnimalShelter<T>
operates correctly. We can test it as follows:

static void Main()
{
 AnimalShelter<Dog> shelter = new AnimalShelter<Dog>();
 shelter.Shelter(new Dog());
 shelter.Shelter(new Dog());
 shelter.Shelter(new Dog());
 Dog d = shelter.Release(1); // Release the second dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Release the first dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Release the third dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Exception: invalid cell index
}

Advantages and Disadvantages of Generics

Generic classes and methods increase the reusability of the code, the

security and the performance compared to other non-generic alternatives.

As a general rule, the programmer should strive to create and use

generic classes, whenever it is possible. The more generic types are

used, the higher level of abstraction there is in the program and the source

code becomes more flexible and reusable. However we should keep in mind,

that overuse of generics can lead to over-generalization and the code may

become unreadable and difficult to understand by other programmers.

www.manaraa.com

610 Fundamentals of Computer Programming with C#

Naming the Parameters of the Generic Types

Before we finish generics as a topic, let’s give you some guidance on working

with the substitutes (parameters) of unknown types in a generic class:

1. If there is just one unknown type in the generic, it is common to use the

letter T, as a substitute for that unknown type. As an example we can

give our class declaration AnimalShelter<T>, which we used until now.

2. To the substitutes should be given the most descriptive names, unless a

letter is not a sufficiently descriptive and well-chosen name, this will not

improve readability of the source code. For instance, we can modify our

example, replacing the letter T, with the more descriptive substitute for

Animal:

AnimalShelter.cs

public class AnimalShelter<Animal>
{
 // … The rest of the code …

 public void Shelter(Animal newAnimal)
 {
 // Method body here
 }

 public Animal Release(int i)
 {
 // Method body here
 }
}

When we use descriptive names of substitutes instead of a letter, it is better

to add T at the beginning of the name, to distinguish it more easily from the

class names in our application. In other words, instead of using a substitute

Animal in the previous example, we should use TAnimal (T comes from the

word "template" which means a parameterized / generic type).

Exercises

1. Define a class Student, which contains the following information about

students: full name, course, subject, university, e-mail and phone

number.

2. Declare several constructors for the class Student, which have different

lists of parameters (for complete information about a student or part of

it). Data, which has no initial value to be initialized with null. Use

nullable types for all non-mandatory data.

www.manaraa.com

Chapter 14. Defining Classes 611

3. Add a static field for the class Student, which holds the number of

created objects of this class.

4. Add a method in the class Student, which displays complete information

about the student.

5. Modify the current source code of Student class so as to encapsulate

the data in the class using properties.

6. Write a class StudentTest, which has to test the functionality of the

class Student.

7. Add a static method in class StudentTest, which creates several

objects of type Student and store them in static fields. Create a static

property of the class to access them. Write a test program, which

displays the information about them in the console.

8. Define a class, which contains information about a mobile phone:

model, manufacturer, price, owner, features of the battery (model, idle

time and hours talk) and features of the screen (size and colors).

9. Declare several constructors for each of the classes created by the

previous task, which have different lists of parameters (for complete

information about a student or part of it). Data fields that are unknown

have to be initialized respectively with null or 0.

10. To the class of mobile phone in the previous two tasks, add a static field

nokiaN95, which stores information about mobile phone model Nokia

N95. Add a method to the same class, which displays information about

this static field.

11. Add an enumeration BatteryType, which contains the values for type

of the battery (Li-Ion, NiMH, NiCd, …) and use it as a new field for the

class Battery.

12. Add a method to the class GSM, which returns information about the

object as a string.

13. Define properties to encapsulate the data in classes GSM, Battery and

Display.

14. Write a class GSMTest, which has to test the functionality of class GSM.

Create few objects of the class and store them into an array. Display

information about the created objects. Display information about the

static field nokiaN95.

15. Create a class Call, which contains information about a call made via

mobile phone. It should contain information about date, time of start and

duration of the call.

16. Add a property for keeping a call history – CallHistory, which holds a

list of call records.

www.manaraa.com

612 Fundamentals of Computer Programming with C#

17. In GSM class add methods for adding and deleting calls (Call) in the

archive of mobile phone calls. Add method, which deletes all calls from

the archive.

18. In GSM class, add a method that calculates the total amount of calls

(Call) from the archive of phone calls (CallHistory), as the price of a

phone call is passed as a parameter to the method.

19. Create a class GSMCallHistoryTest, with which to test the functionality

of the class GSM, from task 12, as an object of type GSM. Then add to it a

few phone calls (Call). Display information about each phone call.

Assuming that the price per minute is 0.37, calculate and display the total

cost of all calls. Remove the longest conversation from archive with

phone calls and calculate the total price for all calls again. Finally, clear

the archive.

20. There is a book library. Define classes respectively for a book and a

library. The library must contain a name and a list of books. The books

must contain the title, author, publisher, release date and ISBN-number.

In the class, which describes the library, create methods to add a book to

the library, to search for a book by a predefined author, to display

information about a book and to delete a book from the library.

21. Write a test class, which creates an object of type library, adds several

books to it and displays information about each of them. Implement a

test functionality, which finds all books authored by Stephen King and

deletes them. Finally, display information for each of the remaining

books.

22. We have a school. In school we have classes and students. Each class

has a number of teachers. Each teacher has a variety of disciplines

taught. Students have a name and a unique number in the class. Classes

have a unique text identifier. Disciplines have a name, number of lessons

and number of exercises. The task is to shape a school with C# classes.

You have to define classes with their fields, properties, methods and

constructors. Also define a test class, which demonstrates, that the

other classes work correctly.

23. Write a generic class GenericList<T>, which holds a list of elements of

type T. Store the list of elements into an array with a limited capacity

that is passed as a parameter of the constructor of the class. Add

methods to add an item, to access an item by index, to remove an item

by index, to insert an item at given position, to clear the list, to search

for an item by value and to override the method ToString().

24. Implement auto-resizing functionality of the array from the previous

task, when by adding an element, it reaches the capacity of the array.

25. Define a class Fraction, which contains information about the rational

fraction (e.g. ¼ or ½). Define a static method Parse() to create a

fraction from a sting (for example -3/4). Define the appropriate

www.manaraa.com

Chapter 14. Defining Classes 613

properties and constructors of the class. Also write property of type

Decimal to return the decimal value of the fraction (e.g. 0.25).

26. Write a class FractionTest, which tests the functionality of the class

Fraction from previous task. Pay close attention on testing the function

Parse with different input data.

27. Write a function to cancel a fraction (e.g. if numerator and denominator

are respectively 10 and 15, fraction to be cancelled to 2/3).

Solutions and Guidelines

1. Use enum for subjects and universities.

2. To avoid repetition of source code call constructors from each other

with keyword this(<parameters>).

3. Use the constructor of the class as a place where the number of objects

of class Student is increasing.

4. Display on the console in all fields of the class Student, followed by a

blank line.

5. Define as private all members of the class Student and then using

Visual Studio (Refactor -> Encapsulate Field) define automatically the

public get / set methods to access these fields.

6. Create a few students and display the whole information for each one

of them.

7. You can use the static constructor to create instances in the first access

to the class.

8. Declare three separate classes: GSM, Battery and Display.

9. Define the described constructors and create a test program to check if

classes are working properly.

10. Define a private field and initialize it at the time of its declaration.

11. Use enum for the type of battery. Search in Internet for other types of

batteries for phones, except these in the requirements and add them as

value of the enumeration.

12. Override the method ToString().

13. In classes GSM, Battery and Display define suitable private fields and

generate get / set. You can use automatic generation in Visual Studio.

14. Add a method PrintInfo() in class GSM.

15. Read about the class List<T> in Internet. The class GSM has to store its

conversations in a list of type List<Call>.

16. Return as a result the list of conversations.

www.manaraa.com

614 Fundamentals of Computer Programming with C#

17. Use the built-in methods of the class List<T>.

18. Because the tariff is fixed, you can easily calculate the total price of

all calls.

19. Follow the instructions directly from the requirements of the task.

20. Define classes Book and Library. For a list of books use List<Book>.

21. Follow the instructions directly from the requirements of the task.

22. Create classes School, SchoolClass, Student, Teacher, Discipline

and define into them their respective fields, as described in the

instructions of the task. Do not use the word "Class" as a class name,

because in C# it has special meaning. Add methods for printing all the

fields from each of the classes.

23. Use your knowledge concerning generic classes. Check out all input

parameters of the methods, just to make sure that no element can

access an invalid position.

24. When you reach the capacity of the array, create a new array with a

double size and copy all old elements in the new one.

25. Write a class with two private decimal fields, which hold information

relevant to the numerator and denominator of the fraction. Among

other requirements in the task, redefine in appropriate standard the

features for each object: Equals(…), GetHashCode(), ToString().

26. Figure out appropriate tests, for which your function may give incorrect

results. Good practice is first to write the tests, then to implement

their specific functionality.

27. Search for information in Internet for the “greatest common divisor

(GCD)” and the Euclidean algorithm for its calculation. Divide the

numerator and denominator of their greatest common divisor and you

will get the cancelled fraction.

www.manaraa.com

Chapter 15. Text Files

In This Chapter

In this chapter we will review how to work with text files in C#. We will

explain what a stream is, what its purpose is, and how to use it. We will

explain what a text file is and how can you read and write data to a text

file and how to deal with different character encodings. We will

demonstrate and explain the good practices for exception handling when

working with files. All of this will be demonstrated with many examples in this

chapter.

Streams

Streams are an essential part of any input-output library. You can use

streams when your program needs to "read" or "write" data to an external

data source such as files, other PCs, servers etc. It is important to say that

the term input is associated with reading data, whereas the term output is

associated with writing data.

What Is a Stream?

A stream is an ordered sequence of bytes, which is send from one

application or input device to another application or output device. These

bytes are written and read one after the other and always arrive in the same

order as they were sent. Streams are an abstraction of a data

communication channel that connects two devices or applications.

Streams are the primary means of exchanging information in the computer

world. Because of streams, different applications are able to access files on

the computer and are able to establish network communication between

remote computers. In the world of computers, many operations can be

interpreted as reading and writing to a stream. For example, printing is a

process of sending a sequence of bytes to a stream, associated with the

corresponding port, to which is the printer connected. Recreating sounds from

the computer’s sound card can be done by sending some commands, followed

by the sample sound, which is actually a sequence of bytes. The scanning of

documents from a scanner can be done by sending commands to the scanner

(an output stream) and then reading the scanned image (an input stream).

This way, you can work with any peripheral device (camera, mouse,

keyboard, USB stick, soundcard, printer, scanner etc.).

Every time when you read or write from or to a file, you have to open a

stream to the corresponding file, do the reading or writing, and then

www.manaraa.com

616 Fundamentals of Computer Programming with C#

close the stream. There are two types of streams – text streams and

binary streams but this separation has to do with the interpretation of the

sent and received bytes. Sometimes, for convenience, a sequence of bytes

can be treated as text (in a predefined encoding) and is referred to as a text

stream.

Today’s modern web sites cannot do without the so-called streaming, which

represents stream access to bulky multimedia files coming from the Internet.

Streaming audio and video allows files to be played before they are

downloaded locally, making the site more interactive. Streams and media

streaming are different concepts but both use sequences of data.

Basic Things You Need to Know about Streams

Many devices use streams for reading and writing data. Because of

streams, communication between program and file, program and remote

computer, is made easy.

Streams are ordered sequences of bytes. The word “order” is intentionally

left stressed, because it is of great importance to remember that streams are

highly ordered and organized. In no way must you influence the order of the

information flow, because it will render it unusable. If a byte is sent to a

stream earlier than another byte, it will arrive earlier at the other end of the

stream, which is guaranteed by the abstraction "stream".

Streams allow sequential data access. Again, it is important to understand

the meaning of the word sequential. You can manipulate the data only in the

order in which it arrives from the stream. This is closely related to the

previous feature. You cannot take the first, than the eight, third, thirteenth

byte and so on. Streams do not allow random access to their data, only

sequential. You can think of streams as of a linked list that contains bytes, in

which they have a strict order.

Different situations require different types of streams. Some streams are

used with text files, others-with binary files and then there are those that

work with strings. For network communication, you have to use a specific

type of stream. The vast variety of streams can help us in different situations,

but can also trouble us, because we need to be familiar with every type of

stream, before we can use it in our application.

Streams are opened before we can begin working with them and are closed

after they have served their purpose. Closing the stream is very

important and must not be left out, because you risk losing data, damaging

the file, to which the stream is opened, and so on – all of these are very

troublesome scenarios, which must not happen in our programs.

We can say that streams are like pipes that connect two points:

www.manaraa.com

Chapter 15. Text Files 617

From one side we pour data in and from the other data leaks out. The one

who pours data is not concerned of how it is transferred, but can be sure that

what he has poured will come out the same on the other side. Those who use

streams do not care how the data reaches them. They know that if someone

poured something on the other side, it will reach them. Therefore, we can

consider streams as a data transport channel, such as pipes.

Basic Operations with Streams

You can do the following operations with streams: creation / opening,

reading data, writing data, seeking / positioning, closing / disconnecting.

Creation

To create or open a stream means to connect the stream to a data source,

a mechanism for data transfer or another stream. For example, when we have

a file stream, then we pass the file name and the file mode in which it is to be

opened (reading, writing or reading and writing simultaneously).

Reading

Reading means extracting data from the stream. Reading is always

performed sequentially from the current position of the stream. Reading is a

blocking operation, and if the other party has not sent data while we are

trying to read or the sent data has not yet arrived, there may occur a delay –

a few milliseconds to hours, days or greater. For example, when reading from

a network stream data can be slowed down because of the network or the

other party might not have send any data.

Writing

Writing means sending data to the stream in a specific way. The writing

is performed from the current position of the stream. Writing may be a

potentially blocking operation, before the data is sent on its way. For

example, if you send bulk data via a network stream, the operation may be

delayed while the data is traveling over the network.

Positioning

Positioning or seeking in the stream means to move the current position

of the stream. Moving is done according to the current position, where we can

position according to the current position, beginning of the stream, or the end

of the stream. Moving can be done only in streams that support

positioning. For example, file streams typically maintain positioning while

network streams do not.

www.manaraa.com

618 Fundamentals of Computer Programming with C#

Closing

To close or disconnect a stream means to complete the work with the

stream and releases the occupied resources. Closing must take place as

soon as possible after the stream has served its purpose, because a resource

opened by a user, usually cannot be used by other users (including other

programs on the same computer that run parallel to our program).

Streams in .NET – Basic Classes

In .NET Framework classes for working with streams are located in the

namespace System.IO. Let’s focus on their hierarchy, organization and

functionality.

We can distinguish two main types of streams – those who work with binary

data and those who work with text data. Later we will discuss the main

characteristics of these two types.

At the top of the stream hierarchy stands an abstract input-output stream

class. It cannot be instantiated, but defines the basic functionality that all the

other streams have.

There are buffered streams that do not add any extra functionality, but use

a buffer for reading and writing data, which significantly enhances

performance. Buffered streams will not be analyzed in this chapter, as we will

focus on working with text files. You can check with the rich documentation

available on the Internet or a textbook for advanced programming.

Some streams add additional functionality to reading and writing data. For

example, there are streams that compress / decompress data sent to them

and streams that encrypt / decrypt data. These streams are connected to

another stream (such as file or network stream) and add additional processing

to its functionality.

The main classes in the System.IO namespace are Stream (abstract base

class for all streams in .NET Framework), BufferedStream, FileStream,

MemoryStream, GZipStream and NetworkStream. We will discuss in more

details some of them, separating them in their basic feature – the type of

data with which they work.

All streams in C# are similar in one basic thing – it is mandatory to close

them after we have finished working with them. Otherwise we risk damaging

the data in the stream or file that we have opened. This brings us to the first

and basic rule that we should always remember when working with streams:

Always close the streams and files you work with! Leaving an

open stream or file leads to loss of resources and can block

the work of other users or processes in your system.

www.manaraa.com

Chapter 15. Text Files 619

Binary and Text Streams

As we mentioned earlier, we can divide the streams into two large groups

according to the type of data that we deal with – binary streams and text

streams.

Binary Streams

Binary streams, as their name suggests, work with binary (raw) data. You

probably guess that that makes them universal and they can be used to read

information from all sorts of files (images, music and multimedia files, text

files etc.). We will take a brief look over them, because we will currently focus

on working with text files.

The main classes that we use to read and write from and to binary streams

are: FileStream, BinaryReader and BinaryWriter.

The class FileStream provides us with various methods for reading and

writing from a binary file (read / write one byte and a sequence of bytes),

skipping a number of bytes, checking the number of bytes available and, of

course, a method for closing the stream. We can get an object of that class by

calling him his constructor with parameter-a file name.

The class BinaryWriter enables you to write primitive types and binary

values in a specific encoding to a stream. It has one main method –

Write(…), which allows recording of any primitive data types – integers,

characters, Booleans, arrays, strings and more.

BinaryReader allows you to read primitive data types and binary values

recorded using a BinaryWriter. Its main methods allow us to read a

character, an array of characters, integers, floating point, etc. Like the

previous two classes, we can get on object of that class by calling its

constructor.

Text Streams

Text streams are very similar to binary, but only work with text data or

rather a sequence of characters (char) and strings (string). Text streams

are ideal for working with text files. On the other hand, this makes them

unusable when working with any binaries.

The main classes for working with text streams in .NET are TextReader and
TextWriter. They are abstract classes, and they cannot be instantiated.

These classes define the basic functionality for reading and writing for the

classes that inherit them. Their more important methods are:

- ReadLine() – reads one line of text and returns a string.

- ReadToEnd() – reads the entire stream to its end and returns a string.

- Write() – writes a string to the stream.

- WriteLine() – writes one line of text into the stream.

www.manaraa.com

620 Fundamentals of Computer Programming with C#

As you know, the characters in .NET are Unicode characters, but streams

can also work with Unicode and other encodings like the standard

encoding for Cyrillic languages Windows-1251.

The classes, to which we will turn our attention to in this chapter, are

StreamReader and StreamWriter. They directly inherit the TextReader and

TextWriter classes and implement functionality for reading and writing

textual information to and from a file.

To create an object of type StreamReader or StreamWriter, we need a file or

a string, containing the file path. Working with these classes, we can use all of

the methods that we are already familiar with, to work with the console.

Reading and writing to the console is much like reading and writing

respectively with StreamReader and StreamWriter.

Relationship between Text and Binary Streams

When writing text, hidden from us, the class StreamWriter transforms the

text into bytes before recording it at the current position in the file. For this

purpose, it uses the character encoding, which is set during its creation. The

StreamReader class works similarly. It uses StringBuilder internally and

when reading binary data from a file, it converts the received bytes to

text before sending the text back as a result from reading.

Remember that the operating systems have no concept of "text file".

The file is always a sequence of bytes, but whether it is text or binary

depends on the interpretation of these bytes. If we want to look at a file or a

stream as text, we must read and write to it with text streams (StreamReader

or StreamWriter), but if we wish to treat it as binary, we must read and

write with a binary stream (FileStream).

Bear in mind that text streams work with text lines, that is, they interpret

binary data as a sequence of text lines, separated from each other with a

new line separators.

The character for the new line is not the same for different platforms and

operating systems. For UNIX and Linux it is LF (0x0A), for Windows and DOS

it is CR + LF (0x0D + 0x0A), and for Mac OS (up to version 9) it is CR (0x0A).

Reading one line of text from a given file or a stream means reading a

sequence of bytes until reading one of the characters CR or LF and converting

these bytes to text according to the encoding, used by the stream. Similarly,

writing one line of text to a text file or stream means writing the binary

representation of the text (according to the current encoding), followed by the

character (or characters) for a new line for the current operating system

(such as CR + LF).

Reading from a Text File

Text files provide the ideal solution for reading and writing data. If we want to

enter some data automatically (instead by hand), we could read it from a text

www.manaraa.com

Chapter 15. Text Files 621

files. So now, we will take a look at how to read and write text files with the

classes from .NET Framework and the C# language.

StreamReader Class for Reading a Text File

C# provides several ways to read files but not all are easy and intuitive to

use. This is why we will use the StreamReader class. The System.IO.
StreamReader class provides the easiest way to read a text file, as it

resembles reading from the console, which by now you have probably

mastered to perfection.

Having read everything until now, you are probably a bit confused. We

already explained that reading and writing to and from text files is only and

exclusively possible with streams, but StreamReader did not appear anywhere

in the above-mentioned streams and you are not sure whether it is actually a

stream. Indeed, StreamReader is not a stream, but it can work with streams.

It provides the easiest and comprehensive way to read from a text file.

Opening a Text File for Reading

You can simply create a StreamReader from a filename (or full file path),

which greatly eases us and reduces the probability of an error. On its

creation, we can specify the character encoding. Here is an example of how

an object of the class StreamReader can be created:

// Create a StreamReader connected to a file
StreamReader reader = new StreamReader("test.txt");

// Read the file here …

// Close the reader resource after you've finished using it
reader.Close();

The first thing to do, when reading from a text file, is to create a variable of

type StreamReader, which we can associate with a specific file from the file

system on our computer. To do this we need only pass the file path as a

parameter to the constructor. Note that if the file is located in the folder

where the compiled project (subdirectory bin\Debug) is, we can only provide

its filename. Otherwise, we have to provide the full file path or relative path.

The code in the above example that creates an object of type StreamReader

can cause an error. For now, simply pass a path to an existing file, and later

on we will turn to the handling of errors when working with files.

Full and Relative Paths

When working with files we can use full paths (e.g. C:\Temp\example.txt)

or relative paths, to the directory from which the application was started

(e.g. ..\..\example.txt).

www.manaraa.com

622 Fundamentals of Computer Programming with C#

If you use full paths, where you pass the full path to a file, do not forget to

apply escaping of slashes, which is used to separate the folders. In C# you

can do this in two ways – with a double slash or with a quoted string

beginning with @ before the string literal. For example, to enroll the path to

the file "C:\Temp\work\test.txt" in a string we have two options:

string fileName = "C:\\Temp\\work\\test.txt";
string theSamefileName = @"C:\Temp\work\test.txt";

Although the use of relative paths is more difficult because you have to take

into account the directory structure of your project which may change during

the life of the project, it is highly recommended avoiding full paths.

Avoid full file paths and work with relative paths! This makes

your application portable and easy for installation and

maintenance.

Using the full path to a file (e.g. C:\Temp\test.txt) is bad practice because

it makes your application dependent on the environment and also non-

transferable. If you transfer it to another computer, you will need to correct

paths to the files, which it seeks, to work correctly. If you use a relative path

to the current directory (e.g. ..\..\example.txt), your program will be

easily portable.

Remember that when you start the C# program, the current

directory is the one, in which the executable (.exe) file is

located. Most often this is the subdirectory bin\Debug or

bin\Release directory to the root of the project. Therefore, to

open the file example.txt from the root directory of your

Visual Studio project, you should use a relative path

..\..\example.txt.

Universal Relative to Physical Path Resolver

If you want to write a portable application, you might benefit of Nakov’s

universal path resolver: http://www.nakov.com/blog/2009/07/14/universal-

relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/. It can

automatically resolve a relative path to full (physical) file path in Web,

desktop, console or other .NET application. For example, if your application

consists of an assembly App.exe and a file logo.gif and these files are

located in the same directory, at runtime you will be able to get the physical

location of logo.gif through the following code:

string logoPath =
 UniversalFilePathResolver.ResolvePath(@"~\logo.gif");

http://www.nakov.com/blog/2009/07/14/universal-relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/
http://www.nakov.com/blog/2009/07/14/universal-relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/

www.manaraa.com

Chapter 15. Text Files 623

Reading a Text File Line by Line – Example

Now, we have learned how to create StreamReader. We can go further by

trying to do something more complicated: to read the entire text file line

by line and print the read text on to the console. Our advice is to create the

text file in the Debug folder of the project (.\bin\Debug), so that it will be in

the same directory in which your compiled application will be and you will not

have to set the full path to it when opening the file. Let’s see what our file

looks like:

Sample.txt

This is our first line.
This is our second line.
This is our third line.
This is our fourth line.

We have a text file from which to read. Now we must create an object of type

StreamReader to read the file and loop though it line by line:

FileReader.cs

class FileReader
{
 static void Main()
 {
 // Create an instance of StreamReader to read from a file
 StreamReader reader = new StreamReader("Sample.txt");

 int lineNumber = 0;

 // Read first line from the text file
 string line = reader.ReadLine();

 // Read the other lines from the text file
 while (line != null)
 {
 lineNumber++;
 Console.WriteLine("Line {0}: {1}", lineNumber, line);
 line = reader.ReadLine();
 }

 // Close the resource after you've finished using it
 reader.Close();
 }
}

www.manaraa.com

624 Fundamentals of Computer Programming with C#

There is nothing difficult to read text files. The first part of our program is

already well known – create a variable of type StreamReader, to whose

constructor we pass the file’s name, which will be read. The parameter of the

constructor is the path to the file, but since our file is found in the Debug

directory of the project, we set only its name as a path. If our file were

located in the project directory, then we would have submitted the string –

"..\..\Sample.txt" as a path.

After that, we create a variable – counter, whose purpose is to count and

display on which row of the file we are currently located.

Then, we create a variable that will store each read line. With its creation, we

directly read the first line of text file. If the text file is empty, the method

ReadLine() of the StreamReader object will return null.

For the main part – reading the file line by line, we will use a while loop. The

condition for the loop is: as long as there is something in the variable line,

we should continue reading. In the body of the loop, our task is to increase

the value of the counter variable by one and then print the current line in the

format we like. Finally, again we use ReadLine() to read the next line in the

file and write it in the variable line. For printing, we use a method that is

well known to us from the tasks, which required something to be printed on to

the console – WriteLine().

Once we have read everything we need from the file, we should not forget to

close the object StreamReader, as to avoid loss of resources. For this, we use

the method Close().

Always close the StreamReader instances after you finish

working with them. Otherwise you risk losing system

resources. Use the method Close() or the statement using.

The result of the program should look like this:

Line 1: This is our first line.
Line 2: This is our second line.
Line 3: This is our third line.
Line 4: This is our fourth line.

Automatic Closing of the Stream after Working with It

As noted in the previous example, having finished working with the object of

type StreamReader, we called Close() and closed the stream behind the

StreamReader object. Very often, however, novice programmers forget to call

the Close() method, thus blocking the file they use. Also in case of runtime

exception when reading from a file, the file might be left open. This causes

resource leakage and can lead to very unpleasant effects like program

hanging, program misbehavior and strange errors.

www.manaraa.com

Chapter 15. Text Files 625

The correct way to handle the file closing is though the using keyword:

using (<stream object>) { … }

The C# construct using(…) ensures that after leaving its body, the method
Close() will automatically be called. This will happen even if an exception

occurs when reading the file.

Now let’s rework the previous example to benefit from the using construct:

FileReader.cs

class FileReader
{
 static void Main()
 {
 // Create an instance of StreamReader to read from a file
 StreamReader reader = new StreamReader("Sample.txt");

 using (reader)
 {
 int lineNumber = 0;

 // Read first line from the text file
 string line = reader.ReadLine();

 // Read the other lines from the text file
 while (line != null)
 {
 lineNumber++;
 Console.WriteLine("Line {0}: {1}", lineNumber, line);
 line = reader.ReadLine();
 }
 }
 }
}

Now the code guarantees that once opened successfully, the text file will be

closed correctly regardless of whether reading from it will succeed or fail.

If you are wondering how it is best to take care of closing your program’s

streams and files, follow the following rule:

Always use the using construct in C# in order to properly

close files and streams!

www.manaraa.com

626 Fundamentals of Computer Programming with C#

File Encodings. Reading in Cyrillic

Let’s now consider the problems that occur when reading a file using an

incorrect encoding, such as reading a file in Cyrillic.

Character Encodings

You know that in memory everything is stored in binary form. This means

that it is necessary for text files to be represented digitally, so that they can

be stored in memory, as well as on the hard disk. This process is called

encoding files or more correctly encoding the characters stored in text files.

The encoding process consists of replacing the text characters (letters,

digits, punctuation, etc.) with specific sequences of binary values. You can

imagine this as a large table in which each character corresponds to a certain

value (sequence of bytes).

We already know the concept of character encodings and few character

encoding schemes like UTF-8 and Windows-1251 from the section "Encoding

Schemes" of chapter "Numeral Systems and Data Representation" and also

from the section about "File Encodings in Visual Studio" of chapter "Defining

Classes". Now we will extend this concept a bit and will use character

encodings to work correctly with text files.

Character encodings specify the rules for converting from text to sequence

of bytes and vice versa. An encoding scheme is a table of characters along

with their numbers, but may also contain special rules. For example, the

character "accent" (U + 0300) is special and sticks to the last character that

precedes it. It is encoded as one or more bytes (depending on the character

encoding scheme), and it does not correspond to any character, but to a part

of the character. We will take a look at two encodings that are used most

often when working with Cyrillic: UTF-8 and Windows-1251.

UTF-8 is a universal encoding scheme, which supports all languages and

alphabets in the world. In UTF-8 the most commonly used characters (Latin

alphabet, numerals and special characters) are encoded in one byte, rarely

used Unicode characters (such as Cyrillic, Greek and Arabic) are encoded in

two bytes and all other characters (Chinese, Japanese and many others) are

encoded in 3 or 4 bytes. UTF-8 encoding can convert any Unicode text in

binary form and back and support all of the 100,000 characters of Unicode

standard. UTF-8 encoding is universal and suitable for any language alphabet.

Another commonly used encoding is Windows-1251, which is usually used for

encoding of Cyrillic texts (such as messages sent by e-mail). It contains

256 characters, including the Latin alphabet, Cyrillic alphabet and some

commonly used signs. It uses one byte for each character, but at the expense

of some characters that cannot be stored in it (as the Chinese alphabet

characters), and are lost in an attempt of doing so.

Other examples of encoding schemes (encodings or charsets) are ISO 8859-
1, Windows-1252, UTF-16, KOI8-R, etc. They are used in specific regions of

www.manaraa.com

Chapter 15. Text Files 627

the world and define their own sets of characters and rules for the transition

from text to binary data and vice versa.

For working with encodings (charsets) in .NET Framework, the class

System.Text.Encoding is used, which is created the following way:

Encoding win1251 = Encoding.GetEncoding("Windows-1251");

Reading a Cyrillic Content

You probably already guessed that if we want to read from a file that contains

characters from the Cyrillic alphabet, we must use the correct encoding

that "understands" correctly these special characters. Typically, in a Windows

environment, text files, containing Cyrillic text, are stored in Windows-1251

encoding. To use it, we should set it as the encoding of the stream, which our

StreamReader will process:

Encoding win1251 = Encoding.GetEncoding("Windows-1251");
StreamReader reader = new StreamReader("test.txt", win1251);

If you do not explicitly set the encoding scheme (encoding) for the file read,

in .NET Framework, the default encoding UTF-8 will be used.

You might wonder what happens if you use wrong encoding when reading or

writing a file. There are several scenarios possible:

- If you use read / write only Latin letters, everything will work normally.

- If you write Cyrillic letters, to a files open with encoding, which does not

support the Cyrillic alphabet (e.g. ASCII), Cyrillic letters will be

permanently replaced by the character "?" (question mark).

In any case, these are unpleasant problems, which cannot be immediately

noticed.

To avoid problems with incorrect encoding of files, always

check the encoding explicitly. Otherwise, you may work

incorrectly or break at a later stage.

The Unicode Standard. Reading in Unicode

Unicode is an industry standard that allows computers and other electronic

devices always to present and manipulate text, which was written in most of

the world’s literacies. It consists of over 100,000 characters, as well as

various encoding schemes (encodings). The unification of different characters,

which Unicode offers, leads to its greater distribution. As you know,

characters in C# (types char and string) are also presented in Unicode.

To read characters, stored in Unicode, we must use one of the supported

encoding schemes for this standard. The most popular and widely used is
UTF-8. We can set it as a code scheme with an already familiar way:

www.manaraa.com

628 Fundamentals of Computer Programming with C#

StreamReader reader = new StreamReader("test.txt",
 Encoding.GetEncoding("UTF-8"));

If you are wondering, whether to read a text file, encoded in Cyrillic,

Windows-1251 or UTF-8, then this question has no clear answer. Both

standards are widely used for the recording of non-Latin text. Both encoding

schemes are allowed and can be used. You should only always follow the rule

that a certain files should always be read and written using the same

encoding.

Writing to a Text File

Text files are very convenient for storing various types of information. For

example, we can record the results of a program. We can use text files to

make something like a journal (log) for the program – a convenient way to

monitor it at runtime.

Again, as with reading a text file, we will use a similar to the Console class

when writing, called StreamWriter.

The StreamWriter Class

The class StreamWriter is part of the System.IO namespace and is used

exclusively for working with text data. It resembles the class StreamReader,

but instead of methods for reading, it offers similar methods for writing to a

text file. Unlike other streams, before writing data to the desired destination,

StreamWriter turns it into bytes. StreamWriter enables us to set a preferred

character encoding at the time it is created. We can create an instance of the

class the following way:

StreamWriter writer = new StreamWriter("test.txt");

In the constructor of the class can pass as a parameter a file path, as well as

an existing stream, to which we will write, or an encoding scheme. The

StreamWriter class has several predefined constructors, depending on

whether we will write to a file or a stream. In the examples, we will use the

constructor with the parameter – file path. Example of the usage of the

StreamWriter class constructor with more than one parameter is:

StreamWriter writer = new StreamWriter("test.txt",
 false, Encoding.GetEncoding("Windows-1251"));

In this example, we pass a file path as the first parameter. As a second

parameter, we pass a Boolean variable that indicates whether to overwrite the

file or to append the data at the end of the file. As a third parameter, we pass

an encoding scheme (charset).

www.manaraa.com

Chapter 15. Text Files 629

The example lines of code could trigger an exception, but the handling of

input / output exceptions will be discussed later in this chapter.

Printing the Numbers [1…20] in a Text File – Example

Once we know how to create a StreamWriter class, we will use it as

intended. Our goal is to enroll in a text file the numbers from 1 to 20, each

number on a separate line. We can do this the following way:

class FileWriter
{
 static void Main()
 {
 // Create a StreamWriter instance
 StreamWriter writer = new StreamWriter("numbers.txt");

 // Ensure the writer will be closed when no longer used
 using(writer)
 {
 // Loop through the numbers from 1 to 20 and write them
 for (int i = 1; i <= 20; i++)
 {
 writer.WriteLine(i);
 }
 }
 }
}

We start by creating an instance of StreamWriter in the already well-known

way from the examples.

To list the numbers from 1 to 20 we will use a for-loop. Inside the loop, we

use the method WriteLine(…), which again we know from our previous work

with the console, to record the current number on a new line in the file. You

need not worry if a file with the chosen name does not exist. If such the case,

it will automatically be created in the folder of the project and if it already

exists, it will be overwritten (old content will be deleted). The outcome is:

numbers.txt

1
2
3
…
20

www.manaraa.com

630 Fundamentals of Computer Programming with C#

To make sure that after the end of the file it will be closed, we should use the

using construct.

Be sure to close the stream after you finish using it! The best

way to dispose any unused resources is with the using

construct in C#.

When you want to print text in Cyrillic and are unsure what encoding to use,

prefer the UTF-8 encoding. It is universal and not only supports Cyrillic, but

all widespread international alphabets: Greek, Arabic, Chinese, Japanese, etc.

Input / Output Exception Handling

If you have followed the examples so far, you have probably noticed that

many of the operations, related to files, can cause exceptional situations. The

basic principles and approaches for their capture and processing are already

familiar to you from the chapter "Handling Exceptions". Now we will

concentrate on the specific errors when working with files and best

practices for their handling.

Intercepting Exceptions when Working with Files

Perhaps the most common exception when working with files is the

FileNotFoundException (its name infers that the desired file was not found).

It can occur when creating StreamReader.

When setting a specified encoding by the creation of a StreamReader or a
StreamWriter object, an ArgumentException can be thrown. This means,

that the encoding we have chosen is not supported.

Another common mistake is IOException. This is the base class for all IO

errors when working with streams.

The standard approach for handling exceptions when working with files is the

following: declare variables of class StreamReader or StreamWriter in try-
catch block. Initialize them with the necessary values in the block and handle

the potential exceptions properly. To close the stream, we use the structure

using. To illustrate what we just said, will give an example.

Catching an Exception when Opening a File – Example

Here’s how we can catch exceptions that occur when working with files:

class HandlingExceptions
{
 static void Main()
 {
 string fileName = @"somedir\somefile.txt";
 try

www.manaraa.com

Chapter 15. Text Files 631

 {
 StreamReader reader = new StreamReader(fileName);
 Console.WriteLine(
 "File {0} successfully opened.", fileName);
 Console.WriteLine("File contents:");
 using (reader)
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 }
 catch (FileNotFoundException)
 {
 Console.Error.WriteLine(
 "Can not find file {0}.", fileName);
 }
 catch (DirectoryNotFoundException)
 {
 Console.Error.WriteLine(
 "Invalid directory in the file path.");
 }
 catch (IOException)
 {
 Console.Error.WriteLine(
 "Can not open the file {0}", fileName);
 }
 }
}

The example demonstrates reading a file and printing its contents to the

console. If we accidentally have confused the name of the file or have deleted

it, an exception of type FileNotFoundException will be thrown. In the catch

block we intercept this sort of exception and if such occurs, we will process it

properly and print a message to the console, saying that this file cannot be

found. The same will happen if there were no directory named "somedir".

Finally, for better security, we have also added a catch block for
IOExceptions. There all other IO exceptions, that might occur when working

with files, will be intercepted.

Text Files – More Examples

We hope the theoretical explanations and examples so far have helped you

get into the subtleties when working with text files. Now we will take a look at

some more complex examples, so as to review the gained knowledge and

to illustrate how to use them in solving practical problems.

www.manaraa.com

632 Fundamentals of Computer Programming with C#

Occurrences of a Substring in a File – Example

Here is how to implement a simple program that counts how many times a

substring occurs in a text file. In the example, let’s look for the substring "C#"

in a text file as follows:

sample.txt

This is our "Intro to Programming in C#" book.
In it you will learn the basics of C# programming.
You will find out how nice C# is.

We can implement the counting as follows: will read the file line by line and

each time we meet the desired word inside the last read line, we will increase

the value of a variable (counter). We will process the possible exceptional

situations to enable users to receive adequate information in case of errors.

Here is a sample implementation:

CountingWordOccurrences.cs

static void Main()
{
 string fileName = @"..\..\sample.txt";
 string word = "C#";
 try
 {
 StreamReader reader = new StreamReader(fileName);
 using (reader)
 {
 int occurrences = 0;
 string line = reader.ReadLine();
 while (line != null)
 {
 int index = line.IndexOf(word);
 while (index != -1)
 {
 occurrences++;
 index = line.IndexOf(word, (index + 1));
 }
 line = reader.ReadLine();
 }
 Console.WriteLine(
 "The word {0} occurs {1} times.", word, occurrences);
 }
 }
 catch (FileNotFoundException)

www.manaraa.com

Chapter 15. Text Files 633

 {
 Console.Error.WriteLine(
 "Can not find file {0}.", fileName);
 }
 catch (IOException)
 {
 Console.Error.WriteLine(
 "Cannot read the file {0}.", fileName);
 }
}

For simplicity of the example, the word we seek is hardcoded. You can

implement the program to search a word entered by the user.

You can see that the example is not very different from the previous ones. We

initialize the variables outside of the try-catch block. Again, we use a while-

loop to read the lines of the text file one by one. Inside its body, there is

another while-loop, which counts how many times the searched word occurs

in the given line, and then increases the number of occurrences. This is done

using the method IndexOf(…) of the class String (remember what it does in

case you have forgotten). We do not forget to ensure the closing of the

StreamReader object using the using structure. All that remains is to print

the results on to the console.

For our example, the result is the following:

The word C# occurs 3 times.

Editing a Subtitles File – Example

Now we will look at a more complex example, in which we at the same time

read from a file and record to another. This program fixes a subtitles file

for a movie.

Our goal will be to read a file with subtitles, that are incorrect and do not

appear at the right time, and to shift the times in an appropriate manner, so

that they can appear correctly. One such file generally contains the time of

the on-screen duration and the text, that should appear in the defined time

interval. Here is how typical subtitles files look like:

GORA.sub

{1029}{1122}{Y:i}Captain, systems are|at the ready.
{1123}{1270}{Y:i}The preassure is stable.|Prepare for landing.
{1343}{1468}{Y:i}Please,fasten your seatbelts|and take your
places.
{1509}{1610}{Y:i}Coordinates 5.6|- Five, Five, Six, dot com.

www.manaraa.com

634 Fundamentals of Computer Programming with C#

{1632}{1718}{Y:i}Where did the coordinates|go to?
{1756}{1820}Commander Logar,|everyone is speaking in English.
{1821}{1938}Can't we switch|to Turkish from the beginning?
{1942}{1992}Yes, we can!
{3104}{3228}{Y:b}G.O.R.A.|a movie about the cosmos
…

StarWars.sub

{1029}{1122}{Y:i}I'll never join you.
{1123}{1270}{Y:i}If you only knew | the power of the dark side.
{1343}{1468}{Y:i}Obi One never told you what happened to your
father!
{1509}{1610}{Y:i}He told me enough! | He told me you killed him.
{1632}{1718}{Y:i}No... I am your father!
{1756}{1820}(dramatic music playing)...
{1821}{1938}No, no that's not true... | That's impossible!
{1942}{1992}Search your feelings,| you know it's true.
{3104}{3228}{Y:b}Nooo…
…

To fix the subtitles, we usually just need to make an adjustment in the time

for displaying the subtitles. Such an adjustment may be offsetting the start /

end time for each subtitle (by addition or subtraction of a constant) or

changing the speed (multiplying by a factor, say 1.05).

Here is sample code that can implement such a program:

FixingSubtitles.cs

using System;
using System.IO;

class FixingSubtitles
{
 const double COEFFICIENT = 1.05;
 const int ADDITION = 5000;
 const string INPUT_FILE = @"..\..\source.sub";
 const string OUTPUT_FILE = @"..\..\fixed.sub";

 static void Main()
 {
 try
 {

www.manaraa.com

Chapter 15. Text Files 635

 // Create reader
 StreamReader streamReader = new StreamReader(INPUT_FILE);

 // Create writer
 StreamWriter streamWriter =
 new StreamWriter(OUTPUT_FILE, false);

 using (streamReader)
 {
 using (streamWriter)
 {
 string line;
 while ((line = streamReader.ReadLine()) != null)
 {
 streamWriter.WriteLine(FixLine(line));
 }
 }
 }
 }
 catch (IOException exc)
 {
 Console.WriteLine("Error: {0}.", exc.Message);
 }
 }

 static string FixLine(string line)
 {
 // Find closing brace
 int bracketFromIndex = line.IndexOf('}');

 // Extract 'from' time
 string fromTime = line.Substring(1, bracketFromIndex - 1);

 // Calculate new 'from' time
 int newFromTime = (int) (Convert.ToInt32(fromTime) *
 COEFFICIENT + ADDITION);

 // Find the following closing brace
 int bracketToIndex = line.IndexOf('}',
 bracketFromIndex + 1);

 // Extract 'to' time
 string toTime = line.Substring(bracketFromIndex + 2,
 bracketToIndex - bracketFromIndex - 2);

www.manaraa.com

636 Fundamentals of Computer Programming with C#

 // Calculate new 'to' time
 int newToTime = (int) (Convert.ToInt32(toTime) *
 COEFFICIENT + ADDITION);

 // Create a new line using the new 'from' and 'to' times
 string fixedLine = "{" + newFromTime + "}" + "{" +
 newToTime + "}" + line.Substring(bracketToIndex + 1);

 return fixedLine;
 }
}

Again, we use the already familiar method for reading a file line by line.

The difference this time is, that in the body of the loop, we write every line of

the file with already corrected subtitles, after we have fixed them with the

method FixLine(string) (this method is not the subject of our discussion,

since it can be implemented in many different ways depending on what you

want to adjust). Because we use the using block for both files, we can

guarantee that they will be closed even if an exception occurs during

processing (this may happen, for example if one of the lines in the file is not

in the expected format).

Exercises

1. Write a program that reads a text file and prints its odd lines on the

console.

2. Write a program that joins two text files and records the results in a

third file.

3. Write a program that reads the contents of a text file and inserts the

line numbers at the beginning of each line, then rewrites the file

contents.

4. Write a program that compares two text files with the same number of

rows line by line and prints the number of equal and the number of

different lines.

5. Write a program that reads a square matrix of integers from a file and

finds the sub-matrix with size 2 × 2 that has the maximal sum and

writes this sum to a separate text file. The first line of input file contains

the size of the recorded matrix (N). The next N lines contain N integers

separated by spaces.

Sample input file:

4
2 3 3 4

www.manaraa.com

Chapter 15. Text Files 637

0 2 3 4
3 7 1 2
4 3 3 2

Sample output: 17.

6. Write a program that reads a list of names from a text file, arranges

them in alphabetical order, and writes them to another file. The lines

are written one per row.

7. Write a program that replaces every occurrence of the substring

"start" with "finish" in a text file. Can you rewrite the program to

replace whole words only? Does the program work for large files (e.g. 800

MB)?

8. Write the previous program so that it changes only the whole words

(not parts of the word).

9. Write a program that deletes all the odd lines of a text file.

10. Write a program that extracts from an XML file the text only (without the

tags). Sample input file:

<?xml version="1.0"><student><name>Peter</name>
<age>21</age><interests count="3"><interest>
Games</interest><interest>C#</interest><interest>
Java</interest></interests></student>

Sample output:

Peter
21
Games
C#
Java

11. Write a program that deletes all words that begin with the word "test".

The words will contain only the following chars: 0…9, a…z, A…Z.

12. A text file words.txt is given, containing a list of words, one per line.

Write a program that deletes in the file text.txt all the words that

occur in the other file. Catch and handle all possible exceptions.

13. Write a program that reads a list of words from a file called words.txt,

counts how many times each of these words is found in another

file text.txt, and records the results in a third file – result.txt, but

before that, sorts them by the number of occurrences in descending

order. Handle all possible exceptions.

www.manaraa.com

638 Fundamentals of Computer Programming with C#

Solutions and Guidelines

1. Use the examples discussed in this chapter. Use the using structure to

ensure proper closing of the input and the resulting stream.

2. You will have to first read the input file line by line and save it in the

resulting file in overwrite mode. Then you must open the second input

file and save it line by line in the result file in append mode. To create a

StreamWriter in overwrite / use mode use the appropriate constructor

(find it in MSDN).

An alternative way is to read both files in a string with ReadToEnd(),

store them in memory and save them in the resulting file. This approach

does not work for large files (the likes of several gigabytes).

3. Follow the examples in this chapter. Think of how you would solve the

task if the file were large (several gigabytes).

4. Follow the examples in this chapter. You will have to open both files

simultaneously and read them line by line in a loop. If you reach the end

of the (read null) file, that does not match the other’s, that means that

both files have different number of rows and an exception should be

thrown.

5. Read the first line of the file and create a matrix with the specified size.

After that read the following lines, line by line and separate the numbers.

Then save them in the corresponding (row, column) in the matrix. Finally,

find the sub-matrix using two nested loops.

6. Write each read name in a list (List<string>), then sort it properly (look

for information on the method Sort()) and then print it in the result file.

7. Read the file line by line and use the methods of the class String. If you

load the entire file into memory, instead of reading it line by line,

problems when loading large files might occur.

8. For every occurrence of “start”, check if that is the whole word or just a

part of it.

9. Look at the examples in this chapter.

10. Read the input file character by character. When you encounter a "<",

then this is a starting tag, but when you encounter a ">", that means a

closing tag. All characters you encounter outside of the tags build up the

text that must be extracted. You can store it in StringBuilder and print

its contents when you encounter "<" or reach the end of the file.

11. Read the file line by line and replace words that start with "test" with

an empty string. Use Regex.Replace(…) with an appropriate regular

expression. Alternatively, you can search in the line the substring "test"

and every time you find it, get all of its neighboring letters to the left and

right. This way you find the word in which the string "test" is part of and

you can delete it if it begins with "test".

www.manaraa.com

Chapter 15. Text Files 639

12. The task is similar to the previous one. You can read the text line by

line and replace each of the given words with an empty string. Test

whether your program properly handles exceptions by simulating different

scenarios (e.g. no file, lack of rights for reading and writing, etc.).

13. Create a hash table with keys – the words from words.txt and

value number of occurrences of each word (Dictionary<string,

int>). Firstly, save to the hash table that all words are found 0 times.

Then read the file line by line and split each line into words. Check

whether each obtained word can be found in the hash table, and if so,

add 1 to the number of occurrences. Finally, save all the words and their

number of occurrences in an array of type KeyValuePair<string, int>.

Sort the array with a suitable comparison function like so:

Array.Sort<KeyValuePair<string, int>>(
 arr, (a, b) => a.Value.CompareTo(b.Value));

www.manaraa.com

www.manaraa.com

Chapter 16. Linear
Data Structures

In This Chapter

In this chapter we are going to get familiar with some of the basic

presentations of data in programming: lists and linear data structures.

Very often in order to solve a given problem we need to work with a sequence

of elements. For example, to read completely this book we have to read

sequentially each page, i.e. to traverse sequentially each of the elements of

the set of the pages in the book. Depending on the task, we have to apply

different operations on this set of data. In this chapter we will introduce the

concept of abstract data types (ADT) and will explain how a certain ADT

can have multiple different implementations. After that we shall explore

how and when to use lists and their implementations (linked list, doubly-

linked list and array-list). We are going to see how for a given task one

structure may be more convenient than another. We are going to consider the

structures "stack" and "queue", as well as their applications. We are going

to get familiar with some implementations of these structures.

Abstract Data Structures

Before we start considering classes in C#, which implement some of the most

frequently, used data structures (such as lists and queues), we are going to

consider the concepts of data structures and abstract data structures.

What Is a Data Structure?

Very often, when we write programs, we have to work with many objects

(data). Sometimes we add and remove elements, other times we would like

to order them or to process the data in another specific way. For this reason,

different ways of storing data are developed, depending on the task. Most

frequently these elements are ordered in some way (for example, object A is

before object B).

At this point we come to the aid of data structures – a set of data

organized on the basis of logical and mathematical laws. Very often the choice

of the right data structure makes the program much more efficient – we could

save memory and execution time (and sometimes even the amount of code

we write).

www.manaraa.com

642 Fundamentals of Computer Programming with C#

What Is an Abstract Data Type?

In general, abstract data types (ADT) gives us a definition (abstraction) of

the specific structure, i.e. defines the allowed operations and properties,

without being interested in the specific implementation. This allows an

abstract data type to have several different implementations and respectively

different efficiency.

Basic Data Structures in Programming

We can differentiate several groups of data structures:

- Linear – these include lists, stacks and queues

- Tree-like – different types of trees like binary trees, B-trees and

balanced trees

- Dictionaries – key-value pairs organized in hash tables

- Sets – unordered bunches of unique elements

- Others – multi-sets, bags, multi-bags, priority queues, graphs, …

In this chapter we are going to explore the linear (list-like) data

structures, and in the next several chapters we are going to pay attention to

more complicated data structures, such as trees, graphs, hash tables and

sets, and we are going to explain how and when to use each of them.

Mastering basic data structures in programming is essential, as

without them we could not program efficiently. They, together with

algorithms, are in the basis of programming and in the next several chapters

we are going to get familiar with them.

List Data Structures

Most commonly used data structures are the linear (list) data structures.

They are an abstraction of all kinds of rows, sequences, series and others

from the real world.

List

We could imagine the list as an ordered sequence (line) of elements.

Let’s take as an example purchases from a shop. In the list we can read each

of the elements (the purchases), as well as add new purchases in it. We can

also remove (erase) purchases or shuffle them.

Abstract Data Structure "List"

Let’s now give a more strict definition of the structure list:

List is a linear data structure, which contains a sequence of elements. The

list has the property length (count of elements) and its elements are

arranged consecutively.

www.manaraa.com

Chapter 16. Linear Data Structures 643

The list allows adding elements on different positions, removing them and

incremental crawling. Like we already mentioned, an ADT can have several

implementations. An example of such ADT is the interface System.
Collections.IList.

Interfaces in C# construct a frame (contract) for their implementations –

classes. This contract consists of a set of methods and properties, which

each class must implement in order to implement the interface. The data type

"Interface" in C# we are going to discuss in depth in the chapter "Object-

Oriented Programming Principles".

Each ADT defines some interface. Let’s consider the interface System.
Collections.IList. The basic methods, which it defines, are:

- int Add(object) – adds element in the end of the list

- void Insert(int, object) – adds element on a preliminary chosen

position in the list

- void Clear() – removes all elements in the list

- bool Contains(object) – checks whether the list contains the element

- void Remove(object) – removes the element from the list

- void RemoveAt(int) – removes the element on a given position

- int IndexOf(object) – returns the position of the element

- this[int] – indexer, allows access to the elements on a set position

Let’s see several from the basic implementations of the ADT list and explain in

which situations they should be used.

Static List (Array-Based Implementation)

Arrays perform many of the features of the ADT list, but there is a significant

difference – the lists allow adding new elements, while arrays have fixed size.

Despite of that, an implementation of list is possible with an array, which

automatically increments its size (similar to the class StringBuilder, which

we already know from the chapter "Strings"). Such list is called static list

implemented with an extensible array. Below we shall give a sample

implementation of auto-resizable array-based list (array list). It is intended to

hold any data type T through the concept of generics (see the "Generics"

section in chapter "Defining Classes"):

public class CustomArrayList<T>
{
 private T[] arr;
 private int count;

 /// <summary>Returns the actual list length</summary>

www.manaraa.com

644 Fundamentals of Computer Programming with C#

 public int Count
 {
 get
 {
 return this.count;
 }
 }

 private const int INITIAL_CAPACITY = 4;

 /// <summary>
 /// Initializes the array-based list – allocate memory
 /// </summary>
 public CustomArrayList(int capacity = INITIAL_CAPACITY)
 {
 this.arr = new T[capacity];
 this.count = 0;
 }

Firstly, we define an array, in which we are going to keep the elements, as

well as a counter for the current count of elements. After that we add the

constructor, as we initialize our array with some initial capacity (when

capacity is not specified) in order to avoid resizing it when adding the first few

elements. Let’s take a look at some typical operations like add (append) an

element, insert an element at specified position (index) and clear the list:

/// <summary>Adds element to the list</summary>
/// <param name="item">The element you want to add</param>
public void Add(T item)
{
 GrowIfArrIsFull();
 this.arr[this.count] = item;
 this.count++;
}

/// <summary>
/// Inserts the specified element at given position in this list
/// </summary>
/// <param name="index">
/// Index, at which the specified element is to be inserted
/// </param>
/// <param name="item">Element to be inserted</param>
/// <exception cref="System.IndexOutOfRangeException">Index is
invalid</exception>
public void Insert(int index, T item)

www.manaraa.com

Chapter 16. Linear Data Structures 645

{
 if (index > this.count || index < 0)
 {
 throw new IndexOutOfRangeException(
 "Invalid index: " + index);
 }
 GrowIfArrIsFull();
 Array.Copy(this.arr, index,
 this.arr, index + 1, this.count - index);
 this.arr[index] = item;
 this.count++;
}

/// <summary>
/// Doubles the size of this.arr (grow) if it is full
/// </summary>
private void GrowIfArrIsFull()
{
 if (this.count + 1 > this.arr.Length)
 {
 T[] extendedArr = new T[this.arr.Length * 2];
 Array.Copy(this.arr, extendedArr, this.count);
 this.arr = extendedArr;
 }
}

/// <summary>Clears the list (remove everything)</summary>
public void Clear()
{
 this.arr = new T[INITIAL_CAPACITY];
 this.count = 0;
}

We implemented the operation adding a new element, as well as inserting a

new element which both first ensure that the internal array (buffer) holding

the elements has enough capacity. If the internal buffer is full, it is extended

(grown) to a double of the current capacity. Since arrays in .NET do not

support resizing, the growing operation allocated a new array of double size

and moves all elements from the old array to the new.

Below we implement searching operations (finding the index of given

element and checking whether given element exists), as well as indexer –

the ability to access the elements (for read and change) by their index

specified in the [] operator:

www.manaraa.com

646 Fundamentals of Computer Programming with C#

/// <summary>
/// Returns the index of the first occurrence of the specified
/// element in this list (or -1 if it does not exist).
/// </summary>
/// <param name="item">The element you are searching</param>
/// <returns>
/// The index of a given element or -1 if it is not found
/// </returns>
public int IndexOf(T item)
{
 for (int i = 0; i < this.arr.Length; i++)
 {
 if (object.Equals(item, this.arr[i]))
 {
 return i;
 }
 }

 return -1;
}

/// <summary>Checks if an element exists</summary>
/// <param name="item">The item to be checked</param>
/// <returns>If the item exists</returns>
public bool Contains(T item)
{
 int index = IndexOf(item);
 bool found = (index != -1);
 return found;
}

/// <summary>Indexer: access to element at given index</summary>
/// <param name="index">Index of the element</param>
/// <returns>The element at the specified position</returns>
public T this[int index]
{
 get
 {
 if (index >= this.count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }
 return this.arr[index];

www.manaraa.com

Chapter 16. Linear Data Structures 647

 }
 set
 {
 if (index >= this.count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }
 this.arr[index] = value;
 }
}

We add operations for removing items (by index and by value):

/// <summary>Removes the element at the specified index
/// </summary>
/// <param name="index">The index of the element to remove
/// </param>
/// <returns>The removed element</returns>
public T RemoveAt(int index)
{
 if (index >= this.count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }

 T item = this.arr[index];
 Array.Copy(this.arr, index + 1,
 this.arr, index, this.count - index - 1);
 this.arr[this.count - 1] = default(T);
 this.count--;

 return item;
}

/// <summary>Removes the specified item</summary>
/// <param name="item">The item to be removed</param>
/// <returns>The removed item's index or -1 if the item does not
exist</returns>
public int Remove(T item)
{
 int index = IndexOf(item);
 if (index != -1)

www.manaraa.com

648 Fundamentals of Computer Programming with C#

 {
 this.RemoveAt(index);
 }
 return index;
}

In the methods above we remove elements. For this purpose, firstly we find

the searched element, remove it and then shift the elements after it by one

position to the left, in order to fill the empty position. Finally, we fill the

position after the last item in the array with null value (the default(T)) to

allow the garbage collector to release it if it is not needed. Generally, we want

to keep all unused elements in the arr empty (null / zero value).

Let’s consider a sample usage of the recently implemented class. There is a

Main() method, in which we demonstrate most of the operations. In the

enclosed code we create a list of purchases, add, insert and remove few items

and print the list on the console. Finally we check whether certain items exist:

class CustomArrayListTest
{
 static void Main()
 {
 CustomArrayList<string> shoppingList =
 new CustomArrayList<string>();
 shoppingList.Add("Milk");
 shoppingList.Add("Honey");
 shoppingList.Add("Olives");
 shoppingList.Add("Water");
 shoppingList.Add("Beer");
 shoppingList.Remove("Olives");
 shoppingList.Insert(1, "Fruits");
 shoppingList.Insert(0, "Cheese");
 shoppingList.Insert(6, "Vegetables");
 shoppingList.RemoveAt(0);
 shoppingList[3] = "A lot of " + shoppingList[3];
 Console.WriteLine("We need to buy:");
 for (int i = 0; i < shoppingList.Count; i++)
 {
 Console.WriteLine(" - " + shoppingList[i]);
 }
 Console.WriteLine("Position of 'Beer' = {0}",
 shoppingList.IndexOf("Beer"));
 Console.WriteLine("Position of 'Water' = {0}",
 shoppingList.IndexOf("Water"));
 Console.WriteLine("Do we have to buy Bread? " +

www.manaraa.com

Chapter 16. Linear Data Structures 649

 shoppingList.Contains("Bread"));
 }
}

Here is how the output of the program execution looks like:

We need to buy:
 - Milk
 - Fruits
 - Honey
 - A lot of Water
 - Beer
 - Vegetables
Position of 'Beer' = 4
Position of 'Water' = -1
Do we have to buy Bread? False

Linked List (Dynamic Implementation)

As we saw, the static list has a serious disadvantage – the operations for

inserting and removing items from the inside of the array requires rearrange-

ment of the elements. When frequently inserting and removing items

(especially a large number of items), this can lead to low performance. In

such cases it is advisable to use the so called linked lists. The difference in

them is the structure of elements – while in the static list the element

contains only the specific object, with the dynamic list the elements keep

information about their next element.

Here is how a sample linked list looks like in the memory:

For the dynamic implementation of the linked list we will need two

classes: the class ListNode, which will hold a single element of the list along

with its next element, and the main list class DynamicList<T> which will hold

a sequence of elements as well as the head and the tail of the list:

/// <summary>Dynamic (linked) list class definition</summary>
public class DynamicList<T>
{
 private class ListNode
 {
 public T Element { get; set; }
 public ListNode NextNode { get; set; }

42 3 71 8

Next Next Next NextHead null

www.manaraa.com

650 Fundamentals of Computer Programming with C#

 public ListNode(T element)
 {
 this.Element = element;
 NextNode = null;
 }

 public ListNode(T element, ListNode prevNode)
 {
 this.Element = element;
 prevNode.NextNode = this;
 }
 }

 private ListNode head;
 private ListNode tail;
 private int count;

 // …
}

First, let’s consider the recursive class ListNode. It holds a single element

and a reference (pointer) to the next element which is of the same class

ListNode. So ListNode is an example of recursive data structure that is

defined by referencing itself. The class is inner to the class DynamicList<T>

(it is declared as a private member) and is therefore accessible only to it. For

our DynamicList<T> we create 3 fields: head – pointer to the first element,

tail – pointer to the last element and count – counter of the elements.

After that we declare the constructor which creates and empty linked list:

public DynamicList()
{
 this.head = null;
 this.tail = null;
 this.count = 0;
}

Upon the initial construction the list is empty and for this reason we assign

head = tail = null and count = 0.

We are going to implement all basic operations: adding and removing

items, as well as searching for an element and accessing the elements by

index.

Let’s start with the operation add (append) which is relatively simple. Two

cases are considered: an empty list and a non-empty list. In both cases we

www.manaraa.com

Chapter 16. Linear Data Structures 651

append the element at the end of the list (where tail points) and after the

operation all fields (head, tail and count) have correct values:

/// <summary>Add element at the end of the list</summary>
/// <param name="item">The element to be added</param>
public void Add(T item)
{
 if (this.head == null)
 {
 // We have an empty list -> create a new head and tail
 this.head = new ListNode(item);
 this.tail = this.head;
 }
 else
 {
 // We have a non-empty list -> append the item after tail
 ListNode newNode = new ListNode(item, this.tail);
 this.tail = newNode;
 }
 this.count++;
}

You can now see the operation removing an item at specified index. It is

considerably more complicated than adding:

/// <summary>Removes and returns element on the specified index
/// </summary>
/// <param name="index">The index of the element to be removed
/// </param>
/// <returns>The removed element</returns>
/// <exception cref="System.ArgumentOutOfRangeException">
/// if the index is invalid</exception>
public T RemoveAt(int index)
{
 if (index >= count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }

 // Find the element at the specified index
 int currentIndex = 0;
 ListNode currentNode = this.head;
 ListNode prevNode = null;
 while (currentIndex < index)

www.manaraa.com

652 Fundamentals of Computer Programming with C#

 {
 prevNode = currentNode;
 currentNode = currentNode.NextNode;
 currentIndex++;
 }

 // Remove the found element from the list of nodes
 RemoveListNode(currentNode, prevNode);

 // Return the removed element
 return currentNode.Element;
}

/// <summary>
/// Remove the specified node from the list of nodes
/// </summary>
/// <param name="node">the node for removal</param>
/// <param name="prevNode">the predecessor of node</param>
private void RemoveListNode(ListNode node, ListNode prevNode)
{
 count--;
 if (count == 0)
 {
 // The list becomes empty -> remove head and tail
 this.head = null;
 this.tail = null;
 }
 else if (prevNode == null)
 {
 // The head node was removed --> update the head
 this.head = node.NextNode;
 }
 else
 {
 // Redirect the pointers to skip the removed node
 prevNode.NextNode = node.NextNode;
 }

 // Fix the tail in case it was removed
 if (object.ReferenceEquals(this.tail, node))
 {
 this.tail = prevNode;
 }
}

www.manaraa.com

Chapter 16. Linear Data Structures 653

Firstly, we check if the specified index exists, and if it does not, an

appropriate exception is thrown. After that, the element for removal is found

by moving forward from the beginning of the list to the next element exactly

index times. After the element for removal has been found (currentNode), it

is removed by the additional private method RemoveListNode(…), which

considers the following 3 possible cases:

- The list remains empty after the removal we remove the whole

list along with its head and tail (head = null, tail = null, count = 0).

- The element for removal is at the start of the list (there is no previous

element) we make head to point at the element immediately after the

removed element (or at null, if the removed element was the last one).

- The element is in the middle or at the end of the list we direct the

element before it to point to the element after it (or at null, if there is

no next element).

Finally, we make sure tail points to the end of the list (in case tail was

pointed to the removed element, it is fixed to point to its predecessor).

The next is the implementation of the removal of an element by its value:

/// <summary>
/// Removes the specified item and return its index.
/// </summary>
/// <param name="item">The item for removal</param>
/// <returns>The index of the element or -1 if it does not
exist</returns>
public int Remove(T item)
{
 // Find the element containing the searched item
 int currentIndex = 0;
 ListNode currentNode = this.head;
 ListNode prevNode = null;
 while (currentNode != null)
 {
 if (object.Equals(currentNode.Element, item))
 {
 break;
 }
 prevNode = currentNode;
 currentNode = currentNode.NextNode;
 currentIndex++;
 }

 if (currentNode != null)
 {

www.manaraa.com

654 Fundamentals of Computer Programming with C#

 // The element is found in the list -> remove it
 RemoveListNode(currentNode, prevNode);
 return currentIndex;
 }
 else
 {
 // The element is not found in the list -> return -1
 return -1;
 }
}

The removal by value of an element works like the removal of an element

by index, but there are two special considerations: the searched element

may not exist and for this reason an extra check is necessary; there may be

elements with null value in the list, which have to be removed and processed

correctly. The last is done by comparing the elements through the static

method object.Equals(…) which works well with null values.

In order the removal to work correctly, it is necessary the elements in the

array to be comparable, i.e. to have a correct implementation of the method

Equals() derived from System.Object.

Bellow we give implementations of the operations for searching and checking

whether the list contains a specified element:

/// <summary>Searches for given element in the list</summary>
/// <param name="item">The item to be searched</param>
/// <returns>
/// The index of the first occurrence of the element
/// in the list or -1 when it is not found
/// </returns>
public int IndexOf(T item)
{
 int index = 0;
 ListNode currentNode = this.head;
 while (currentNode != null)
 {
 if (object.Equals(currentNode.Element, item))
 {
 return index;
 }
 currentNode = currentNode.NextNode;
 index++;
 }
 return -1;
}

www.manaraa.com

Chapter 16. Linear Data Structures 655

/// <summary>
/// Checks if the specified element exists in the list
/// </summary>
/// <param name="item">The item to be checked</param>
/// <returns>
/// True if the element exists or false otherwise
/// </returns>
public bool Contains(T item)
{
 int index = IndexOf(item);
 bool found = (index != -1);
 return found;
}

The searching for an element works like in the method for removing: we

start from the beginning of the list and check sequentially the next elements

one after another, until we reach the end of the list or find the searched

element.

We have two more operations to implement – accessing elements by index

(using the indexer) and finding the count of elements (through a property):

/// <summary>
/// Gets or sets the element at the specified position
/// </summary>
/// <param name="index">
/// The position of the element [0 … count-1]
/// </param>
/// <returns>The item at the specified index</returns>
/// <exception cref="System.ArgumentOutOfRangeException">
/// When an invalid index is specified
/// </exception>
public T this[int index]
{
 get
 {
 if (index >= count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }
 ListNode currentNode = this.head;
 for (int i = 0; i < index; i++)
 {

www.manaraa.com

656 Fundamentals of Computer Programming with C#

 currentNode = currentNode.NextNode;
 }
 return currentNode.Element;
 }
 set
 {
 if (index >= count || index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid index: " + index);
 }
 ListNode currentNode = this.head;
 for (int i = 0; i < index; i++)
 {
 currentNode = currentNode.NextNode;
 }
 currentNode.Element = value;
 }
}

/// <summary>
/// Gets the count of elements in the list
/// </summary>
public int Count
{
 get
 {
 return this.count;
 }
}

The indexer works pretty straightforward – first checks the validity of the

specified index and then starts from the head of the list goes to the next node

index times. Once the node containing the element the specified index is

found, it is accessed directly.

Let’s finally see a shopping list example similar to the example with the

static list implementation, this time using with our linked list:

class DynamicListTest
{
 static void Main()
 {
 DynamicList<string> shoppingList =
 new DynamicList<string>();

www.manaraa.com

Chapter 16. Linear Data Structures 657

 shoppingList.Add("Milk");
 shoppingList.Remove("Milk"); // Empty list
 shoppingList.Add("Honey");
 shoppingList.Add("Olives");
 shoppingList.Add("Water");
 shoppingList[2] = "A lot of " + shoppingList[2];
 shoppingList.Add("Fruits");
 shoppingList.RemoveAt(0); // Removes "Honey" (first)
 shoppingList.RemoveAt(2); // Removes "Fruits" (last)
 shoppingList.Add(null);
 shoppingList.Add("Beer");
 shoppingList.Remove(null);
 Console.WriteLine("We need to buy:");
 for (int i = 0; i < shoppingList.Count; i++)
 {
 Console.WriteLine(" - " + shoppingList[i]);
 }
 Console.WriteLine("Position of 'Beer' = {0}",
 shoppingList.IndexOf("Beer"));
 Console.WriteLine("Position of 'Water' = {0}",
 shoppingList.IndexOf("Water"));
 Console.WriteLine("Do we have to buy Bread? " +
 shoppingList.Contains("Bread"));
 }
}

The above code checks all the operations from our linked list

implementation along with their special cases (like removing the first and the

last element) and shows that out dynamic list implementation works correctly.

The output of the above code is the following:

We need to buy:
 - Olives
 - A lot of Water
 - Beer
Position of 'Beer' = 2
Position of 'Water' = -1
Do we have to buy Bread? False

Comparing the Static and the Dynamic Lists

We implemented the abstract data type (ADT) list in two ways: static (array

list) and dynamic (linked list). Once written these two implementations

can be used in almost exactly the same way. For example see the following

two pieces of code (using our array list and our linked list):

www.manaraa.com

658 Fundamentals of Computer Programming with C#

static void Main()
{
 CustomArrayList<string> arrayList =
 new CustomArrayList<string>();
 arrayList.Add("One");
 arrayList.Add("Two");
 arrayList.Add("Three");
 arrayList[0] = "Zero";
 arrayList.RemoveAt(1);
 Console.WriteLine("Array list: ");
 for (int i = 0; i < arrayList.Count; i++)
 {
 Console.WriteLine(" - " + arrayList[i]);
 }

 DynamicList<string> dynamicList =
 new DynamicList<string>();
 dynamicList.Add("One");
 dynamicList.Add("Two");
 dynamicList.Add("Three");
 dynamicList[0] = "Zero";
 dynamicList.RemoveAt(1);
 Console.WriteLine("Dynamic list: ");
 for (int i = 0; i < dynamicList.Count; i++)
 {
 Console.WriteLine(" - " + dynamicList[i]);
 }
}

The result of using the two types of lists is the same:

Array list:
 - Zero
 - Three
Dynamic list:
 - Zero
 - Three

The above example demonstrates that certain ADT could be implemented in

several conceptually different ways and the users may not notice the

difference between them. Still, different implementations could have different

performance and could take different amount of memory.

This concept, known as abstract behavior, is fundamental for OOP and can

be implemented by abstract classes or interfaces as we shall see in the

section "Abstraction" of chapter "Object-Oriented Programming Principles".

www.manaraa.com

Chapter 16. Linear Data Structures 659

Doubly-Linked List

In the so called doubly-linked lists each element contains its value and

two pointers – to the previous and to the next element (or null, if

there is no such element). This allows us to traverse the list forward and

backward and some operations to be implemented more efficiently. Here is

how a sample doubly-linked list looks like:

The ArrayList Class

After we got familiar with some of the basic implementations of the lists, we

are going to consider the classes in C#, which deliver list data structures

"without lifting a finger". The first one is the class ArrayList, which is an

untyped dynamically-extendable array. It is implemented similarly to the

static list implementation, which we considered earlier. ArrayList gives the

opportunity to add, delete and search for elements in it. Some more

important class members we may use are:

- Add(object) – adding a new element

- Insert(int, object) – adding a new element at a specified position

(index)

- Count – returns the count of elements in the list

- Remove(object) – removes a specified element

- RemoveAt(int) – removes the element at a specified position

- Clear() – removes all elements from the list

- this[int] – an indexer, allows accessing the elements by a given

position (index)

As we saw, one of the main problems with this implementation is the resizing

of the inner array when adding and removing elements. In the ArrayList the

problem is solved by preliminarily created array (buffer), which gives us the

opportunity to add elements without resizing the array at each insertion or

removal of elements.

The ArrayList Class – Example

The ArrayList class is untyped, so it can keep all kinds of elements –

numbers, strings and other objects. Here is a small example:

nullHead

null Tail

42 3 71 8

Next Next Next Next

PrevPrevPrevPrev

www.manaraa.com

660 Fundamentals of Computer Programming with C#

using System;
using System.Collections;

class ProgrArrayListExample
{
 static void Main()
 {
 ArrayList list = new ArrayList();
 list.Add("Hello");
 list.Add(5);
 list.Add(3.14159);
 list.Add(DateTime.Now);

 for (int i = 0; i < list.Count; i++)
 {
 object value = list[i];
 Console.WriteLine("Index={0}; Value={1}", i, value);
 }
 }
}

In the example we create ArrayList and we add in it several elements from

different types: string, int, double and DateTime. After that we iterate over

the elements and print them. If we execute the example, we are going to get

the following result:

Index=0; Value=Hello
Index=1; Value=5
Index=2; Value=3.14159
Index=3; Value=29.12.2009 23:17:01

ArrayList of Numbers – Example

In case we would like to make an array of numbers and then process them,

for example to find their sum, we have to convert the object type to a

number. This is because ArrayList is actually a list of elements of type

object, and not from some specific type (like int or string). Here is a

sample code, which sums the elements of ArrayList:

ArrayList list = new ArrayList();
list.Add(2);
list.Add(3.5f);
list.Add(25u);
list.Add(" EUR");
dynamic sum = 0;

www.manaraa.com

Chapter 16. Linear Data Structures 661

for (int i = 0; i < list.Count; i++)
{
 dynamic value = list[i];
 sum = sum + value;
}
Console.WriteLine("Sum = " + sum);
// Output: Sum = 30.5 EUR

Note that in the array list we hold different types of values (int, float, uint

and string) and we sum them in a variable of special type called dynamic. In

C# dynamic is a universal data type intended to hold any value (numbers,

objects, strings, even functions and methods). Operations over dynamic

variables (like the + operator used above) are resolved at runtime and their

action depends on the actuals values of their arguments. At compile time

almost every operation with dynamic variables successfully compiles. At

runtime, if the operation can be performed, it is performed, otherwise and

exception is thrown. This explains why we apply the operation + over the

arguments 2, 3.5f, 25u and " EUR" and we finally obtain as a result the

string "30.5 EUR".

Generic Collections

Before we continue to play with more examples of working with the

ArrayList class, we shall recall the concept of Generic Data Types in C#,

which gives the opportunity to parameterize lists and collections in C#.

When we use the ArrayList class and all classes, which implement the

interface System.IList, we face the problem we saw earlier: when we add a

new element from a class, we pass it as a value of type object. Later, when

we search for a certain element, we get it as object and we have to cast it to

the expected type (or use dynamic). It is not guaranteed, however, that all

elements in the list will be of one and the same type. Besides this, the

conversion from one type to another takes time, and this drastically slows

down the program execution.

To solve the problem we use the generic (template / parameterized)

classes. They are created to work with one or several types, as when we

create them, we indicate what type of objects we are going to keep in them.

Let’s recall that we create an instance of a generic class, for example

GenericType, by indicating the type, of which the elements have to be:

GenericType<T> instance = new GenericType<T>();

This type T can be any successor of the class System.Object, for example

string or DateTime. Here are few examples:

List<int> intList = new List<int>();

www.manaraa.com

662 Fundamentals of Computer Programming with C#

List<bool> boolList = new List<bool>();
List<double> realNumbersList = new List<double>();

Let’s consider some of the generic collections in .NET Framework.

The List<T> Class

List<T> is the generic variant of ArrayList. When we create an object of

type List<T>, we indicate the type of the elements, which will be hold in the

list, i.e. we substitute the denoted by T type with some real data type (for

example number or string).

Let’s consider a case in which we would like to create a list of integer

elements. We could do this in the following way:

List<int> intList = new List<int>();

Thus the created list can contain only integer numbers and cannot contain

other objects, for example strings. If we try to add to List<int> an object of

type string, we are going to get a compilation error. Via the generic types

the C# compiler protects us from mistakes when working with collections.

The List Class – Array-Based Implementation

List<T> works like our class CustomArrayList<T>. It keeps its elements in

the memory as an array, which is partially in use and partially free for

new elements (blank). Thanks to the reserved blank elements in the array,

the operation append almost always manages to add the new element

without the need to resize the array. Sometimes, of course, the array has to

be resized, but as each resize would double the size of the array, resizing

happens so seldom that it can be ignored in comparison to the count of

append operations. We could imagine a List<T> like an array, which has

some capacity and is filled to a certain level:

Thanks to the preliminarily allocated capacity of the array, containing the

elements of the class List<T>, it can be extremely efficient data structure

when it is necessary to add elements fast, extract elements and access

the elements by index. Still, it is pretty slow in inserting and removing

elements unless these elements are at the last position.

2 7 1 3 7 2 1 0 8 2 4List<int>

Count = 11

Capacity = 15

Capacity

used buffer

(Count)

unused

buffer

www.manaraa.com

Chapter 16. Linear Data Structures 663

We could say that List<T> combines the good sides of lists and arrays – fast

adding, changeable size and direct access by index.

When to Use List<T>?

We already explained that the List<T> class uses an inner array for keeping

the elements and the array doubles its size when it gets overfilled. Such

implementation causes the following good and bad sides:

- The search by index is very fast – we can access with equal speed

each of the elements, regardless of the count of elements.

- The search for an element by value works with as many comparisons

as the count of elements (in the worst case), i.e. it is slow.

- Inserting and removing elements is a slow operation – when we add

or remove elements, especially if they are not in the end of the array,

we have to shift the rest of the elements and this is a slow operation.

- When adding a new element, sometimes we have to increase the

capacity of the array, which is a slow operation, but it happens seldom

and the average speed of insertion to List does not depend on the

count of elements, i.e. it works very fast.

Use List<T> when you don’t expect frequent insertion and

deletion of elements, but you expect to add new elements at

the end of the list or to access the elements by index.

Prime Numbers in Given Interval – Example

After we got familiar with the implementation of the structure list and the

class List<T>, let’s see how to use them. We are going to consider the

problem for finding the prime numbers in a certain interval. For this

purpose we have to use the following algorithm:

static List<int> GetPrimes(int start, int end)
{
 List<int> primesList = new List<int>();
 for (int num = start; num <= end; num++)
 {
 bool prime = true;
 double numSqrt = Math.Sqrt(num);
 for (int div = 2; div <= numSqrt; div++)
 {
 if (num % div == 0)
 {
 prime = false;
 break;
 }

www.manaraa.com

664 Fundamentals of Computer Programming with C#

 }
 if (prime)
 {
 primesList.Add(num);
 }
 }
 return primesList;
}

static void Main()
{
 List<int> primes = GetPrimes(200, 300);
 foreach (var item in primes)
 {
 Console.Write ("{0} ", item);
 }
}

From the mathematics we know that if a number is not prime it has at least

one divisor in the interval [2 … square root from the given number]. This is

what we use in the example above. For each number we look for a divisor in

this interval. If we find a divisor, then the number is not prime and we could

continue with the next number from the interval. Gradually, by adding the

prime numbers we fill the list, after which we traverse it and print it on the

screen. Here is how the output of the code above looks like:

211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293

Union and Intersection of Lists – Example

Let’s consider a more interesting example – let’s write a program, which can

find the union and the intersection of two sets of numbers.

 Union Intersection

We could consider that there are two lists of numbers and we would like to

take the elements, which are in both sets (intersection), or we look for those

elements, which are at least in one of the sets (union).

Let’s discuss one possible solution to the problem:

www.manaraa.com

Chapter 16. Linear Data Structures 665

static List<int> Union(
 List<int> firstList, List<int> secondList)
{
 List<int> union = new List<int>();
 union.AddRange(firstList);
 foreach (var item in secondList)
 {
 if (!union.Contains(item))
 {
 union.Add(item);
 }
 }
 return union;
}

static List<int> Intersect(List<int>
 firstList, List<int> secondList)
{
 List<int> intersect = new List<int>();
 foreach (var item in firstList)
 {
 if (secondList.Contains(item))
 {
 intersect.Add(item);
 }
 }

 return intersect;
}

static void PrintList(List<int> list)
{
 Console.Write("{ ");
 foreach (var item in list)
 {
 Console.Write(item);
 Console.Write(" ");
 }
 Console.WriteLine("}");
}

static void Main()
{
 List<int> firstList = new List<int>();

www.manaraa.com

666 Fundamentals of Computer Programming with C#

 firstList.Add(1);
 firstList.Add(2);
 firstList.Add(3);
 firstList.Add(4);
 firstList.Add(5);
 Console.Write("firstList = ");
 PrintList(firstList);

 List<int> secondList = new List<int>();
 secondList.Add(2);
 secondList.Add(4);
 secondList.Add(6);
 Console.Write("secondList = ");
 PrintList(secondList);

 List<int> unionList = Union(firstList, secondList);
 Console.Write("union = ");
 PrintList(unionList);

 List<int> intersectList =
 Intersect(firstList, secondList);
 Console.Write("intersect = ");
 PrintList(intersectList);
}

The program logic in this solution directly follows the definitions of union

and intersection of sets. We use the operations for searching for an element

in a list and insertion of a new element in a list.

We are going to solve the problem in one more way: by using the method

AddRange<T>(IEnumerable<T> collection) from the class List<T>:

static void Main()
{
 List<int> firstList = new List<int>();
 firstList.Add(1);
 firstList.Add(2);
 firstList.Add(3);
 firstList.Add(4);
 firstList.Add(5);
 Console.Write("firstList = ");
 PrintList(firstList);

 List<int> secondList = new List<int>();
 secondList.Add(2);

www.manaraa.com

Chapter 16. Linear Data Structures 667

 secondList.Add(4);
 secondList.Add(6);
 Console.Write("secondList = ");
 PrintList(secondList);

 List<int> unionList = new List<int>();
 unionList.AddRange(firstList);
 for (int i = unionList.Count-1; i >= 0; i--)
 {
 if (secondList.Contains(unionList[i]))
 {
 unionList.RemoveAt(i);
 }
 }
 unionList.AddRange(secondList);
 Console.Write("union = ");
 PrintList(unionList);

 List<int> intersectList = new List<int>();
 intersectList.AddRange(firstList);
 for (int i = intersectList.Count-1; i >= 0; i--)
 {
 if (!secondList.Contains(intersectList[i]))
 {
 intersectList.RemoveAt(i);
 }
 }
 Console.Write("intersect = ");
 PrintList(intersectList);
}

In order to intersect the sets we do the following: we put all elements from

the first list (via AddRange()), after which we remove all elements, which are

not in the second list.

The problem can also be solved even in an easier way by using the method

RemoveAll(Predicate<T> match), but it is related to using programming

constructs, called delegates and lambda expressions, which are

considered in the chapter Lambda Expressions and LINQ. The union we make

as we add elements from the first list, after which we remove all elements,

which are in the second list, and finally we add all elements of the second list.

The result from the two programs is exactly the same:

firstList = { 1 2 3 4 5 }
secondList = { 2 4 6 }

www.manaraa.com

668 Fundamentals of Computer Programming with C#

union = { 1 2 3 4 5 6 }
intersect = { 2 4 }

Converting a List to Array and Vice Versa

In C# the conversion of a list to an array is easy by using the given

method ToArray(). For the opposite operation we could use the constructor of
List<T>(System.Array). Let’s see an example, demonstrating their usage:

static void Main()
{
 int[] arr = new int[] { 1, 2, 3 };
 List<int> list = new List<int>(arr);
 int[] convertedArray = list.ToArray();
}

The LinkedList<T> Class

This class is a dynamic implementation of a doubly linked list built in

.NET Framework. Its elements contain a certain value and a pointer to the

previous and the next element. The LinkedList<T> class in .NET works in

similar fashion like our class DynamicList<T>.

When Should We Use LinkedList<T>?

We saw that the dynamic and the static implementation have their specifics

considering the different operations. With a view to the structure of the linked

list, we have to have the following in mind:

- The append operation is very fast, because the list always knows its

last element (tail).

- Inserting a new element at a random position in the list is very fast

(unlike List<T>) if we have a pointer to this position, e.g. if we insert at

the list start or at the list end.

- Searching for elements by index or by value in LinkedList is a slow

operation, as we have to scan all elements consecutively by beginning

from the start of the list.

- Removing elements is a slow operation, because it includes searching.

Basic Operations in the LinkedList<T> Class

LinkedList<T> has the same operations as in List<T>, which makes the two

classes interchangeable, but in fact List<T> is used more often. Later we are

going to see that LinkedList<T> is used when working with queues.

www.manaraa.com

Chapter 16. Linear Data Structures 669

When Should We Use LinkedList<T>?

Using LinkedList<T> is preferable when we have to add / remove

elements at both ends of the list and when the access to the elements is

consequential.

However, when we have to access the elements by index, then List<T> is

a more appropriate choice.

Considering memory, LinkedList<T> generally takes more space because it

holds the value and several additional pointers for each element. List<T> also

takes additional space because it allocates memory for more elements than it

actually uses (it keeps bigger capacity than the number of its elements).

Stack

Let’s imagine several cubes, which we have put one above other. We could

put a new cube on the top, as well as remove the highest cube. Or let’s

imagine a chest. In order to take out the clothes on the bottom, first we have

to take out the clothes above them.

This is the classical data structure stack – we could add elements on the top

and remove the element, which has been added last, but no the previous

ones (the ones that are below it). In programming the stack is a commonly

used data structure. The stack is used internally by the .NET virtual

machine (CLR) for keeping the variables of the program and the parameters

of the called methods (it is called program execution stack).

The Abstract Data Type "Stack"

The stack is a data structure, which implements the behavior "last in – first

out" (LIFO). As we saw with the cubes, the elements could be added and

removed only on the top of the stack.

ADT stack provides 3 major operations: push (add an element at the top of

the stack), pop (take the last added element from the top of the stack) and

peek (get the element form the top of the stack without removing it).

The data structure stack can also have different implementations, but we are

going to consider two – dynamic and static implementation.

Static Stack (Array-Based Implementation)

Like with the static list we can use an array to keep the elements of the

stack. We can keep an index or a pointer to the element, which is at the top.

Usually, if the internal array is filled, we have to resize it (to allocate twice

more memory), like this happens with the static list (ArrayList, List<T> and

CustomArrayList<T>). Unused buffer memory should be hold to ensure fast

push and pop operations.

Here is how we could imagine a static stack:

www.manaraa.com

670 Fundamentals of Computer Programming with C#

Linked Stack (Dynamic Implementation)

For the dynamic implementation of stack we use elements, which keep a

value and a pointer to the next element. This linked-list based implementation

does not require an internal buffer, does not need to grow when the buffer is

full and has virtually the same performance for the major operations like the

static implementation:

When the stack is empty, the top has value null. When a new item is added,

it is inserted on a position where the top indicates, after which the top is

redirected to the new element. Removal is done by deleting the first element,

pointed by the top pointer.

The Stack<T> Class

In C# we could use the standard implementation of the class in .NET

Framework System.Collections.Generics.Stack<T>. It is implemented

statically with an array, as the array is resized when needed.

The Stack<T> Class – Basic Operations

All basic operations for working with a stack are implemented:

- Push(T) – adds a new element on the top of the stack

- Pop() – returns the highest element and removes it from the stack

- Peek() – returns the highest element without removing it

- Count – returns the count of elements in the stack

- Clear() – retrieves all elements from the stack

- Contains(T) – check whether the stack contains the element

- ToArray() – returns an array, containing all elements of the stack

Top

0 1 2 3 4 5 6

CapacityCapacity

unused
buffer

unused
buffer

42 3 71 8

Next Next Next NextTop null

www.manaraa.com

Chapter 16. Linear Data Structures 671

Stack Usage – Example

Let’s take a look at a simple example on how to use stack. We are going to

add several elements, after which we are going to print them on the console.

static void Main()
{
 Stack<string> stack = new Stack<string>();
 stack.Push("1. John");
 stack.Push("2. Nicolas");
 stack.Push("3. Mary");
 stack.Push("4. George");
 Console.WriteLine("Top = " + stack.Peek());
 while (stack.Count > 0)
 {
 string personName = stack.Pop();
 Console.WriteLine(personName);
 }
}

As the stack is a "last in, first out" (LIFO) structure, the program is going to

print the records in a reversed order. Here is its output:

Top = 4. George
4. George
3. Mary
2. Nicolas
1. John

Correct Brackets Check – Example

Let’s consider the following task: we have an expression, in which we would

like to check whether the brackets are put correctly. This means to

check if the count of the opening brackets is equal to the count of the closing

brackets and all opening brackets match their respective closing brackets. The

specification of the stack allows us to check whether the bracket we have

met has a corresponding closing bracket. When we meet an opening bracket,

we add it to the stack. When we meet a closing bracket, we remove an

element from the stack. If the stack becomes empty before the end of the

program in a moment when we have to remove an element, the brackets are

incorrectly placed. The same remains if in the end of the expression there are

elements in the stack. Here is a sample implementation:

static void Main()
{
 string expression = "1 + (3 + 2 - (2+3)*4 - ((3+1)*(4-2)))";
 Stack<int> stack = new Stack<int>();

www.manaraa.com

672 Fundamentals of Computer Programming with C#

 bool correctBrackets = true;

 for (int index = 0; index < expression.Length; index++)
 {
 char ch = expression[index];
 if (ch == '(')
 {
 stack.Push(index);
 }
 else if (ch == ')')
 {
 if (stack.Count == 0)
 {
 correctBrackets = false;
 break;
 }
 stack.Pop();
 }
 }
 if (stack.Count != 0)
 {
 correctBrackets = false;
 }
 Console.WriteLine("Are the brackets correct? " +
 correctBrackets);
}

Here is how the output of the sample program looks like:

Are the brackets correct? True

Queue

The "queue" data structure is created to model queues, for example a

queue of waiting for printing documents, waiting processes to access a

common resource, and others. Such queues are very convenient and are

naturally modeled via the structure "queue". In queues we can add elements

only on the back and retrieve elements only at the front.

For instance, we would like to buy a ticket for a concert. If we go earlier, we

are going to buy earlier a ticket. If we are late, we will have to go at the end

of the queue and wait for everyone who has come earlier. This behavior

is analogical for the objects in ADT queue.

www.manaraa.com

Chapter 16. Linear Data Structures 673

Abstract Data Type "Queue"

The abstract data structure "queue" satisfies the behavior "first in – first

out" (FIFO). Elements added to the queue are appended at the end of the

queue, and when elements are extracted, they are taken from the beginning

of the queue (in the order they were added). Thus the queue behaves like a

list with two ends (head and tail), just like the queues for tickets.

Like with the lists, the ADT queue could be implemented statically (as

resizable array) and dynamically (as pointer-based linked list).

Static Queue (Array-Based Implementation)

In the static queue we could use an array for keeping the elements. When

adding an element, it is inserted at the index, which follows the end of queue.

After that the end points at the newly added element. When removing an

element, we take the element, which is pointed by the head of the queue.

After that the head starts to point at the next element. Thus the queue

moves to the end of the array. When it reaches the end of the array, when

adding a new element, it is inserted at the beginning of the array. That is why

the implementation is called "looped queue", as we mentally stick the

beginning and the end of the array and the queue orbits it:

Static queue keeps an internal buffer with bigger capacity than the actual

number of elements in the queue. Like in the static list implementation, when

the space allocated for the queue elements is finished, the internal buffer

grows (usually doubles its size).

The major operations in the queue ADT are enqueue (append at the end of

the queue) and dequeue (retrieve an element from the start of the queue).

Linked Queue (Dynamic Implementation)

The dynamic implementation of queue ADT looks like the implementation

of the linked list. Like in the linked list, the elements consist of two parts – a

value and a pointer to the next element:

Head

0 1 2 3 4 5 6 7

unused
buffer

unused
buffer

unused
buffer

unused
buffer

Tail

42 3 71 8

Next Next Next NextHead null

Tail

www.manaraa.com

674 Fundamentals of Computer Programming with C#

However, here elements are added at the end of the queue (tail), and are

retrieved from its beginning (head), while we have no permission to get

or add elements at any another position.

The Queue<T> Class

In C# we use the static implementation of queue via the Queue<T> class.

Here we could indicate the type of the elements we are going to work with, as

the queue and the linked list are generic types.

The Queue<T> – Basic Operations

Queue<T> class provides the basic operations, specific for the data structure

queue. Here are some of the most frequently used:

- Enqueue(T) – inserts an element at the end of the queue

- Dequeue() – retrieves the element from the beginning of the queue and

removes it

- Peek() – returns the element from the beginning of the queue without

removing it

- Clear() – removes all elements from the queue

- Contains(T) – checks if the queue contains the element

- Count – returns the amount of elements in the queue

Queue Usage – Example

Let’s consider a simple example. Let’s create a queue and add several

elements to it. After that we are going to retrieve all elements and print them

on the console:

static void Main()
{
 Queue<string> queue = new Queue<string>();
 queue.Enqueue("Message One");
 queue.Enqueue("Message Two");
 queue.Enqueue("Message Three");
 queue.Enqueue("Message Four");

 while (queue.Count > 0)
 {
 string msg = queue.Dequeue();
 Console.WriteLine(msg);
 }
}

Here is how the output of the sample program looks like:

www.manaraa.com

Chapter 16. Linear Data Structures 675

Message One
Message Two
Message Three
Message Four

You can see that the elements leave the queue in the order, in which they

have entered the queue. This is because the queue is FIFO structure (first-

in, first out).

Sequence N, N+1, 2*N – Example

Let’s consider a problem in which the usage of the data structure queue would

be very useful for the implementation. Let’s take the sequence of numbers,

the elements of which are derived in the following way: the first element is N;

the second element is derived by adding 1 to N; the third element – by

multiplying the first element by 2 and thus we successively multiply each

element by 2 and insert it at the end of the sequence, after which we add 1 to

it and insert it at the end of the sequence. We could illustrate the process

with the following figure:

As you can see, the process lies in retrieving elements from the beginning of

the queue and placing others in its end. Let’s see the sample implementation,

in which N=3 and we search for the number of the element with value 16:

static void Main()
{
 int n = 3;
 int p = 16;

 Queue<int> queue = new Queue<int>();
 queue.Enqueue(n);
 int index = 0;
 Console.WriteLine("S =");
 while (queue.Count > 0)
 {
 index++;
 int current = queue.Dequeue();
 Console.WriteLine(" " + current);
 if (current == p)
 {

S = N, N+1, 2*N, N+2, 2*(N+1), 2*N+1, 4*N, ...S = N, N+1, 2*N, N+2, 2*(N+1), 2*N+1, 4*N, ...

+1+1

*2*2

+1+1

*2*2

+1+1

*2*2

www.manaraa.com

676 Fundamentals of Computer Programming with C#

 Console.WriteLine();
 Console.WriteLine("Index = " + index);
 return;
 }
 queue.Enqueue(current + 1);
 queue.Enqueue(2 * current);
 }
}

Here is how the output of the above program looks like:

S = 3 4 6 5 8 7 12 6 10 9 16
Index = 11

As you can see, stack and queue are two specific data structures with strictly

defined rules for the order of the elements in them. We used queue when we

expected to get the elements in the order we inserted them, while we used

stack when we needed the elements in reverse order.

Exercises

1. Write a program that reads from the console a sequence of positive

integer numbers. The sequence ends when empty line is entered.

Calculate and print the sum and the average of the sequence. Keep

the sequence in List<int>.

2. Write a program, which reads from the console N integers and prints

them in reversed order. Use the Stack<int> class.

3. Write a program that reads from the console a sequence of positive

integer numbers. The sequence ends when an empty line is entered. Print

the sequence sorted in ascending order.

4. Write a method that finds the longest subsequence of equal numbers

in a given List<int> and returns the result as new List<int>. Write a

program to test whether the method works correctly.

5. Write a program, which removes all negative numbers from a

sequence.

Example: array = {19, -10, 12, -6, -3, 34, -2, 5} {19, 12, 34, 5}

6. Write a program that removes from a given sequence all numbers

that appear an odd count of times.

Example: array = {4, 2, 2, 5, 2, 3, 2, 3, 1, 5, 2} {5, 3, 3, 5}

7. Write a program that finds in a given array of integers (in the range

[0…1000]) how many times each of them occurs.

Example: array = {3, 4, 4, 2, 3, 3, 4, 3, 2}

www.manaraa.com

Chapter 16. Linear Data Structures 677

2 2 times

3 4 times

4 3 times

8. The majorant of an array of size N is a value that occurs in it at least

N/2 + 1 times. Write a program that finds the majorant of given array

and prints it. If it does not exist, print "The majorant does not exist!".

Example: {2, 2, 3, 3, 2, 3, 4, 3, 3} 3

9. We are given the following sequence:

S1 = N;

S2 = S1 + 1;

S3 = 2*S1 + 1;

S4 = S1 + 2;

S5 = S2 + 1;

S6 = 2*S2 + 1;

S7 = S2 + 2;

…

Using the Queue<T> class, write a program which by given N prints on the

console the first 50 elements of the sequence.

Example: N=2 2, 3, 5, 4, 4, 7, 5, 6, 11, 7, 5, 9, 6, …

10. We are given N and M and the following operations:

N = N+1

N = N+2

N = N*2

Write a program, which finds the shortest subsequence from the

operations, which starts with N and ends with M. Use queue.

Example: N = 5, M = 16

Subsequence: 5 7 8 16

11. Implement the data structure dynamic doubly linked list

(DoublyLinkedList<T>) – list, the elements of which have pointers both

to the next and the previous elements. Implement the operations for

adding, removing and searching for an element, as well as inserting an

element at a given index, retrieving an element by a given index and a

method, which returns an array with the elements of the list.

12. Create a DynamicStack<T> class to implement dynamically a stack

(like a linked list, where each element knows its previous element and the

stack knows its last element). Add methods for all commonly used

operations like Push(), Pop(), Peek(), Clear() and Count.

www.manaraa.com

678 Fundamentals of Computer Programming with C#

13. Implement the data structure "Deque". This is a specific list-like

structure, similar to stack and queue, allowing to add elements at the

beginning and at the end of the structure. Implement the operations

for adding and removing elements, as well as clearing the deque. If an

operation is invalid, throw an appropriate exception.

14. Implement the structure "Circular Queue" with array, which doubles

its capacity when its capacity is full. Implement the necessary methods

for adding, removing the element in succession and retrieving without

removing the element in succession. If an operation is invalid, throw an

appropriate exception.

15. Implement numbers sorting in a dynamic linked list without using an

additional array or other data structure.

16. Using queue, implement a complete traversal of all directories on

your hard disk and print them on the console. Implement the algorithm

Breadth-First-Search (BFS) – you may find some articles in the internet.

17. Using queue, implement a complete traversal of all directories on

your hard disk and print them on the console. Implement the algorithm

Depth-First-Search (DFS) – you may find some articles in the internet.

18. We are given a labyrinth of size N x N. Some of the cells of the

labyrinth are empty (0), and others are filled (x). We can move from an

empty cell to another empty cell, if the cells are separated by a single

wall. We are given a start position (*). Calculate and fill the labyrinth as

follows: in each empty cell put the minimal distance from the start

position to this cell. If some cell cannot be reached, fill it with "u".

Example:

Solutions and Guidelines

1. See the section "List<T>".

2. Use Stack<int>.

3. Keep the numbers in List<T> and finally use its Sort() method.

4. Use List<int>. Scan the list with a for-loop (1 … n-1) while keeping two

variables: start and length. Initially start=0, length=1. At each loop

iteration if the number at the left is the same as the current number,

www.manaraa.com

Chapter 16. Linear Data Structures 679

increase length. Otherwise restart from the current cell (start=current,

length=1). Remember the current start and length every time when the

current length becomes better than the current maximal length. Finally

create a new list and copy the found sequence to it.

Testing could be done through a sequence of examples and comparisons,

e.g. {1} {1}; {1, 2} {1}; {1, 1} {1, 1}; {1, 2, 2, 3} {2, 2};

{1, 2, 2} {2, 2}; {1, 1, 2} {1, 1}; {1, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3}

 {1, 1, 1}; {1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3} {2, 2, 2, 2}; …

5. Use list. Perform a left-to-right scan through all elements. If the current

number is positive, add it to the result, otherwise, skip it.

6. Slow solution: pass through the elements with a for-loop. For each

element p count how many times p appears in the list (with a nested for-

loop). If it is even number of times, append p to the result list (which is

initially empty). Finally print the result list.

* Fast solution: use a hash-table (Dictionary<int, int>). With a

single scan calculate count[p] (the number of occurrences of p in the

input sequence) for each number p from the input sequence. With

another single scan pass though all numbers p and append p to the result

only when count[p] is even. Read about hash tables from the chapter

“Dictionaries, Hash-Tables and Sets”.

7. Make a new array "occurrences" with size 1001. After that scan

through the list and for each number p increment the corresponding value

of its occurrences (occurrences[p]++). Thus, at each index, where the

value is not 0, we have an occurring number, so we print it.

8. Use list. Sort the list and you are going to get the equal numbers next

to one another. Scan the array by counting the number of occurrences of

each number. If up to a certain moment a number has occurred N/2+1

times, this is the majorant and there is no need to check further. If after

position N/2+1 there is a new number (a majorant is not found until this

moment), there is no need to search further – even in the case when the

list is filled with the current number to the end, it will not occur N/2+1

times.

Another solution: Use a stack. Scan through the elements. At each

step if the element at the top of the stack is different from the next

element form the input sequence, remove the element from the stack.

Otherwise append the element to the stack. Finally the majorant will be in

stack (if it exists). Why? Each time when we find any two different

elements, we discard both of them. And this operation keeps the

majorant the same and decreases the length of the sequence, right? If we

repeat this as much times as possible, finally the stack will hold only

elements with the same value – the majorant.

9. Use queue. In the beginning add N to the queue. After that take the

current element M and add to the queue M+1, then 2*M + 1 and then

www.manaraa.com

680 Fundamentals of Computer Programming with C#

M+2. Repeat the same for the next element in a loop. At each step in the

loop print M and if at certain point the queue size reaches 50, break the

loop and finish the calculation.

10. Use the data structure queue. Firstly, add to the queue N. Repeat the

following in a loop until M is reached: remove a number X from the queue

and add 3 new elements: X * 2, X + 2 and X + 1. Do not add numbers

greater than M. As optimization of the solution, try to avoid repeating

numbers in the queue.

11. Implement DoubleLinkedListNode<T> class, which has fields Previous,

Next and Value. It will hold to hold a single list node. Implement also

DoubleLinkedList<T> class to hold the whole list.

12. Use singly linked list (similar to the list from the previous task, but only

with a field Previous, without a field Next).

13. Just modify your implementation of doubly-linked list to enable adding

and removing from both its head and tail. Another solution is to use

circular buffer (see http://en.wikipedia.org/wiki/Circular_buffer). When

the buffer is full, create a new buffer of double size and move all existing

elements to it.

14. Use array. When you reach the last index, you need to add the next

element at the beginning of the array. For the correct calculation of the

indices use the remainder from the division with the array length.

When you need to resize the array, implement it the same way like we

implemented the resizing in the "Static List" section.

15. Use the simple Bubble sort. We start with the leftmost element by

checking whether it is smaller than the next one. If it is not, we swap

their places. Then we compare with the next element and so on and so

forth, until we reach a larger element or the end of the array. We return

to the start of the array and repeat the same procedure many times until

we reach a moment, when we have taken sequentially all elements and

no one had to be moved.

16. The algorithm is very easy: we start with an empty queue, in which we

put the root directory (from which we start traversing). After that, until

the queue is empty, we remove the current directory from the queue,

print it on the console and add all its subdirectories to the queue. This

way we are going to traverse the entire file system in breadth. If there

are no cycles in the file system (as in Windows), the process will be finite.

17. If in the solution of the previous problem we substitute the queue with

a stack, we are going to get traversal in depth (DFS).

18. Use Breadth-First Search (BFS) by starting from the position, marked

with "*". Each unvisited adjacent to the current cell we fill with the

current number + 1. We assume that the value at "*" is 0. After the

queue is empty, we traverse the whole matrix and if in some of the cells

we have 0, we fill it with "u".

http://en.wikipedia.org/wiki/Circular_buffer

www.manaraa.com

Chapter 17. Trees
and Graphs

In This Chapter

In this chapter we will discuss tree data structures, like trees and graphs.

The abilities of these data structures are really important for the modern

programming. Each of this data structures is used for building a model of

real life problems, which are efficiently solved using this model. We will

explain what tree data structures are and will review their main advantages

and disadvantages. We will present example implementations and problems

showing their practical usage. We will focus on binary trees, binary search

trees and self-balancing binary search tree. We will explain what graph

is, the types of graphs, how to represent a graph in the memory (graph

implementation) and where graphs are used in our life and in the computer

technologies. We will see where in .NET Framework self-balancing binary

search trees are implemented and how to use them.

Tree Data Structures

Very often we have to describe a group of real life objects, which have such

relation to one another that we cannot use linear data structures for their

description. In this chapter, we will give examples of such branched

structures. We will explain their properties and the real life problems, which

inspired their creation and further development.

A tree-like data structure or branched data structure consists of set of

elements (nodes) which could be linked to other elements, sometimes

hierarchically, sometimes not. Trees represent hierarchies, while graphs

represent more general relations such as the map of city.

Trees

Trees are very often used in programming, because they naturally represent

all kind of object hierarchies from our surroundings. Let’s give an example,

before we explain the trees’ terminology.

Example – Hierarchy of the Participants in a Project

We have a team, responsible for the development of certain software project.

The participants in it have manager-subordinates relations. Our team

consists of 9 teammates:

www.manaraa.com

682 Fundamentals of Computer Programming with C#

What is the information we can get from this hierarchy? The direct boss of

the developers is the "Team Leader", but indirectly they are subordinate to

the "Project Manager". The "Team Leader" is subordinate only to the "Project

Manager". On the other hand "Developer 1" has no subordinates. The "Project

Manager" is the highest in the hierarchy and has no manager.

The same way we can describe every participant in the project. We see that

such a little figure gives us so much information.

Trees Terminology

For a better understanding of this part of the chapter we recommend to the

reader at every step to draw an analogy between the abstract meaning and

its practical usage in everyday life.

We will simplify the figure describing our hierarchy. We assume that it

consists of circles and lines connecting them. For convenience we name the

circles with unique numbers, so that we can easily specify about which one we

are talking about.

We will call every circle a node and each line an edge. Nodes "19", "21", "14"

are below node "7" and are directly connected to it. This nodes we are called

Project
Manager

Team
Leader

De-
signer

QA Team
Leader

Developer
1

Developer
2

Tester 1
Developer

3
Tester

2

www.manaraa.com

Chapter 17. Trees and Graphs 683

direct descendants (child nodes) of node "7", and node "7" their parent.

The same way "1", "12" and "31" are children of "19" and "19" is their parent.

Intuitively we can say that "21" is sibling of "19", because they are both

children of "7" (the reverse is also true – "19" is sibling of "21").For "1", "12",

"31", "23" and "6" node "7" precedes them in the hierarchy, so he is their

indirect parent – ancestor, ant they are called his descendants.

Root is called the node without parent. In our example this is node "7"

Leaf is a node without child nodes. In our example – "1", "12", "31", "21",

"23" and "6".

Internal nodes are the nodes, which are not leaf or root (all nodes, which

have parent and at least one child). Such nodes are "19" and "14".

Path is called a sequence of nodes connected with edges, in which there

is no repetition of nodes. Example of path is the sequence "1", "19", "7" and

"21". The sequence "1", "19" and "23" is not a path, because "19" and "23"

are not connected.

Path length is the number of edges, connecting the sequence of nodes in the

path. Actually it is equal to the number of nodes in the path minus 1. The

length of our example for path ("1", "19", "7" and "21") is three.

Depth of a node we will call the length of the path from the root to

certain node. In our example "7" as root has depth zero, "19" has depth one

and "23" – depth two.

Here is the definition about tree:

Tree – a recursive data structure, which consists of nodes, connected

with edges. The following statements are true for trees:

- Each node can have 0 or more direct descendants (children).

- Each node has at most one parent. There is only one special node

without parent – the root (if the tree is not empty).

- All nodes are reachable from the root – there is a path from the root

to each node in the tree.

We can give more simple definition of tree: a node is a tree and this node

can have zero or more children, which are also trees.

Height of tree – is the maximum depth of all its nodes. In our example the

tree height is 2.

Degree of node we call the number of direct children of the given node.

The degree of "19" and "7" is three, but the degree of "14" is two. The leaves

have degree zero.

Branching factor is the maximum of the degrees of all nodes in the tree.

In our example the maximum degree of the nodes is 3, so the branching

factor is 3.

www.manaraa.com

684 Fundamentals of Computer Programming with C#

Tree Implementation – Example

Now we will see how to represent trees as data structure in

programming. We will implement a tree dynamically. Our tree will contain

numbers inside its nodes, and each node will have a list of zero or more

children, which are trees too (following our recursive definition).

Each node is recursively defined using itself. Each node of the tree

(TreeNode<T>) contains a list of children, which are nodes (TreeNode<T>).

The tree itself is another class Tree<T> which can be empty or can have a

root node. Tree<T> implements basic operations over trees like construction

and traversal.

Let’s have a look at the source code of our dynamic tree representation:

using System;
using System.Collections.Generic;

/// <summary>Represents a tree node</summary>
/// <typeparam name="T">the type of the values in nodes
/// </typeparam>
public class TreeNode<T>
{
 // Contains the value of the node
 private T value;

 // Shows whether the current node has a parent or not
 private bool hasParent;

 // Contains the children of the node (zero or more)
 private List<TreeNode<T>> children;

 /// <summary>Constructs a tree node</summary>
 /// <param name="value">the value of the node</param>
 public TreeNode(T value)
 {
 if (value == null)
 {
 throw new ArgumentNullException(
 "Cannot insert null value!");
 }
 this.value = value;
 this.children = new List<TreeNode<T>>();
 }

 /// <summary>The value of the node</summary>
 public T Value

www.manaraa.com

Chapter 17. Trees and Graphs 685

 {
 get
 {
 return this.value;
 }
 set
 {
 this.value = value;
 }
 }

 /// <summary>The number of node's children</summary>
 public int ChildrenCount
 {
 get
 {
 return this.children.Count;
 }
 }

 /// <summary>Adds child to the node</summary>
 /// <param name="child">the child to be added</param>
 public void AddChild(TreeNode<T> child)
 {
 if (child == null)
 {
 throw new ArgumentNullException(
 "Cannot insert null value!");
 }

 if (child.hasParent)
 {
 throw new ArgumentException(
 "The node already has a parent!");
 }

 child.hasParent = true;
 this.children.Add(child);
 }

 /// <summary>
 /// Gets the child of the node at given index
 /// </summary>
 /// <param name="index">the index of the desired child</param>

www.manaraa.com

686 Fundamentals of Computer Programming with C#

 /// <returns>the child on the given position</returns>
 public TreeNode<T> GetChild(int index)
 {
 return this.children[index];
 }
}

/// <summary>Represents a tree data structure</summary>
/// <typeparam name="T">the type of the values in the
/// tree</typeparam>
public class Tree<T>
{
 // The root of the tree
 private TreeNode<T> root;

 /// <summary>Constructs the tree</summary>
 /// <param name="value">the value of the node</param>
 public Tree(T value)
 {
 if (value == null)
 {
 throw new ArgumentNullException(
 "Cannot insert null value!");
 }

 this.root = new TreeNode<T>(value);
 }

 /// <summary>Constructs the tree</summary>
 /// <param name="value">the value of the root node</param>
 /// <param name="children">the children of the root
 /// node</param>
 public Tree(T value, params Tree<T>[] children)
 : this(value)
 {
 foreach (Tree<T> child in children)
 {
 this.root.AddChild(child.root);
 }
 }

 /// <summary>
 /// The root node or null if the tree is empty
 /// </summary>

www.manaraa.com

Chapter 17. Trees and Graphs 687

 public TreeNode<T> Root
 {
 get
 {
 return this.root;
 }
 }

 /// <summary>Traverses and prints tree in
 /// Depth-First Search (DFS) manner</summary>
 /// <param name="root">the root of the tree to be
 /// traversed</param>
 /// <param name="spaces">the spaces used for
 /// representation of the parent-child relation</param>
 private void PrintDFS(TreeNode<T> root, string spaces)
 {
 if (this.root == null)
 {
 return;
 }

 Console.WriteLine(spaces + root.Value);

 TreeNode<T> child = null;
 for (int i = 0; i < root.ChildrenCount; i++)
 {
 child = root.GetChild(i);
 PrintDFS(child, spaces + " ");
 }
 }

 /// <summary>Traverses and prints the tree in
 /// Depth-First Search (DFS) manner</summary>
 public void TraverseDFS()
 {
 this.PrintDFS(this.root, string.Empty);
 }
}

/// <summary>
/// Shows a sample usage of the Tree<T> class
/// </summary>
public static class TreeExample
{

www.manaraa.com

688 Fundamentals of Computer Programming with C#

 static void Main()
 {
 // Create the tree from the sample
 Tree<int> tree =
 new Tree<int>(7,
 new Tree<int>(19,
 new Tree<int>(1),
 new Tree<int>(12),
 new Tree<int>(31)),
 new Tree<int>(21),
 new Tree<int>(14,
 new Tree<int>(23),
 new Tree<int>(6))
);

 // Traverse and print the tree using Depth-First-Search
 tree.TraverseDFS();

 // Console output:
 // 7
 // 19
 // 1
 // 12
 // 31
 // 21
 // 14
 // 23
 // 6
 }
}

How Does Our Implementation Work?

Let’s discuss the given code a little. In our example we have a class Tree<T>,

which implements the actual tree. We also have a class TreeNode<T>, which

represents a single node of the tree.

The functions associated with node, like creating a node, adding a child node

to this node, and getting the number of children, are implemented at the level

of TreeNode<T>.

The rest of the functionality (traversing the tree for example) is implemented

at the level of Tree<T>. Logically dividing the functionality between the two

classes makes our implementation more flexible.

The reason we divide the implementation in two classes is that some

operations are typical for each separate node (adding a child for example),

www.manaraa.com

Chapter 17. Trees and Graphs 689

while others are about the whole tree (searching a node by its number). In

this variant of the implementation, the tree is a class that knows its root and

each node knows its children. In this implementation we can have an empty

tree (when root = null).

Here are some details about the TreeNode<T> implementation. Each node of

the tree consists of private field value and a list of children – children. The

list of children consists of elements of the same type. That way each node

contains a list of references to its direct children. There are also public

properties for accessing the values of the fields of the node. The methods that

can be called from code outside the class are:

- AddChild(TreeNode<T> child) – adds a child

- TreeNode<T> GetChild(int index) – returns a child by given index

- ChildrenCount – returns the number of children of certain node

To satisfy the condition that every node has only one parent we have defined

private field hasParent, which determines whether this node has parent or

not. This information is used only inside the class and we need it in the

AddChild(Tree<T> child) method. Inside this method we check whether the

node to be added already has parent and if so we throw and exception, saying

that this is impossible.

In the class Tree<T> we have only one get property TreeNode<T> Root,

which returns the root of the tree.

Depth-First-Search (DFS) Traversal

In the class Tree<T> is implemented the method TraverseDFS(), that calls

the private method PrintDFS(TreeNode<T> root, string spaces), which

traverses the tree in depth and prints on the standard output its elements in

tree layout using right displacement (adding spaces).

The Depth-First-Search algorithm aims to visit each of the tree nodes

exactly one. Such a visit of all nodes is called tree traversal. There are

multiple algorithms to traverse a tree but in this chapter we will discuss only

two of them: DFS (depth-first search) and BFS (breadth-first search).

The DFS algorithm starts from a given node and goes as deep in the tree

hierarchy as it can. When it reaches a node, which has no children to visit or

all have been visited, it returns to the previous node. We can describe the

depth-first search algorithm by the following simple steps:

1. Traverse the current node (e.g. print it on the console or process it in

some way).

2. Sequentially traverse recursively each of the current nodes’ child

nodes (traverse the sub-trees of the current node). This can be done by

a recursive call to the same method for each child node.

www.manaraa.com

690 Fundamentals of Computer Programming with C#

Creating a Tree

We to make creating a tree easier we defined a special constructor, which

takes for input parameters a node value and a list of its sub-trees. That

allows us to give any number of arguments of type Tree<T> (sub-trees). We

used exactly the same constructor for creating the example tree.

Traverse the Hard Drive Directories

Let’s start with another example of tree: the file system. Have you noticed

that the directories on your hard drive are actually a hierarchical structure,

which is a tree? We have folders (tree nodes) which may have child folders

and files (which both are also tree nodes).

You can think of many real life examples, where trees are used, right?

Let’s get a more detailed view of Windows file system. As we know from our

everyday experience, we create folders on the hard drive, which can contain

subfolders and files. Subfolders can also contain subfolders and so on until

you reach certain max depth limit.

The directory tree of the file system is accessible through the build in .NET

functionality: the class System.IO.DirectoryInfo. It is not present as a data

structure, but we can get the subfolders and files of every directory, so we

can traverse the file system tree by using a standard tree traversal

algorithm, such as Depth-First Search (DFS).

Below we can see what the typical directory tree in Windows looks like:

Recursive DFS Traversal of the Directories

The next example illustrates how we can recursively traverse recursively

the tree structure of given folder (using Depth-First-Search) and print on

the standard output its content:

www.manaraa.com

Chapter 17. Trees and Graphs 691

DirectoryTraverserDFS.cs

using System;
using System.IO;

/// <summary>
/// Sample class, which traverses recursively given directory
/// based on the Depth-First-Search (DFS) algorithm
/// </summary>
public static class DirectoryTraverserDFS
{
 /// <summary>
 /// Traverses and prints given directory recursively
 /// </summary>
 /// <param name="dir">the directory to be traversed</param>
 /// <param name="spaces">the spaces used for representation
 /// of the parent-child relation</param>
 private static void TraverseDir(DirectoryInfo dir,
 string spaces)
 {
 // Visit the current directory
 Console.WriteLine(spaces + dir.FullName);

 DirectoryInfo[] children = dir.GetDirectories();

 // For each child go and visit its sub-tree
 foreach (DirectoryInfo child in children)
 {
 TraverseDir(child, spaces + " ");
 }
 }

 /// <summary>
 /// Traverses and prints given directory recursively
 /// </summary>
 /// <param name="directoryPath">the path to the directory
 /// which should be traversed</param>
 static void TraverseDir(string directoryPath)
 {
 TraverseDir(new DirectoryInfo(directoryPath),
 string.Empty);
 }

 static void Main()

www.manaraa.com

692 Fundamentals of Computer Programming with C#

 {
 TraverseDir("C:\\");
 }
}

As we can see the recursive traversal algorithm of the content of the directory

is the same as the one we used for our tree.

Here we can see part of the result of the traversal:

C:\
 C:\Config.Msi
 C:\Documents and Settings
 C:\Documents and Settings\Administrator
 C:\Documents and Settings\Administrator\.ARIS70
 C:\Documents and Settings\Administrator\.jindent
 C:\Documents and Settings\Administrator\.nbi
 C:\Documents and Settings\Administrator\.nbi\downloads
 C:\Documents and Settings\Administrator\.nbi\log
 C:\Documents and Settings\Administrator\.nbi\cache
 C:\Documents and Settings\Administrator\.nbi\tmp
 C:\Documents and Settings\Administrator\.nbi\wd
 C:\Documents and Settings\Administrator\.netbeans
 C:\Documents and Settings\Administrator\.netbeans\6.0
…

Note that the above program may crash with UnauthorizedAccessException

in case you do not have access permissions for some folders on the hard disk.

This is typical for some Windows installations so you could start the traversal

from another directory to play with it, e.g. from "C:\Windows\assembly".

Breadth-First Search (BFS)

Let’s have a look at another way of traversing trees. Breadth-First Search

(BFS) is an algorithm for traversing branched data structures (like trees and

graphs). The BFS algorithm first traverses the start node, then all its direct

children, then their direct children and so on. This approach is also known as

the wavefront traversal, because it looks like the waves caused by a stone

thrown into a lake.

The Breadth-First Search (BFS) algorithm consists of the following steps:

1. Enqueue the start node in queue Q.

2. While Q is not empty repeat the following two steps:

- Dequeue the next node v from Q and print it.

- Add all children of v in the queue.

www.manaraa.com

Chapter 17. Trees and Graphs 693

The BFS algorithm is very simple and always traverses first the nodes that

are closest to the start node, and then the more distant and so on until it

reaches the furthest. The BFS algorithm is very widely used in problem

solving, e.g. for finding the shortest path in a labyrinth.

A sample implementation of BFS algorithms that prints all folders in the

file system is given below:

DirectoryTraverserBFS.cs

using System;
using System.Collections.Generic;
using System.IO;

/// <summary>
/// Sample class, which traverses given directory
/// based on the Breadth-First Search (BFS) algorithm
/// </summary>
public static class DirectoryTraverserBFS
{
 /// <summary>
 /// Traverses and prints given directory with BFS
 /// </summary>
 /// <param name="directoryPath">the path to the directory
 /// which should be traversed</param>
 static void TraverseDir(string directoryPath)
 {
 Queue<DirectoryInfo> visitedDirsQueue =
 new Queue<DirectoryInfo>();
 visitedDirsQueue.Enqueue(new DirectoryInfo(directoryPath));
 while (visitedDirsQueue.Count > 0)
 {
 DirectoryInfo currentDir = visitedDirsQueue.Dequeue();
 Console.WriteLine(currentDir.FullName);

 DirectoryInfo[] children = currentDir.GetDirectories();
 foreach (DirectoryInfo child in children)
 {
 visitedDirsQueue.Enqueue(child);
 }
 }
 }

 static void Main()
 {
 TraverseDir(@"C:\");

www.manaraa.com

694 Fundamentals of Computer Programming with C#

 }
}

If we start the program to traverse our local hard disk, we will see that the

BFS first visits the directories closest to the root (depth 1), then the folders at

depth 2, then depth 3 and so on. Here is a sample output of the program:

C:\
C:\Config.Msi
C:\Documents and Settings
C:\Inetpub
C:\Program Files
C:\RECYCLER
C:\System Volume Information
C:\WINDOWS
C:\wmpub
C:\Documents and Settings\Administrator
C:\Documents and Settings\All Users
C:\Documents and Settings\Default User
…

Binary Trees

In the previous section we discussed the basic structure of a tree. In this

section we will have a look at a specific type of tree – binary tree. This type

of tree turns out to be very useful in programming. The terminology for trees

is also valid about binary trees. Despite that below we will give some specific

explanations about thus structure.

Binary Tree – a tree, which nodes have a degree equal or less than 2 or

we can say that it is a tree with branching degree of 2. Because every

node’s children are at most 2, we call them left child and right child. They

are the roots of the left sub-tree and the right sub-tree of their parent

node. Some nodes may have only left or only right child, not both. Some

nodes may have no children and are called leaves.

Binary tree can be recursively defined as follows: a single node is a binary

tree and can have left and right children which are also binary trees.

Binary Tree – Example

Here we have an example of binary tree. The nodes are again named with

some numbers. An the figure we can see the root of the tree – "14", the left

sub-tree (with root 19) and the right sub-tree (with root 15) and a right

and left child – "3" and "21".

www.manaraa.com

Chapter 17. Trees and Graphs 695

We have to note that there is one very big difference in the definition of

binary tree from the definition of the classical tree – the order of the

children of each node. The next example will illustrate that difference:

On this figure above two totally different binary trees are illustrated – the

first one has root "19" and its left child "23" and the second root "19" and

right child "23". If that was an ordinary tree they would have been the

same. That’s why such tree we would illustrate the following way:

Remember! Although we take binary trees as a special case of

a tree structure, we have to notice that the condition for

particular order of children nodes makes them a completely

different structure.

Binary Tree Traversal

The traversal of binary tree is a classic problem which has classical

solutions. Generally there are few ways to traverse a binary tree recursively:

10

17

159

6 5 8

Root node

Left subtree
Right child

Right child

Left child

19

23

19

23

19

23

www.manaraa.com

696 Fundamentals of Computer Programming with C#

- In-order (Left-Root-Right) – the traversal algorithm first traverses

the left sub-tree, then the root and last the left sub-tree. In our example

the sequence of such traversal is: "23", "19", "10", "6", "21", "14", "3",

"15".

- Pre-order (Root-Left-Right) – in this case the algorithm first

traverses the root, then the left sub-tree and last the right sub-tree. The

result of such traversal in our example is: "14", "19", "23", "6", "10",

"21", "15", "3".

- Post-order (Left-Right-Root) – here we first traverse the left sub-

tree, then the right one and last the root. The result after the traversal

is: "23", "10", "21", "6", "19", "3", "15", "14".

Recursive Traversal of Binary Tree – Example

The next example shows an implementation of binary tree, which we will

traverse using the in-order recursive scheme.

using System;
using System.Collections.Generic;

/// <summary>Represents a binary tree</summary>
/// <typeparam name="T">Type of values in the tree</typeparam>
public class BinaryTree<T>
{
 /// <summary>The value stored in the curent node</summary>
 public T Value { get; set; }

 /// <summary>The left child of the current node</summary>
 public BinaryTree<T> LeftChild { get; private set; }

 /// <summary>The right child of the current node</summary>
 public BinaryTree<T> RightChild { get; private set; }

 /// <summary>Constructs a binary tree</summary>
 /// <param name="value">the value of the tree node</param>
 /// <param name="leftChild">the left child of the tree</param>
 /// <param name="rightChild">the right child of the tree
 /// </param>
 public BinaryTree(T value,
 BinaryTree<T> leftChild, BinaryTree<T> rightChild)
 {
 this.Value = value;
 this.LeftChild = leftChild;
 this.RightChild = rightChild;
 }

www.manaraa.com

Chapter 17. Trees and Graphs 697

 /// <summary>Constructs a binary tree with no children
 /// </summary>
 /// <param name="value">the value of the tree node</param>
 public BinaryTree(T value) : this(value, null, null)
 {
 }

 /// <summary>Traverses the binary tree in pre-order</summary>
 public void PrintInOrder()
 {
 // 1. Visit the left child
 if (this.LeftChild != null)
 {
 this.LeftChild.PrintInOrder();
 }

 // 2. Visit the root of this sub-tree
 Console.Write(this.Value + " ");

 // 3. Visit the right child
 if (this.RightChild != null)
 {
 this.RightChild.PrintInOrder();
 }
 }
}

/// <summary>
/// Demonstrates how the BinaryTree<T> class can be used
/// </summary>
public class BinaryTreeExample
{
 static void Main()
 {
 // Create the binary tree from the sample
 BinaryTree<int> binaryTree =
 new BinaryTree<int>(14,
 new BinaryTree<int>(19,
 new BinaryTree<int>(23),
 new BinaryTree<int>(6,
 new BinaryTree<int>(10),
 new BinaryTree<int>(21))),
 new BinaryTree<int>(15,

www.manaraa.com

698 Fundamentals of Computer Programming with C#

 new BinaryTree<int>(3),
 null));

 // Traverse and print the tree in in-order manner
 binaryTree.PrintInOrder();
 Console.WriteLine();

 // Console output:
 // 23 19 10 6 21 14 3 15
 }
}

How Does the Example Work?

This implementation of binary tree is slightly different from the one of the

ordinary tree and is significantly simplified.

We have a recursive class definition BinaryTree<T>, which holds a value

and left and right child nodes which are of the same type BinaryTree<T>.

We have exactly two child nodes (left and right) instead of list of children.

The method PrintInOrder() works recursively using the DFS algorithm. It

traverses each node in "in-order" (first the left child, then the node itself, then

the right child). The DFS traversal algorithm performs the following steps:

1. Recursive call to traverse the left sub-tree of the given node.

2. Traverse the node itself (print its value).

3. Recursive call to traverse the right sub-tree.

We highly recommend the reader to try and modify the algorithm and the

source code of the given example to implement the other types of binary tree

traversal of binary (pre-order and post-order) and see the difference.

Ordered Binary Search Trees

Till this moment we have seen how we can build traditional and binary

trees. These structures are very summarized in themselves and it will be

difficult for us to use them for a bigger project. Practically, in computer

science special and programming variants of binary and ordinary trees are

used that have certain special characteristics, like order, minimal depth and

others. Let's review the most important trees used in programming.

As examples for a useful properties we can give the ability to quickly search of

an element by given value (Red-Black tree); order of the elements in the

tree (ordered search trees); balanced depth (balanced trees); possibility

to store an ordered tree in a persistent storage so that searching of an

element to be fast with as little as possible read operations (B-tree), etc.

www.manaraa.com

Chapter 17. Trees and Graphs 699

In this chapter we will take a look at a more specific class of binary trees –

ordered trees. They use one often met property of the nodes in the binary

trees – unique identification key in every node. Important property of

these keys is that they are comparable. Important kind of ordered trees are

the so called "balanced search trees".

Comparability between Objects

Before continuing, we will introduce the following definition, which we will

need for the further exposure.

Comparability – we call two objects A and B comparable, if exactly one of

following three dependencies exists:

- "A is less than B"

- "A is bigger than B"

- "A is equal to B"

Similarly we will call two keys A and B comparable, if exactly one of the

following three possibilities is true: A < B, A > B or A = B.

The nodes of a tree can contain different fields but we can think about only

their unique keys, which we want to be comparable. Let’s give an example.

We have two specific nodes A and B:

In this case, the keys of A and B hold the integer numbers 19 and 7. From

Mathematics we know that the integer numbers (unlike the complex numbers)

are comparable, which according the above reasoning give us the right to

use them as keys. That’s why we can say that “A is bigger than B”, because

“19 is bigger than 17”.

Please notice! In this case the numbers depicted on the nodes

are their unique identification keys and not like before, just

some numbers.

And we arrive to the definition of the ordered binary search tree:

Ordered Binary Tree (binary search tree) is a binary tree, in which every

node has a unique key, every two of the keys are comparable and the tree is

organized in a way that for every node the following is satisfied:

- All keys in the left sub-tree are smaller than its key.

- All keys in the right sub-tree are bigger than its key.

19 7

BA

www.manaraa.com

700 Fundamentals of Computer Programming with C#

Properties of the Ordered Binary Search Trees

On the figure below we have given an example of an ordered binary

search tree. We will use this example, to give some important properties of

the binary tree’s order:

By definition we know that the left sub-tree of every node consists only of

elements, which are smaller than itself, while in the right sub-tree there

are only bigger elements. This means that if we want to find a given

element, starting from the root, either we have found it or should search it

respectively in its left or its right sub-tree, which will save unnecessary

comparisons. For example, if we search 23 in our tree, we are not going to

search for it in the left sub-tree of 19, because 23 is not there for sure (23 is

bigger than 19, so eventually it is in the right sub-tree). This saves us 5

unnecessary comparisons with each of the left sub-tree elements, but if we

were using a linked list, we would have to make these 5 comparisons.

From the elements’ order follows that the smallest element in the tree is the

leftmost successor of the root, if there is such or the root itself, if it does

not have a left successor. In our example this is the minimal element 7 and

the maximal – 35. Next useful property from this is, that every single element

from the left sub-tree of given node is smaller than every single element from

the right sub-tree of the same node.

Ordered Binary Search Trees – Example

The next example shows a simple implementation of a binary search tree.

Our point is to suggest methods for adding, searching and removing an

element in the tree. For every single operation from the above, we will give

an explanation in details. Note that our binary search tree is not balanced

and may have poor performance in certain circumstances.

www.manaraa.com

Chapter 17. Trees and Graphs 701

Ordered Binary Search Trees: Implementation of the Nodes

Just like before, now we will define an internal class, which will describe a

node’s structure. Thus we will clearly distinguish and encapsulate the

structure of a node, which our tree will contain within itself. This separate

class BinaryTreeNode<T> that we have defined as internal is visible only in

the ordered tree’s class.

Here is its definition:

BinaryTreeNode.cs

…
/// <summary>Represents a binary tree node</summary>
/// <typeparam name="T">Specifies the type for the values
/// in the nodes</typeparam>
internal class BinaryTreeNode<T> :
 IComparable<BinaryTreeNode<T>> where T : IComparable<T>
{
 // Contains the value of the node
 internal T value;

 // Contains the parent of the node
 internal BinaryTreeNode<T> parent;

 // Contains the left child of the node
 internal BinaryTreeNode<T> leftChild;

 // Contains the right child of the node
 internal BinaryTreeNode<T> rightChild;

 /// <summary>Constructs the tree node</summary>
 /// <param name="value">The value of the tree node</param>
 public BinaryTreeNode(T value)
 {
 if (value == null)
 {
 // Null values cannot be compared -> do not allow them
 throw new ArgumentNullException(
 "Cannot insert null value!");
 }

 this.value = value;
 this.parent = null;
 this.leftChild = null;
 this.rightChild = null;

www.manaraa.com

702 Fundamentals of Computer Programming with C#

 }

 public override string ToString()
 {
 return this.value.ToString();
 }

 public override int GetHashCode()
 {
 return this.value.GetHashCode();
 }

 public override bool Equals(object obj)
 {
 BinaryTreeNode<T> other = (BinaryTreeNode<T>)obj;
 return this.CompareTo(other) == 0;
 }

 public int CompareTo(BinaryTreeNode<T> other)
 {
 return this.value.CompareTo(other.value);
 }
}
…

Let’s have a look to the proposed code. Still in the name of the structure,

which we are considering – “ordered search tree”, we are talking about

order and we can achieve this order only if we have comparability among

the elements in the tree.

Comparability between Objects in C#

What does “comparability between objects” mean for us as developers? It

means that we must somehow oblige everyone who uses our data structure,

to create it passing it a type, which is comparable.

In C# the sentence “type, which is comparable” will sound like this:

T : IComparable<T>

The interface IComparable<T>, located in the namespace System, specifies

the method CompareTo(T obj), which returns a negative integer number,

zero or a positive integer number respectively if the current object is less,

equal or bigger than the one which is given to the method for comparing. Its

definition looks approximately like this:

www.manaraa.com

Chapter 17. Trees and Graphs 703

public interface IComparable<T>
{
 /// <summary>Compares the current object with another
 /// object of the same type.</summary>
 int CompareTo(T other);
}

On one hand, the implementation of this interface by given class ensures us

that its instances are comparable (more about interfaces in OOP can be found

in the "Interfaces" section of the "Defining Classes" chapter).

On the other hand, we need those nodes, described by BinaryTreeNode<T>

class to be comparable between them too. That is why it implements

IComparable<T> too. As it is shown in the code, the implementation of

IComparable<T> to the BinaryTreeNode<T> class calls the type T’s

implementation internally.

In the code we have also implemented the methods Equals(Object obj) and

GetHashCode() too. A good (recommended) practice is these two methods to

be consistent in their behavior, i.e. when two objects are the same, then their

hash-code is the same. As we will see in the chapter about hash tables, the

opposite is not necessary at all. Similarly – the expected behavior of the

Equals(Object obj) is to return true, exactly when CompareTo(T obj)

returns 0.

It’s recommended to sync the work of Equals(Object obj),

CompareTo(T obj) and GetHashCode() methods. This is their

expected behavior and it will save you a lot of hard to find

problems.

Till now, we have discussed the methods, suggested by our class. Now let’s

see what fields it provides. They are respectively for value (the key) of type T

parent – parent, left and right successor – leftChild and rightChild. The

last three are of the type of the defining them class – BinaryTreeNode

Ordered Binary Trees – Implementation of the Main Class

Now, we go to the implementation of the class, describing an ordered binary

tree – BinarySearchTree<T>. The tree by itself as a structure consists of a

root node of type BinaryTreeNode<T>, which contains internally its

successors – left and right. Internally they also contain their successors, thus

recursively down until it reaches the leaves.

An important thing is the definition BinarySearchTree<T> where T :

IComparable<T>. This constraint of the type T is necessary because of the

requirement of our internal class, which works only with types, implementing

IComparable<T>. Due to this restriction we can use BinarySearchTree<int>

and BinarySearchTree<string>, but cannot use BinarySearchTree<int[]>

www.manaraa.com

704 Fundamentals of Computer Programming with C#

and BinarySearchTree<StreamReader>, because int[] and StreamReader

are not comparable, while int and string are.

BinarySearchTree.cs

public class BinarySearchTree<T> where T : IComparable<T>
{
 /// <summary>
 /// Represents a binary tree node
 /// </summary>
 /// <typeparam name="T">The type of the nodes</typeparam>
 internal class BinaryTreeNode<T> :
 IComparable<BinaryTreeNode<T>> where T : IComparable<T>
 {
 // …
 // … The implementation from above comes here!!! …
 // …
 }

 /// <summary>
 /// The root of the tree
 /// </summary>
 private BinaryTreeNode<T> root;

 /// <summary>
 /// Constructs the tree
 /// </summary>
 public BinarySearchTree()
 {
 this.root = null;
 }

 // …
 // … The implementation of tree operations come here!!! …
 // …
}

As we mentioned above, now we will examine the following operations:

- insert an element;

- searching for an element;

- removing an element.

www.manaraa.com

Chapter 17. Trees and Graphs 705

Inserting an Element

Inserting (or adding) an element in a binary search tree means to put a

new element somewhere in the tree so that the tree must stay ordered.

Here is the algorithm: if the tree is empty, we add the new element as a root.

Otherwise:

- If the element is smaller than the root, we call recursively the same

method to add the element in the left sub-tree.

- If the element is bigger than the root, we call recursively to the same

method to add the element in the right sub-tree.

- If the element is equal to the root, we don’t do anything and exit from

the recursion.

We can clearly see how the algorithm for inserting a node, conforms to the

rule “elements in the left sub-tree are less than the root and the elements in

the right sub-tree are bigger than the root”. Here is a sample implementation

of this method. You should notice that in the addition there is a reference to

the parent, which is supported because the parent must be changed too.

/// <summary>Inserts new value in the binary search tree
/// </summary>
/// <param name="value">the value to be inserted</param>
public void Insert(T value)
{
 this.root = Insert(value, null, root);
}

/// <summary>
/// Inserts node in the binary search tree by given value
/// </summary>
/// <param name="value">the new value</param>
/// <param name="parentNode">the parent of the new node</param>
/// <param name="node">current node</param>
/// <returns>the inserted node</returns>
private BinaryTreeNode<T> Insert(T value,
 BinaryTreeNode<T> parentNode, BinaryTreeNode<T> node)
{
 if (node == null)
 {
 node = new BinaryTreeNode<T>(value);
 node.parent = parentNode;
 }
 else
 {
 int compareTo = value.CompareTo(node.value);

www.manaraa.com

706 Fundamentals of Computer Programming with C#

 if (compareTo < 0)
 {
 node.leftChild =
 Insert(value, node, node.leftChild);
 }
 else if (compareTo > 0)
 {
 node.rightChild =
 Insert(value, node, node.rightChild);
 }
 }

 return node;
}

Searching for an Element

Searching in a binary search tree is an operation which is more intuitive. In

the sample code we have shown how the search of an element can be done

without recursion and with iteration instead. The algorithm starts with

element node, pointing to the root. After that we do the following:

- If the element is equal to node, we have found the searched element

and return it.

- If the element is smaller than node, we assign to node its left

successor, i.e. we continue the searching in the left sub-tree.

- If the element is bigger than node, we assign to node its right

successor, i.e. we continue the searching in the right sub-tree.

At the end, the algorithm returns the found node or null if there is no

such node in the tree. Additionally we define a Boolean method that checks if

certain value belongs to the tree. Here is the sample code:

/// <summary>Finds a given value in the tree and
/// return the node which contains it if such exsists
/// </summary>
/// <param name="value">the value to be found</param>
/// <returns>the found node or null if not found</returns>
private BinaryTreeNode<T> Find(T value)
{
 BinaryTreeNode<T> node = this.root;
 while (node != null)
 {
 int compareTo = value.CompareTo(node.value);
 if (compareTo < 0)

www.manaraa.com

Chapter 17. Trees and Graphs 707

 {
 node = node.leftChild;
 }
 else if (compareTo > 0)
 {
 node = node.rightChild;
 }
 else
 {
 break;
 }
 }

 return node;
}

/// <summary>Returns whether given value exists in the tree
/// </summary>
/// <param name="value">the value to be checked</param>
/// <returns>true if the value is found in the tree</returns>
public bool Contains(T value)
{
 bool found = this.Find(value) != null;
 return found;
}

Removing an Element

Removing is the most complicated operation from the basic binary

search tree operations. After it the tree must keep its order.

The first step before we remove an element from the tree is to find it. We

already know how it happens. After that, we have 3 cases:

- If the node is a leaf – we point its parent’s reference to null. If the

element has no parent, it means that it is a root and we just remove it.

- If the node has only one sub-tree – left or right, it is replacing with

the root of this sub-tree.

- The node has two sub-trees. Then we have to find the smallest node

in the right sub-tree and swap with it. After this exchange the node will

have one sub-tree at most and then we remove it grounded on some of

the above two rules. Here we have to say that it can be done analogical

swap, just that we get the left sub-tree and it is the biggest element.

We leave to the reader to check the correctness of these three steps, as a

little exercise.

www.manaraa.com

708 Fundamentals of Computer Programming with C#

Now, let’s see a sample removal in action. Again we will use our ordered

tree, which we have displayed at the beginning of this point. For example,

let’s remove the element with key 11.

The node 11 has two sub-trees and according to our algorithm, it must be

exchanged with the smallest element from the right sub-tree, i.e. with 13.

After the exchange, we can remove 11 (it is a leaf). Here is the final result:

Below is the sample code, which implements the described algorithm:

1313 35

237 16

19

1111 17

www.manaraa.com

Chapter 17. Trees and Graphs 709

/// <summary>Removes an element from the tree if exists
/// </summary>
/// <param name="value">the value to be deleted</param>
public void Remove(T value)
{
 BinaryTreeNode<T> nodeToDelete = Find(value);
 if (nodeToDelete != null)
 {
 Remove(nodeToDelete);
 }
}

private void Remove(BinaryTreeNode<T> node)
{
 // Case 3: If the node has two children.
 // Note that if we get here at the end
 // the node will be with at most one child
 if (node.leftChild != null && node.rightChild != null)
 {
 BinaryTreeNode<T> replacement = node.rightChild;
 while (replacement.leftChild != null)
 {
 replacement = replacement.leftChild;
 }
 node.value = replacement.value;
 node = replacement;
 }

 // Case 1 and 2: If the node has at most one child
 BinaryTreeNode<T> theChild = node.leftChild != null ?
 node.leftChild : node.rightChild;

 // If the element to be deleted has one child
 if (theChild != null)
 {
 theChild.parent = node.parent;

 // Handle the case when the element is the root
 if (node.parent == null)
 {
 root = theChild;
 }
 else
 {

www.manaraa.com

710 Fundamentals of Computer Programming with C#

 // Replace the element with its child sub-tree
 if (node.parent.leftChild == node)
 {
 node.parent.leftChild = theChild;
 }
 else
 {
 node.parent.rightChild = theChild;
 }
 }
 }
 else
 {
 // Handle the case when the element is the root
 if (node.parent == null)
 {
 root = null;
 }
 else
 {
 // Remove the element - it is a leaf
 if (node.parent.leftChild == node)
 {
 node.parent.leftChild = null;
 }
 else
 {
 node.parent.rightChild = null;
 }
 }
 }
}

We add also a DFS traversal method to enable printing the values stored in

the tree in ascending order (in-order):

/// <summary>Traverses and prints the tree</summary>
public void PrintTreeDFS()
{
 PrintTreeDFS(this.root);
 Console.WriteLine();
}

/// <summary>Traverses and prints the ordered binary search tree

www.manaraa.com

Chapter 17. Trees and Graphs 711

/// tree starting from given root node.</summary>
/// <param name="node">the starting node</param>
private void PrintTreeDFS(BinaryTreeNode<T> node)
{
 if (node != null)
 {
 PrintTreeDFS(node.leftChild);
 Console.Write(node.value + " ");
 PrintTreeDFS(node.rightChild);
 }
}

Finally we demonstrate our ordered binary search tree in action:

class BinarySearchTreeExample
{
 static void Main()
 {
 BinarySearchTree<string> tree =
 new BinarySearchTree<string>();
 tree.Insert("Telerik");
 tree.Insert("Google");
 tree.Insert("Microsoft");
 tree.PrintTreeDFS(); // Google Microsoft Telerik
 Console.WriteLine(tree.Contains("Telerik")); // True
 Console.WriteLine(tree.Contains("IBM")); // False
 tree.Remove("Telerik");
 Console.WriteLine(tree.Contains("Telerik")); // False
 tree.PrintTreeDFS(); // Google Microsoft
 }
}

Note that when we print our binary search tree, it is always sorted in

ascending order (in our case in alphabetical order). Thus in our example the

binary search tree of strings behaves like a set of strings (we will explain the

"Set" data structure in the chapter "Dictionaries, Hash Tables and Sets").

It is important to know that our class BinarySearchTree<T> implements a

binary search tree, but not balanced / self-balancing binary search tree.

Although it works correctly, its performance can be poor in certain

circumstances, like we shall explain in the next section. Balanced trees are

more complex concept and use more complex algorithm which guarantees

their balanced depth. Let’s take a look at them.

www.manaraa.com

712 Fundamentals of Computer Programming with C#

Balanced Trees

As we have seen above, the ordered binary trees are a very comfortable

structure to search within. Defined in this way, the operations for creating and

deleting the tree have a hidden flaw: they don't balance the tree and its

depth could become very big.

Think a bit what will happen if we sequentially include the elements: 1, 2, 3,

4, 5, 6? The ordered binary tree will look like this:

In this case, the binary tree degenerates into a linked list. Because of

this the searching in this tree is going to be much slower (with N steps, not

with log(N)), as to check whether an item is inside, in the worst case we will

have to go through all elements.

We will briefly mention the existence of data structures, which save the

logarithmic behavior of the operations adding, searching and removing an

element in the common case. We will introduce to you the following

definitions before we go on to explain how they are achieved:

Balanced binary tree – a binary tree in which no leaf is at “much

greater” depth than any other leaf. The definition of “much greater” is

rough depends on the specific balancing scheme.

Perfectly balanced binary tree – binary tree in which the difference in the

left and right tree nodes’ count of any node is at most one.

Without going in details we will mention that when given binary search tree

is balanced, even not perfectly balanced, then the operations of adding,

searching and removing an element in it will run in approximately a

logarithmic number of steps even in the worst case. To avoid imbalance in

the tree to search, apply operations that rearrange some elements of the tree

when adding or removing an item from it. These operations are called

rotations in most of the cases. The type of rotation should be further

specified and depends on the implementation of the specific data structure. As

examples for structures like these we can give Red-Black tree, AVL-tree,

AA-tree, Splay-tree and others.

1

2

3

4

5

6

www.manaraa.com

Chapter 17. Trees and Graphs 713

Balanced search trees allow quickly (in general case for approximately

log(n) number of steps) to perform the operations like searching, adding

and deleting of elements. This is due to two main reasons:

- Balanced search trees keep their elements ordered internally.

- Balanced search trees keep themselves balanced, i.e. their depth is

always in order of log(n).

Due to their importance in computer science we will talk about balanced

search trees and their standard implementations in .NET Framework many

times when we discuss data structures and their performance in this chapter

and in the next few chapters.

Balanced search trees can be binary or non-binary.

Balanced binary search trees have multiple implementations like Red-

Black Trees, AA Trees and AVL Trees. All of them are ordered, balanced

and binary, so they perform insert / search / delete operations very fast.

Non-binary balanced search trees also have multiple implementations with

different special properties. Examples are B-Trees, B+ Trees and Interval

Trees. All of them are ordered, balanced, but not binary. Their nodes can

typically hold more than one key and can have more than two child nodes.

These trees also perform operations like insert / search / delete very fast.

For a more detailed examination of these and other structures we recommend

the reader to look closely at literature about algorithms and data structures.

The Hidden Class TreeSet<T> in .NET Framework

Once we have seen ordered binary trees and seen what their advantage is

comes the time to show and what C# has ready for us concerning them.

Perhaps each of you secretly hoped that he / she will never have to

implement a balanced ordered binary search tree, because it looks quite

complicated.

So far we have looked at what balanced trees are to get an idea about them.

When you need to use them, you can always count on getting them from

somewhere already implemented. In the standard libraries of the .NET

Framework there are ready implementations of balanced trees, but also on

the Internet you can find a lot of external libraries.

In the namespace System.Collections.Generic a class TreeSet<T> exists,

which is an implementation of a red-black tree. This, as we know, means

that adding, searching and deleting items in the tree will be made with

logarithmic complexity (i.e. if we have one million items operation will be

performed for about 20 steps). The bad news is that this class is internal

and it is visible only in this library. Fortunately, this class is used internally by

a class, which is publicly available – SortedDictionary<T>. More info about

the SortedDictionary<T> class you can find in the section "Sets" of chapter

"Dictionaries, Hash-Tables and Sets".

www.manaraa.com

714 Fundamentals of Computer Programming with C#

Graphs

The graphs are very useful and fairly common data structures. They are used

to describe a wide variety of relationships between objects and in practice

can be related to almost everything. As we will see later, trees are a subset of

the graphs and also lists are special cases of trees and thus of graphs, i.e. the

graphs represent a generalized structure that allows modeling of very large

set of real-world situations.

Frequent use of graphs in practice has led to extensive research in "graph

theory", in which there is a large number of known problems for graphs and

for most of them there are well-known solutions.

Graphs – Basic Concepts

In this section we will introduce some of the important concepts and

definitions. Some of them are similar to those introduced about the tree data

structure, but as we shall see, there are very serious differences, because

trees are just special cases of graphs.

Let’s consider the following sample graph (which we would later call a finite

and oriented). Again, like with trees, we have numbered the graph, as it is

easier to talk about any of them specifically:

The circles of this scheme we will call vertices (nodes) and the arrows

connecting them we will call directed edges. The vertex of which the arrow

comes out we will call predecessor of that the arrow points. For example

“19” is a predecessor of “1”. In this case, “1” is a successor of “19”. Unlike

the structure tree, here each vertex can have more than one predecessor.

Like “21”, it has three – “19”, “1” and “7”. If two of the vertices are connected

with edge, then we say these two vertices are adjacent through this edge.

www.manaraa.com

Chapter 17. Trees and Graphs 715

Next follows the definition of finite directed graph.

Finite directed graph is called the couple (V, E), in which V is a finite set of

vertices and E is a finite set of directed edges. Each edge e that belongs to

E is an ordered couple of vertices u and v or e = (u, v), which are defining it

in a unique way.

For better understanding of this definition we are strongly recommending to

the reader to think of the vertices as they are cities, and the directed edges

as one-way roads. That way, if one of the vertices is Sofia and the other is

Paris, the one-way path (edge) will be called Sofia – Paris. In fact this is one

of the classic examples for the use of the graphs – in tasks with paths.

If instead of arrows, the vertices are connected with segments, then the

segments will be called undirected edges, and the graph – undirected.

Practically we can imagine that an undirected edge from vertex A to vertex B

is two-way edge and equivalent to two opposite directed edges between the

same two vertices:

Two vertices connected with an edge are called neighbors (adjacent).

For the edges a weight function can be assigned, that associates each edge

to a real number. These numbers we will call weights (costs). For examples

of the weights we can mention some distance between neighboring cities, or

the length of the directed connections between two neighboring cities, or the

crossing function of a pipe, etc. A graph that has weights on the edges is

called weighted. Here is how it is illustrated a weighted graph.

A B

A B

7

19

21

14

1

12
31

67

3

3

16

2

4

12
13

14

23

0

www.manaraa.com

716 Fundamentals of Computer Programming with C#

Path in a graph is a sequence of vertices v1, v2, …, vn,, such as there is an

edge from vi to vi+1 for every i from 1 to n-1. In our example path is the

sequence "1", "12", "19", "21". "7", "21" and "1" is not a path because there

is no edge starting from "21" and ending in "1".

Length of path is the number of edges connecting vertices in the sequence

of the vertices in the path. This number is equal to the number of vertices in

the path minus one. The length of our example for path "1", "12", "19", "21"

is three.

Cost of path in a weighted graph, we call the sum of the weights (costs) of

the edges involved in the path. In real life the road from Sofia to Madrid, for

example, is equal to the length of the road from Sofia to Paris plus the length

of the road from Madrid to Paris. In our example, the length of the path "1",

"12", "19" and "21" is equal to 3 + 16 + 2 = 21.

Loop is a path in which the initial and the final vertex of the path match.

Example of vertices forming loop are "1", "12" and "19". In the same time

"1", "7" and "21" do not form a loop.

Looping edge we will call an edge, which starts and ends in the same vertex.

In our example the vertex "14" is looped.

A connected undirected graph we call an undirected graph in which there

is a path from each node to each other. For example, the following graph is

not connected because there is no path from "1" to "7".

So we already have enough knowledge to define the concept tree in other

way, as a special kind of graph:

Tree – undirected connected graph without loops.

As a small exercise we let the reader show why all definitions of tree we gave

in this chapter are equivalent.

Graphs – Presentations

There are a lot of different ways to present a graph in the computer

programming. Different representations have different properties and what

exactly should be selected depends on the particular algorithm that we want

to apply. In other words – we present the graph in a way, so that the

1 2

13 7

31

www.manaraa.com

Chapter 17. Trees and Graphs 717

operations that our algorithm does on it to be as fast as possible. Without

falling into greater details we will set out some of the most common

representations of graphs.

- List of successors – in this representation for each vertex v a list of

successor vertices is kept (like the tree’s child nodes). Here again, if the

graph is weighted, then to each element of the list of successors an

additional field is added indicating the weight of the edge to it.

- Adjacency matrix – the graph is represented as a square matrix

g[N][N], where if there is an edge from vi to vj, then the position

g[i][j] is contains the value 1. If such an edge does not exist, the field

g[i][j] is contains the value 0. If the graph is weighted, in the position

g[i][j] we record weight of the edge, and matrix is called a matrix of

weights. If between two nodes in this matrix there is no edge, then it is

recorded a special value meaning infinity. If the graph is undirected, the

adjacency matrix will be symmetrical.

- List of the edges – it is represented through the list of ordered pairs

(vi, vj), where there is an edge from vi to vj. If the graph is weighted,

instead ordered pair we have ordered triple, and its third element shows

what the weight of the edge is.

- Matrix of incidence between vertices and edges – in this case,

again we are using a matrix but with dimensions g[M][N], where N is

the number of vertices, and M is the number of edges. Each column

represents one edge, and each row a vertex. Then the column

corresponding to the edge (vi, vj) will contain 1 only at position i and

position j, and other items in this column will contain 0. If the edge is a

loop, i.e. is (vi, vi), then on position i we record 2. If the graph we want

to represent is oriented and we want to introduce edge from vi to vj,

then to position i we write 1 and to the position j we write -1.

The most commonly used representation of graphs is the list of successors.

Graphs – Basic Operations

The basic operations in a graph are:

- Creating a graph

- Adding / removing a vertex / edge

- Check whether an edge exists between two vertices

- Finding the successors of given vertex

We will offer a sample implementation of the graph representation with

a list of successors and we will show how to perform most of the

operations. This kind of implementation is good when the most often

operation we need is to get the list of all successors (child nodes) for a certain

vertex. This graph representation needs a memory of order N + M where N

is the number of vertices and M is the number of edges in the graph.

www.manaraa.com

718 Fundamentals of Computer Programming with C#

In essence the vertices are numbered from 0 to N-1 and our Graph class holds

for each vertex a list of the numbers of all its child vertices. It does not work

with the nodes, but with their numbers in the range [0...N-1]. Let’s explore

the source code of our sample graph:

using System;
using System.Collections.Generic;

/// <summary>Represents a directed unweighted graph structure
/// </summary>
public class Graph
{
 // Contains the child nodes for each vertex of the graph
 // assuming that the vertices are numbered 0 ... Size-1
 private List<int>[] childNodes;

 /// <summary>Constructs an empty graph of given size</summary>
 /// <param name="size">number of vertices</param>
 public Graph(int size)
 {
 this.childNodes = new List<int>[size];
 for (int i = 0; i < size; i++)
 {
 // Assing an empty list of adjacents for each vertex
 this.childNodes[i] = new List<int>();
 }
 }

 /// <summary>Constructs a graph by given list of
 /// child nodes (successors) for each vertex</summary>
 /// <param name="childNodes">children for each node</param>
 public Graph(List<int>[] childNodes)
 {
 this.childNodes = childNodes;
 }

 /// <summary>
 /// Returns the size of the graph (number of vertices)
 /// </summary>
 public int Size
 {
 get { return this.childNodes.Length; }
 }

 /// <summary>Adds new edge from u to v</summary>

www.manaraa.com

Chapter 17. Trees and Graphs 719

 /// <param name="u">the starting vertex</param>
 /// <param name="v">the ending vertex</param>
 public void AddEdge(int u, int v)
 {
 childNodes[u].Add(v);
 }

 /// <summary>Removes the edge from u to v if such exists
 /// </summary>
 /// <param name="u">the starting vertex</param>
 /// <param name="v">the ending vertex</param>
 public void RemoveEdge(int u, int v)
 {
 childNodes[u].Remove(v);
 }

 /// <summary>
 /// Checks whether there is an edge between vertex u and v
 /// </summary>
 /// <param name="u">the starting vertex</param>
 /// <param name="v">the ending vertex</param>
 /// <returns>true if there is an edge between
 /// vertex u and vertex v</returns>
 public bool HasEdge(int u, int v)
 {
 bool hasEdge = childNodes[u].Contains(v);
 return hasEdge;
 }

 /// <summary>Returns the successors of a given vertex
 /// </summary>
 /// <param name="v">the vertex</param>
 /// <returns>list of all successors of vertex v</returns>
 public IList<int> GetSuccessors(int v)
 {
 return childNodes[v];
 }
}

To illustrate how our graph data structure works, we will create small

program that creates a graph and traverses it by the DFS algorithm. To

play a bit with graphs, the goal of our graph traversal algorithm will be to

count how many connected components the graph has.

By definition in undirected graph if a path exists between two nodes, they

belong to the same connected component and if no path exists between

www.manaraa.com

720 Fundamentals of Computer Programming with C#

two nodes, they belong to different connected components. For example

consider the following undirected graph:

It has 3 connected components: {0, 4}, {1, 2, 6, 3} and {5}.

The code below creates a graph corresponding to the figure above and by

DFS traversal finds all its connected components. This is straightforward:

pass through all vertices and once unvisited vertex is found, all connected to

it vertices (directly or indirectly via some a path) are found by DFS traversal,

each of them is printed and marked as visited. Below is the code:

class GraphComponents
{
 static Graph graph = new Graph(new List<int>[] {
 new List<int>() {4}, // successors of vertice 0
 new List<int>() {1, 2, 6}, // successors of vertice 1
 new List<int>() {1, 6}, // successors of vertice 2
 new List<int>() {6}, // successors of vertice 3
 new List<int>() {0}, // successors of vertice 4
 new List<int>() {}, // successors of vertice 5
 new List<int>() {1, 2, 3} // successors of vertice 6
 });

 static bool[] visited = new bool[graph.Size];

 static void TraverseDFS(int v)
 {
 if (!visited[v])
 {
 Console.Write(v + " ");
 visited[v] = true;
 foreach (int child in graph.GetSuccessors(v))
 {
 TraverseDFS(child);
 }
 }
 }

 static void Main()
 {

2

63

0 4

1

5

www.manaraa.com

Chapter 17. Trees and Graphs 721

 Console.WriteLine("Connected graph components: ");
 for (int v = 0; v < graph.Size; v++)
 {
 if (!visited[v])
 {
 TraverseDFS(v);
 Console.WriteLine();
 }
 }
 }
}

If we run the above code, we will get the following output (the connected

components of our sample graph shown above):

Connected graph components:
0 4
1 2 6 3
5

Common Graph Applications

Graphs are used to model many situations of reality, and tasks on graphs

model multiple real problems that often need to be resolved. We will give just

a few examples:

- Map of a city can be modeled by a weighted oriented graph. On

each street, edge is compared with a length, corresponding to the length

of the street, and direction – the direction of movement. If the street is

a two-way, it can be compared to two edges in both directions. At each

intersection there is a node. In such a model there are natural tasks

such as searching for the shortest path between two intersections,

checking whether there is a road between two intersections, checking

for a loop (if we can turn and go back to the starting position) searching

for a path with a minimum number of turns, etc.

- Computer network can be modeled by an undirected graph, whose

vertices correspond to the computers in the network, and the edges

correspond to the communication channels between the computers. To

the edges different numbers can be compared, such as channel capacity

or speed of the exchange, etc. Typical tasks for such models of a

network are checking for connectivity between two computers,

checking for double-connectivity between two points (existence of

double-secured channel, which remains active after the failure of any

computer), finding a minimal spanning tree (MST), etc. In particular,

the Internet can be modeled as a graph, in which are solved

www.manaraa.com

722 Fundamentals of Computer Programming with C#

problems for routing packets, which are modeled as classical graph

problems.

- The river system in a given region can be modeled by a weighted

directed graph, where each river is composed of one or more edges,

and each node represents the place where two or more rivers flow into

another one. On the edges can be set values, related to the amount of

water that goes through them. Naturally with this model there are tasks

such as calculating the volume of water, passing through each vertex

and anticipate of possible flood in increasing quantities.

You can see that the graphs can be used to solve many real-world

problems. Hundreds of books and research papers are written about graphs,

graph theory and graph algorithms. There are dozens of classic tasks for

graphs, for which there are known solutions or it is known that there is no

efficient solution. The scope of this chapter does not allow mentioning all of

them, but we hope that through the short presentation we have awaken your

interest in graphs, graph algorithms and their applications and spur you

to take enough time to solve the tasks about graphs in the exercises.

Exercises

1. Write a program that finds the number of occurrences of a number

in a tree of numbers.

2. Write a program that displays the roots of those sub-trees of a tree,

which have exactly k nodes, where k is an integer.

3. Write a program that finds the number of leaves and number of

internal vertices of a tree.

4. Write a program that finds in a binary tree of numbers the sum of the

vertices of each level of the tree.

5. Write a program that finds and prints all vertices of a binary tree,

which have for only leaves successors.

6. Write a program that checks whether a binary tree is perfectly

balanced.

7. Let’s have as given a graph G(V, E) and two of its vertices x and y.

Write a program that finds the shortest path between two vertices

measured in number of vertices staying on the path.

8. Let’s have as given a graph G(V, E). Write a program that checks

whether the graph is cyclic.

9. Implement a recursive traversal in depth in an undirected graph and a

program to test it.

10. Write breadth first search (BFS), based on a queue, to traverse a

directed graph.

www.manaraa.com

Chapter 17. Trees and Graphs 723

11. Write a program that searches the directory C:\Windows\ and all its

subdirectories recursively and prints all the files which have extension

*.exe.

12. Define classes File {string name, int size} and Folder {string
name, File[] files, Folder[] childFolders}. Using these classes,

build a tree that contains all files and directories on your hard disk,

starting from C:\Windows\. Write a method that calculates the sum of

the sizes of files in a sub-tree and a program that tests this method. To

crawl the directories use recursively crawl depth (DFS).

13. * Write a program that finds all loops in a directed graph.

14. Let’s have as given a graph G (V, E). Write a program that finds all

connected components of the graph, i.e. finds all maximal connected

sub-graphs. A maximal connected sub-graph of G is a connected graph

such that no other connected sub-graphs of G, contains it.

15. Suppose we are given a weighted oriented graph G (V, E), in which

the weights on the side are nonnegative numbers. Write a program that

by a given vertex x from the graph finds the shortest paths from it to

all other vertical.

16. We have N tasks to be performed successively. We are given a list of

pairs of tasks for which the second is dependent on the outcome of the

first and should be executed after it. Write a program that arranges

tasks in such a way that each task is be performed after all the tasks

which it depends on have been completed. If no such order exists print

an appropriate message.

Example: {1, 2}, {2, 5}, {2, 4}, {3, 1} 3, 1, 2, 5, 4

17. An Eulerian cycle in a graph is called a loop that starts from a vertex,

passes exactly once through all edges in the graph returns to the starting

vertex. Vertices can be visited repeatedly. Write a program that by a

given graph, finds whether the graph has an Euler loop.

18. A Hamiltonian cycle in a graph is a cycle containing every vertex in the

graph exactly once. Write a program, which by given weighted oriented

graph G (V, E), finds Hamiltonian loop with a minimum length, if

such exists.

Solutions and Guidelines

1. Traverse the tree recursively in depth (using DFS) and count the

occurrences of the given number.

2. Traverse the tree recursively in depth (using DFS) and check for each

node the given condition. For each node the number of nodes in its

subtree is: 1 + the sum of the nodes of each of its child subtrees.

3. You can solve the problem by traversing the tree in depth recursively.

www.manaraa.com

724 Fundamentals of Computer Programming with C#

4. Use traversing in depth or breadth and when shifting from one node

to another keep its level (depth). Knowing the levels of the nodes at

each step, the wanted amount can be easily calculated.

5. You can solve the problem by recursively traversing the tree in depth

and by checking the given condition.

6. By recursive traversal in depth (DFS) for every node of the tree

calculate the depths of its left and right sub-trees. Then check

immediately whether the condition of the definition for perfectly balanced

tree is executed (check the difference between the left and right sub-

tree’s depths).

7. Use the algorithm of traversing in breadth (BFS) as a base. In the

queue put every node always along with its predecessor. This will help

you to restore the path between the nodes (in reverse order).

8. Use traversing in depth or in breadth. Mark every node, if already

visited. If at any time you reach to a node, which has already been

visited, then you have found loop.

Think about how you can find and print the loop itself. Here is an

idea: while traversing every node keep its predecessor. If at any

moment you reach a node that has already been visited, you should have

a path to the initial node. The current path in the recursion stack is also a

path to the wanted node. So at some point we have two different paths

from one node to the initial node. By merging the two paths you can

easily find the loop.

9. Use the DFS algorithm. Testing can be done with few example graphs.

10. Use the BFS algorithm. Instead of putting the vertices of the graph in the

queue, put their numbers (0 … N-1). This will simplify the algorithm.

11. Use traversing in depth and System.IO.Directory class.

12. Use the example of the tree data structure given in this chapter. Each

directory from the tree should two arrays (or lists) of descendants:

subdirectories and files.

13. Use the solution of problem 8, but modify it so it does not stop when it

finds a loop, but continues. For each loop you should check if you have

already found it. This problem is more complex than you may expect!

14. Use the algorithms for traversing in breadth or depth as a base.

15. Use the Dijkstra’s algorithm (find it on the Internet).

16. The requested order is called "topological sorting of a directed graph".

It can be implemented in two ways:

For every task t we should know how many others tasks P(t) it depends

on. We find task t0, which is independent, i.e. P(t0)=0 and we execute it.

We reduce P(t) for every task, which depends from task t0. Again we

look for a task, which is independent and we execute it. We repeat until

www.manaraa.com

Chapter 17. Trees and Graphs 725

the tasks end or until we find a moment when there is no task tk having

P(tk)=0. In the last case no solution exists due to a cyclic dependency.

We can solve the task with traversing the graph in depth and printing

every node just before leaving it. That means that at any time of printing

of a task, all the tasks that depend on it should have already been

printed. The topological sorting will be produced in reversed order.

17. The graph must be connected and the degree of each of its nodes

must be even in order an Eulerian cycle in a graph to exits (can you

prove this?). With series of DFS traversals you can find cycles in the

graph and to remove the edges involved in them. Finally, by joining the

cycles you will get the Eulerian cycle. See more about Eulerian paths and

cycles at http://en.wikipedia.org/wiki/Eulerian_path.

18. If you write a true solution of the problem, check whether it works for a

graph with 200 nodes. Do not try to solve the problem so it could work

with a large number of nodes! If someone manages to solve it for large

numbers of nodes, he will remain permanently in history! See also the

Wikipedia article http://en.wikipedia.org/wiki/Hamiltonian_path_problem.

You might try some recursive algorithm for generating all paths but

accept that it will be slow. Techniques like backtracking and branch and

bound could help a bit but generally this problem is NP-complete and

thus no efficient solution is known to exist for it.

http://en.wikipedia.org/wiki/Eulerian_path
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/NP-complete

www.manaraa.com

www.manaraa.com

Chapter 18. Dictionaries,
Hash-Tables and Sets

In This Chapter

In this chapter we will analyze more complex data structures like

dictionaries and sets, and their implementations with hash-tables and

balanced trees. We will explain in more details what hashing and hash-

tables mean and why they are such an important part of programming. We

will discuss the concept of "collisions" and how they might happen when

implementing hash-tables. Also we will offer you different types of approaches

for solving this type of issues. We will look at the abstract data structure set

and explain how it can be implemented with the ADTs dictionary and

balanced search tree. Also we will provide you with examples that illustrate

the behavior of these data structures with real world examples.

Dictionary Data Structure

In the last few chapters we got familiar with some classic and very important

data structures – arrays, lists, trees and graphs. In this chapter we will get

familiar with the so called "dictionaries", which are extremely useful and

widely used in the programming.

The dictionaries are also known as associative arrays or maps. In this book

we are going to use the terminology "dictionary". Every element in the

dictionary has a key and an associated value for this key. Both the key and

the value represent a pair. The analogy with the real world dictionary comes

from the fact, that in every dictionary, for every for word (key), we also have

a description related to this word (value).

As well as the data (values), that the dictionary holds, there

is also a key that is used for searching and finding the

required values. The elements of the dictionary are

represented by pairs (key, value), where the key is used for

searching.

Dictionary Data Structure – Example

We are going to illustrate what exactly the data structure dictionary means

using an everyday, real world example.

www.manaraa.com

728 Fundamentals of Computer Programming with C#

When you go to a theatre, opera or a concert, there is usually a place where

you can leave your outdoor clothing. The employee than takes your jacket

and gives you a number. When the event is over, on your way out, you give

them back the same number. The employee uses this number to search and

find your jacket to give back to you.

Thanks to this example we can see that the idea for using a key (the number

that the employee gives you) to store a value (your jacket), and later having

the option to access it, is not so abstract. Actually this is a method that is

often widely used not only in programming, but also in many other practical

areas.

When using the ADT dictionary, the key may not just be a number, but any

other type of object. In the case, when we have a key (number), we could

implement this type of structure as a regular array. In this scenario the set of

keys is already known – these are the numbers from 0 to n, where n
represents the size of the array (when n is within the allowed limits). The idea

of the dictionaries is to provide us with more flexibility regarding the set of

the keys.

When using dictionaries, the set of keys usually is a randomly chosen set of

values like real numbers or strings. The only restriction is that we can

distinguish one key from the other. Later we will take a look at some

additional requirements for the keys that are needed for the different kinds of

implementations.

For every key in the dictionary, there is a corresponding value. One key

can hold only one value. The aggregation of all the pairs (key, value)

represents the dictionary.

Here is the first example for using a dictionary in .NET:

IDictionary<string, double> studentMarks =
 new dictionary<string, double>();

studentMarks["Paul"] = 3.00;
Console.WriteLine("Paul 's mark: {0:0.00}",
 studentMarks["Paul"]);

Later in this chapter, we will find out the result from the execution of the

example above.

The Abstract Data Structure “Dictionary” (Associative
Array, Map)

In programming the abstract data structure "dictionary" is represented

by many aggregated pairs (key, value) along with predefined methods for

accessing the values by a given key. Alternatively this data structure can also

be called a "map" or "associative array".

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 729

Described below are the required operations, defined by this data structure:

- void Add(K key, V value) – adds given key-value pair in the

dictionary. With most implementations of this class in .NET, when

adding a key that already exists, an exception is thrown.

- V Get(K key) – returns the value by the specified key. If there is no

pair with this key, the method returns null or throws an exception

depending on the specific dictionary implementation.

- bool Remove(key) – removes the value, associated with the specified

key and returns a Boolean value, indicating if the operation was

successful.

Here are some additional methods, which are supported by the ADT.

- bool Contains(key) – returns true if the dictionary has a pair with

the selected key

- int Count – returns the number of elements (key value pairs) in the

dictionary

Other operations that are usually supported are: extracting all of the keys,

values or key value pairs and importing them into another structure (array,

list). This way they can easily be traversed using a loop.

For the comfort of .NET developers, the IDictionary<K, V>

interface holds an indexing property V this[K] { get; set; },

which is usually implemented by calling the methods V
Get(K), Add(K, V).

Bear in mind that the access method (accessor) get of the

property V this[K] of the class Dictionary<K, V> in .NET

throws an exception if the given key K does not exist in the

dictionary. In order to access the value of a certain key,

without having to worry about exceptions, use the method

bool TryGetValue(K key, out V value).

The Interface IDictionary<K, V>

In .NET there is a standard interface IDictionary<K, V> where K defines the

type of the key, and V type of the value. It defines all of the basic operations

that the dictionaries should implement. IDictionary<K, V> corresponds to

the abstract data structure "dictionary" and defines the operations, mentioned

above, but without supplying an actual implementation of them. This interface

is defined in assembly mscorelib, namespace System.Collections.Generic.

In .NET interfaces represent specifications of methods for a certain class.

They define methods without implementation, which should be implemented

by the classes that inherit them. How the interfaces and inheritance work we

will discuss in more details in the chapter "Principles of the Object-Oriented

Programming". For the moment all you need to know is that interfaces define

www.manaraa.com

730 Fundamentals of Computer Programming with C#

which methods and fields should be implemented in the classes that inherit

the interface.

In this chapter we will take a look at the two most popular dictionary

implementations – with a balanced tree and a hash-table. It’s extremely

important for you to know how they differ from one another, and which are

the main principles related to them. Otherwise you risk using them improperly

and inefficiently.

In .NET Framework there are two major implementations of the interface

IDictionary<K, V> – Dictionary<K, V> and SortedDictionary<K, V>.

SortedDictionary is an implementation by a balanced (red-black) tree, and

Dictionary – by a hash-table.

Except for IDictionary<K, V> in .NET there is one more

interface – IDictionary, along with the classes implementing

it: Hashtable, ListDictionary and HybridDictionary. They are

heritage from the first version of .NET. These classes need to

be used only on special occasions. Much more preferable is

the use of Dictionary<K, V> or SortedDictionary<K, V>.

In this and the next chapter we will analyze when the different

implementations of dictionaries are used.

Implementation of Dictionary with Red-Black Tree

Because the implementation of a dictionary with a balanced tree is very

extensive and complex task, we will not examine it in source code. Instead we

will analyze the class SortedDictionary<K, V>, that comes with the

standard .NET library. We strongly recommend the curious readers to look at

the decompiled code of the SortedDictionary class using some of the

decompilation tools mentioned in the chapter "Introduction to Programming"

like JustDecompile.

As we mentioned in the previous chapter, a red-black tree is an ordered

binary balanced search tree, that’s used for searching. This is why one of

the important requirements for the set of keys used by SortedDictionary<K,
V> is comparability. This means that, if we have two keys, either one of

them should be bigger, or they should be equal. The keys used in

SortedDictionary<K, V> should implement IComparable<K>.

The usage of the binary search tree gives us a great advantage: the keys

in the dictionary are stored ordered. Thanks to this feature, if we need

the data ordered by keys, we don’t need to perform any additional sorting.

Actually, this is the only advantage of this dictionary implementation

compared to the hash-table.

A thing that should be mentioned is that keeping the keys ordered comes with

its price. Searching for the elements using in an ordered balanced tree is

slower (typically takes log(n) steps) than using a hash-table (typical takes

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 731

fixed number of steps). Because of this, if there is no requirement for the

keys to be ordered, it’s better to use Dictionary<K, V>.

Use a balanced tree dictionary only when you need your pairs

(key, value) to be ordered by key. Bear in mind that the

balanced tree comes with the complexity of the algorithm

log(n), for searching, adding and deleting elements.

Compared to this, the complexity used in hash-table may

reach a linear value.

The Class SortedDictionary<K, V>

The class SortedDictionary<K, V> is a dictionary implementation, which

uses a red-black tree. This class implements all the standard operations

defined in the interface IDictionary<K, V>.

Using SortedDictionary Class – Example

Now we will solve a practical problem, where using the class

SortedDictionary is a good idea. Let’s say we have arbitrary text. Our task

would be to find all the different words in the text, and the number of

occurrences of these words. Additionally we should print all the words found

in alphabetical order.

For this task using a dictionary is a really good idea. We can use the

different words in the text for keys, and the value for each key would be the

number of occurrences for each word in our text.

The algorithm for counting the words is the following: we read the text

word by word. For each word we check if it already exists in the dictionary. If

the answer is no, we add a new element in the dictionary with a value of 1. If

the answer is yes – we increase the old value of the element by one, so as to

count the last occurrence.

The elements of the ordered dictionary SortedDictionary<string, int> will

be ordered by their key during the iteration process. This way we met the

additional requirement for the words to be ordered alphabetically. Below is a

sample implementation of the described algorithm:

WordCountingWithSortedDictionary.cs

using System;
using System.Collections.Generic;

class WordCountingWithSortedDictionary
{
 private static readonly string Text =
 "Mary had a little lamb " +
 "little Lamb, little Lamb, " +

www.manaraa.com

732 Fundamentals of Computer Programming with C#

 "Mary had a Little lamb, " +
 "whose fleece were white as snow.";

 static void Main()
 {
 IDictionary<String, int> wordOccurrenceMap =
 GetWordOccurrenceMap(Text);
 PrintWordOccurrenceCount(wordOccurrenceMap);
 }

 private static IDictionary<string, int> GetWordOccurrenceMap(
 string text)
 {
 string[] tokens =
 text.Split(' ', '.', ',', '-', '?', '!');

 IDictionary<string, int> words =
 new SortedDictionary<string, int>();

 foreach (string word in tokens)
 {
 if (!string.IsNullOrEmpty(word.Trim()))
 {
 int count;
 if (!words.TryGetValue(word, out count))
 {
 count = 0;
 }
 words[word] = count + 1;
 }
 }
 return words;
 }

 private static void PrintWordOccurrenceCount(
 IDictionary<string, int> wordOccurenceMap)
 {
 foreach (var wordEntry in wordOccurenceMap)
 {
 Console.WriteLine(
 "Word '{0}' occurs {1} time(s) in the text",
 wordEntry.Key, wordEntry.Value);
 }
 }

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 733

}

The output from executing this code is the following:

Word 'a' occurs 2 time(s) in the text
Word 'as' occurs 1 time(s) in the text
Word 'fleece' occurs 1 time(s) in the text
Word 'had' occurs 2 time(s) in the text
Word 'lamb' occurs 2 time(s) in the text
Word 'Lamb' occurs 2 time(s) in the text
Word 'little' occurs 3 time(s) in the text
Word 'Little' occurs 1 time(s) in the text
Word 'mary' occurs 2 time(s) in the text
Word 'snow' occurs 1 time(s) in the text
Word 'was' occurs 1 time(s) in the text
Word 'white' occurs 1 time(s) in the text
Word 'whose' occurs 1 time(s) in the text

Note that we are counting the words "little" and "lamb" starting with both

lowercase and uppercase characters as different.

In this example, we demonstrated for the first time how to traverse a

dictionary using the method PrintWordOccurrenceCount(IDictionary
<string, int>). We used a foreach loop. When iterating through the

elements of dictionaries, we need to take into account that the elements of

this ADT are ordered pairs (key and value), not just single objects. Because

IDictionary<K, V> implements the interface IEnumerable<KeyValuePair
<K, V>>, this means that the foreach loop should iterate through objects of

type KeyValuePair<K, V>. For simplicity we use the var-syntax in the

foreach loop.

IComparable<K> Interface

When using SortedDictionary<K, V> the keys are required to be

comparable. In our example we use objects of type string.

The class string implements the interface IComparable, and the comparison

between the elements is done lexicographically. What does that mean? By

default the strings in .NET are case sensitive (the compiler distinguishes

uppercase from lowercase letters). Words like "Length" and "length" are

considered different. This means that words that start with a lowercase letter

will be before the ones with an uppercase letter. This definition comes from

the implementation of the method CompareTo(object), through which the

string class implements the interface IComparable.

www.manaraa.com

734 Fundamentals of Computer Programming with C#

IComparer<T> Interface

What should we do when we are not happy with the default implementation of

comparison? For example, what should we do when we want uppercase and

lowercase characters to be treated as equal?

One option we have is to transform the word into a capital, or non-capital

string, but sometimes the situation is more complicated than that. This is why

we will offer another solution, which works for every class that does not

implement the IComparable<T> interface, or it does implement it, but we

want to change its behavior.

For the comparison of objects with an exclusively defined order in

SortedDictionary<K, V> in .NET, we will use the interface IComparer<T>. It

defines a comparison function int Compare(T x, T y) that is an alternative

to the already defined order. Let’s take a better look at this interface.

When we create an object of type SortedDictionary<K, V> we can pass to

its constructor a reference to IComparer<K> so that it can use it for the key

comparison (key elements should be objects of type K).

Here is a sample implementation of IComparer<K> that changes the behavior

when comparing strings, so that they are not distinguished by uppercase and

lowercase characters:

class CaseInsensitiveComparer : IComparer<string>
{
 public int Compare(string s1, string s2)
 {
 return string.Compare(s1, s2, true);
 }
}

Let’s use this interface IComparer<E> when creating the dictionary:

IDictionary<string, int> words =
 new SortedDictionary<string, int>(
 new CaseInsensitiveComparer());

After changing this in the code, the result from the program execution will be:

Word 'a' occurs 2 time(s) in the text
Word 'as' occurs 1 time(s) in the text
Word 'fleece' occurs 1 time(s) in the text
Word 'had' occurs 2 time(s) in the text
Word 'lamb' occurs 4 time(s) in the text
Word 'little' occurs 4 time(s) in the text
…

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 735

The first time a word is found, it becomes a key in the dictionary. This is

because after calling the words[word] = count + 1 only the value is

changed, and not the key itself.

After using IComparer<E> we changed the definition for ordering keys in our

dictionary. If, for a key, we used a class, defined by us, for example –

Student, that implements IComparable<E>, we would get the same result if

we were to alter the method CompareTo(Student). There is also one

additional requirement, when implementing IComparable<K>:

When two objects are equal (Equals(object) returns true),

CompareTo(E) should return 0.

Meeting this requirement would allow us to use the objects of a custom class

as keys, just as in the implementation with a balanced tree

(SortedDictionary<K,V>, constructed without Comparer), as well with a

hash-table (Dictionary<K,V>).

Hash-Tables

Now let’s get familiar with the data structure hash-table, which implements

the abstract data structure dictionary in a very efficient way. We well

explain in details how hash-tables actually work and why they are so efficient.

Dictionary Implementation with Hash-Table

With a hash-table implementation, the time for accessing the elements in

the dictionary is theoretically independent from their count. This is a very

important advantage.

Let’s make a comparison between list and hash-table in the speed of

searching. We take a list of randomly ordered elements. We want to check if

a certain element is in the list. The worst case scenario is to check every

element in the list, so as to give an explicit answer to the question “Does this

list contain the element or not”. It’s obvious that the number of checks would

depend (linear) of the number of elements.

With hash-tables, if we have a key, the number of comparisons that we

would need to do to find out if there is a key with this value, is constant and

it does not depend on the number of elements. How exactly we are

achieving such efficiency, we will explain in more details below.

What is a Hash-Table?

The data structure hash-table is usually implemented internally with an

array. It consists of numerated elements (cells), each either holding a

key-value pair or is empty (null). This at first sight, look like as if the

elements were randomly placed in the array. At the positions that we don’t

have an ordered pair, we have an empty element (null). The figure below

illustrates how a hash-table might look like:

www.manaraa.com

736 Fundamentals of Computer Programming with C#

The size of the internal storage array of the hash-table is called capacity. The

load factor is a real number between 0 and 1, which stands for the ratio

between the occupied elements and the current capacity. At the figure we

have a hash-table with 3 elements and capacity m. The load factor for this

hash-table would be 3/m.

When adding or searching for elements, a method for hashing the key (hash

function) is executed hash(key), that returns a number we call a hash-

code. When we take the division remainder of this hash-code and the

capacity m we get a number between 0 and m-1:

index = hash(key) % m

At the figure there is a hash-table T with capacity m and hash-function

hash(key):

This value hash(k) gives us the position in the array at which we search or

add a certain key-value pair having this k. If the hash-function distributes

the keys uniformly, in most cases for every key a different hash value will be

assigned. In this way every cell of the array will have at most one key.

Ultimately we get an extremely fast search and insertion of the elements: just

calculate the hash function and obtain the cell assigned for the key. Of

course it may occur that different keys would have the same hash code. We

will examine this special case in more details later.

i = hash(key)

0 i < m

0 1 2 3 4 5 m-1

...T

hash(key)

...

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 737

Use implementation of dictionary based on hash-table, when

you need to find values by key with a maximum speed.

The internal table’s capacity is increased when the number of elements in

the hash-table becomes greater or equal to a certain constant called fill

factor (load factor, the maximal degree of filling). When increasing the

capacity (usually doubling it), all of the elements are reordered by the hash

code of their keys and their assigned cell is calculated according to the new

capacity. The load factor is significantly decreased after the reordering. This

operation is time-consuming, but it is executed relatively rare, so it will not

impact the overall performance of the "add" operation.

Before we go further with the theory of hash-tables, let’s review how hash-

tables are implemented in C# and .NET Framework.

Class Dictionary <K, V>

The class Dictionary<K, V> is a standard implementation of a dictionary

based on hash-table in .NET Framework. Let’s take a look at its main

features. We will examine a specific example that illustrates the use of this

class and its methods.

Class Dictionary<K, V> – Main Operations

Creating a hash-table is done by calling some of the constructors of

Dictionary<K, V>. Through them we can assign an initial value for the

capacity and load factor. It’s good if we know in advance the expected

number of elements, which would be added in our hash-table, so as to set it

at the creation of the hash-table. This way we will avoid the unneeded

expansions of the hash-table and we will achieve better performance. By

default the value of the initial capacity is 16, and the load factor is 0.75.

Let’s review the methods in the class Dictionary<K, V>:

- void Add(K, V) adds a new pair (key and a value) to the hash-table.

Throws an exception in the case that the key exists. This operation is

extremely fast.

- bool TryGetValue(K, out V) returns an element of type V via the out

parameter for the given key or null, if there is no such key. The result

of this operation will be true if such an element is found. The operation

is very fast, because the algorithm for searching an element by key in

the hash-table is with complexity about O(1)

- bool Remove(K) removes the element with this key. This operation

works very fast.

- void Clear() removes all the elements from the dictionary.

- bool ContainsKey(K) check if there is an ordered pair with this key in

the dictionary. This operation works extremely fast.

www.manaraa.com

738 Fundamentals of Computer Programming with C#

- bool ContainsValue(V) checks if there is one or more ordered pairs

with this value. This operation is slow because it checks every element

of the hash-table (like searching in a list).

- int Count returns the number of ordered pairs within the dictionary.

- Other operations – extracting all the keys, values or ordered pairs into a

structure that could be iterated through using a loop.

Students and Marks – Example

We will illustrate how to use some of the above described operations with an

example. We have some students, and every one of them could have only one

mark. We want to store the marks in a structure that would allow us to

perform a fast search by the student’s name.

For this task we create a hash-table with initial capacity of 6. It will use the

student names for keys, and their marks for values. We will add 6 sample

students, and then we will check what’s happening when we print their data

on the console. Here is how the code for this example should look like:

using System;
using System.Collections.Generic;

class StudentsExample
{
 static void Main()
 {
 IDictionary<string, double> studentMarks =
 new Dictionary<string, double>(6);

 studentMarks["Alan"] = 3.00;
 studentMarks["Helen"] = 4.50;
 studentMarks["Tom"] = 5.50;
 studentMarks["James"] = 3.50;
 studentMarks["Mary"] = 4.00;
 studentMarks["Nerdy"] = 6.00;

 double marysMark = studentMarks["Mary"];
 Console.WriteLine("Mary's mark: {0:0.00}", marysMark);
 studentMarks.Remove("Mary");

 Console.WriteLine("Mary's mark removed.");

 Console.WriteLine("Is Mary in the dictionary: {0}",
 studentMarks.ContainsKey("Mary") ? "Yes!": "No!");

 Console.WriteLine("Nerdy's mark is {0:0.00}.",

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 739

 studentMarks["Nerdy"]);
 studentMarks["Nerdy"] = 3.25;

 Console.WriteLine(
 "But we all know he deserves no more than {0:0.00}.",
 studentMarks["Nerdy"]);

 double annasMark;
 bool findAnna = studentMarks.TryGetValue("Anna",
 out annasMark);

 Console.WriteLine(
 "Is Anna's mark in the dictionary? {0}",
 findAnna ? "Yes!": "No!");

 studentMarks["Anna"] = 6.00;
 findAnna = studentMarks.TryGetValue("Anna",
 out annasMark);

 Console.WriteLine(
 "Let's try again: {0}. Anna's mark is {1}",
 findAnna ? "Yes!" : "No!", annasMark);

 Console.WriteLine("Students and marks:");

 foreach (KeyValuePair<string, double> studentMark
 in studentMarks)
 {
 Console.WriteLine("{0} has {1:0.00}",
 studentMark.Key, studentMark.Value);
 }

 Console.WriteLine(
 "There are {0} students in the dictionary",
 studentMarks.Count);
 studentMarks.Clear();
 Console.WriteLine("Students dictionary cleared.");
 Console.WriteLine("Is dictionary empty: {0}",
 studentMarks.Count == 0);
 }
}

The output of the program execution will be:

www.manaraa.com

740 Fundamentals of Computer Programming with C#

Mary's mark: 4.00
Mary's mark removed.
Is Mary in the dictionary: No!
Nerdy's mark is 6.00.
But we all know he deserves no more than 3.25.
Is Anna's mark in the dictionary? No!
Let's try again: Yes!. Anna's mark is 6
Students and marks:
Alan has 3.00
Helen has 4.50
Tom has 5.50
James has 3.50
Anna has 6.00
Nerdy has 3.25
There are 6 students in the dictionary
Students dictionary cleared.
Is dictionary empty: True

We can see that the students are not ordered when printed. This is because in

hash-tables (unlike balanced trees) the elements are not kept sorted.

Even if the current table capacity is changed while working with it, it is also

highly possible that the order of the pairs could be changed as well. We will

analyze the reason for this behavior later on.

It is important to remember, that with hash-tables, we cannot rely on the

elements being in order. If we need them ordered, we could sort the elements

before printing. Another option would be using SortedDictionary<K, V>.

Hashing and Hash-Functions

Now we will explain in more details the concept of hash-code used earlier. The

hash-code is a number returned by the hash-function, used for the

hashing the key. This number should be different for every key, or at least

there should be a high chance for that.

Hash-Functions

There is the concept of the perfect hash-function. One hash-function is

called perfect, if for example you have N keys, and for each of them the

function would add a different number in a reasonable interval (for example

from 0 to N-1).

Finding such a function in the common case is a very hard, almost

impossible task. It’s worth to use such functions when using sets of keys

with predefined elements or when the set of keys is rarely changed.

In practice there are also other, not so "perfect" hash-functions.

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 741

Now we will take a look at a few examples for hash-functions, which are used

directly with .NET libraries.

The Method GetHashCode() in .NET Framework

Every .NET class has a method called GetHashCode() that returns a value of

type int. This method is inherited by the class Object, which is the root

member in the hierarchy of .NET classes.

The implementation in the class Object of the method GetHashCode() does

not guarantee the unique value of the result. This means that the

descendent classes need to ensure that GetHashCode() is implemented in

order to use it for a key in a hash-table.

Another example for a hash-function that is directly built in .NET is used by

the class int, byte and short (integer numbers). In this case the value of

the number itself is used for the hash-code. For more complex types like

strings all their elements (or at least the first few of them) are involved into

calculation of their hash code.

One more complex example for hash-function is the implementation of

GetHashCode() in the class System.String:

public override unsafe int GetHashCode()
{
 fixed (char* str = ((char*)this))
 {
 char* chPtr = str;
 int num = 352654597;
 int num2 = num;
 int* numPtr = (int*)chPtr;
 for (int i = this.Length; i > 0; i -= 4)
 {
 num = (((num << 5) + num) + (num >> 27)) ^ numPtr[0];
 if (i <= 2)
 {
 break;
 }
 num2 = (((num2 << 5) + num2) + (num2 >> 27)) ^ numPtr[1];
 numPtr += 2;
 }
 return (num + (num2 * 1566083941));
 }
}

This implementation is complicated, but what we need to remember is that it

tries to guarantee the uniqueness of the result: different hash code for

different input strings. Note that the complexity of the algorithm for

www.manaraa.com

742 Fundamentals of Computer Programming with C#

calculating the hash-code of string is proportional to Length / 4 or O(n),

which means that the longer the string is the slower its hash-code would be

calculated. Authors of the above code use a small trick (unsafe code) to

directly work with the low-level representation of the string in the memory.

We leave to the reader to take a look at other implementations of the method

GetHashCode() in some of the most commonly used .NET types like int,

DateTime, long, float and double. This can be done through a decompiler

like JustDecompile.

Now let’s answer the question of how to implement ourselves this hash

function for our classes. We already explained that leaving the

implementation that is already built in the class object, is not an acceptable

solution. Another very simple implementation is that we always return a fixed

constant, for example:

public override int GetHashCode()
{
 return 42;
}

If in a hash-table we use objects for keys from a class, that has the above

implementation of GetHashCode(), it will have very poor performance,

because every time, when we add a new element in the table, we would have

to insert it at the same place. Every time we search the hash-table, we will

encounter the same element.

In order to avoid the described behavior, we need the hash-function to

distribute the keys evenly amongst the possible hash-code values.

Collisions with Hash-Functions

The situation where two different keys have the same hash-code is called

collision. A good example of collision is shown below:

We will look in more details how to solve the problem with collisions in the

next paragraph. The simplest solution is obvious: order the pairs that have

keys with the same hash-codes in a list or other data structure. Thus we

don't solve the collisions but we accept them and we just put several key-

value-pairs in the same element in the underlying array in the hash-table.

This approach for collision resolution is known as chaining:

h("Pesho) = 4

h("Kiro") = 2

h("Mimi") = 1

h("Ivan") = 2

h("Lili") = 12

h("Alan") = 4

h("Peter")= 2

h("Tom") = 1

h("Mary") = 2

h("Anna") = 12

collisioncollision

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 743

Therefore when using a constant 42 for hash-code our hash-table turns into a

linear list and it becomes very inefficient.

Implementing the Method GetHashCode()

We will give a standard algorithm for implementing GetHashCode(), when this

is necessarily:

First we need to choose which fields of the class will take part in the

implementation of the Equals(object) method. This is necessary, because

every time when Equals() returns true, the result from GetHashCode()

should always return the same value.

This way the fields that do not take part in Equals(), should not take part in

GetHashCode() as well.

After we choose which fields will take part for the calculation of

GetHashCode(), we need to receive values from them (of type int). Here is a

sample scheme:

- If the field is bool, for true we take 1, and for false we take 0 (or

directly call method GetHashCode() on bool).

- If the field is of type int, byte, short, char, we can convert it to int,

with the cast operator (int) (or we could directly call GetHashCode()).

- If the field is type long, float or double, we could use the result from

their own implementations of GetHashCode().

- If the field is not a primitive type, we could call the method

GetHashCode() of this object. If the field value is null, we can return 0.

- If the field is an array or a collection, we take the hash-code from every

element of this collection.

h("Pesho") = 4

h("Kiro") = 2

h("Mimi") = 1

h("Ivan") = 2

h("Lili") = m-1

h("Alan") = 4

h("Peter") 2

h("Tom") = 1

h("Mary") = 2

h("Anna") = m-1

collisioncollision

nullT

0 1 2 3 4 5 m-1

null ...null

Peter

Mary

null

Tom

null

Anna

null

Alan

null

=

www.manaraa.com

744 Fundamentals of Computer Programming with C#

In the end we sum all the received int values, and before each addition we

multiply the temporary result with a prime number (for example 83), while

ignoring the eventual overflow of type int. For example, if we have 3 fields

and their hash codes are f1, f2 and f3, our hash function could combine

them though the formula hash = (((f1 * 83) + f2) * 83) + f3.

At the end we obtain a hash-code, which is very well distributed in the range

of all 32-bit values. We can expect, that with a hash-code calculated this way,

the collisions would be rare, because every change in some of the fields

taking part in GetHashCode() leads to a major change in the hash code and

thus reduces the chance for collision.

Implementing GetHashCode() – Example

Let’s illustrate the above algorithm with an example. We have a class whose

objects are presented as points in the three-dimensional space. The point will

be represented with its coordinates in the three dimensional space x, y and z:

Point3D.cs

public class Point3D
{
 public double X { get; set; }
 public double Y { get; set; }
 public double Z { get; set; }

 public Point3D(double x, double y, double z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }

 public override string ToString()
 {
 return String.Format("({0}, {1}, {2})",
 this.X, this.Y, this.Z);
 }
}

We can implement GetHashCode() easily using the above described algorithm

that combines the hash values of the separate object fields:

public override bool Equals(object obj)
{
 if (this == obj)
 return true;

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 745

 Point3D other = obj as Point3D;

 if (other == null)
 return false;

 if (!this.X.Equals(other.X))
 return false;

 if (!this.Y.Equals(other.Y))
 return false;

 if (!this.Z.Equals(other.Z))
 return false;

 return true;
}

public override int GetHashCode()
{
 int prime = 83;
 int result = 1;
 unchecked
 {
 result = result * prime + X.GetHashCode();
 result = result * prime + Y.GetHashCode();
 result = result * prime + Z.GetHashCode();
 }

 return result;
}

This implementation is incomparably better, than returning a constant or just

one of the fields or their sum. Although the collisions might still happen,

they would occur very rarely.

Interface IEqualityComparer<T>

One of the most important things that we have learned so far is that in order

to use instances of a class as keys for a dictionary, the class needs to properly

implement GetHashCode() and Equals(…). But what should we do if we want

to use a class, that we cannot inherit or change? In this case the interface

IEqualityComparer<T> comes to our aid.

It defines the following two operations:

www.manaraa.com

746 Fundamentals of Computer Programming with C#

- bool Equals(T obj1, T obj2) – returns true if obj1 and obj2 are

equal

- int GetHashCode(T obj) – returns the hash-code of given object

As you might have already guessed, the dictionaries in .NET can use an

instance of IEqualityComparer<T>, instead of using the corresponding

methods of the given class that should be assigned for a key. This way the

developers could use practically any class for a key of the dictionary, if they

could assure IEqualityComparer<T> is implemented. Even more – when we

pass IEqualityComparer<T> to a dictionary, we could change the way

GetHashCode() and Equals(…) are calculated for every type, even for those

built-in .NET Framework. This is because the dictionary uses interface

methods instead of the corresponding methods of the class that is used for

key. Here is an example of an implementation of IEqualityComparer for the

class Point3D that we looked earlier:

public class Point3DEqualityComparer : IEqualityComparer<Point3D>
{
 public bool Equals(Point3D point1, Point3D point2)
 {
 if (point1 == point2)
 return true;

 if (point1 == null || point2 == null)
 return false;

 if (!point1.X.Equals(point2.X))
 return false;

 if (!point1.Y.Equals(point2.Y))
 return false;

 if (!point1.Z.Equals(point2.Z))
 return false;

 return true;
 }

 public int GetHashCode(Point3D obj)
 {
 Point3D point = obj as Point3D;
 if (point == null)
 {
 return 0;
 }

 int prime = 83;

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 747

 int result = 1;
 unchecked
 {
 result = result * prime + point.X.GetHashCode();
 result = result * prime + point.Y.GetHashCode();
 result = result * prime + point.Z.GetHashCode();
 }
 return result;
 }
}

Note that we implement both Equals(…) and GetHashCode(), not just

GetHashCode() method.

Remember that the keys in hash-tables need to have

correctly defined Equals(…) and GetHashCode() to work

properly. This is not required for the values, just for the keys.

Always define both Equals(…) and GetHashCode(), never only

one of them!

In order to use Point3DEqualityComparer, it’s enough to pass it as

argument to our dictionary’s constructor. Here is an example:

static void Main()
{
 IEqualityComparer<Point3D> comparer =
 new Point3DEqualityComparer();
 Dictionary<Point3D, int> dict =
 new Dictionary<Point3D, int>(comparer);

 dict[new Point3D(4, 2, 5)] = 5;
 dict[new Point3D(1, 2, 3)] = 1;
 dict[new Point3D(3, 1, -1)] = 3;
 dict[new Point3D(1, 2, 3)] = 10;
 foreach (var entry in dict)
 {
 Console.WriteLine("{0} --> {1}", entry.Key, entry.Value);
 }
}

The result from the above code is:

(4, 2, 5) --> 5
(1, 2, 3) --> 10
(3, 1, -1) --> 3

www.manaraa.com

748 Fundamentals of Computer Programming with C#

We have 3 unique keys in the dictionary and the key (1, 2, 3) is used twice.

Resolving the Collision Problem

In practice, collisions happen almost always, excluding some rare and

specific cases. That is why we need to live with the idea of the collisions

presence in our hash-tables and take them into account. Let’s have a look at

several strategies for dealing with collisions.

Chaining in a List

The most widespread method to resolve collisions problem is called

chaining. Its major concept consists of storing in a list all the pairs (key,

value), which have the same hash-code for the key.

Implementation of a Dictionary with Hash-Table and
Chaining

Let’s have the task to implement a dictionary data structure with a

hash-table and to resolve the collisions by chaining. With the example

below we will show how it could be done. First, we are going to define a class,

describing the pair {key, value}:

KeyValuePair.cs

/// <summary>A structure holding a pair {key, value}</summary>
/// <typeparam name="TKey">the type of the keys</typeparam>
/// <typeparam name="TValue">the type of the values</typeparam>
public struct KeyValuePair<TKey, TValue>
{
 /// <summary>Holds the key of the key-value pair</summary>
 public TKey Key { get; private set; }

 /// <summary>Holds the value of the key-value pair</summary>
 public TValue Value { get; private set; }

 /// <summary>Constructs a pair by given key + value</summary>
 public KeyValuePair(TKey key, TValue value) : this()
 {
 this.Key = key;
 this.Value = value;
 }

 /// <summary>Converts the key-value pair to a printable text.
 /// </summary>
 public override string ToString()
 {

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 749

 StringBuilder builder = new StringBuilder();
 builder.Append('[');
 if (this.Key != null)
 {
 builder.Append(this.Key.ToString());
 }
 builder.Append(", ");
 if (this.Value != null)
 {
 builder.Append(this.Value.ToString());
 }
 builder.Append(']');
 return builder.ToString();
 }
}

The class constructor has two parameters: key of type TKey and value of type

TValue. There are defined two properties: one to access the key (Key) and

another to access the value (Value). Note that these properties can only

access the related members. There is no public functionality to change the

key or value. This makes the class non-changeable (immutable). It is a good

idea, because the objects, which will be kept inside the dictionary

implementation, will be the same as these we will return as a result of a

method for taking all the ordered pairs in the dictionary, for instance.

We have redefined the ToString() method in order to be able to easily print

key-value pairs on the standard console output or in a text file.

Following is an example of a generic dictionary interface, which defines the

most common operations of the data structure "dictionary":

IDictionary.cs

/// <summary>Interface that defines basic methods needed for a
/// "dictionary" class which maps keys to values</summary>
/// <typeparam name="K">Key type</typeparam>
/// <typeparam name="V">Value type</typeparam>
public interface IDictionary<K, V> :
 IEnumerable<KeyValuePair<K, V>>
{
 ///<summary>Finds the value mapped to the given key</summary>
 /// <param name="key">the key to be searched</param>
 /// <returns>value for the specified key if it presents,
 /// or null if there is no value with such key</returns>
 V Get(K key);

www.manaraa.com

750 Fundamentals of Computer Programming with C#

 /// <summary>Assigns the specified value to the specified key
 /// in the dictionary. If the key already exists, its value is
 /// replaced with the new value and the old value is returned
 /// </summary>
 /// <param name="key">Key for the new value</param>
 /// <param name="value">Value to be mapped to that key</param>
 /// <returns>the old (replaced) value for the specified key
 /// or null if the key does not exist</returns>
 V Set(K key, V value);

 /// <summary>Gets or sets the value of the entry in the
 /// dictionary identified by the key specified</summary>
 /// <remarks>A new entry will be created if the value is set
 /// for a key not currently in the dictionary</remarks>
 /// <param name="key">the key to identify the entry</param>
 /// <returns>the value of the entry in the dictionary
 /// identified by the provided key</returns>
 V this[K key] { get; set; }

 /// <summary>Removes an element in the dictionary identified
 /// by a specified key</summary>
 /// <param name="key">the key identifying the element to be
 /// removed</param>
 /// <returns>whether the element was removed or not</returns>
 bool Remove(K key);

 /// <summary>Returns the number of entries in the dictionary
 /// </summary>
 int Count { get; }

 /// <summary>Removes all the elements from the dictionary
 /// </summary>
 void Clear();
}

In the above defined interface as well as in the previous class, we use

generics (template types), by which we define the parameters for the keys

(K) and values (V). Such implementation allows us to use various data types

for keys and values inside our dictionary. As we already know, the only

requirement is to have proper definitions for Equals() and GetHashCode()

methods inside the data type used for the keys.

Our interface IDictionary<K, V> looks much like the .NET standard interface
System.Collections.Generic.IDictionary<K, V>, but it is simplified and

describes only the most important operations of the "dictionary" data

structure. It inherits the system interface IEnumerable<DictionaryEntry<K,

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 751

V>>, as doing so, the dictionary can be easily traversed by a simple foreach

loop.

Following is an example of a dictionary implementation that uses chaining

to handle collisions.

HashDictionary.cs

/// <summary>
/// Implementation of <see cref="IDictionary"/> interface
/// using a hash table. Collisions are resolved by chaining.
/// </summary>
/// <typeparam name="K">Type of the keys. Keys are required
/// to correctly implement Equals() and GetHashCode()
/// </typeparam>
/// <typeparam name="V">Type of the values</typeparam>
public class HashDictionary<K, V> : IDictionary<K, V>,
 IEnumerable<KeyValuePair<K, V>>
{
 private const int DEFAULT_CAPACITY = 16;
 private const float DEFAULT_LOAD_FACTOR = 0.75f;
 private List<KeyValuePair<K, V>>[] table;
 private float loadFactor;
 private int threshold;
 private int size;
 private int initialCapacity;

 /// <summary>Creates an empty hash table with the
 /// default capacity and load factor</summary>
 public HashDictionary()
 : this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR)
 { }

 /// <summary>Creates an empty hash table with given
 /// capacity and load factor</summary>
 public HashDictionary(int capacity, float loadFactor)
 {
 this.initialCapacity = capacity;
 this.table = new List<KeyValuePair<K, V>>[capacity];
 this.loadFactor = loadFactor;
 this.threshold = (int)(capacity * this.loadFactor);
 }

 /// <summary>Finds the chain of elements corresponding
 /// internally to given key (by its hash code)</summary>
 /// <param name="createIfMissing">creates an empty list

www.manaraa.com

752 Fundamentals of Computer Programming with C#

 /// of elements if the chain still does not exist</param>
 /// <returns>a list of elements in the chain or null</returns>
 private List<KeyValuePair<K, V>> FindChain(
 K key, bool createIfMissing)
 {
 int index = key.GetHashCode();
 index = index & 0x7FFFFFFF; // clear the negative bit
 index = index % this.table.Length;
 if (this.table[index] == null && createIfMissing)
 {
 this.table[index] = new List<KeyValuePair<K, V>>();
 }
 return this.table[index] as List<KeyValuePair<K, V>>;
 }

 /// <summary>Finds the value assigned to given key
 /// (works extremely fast)</summary>
 /// <returns>the value found or null when not found</returns>
 public V Get(K key)
 {
 List<KeyValuePair<K, V>> chain = this.FindChain(key, false);
 if (chain != null)
 {
 foreach (KeyValuePair<K, V> entry in chain)
 {
 if (entry.Key.Equals(key))
 {
 return entry.Value;
 }
 }
 }

 return default(V);
 }

 /// <summary>Assigns a value to certain key. If the key
 /// exists, its value is replaced. If the key does not
 /// exist, it is first created. Works very fast</summary>
 /// <returns>the old (replaced) value or null</returns>
 public V Set(K key, V value)
 {
 if (this.size >= this.threshold)
 {
 this.Expand();

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 753

 }

 List<KeyValuePair<K, V>> chain = this.FindChain(key, true);
 for (int i = 0; i < chain.Count; i++)
 {
 KeyValuePair<K, V> entry = chain[i];
 if (entry.Key.Equals(key))
 {
 // Key found -> replace its value with the new value
 KeyValuePair<K, V> newEntry =
 new KeyValuePair<K, V>(key, value);
 chain[i] = newEntry;
 return entry.Value;
 }
 }
 chain.Add(new KeyValuePair<K, V>(key, value));
 this.size++;

 return default(V);
 }

 /// <summary>Gets / sets the value by given key. Get returns
 /// null when the key is not found. Set replaces the existing
 /// value or creates a new key-value pair if the key does not
 /// exist. Works very fast</summary>
 public V this[K key]
 {
 get
 {
 return this.Get(key);
 }
 set
 {
 this.Set(key, value);
 }
 }

 /// <summary>Removes a key-value pair specified
 /// by certain key from the hash table.</summary>
 /// <returns>true if the pair was found removed
 /// or false if the key was not found</returns>
 public bool Remove(K key)
 {
 List<KeyValuePair<K, V>> chain = this.FindChain(key, false);

www.manaraa.com

754 Fundamentals of Computer Programming with C#

 if (chain != null)
 {
 for (int i = 0; i < chain.Count; i++)
 {
 KeyValuePair<K, V> entry = chain[i];
 if (entry.Key.Equals(key))
 {
 // Key found -> remove it
 chain.RemoveAt(i);
 this.size--;
 return true;
 }
 }
 }
 return false;
 }

 /// <summary>Returns the number of key-value pairs
 /// in the hash table (its size)</summary>
 public int Count
 {
 get
 {
 return this.size;
 }
 }

 /// <summary>Clears all ements of the hash table</summary>
 public void Clear()
 {
 this.table =
 new List<KeyValuePair<K, V>>[this.initialCapacity];
 this.size = 0;
 }

 /// <summary>Expands the underlying hash-table. Creates 2
 /// times bigger table and transfers the old elements
 /// into it. This is a slow (linear) operation</summary>
 private void Expand()
 {
 int newCapacity = 2 * this.table.Length;
 List<KeyValuePair<K, V>>[] oldTable = this.table;
 this.table = new List<KeyValuePair<K, V>>[newCapacity];

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 755

 this.threshold = (int)(newCapacity * this.loadFactor);
 foreach (List<KeyValuePair<K, V>> oldChain in oldTable)
 {
 if (oldChain != null)
 {
 foreach (KeyValuePair<K, V> keyValuePair in oldChain)
 {
 List<KeyValuePair<K, V>> chain =
 FindChain(keyValuePair.Key, true);
 chain.Add(keyValuePair);
 }
 }
 }
 }

 /// <summary>Implements the IEnumerable<KeyValuePair<K, V>>
 /// to allow iterating over the key-value pairs in the hash
 /// table in foreach-loops</summary>
 IEnumerator<KeyValuePair<K, V>>
 IEnumerable<KeyValuePair<K, V>>.GetEnumerator()
 {
 foreach (List<KeyValuePair<K, V>> chain in this.table)
 {
 if (chain != null)
 {
 foreach (KeyValuePair<K, V> entry in chain)
 {
 yield return entry;
 }
 }
 }
 }

 /// <summary>Implements IEnumerable (non-generic)
 /// as part of IEnumerable<KeyValuePair<K, V>></summary>
 IEnumerator IEnumerable.GetEnumerator()
 {
 return ((IEnumerable<KeyValuePair<K, V>>)this).
 GetEnumerator();
 }
}

We will pay attention to the most important points in this code. Let’s begin

with the constructor. The public parameterless constructor inside itself it

www.manaraa.com

756 Fundamentals of Computer Programming with C#

invokes another constructor, by passing some predefined values for capacity

and load factor, which are used when the hash table is created.

Next thing, we pay attention to, is the actual implementation of the hash

table with chaining. At the instantiation of the hash-table, inside the

constructor we initialize an array of lists, which will contain any of our objects

of type KeyValuePair<K,V>. We have created a private method FindChain(),

for internal usage only, which calculates the hash-code of the key by

calling GetHashCode() method and taking the modulus of the returned hash-

value to the length of the table (capacity). Additionally the most-left bit is

cleared to ensure the index is always a positive number. In that way the

index of the current key in the internal table is calculated. The list of all the

elements with the same hash-code is hold inside the internal table for this

index. If the list is empty, it may have null as a value. Otherwise, at the

specific index position there is a list of the elements for the specified key.

A special parameter is passed to the FindChain() method. This parameter

indicates whether to create an empty list, if for the specific key there is no list

of elements. It gives a kind of convenience for the methods of adding

elements and resizing the hash-table.

The next thing, we pay attention to, is the Expand() method, which resizes

the current internal table when the maximal allowed filling is reached. For this

purpose we create a new table (array), with size twice as the current. Then

we calculate a new value for the maximal allowed filling (the field threshold).

Next coming is the most important part. We have extended the table and in

this way we changed the value of this.table.Length. If we search for an

element, which we have added already, the FindChain(K key) method will

not return the correct chain at all, in which to search for it. That is why, we

need to transfer all the elements of the old table, by not just copying the

chains, but adding again all the KeyValuePair<K,V> objects into the newly

created internal table of chains.

In order to implement the ability for iteration over the hash-table elements in

foreach-loops, we have implemented the IEnumerable<KeyValuePair<K,

V>> interface, which has GetEnumerator() method, returning an iterator

(IEnumerator) of the elements of the hash-table. We simply iterate over the

elements in the internal table and return them one at a time using the yield
return C# keyword (it’s is a complex concept explained in details in MSDN).

Now let’s give an example of how we can use our implementation of

hash-table and its iterator. We want to test whether the hash table copes

correctly with collisions and with expanding, so we intentionally change the

initial capacity of 3 and load factor of 0.9 when creating the hash table to

ensure it will resize soon after few elements are put inside it. We first put

an element, then read it, then overwrite its value, then read it again, then

add a new element that causes a collision, then read it, then read the first

element, then add an element causing the hash table to expand its internal

array, etc. The code is given below and it is highly recommended to trace it

http://msdn.microsoft.com/en-us/library/vstudio/9k7k7cf0.aspx

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 757

through the Visual Studio debugger and check at each step how the internal

state of the hash table changes:

class PlayWithHashDictionary
{
 static void Main()
 {
 HashDictionary<Point3D, int> dict =
 new HashDictionary<Point3D, int>(3, 0.9f);

 dict[new Point3D(1, 2, 3)] = 1; // Put a key-value pair
 Console.WriteLine(dict[new Point3D(1, 2, 3)]); // Get value

 // Overwrite the previous value for the same key
 dict[new Point3D(1, 2, 3)] += 1;
 Console.WriteLine(dict[new Point3D(1, 2, 3)]);

 // Now this point will cause a collision with the
 // previous one and the elements will be chained
 dict[new Point3D(3, 2, 2)] = 42;

 Console.WriteLine(dict[new Point3D(3, 2, 2)]);

 // Test if the chaining works as expected, i.e.
 // elements with equal hash-codes are not overwritten
 Console.WriteLine(dict[new Point3D(1, 2, 3)]);

 // Creation of another entry in the internal table
 // This will cause the internal table to expand
 dict[new Point3D(4, 5, 6)] = 1111;
 Console.WriteLine(dict[new Point3D(4, 5, 6)]);

 // Delete an existing by its key
 dict.Remove(new Point3D(3, 2, 2));

 // Iterate through the dictionary entries and print them
 foreach (KeyValuePair<Point3D, int> entry in dict)
 {
 Console.WriteLine(
 "Key: " + entry.Key + "; Value: " + entry.Value);
 }
 }
}

As we could expect, the result of the program execution is the following:

www.manaraa.com

758 Fundamentals of Computer Programming with C#

1
2
42
2
1111
Key: (1, 2, 3); Value: 2
Key: (4, 5, 6); Value: 1111

Open Addressing Methods for Collision Resolution

Now let’s look over the methods for collision resolution, alternative to

chaining in a list. In general, the idea is, in case of collision we try to put the

new pair in a table position, which is free. These methods differentiate from

each other in the way they choose where to look for a free position for the

new pair. Moreover, the new pair must be easily located at its new place.

Main drawback of this group of methods, compared to chaining in a list, is

that they are inefficient at high rates of the load factor (close to 1).

Linear Probing

This is one of easiest methods for implementation. Linear probing, in

general, can be presented with the following sample code:

int newPosition = (oldPosition + i) % capacity;

Here capacity is the internal table capacity, oldPostion is the position

where collision occurs and i is a number for the next probing. If the new

position is free, then we place the new pair there. Otherwise we try again

(probing), incrementing i. Probing can be either forward or backwards.

Backward probing is when instead of adding, we are subtracting i from the

position we have collision for.

The advantage of this method is the relatively quick way to find of a new

position. Unfortunately, if there was a collision at a certain place, there is an

extremely high probability collision to occur again at the same place. So this,

in practice, leads to a high inefficiency.

Using linear probing as a method for collision resolution in

hash tables is inefficient and has to be avoided.

Quadratic Probing

Quadratic probing is a classic method for collision resolution. The main

difference between quadratic probing and linear probing is that it uses a

quadratic function of i (the number of the next probing) to find new position.

Possible quadratic probing function is shown below:

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 759

int newPosition = (oldPosition + c1*i + c2*i*i) % capacity;

The given example uses two constants: c1 and c2, such that c2 must not be

0, otherwise we are going back to linear probing.

By choosing c1 and c2 we define the position we are going to probe,

compared to the starting position. For instance, if c1 and c2 are equal to 1,

we are going to probe consequently oldPosition, oldPosition + 2,

oldPosition + 6, … For a hash-table with capacity of the kind 2n, the best is

to choose c1 and c2 equal to 0.5.

Quadratic probing is more efficient than linear the linear probing.

Double Hashing

As the name implies, the double hashing method uses two different hash

functions. The main concept is that, the second hash function is used for the

elements that fall into a collision. This method is better than the linear and

quadratic probing, because all the next probing depends of the value of the

key and not of the table position inside the hash-table. It makes sense,

because the position of a given key depends on the current capacity of the

hash-table.

Cuckoo Hashing

Cuckoo hashing is a relatively new method for collision resolution, using an

open addressing. It was firstly presented by R. Pagh and F. Rodler in 2001. Its

name comes from the behavior, observed with some kinds of cuckoos. The

mother cuckoos push out the eggs and/or the nests out of other birds, in

order to put their own eggs there and the other birds mistakenly care for the

cuckoos' eggs in that way. (Also for the nests, after the incubation)

The main idea of this method is the use of two hash-functions instead of

one. In this way, we have not one, but two positions to place the

element inside the hash-table. If one of the positions is free, then we just

put the element there. If both are taken, then we put the new element in one

of them and it "kicks out" the element, which was already there. In turn, the

"kicked" element is going to his alternative position and "kicks" another

element out, if necessary. The new "kicked out" is repeating the procedure,

and in that way until reaching a free position or we fall into a loop. In the last

case, the whole hash table is built again with greater size and new hash-

functions.

On the figure bellow it is shown an example scheme of a hash-table using

cuckoo hashing. Every position, containing an element, has a link to the

alternative position for the key inside. Now, let’s play out different situations

of adding an element.

If, at least one of the two hash functions result is a free cell, there is no

problem. We put the element in one of them. Let both hash functions result is

a taken cell and we randomly have been choosing one of them.

www.manaraa.com

760 Fundamentals of Computer Programming with C#

Let’s assume that this is the cell, containing element A. The new element

"kicks out" A from his place, A in turn goes to its alternative position and

"kicks out" B from his place. The alternative position of B is free, so the

adding is successfully completed.

Let’s assume, that the cell, the new element is trying to "kick out" an

element, is the cell containing H. Then we have a loop, formed by H and W. In

this case, a rebuild must be done using greater size, and new hash-functions.

In its simplest version this method has a constant access to its elements,

even in the worst case, but this is valid with the constraint that the load factor

is less than 0.5.

The use of three different hash-functions instead of two could result in an

efficient upper limit of the load factor above 0.9.

Some researches show, the cuckoo hashing and its modifications could

be much more efficient than the widely spread today chaining in a list

and open addressing methods. Nevertheless, this method is still not well

adopted in the industry and not used internally in .NET Framework. The main

stopper is the need of two hash functions, which means that the class

System.Object should introduce two GetHashCode() methods.

The "Set" Data Structure

In this section we will look over the abstract data structure "set" and two

of its typical implementations. We will explain their advantages and disadvan-

tages and which of them should be preferred for different situations.

The Abstract Data Structure "Set"

Sets are collections of unique elements (without any repeating elements

inside). In the .NET context, it means, for every set object, calling its
Equals() method and passing another object from the set as an argument,

will always result in false. Note that two different objects in .NET may be

equal when compared by certain field and thus in the data structure "set" only

one of them could be put.

Some sets allow their elements to be null, while others do not allow.

Besides not allowing the repetition of objects, another important thing, that

distinguishes sets from lists and arrays, is that the set element has no

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 761

index. The elements of the set cannot be accessed by any key, as it is with

dictionaries. The elements themselves are the keys.

The only way to access an object from a set is by having available either the

object itself or another object, which is equal to it. That is why, in practice we

access all the elements of a given set at once, while iterating, by using the

foreach loop construct.

Set Implementations in .NET Framework

In .NET (version 4.0 and above) there is an interface ISet<T> representing

the ADT "set" and it has two standard implementation classes:

- HashSet<T> – hash-table based implementation of set.

- SortedSet<T> – red-black tree based implementation of set.

Let’s review both of them and see their strong and weak sides.

The main operations, defined by the ISet<T> interface (abstract data

structure set), are the following:

- bool Add(element) – adding the element to the set and returning

false if the element is already present inside the set, otherwise

returning true.

- bool Contains(element) – checks if the set already contains the

element passed as an argument. If yes, returns true as a result,

otherwise returns false.

- bool Remove(element) – removes the element from the set. Returns

Boolean if the element has been present inside the set.

- void Clear() – removes all the elements from the set.

- void IntersectWith(Set other) – inside the current set remain only

the elements of the intersection of both sets – the result is a set,

containing the elements, which are present in both sets at the same

time – the set, calling the method and the other, passed as parameter.

- void UnionWith(Set other) – inside the current set remain only the

elements of the sets union – the result is a set, containing the elements

of either one or the other, or both sets.

- bool IsSubsetOf(Set other) – checks if the current set is a subset of

the other set. Returns true, if yes and false, if no.

- bool IsSupersetOf(Set other) – checks if the other set is a subset

of the current one. Returns true, if yes and false, if no.

- int Count – a property, which returns the current number of elements

inside the set.

www.manaraa.com

762 Fundamentals of Computer Programming with C#

Implementation with Hash-Table – HashSet<T>

As we already mentioned, the hash-table implementation of set in .NET is the

HashSet<T> class. This class, like Dictionary<K, V>, has constructors, by

which we might pass a list of elements, as well as an IEqualityComparer

implementation, mentioned earlier. They have the same semantics, because

here we use a hash-table again.

Here is an example, which demonstrates the use of sets and the already

described, operations: union and intersection:

using System;
using System.Collections.Generic;

class StudentListSetsExample
{
 static void Main()
 {
 HashSet<string> aspNetStudents = new HashSet<string>();
 aspNetStudents.Add("S. Jobs");
 aspNetStudents.Add("B. Gates");
 aspNetStudents.Add("M. Dell");

 HashSet<string> silverlightStudents =
 new HashSet<string>();
 silverlightStudents.Add("M. Zuckerberg");
 silverlightStudents.Add("M. Dell");

 HashSet<string> allStudents = new HashSet<string>();
 allStudents.UnionWith(aspNetStudents);
 allStudents.UnionWith(silverlightStudents);

 HashSet<string> intersectStudents =
 new HashSet<string>(aspNetStudents);
 intersectStudents.IntersectWith(silverlightStudents);

 Console.WriteLine("ASP.NET students: " +
 string.Join(", ", aspNetStudents));
 Console.WriteLine("Silverlight students: " +
 string.Join(", ", silverlightStudents));
 Console.WriteLine("All students: " +
 string.Join(", ", allStudents));
 Console.WriteLine(
 "Students in both ASP.NET and Silverlight: " +
 string.Join(", ", intersectStudents));
 }

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 763

}

And the output from the above code is:

ASP.NET students: S. Jobs, B. Gates, M. Dell
Silverlight students: M. Zuckerberg, M. Dell
All students: S. Jobs, B. Gates, M. Dell, M. Zuckerberg
Students in both ASP.NET and Silverlight: M. Dell

Pay attention that "M. Dell" is present in both sets, but inside the union it is

present only once. That is, because, as we already explained, one element

might be present at most once in a given set.

Implementation with Red-Black Tree – SortedSet<T>

The standard .NET class SortedSet<T> is a set, implemented by a balanced

search tree (red-black tree). Because of this, its elements are internally kept

in an increasing order. For that reason we can only add elements, which are

comparable. We remind that in .NET it typically means the objects are

instances of a class, implementing IComparable<T>. We would demonstrate

the use of the SortedSet<T> class by the following example:

using System;
using System.Collections.Generic;

class SortedSetsExample
{
 static void Main()
 {
 SortedSet<string> bandsBradLikes =
 new SortedSet<string>(new[] {
 "Manowar", "Blind Guardian", "Dio", "Kiss",
 "Dream Theater", "Megadeth", "Judas Priest",
 "Kreator", "Iron Maiden", "Accept"
 });

 SortedSet<string> bandsAngelinaLikes =
 new SortedSet<string>(new[] {
 "Iron Maiden", "Dio", "Accept", "Manowar", "Slayer",
 "Megadeth", "Running Wild", "Grave Gigger", "Metallica"
 });

 Console.Write("Brad Pitt likes these bands: ");
 Console.WriteLine(string.Join(", ", bandsBradLikes));

www.manaraa.com

764 Fundamentals of Computer Programming with C#

 Console.Write("Angelina Jolie likes these bands: ");
 Console.WriteLine(string.Join(", ", bandsAngelinaLikes));

 SortedSet<string> intersectBands =
 new SortedSet<string>(bandsBradLikes);
 intersectBands.IntersectWith(bandsAngelinaLikes);

 Console.WriteLine(string.Format(
 "Does Brad Pitt like Angelina Jolie? {0}",
 intersectBands.Count >= 5 ? "Yes!" : "No!"));

 Console.Write(
 "Because Brad Pitt and Angelina Jolie both like: ");
 Console.WriteLine(string.Join(", ", intersectBands));

 SortedSet<string> unionBands =
 new SortedSet<string>(bandsBradLikes);
 unionBands.UnionWith(bandsAngelinaLikes);

 Console.Write(
 "All bands that Brad Pitt or Angelina Jolie like: ");
 Console.WriteLine(string.Join(", ", unionBands));
 }
}

And the output of the program execution is:

Brad Pitt likes these bands: Accept, Blind Guardian, Dio, Dream
Theater, Iron Maiden, Judas Priest, Kiss, Kreator, Manowar,
Megadeth
Angelina Jolie likes these bands: Accept, Dio, Grave Gigger,
Iron Maiden, Manowar, Megadeth, Metallica, Running Wild, Slayer
Does Brad Pitt like Angelina Jolie? Yes!
Because Brad Pitt and Angelina Jolie both like: Accept, Dio,
Iron Maiden, Manowar, Megadeth
All bands that Brad Pitt or Angelina Jolie like: Accept, Blind
Guardian, Dio, Dream Theater, Grave Gigger, Iron Maiden, Judas
Priest, Kiss, Kreator, Manowar, Megadeth, Metallica, Running
Wild, Slayer

As we may note, the elements in all set are always ordered, in comparison

with HashSet<T>.

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 765

Exercises

1. Write a program that counts, in a given array of integers, the number of

occurrences of each integer.

Example: array = {3, 4, 4, 2, 3, 3, 4, 3, 2}

2 2 times 3 4 times 4 3 times

2. Write a program to remove from a sequence all the integers, which

appear odd number of times. For instance, for the sequence {4, 2, 2,

5, 2, 3, 2, 3, 1, 5, 2, 6, 6, 6} the output would be {5, 3, 3, 5}.

3. Write a program that counts how many times each word from a given

text file words.txt appears in it. The result words should be ordered by

their number of occurrences in the text.

Example: "This is the TEXT. Text, text, text – THIS TEXT! Is
this the text?"

Result: is 2, the 2, this 3, text 6.

4. Implement a DictHashSet<T> class, based on HashDictionary<K, V>

class, we discussed in the text above.

5. Implement a hash-table, maintaining triples (key1, key2, value) and

allowing quick search by the pair of keys and adding of triples.

6. Implement a hash-table, allowing the maintenance of more than one

value for a specific key.

7. Implement a hash-table, using "cuckoo hashing" with 3 hash-

functions.

8. Implement the data structure hash-table in a class HashTable<K,T>.

Keep the data in an array of key-value pairs (KeyValuePair<K,T>[])

with initial capacity of 16. Resole the collisions with quadratic probing.

When the hash table load runs over 75%, perform resizing to 2 times

larger capacity. Implement the following methods and properties:

Add(key, value), Find(key) value, Remove(key), Count, Clear(),

this[] and Keys. Try to make the hash-table to support iterating over its

elements with foreach.

9. Implement the data structure "Set" in a class HashedSet<T>, using your

class HashTable<K, T> to hold the elements. Implement all standard set

operations like Add(T), Find(T), Remove(T), Count, Clear(), union

and intersect.

10. We are given three sequences of numbers, defined by the formulas:

- f1(0) = 1; f1(k) = 2*f1(k-1) + 3; f1 = {1, 5, 13, 29, …}

- f2(0) = 2; f2(k) = 3*f2(k-1) + 1; f2 = {2, 7, 22, 67, …}

- f3(0) = 2; f3(k) = 2*f3(k-1) - 1; f3 = {2, 3, 5, 9, …}

www.manaraa.com

766 Fundamentals of Computer Programming with C#

Write a program to find the intersection and union of sets of

sequences’ elements within the range [0; 100000]: f1 * f2; f1 * f3; f2 *

f3; f1 * f2 * f3; f1 + f2; f1 + f3; f2 + f3; f1 + f2 + f3. Here + and * mean

respectively union and intersection of sets.

11. * Define TreeMultiSet<T> class, which allows to keep a set of

elements, in increasing order and to have duplicates of the elements.

Implement operations adding of element, finding the number of

occurrences, deletion, iterator, min / max element finding, min / max

deletion. Implement the possibility to pass an external Comparer<T> for

elements comparison.

12. * We are given a list of arriving and departing schedule at a bus

station. Write a program, using the HashSet<T> class, which by given

interval (start, end) returns the number of buses, which have arrived

and departed during that time. Example:

We have the data of the following buses: [08:24-08:33], [08:20-09:00],

[08:32-08:37], [09:00-09:15]. We are given the range [08:22-09:05].

The number of buses, arriving and departing during that time is 2.

13. * We are given a sequence P containing L integers L (1 < L < 50,000)

and a number N. We call a “lucky sub-sequence within P” every sub-

sequence of integers from P with a sum equal to N.

Imagine we have a sequence S, holding all the lucky sub-sequences of P,

kept in decreasing order by their length. When the length is the same,

the sequences are ordered in decreasing order by their elements:

from the leftmost to the rightmost. Write a program to return the first 10

elements of S.

Example: We are given N = 5 and the sequence P = {1, 1, 2, 1, -1, 2, 3,

-1, 1, 2, 3, 5, 1, -1, 2, 3}. The sequence S consists of the following 13

sub-sequences of P:

- [1, -1, 2, 3, -1, 1]

- [1, 2, 1, -1, 2]

- [3, -1, 1, 2]

- [2, 3, -1, 1]

- [1, 1, 2, 1]

- [1, -1, 2, 3]

- [1, -1, 2, 3]

- [-1, 1, 2, 3]

- [5, 1, -1]

- [2, 3]

- [2, 3]

- [2, 3]

- [5]

www.manaraa.com

Chapter 18. Dictionaries, Hash-Tables and Sets 767

The last 10 elements of P are given in bold.

Solutions and Guidelines

1. Use Dictionary<TKey, TValue> counts and though a single scan

through the input numbers count the occurrences of each one. When you

pass through a number p, if it is missing in the dictionary counts[p] = 1.

If the number is already stored in the dictionary, increase its count:

counts[p] = counts[p] + 1. Finally scan through the element of the

dictionary (with foreach-loop) and print its key-value pairs.

2. Use Dictionary<K, T> to count how many times each element occurs

(like in the previous problem) and List<T> where you can add all

elements occurring even number of times.

3. Use Dictionary<string, int> with word as a key and number of

occurrences as a value. After counting all the words, sort the

dictionary by value using something like this:

var sorted = dictionary.OrderBy(p => p.Value);

To use the OrderBy(<keySelector>) extension method you need to

include the System.Linq namespace.

4. Use the element of the set as key and value at the same time.

5. Use hash-table of hash-tables: Dictionary<key, Dictionary<key,

value>>. Think about how to add and search elements in this structure.

6. Use Dictionary<K, List<V>>.

7. You can use GetHashCode() % size as the first hash-function,

(GetHashCode() * 83 + 7) % size as the second, (GetHashCode () *
GetHashCode() + 19) % size) as the third.

8. Follow the example from the section "Implementation of a

Dictionary with Hash-Table and Chaining". Read about quadratic

probing in Wikipedia: http://en.wikipedia.org/wiki/Quadratic_probing. In

order to expand the hash table (double its size), you can allocate an

array with double size, transfer all the elements from the old one to the

new one and at the end redirect the reference from the old array to the

new one. To have foreach on your collection, implement the interface

IEnumerable and inside your GetEnumerator() method you must return

GetEnumerator() to the array of lists. You can use yield operator.

9. One way to solve the task is to use as key for the hash-table the element

of the set and as a value always true. The union and intersection will

be done by looping all the elements of the first set and checking if there is

(respectively there is not) element of the second one.

http://en.wikipedia.org/wiki/Quadratic_probing

www.manaraa.com

768 Fundamentals of Computer Programming with C#

10. Find all the members of the three sequences inside the given range and

using HashSet<int> implement union and intersection of sets after that.

At the end do the calculations requested.

11. TreeMultiSet<T> class you can implement by using the .NET system

class SortedDictionary<K, List<T>>. It is not so easy, so take enough

time to write the code and test it.

12. The obvious solution is to check for all the buses whether they arrive or

depart in the given range. But according to the task terms we have to use

HashSet<T>. Let’s think how.

With a linear scan (a for-loop) we can find all buses arriving after the

beginning of the range and find all buses departing before the end of

the range. These are two separate sets, right? The intersection of these

sets should give us the set of buses we need.

If TimeInterval is a class, keeping the schedule of a bus (arriveHour,

arriveMinute, departureHour, departureMinute), the intersection

could be efficiently found by HashSet<TimeInterval> with correctly

defined GetHashCode() and Equals().

Another, efficient solution is to use SortedSet<T> and its method

GetViewBetween(<start>, <end>), but this contradicts to the problem

description (recall that we are assigned to use HashSet<T>).

13. The first idea for a solution is simple: Using two nested loops we find

all lucky sub-sequences of the sequence P. After that we sort them by

their length (and by their elements as second criteria) and at the end we

print the first 10. However, this algorithm will not work well if we have

millions of sub-sequences. It may cause “out of memory”.

We would describe an idea for a much efficient solution: we will first

define a class Sequence<T> to hold a sequence of elements. We will

implement IComparable<Sequence<T>> to compare sequences by length

in decreasing order (and by elements in decreasing order when the length

is the same).

Later we will use our TreeMultiSet<T> class. Inside we will keep the

first 10 sub-sequences of S, i.e. multi-set of the lucky sub-sequences

of P, kept in decreasing order by length (and in decreasing order of their

content when the length is the same). When we have 10 sub-sequences

inside the multi-set and we add 11th sequence, it would take its correct

place in the order, because of the IComparable<Sequence<T>> defined.

After that we can delete the 11th subsequence, because it is not amongst

the first 10. In that way we would always keep the first 10 elements,

discarding the others in any given moment, consuming much less

memory and with no need of sorting at the end. The implementation is

not so easy, so spare enough time for it.

www.manaraa.com

Chapter 19. Data Structures
and Algorithm Complexity

In This Chapter

In this chapter we will compare the data structures we have learned so far

by the performance (execution speed) of the basic operations (addition,

search, deletion, etc.). We will give specific tips in what situations what data

structures to use. We will explain how to choose between data structures

like hash-tables, arrays, dynamic arrays and sets implemented by hash-tables

or balanced trees. Almost all of these structures are implemented as part of

NET Framework, so to be able to write efficient and reliable code we have

to learn to apply the most appropriate structures for each situation.

Why Are Data Structures So Important?

You may wonder why we pay so much attention to data structures and

why we review them in such a great details. The reason is we aim to make

out of you thinking software engineers. Without knowing the basic data

structures and computer algorithms in programming well, you cannot be good

developers and risk to stay an amateur. Whoever knows data structures

and algorithms well and starts thinking about their correct use has big

chance to become a professional – one that analyzes the problems in depth

and proposes efficient solutions.

There are hundreds of books written on this subject. In the four volumes,

named "The Art of Computer Programming", Donald Knuth explains

data structures and algorithms in more than 2500 pages. Another author,

Niklaus Wirth, has named his book after the answer to the question "why

are data structures so important", which is "Algorithms + Data Structures

= Programs". The main theme of the book is again the fundamental

algorithms and data structures in programming.

Data structures and algorithms are the fundamentals of

programming. In order to become a good developer it is

essential to master the basic data structures and algorithms

and learn to apply them in the right way.

To a large degree our book is focused on learning data structures and

algorithms along with the programming concepts, language syntax and

problem solving. We also try to illustrate them in the context of modern

software engineering with C# and .NET Framework.

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs

www.manaraa.com

770 Fundamentals of Computer Programming with C#

Algorithm Complexity

We cannot talk about efficiency of algorithms and data structures

without explaining the term "algorithm complexity", which we have already

mentioned several times in one form or another. We will avoid the

mathematical definitions and we are going to give a simple explanation of

what the term means.

Algorithm complexity is a measure which evaluates the order of the count

of operations, performed by a given or algorithm as a function of the size of

the input data. To put this simpler, complexity is a rough approximation of

the number of steps necessary to execute an algorithm. When we evaluate

complexity we speak of order of operation count, not of their exact count. For

example if we have an order of N2 operations to process N elements, then

N2/2 and 3*N2 are of one and the same quadratic order.

Algorithm complexity is commonly represented with the O(f) notation, also

known as asymptotic notation or “Big O notation”, where f is the function

of the size of the input data. The asymptotic computational complexity O(f)

measures the order of the consumed resources (CPU time, memory, etc.) by

certain algorithm expressed as function of the input data size.

Complexity can be constant, logarithmic, linear, n*log(n), quadratic,

cubic, exponential, etc. This is respectively the order of constant,

logarithmic, linear and so on, number of steps, are executed to solve a given

problem. For simplicity, sometime instead of “algorithms complexity” or

just “complexity” we use the term “running time”.

Algorithm complexity is a rough approximation of the

number of steps, which will be executed depending on the

size of the input data. Complexity gives the order of steps

count, not their exact count.

Typical Algorithm Complexities

This table will explain what every type of complexity (running time) means:

Complexity Running Time Description

constant O(1)

It takes a constant number of steps for

performing a given operation (for example

1, 5, 10 or other number) and this count

does not depend on the size of the input

data.

logarithmic O(log(N))

It takes the order of log(N) steps, where

the base of the logarithm is most often 2,

for performing a given operation on N

elements. For example, if N = 1,000,000,

an algorithm with a complexity O(log(N))

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 771

would do about 20 steps (with a constant

precision). Since the base of the logarithm

is not of a vital importance for the order of

the operation count, it is usually omitted.

linear O(N)

It takes nearly the same amount of

steps as the number of elements for

performing an operation on N elements.

For example, if we have 1,000 elements, it

takes about 1,000 steps. Linear

complexity means that the number of

elements and the number of steps are

linearly dependent, for example the

number of steps for N elements can be

N/2 or 3*N.

 O(n*log(n))

It takes N*log(N) steps for performing a

given operation on N elements. For

example, if you have 1,000 elements, it

will take about 10,000 steps.

quadratic O(n2)

It takes the order of N2 number of steps,

where the N is the size of the input data,

for performing a given operation. For

example if N = 100, it takes about 10,000

steps. Actually we have a quadratic

complexity when the number of steps is in

quadratic relation with the size of the

input data. For example for N elements

the steps can be of the order of 3*N2/2.

cubic O(n3)

It takes the order of N3 steps, where N is

the size of the input data, for performing

an operation on N elements. For example,

if we have 100 elements, it takes about

1,000,000 steps.

exponential
O(2n), O(N!),

O(nk), …

It takes a number of steps, which is with

an exponential dependability with the

size of the input data, to perform an

operation on N elements. For example, if

N = 10, the exponential function 2N has a

value of 1024, if N = 20, it has a value of

1 048 576, and if N = 100, it has a value

of a number with about 30 digits. The

exponential function N! grows even faster:

for N = 5 it has a value of 120, for N = 10

it has a value of 3,628,800 and for N = 20

– 2,432,90,008,176,640,000.

www.manaraa.com

772 Fundamentals of Computer Programming with C#

When evaluating complexity, constants are not taken into account,

because they do not significantly affect the count of operations. Therefore an

algorithm which does N steps and algorithms which do N/2 or 3*N

respectively are considered linear and approximately equally efficient,

because they perform a number of operations which is of the same order.

Complexity and Execution Time

The execution speed of a program depends on the complexity of the

algorithm, which is executed. If this complexity is low, the program will

execute fast even for a big number of elements. If the complexity is high, the

program will execute slowly or will not even work (it will hang) for a big

number of elements.

If we take an average computer from 2008, we can assume that it can

perform about 50,000,000 elementary operations per second. This

number is a rough approximation, of course. The different processors work

with a different speed and the different elementary operations are performed

with a different speed, and also the computer technology constantly evolves.

Still, if we accept we use an average home computer from 2008, we can make

the following conclusions about the speed of execution of a given program

depending on the algorithm complexity and size of the input data.

Algorithm 10 20 50 100 1,000 10,000 100,000

O(1)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(log(n))
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n*log(n))
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n2)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
2 sec. 3-4 min.

O(n3)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

20

sec.

5.55

hours

231.5

days

O(2n)
< 1

sec.

< 1

sec.

260

days
hangs hangs hangs hangs

O(n!)
< 1

sec.
hangs hangs hangs hangs hangs hangs

O(nn)
3-4

min.
hangs hangs hangs hangs hangs hangs

We can draw many conclusions from the above table:

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 773

- Algorithms with a constant, logarithmic or linear complexity are so

fast that we cannot feel any delay, even with a relatively big size of the

input data.

- Complexity O(n*log(n)) is similar to the linear and works nearly as

fast as linear, so it will be very difficult to feel any delay.

- Quadratic algorithms work very well up to several thousand elements.

- Cubic algorithms work well if the elements are not more than 1,000.

- Generally these so called polynomial algorithms (any, which are not

exponential) are considered to be fast and working well for thousands of

elements.

- Generally the exponential algorithms do not work well and we

should avoid them (when possible). If we have an exponential solution

to a task, maybe we actually do not have a solution, because it will work

only if the number of the elements is below 10-20. Modern cryptography

is based exactly on this – there are not any fast (non-exponential)

algorithms for finding the secret keys used for data encryption.

If you solve a given problem with an exponential complexity

this means that you have solved it for a small amount of

input data and generally your solution does not work.

The data in the table is just for orientation, of course. Sometimes a linear

algorithm could work slower than a quadratic one or a cubic algorithm

could work faster than O(n*log(n)). The reasons for this could be many:

- It is possible the constants in an algorithm with a low complexity to be

big and this could eventually make the algorithm slow. For example, if

we have an algorithm, which makes 50*n steps and another one,

which makes 1/100*n*n steps, for elements up to 5000 the quadratic

algorithm will be faster than the linear.

- Since the complexity evaluation is made in the worst case scenario, it

is possible a quadratic algorithm to work better than O(n*log(n)) in 99%

of the cases. We can give an example with the algorithm QuickSort

(the standard sorting algorithm in .NET Framework), which in the

average case works a bit better than MergeSort, but in the worst case

QuickSort can make the order of n2 steps, while MergeSort does

always O(n*log(n)) steps.

- It is possible an algorithm, which is evaluated to execute with a linear

complexity, to not work so fast, because of an inaccurate complexity

evaluation. For example if we search for a given word in an array of

words, the complexity is linear, but at every step string comparison

is performed, which is not an elementary operation and can take much

more time than performing simple elementary operation (for example

comparison of two integers).

www.manaraa.com

774 Fundamentals of Computer Programming with C#

Complexity by Several Variables

Complexity can depend on several input variables at once. For example, if we

look for an element in a rectangular matrix with sizes M and N, the

searching speed depends on M and N. Since in the worst case we have to

traverse the entire matrix, we will do M*N number of steps at most. Therefore

the complexity is O(M*N).

Best, Worst and Average Case

Complexity of algorithms is usually evaluated in the worst case (most

unfavorable scenario). This means in the average case they can work faster,

but in the worst case they work with the evaluated complexity and not slower.

Let’s take an example: searching in array. To find the searched key in the

worst case, we have to check all the elements in the array. In the best case

we will have luck and we will find the element at first position. In the average

case we can expect to check half the elements in the array until we find the

one we are looking for. Hence in the worst case the complexity is O(N) –

linear. In the average case the complexity is O(N/2) = O(N) – linear, because

when evaluating complexity one does not take into account the constants. In

the best case we have a constant complexity O(1), because we make only one

step and directly find the element.

Roughly Estimated Complexity

Sometimes it is hard to evaluate the exact complexity of a given

algorithm, because it performs operations and it is not known exactly how

much time they will take and how many operations will be done internally.

Let’s take the example of searching a given word in an array of strings

(texts). The task is easy: we have to traverse the array and search in every

text with Substring() or with a regular expression for the given word. We

can ask ourselves the question: if we had 10,000 texts, would this work fast?

What if the texts were 100,000? If we carefully think about it, we will

implement that in order to evaluate adequately, we have to know how big

are the texts, because there is a difference between searching in people’s

names (which are up to 50-100 characters) and searching in scientific articles

(which are roughly composed by 20,000 – 30,000 characters). However, we

can evaluate the complexity using the length of the texts, through which we

are searching: it is at least O(L), where L is the sum of the lengths of all

texts. This is a pretty rough evaluation, but it is much more accurate than

complexity O(N), where N is the number of the texts, right? We should think

whether we take into account all situations, which could occur. Does it matter

how long the searched word is? Probably searching of long words is slower

than searching of short words. In fact things are slightly different. If we

search for "aaaaaaa" in the text "aaaaaabaaaaacaaaaaabaaaaacaaaaab", this

will be slower than if we search for "xxx" in the same text, because in the first

case we will get more sequential matches than in the second case. Therefore,

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 775

in some special situations, searching seriously depends on the length of the

word we search and the complexity O(L) could be underestimated.

Complexity by Memory

Besides the number of steps using a function of the input data, one can

measure other resources, which an algorithm uses, for example memory,

count of disk operations, etc. For some algorithms the execution speed is not

as important as the memory they use. For example if a given algorithm is

linear but it uses RAM in the order of N2, it will be probably shortage of

memory if N = 100,000 (then it will need memory in order of 9 GB RAM),

despite the fact that it should work very fast.

Estimating Complexity – Examples

We are going to give several examples, which show how you can estimate

the complexity of your algorithms, and decide whether the code written by

you will work fast:

If we have a single loop from 1 to N, its complexity is linear – O(N):

int FindMaxElement(int[] array)
{
 int max = int.MinValue;
 for (int i = 1; i < array.Length; i++)
 {
 if (array[i] > max)
 {
 max = array[i];
 }
 }
 return max;
}

This code will work well even if the number of elements is huge.

If we have two of nested loops from 1 to N, their complexity is quadratic

– O(N2). Example:

int FindInversions(int[] array)
{
 int inversions = 0;
 for (int i = 0; i < array.Length - 1; i++)
 {
 for (int j = i + 1; j < array.Length; j++)
 {
 if (array[i] > array[j])
 {

www.manaraa.com

776 Fundamentals of Computer Programming with C#

 inversions++;
 }
 }
 }
 return inversions;
}

If the elements are no more than several thousand or tens of thousands, this

code will work well.

If we have tree nested loops from 1 to N, their complexity is cubic –

O(N3). Example:

long Sum3(int n)
{
 long sum = 0;
 for (int a = 1; a < n; a++)
 {
 for (int b = 1; b < n; b++)
 {
 for (int c = 1; c < n; c++)
 {
 sum += a * b * c;
 }
 }
 }
 return sum;
}

This code will work well if the number of elements is below 1,000.

If we have two nested loops from 1 to N and from 1 to M respectively,

their complexity will be quadratic – O(N*M). Example:

long SumMN(int n, int m)
{
 long sum = 0;
 for (int x = 1; x <= n; x++)
 {
 for (int y = 1; y <= m; y++)
 {
 sum += x * y;
 }
 }
 return sum;
}

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 777

The speed of this code depends on two variables. The code will work well if

M, N < 10,000 or if at least the one variable has a value small enough.

We should pay attention to the fact that not always tree nested loops mean

cubic complexity. Here is an example in which the complexity is O(N*M):

long SumMN(int n, int m)
{
 long sum = 0;
 for (int x = 1; x <= n; x++)
 {
 for (int y = 1; y <= m; y++)
 {
 if (x == y)
 {
 for (int i = 1; i <= n; i++)
 {
 sum += i * x * y;
 }
 }
 }
 }
 return sum;
}

In this example the most inner loop executes exactly min(M, N) times and

does not significantly affect the algorithm speed. The outer code executes

approximately N*M + min(M,N)*N steps, i.e. its complexity is quadratic.

When using a recursion, the complexity is more difficult to be

estimated. Here is an example:

long Factorial(int n)
{
 if (n == 0)
 {
 return 1;
 }
 else
 {
 return n * Factorial(n - 1);
 }
}

In this example the complexity is obviously linear – O(N), because the

function Factorial() executes exactly once for each of the numbers 1 … n.

www.manaraa.com

778 Fundamentals of Computer Programming with C#

Here is a recursive function for which it is very difficult to estimate the

complexity:

long Fibonacci(int n)
{
 if (n == 0)
 {
 return 1;
 }
 else if (n == 1)
 {
 return 1;
 }
 else
 {
 return Fibonacci(n - 1) + Fibonacci(n - 2);
 }
}

If we write down what really happens when the upper code executes, we will

see that the function calls itself as many times as the Fibonacci’s n+1 number

is. We can roughly evaluate the complexity by another way too: since on

every step of the function execution 2 recursive calls are done in average, the

count of the recursive calls must be in order of 2n, i.e. we have an

exponential complexity. This automatically means that for values greater

than 20-30 the function will "hang". You may check this yourself.

The same function for calculating the nth number of Fibonacci can be

written with a linear complexity in the following way:

long Fibonacci(int n)
{
 long fn = 1;
 long fn1 = 1;
 long fn2 = 1;
 for (int i = 2; i < n; i++)
 {
 fn = fn1 + fn2;
 fn2 = fn1;
 fn1 = fn;
 }
 return fn;
}

You see that the complexity estimation helps us to predict whether a given

code will work slowly before we have run it and it implies we should look

for a more efficient solution.

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 779

Comparison between Basic Data Structures

After you have been introduced to the term algorithm complexity, we are now

ready to make a comparison between the basic data structures, which

we know from the last few chapters, and to estimate with what complexity

each of them performs the basic operations like addition, searching,

deletion and access by index (when applicable). In that way we could

easily judge according to the operations we expect to need, which structure

would be the most appropriate. The complexities of the basic operations

on the basic data structures, which we have reviewed in the previous

chapters, are given in the table below:

Data structure Addition Search Deletion
Access

by index

Array (T[]) O(N) O(N) O(N) O(1)

Linked list (LinkedList<T>) O(1) O(N) O(N) O(N)

Dynamic array (List<T>) O(1) O(N) O(N) O(1)

Stack (Stack<T>) O(1) - O(1) -

Queue (Queue<T>) O(1) - O(1) -

Dictionary, implemented

with a hash-table

(Dictionary<K, T>)
O(1) O(1) O(1) -

Dictionary, implemented

with a balanced search tree

(SortedDictionary<K, T>)
O(log(N)) O(log(N)) O(log(N)) -

Set, implemented with a

hash-table (HashSet<T>)
O(1) O(1) O(1) -

set, implemented with a

balanced search tree

(SortedSet<T>)
O(log(N)) O(log(N)) O(log(N)) -

We let the reader to think about how these complexities were estimated.

When to Use a Particular Data Structure?

Let’s skim through all the structures in the table above and explain in what

situations we should use them as well as how their complexities are

evaluated.

Array (T[])

The arrays are collections of fixed number of elements from a given type

(for example numbers) where the elements preserved their order. Each

www.manaraa.com

780 Fundamentals of Computer Programming with C#

element can be accessed through its index. The arrays are memory areas,

which have a predefined size.

Adding a new element in an array is a slow operation. To do this we have

to allocate a memory with the same size plus one and copy all the data from

the original array to the new one.

Searching in an array takes time because we have to compare every

element to the searched value. It takes N/2 comparisons in the average case.

Removing an element from an array is a slow operation. We have to

allocate a memory with the same size minus one and copy all the old

elements except the removed one.

Accessing by index is direct, and thus, a fast operation.

The arrays should be used only when we have to process a fixed number of

elements to which we need a quick access by index. For example, if we

have to sort some numbers, we can keep them in an array and then apply

some of the well-known sorting algorithms. If we have to change the

elements' count, the array is not the correct data structure we should use.

Use arrays when you have to process a fixed number of

elements to which you need an access through index.

Singly / Doubly Linked List (LinkedList<T>)

Singly and doubly linked lists hold collection of elements, which preserve

their order. Their representation in the memory is dynamic, pointer-based.

They are linked sequences of element.

Adding is a fast operation but it is a bit slower than adding to a List<T>

because every time when we add an element to a linked list we allocate a new

memory area. The memory allocation works at speed, which cannot be easily

predicted.

Searching in a linked list is a slow operation because we have to traverse

through all of its elements.

Accessing an element by index is a slow operation because there is no

indexing in singly and doubly linked lists. You have to go through all the

elements from the start one by one instead.

Removing an element at a specified index is a slow operation because

reaching the element through its index is a slow operation. Removing an

element with a specified value is a slow operation too, because it involves

searching.

Linked list can quickly add and remove elements (with a constant

complexity) at its two ends (head and tail). Hence, it is very handy for an

implementation of stacks, queues and similar data structures.

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 781

Linked lists are rarely used in practice because the dynamic arrays

(List<T>) can do almost exact same operations LinkedList does, plus for

the most of them it works faster and more comfortable.

When you need a linked list, use List<T> instead of LinkedList<T>, because

it doesn’t work slower and it gives you better speed and flexibility. Use

LinkedList when you have to add and remove elements at both ends of

the data structure.

When you need to add and remove elements at both ends of

the list, use LinkedList<T>. Otherwise use List<T>.

Dynamic Array (List<T>)

Dynamic array (List<T>) is one of the most popular data structures used

in programming. It does not have fixed size like arrays, and allows direct

access through index, unlike linked lists (LinkedList<T>). The dynamic array

is also known as "array list", "resizable array" and "dynamic array".

List<T> holds its elements in an array, which has a bigger size than the

count of the stored elements. Usually when we add an element, there is an

empty cell in the list’s inner array. Therefore this operation takes a constant

time. Occasionally the array has been filled and it has to expand. This takes

linear time, but it rarely happens. If we have a large amount of additions, the

average-case complexity of adding an element to List<T> will a constant –

O(1). If we sum the steps needed for adding 100,000 elements (for both

cases – "fast add" and "add with expand") and divide by 100,000, we will

obtain a constant which will be nearly the same like for adding 1,000,000

elements.

This statistically-averaged complexity calculated for large enough amount of

operations is called amortized complexity. Amortized linear complexity

means that if we add 10,000 elements consecutively, the overall count of

steps will be of the order of 10,000. In most cases add it will execute in a

constant time, while very rarely adding will execute in linear time.

Searching in List<T> is a slow operation because you have to traverse

through all the elements.

Removing by index or value executes in a linear time. It is a slow

operation because we have to move all the elements after the deleted one

with one position to the left.

The indexed access in List<T> is instant, in a constant time, since the

elements are internally stored in an array.

Practically List<T> combines the best of arrays and lists, for which it is a

preferred data structure in many situations. For example if we have to

process a text file and to extract from it all words (with duplicates), which

www.manaraa.com

782 Fundamentals of Computer Programming with C#

match a regular expression, the most suitable data structure in which we can

accumulate them is List<T>, because we need a list, the length of which is

unknown in advance and can grow dynamically.

The dynamic array (List<T>) is appropriate, when we have to add elements

frequently as well as keeping their order of addition and access them through

index. If we often we have to search or delete elements, List<T> is not the

right data structure.

Use List<T>, when you have to add elements quickly and

access them through index.

Stack

Stack is a linear data structure in which there are 3 operations defined:

adding an element at the top of the stack (push), removing an element from

the top of the stack (pop) and inspect the element from the top without

removing it (peek). All these operations are very fast – it takes a constant

time to execute them. The stack does not support the operations search and

access through index.

The stack is a data structure, which has a LIFO behavior (last in, first out).

It is used when we have to model such a behavior – for example, if we have

to keep the path to the current position in a recursive search.

Use a stack when you have to implement the behavior "last

in, first out" (LIFO).

Queue

Queue is a linear data structure in which there are two operations defined:

adding an element to the tail (enqueue) and extract the front-positioned

element from the head (dequeue). These two operations take a constant

time to execute, because the queue is usually implemented with a linked list.

We remind that the linked list can quickly add and remove elements from its

both ends.

The queue’s behavior is FIFO (first in, first out). The operations searching

and accessing through index are not supported. Queue can naturally model a

list of waiting people, tasks or other objects, which have to be processed in

the same order as they were added (enqueued).

As an example of using a queue we can point out the implementation of the

BFS (breadth-first search) algorithm, in which we start from an initial

element and all its neighbors are added to a queue. After that they are

processed in the order they were added and their neighbors are added to the

queue too. This operation is repeated until we reach the element we are

looking for or we process all elements.

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 783

Use a queue when you have to implement the behavior "first

in, first out" (FIFO).

Dictionary, Implemented with a Hash-Table
(Dictionary<K, T>)

The data structure "dictionary" suggests storing key-value pairs and

provides a quick search by key. The implementation with a hash table (the

class Dictionary<K,T> in .NET Framework) has a very fast add, search

and remove of elements – constant complexity at the average case. The

operation access through index is not available, because the elements in the

hash-table have no order, i.e. an almost random order.

Dictionary<K,T> keeps internally the elements in an array and puts every

element at the position calculated by the hash-function. Thus the array is

partially filled – in some cells there is a value, others are empty. If more than

one element should be placed in a single cell, elements are stored in a linked

list. It is called chaining. This is one of the few ways to resolve the collision

problem. When the load factor exceeds 75%, the size is doubled and all the

elements occupy new positions. This operation has a linear complexity, but it

is executed so rarely, that the amortized complexity remains a constant.

Hash-table has one peculiarity: if we choose a bad hash-function causing

many collisions, the basic operations can become very inefficient and reach

linear complexity. In practice, however, this hardly happens. Hash-table is

considered to be the fastest data structure, which provides adding and

searching by key.

Hash-table in .NET Framework permits each key to be put only once. If we

add two elements with the same key consecutively, the last will replace the

first and we will eventually lose an element. This important feature should be

considered.

From time to time one key will have to keep multiple values. This is not

standardly supported but we can store the values matching this key in a
List<T> as a sequence of elements. For example if we need a hash-table

Dictionary<int, string>, in which to accumulate pairs {integer, string}

with duplicates, we can use Dictionary<int, List<string>>. Some external

libraries have ready to use data structure called MultiDictionary<K,V>.

Hash-table is recommended to be used every time we need fast addition

and fast search by key. For example if we have to count how many times

each word is encountered in a set of words in a text file, we can use

Dictionary<string, int> – the key will be a particular word, the value –

how many times we have seen it.

Use a hash-table, when you want to add and search by key

very fast.

www.manaraa.com

784 Fundamentals of Computer Programming with C#

A lot of programmers (mostly beginners) live with the delusion the main

advantage of using a hash-table is the comfort of searching a value by its

key. Actually this is wrong. We can implement searching a key with an array,

a list or even a stack. There is no problem, everyone can build it. We can

define a class Entry, which holds a key-value pair and after that we will work

with an array or a list with Entry elements. We can implement the search but

by any circumstances it will work slowly. This is the big problem with lists and

arrays – they do not offer a fast search. Unlike them the hash-table can

search and add new elements very fast.

The main advantage of the hash-table over the other data

structures is a very quick searching and addition. The

comfort for the developers is a secondary factor.

Dictionary, Implemented with a Balanced Tree

(SortedDictionary<K,T>)

The implementation of the data structure "dictionary" as a red-black tree

(the class SortedDictionary<K,T>) is a structure storing key-value pairs

where keys are ordered increasingly (sorted). The structure provides a fast

execution of basic operations (add an element, search by key and remove an

element). The complexity of these operations is logarithmic – O(log(N)).

Thus, it will take 10 steps for add / search / remove when the dictionary holds

1,000 elements and 20 steps in case of 1,000,000 elements.

Unlike hash-tables, where we can reach linear complexity if we pick a bad

hash-function, in SortedDictionary<K,T> the count of the steps of the basic

operations in the average and worst case are the same – log2(N). When we

work with balanced trees, there is no hashing, no collisions and no risk of

using a bad hash-function.

Again, as in the hash-tables, one key can be stored at most once in the

structure. If we want to associate several values with one key, we should use

some kind of a list for the values, for example List<T>.

SortedDictionary<K,T> holds internally its values in a red-black balanced

tree ordered by key. This means if we traverse the structure (using its

iterator or foreach loop in C#) we will get the elements sorted in ascending

order by key. Sometimes this can be very useful property.

Use SortedDictionary<K,T> when you need a structure which can add,

search and remove an element fast and you also need to extract the elements

sorted in ascending order. In general Dictionary<K,T> works a bit faster

than SortedDictionary<K,T> and is preferable.

As an example of using a SortedDictionary<K,T>, we can give the following

task: find all the words in a text file, which occur exactly 10 times, and

print them alphabetically. This is a task that we can solve as successful

with Dictionary<K,T> too, but we will have to do an additional sorting at the

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 785

end. For the solution of this task we can use SortedDictionary<string,
int> and to traverse through all the words in the text file. For each word we

will keep in the sorted dictionary how many times we have encountered it.

After that we can go through all the elements in the dictionary and print those

words, which have been encountered exactly 10 times. They will be

alphabetically ordered, since this is the natural internal order of the sorted

dictionary data structure.

Use SortedDictionary<K,T> when you want fast addition of

elements and searching by key as well as the elements to be

sorted by key.

Set, Implemented with a Hash-Table (HashSet<T>)

The data structure "set" is a collection of elements with no duplicates.

The basic operations are adding an element to the set, checking if an element

belongs to the set (searching) and removing an element from the set. The

operation searching through index is not supported, i.e. we do not have a

direct access to the elements via ordering number, because in this structure

there is not any order.

Set, implemented with a hash-table (the class HashSet<T>) is a special case

of a hash-table, in which we have only keys. The values associated with these

keys do not matter.

As in the hash-table, the basic operations in the data structure HashSet<T>

are implemented with a constant complexity O(1). Another similarity to

hash-table is if we choose a bad hash-function, we can reach a linear

complexity executing the basic operations. Fortunately in practice this almost

never happens.

As an example of using a HashSet<T>, we can point out the task of finding all

the different words in a text file.

Use HashSet<T>, when you have to quickly add elements to a

set and check whether a given element belongs to a set.

Set, Implemented with a Balanced Tree
(SortedSet<T>)

The data structure set, implemented with a red-black tree, is a special case of

SortedDictionary<K,T> in which keys and values coincide.

Similar to SortedDictionary<K,T>, the basic operations in SortedSet<T> are

executed with logarithmic complexity O(log(N)), which is the same in the

average and worst case.

www.manaraa.com

786 Fundamentals of Computer Programming with C#

As an example of using a SortedSet<T> we can point out the task of finding

all the different words in a given text file and printing them alphabetically

ordered.

Use SortedSet<T>, when you have to quickly add an element

to a set and check whether given element belongs to the set

as well as need all the elements sorted in ascending order.

Choosing a Data Structure – Examples

We are going to show several problems, where the choice of an appropriate

data structure is crucial to the efficiency of their solution. The purpose of this

is to show you typical situations, in which the reviewed data structures are

used and to teach you in what scenarios what data structures you should use.

Generating Subsets

It is given a set of strings S. For example S = {ocean, beer, money,

happiness}. The task is to write a program, which prints all subsets of S.

The problem has many and different solutions, but we are going to focus on

the following one: We start from the empty set (with 0 elements):

{}

We add to it every element of S and we get a collection of subsets with one

element:

{ocean}, {beer}, {money}, {happiness}

To each of the one-elemental subsets we add every element from S, which

has not been added yet to the corresponding subset and now we have all two-

elemental subsets:

{ocean, beer}, {ocean, money}, {ocen, happiness}, {beer, money},
{beer, happiness}, {money, happiness}

If we keep on the same way, we will get all 3-elemental subsets and after

that all 4-elemental etc. to the N-elemental subsets.

How to implement this algorithm? We have to choose appropriate data

structures, right?

We can start with the data structure keeping the initial set of elements S. It

can be an array, linked list, dynamic array (List<string>) or set, imple-

mented as SortedSet<string> or HashSet<string>. To answer the question

which structure is the most appropriate, let’s think of which are the operations

we are going to do on this structure. We can think of only one operation –

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 787

traversing through all the elements of S. This operation can be implemented

efficiently with any of these structures. We choose an array because it is the

simplest data structure of all and it is easy to work with.

The next step is to pick a structure in which we will store one of the

subsets we generate, for example {ocean, happiness}. Again we ask

ourselves the question what are the operations we execute on this subset of

words. The operations are a check whether an element exists and an addition

of an element, right? Which data structure quickly implements both opera-

tions? The arrays and lists do not search quickly, dictionaries store key-value

pairs, which is not our case. Almost no options are left, so we are going to see

what the data structure set offers. It supports a quick searching and addition.

Which implementation to choose – SortedSet<string> or HashSet<string>?

We do not have a requirement to sort the words in alphabetical order, so we

choose the faster implementation – HashSet<string>.

Lastly, we will choose one more data structure in which we are going to keep

the collection of the subsets of words, for example:

{ocean, beer}, {sea, money}, {sea, happiness}, {beer, money},
{beer, happiness}, {money, happiness}

Using this structure we have to be able to add as well as traverse through all

its elements consecutively. The following structures meet the requirements:

list, stack, queue and set. In each of them we can add quickly and go

through its elements. If we examine the algorithm for generating subsets, we

will notice each is processed in style: "first generated, first processed".

The subset, which had been firstly generated, has been firstly processed and

subsets with one more element have been generated from it, right? Therefore

our algorithm will most accurately fit the data structure queue. We can

describe the algorithm as follows:

1. We start with a queue, containing the empty set {}.

2. We dequeue an element called subset and try to add each element from

S which subset does not contain. The result is a set, which we enqueue.

3. We repeat step 2 until the queue becomes empty.

You can see how a few thoughts brought us to the classical algorithm

"breadth-first search" (BFS). Once we know what data structures we

should use, implementation is quick and easy. Here is how it might look:

string[] words = {"ocean", "beer", "money", "happiness"};
Queue<HashSet<string>> subsetsQueue =
 new Queue<HashSet<string>>();
HashSet<string> emptySet = new HashSet<string>();
subsetsQueue.Enqueue(emptySet);
while (subsetsQueue.Count > 0)

www.manaraa.com

788 Fundamentals of Computer Programming with C#

{
 HashSet<String> subset = subsetsQueue.Dequeue();

 // Print current subset
 Console.Write("{ ");
 foreach (string word in subset)
 {
 Console.Write("{0} ", word);
 }
 Console.WriteLine("}");

 // Generate and enqueue all possible child subsets
 foreach (string element in words)
 {
 if (! subset.Contains(element))
 {
 HashSet<string> newSubset = new HashSet<string>();
 newSubset.UnionWith(subset);
 newSubset.Add(element);
 subsetsQueue.Enqueue(newSubset);
 }
 }
}

If we execute the code above, we will see that it successfully generates all

subsets of S, but some of them are generated twice.

{ }
{ ocean }
{ beer }
{ money }
{ happiness }
{ ocean beer }
{ ocean money }
{ ocean happiness }
{ beer ocean }
…

In the example the subsets { ocean beer } and { beer ocean } are actually

one and the same subset. It seems we have not thought of duplicates, which

occur when we mix the order of elements in the same subset. How can we

avoid duplicates?

Let’s associate the words by their indices.

ocean 0

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 789

beer 1

money 2

happiness 3

Since the subsets {1, 2, 3} and {2, 1, 3} are actually one and a same subset,

in order to avoid duplicates, we are going to impose a requirement to

generate only subsets, in which the indices are in ascending order. Instead

of subsets of words we can keep subsets of indices, right? In these subsets of

indices we need two operations: adding an index and getting the biggest

index so we can add only indices bigger than it. Obviously we do not need

HashSet<T> anymore, but we can successfully use List<T>, in which the

elements are ordered in ascending order by index and the biggest element is

naturally placed last.

Finally, our algorithm looks something like this:

1. Let N be the number of elements in S. We start with a queue,

containing the empty set {}.

2. We dequeue an element called subset. Let start be the biggest index

in subset. We add to subset all indices, which are bigger than start

and smaller than N. As a result we get several new subsets, which we

enqueue.

3. Repeat step 2 until the queue is empty.

Here is how the implementation of the new algorithm looks like:

using System;
using System.Collections.Generic;

public class Subsets
{
 static string[] words = { "ocean", "beer", "money",
 "happiness" };

 static void Main()
 {
 Queue<List<int>> subsetsQueue = new Queue<List<int>>();
 List<int> emptySet = new List<int>();
 subsetsQueue.Enqueue(emptySet);
 while (subsetsQueue.Count > 0)
 {
 List<int> subset = subsetsQueue.Dequeue();
 Print(subset);
 int start = -1;
 if (subset.Count > 0)
 {
 start = subset[subset.Count - 1];

www.manaraa.com

790 Fundamentals of Computer Programming with C#

 }
 for (int i = start + 1; i < words.Length; i++)
 {
 List<int> newSubset = new List<int>();
 newSubset.AddRange(subset);
 newSubset.Add(i);
 subsetsQueue.Enqueue(newSubset);
 }
 }
 }

 static void Print(List<int> subset) {
 Console.Write("[");
 for (int i=0; i<subset.Count; i++) {
 int index = subset[i];
 Console.Write("{0} ", words[index]);
 }
 Console.WriteLine("]");
 }
}

If we run the program we will get the following correct result:

[]
[ocean]
[beer]
[money]
[happiness]
[ocean beer]
[ocean money]
[ocean happiness]
[beer money]
[beer happiness]
[money happiness]
[ocean beer money]
[ocean beer happiness]
[ocean money happiness]
[beer money happiness]
[ocean beer money happiness]

Sorting Students

It is given a text file, containing the data of a group of students and

courses which they attend, separated by |. The file looks like this:

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 791

Chris | Jones | C#
Mia | Smith | PHP
Chris | Jones | Java
Peter | Jones | C#
Sophia | Wilson | Java
Mia | Wilson | C#
Mia | Smith | C#

Write a program printing all courses and the students, who have joined

them, ordered by last name, and then by first name (if the last names

match).

We can implement the problem using a hash-table, which will hold a list of

students by a course name. We are choosing a hash-table, because we can

quickly search by course name in it.

In order to meet the requirements for an order by name and surname, we are

going to sort the particular list of students from each course, before we

print it. Another option is to use SortedSet<T> for the students attending

each course (because it is internally sorted), but since one can have students

with the same name, we have to use SortedSet<List<String>>. It becomes

too complicated. We choose the easier way – using List<Student> and

sorting it before we print it.

In any case we will have to implement the IComparable interface so we can

define the order of the elements of type Student according to the task

requirements. It is important to firstly compare the family names and if they

are the same to compare the first names. We remind that in order to sort the

elements of a given class it is explicitly necessary to define the logic of their

order. In .NET Framework this is done by the IComparable<T> interface (or

through lambda functions like we shall see in the chapter “Lambda

Expressions and LINQ”). Let’s define the class Student and implement

IComparable<Student>. We get something like this:

public class Student : IComparable<Student>
{
 private string firstName;
 private string lastName;

 public Student(string firstName, string lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public int CompareTo(Student student)
 {

www.manaraa.com

792 Fundamentals of Computer Programming with C#

 int result = lastName.CompareTo(student.lastName);
 if (result == 0)
 {
 result = firstName.CompareTo(student.firstName);
 }
 return result;
 }

 public override String ToString()
 {
 return firstName + " " + lastName;
 }
}

Now we are able to write the code, which reads the students and their

courses and stores them in a hash-table, which keeps a list of students

by a course name (Dictionary<string, List<Student>>). And then it is

easy – we iterate over the courses, sort the students and print them:

// Read the file and build the hash-table of courses
Dictionary<string, List<Student>> courses =
 new Dictionary<string, List<Student>>();
StreamReader reader = new StreamReader("Students.txt");
using (reader)
{
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;
 }
 string[] entry = line.Split(new char[] { '|' });
 string firstName = entry[0].Trim();
 string lastName = entry[1].Trim();
 string course = entry[2].Trim();
 List<Student> students;
 if (! courses.TryGetValue(course, out students))
 {
 // New course -> create a list of students for it
 students = new List<Student>();
 courses.Add(course, students);
 }
 Student student = new Student(firstName, lastName);
 students.Add(student);

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 793

 }
}

// Print the courses and their students
foreach (string course in courses.Keys)
{
 Console.WriteLine("Course " + course + ":");
 List<Student> students = courses[course];
 students.Sort();
 foreach (Student student in students)
 {
 Console.WriteLine("\t{0}", student);
 }
}

The above code first parses all the lines consecutively by splitting them by a

vertical bar "|". Secondly it cleans the spaces from the beginning and the end.

After storing every student’s information, it is checked in the hash-table

whether its course exists. If the course has been found, the student is added

to the list of the students of this course. Otherwise, a new list is created and

the student is added to it. Then the list is added in the hash-table using the

course name as a key.

Printing the courses and students is not difficult. All keys are extracted

from the hash-table. These are the names of the courses. For each course its

students' list is extracted, sorted and printed. The sorting is made by the

built-in method Sort() using the comparison method CompareTo(…) from the

interface IComparable<T> as defined in the class Student (comparison firstly

by family name, and if they are the same, comparison by first name). At the

end the sorted students are printed by the overridden virtual method

ToString(). Here is how the output of the upper program looks:

Course C#:
 Chris Jones
 Peter Jones
 Mia Smith
 Mia Wilson
Course PHP:
 Mia Smith
Course Java:
 Chris Jones
 Sophia Wilson

www.manaraa.com

794 Fundamentals of Computer Programming with C#

Sorting a Phone Book

It is given a text file, containing people’s names, their city names and

phone numbers. The file looks like this:

Kenneth | Virginia Beach | 1-541-754-3010
Paul | San Antonio | 1-535-675-6745
Mary | Portland | 1-234-765-1983
Laura | San Antonio | 1-454-345-2345
Donna | Virginia Beach | 1-387-387-2389

Write a program which prints all the city names in an alphabetical order

and for each one of them prints all people’s names in alphabetical order

and their corresponding phone number.

The problem can be solved in many ways, for example we sort by two criteria:

firstly by city name and secondly by person name and then we print the

phone book.

However, let’s solve the problem without sorting, but by using the standard

data structures in .NET Framework. We want the city names to be sorted. This

means that it is best to use a data structure, which internally keeps the

elements sorted. Such as, for example, a balanced search tree –

SortedSet<T> or SortedDictionary<K,T>. Since every record from the

phone book contains beside a city name – other data, it is more convenient to

have a SortedDictionary<K,T>, which keeps a list of people’s names and

their phone numbers. We want the list of the people’s names from every city

to be sorted in alphabetical order by name. Hence, we can use the data

structure SortedDictionary<K,T> again. The key will be the name of the

person and its value will be his phone number.

At the end we get the nested structure SortedDictionary<string,
SortedDictionary<string, string>>. Here is a sample implementation,

which shows how we can solve the problem using this structure:

// Read the file and build the phone book
SortedDictionary<string, SortedDictionary<string, string>>
 phonesByTown = new SortedDictionary<string,
 SortedDictionary<string, string>>();
StreamReader reader = new StreamReader("PhoneBook.txt");
using (reader)
{
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 795

 }
 string[] entry = line.Split(new char[]{'|'});
 string name = entry[0].Trim();
 string town = entry[1].Trim();
 string phone = entry[2].Trim();

 SortedDictionary<string, string> phoneBook;
 if (! phonesByTown.TryGetValue(town, out phoneBook))
 {
 // This town is new. Create a phone book for it
 phoneBook = new SortedDictionary<string, string>();
 phonesByTown.Add(town, phoneBook);
 }
 phoneBook.Add(name, phone);
 }
}

// Print the phone book by towns
foreach (string town in phonesByTown.Keys)
{
 Console.WriteLine("Town " + town + ":");
 SortedDictionary<string, string> phoneBook =
 phonesByTown[town];
 foreach (var entry in phoneBook)
 {
 string name = entry.Key;
 string phone = entry.Value;
 Console.WriteLine("\t{0} - {1}", name, phone);
 }
}

If we execute this sample code with input – the sample phone book, we will

get the expected result:

Town Portland:
 Mary - 1-234-765-1983
Town San Antonio:
 Laura - 1-454-345-2345
 Paul - 1-535-675-6745
Town Virginia Beach:
 Donna - 1-387-387-2389
 Kenneth - 1-541-754-3010

www.manaraa.com

796 Fundamentals of Computer Programming with C#

Searching in a Phone Book

Here is another problem, so we can strengthen the way, in which we think in

order to choose appropriate data structures. A phone book is stored in a

text file, containing names of people, their city names and phone

numbers. People’s names can be in the format first name or nickname or

first name + last name or first name + surname + last name. The file could

have the following look:

Kevin Clark | Virginia beach | 1-454-345-2345
Skiller | San Antonio | 1-566-533-2789
Kevin Clark Jones | Portland | 1-432-556-6533
Linda Johnson | San Antonio | 1-123-345-2456
Kevin | Phoenix | 1-564-254-4352
Kevin Garcia | Virginia Beach | 1-445-456-6732
Kevin | Phoenix | 1-134-654-7424

It is possible several people to be given under the same name or even the

same city. It is possible someone to have several phone numbers. In this

case he is given several times in the input file. Phone book could be huge

(up to 1,000,000 records).

A file holding a sequence of queries is given. The queries are two types:

- Search by name / nickname / surname / last name. The query

looks like this: list(name).

- Search by name / nickname / surname / last name + city name.

The query looks like this: find(name, town).

Here is a sample query file:

list(Kevin)
find(Angel, San Antonio)
list(Linda)
list(Clark)
find(Jones, Phoenix)
list(Grandma)

Write a program, which by given phone book and query file executes and

respond to all the queries. For each query a list of records in the phone

book has to be printed or the message "Not found", if the query cannot find

anything. Queries could be a large number, for example 50,000.

This problem is not as easy as the previous ones. One easy to implement

solution could be to scan the entire phone book for every query and

extract all records in which there is a match with the searched information.

But this will work slowly, because the records and queries could be a lot. It

is necessary to find a way for a quick search without scanning the entire

phone book every time.

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 797

In paper phone books the numbers are given by the people’s name, sorted

in alphabetical order. Sorting will not help us, because someone can search

by first name, other – by last name, third – by nickname and city name. We

have to search by any of the above at the same time. The question is how do

we do it?

If we think a bit it will occur to us that the problem requires searching by

any of the words, which can be seen at the first column of the phone book

and eventually by the combination of a word from the first column and a town

from the second one. We know that the fastest search is implemented with a

hash-table. So far so good, but what are we going to keep as a key and

value in the hash-table?

What if we use several hash-tables: one for searching a word from the first

column, another for searching in the second column, third for searching by

city and so on? If we think a bit more, we will ask ourselves the question –

why do we need several hash-tables? Can’t we search in one common

hash-table? If we have a name "Peter Jones", we will store his phone

number under the keys "Peter" and "Jones". If someone searches by any of

these keys, he will find Peter’s phone number.

So far so good, but how do we search by both first name and city name,

for example "Peter from Virginia Beach"? It is possible firstly to find all with a

name "Peter" and then to print those who are from Virginia Beach. This will

work, but if there are a lot of people named Peter, searching will work slowly.

Then why don’t we make a hash-table with a key name of a person and

value another hash-table, which by city name will return a list of phone

numbers? This could work. We have done something similar in the previous

task, haven’t we?

Can we come up with something smarter? Can’t we just put the phone

numbers of all the people named Peter from Virginia Beach under a key

"Peter from Virginia Beach" in the main hash-table in the phone book? It

seems this could solve our problem and we will use only one hash-table for all

the queries.

Using the last idea, we could invent the following algorithm: we read line by

line from the phone book and for each word from the name of a person

d1, d2, …, dk and for each city name t we make new records in the

phonebook hash-table by the following keys: d1, d2, …, dk, "d1 from t",

"d2 from t", …, "dk from t". Now it is guaranteed we could search by any of

a person’s names as well as name and town. In order to search without

bothering about letter case we can transform the words to lowercase in

advance. After that the searching is trivial – we just search in the hash-table

by a given word d or if a town t is given "d from t". Since we could have

many phone numbers under the same key, for a value in the hash-table we

should use a list of strings (List<string>).

Let’s skim through an implementation of the described algorithm:

www.manaraa.com

798 Fundamentals of Computer Programming with C#

class PhoneBookFinder
{
 const string PhoneBookFileName = "PhoneBook.txt";
 const string QueriesFileName = "Queries.txt";

 static Dictionary<string, List<string>> phoneBook =
 new Dictionary<string, List<string>>();

 static void Main()
 {
 ReadPhoneBook();
 ProcessQueries();
 }

 static void ReadPhoneBook()
 {
 StreamReader reader = new StreamReader(PhoneBookFileName);
 using (reader)
 {
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;
 }
 string[] entry = line.Split(new char[]{'|'});
 string names = entry[0].Trim();
 string town = entry[1].Trim();

 string[] nameTokens =
 names.Split(new char[] {' ', '\t'});
 foreach (string name in nameTokens)
 {
 AddToPhoneBook(name, line);
 string nameAndTown = CombineNameAndTown(town, name);
 AddToPhoneBook(nameAndTown, line);
 }
 }
 }
 }

 static string CombineNameAndTown(string town, string name)
 {

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 799

 return name + " from " + town;
 }

 static void AddToPhoneBook(string name, string entry)
 {
 name = name.ToLower();
 List<string> entries;
 if (! phoneBook.TryGetValue(name, out entries))
 {
 entries = new List<string>();
 phoneBook.Add(name, entries);
 }
 entries.Add(entry);
 }

 static void ProcessQueries()
 {
 StreamReader reader = new StreamReader(QueriesFileName);
 using (reader)
 {
 while (true)
 {
 string query = reader.ReadLine();
 if (query == null)
 {
 break;
 }
 ProcessQuery(query);
 }
 }
 }

 static void ProcessQuery(string query)
 {
 if (query.StartsWith("list("))
 {
 int listLen = "list(".Length;
 string name = query.Substring(
 listLen, query.Length-listLen-1);
 name = name.Trim().ToLower();
 PrintAllMatches(name);
 }
 else if (query.StartsWith("find("))
 {

www.manaraa.com

800 Fundamentals of Computer Programming with C#

 string[] queryParams = query.Split(
 new char[] { '(', ' ', ',', ')' },
 StringSplitOptions.RemoveEmptyEntries);
 string name = queryParams[1];
 name = name.Trim().ToLower();
 string town = queryParams[2];
 town = town.Trim().ToLower();
 string nameAndTown =
 CombineNameAndTown(town, name);
 PrintAllMatches(nameAndTown);
 }
 else
 {
 Console.WriteLine(
 query + " is invalid command!");
 }
 }

 static void PrintAllMatches(string key)
 {
 List<string> allMatches;
 if (phoneBook.TryGetValue(key, out allMatches))
 {
 foreach (string entry in allMatches)
 {
 Console.WriteLine(entry);
 }
 }
 else
 {
 Console.WriteLine("Not found!");
 }
 Console.WriteLine();
 }
}

While reading the phone book line by line and splitting by the vertical bar "|",

we extract the three columns (names, city name and phone number). After

that the names are split and each word is added in the hash-table.

Additionally we add each word, combined with the city name (so that we can

search by name + city name).

The second part of the algorithm is the command execution. In this part

each line from the query file is read and processed. The process includes

parsing the command, extracting the name or name and city name and

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 801

searching. The search is directly done by using the hash-table, which is

created after reading the phone book file.

To be able to ignore the difference between lowercase and uppercase, all keys

in the hash-table are added as lowercase. When we search, we do it

lowercase too.

Choosing a Data Structure – Conclusions

By the many examples it is clear that the choice of an appropriate data

structure is highly dependable on the specific task. Sometimes data

structures have to be combined or we have to use several of them

simultaneously.

What data structure should we pick mostly depends on the operations we

will perform, so always ask yourselves "what operations should the

structure, I need, perform efficiently". If you are familiar with the operations,

you can easily conform which structure does them most efficiently and at the

same time is easy and handy.

In order to efficiently choose an appropriate data structure, you should firstly

invent the algorithm, which you are going to implement, and then look for

an appropriate data structures for it.

Always go from the algorithm to the data structures, never

backwards.

External Libraries with .NET Collections

It is a well-known fact that the standard data structures in .NET Framework

System.Collections.Generic have pretty poor functionality. It lacks

implementations of basic concepts in data structures such as multi-sets,

priority queues, for which there should be standard classes as well as basic

system interfaces.

When we have to use a special data structure, which is not standardly

implemented in .NET Framework, we have two options:

- First option: we implement the data structure ourselves. This gives

us flexibility, because the implementation will completely meet our

needs, but it takes a lot of time and it has a great chance of making

mistakes. For example, if one has to qualitatively implement a balanced

tree, this may take an experienced software developer several days

(along with the tests). If the same is implemented by inexperienced

software developer it will take a lot more time and most probably there

will be errors in the implementation.

- Second option (generally preferable): find an external library, which

has a full implementation of the needed functionality. This approach has

an advantage of saving us time and troubles, because in most cases the

external libraries of data structures are well-tested. They have been

www.manaraa.com

802 Fundamentals of Computer Programming with C#

used for years by thousands of software developers and this makes

them mature and reliable.

Power Collections for .NET

One of the most popular and richest libraries with efficient implementations of

the fundamental data structures for C# and .NET software developers is the

open-source project "Wintellect’s Power Collections for .NET" –

http://powercollections.codeplex.com. It provides free, reliable, efficient, fast

and handy implementations of the following commonly used data structures,

which are missing or partly-implemented in .NET framework:

- Set<T> – set of elements, implemented with a hash-table. It

efficiently implements the basic operations over sets: adding, deleting

and searching an element as well as union, intersection, difference

between sets and many more. By functionality and way of work the

class looks like the standard class HashSet<T> in .NET Framework.

- Bag<T> – multi-set of elements (set with duplicates), implemented

with a hash-table. It efficiently implements all basic operations over

multi-sets.

- OrderedSet<T> – ordered set of elements (without duplicates),

implemented with a balanced search tree. It efficiently implements all

basic operations over sets and when traversing through its elements it

returns them in ascending order (according to the used comparer). It

allows a fast extraction of subsets of values in a given interval.

- OrderedBag<T> – ordered multi-set of elements, implemented with a

balanced search tree. It efficiently implements all basic operations

over multi-sets and when going through all its elements it returns them

in ascending order (according to the used comparer). It allows a quick

extraction of subsets of values in a given interval.

- MultiDictionary<K,T> – it is a hash-table allowing key duplicates.

For every key there is a collection of values stored, not one single value.

- OrderedDictionary<K,T> – it represents a dictionary, implemented

with a balanced search tree. It allows a fast search by key and when

going through its elements it returns them in ascending order. It

enables us to quickly extract the values from a given key range. By

functionality and way of work the class looks like the standard class
SortedDictionary<K,T> in .NET Framework.

- Deque<T> – represents efficient implementation of a queue with two

ends (double ended queue), which practically combines the data

structures stack and queue. It allows efficient addition, extraction and

deletion of elements in both ends.

- BagList<T> – list of elements, accessed through index, which

allows a quick insertion and deletion of an element from a particular

position. The operations index accessing, adding, inserting at position

http://powercollections.codeplex.com/

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 803

and removing an element from position have a complexity O(log N). The

implementtation is with a balanced tree. The structure is a good

alternative of List<T>, in which the insertion and removal of element at

a particular position takes linear time because of the need of the

replacement of linear number of elements to the left or right.

We let the reader the opportunity to download the library "Power

Collections for .NET" from its site and to experiment with it. It can be

very useful when you solve some of the problems from the exercises.

C5 Collections for .NET

Another very powerful library of data structures and collection classes is “The

C5 Generic Collection Library for C# and CLI” (www.itu.dk/research/c5/).

It provides standard interfaces and collection classes like lists, sets, bags,

multi-sets, balanced trees and hash tables, as well as non-traditional

data structures like “hashed linked list”, “wrapped arrays” and “interval

heaps”. It also describes a set of collection-related algorithms and patterns,

such as “read-only access”, “random selection”, “removing duplicates”, etc.

The library comes with solid documentation (a book of 250 pages). The C5

collections and the book about them are the ultimate resource for data

structure developers.

Exercises

1. Hash-tables do not allow storing more than one value in a key. How can

we get around this restriction? Define a class to hold multiple values in a

hash-table.

2. Implement a data structure, which can quickly do the following two

operations: add an element and extract the smallest element. The

structure should accept adding duplicated elements.

3. It is given a text file students.txt containing information about students

and their specialty in the following format:

Steven Davis | Computer Science
Joseph Johnson | Software Engeneering
Helen Mitchell | Public Relations
Nicolas Carter | Computer Science
Susan Green | Public Relations
William Johnson | Software Engeneering

Using SortedDictionary<K,T> print on the console the specialties in an

alphabetical order and for each of them print the names of the students,

firstly sorted by family name and secondly – by first name, as shown:

Computer Sciences: Nicolas Carter, Steven Davis
Public Relations: Susan Green, Helen Mitchell

http://www.itu.dk/research/c5/

www.manaraa.com

804 Fundamentals of Computer Programming with C#

Software Engeneering: Joseph Johnson, William Johnson

4. Implement a class BiDictionary<K1,K2,T>, which allows adding triplets

{key1, key2, value} and quickly search by either of the keys key1, key2
as well as searching by combination of the both keys. Note: Adding many

elements with the same keys is allowed.

5. A big chain of supermarkets sell millions of products. Each of them has a

unique number (barcode), producer, name and price. What data structure

could we use in order to quickly find all products, which cost between

5 and 10 dollars?

6. A timetable of a conference hall is a list of events in a format [starting

date and time; ending date and time; event’s name]. What data

structure could we to be able to quickly add events and quickly check

whether the hall is available in a given interval [starting date and

time; ending date and time]?

7. Implement the data structure PriorityQueue<T>, which offers quick

execution of the following operations: adding an element, extracting

the smallest element.

8. Imagine you develop a search engine, which gathers all the

advertisements for used cars in ten websites for the last few years. After

that the search engine allows a quick search by one or several criteria: a

brand, model, color, year of production and price. You are not allowed to

use database management system (like SQL Server, MySQL or MongoDB)

and you must implement your own indexing in the memory, without storing

it to the hard disk and without using LINQ. When one searches by price

minimal and maximal price is given. When one searches by year of

production a starting and ending years are given. What data structures

would you use in order to ensure fast searching by one or several criteria?

Solutions and Guidelines

1. You can use Dictionary<key, List<value>> or create your own class

ValuesCollection, which can take care of the values with the same key

and use Dictionary<key, ValuesCollection>.

2. You can use SortedSet<List<int>> and its operations Add() and

First(). SortedSet<T> keeps the elements in it sorted and can accept

external IComparer<T>.

The problem has a more efficient solution though – the data structure

called “binary heap”. You can read about it on Wikipedia:

http://en.wikipedia.org/wiki/Binary_heap.

3. The task is similar to the one from the section "Sorting Students".

4. One of the solutions to this task is to use two instances of the class

Dictionary<K,T> for each of the two keys and when you add or remove

http://en.wikipedia.org/wiki/Binary_heap

www.manaraa.com

Chapter 19. Data Structures and Algorithm Complexity 805

an element from BiDictionary<K1,K2,T>, you add or remove the element

from the two hash-tables correspondingly. When you search by first or

second key, you should check the elements in the first or the second hash-

table respectively. When you search by two keys, you could search in the

two hash-tables separately and intersect the matching subsets.

Another, simpler approach is to hold 3 hash tables: Dictionary<K1,T>,

Dictionary<K2,T> and Dictionary<Tuple<K1,K2>,T>. The system

generic class Tuple<K1,K2> can be used to combine two keys and use it as

a composite key.

5. If we keep the products sorted by price in an array (for example in

List<Product>, which we firstly fill and then sort), in order to find all the

products which cost between 5 and 10 bucks we can use a binary search

twice. Firstly we can find the smallest index start, in which lies a product

costing at least 5 bucks. After that we can find the biggest index end, in

which lies a product costing at most 10 bucks. All the products at positions

in the interval [start … end] will cost between 5 and 10 dollars. If you are

interested in the algorithm binary search in a sorted array you could inform

yourself reading Wikipedia: http://en.wikipedia.org/wiki/Binary_search.

Generally the approach using a sorted array and binary search in it works

excellent, but there is a disadvantage: the addition in a sorted array is a

very slow operation, because it requires moving a linear number of

elements with one position ahead of the inserted new element.

To overcome this we can use the class SortedSet<T>. It supports fast

insertion keeping the elements in a sorted order. It has an operation

SortedSet<T>.GetViewBetween(lowerBound, upperBound) that returns a

subset of the elements in certain range (interval).

You may also use the class OrderedSet<T> from "Wintellect’s Power

Collections for .NET" library (http://www.codeplex.com/PowerCollections)

which is more powerful and more flexible. It has a method for extracting a

sub-range of values: OrderedSet<T>.Range(from, fromInclusive, to,

toInclusive).

6. We can create two sorted arrays (List<Event>): the first will keep the

events sorted in ascending order by starting date and time; the second

will keep the same events sorted by ending date and time. By using

binary search we can find all the events which can be partly or fully found

between the two moments of time [start, end] by doing the following:

- Find the set S of all events starting after the moment start (using

binary search).

- We can find all the set E of all events ending before the moment end

(using binary search).

- Intersect these two sets: C = S ∩ E. If the intersection S of the two

sets of events have common elements (S in non-empty set), then in

http://en.wikipedia.org/wiki/Binary_search
http://www.codeplex.com/PowerCollections

www.manaraa.com

806 Fundamentals of Computer Programming with C#

the searched interval [start … end] the hall is occupied. Otherwise it

is available.

This solution has a disadvantage: adding elements in the sorted arrays

will be slow. We should either add all elements initially and then sort the

two arrays and never change them afterwards or try to keep the arrays

sorted when adding new elements (which will be slow).

Another solution, which is easier to implement and more efficient, is to

use two instances of the class OrderedBag<T> from the "Power Collections

for .NET" library (the first with event’s start date and time as a key and

the second with event’s end date and time as a key). The class has

methods to extract the subsets S and E: RangeFrom(from,

fromInclusive) and RangeTo(to, toInclusive). We still will need to

intersect these sets and check whether their intersection is empty or not.

The most efficient solution is to use a data structure called “interval tree”.

Read more in Wikipedia: http://en.wikipedia.org/wiki/Interval_tree. You

may find an open source C# interval tree implementation in CodePlex:

http://intervaltree.codeplex.com.

7. Since there is no internal implementation of the data structure "priority

queue" in .NET, you can use the data structure OrderedBag<T> from

Wintellect’s Power Collections. It had Add(…) and GetFirst() and

RemoveFirst() methods. You can read more about priority queues on

Wikipedia: http://en.wikipedia.org/wiki/Priority_Queue.

The classic, simplest efficient priority queue implementation the data

structure “binary heap”: http://en.wikipedia.org/wiki/Binary_heap.

An efficient ready-to-use C# implementation of priority queue is the class

IntervalHeap<T> in the C5 Collections: http://www.itu.dk/research/c5/.

8. For searching by brand, model and color we can use one hash-table

per each, which will search by a given criteria and return a list of cars

(Dictionary<string, List<Car>>).

For searching by year of production and price range we can use lists

List<Car>, sorted in ascending order (and binary search).

To search by several criteria at once we can extract the cars' subsets by

the first criteria, after that the cars' subsets by the second criteria

and so on. At the end we can find the intersection of the sets.

Intersection of two sets can be found by looking for every element in the

smaller set in the bigger set. The easiest way is Car to implement
Equals() and GetHashCode() and after that to use the class

HashSet<Car> for set intersections.

http://en.wikipedia.org/wiki/Interval_tree
http://intervaltree.codeplex.com/
http://powercollections.codeplex.com/
http://en.wikipedia.org/wiki/Priority_Queue
http://en.wikipedia.org/wiki/Binary_heap
http://www.itu.dk/research/c5/

www.manaraa.com

Chapter 20. Object-Oriented
Programming Principles

In This Chapter

In this chapter we will familiarize ourselves with the principles of object-

oriented programming: class inheritance, interface implementation,

abstraction of data and behavior, encapsulation of data and class

implementation, polymorphism and virtual methods. We will explain in

details the principles of cohesion and coupling. We will briefly outline

object-oriented modeling and how to create an object model based on a

specific business problem. We will familiarize ourselves with UML and its role

in object-oriented modeling. Finally, we will briefly discuss design patterns

and illustrate some of those that are widely used in practice.

Let’s Review: Classes and Objects

We introduced classes and objects in the chapter "Creating and Using

Objects". Let’s shortly review them again.

Classes are a description (model) of real objects and events referred to as

entities. An example would be a class called "Student".

Classes possess characteristics – in programming they are referred to as

properties. An example would be a set of grades.

Classes also expose behavior known in programming as methods. An

example would be sitting an exam.

Methods and properties can be visible only within the scope of the class,

which declared them and their descendants (private / protected), or visible

to all other classes (public).

Objects are instances of classes. For example, John is a Student and Peter

is also a Student.

Object-Oriented Programming (OOP)

Object-oriented programming is the successor of procedural (structural)

programming. Procedural programming describes programs as groups of

reusable code units (procedures) which define input and output parameters.

Procedural programs consist of procedures, which invoke each other.

www.manaraa.com

808 Fundamentals of Computer Programming with C#

The problem with procedural programming is that code reusability is hard

and limited – only procedures can be reused and it is hard to make them

generic and flexible. There is no easy way to work with abstract data

structures with different implementations.

The object-oriented approach relies on the paradigm that each and every

program works with data that describes entities (objects or events) from real

life. For example: accounting software systems work with invoices, items,

warehouses, availabilities, sale orders, etc.

This is how objects came to be. They describe characteristics (properties) and

behavior (methods) of such real life entities.

The main advantages and goals of OOP are to make complex software

faster to develop and easier to maintain. OOP enables the easy reuse of code

by applying simple and widely accepted rules (principles). Let’s check them

out.

Fundamental Principles of OOP

In order for a programming language to be object-oriented, it has to enable

working with classes and objects as well as the implementation and use of

the fundamental object-oriented principles and concepts: inheritance,

abstraction, encapsulation and polymorphism. Let’s summarize each of these

fundamental principles of OOP:

- Encapsulation

We will learn to hide unnecessary details in our classes and provide a

clear and simple interface for working with them.

- Inheritance

We will explain how class hierarchies improve code readability and

enable the reuse of functionality.

- Abstraction

We will learn how to work through abstractions: to deal with objects

considering their important characteristics and ignore all other details.

- Polymorphism

We will explain how to work in the same manner with different objects,

which define a specific implementation of some abstract behavior.

Some OOP theorists also put the concept of exception handling as

additional fifth fundamental principle of OOP. We shall not get into a

detailed dispute about whether or not exceptions are part of OOP and rather

will note that exceptions are supported in all modern object-oriented

languages and are the primary mechanism of handling errors and unusual

situations in object-oriented programming. Exceptions always come

together with OOP and their importance is explained in details in the

chapter "Exception Handling".

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 809

Inheritance

Inheritance is a fundamental principle of object-oriented programming. It

allows a class to "inherit" (behavior or characteristics) of another, more

general class. For example, a lion belongs to the biological family of cats

(Felidae). All cats that have four paws, are predators and hunt their prey. This

functionality can be coded once in the Felidae class and all its predators can

reuse it – Tiger, Puma, Bobcat, etc. Inheritance is described as is-kind-of

relationship, e.g. Tiger is kind of Animal.

How Does Inheritance Work in .NET?

Inheritance in .NET is defined with a special construct in the class declaration.

In .NET and other modern programming languages, a class can inherit from a

single class only (single inheritance), unlike C++ which supports inheriting

from multiple classes (multiple inheritance). This limitation is necessitated

by the difficulty in deciding which method to use when there are duplicate

methods across classes (in C++, this problem is solved in a very complicated

manner). In .NET, classes can inherit multiple interfaces, which we will

discuss later.

The class from which we inherit is referred to as parent class or base class

/ super class.

Inheritance of Classes – Example

Let’s take a look at an example of class inheritance in .NET. This is how a

base class looks like:

Felidae.cs

/// <summary>Felidae is latin for "cats"</summary>
public class Felidae
{
 private bool male;

 // This constructor calls another constructor
 public Felidae() : this(true)
 {}

 // This is the constructor that is inherited
 public Felidae(bool male)
 {
 this.male = male;
 }

 public bool Male
 {

www.manaraa.com

810 Fundamentals of Computer Programming with C#

 get { return male; }
 set { this.male = value; }
 }
}

This is how the inheriting class, Lion, looks like:

Lion.cs

public class Lion : Felidae
{
 private int weight;

 // Keyword "base" will be explained in the next paragraph
 public Lion(bool male, int weight) : base(male)
 {
 this.weight = weight;
 }

 public int Weight
 {
 get { return weight; }
 set { this.weight = value; }
 }
}

The "base" Keyword

In the above example, we used the keyword base in the constructor of the

class Lion. The keyword indicates that the base class must be used and

allows access to its methods, constructors and member variables. Using

base(), we can call the constructor of the base class. Using base.Method(…)

we can invoke a method of the base class, pass parameters to it and use its

results. Using base.field we can get the value of a member variable from

the base class or assign a different one to it.

In .NET, methods inherited from the base class and declared as virtual can

be overridden. This means changing their implementation; the original

source code from the base class is ignored and new code takes its place. More

on overriding methods we will discuss in "Virtual Methods".

We can invoke non-overridden methods from the base class without using the

keyword base. Using the keyword is required only if we have an overridden

method or variable with the same name in the inheriting class.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 811

The keyword base can be used explicitly for clarity.

base.method(…) calls a method, which is necessarily from the

base class. Such source code is easier to read, because we

know where to look for the method in question.

Bear in mind that using the keyword this is not the same. It

can mean accessing a method from the current, as well as

the base class.

You can take a look at the example in the section about access modifiers and

inheritance. There it is clearly explained which members of the base class

(methods, constructors and member variables) are accessible.

Constructors with Inheritance

When inheriting a class, our constructors must call the base class constructor,

so that it can initialize its member variables. If we do not do this explicitly,

the compiler will place a call to the parameterless base class constructor,

":base()", at the beginning of all our inheriting class' constructors. Here is an

example:

public class ExtendingClass : BaseClass
{
 public ExtendingClass() { … }
}

This actually looks like this (spot the differences):

public class ExtendingClass : BaseClass
{
 public ExtendingClass() : base() { … }
}

If the base class has no default constructor (one without parameters) or that

constructor is hidden, our constructors need to explicitly call one of the other

base class constructors. The omission of such a call will result in a compile-

time error.

If a class has private constructors only, then it cannot be

inherited.

If a class has private constructors only, then this could

indicate many other things. For example, no-one (other than

that class itself) can create instances of such a class.

Actually, that’s how one of the most popular design patterns

(Singleton) is implemented.

The Singleton design pattern is described in details at the end of this chapter.

www.manaraa.com

812 Fundamentals of Computer Programming with C#

Constructors and the Keyword "base" – Example

Take a look at the Lion class from our last example. It does not have a

default constructor. Let’s examine a class inheriting from Lion:

AfricanLion.cs

public class AfricanLion : Lion
{
 // …

 // If we comment out the ": base(male, weight)" line
 // the class will not compile. Try it.
 public AfricanLion(bool male, int weight)
 : base(male, weight)
 {}

 public override string ToString()
 {
 return string.Format(
 "(AfricanLion, male: {0}, weight: {1})",
 this.Male, this.Weight);
 }

 // …
}

If we comment out the line ":base(male, weight);", the class AfricanLion

will not compile. Try it.

Calling the constructor of a base class happens outside the

body of the constructor. The idea is that the fields of the

base class should be initialized before we start initializing

fields of the inheriting class, because they might depend on a

base class field.

Access Modifiers of Class Members and Inheritance

Let’s review: in the "Defining Classes" chapter, we examined the basic access

modifiers. Regarding members of a class (methods, properties and member

variables) we examined the modifiers public, private and internal.

Actually, there are two other modifiers: protected and protected internal.

This is what they mean:

- protected defines class members which are not visible to users of the

class (those who initialize and use it), but are visible to all inheriting

classes (descendants).

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 813

- protected internal defines class members which are both internal,

i.e. visible within the entire assembly, and protected, i.e. not visible

outside the assembly, but visible to classes who inherit it (even outside

the assembly).

When a base class is inherited:

- All of its public, protected and protected internal members

(methods, properties, etc.) are visible to the inheriting class.

- All of its private methods, properties and member-variables are not

visible to the inheriting class.

- All of its internal members are visible to the inheriting class, only if the

base class and the inheriting class are in the same assembly (the

same Visual Studio project).

Here is an example, which demonstrates the levels of visibility with

inheritance:

Felidae.cs

/// <summary>Latin for "cats"</summary>
public class Felidae
{
 private bool male;

 public Felidae() : this(true) {}

 public Felidae(bool male)
 {
 this.male = male;
 }

 public bool Male
 {
 get { return male; }
 set { this.male = value; }
 }
}

And this is how the class Lion looks like:

Lion.cs

public class Lion : Felidae
{
 private int weight;

www.manaraa.com

814 Fundamentals of Computer Programming with C#

 public Lion(bool male, int weight)
 : base(male)
 {
 // Compiler error – base.male is not visible in Lion
 base.male = male;
 this.weight = weight;
 }

 // …
}

If we try to compile this example, we will get an error message, because the

private variable male in the class Felidae is not accessible to the class

Lion:

The System.Object Class

Object-oriented programming practically became popular with C++. In this

language, it often becomes necessary to code classes, which must work with

objects of any type. C++ solves this problem in a way that is not considered

strictly object-oriented (by using void pointers).

The architects of .NET take a different approach. They create a class, which

all other classes inherit (directly or indirectly). All objects can be perceived

as instances of this class. It is convenient that this class contains important

methods and their default implementation. This class is called Object (which

is the same as object and System.Object).

In .NET every class, which does not inherit a class explicitly, inherits the

system class System.Object by default. The compiler takes care of that.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 815

Every class, which inherits from another class indirectly, inherits Object from

it. This way every class inherits explicitly or implicitly from Object and

contains all of its fields and methods.

Because of this property, every class instance can be cast to Object. A

typical example of the advantages of implicit inheritance is its use with data

structures, which we saw in the chapters on data structures. Untyped list

structures (like System.Collections.ArrayList) can hold all kinds of

objects, because they treat them as instances of the class Object.

The generic types (generics) have been provided specifically

for working with collections and objects of different types

(generics are further discussed in the chapter "Defining

Classes"). They allow creating typified classes, e.g. a

collection which works only with objects of type Lion.

.NET, Standard Libraries and Object

In .NET, there are a lot of predefined classes (we already covered a lot of

them in the chapters on collections, text files and strings). These classes are

part of the .NET framework; they are available wherever .NET is supported.

These classes are referred to as Common Type System (CTS).

.NET is one of the first frameworks, which provide such an extensive set of

predefined classes. A lot of them work with Object so that they can be used

in as many situations as possible.

.NET also provides a lot of libraries, which can be referenced additionally, and

it stands to reason that they are called class libraries or external libraries.

The Base Type Object Upcasting and Downcasting – Example

Let’s take a closer look at the Object class using an example:

ObjectExample.cs

public class ObjectExample
{
 static void Main()
 {
 AfricanLion africanLion = new AfricanLion(true, 80);
 // Implicit casting
 object obj = africanLion;
 }
}

In this example, we cast an AfricanLion to Object. This operation is called

upcasting and is permitted because AfricanLion is an indirect child of the

Object class.

www.manaraa.com

816 Fundamentals of Computer Programming with C#

Now it is the time to mention that the keywords string and

object are simply compiler tricks and are substituted with

System.String and System.Object during compilation.

Let’s continue with the example:

ObjectExample.cs

// …

AfricanLion africanLion = new AfricanLion(true, 80);
// Implicit casting
object obj = africanLion;

try
{
 // Explicit casting
 AfricanLion castedLion = (AfricanLion) obj;
}
catch (InvalidCastException ice)
{
 Console.WriteLine("obj cannot be downcasted to AfricanLion");
}

In this example, we cast an Object to AfricanLion. This operation is called

downcasting and is permitted only if we indicate the type we want to cast

to, because Object is a parent class of AfricanLion and it is not clear if the

variable obj is of type AfricanLion. If it is not, an InvalidCastException
will be thrown.

The Object.ToString() Method

One of the most commonly used methods, originating from the class Object

is ToString(). It returns a textual representation of an object. Every

object includes this method and therefore has a textual representation. This

method is used when we print the object using Console.WriteLine(…).

Object.ToString() – Example

Here is an example in which we call the ToString() method:

ToStringExample.cs

public class ToStringExample
{
 static void Main()

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 817

 {
 Console.WriteLine(new object());
 Console.WriteLine(new Felidae(true));
 Console.WriteLine(new Lion(true, 80));
 }
}

The result is:

System.Object
Chapter_20_OOP.Felidae
Chapter_20_OOP.Lion

In this case, the base class implementation is called, because Lion doesn’t

override ToString(). Felidae also doesn’t override the method; therefore,

we actually call the implementation inherited from System.Object. The

result above contains the namespace of the object and the name of the class.

Overriding ToString() – Example

We will now demonstrate how useful overriding ToString() inherited from

System.Object can be:

AfricanLion.cs

public class AfricanLion : Lion
{
 // …

 public override string ToString()
 {
 return string.Format(
 "(AfricanLion, male: {0}, weight: {1})",
 this.Male, this.Weight);
 }

 // …
}

In the source code above, we use the method String.Format(…), in order to

format the result appropriately. This is how we can then invoke the

overridden method ToString():

OverrideExample.cs

public class OverrideExample

www.manaraa.com

818 Fundamentals of Computer Programming with C#

{
 static void Main()
 {
 Console.WriteLine(new object());
 Console.WriteLine(new Felidae(true));
 Console.WriteLine(new Lion(true, 80));
 Console.WriteLine(new AfricanLion(true, 80));
 }
}

The result is:

System.Object
Chapter_20_OOP.Felidae
Chapter_20_OOP.Lion
(AfricanLion, male: True, weight: 80)

Notice that ToString() is invoked implicitly. When we pass an object to the

WriteLine() method, that object provides its string representation using

ToString() and only then it is printed to the output stream. That way,

there’s no need to explicitly get string representations of objects when

printing them.

Virtual Methods: the "override" and "new" Keywords

We need to explicitly instruct the compiler that we want our method to

override another. In order to do this, we use the override keyword. Notice

what happens if we remove it:

Let’s experiment and use the keyword new instead of override:

public class AfricanLion : Lion
{
 // …

 public new string ToString()
 {
 return string.Format(

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 819

 "(AfricanLion, male: {0}, weight: {1})",
 this.Male, this.Weight);
 }

 // …
}

public class OverrideExample
{
 static void Main()
 {
 AfricanLion africanLion = new AfricanLion(true, 80);
 string asAfricanLion = africanLion.ToString();
 string asObject = ((object)africanLion).ToString();
 Console.WriteLine(asAfricanLion);
 Console.WriteLine(asObject);
 }
}

This is the result:

(AfricanLion, male: True, weight: 80)
Chapter_20_OOP.AfricanLion

We notice that the implementation of Object.ToString() is invoked when we

upcast AfricanLion to object. In other words, when we use the keyword

new, we create a new method, which hides the old one. The old method can

then only be called with an upcast.

What would happen, if we reverted to using the keyword override in the

previous example? Take a look for yourself:

(AfricanLion, male: True, weight: 80)
(AfricanLion, male: True, weight: 80)

Surprising, isn’t it? It turns out that when we override a method, we cannot

access the old implementation even if we use upcasting. This is because there

are no longer two ToString() methods, but rather only the one we overrode.

A method, which can be overridden, is called virtual. In .NET, methods are

not virtual by default. If we want a method to be overridable, we can do so

by including the keyword virtual in the declaration of the method.

The explicit instructions to the compiler that we want to override a method

(by using override), is a protection against mistakes. If there’s a typo in the

method’s name or the types of its parameters, the compiler will inform us

www.manaraa.com

820 Fundamentals of Computer Programming with C#

immediately of this mistake. It will know something is not right when it

cannot find a method with the same signature in any of the base classes.

Virtual Methods are explained in details in the section about polymorphism.

Transitive Properties of Inheritance

In mathematics, transitivity indicates transferability of relationships. Let’s

take the indicator "larger than" (>) as an example. If A>B and B>C, we can

conclude that A>C. This means that the relation "larger than" (>) is

transitive, because we can unequivocally determine whether A is larger or

smaller than C and vice versa.

If the class Lion inherits the class Felidae and the class AfricanLion

inherits Lion, then this implies that AfricanLion inherits Felidae. Therefore,

AfricanLion also has the property Male, which is defined in Felidae. This

useful property allows a particular functionality to be defined in the most

appropriate class.

Transitiveness – Example

Here is an example, which demonstrates the transitive property of

inheritance:

TransitivenesExample.cs

public class TransitivityExample
{
 static void Main()
 {
 AfricanLion africanLion = new AfricanLion(true, 15);
 // Property defined in Felidae
 bool male = africanLion.Male;
 africanLion.Male = true;
 }
}

It is because of the transitive property of inheritance that we can be sure that

all classes include the method ToString() and all other methods of Object

regardless of which class they inherit.

Inheritance Hierarchy

If we try to describe all big cats, then, sooner or later, we will end up with a

relatively large group of classes, which inherit one another. All these classes,

combined with the base classes, form a hierarchy of big cat classes. The

easiest way to describe such hierarchies is by using class diagrams. Let’s

take a look at what a "class-diagram" is.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 821

Class Diagrams

A Class Diagram is one of several types of diagrams defined in UML. UML

(Unified Modeling Language) is a notation for visualizing different

processes and objects related to software development. We will talk about

this further in the section on UML notation. Now let’s discuss class diagrams,

because they are used to describe visually class hierarchies, inheritance and

the structure of the classes themselves.

What is UML Class Diagram?

It is commonly accepted to draw class diagrams as rectangles with name,

attributes (member variables) and operations (methods). The connections

between them are denoted with various types of arrows.

Briefly, we will explain two pieces of UML terminology, so we can understand

the examples more easily. The first one is generalization. Generalization is a

term signifying the inheritance of a class or the implementation of an

interface (we will explain interfaces shortly).

The other term is association. An association, would be, e.g. "The Lion has

paws", where Paw is another class. Association is has-a relationship.

Generalization and association are the two main ways to

reuse code.

A Class Based on a Class Diagram – Example

This is what a sample class diagram looks like:

The class is represented as a rectangle, divided in 3 boxes one under

another. The name of the class is at the top. Next, there are the attributes

(UML term) of the class (in .NET they are called member variables and

properties). At the very bottom are the operations (UML term) or methods

(in .NET jargon). The plus/minus signs indicate whether an attribute /

operation is visible (+ means public) or not visible (- means private).

Protected members are marked with #.

Class Diagram – Example of Generalization

Here is a class diagram that visually illustrates generalization (Felidae

inherited by Lion inherited by AfricanLion):

+Male() : bool

Felidae

-male : bool

www.manaraa.com

822 Fundamentals of Computer Programming with C#

In this example, the arrows indicate generalization (inheritance).

Associations

Associations denote connections between classes. They model mutual

relations. They can define multiplicity (1 to 1, 1 to many, many to 1, 1 to 2,

…, and many to many).

A many-to-many association is depicted in the following way:

A many-to-many association by attribute is depicted in the following way:

In this case, there are connecting attributes, which indicate the variables

holding the connection between classes.

A one-to-many association is depicted like this:

+Male() : bool

Felidae

-male : bool

+Weight() : int

Lion

-weight : int

+ToString() : string

AfricanLion

CourseStudent

* *

CourseStudent -courses

*

-students

*

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 823

A one-to-one association is depicted like this:

From Diagrams to Classes

Class diagrams are most often used for creating classes. Diagrams facilitate

and speed up the design of classes in a software project.

We can create classes directly following the diagram above. Here is the

Capital class:

Capital.cs

public class Capital { }

And the Country class:

Country.cs

public class Country
{
 /// <summary>Country's capital - association</summary>
 private Capital capital;

 // …

 public Capital Capital
 {
 get { return capital; }
 set { this.capital = value; }
 }

 // …
}

ExamStudent

1 *

CapitalCountry

1 1

www.manaraa.com

824 Fundamentals of Computer Programming with C#

Aggregation

Aggregation is a special type of association. It models the relationship of

kind "whole / part". We refer to the parent class as an aggregate. The

aggregated classes are called components. There is an empty rhombus at

one end of the aggregation:

Composition

A filled rhombus represents composition. Composition is an aggregation

where the components cannot exist without the aggregate:

Abstraction

The next core principle of object-oriented programming we are about to

examine is "abstraction". Abstraction means working with something we

know how to use without knowing how it works internally. A good

example is a television set. We don’t need to know the inner workings of a TV,

in order to use it. All we need is a remote control with a small set of buttons

(the interface of the remote) and we will be able to watch TV.

The same goes for objects in OOP. If we have an object Laptop and it needs a

processor, we use the object Processor. We do not know (or rather it is of no

concern to us) how it calculates. In order to use it, it’s sufficient to call the

method Calculate() with appropriate parameters.

Abstraction is something we do every day. This is an action, which obscures

all details of a certain object that do not concern us and only uses the details,

which are relevant to the problem we are solving. For example, in hardware

configurations, there is an abstraction called "data storage device" which

can be a hard disk, USB memory stick or CD-ROM drive. Each of these

works in a different way internally but, from the point of view of the operating

system and its applications, it is used in the same way – it stores files and

folders. In Windows we have Windows Explorer and it can work with all

devices in the same way, regardless of whether a device is a hard drive or a

USB stick. It works with the abstraction "storage device" and is not involved

with how data is read or written. The drivers of the particular device take care

of that. They are implementations of the interface "data storage device".

Zoo

-elephants

-snakes
+Weight() : int

Lion

-weight : int

*

Human Brain

1 1

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 825

Abstraction is one of the most important concepts in programming and

OOP. It allows us to write code, which works with abstract data

structures (like dictionaries, lists, arrays and others). We can work with an

abstract data type by using its interface without concerning ourselves with its

implementation. For instance, we can save to a file all elements from a list

without bothering if it is implemented with an array, a linked list, etc. The

code remains unchanged, when we work with other data types. We can even

write new data types (we will discuss this later) and make them work with our

program without changing it.

Abstraction allows us to do something very important – define an interface

for our applications, i.e. to define all tasks the program is capable to

execute and their respective input and output data. That way we can make a

couple of small programs, each handling a smaller task. When we combine

this with the ability to work with abstract data, we achieve great flexibility in

integrating these small programs and much more opportunities for code

reuse. These small subprograms are referred to as components. This

approach for writing programs is widely adopted since it allows us to reuse

not only objects, but entire subprograms as well.

Abstraction – Abstract Data Example

Here is an example, where we define a specific data type "African lion", but

use it later on in an abstract manner through the "Felidae" abstraction. This

abstraction does not concern itself with the details of all types of lions.

AbstractionExample.cs

public class AbstractionExample
{
 static void Main()
 {
 Lion lion = new Lion(true, 150);
 Felidae bigCat1 = lion;

 AfricanLion africanLion = new AfricanLion(true, 80);
 Felidae bigCat2 = africanLion;
 }
}

Interfaces

In the C# language the interface is a definition of a role (a group of abstract

actions). It defines what sort of behavior a certain object must exhibit,

without specifying how this behavior should be implemented. Interfaces are

also known as contracts or specifications of behavior.

www.manaraa.com

826 Fundamentals of Computer Programming with C#

An object can have multiple roles (or implement multiple interfaces /

contracts) and its users can utilize it from different points of view.

For example, an object of type Person can have the roles of Soldier (with

behavior "shoot your enemy"), Husband (with behavior "love your wife") and

Taxpayer (with behavior "pay your taxes"). However, every person

implements its behavior in a different way; John pays his taxes on time,

George pays them overdue and Peter doesn’t pay them at all.

Some may ask why the base class of all objects (the class Object) is not an

interface. The reason is because in such case, every class would have to

implement a small, but very important group of methods and this would take

an unnecessary amount of time. It turns out that not all classes need a

specific implementation of Object.GetHashCode(), Object.Equals(…) and

Object.ToString(), i.e. the default implementation suffices in most cases.

It’s not necessary to override any of the methods in the Object class, but if

the situation calls for it we can. Overriding methods is explained in the

virtual methods section.

Interfaces – Key Concepts

An interface can only declare methods and constants.

A method signature is the combination of a method’s name and a

description of its parameters (type and order). In a class / interface all

methods have to have different signatures and should not be identical with

signatures of inherited methods.

A method declaration is the combination of a method’s return type and its

signature. The return type only specifies what the method returns.

A method is identified by its signature. The return type is not

a part of it. If two methods' only difference is the return type

(as in the case when a class inherits another), then it cannot

be unequivocally decided which method must be executed.

A class / method implementation is the source code of a class / method.

Usually it is between curly brackets: "{" and "}". Regarding methods, this is

also referred to as the method body.

Interfaces – Example

An interface in .NET is defined with the keyword interface. An interface can

contain only method declarations and constants. Here is an example of an

interface:

Reproducible.cs

public interface Reproducible<T> where T : Felidae
{

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 827

 T[] Reproduce(T mate);
}

We explained the generics in the "Defining Classes" chapter (section

"Generics"). The interface we wrote has a method of type T (T must inherit

Felidae) which returns an array of T.

And this is how the class Lion, which implements the interface

Reproducible looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 // …

 Lion[] Reproducible<Lion>.Reproduce(Lion mate)
 {
 return new Lion[]{new Lion(true, 12), new Lion(false, 10)};
 }
}

The name of the interface is coded in the declaration of the class (on the first

row) and specifies the generic class.

We can indicate which method from a specific interface we implement by

typing its name explicitly:

Lion[] Reproducible<Lion>.Reproduce(Lion mate)

In an interface, methods are only declared; the implementation is coded in

the class implementing the interface, i.e. – Lion.

The class that implements a certain interface must implement all methods

in it. The only exception is when the class is abstract. Then it can implement

none, some or all of the methods. All remaining methods have to be

implemented in some of the inheriting classes.

Abstraction and Interfaces

The best way to achieve abstraction is by working though interfaces. A

component works with interfaces which another implements. That way, a

change in the second component will not affect the first one as long as the

new component implements the old interface. The interface is also called a

contract. Every component upholds a certain contract (the signature of

certain methods). That way, two components upholding a contract can

communicate with each other without knowing how their counterpart works.

www.manaraa.com

828 Fundamentals of Computer Programming with C#

Some important interfaces from the Common Type System (CTS) are the list

and collection interfaces: System.Collections.Generic.IList<T> and

System.Collections.Generic.ICollection<T>. All of the standard .NET

collection classes implement these interfaces and the various components

pass different implementations (arrays, linked lists, hash tables, etc.) to one

another using a common interface.

Collections are an excellent example of an object-oriented library with

classes and interfaces that actively use all core principles of OOP: abstraction,

inheritance, encapsulation and polymorphism.

When Should We Use Abstraction and Interfaces?

The answer to this question is: always when we want to achieve

abstraction of data or actions, whose implementation can change later on.

Code, which communicates with another piece of code through interfaces, is

much more resilient to changes than code written using specific classes.

Working through interfaces is common and a highly recommended

practice – one of the basic rules for writing high-quality code.

When Should We Write Interfaces?

It is always a good idea to use interfaces when functionality is exposed to

another component. In the interface we include only the functionality (in

the form of a declaration) that others need to see.

Internally, a program / component can use interfaces for defining roles.

That way, an object can be used by different classes through different roles.

Encapsulation

Encapsulation is one of the main concepts in OOP. It is also called

"information hiding". An object has to provide its users only with the

essential information for manipulation, without the internal details. A

Secretary using a Laptop only knows about its screen, keyboard and mouse.

Everything else is hidden internally under the cover. She does not know

about the inner workings of Laptop, because she doesn’t need to, and if

she does, she might make a mess. Therefore parts of the properties and

methods remain hidden to her.

The person writing the class has to decide what should be hidden and what

not. When we program, we must define as private every method or field

which other classes should not be able to access.

Encapsulation – Examples

The example below shows how to hide methods that the class’ user doesn’t

have to be familiar with and are only used internally by the author of the

class. First, we define an abstract class Felidae, which defines the public

operations of cats (regardless of the cat’s type):

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 829

Felidae.cs

public class Felidae
{
 public virtual void Walk()
 {
 // …
 }

 // …
}

This is how the class Lion looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 // …

 private Paw frontLeft;
 private Paw frontRight;
 private Paw bottomLeft;
 private Paw bottomRight;

 private void MovePaw(Paw paw) {
 // …
 }

 public override void Walk()
 {
 this.MovePaw(frontLeft);
 this.MovePaw(frontRight);
 this.MovePaw(bottomLeft);
 this.MovePaw(bottomRight);
 }

 // …
}

The public method Walk() calls some other private method 4 times. That

way the base class is short – it consists of a single method. The

implementation, however, calls another of its methods, which is hidden from

the users of the class. That way, Lion doesn’t publicly disclose

information about its inner workings (it encapsulates certain behavior).

www.manaraa.com

830 Fundamentals of Computer Programming with C#

At a later stage, this makes it possible to change its implementation without

any of the other classes finding out and requiring changes.

Polymorphism

The next fundamental principle of Object-Oriented Programming is

"Polymorphism". Polymorphism allows treating objects of a derived

class as objects of its base class. For example, big cats (base class) catch

their prey (a method) in different ways. A Lion (derived class) sneaks on it,

while a Cheetah (another derived class) simply outruns it.

Polymorphism allows us to treat a cat of random size just like a big cat and

command it "catch your prey", regardless of its exact size.

Polymorphism can bear strong resemblance to abstraction, but it is mostly

related to overriding methods in derived classes, in order to change

their original behavior inherited from the base class. Abstraction is

associated with creating an interface of a component or functionality (defining

a role). We are going to explain method overriding shortly.

Abstract Classes

What happens if we want to specify that the class Felidae is incomplete and

only its successors can have instances? This is accomplished by putting the

keyword abstract before the name of the class and indicates that the class

is not ready to be instantiated. We refer to such classes as abstract

classes. And how do we indicate which exact part of the class is incomplete?

Once again, this is accomplished by putting the keyword abstract before the

name of the method to be implemented. This method is called an abstract

method and cannot have an implementation, but a declaration only.

Each class with at least one abstract method must be abstract. Makes

sense, right? However, the opposite is not true. It is possible to define a class

as an abstract one, even when there are no abstract methods in it.

Abstract classes are something in the middle between classes and

interfaces. They can define ordinary methods and abstract methods.

Ordinary methods have an implementation, whereas abstract methods are

empty (without an implementation) and remain to be implemented later by

the derived classes.

Abstract Class – Examples

Let’s take a look at an example of an abstract class:

Felidae.cs

/// <summary>Latin for "cats"</summary>
public abstract class Felidae
{

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 831

 // …

 protected void Hide()
 {
 // …
 }

 protected void Run()
 {
 // …
 }

 public abstract bool CatchPrey(object prey);
}

Notice how in the example above the ordinary methods Hide() and Run()
have a body, while the abstract method CatchPrey() does not. Notice that

the methods are declared as protected.

Here is how the implementation of the above abstraction looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 protected void Ambush()
 {
 // …
 }

 public override bool CatchPrey(object prey)
 {
 base.Hide();
 this.Ambush();
 base.Run();
 // …
 return false;
 }
}

Here is one more example of abstract behavior, implemented with an

abstract class and a polymorphic call to an abstract method. In this example

we define abstract method and we override it later in a descendant class.

Let’s see the code and discuss it later.

Firstly, we define the abstract class Animal:

www.manaraa.com

832 Fundamentals of Computer Programming with C#

Animal.cs

public abstract class Animal
{
 public void PrintInformation()
 {
 Console.WriteLine("I am a {0}.", this.GetType().Name);
 Console.WriteLine(GetTypicalSound());
 }

 protected abstract String GetTypicalSound();
}

We also define the class Cat, which inherits the abstract class Animal and

defines an implementation of the abstract method GetTypicalSound():

Cat.cs

public class Cat : Animal
{
 protected override String GetTypicalSound()
 {
 return "Meoooow!";
 }
}

If we execute the following program:

public class AbstractClassExample
{
 static void Main()
 {
 Animal cat = new Cat();
 cat.PrintInformation();
 }
}

we are going to get the following result:

I am a Cat.
Meoooow!

In the example, the PrintInformation() method from the abstract class

does its work by relying on the result from a call to the abstract method

GetTypicalSound() which is expected to be implemented in different ways by

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 833

the kinds of animals (the various successors of the class Animal). Different

animals make distinct sounds, but the functionality for printing information

about animals is common to all animals, and that’s why it is exported to the

base class.

Purely Abstract Classes

Abstract classes, as well as interfaces, cannot be instantiated. If we try to

create an instance of an abstract class, we are going to get an error during

compilation.

Sometimes a class can be declared abstract, even if it has no

abstract methods, in order to simply prohibit using it directly

without creating an instance of a successor.

A pure abstract class is an abstract class, which has no implemented

methods and no member variables. It is very similar to an interface. The

fundamental difference is that a class can implement many interfaces and

inherit only one class (even if that class is abstract).

Initially, interfaces were not necessary in the presence of "multiple

inheritance". They had to be conceived as a means to supersede it in

specifying the numerous roles of an object.

Virtual Methods

A method, which can be overridden in a derived class, is called a virtual

method. Methods in .NET by default aren’t virtual. If we want to make a

method virtual, we mark it with the keyword virtual. Then the derived

class can declare and define a method with the same signature.

Virtual methods are important for method overriding, which lies at the heart

of polymorphism.

Virtual Methods – Example

We have a class inheriting another and the two classes share a common

method. Both versions of the method write on the console. Here is how the
Lion class looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 public override void CatchPrey(object prey)
 {
 Console.WriteLine("Lion.CatchPrey");
 }
}

www.manaraa.com

834 Fundamentals of Computer Programming with C#

Here is how the AfricanLion class looks like:

AfricanLion.cs

public class AfricanLion : Lion
{
 public override void CatchPrey(object prey)
 {
 Console.WriteLine("AfricanLion.CatchPrey");
 }
}

We make three attempts to create instances and call the method CatchPrey.

VirtualMethodsExample.cs

public class VirtualMethodsExample
{
 static void Main()
 {
 Lion lion = new Lion(true, 80);
 lion.CatchPrey(null);
 // Will print "Lion.CatchPrey"

 AfricanLion lion = new AfricanLion(true, 120);
 lion.CatchPrey(null);
 // Will print "AfricanLion.CatchPrey"

 Lion lion = new AfricanLion(false, 60);
 lion.CatchPrey(null);
 // Will print "AfricanLion.CatchPrey", because
 // the variable lion has a value of type AfricanLion
 }
}

In the last attempt, you can clearly see how, in fact, the overwritten

method is called and not the base method. This happens, because it is

validated what the actual class behind the variable is and whether it

implements (overwrites) that method. Rewriting of methods is also called

overriding of virtual methods.

Virtual methods as well as abstract methods can be overridden. Abstract

methods are actually virtual methods without a specific implementation. All

methods defined in an interface are abstract and therefore virtual, although

this is not explicitly defined.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 835

Virtual Methods and Methods Hiding

In the example above, the implementation of the base class is hidden and

omitted. Here is how we can also use it as part of the new implementation (in

case we want to complement the old implementation rather than override it).

Here is how the AfricanLion class looks like:

AfricanLion.cs

public class AfricanLion : Lion
{
 public override void CatchPrey(object prey)
 {
 Console.WriteLine("AfricanLion.CatchPrey");
 Console.WriteLine("calling base.CatchPrey");
 Console.Write("\t");
 base.CatchPrey(prey);
 Console.WriteLine("...end of call.");
 }
}

In this example, three lines will be written on the console when

AfricanLion.CatchPrey(…) is called:

AfricanLion.CatchPrey
calling base.CatchPrey
 Lion.CatchPrey
...end of call.

The Difference between Virtual and Non-Virtual Methods

Some may ask what the difference between the virtual and non-virtual

methods is.

Virtual methods are used when we expect from derived classes to change /

complement / alter some of the inherited functionality. For example, the

method Object.ToString() allows derived classes to change / replace its

implementation in any way they want. Then, even if we work with an object

not directly, but rather by upcasting it to Object, we use the overwritten

implementation of the virtual methods.

Virtual methods are a key characteristic of objects when we talk about

abstraction and working with abstract types.

Sealing of methods is done when we rely on a piece of functionality and we

don’t want it to be altered. We already know that methods are sealed by

default. But if we want a base class’ virtual method to become sealed in a

derived class, we use override sealed.

www.manaraa.com

836 Fundamentals of Computer Programming with C#

The string class has no virtual methods. In fact, inheriting string is

entirely forbidden for inheritance through the keyword sealed in its

declaration. Here are parts of the declarations of string and object classes

(the ellipses in square brackets indicate omitted, irrelevant code):

namespace System
{
 […] public class Object
 {
 […] public Object();
 […] public virtual bool Equals(object obj);
 […] public static bool Equals(object objA, object objB);
 […] public virtual int GetHashCode();
 […] public Type GetType();
 […] protected object MemberwiseClone();
 […] public virtual string ToString();
 }

 […] public sealed class String : […]
 {
 […] public String(char* value);
 […] public int IndexOf(string value);
 […] public string Normalize();
 […] public string[] Split(params char[] separator);
 […] public string Substring(int startIndex);
 […] public string ToLower(CultureInfo culture);
 […]
 }
}

When Should We Use Polymorphism?

The answer to this question is simple: whenever we want to enable

changing a method’s implementation in a derived class. It’s a good rule

to work with the most basic class possible or directly with an interface. That

way, changes in used classes reflect to a much lesser extent on classes

written by us. The less a program knows about its surrounding classes, the

fewer changes (if any) it would have to undergo.

Cohesion and Coupling

The terms cohesion and coupling are inseparable from OOP. They

complement and explain further some of the principles we have described so

far. Let’s get familiar with them.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 837

Cohesion

The concept of cohesion shows to what degree a program’s or a component’s

various tasks and responsibilities are related to one another, i.e. how much

a program is focused on solving a single problem. Cohesion is divided into

strong cohesion and weak cohesion.

Strong Cohesion

Strong cohesion indicates that the responsibilities and tasks of a piece of code

(a method, class, component or a program) are related to one another and

intended to solve a common problem. This is something we must always

aim for. Strong cohesion is a typical characteristic of high-quality software.

Strong Cohesion in a Class

Strong cohesion in a class indicates that the class defines only one entity.

We mentioned earlier that an entity can have many roles (Peter is a soldier,

husband and a taxpayer). Each of these roles is defined in the same class.

Strong cohesion indicates that the class solves only one task, one problem,

and not many at the same time.

A class, which does many things at the same time, is difficult to

understand and maintain. Consider a class, which implements a hash table,

provides functions for printing, sending an e-mail and working with

trigonometric functions all at once. How do we name such a class? If we find

it difficult to answer this question, this means that we have failed to achieve

strong cohesion and have to separate the class into several smaller classes,

each solving a single task.

Strong Cohesion in a Class – Example

As an example of strong cohesion we can point out the System.Math class. It

performs a single task: it provides mathematical calculations and constants:

- Sin(), Cos(), Asin()

- Sqrt(), Pow(), Exp()

- Math.PI, Math.E

Strong Cohesion in a Method

A method is well written when it performs only one task and performs

it well. A method, which does a lot of work related to different things, has

bad cohesion. It has to be broken down into simpler methods, each

solving only one task. Once again, the question is posed what name should

we give to a method, which finds prime numbers, draws 3D graphics on the

screen, communicates with the network and prints records extracted from a

data base? Such a method has bad cohesion and has to be logically

separated into several methods.

www.manaraa.com

838 Fundamentals of Computer Programming with C#

Weak Cohesion

Weak cohesion is observed along with methods, which perform several

unrelated tasks. Such methods take several different groups of parameters,

in order to perform different tasks. Sometimes, this requires logically

unrelated data to be unified for the sake of such methods. Weak cohesion is

harmful and must be avoided!

Weak Cohesion – Example

Here is a sample class with weak cohesion:

public class Magic
{
 public void PrintDocument(Document d) { … }
 public void SendEmail(string recipient,
 string subject, string text) { … }
 public void CalculateDistanceBetweenPoints(
 int x1, int y1, int x2, int y2) { … }
}

Best Practices with Cohesion

Strong cohesion is quite logically the "good" way of writing code. The

concept is associated with simpler and clearer source code – code that is

easier to maintain and reuse (because of the fewer tasks it has to perform).

Contrarily, with weak cohesion each change is a ticking time bomb, because

it could affect other functionality. Sometimes a logical task is spread out to

several different modules and thus changing it is more labor intensive. Code

reuse is also difficult, because a component does several unrelated tasks and

to reuse it the exact same conditions must be met which is hard to achieve.

Coupling

Coupling mostly describes the extent to which components / classes depend

on one another. It is broken down into loose coupling and tight coupling.

Loose coupling usually correlates with strong cohesion and vice versa.

Loose Coupling

Loose coupling is defined by a piece of code’s (program / class / component)

communication with other code through clearly defined interfaces

(contracts). A change in the implementation of a loosely coupled component

doesn’t reflect on the others it communicates with. When you write source

code, you must not rely on inner characteristics of components (specific

behavior that is not described by interfaces).

The contract has to be maximally simplified and define only the required

behavior for this component’s work by hiding all unnecessary details.

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 839

Loose coupling is a code characteristic you should aim for. It is one of the

characteristics of high-quality programming code.

Loose Coupling – Example

Here is an example of loose coupling between classes and methods:

class Report
{
 public bool LoadFromFile(string fileName) { … }
 public bool SaveToFile(string fileName) { … }
}

class Printer
{
 public static int Print(Report report) { … }
}

class Example
{
 static void Main()
 {
 Report myReport = new Report();
 myReport.LoadFromFile("DailyReport.xml");
 Printer.Print(myReport);
 }
}

In this example, none of the methods depend on the others. The

methods rely only on some of the parameters, which are passed to them.

Should we need one of the methods in a next project, we could easily take it

out and reuse it.

Tight Coupling

We achieve tight coupling when there are many input parameters and output

parameters; when we use undocumented (in the contract) characteristics of

another component (for example, a dependency on static fields in another

class); and when we use many of the so called control parameters that

indicate behavior with actual data. Tight coupling between two or more

methods, classes or components means that they cannot work

independently of one another and that a change in one of them will also

affect the rest. This leads to difficult to read code and big problems with its

maintenance.

Tight Coupling – Example

Here is an example of tight coupling between classes and methods:

www.manaraa.com

840 Fundamentals of Computer Programming with C#

class MathParams
{
 public static double operand;
 public static double result;
}

class MathUtil
{
 public static void Sqrt()
 {
 MathParams.result = CalcSqrt(MathParams.operand);
 }
}

class SpaceShuttle
{
 static void Main()
 {
 MathParams.operand = 64;
 MathUtil.Sqrt();
 Console.WriteLine(MathParams.result);
 }
}

Such code is difficult to understand and maintain, and the likelihood of

mistakes when using it is great. Think about what happens if another method,

which calls Sqrt(), passes its parameters through the same static variables

operand and result.

If we have to use the same functionality for deriving square root in a

subsequent project, we will not be able to simply copy the method Sqrt(),

but rather we will have to copy the classes MathParams and MathUtil

together with all of their methods. This makes the code difficult to reuse.

In fact, the above code is an example of bad code according to all rules of

Procedural and Object-Oriented Programming and if you think twice, you will

certainly identify at least several more disregarded recommendations from

those we have given you so far.

Best Practices with Coupling

The most common and advisable way of invoking a well written module’s

functionality is through interfaces. That way, the functionality can be

substituted without clients of the code requiring changes. The jargon

expression for this is "programming against interfaces".

Most commonly, an interface describes a "contract" observed by this module.

It is good practice not to rely on anything else other than what’s described by

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 841

this contract. The use of inner classes, which are not part of the public

interface of a module, is not recommended because their implementation can

be substituted without substituting the contract (we already discussed this in

the section "Abstraction").

It is good practice that the methods are made flexible and ready to work

with all components, which observe their interfaces, and not only with

definitive ones (i.e. to have implicit requirements). The latter would mean

that these methods expect something specific from the components they can

work with. It is also good practice that all

dependencies are clearly described and

visible. Otherwise, the maintenance of such

code becomes difficult (it is riddled with

stumbling-blocks).

A good example of strong cohesion and loose

coupling we can find in the classes from the

standard namespaces System.Collections

and System.Collections.Generic. These

.NET classes for working with collections have

strong cohesion. Each solves a single

problem and allows easy reuse. These classes

have another characteristic of high-quality

programming code: loose coupling. The

classes, implementing the collections, are not

related to one another. Each works through a

strictly defined interface and does not give away details of its

implementation. All methods and fields not from the interface are hidden, in

order to reduce the possibility of coupling with them. Methods in the collection

classes do not depend on static variables and do not rely on any input data

except for their inner state and passed parameters. This is good practice

every programmer sooner or later attains with gained experience.

Spaghetti Code

Spaghetti code is unstructured code with unclear logic; it is difficult to

read, understand and maintain; it violates and mixes up consistency; it

has weak cohesion and tight coupling. Such code is associated with

spaghetti, because it is just as tangled and twisted. When you pull out a

strand of spaghetti (i.e. a class or method), the whole dish of spaghetti can

turn out tangled in it (i.e. changes in one method or class lead to dozens of

other changes because of the strong dependence between them). It is almost

impossible to reuse spaghetti code, since there is no way to separate that part

of the code, which is practically applicable.

Spaghetti code is achieved when you have written code, supplement it and

have to readapt it again and again every time the requirements change. Time

passes by until a moment comes when it has to be rewritten from scratch.

www.manaraa.com

842 Fundamentals of Computer Programming with C#

Cohesion and Coupling in Engineering Disciplines

If you think that the principles of strong cohesion and loose coupling apply

only to programming, you are deeply mistaken. These are fundamental

engineering principles you will come across in construction, machine

building, electronics and thousands of other fields.

Let’s take, for instance, a hard disk drive (HDD):

It solves only one task doesn’t it? The hard disk

solves the task of storing data. It does not cool

down the computer, does not make sounds, has

no computing power and is not used as a

keyboard. It is connected to the computer with

two cables only, i.e. it has a simple interface for

access and is not bound to other peripherals. The

hard disk works separately and other devices

aren’t concerned about how it works exactly. The

CPU commands it to "read" and it reads, then it

commands it to "write" and it writes. How exactly

it does this remains hidden inside it. Different models can work in different

ways, but that is their own concern. You can see that the CPU has strong

cohesion, loose coupling, good abstraction and good encapsulation. This is

how you should implement your classes – they must do only one thing, do

it well, bind them minimally to other classes (or not link them at all

whenever that’s possible), have a clear interface and good abstraction and to

hide the details of their internal workings.

Here is another example: imagine what would happen, if the processor, the

hard disk, the CD-ROM drive and the keyboard were soldered to the

motherboard of the computer. It would mean that if any part of the keyboard

were broken, you would have to throw away the whole computer. You can see

how hardware cannot work well with tight coupling and weak cohesion. The

same applies to software.

Object-Oriented Modeling (OOM)

Suppose we have a problem or task to solve. The problem usually comes from

the real word. It exists in a reality we are going to call its surrounding

environment.

Object-oriented modeling (OOM) is a process associated with OOP where

all objects related to the problem we are solving are brought out (a model is

created). Only the classes' characteristics, which are important for solving this

particular problem, are elicited. The rest are ignored. That way, we create a

new reality, a simplified version of the original one (its model), such that

it allows us to solve the problem or task.

For example, if we model a ticketing system, the important

characteristics of a passenger could be their name, their age, whether they

use a discount and whether they are male or female (if we sell sleeping

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 843

berths). A passenger has many other not important characteristics we

aren’t concerned about, such as the color of their eyes, what shoe size they

wear, what books they like or what beer they drink.

By modeling, a simplified model of reality is created in order to solve a

specific task. In object-oriented modeling, the model is created by means of

OOP: via classes, class attributes, class methods, objects, relations between

classes, etc. Let’s scrutinize this process.

Steps in Object-Oriented Modeling

Object-oriented modeling is usually performed in these steps:

- Identification of classes.

- Identification of class attributes.

- Identification of operations on classes.

- Identification of relations between classes.

We will consider a short example through which we will demonstrate how to

apply these steps.

Identification of Classes

Suppose we have the following excerpt from a system’s specification:

The user must be able to describe each product by its characteristics,

including name and product number. If the barcode doesn’t match the

product, an error must be generated on the error screen. There has to be a

daily report for all transactions specified in section 9.3.

Here is how we identify key concepts:

The user must be able to describe each product by its characteristics,

including name and product number. If the barcode doesn’t match the

product, an error must be generated on the error screen. There has to be

a daily report for all transactions specified in section 9.3.

We have just identified the classes we will need. The names of the classes

are the nouns in the text, usually common nouns in singular like Student,

Message, Lion. Avoid names that don’t come from the text, such as:

StrangeClass, AddressTheStudentHas.

Sometimes it’s difficult to determine whether some subject or phenomena

from the real world has to be a class. For example, the address can be

defined as a class Address or a string. The better we explore the problem,

the easier it will be to decide which entities must be represented as classes.

When a class becomes large and complicated it has to be broken down into

several smaller classes.

www.manaraa.com

844 Fundamentals of Computer Programming with C#

Identification of Class Attributes

Classes have attributes (characteristics), for example the class Student

has a name, institution and a list of courses. Not all characteristics are

important for a software system. For example, as far as the class Student is

concerned eye color is a non-essential characteristic. Only essential

characteristics have to be modeled.

Identification of Operations on Classes

Each class must have clearly defined responsibilities – what objects or

processes from the real world it identifies and what tasks it performs. Each

action in the program is performed by one or several methods in some class.

The actions are modeled as operations (methods).

A combination of verb + noun is used for the name of a method, e.g.

PrintReport(), ConnectToDatabase(). We cannot define all methods of a

given class immediately. Firstly, we define the most important methods –

those that implement the basic responsibilities of the class. Over time

additional methods appear.

Identification of Relationships between Classes

If a student is from a faculty and this is important for the task we are solving,

then student and faculty are related, i.e. the Faculty class has a list of

Students. These relations are called associations (remember the "Class

Diagrams" section).

UML Notation

UML (Unified Modeling Language) was mentioned in the section about

inheritance where we discussed class diagrams. The UML notation defines

several additional types of diagrams. Let’s check out some of them briefly.

Use Case Diagrams

They are used when we elicit the requirements for the description of possible

actions. Actors represent roles (types of users).

Use cases describe interaction between the actors and the system. The use

case model is a group of use cases – it provides a complete description of a

system’s functionality.

Use Case Diagrams – Example

Here is how a use case diagram looks like:

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 845

The actor (the “dwarf” in the diagram) is someone who interacts with the

system (a user, external system or, for instance, an external environment).

The actor has a unique name and, possibly, a description. I our case

actors are the WatchUser and the WatchRepairPerson.

A use case (the “egg” in the diagram) describes a single functionality of

the system, a single action that can be performed by some actor. It has a

unique name and is related to actors. It can have input and output

conditions. Most frequently, it contains a flow of operations (a process). It can

also have other requirements. We have three use cases in the diagram above:

ReadTime, SetTime and ChangeBattery.

A package holds several logically related use cases.

Lines connect actors to the use cases they perform. An actor can perform or

be involved in one or several use cases.

Sequence Diagrams

Sequence diagrams are used when modeling the requirements of process

specification and describing use case scenarios more extensively. They allow

describing additional participants in the processes and the sequence of the

actions over the time. They are used in designing the descriptions of system

interfaces.

Sequence diagrams describe what happens over the time, the interactions

over the time, the dynamic view over the system, a sequence of steps,

just like an algorithm.

Sequence Diagrams – Example

Here is how a sequence diagram looks like:

www.manaraa.com

846 Fundamentals of Computer Programming with C#

Classes are depicted with columns (lifelines). Messages (actions) are

depicted with arrows and text above the arrows. Participants are depicted

with wide rectangles. States are depicted with dashed lines. The period of

activity (activation) of certain class during the time is depicted as narrow

rectangles.

Messages – Example

The direction of the arrow designates the sender and the recipient of a

message (a method call in OOP). Horizontal dashed lines depict data flow:

Statechart Diagrams

Statechart diagrams describe the possible states of certain process and the

possible transitions between them along with the conditions for the

transitions. They represent finite-state automata (state machines). Below

we have an example of statechart diagram that illustrates the states and

transitions of typical process of changing the current time of a wall clock

which has two buttons and a screen:

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 847

Activity Diagrams

Activity diagrams are a special type of statechart diagrams where

conditions are actions. They show the flow of actions in a system:

Design Patterns

Few years after the onset of the object-oriented paradigm it was found that

there are many situations, which occur frequently during software

development, such as a class, which must have only one instance within the

entire application.

Design patterns appeared as proven and highly-efficient solutions to the

most common problems of object-oriented modeling. Design patterns

are systematically described in the eponymous book by Erich Gamma & Co.

www.manaraa.com

848 Fundamentals of Computer Programming with C#

"Design Patterns: Elements of Reusable Object-Oriented Software"

(ISBN 0-201-63361-2). The patterns in this book are called “the GoF

patterns” or “classical design patterns”.

This is one of the few books in the field of computer science,

which remain current 15 years after publishing. Design

patterns complement the basic principles of OOP with well-

known solutions of well-known problems. A good place to

start studying the design patterns is their Wikipedia article:

en.wikipedia.org/wiki/Design_pattern (computer science). You

may also check the "Data & Object Factory" patterns catalog

http://www.dofactory.com/Patterns/Patterns.aspx, where the authors provide

C# implementation of the classical GoF patterns.

The Singleton Design Pattern

This is the most popular and most frequently used design pattern. It allows a

class to have only one instance and defines where it has to be taken from.

Typical examples are classes, which define references to singular entities (a

virtual machine, operating system, window manager in a graphical application

or a file system) as well as classes of the next pattern (factory).

The Singleton Design Pattern – Example

Here is a sample implementation of the singleton design pattern:

Singleton.cs

public class Singleton
{
 // The single instance
 private static Singleton instance;

 // Initialize the single instance
 static Singleton()
 {
 instance = new Singleton();
 }

 // The property for retrieving the single instance
 public static Singleton Instance
 {
 get { return instance; }
 }

 // Private constructor: protects against direct instantiation
 private Singleton() { }
}

http://en.wikipedia.org/wiki/Special:BookSources/0201633612
http://en.wikipedia.org/wiki/%20Design_pattern%20(computer%20science)
http://www.dofactory.com/Patterns/Patterns.aspx

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 849

We have a hidden (private) constructor in order to limit external

instantiations. We have a static variable, which holds the only instance. We

initialize it only once in the static constructor of the class. The property for

retrieving the single instance is usually called Instance.

The pattern can undergo many optimizations, such as the so called "lazy

initialization" of the only variable, in order to save memory, but this is its

classical form.

The Factory Method Design Pattern

Factory method is another very common design pattern. It is intended for

"producing" objects. The instantiation of an object is not performed

directly, but rather by the factory method. This allows the factory method to

decide which specific instance to create from a family of classes implementing

a common interface. The solution can depend on the environment, a

parameter or some system setting.

The Factory Method Design Pattern – Example

Factory methods encapsulate object creation. This is useful if the creation

process is very complicated – if it depends on settings in configuration files or

input data by the user.

Suppose we have a class which contains graphics files (png, jpeg, bmp, etc.)

and creates reduced size copies of them (the so called thumbnails). A

variety of formats are supported, each represented by a class:

public class Thumbnail
{
 // …
}

public interface Image
{
 Thumbnail CreateThumbnail();
}

public class GifImage : Image
{
 public Thumbnail CreateThumbnail()
 {
 // … Create a GIF thumbnail here …
 return gifThumbnail;
 }
}

public class JpegImage : Image

www.manaraa.com

850 Fundamentals of Computer Programming with C#

{
 public Thumbnail CreateThumbnail()
 {
 // … Create a JPEG thumbnail here …
 return jpegThumbnail;
 }
}

Here is how the class holding an album of images looks like:

public class ImageCollection
{
 private IList<Image> images;

 public ImageCollection(IList<Image> images)
 {
 this.images = images;
 }

 public IList<Thumbnail> CreateThumbnails()
 {
 IList<Thumbnail> thumbnails =
 new List<Thumbnail>(images.Count);
 foreach (Image thumb in images)
 {
 thumbnails.Add(thumb.CreateThumbnail());
 }
 return thumbnails;
 }
}

The client of the program may require thumbnails of all images in the album:

public class Example
{
 static void Main()
 {
 IList<Image> images = new List<Image>();

 images.Add(new JpegImage());
 images.Add(new GifImage());

 ImageCollection imageRepository =
 new ImageCollection(images);

www.manaraa.com

Chapter 20. Object-Oriented Programming Principles 851

 Console.WriteLine(imageRepository.CreateThumbnails());
 }
}

Other Design Patterns

There are dozens of other well-known design patterns, but we are not going

to discuss them. The more inquisitive readers can look up "Design Patterns"

on the internet and learn what other design patterns, such as Abstract

Factory, Prototype, Adapter, Composite, Façade, Command, Observer,

Iterator, etc. serve for and how they are put into use. If you pursue .NET

development more seriously, you will see for yourselves that the whole

standard library (FCL) is built on the principles of OOP and the classic design

patterns are very actively used.

Exercises

1. We are given a school. The school has classes of students. Each class has

a set of teachers. Each teacher teaches a set of courses. The students

have a name and unique number in the class. Classes have a unique text

identifier. Teachers have names. Courses have a name, count of classes

and count of exercises. The teachers as well as the students are people.

Your task is to model the classes (in terms of OOP) along with their

attributes and operations define the class hierarchy and create a class

diagram with Visual Studio.

2. Define a class Human with properties "first name" and "last name". Define

the class Student inheriting Human, which has the property "mark". Define

the class Worker inheriting Human with the property "wage" and "hours

worked". Implement a "calculate hourly wage" method, which calculates a

worker’s hourly pay rate based on wage and hours worked. Write the

corresponding constructors and encapsulate all data in properties.

3. Initialize an array of 10 students and sort them by mark in ascending

order. Use the interface System.IComparable<T>.

4. Initialize an array of 10 workers and sort them by salary in descending

order.

5. Define an abstract class Shape with abstract method CalculateSurface()

and fields width and height. Define two additional classes for a triangle

and a rectangle, which implement CalculateSurface(). This method has

to return the areas of the rectangle (height*width) and the triangle

(height*width/2). Define a class for a circle with an appropriate

constructor, which initializes the two fields (height and width) with the

same value (the radius) and implement the abstract method for calculating

the area. Create an array of different shapes and calculate the area of each

shape in another array.

www.manaraa.com

852 Fundamentals of Computer Programming with C#

6. Implement the following classes: Dog, Frog, Cat, Kitten and Tomcat. All of

them are animals (Animal). Animals are characterized by age, name and

gender. Each animal makes a sound (use a virtual method in the Animal

class). Create an array of different animals and print on the console their

name, age and the corresponding sound each one makes.

7. Using Visual Studio generate the class diagrams of the classes from the

previous task with it.

8. A bank holds different types of accounts for its customers: deposit

accounts, loan accounts and mortgage accounts. Customers can be

individuals or companies. All accounts have a customer, balance and

interest rate (monthly based). Deposit accounts allow depositing and

withdrawing of money. Loan and mortgage accounts allow only

depositing. All accounts can calculate their interest for a given period (in

months). In the general case, it is calculated as follows:

number_of_months * interest_rate. Loan accounts have no interest

rate during the first 3 months if held by individuals and during the first 2

months if held by a company. Deposit accounts have no interest rate if

their balance is positive and less than 1000. Mortgage accounts have ½

the interest rate during the first 12 months for companies and no interest

rate during the first 6 months for individuals. Your task is to write an

object-oriented model of the bank system. You must identify the classes,

interfaces, base classes and abstract actions and implement the interest

calculation functionality.

9. Read about the Abstract Factory design pattern and implement it in C#.

Solutions and Guidelines

1. The task is trivial. Just follow the problem description and write the code.

2. The task is trivial. Just follow the problem description and write the code.

3. Implement IComparable<T> in Student and then sort the array.

4. This problem is like the previous one.

5. Just implement the classes as described in the problem description.

6. Printing information can be implemented in the virtual method System.
Object.ToString(). In order to print the content of an array of animals,

you can use a foreach loop.

7. If you have the full version of Visual Studio, just use “Add New Item”

“Class Diagram”. Class diagrams are not supported in VS Express Edition.

In this case you can find some other UML tool (see http://en.wikipedia.org/

wiki/List_of_UML_tools).

8. Use abstract class Account with abstract method CalculateInterest(…).

9. You can read about the "abstract factory" design pattern in Wikipedia:

http://en.wikipedia.org/wiki/Abstract_factory_pattern.

http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/Abstract_factory_pattern

www.manaraa.com

Chapter 21. High-Quality
Programming Code

In This Chapter

In this chapter we review the basic rules and recommendations for writing

quality program code. We pay attention to naming the identifiers in the

program (variables, methods, parameters, classes, etc.), formatting and

code organization rules, good practices for composing methods, and

principles for writing quality documentation. We describe the official

"Design Guidelines for Developing Class Libraries for .NET" from Microsoft. In

the meantime we explain how the programming environment can automate

operations such as code formatting and refactoring.

This chapter is a kind of continuation of the previous one – “Object-Oriented

Programming Principles”. The reader is expected to be familiar with the basic

OOP principles: abstraction, inheritance, polymorphism, encapsulation

and exception handling. Those do greatly affect the quality of the code.

Why Is Code Quality Important?

Let’s examine the following code:

static void Main()
{
 int value=010, i=5, w;
 switch(value){case 10:w=5;Console.WriteLine(w);break;case
9:i=0;break;
 case 8:Console.WriteLine("8 ");break;
 default:Console.WriteLine("def ");{
 Console.WriteLine("hoho "); }
 for (int k = 0; k < i; k++, Console.WriteLine(k -
'f'));break;} { Console.WriteLine("loop!"); }
}

Are you able to comprehend what this code does in a short glance? Does it

do its job correctly, does it contain any errors?

www.manaraa.com

854 Fundamentals of Computer Programming with C#

What Does Quality Programming Code Mean?

The quality of a program encompasses two aspects: the quality perceived by

the user (called external quality), and the quality in regard to the internal

organization (called internal quality).

The external quality is largely determined by the operational correctness

of the particular program (absence of defects). Things like usability and

intuitiveness of the user interface (UI) do greatly influence the external

quality as well. Performance, a term which includes operational speed,

memory usage and resource utilization, also plays in the equation, whenever

these things matter.

Internal quality, on the other hand, is determined by how well the

program is built. It depends on whether the employed design and

architecture are suitable and sufficiently simple, and whether it is easy to

make a change or to add new functionality (maintainability). The

comprehensibility of the implementation and the readability of the code are

vital as well. In general, internal quality mostly has to do with the code of the

program and its internal work.

Characteristics of Quality Code

Quality code is easy to read and understand. It is maintained easily and

straightforwardly. It must withstand any kind of input without breaking or

behaving strangely, and be well tested. The design and the architecture

must be suitable and not over-engineered. Documentation should be at a

decent level, or at least the code should be self-documenting. Formatting

should be adequately chosen and applied consistently throughout the whole

project.

At all levels (modules, classes, methods) there should be a strong relation and

a high focus of the responsibilities (strong cohesion) – that means, a piece

of code should only do one particular thing.

Functional independence (or more precisely, loose coupling) between

modules, classes and methods is crucially important. Suitable and consistent

naming of all program identifiers is a must. Documentation should be

embedded in the code itself.

Why Should We Write Quality Code?

Let’s have a look again at our example:

static void Main()
{
 int value=010, i=5, w;
 switch(value){case 10:w=5;Console.WriteLine(w);break;case
9:i=0;break;
 case 8:Console.WriteLine("8 ");break;

www.manaraa.com

Chapter 21. High-Quality Programming Code 855

 default:Console.WriteLine("def ");{
 Console.WriteLine("hoho "); }
 for (int k = 0; k < i; k++, Console.WriteLine(k -
'f'));break;} { Console.WriteLine("loop!"); }
}

Can you tell whether this code compiles without errors? Can you tell what

it does just by glancing at it? Can you add new functionality and be sure

that you will not break it up? Can you tell what the purpose of the k or the w

variable is?

Visual Studio has an option for automatic code formatting. If the above

code is put there and that option is invoked (via the keyboard combination

[Ctrl+K, Ctrl+F]) it will be reformatted and will look completely differently.

Unfortunately, the purpose of the variables will still remain unclear, but at

least it should become obvious where each block ends:

static void Main()
{
 int value = 010, i = 5, w;
 switch (value)
 {
 case 10: w = 5; Console.WriteLine(w); break;
 case 9: i = 0; break;
 case 8: Console.WriteLine("8 "); break;
 default: Console.WriteLine("def ");
 {
 Console.WriteLine("hoho ");
 }
 for (int k = 0; k < i; k++, Console.WriteLine(k - 'f'));
 break;
 } { Console.WriteLine("loop!"); }
}

If everyone was writing code as in the above example, it would not be

possible to create big and serious software projects, because they are written

by large teams of software engineers. If every team member’s code was like

that, no one would ever be able to understand how the other members’

code works (and whether it works at all), and hardly anyone could even

understand his / her own code.

Over the time, a serious amount of good practices have emerged and a lot

of experience has been gained for writing quality code, to enable each

programmer to understand and maintain his colleagues’ code. These

practices endorse a variety of rules and recommendations for code

formatting, identifier naming and proper program structure, all of which

make writing software easier. Consistent and quality code is especially helpful

www.manaraa.com

856 Fundamentals of Computer Programming with C#

when changing and maintaining a program. Quality code is flexible and

stable. Because it is self-documenting and intuitive, its intentions become

clear at a first sight. Quality code is easy to reuse because it does just one

thing (strong cohesion), but does it well, depending on a minimal amount of

other components (loose coupling), using only their public interfaces. As an

end result, quality code saves time and labor, and makes the produced

software more valuable.

Some programmers consider quality code as being overly simple. They tend

to think that it limits their opportunity to demonstrate their knowledge. That

is the reason why they write code that is hard to read, and for using

features of the language which are unpopular or poorly documented. They

squeeze functions on a single line. This is an entirely wrong practice.

Coding Conventions

Before continue with the recommendations on writing quality code, we should

talk a bit about coding conventions. A coding convention is a set of rules

for writing code, used within the boundaries of a particular organization or a

project. It can include naming and formatting rules, and rules for logical

composition. One such rule would recommend that class names start with a

capital letter while variable names start with a lowercase letter. Another rule

may state that the opening curly bracket preceding a block of statements

should be on the same line, rather than on a new line.

Inconsistent usage of a single convention is worse and more

dangerous than not having a convention at all.

Conventions started to emerge in big and serious projects, where a large

number of programmers had each been writing in their own style and

everyone was adhering to their own (if any) rules. This was making the code

harder to read and has forced project managers to introduce written rules.

Later, the best coding conventions gained popularity and have become a de

facto standard.

Microsoft provides an official coding convention called .NET Framework

Guidelines and Best Practices for .NET 4.5 (http://msdn.microsoft.com/en-

us/library/ms184412.aspx).

Since then, this coding convention has gained significant popularity and has

become very widespread. The naming and formatting rules presented here

are in sync with the above convention from Microsoft.

Large organizations adhere to strict conventions. Among separate teams,

conventions may differ, however. Most team leaders choose to stick with the

official convention of Microsoft, and they eventually extend it when necessary.

Code quality is not just a set of rules, which must be adhered

to; it is rather a way of thinking.

http://msdn.microsoft.com/en-us/library/ms184412.aspx
http://msdn.microsoft.com/en-us/library/ms184412.aspx

www.manaraa.com

Chapter 21. High-Quality Programming Code 857

Managing Complexity

The management of complexity plays a central role when writing software.

The main objective is to reduce the complexity that each member has to

deal with at a certain moment. This way the brain of each of the members is

burdened with less stuff to think about.

The complexity management starts from the architecture and the design.

Each and every module (or rather, each autonomous code unit) should be

designed with reducing complexity in mind.

Good practices should be applied at all levels – classes, methods, member

variables, naming, operators, error handling, formatting, comments, etc. They

transform a lot of the decisions about the code in a strictly-defined set of

rules, which enables a developer to think about one thing less while reading

and writing code.

The complexity management can be approached in another way: it is

especially helpful for a developer to be able to abstract himself away from

the big picture while writing a small piece of code. For that to be

possible, the piece of code should have very clear boundaries, which are in-

tact with the big picture. The old Roman rule “Divide and conquer” still applies

when complexity is concerned.

The rules we are talking about later on are directed exactly towards

eliminating complexity while working on a single, small piece of the system.

Identifier Naming

Identifiers are the names of classes, interfaces, structures, enumerations,

properties, methods, parameters and variables. In C# and in many other

languages, names are chosen by the developer. Names should not be

random. They should be composed in such a way that they carry meaningful

information about their purpose and their role in the code. This makes the

code easier to read.

When naming an identifier, it is good to ask yourself these questions: What

does this class do? What is the purpose of this variable? What is that method

being used for? What information does this parameter hold?

Some good names are: FactorialCalculator, studentsCount, Math.PI,

configFileName, CreateReport.

Some bad names are: k, k2, k3, junk, f33, KJJ, button1, variable, temp,

tmp, temp_var, something, someValue.

It is especially bad to have a class or a method called Problem12. Some

beginner programmers would give such a name to their solution of Problem

12 from the exercises. What will the name Problem12 tell you in a week or a

month? If the problem is about finding a path in a labyrinth, name it

PathInLabyrinth. Three months later you may encounter a similar problem

and you will be able to find the labyrinth problem. How would you find it if you

www.manaraa.com

858 Fundamentals of Computer Programming with C#

have named it inappropriately? Do not give a name that contains digits – this

is an indication for bad naming.

The name of an identifier should describe its purpose. The

solution of problem 12 from the exercises should NOT be

called Problem12. That is a huge mistake!

Avoid Abbreviations

Abbreviations should be avoided because they can be confusing. What does

the class name GrBxPnl tell you? Isn’t GroupBoxPanel clearer? Exceptions are

made for acronyms, which are more popular than their full form, for example

HTML or URL. In that sense, HTMLParser is recommended over the excessive

long name HyperTextMarkupLanguageParser.

Use English

One of the most basic rules is to always use English. Would you be able to

understand the code of a foreigner who names variables and methods in his

own language? The one and only human language, which all programmers

should know, is English.

English is a de facto standard in writing software. Always use

English for naming the identifiers in the code (variables,

methods, classes, etc.). Use English for comments as well.

Let’s see how we pick appropriate identifiers in different cases.

Consistency in Naming

Naming should be consistent. What does this mean?

In a group of methods called LoadFile(), LoadSettings(), LoadFont(),

LoadImageFromFile() and LoadLibrary() it is inappropriate to have a

method ReadTextFile(). The word Read is not consistent with Load.

Opposite activities should be symmetrically named (you should be able to

guess the name of the opposite activity just by knowing the complementing

one): LoadLibrary() goes with UnloadLibrary(), but does not go with

FreeHandle(). OpenFile() goes with CloseFile(), but does not go with

DeallocateResource(). It is unnatural to have AssignName next to a

GetName / SetName pair.

Notice that in .NET Framework class library, big groups of classes have

consistent naming: collections (the namespace and all classes use the

words like Collection and List, and never their synonyms), streams are

always Streams, etc.

www.manaraa.com

Chapter 21. High-Quality Programming Code 859

Use consistent names: use the same words for the same

situations, do not use synonyms. Name opposite things

symmetrically.

Names of Classes, Interfaces and Other Types

From the chapter “Principles of Object-Oriented Programming” we know that

classes describe real-world objects. Class names should consist of a noun

(denominative or substantive) and possibly a number of adjectives (before

or after the noun). For example, a class describing an African lion should be

called AfricanLion.

The recommended casing of the letters (small / capital letters) for naming

types in C# is Pascal Case: the first letter of every word in the name is

always uppercase and the rest of the letters are lowercase. This way it is

easier to read the identifier’s name (compare the lowercase name

idatagridcolumnstyleeditingnotificationservice to its Pascal Case

version IDataGridColumnStyleEditingNotificationService). The latter is

the public class with probably the longest name in the .NET Framework (46

characters, from System.Windows.Forms).

Let’s give a few more examples. We are to write a class, which finds the

prime numbers in a given range. A good name for that class is PrimeNumbers

or PrimeNumbersFinder, or maybe PrimeNumbersScanner. Bad names

would be FindPrimeNumber (a verb should not be used in the name of a

class) or Numbers (it is not clear what the numbers are and what we are doing

with them) or Prime (a class name should not be an adjective).

How Long Should Class Names Be?

In the common case, class names should not exceed 20 characters, but

sometimes this rule is not adhered to if a real-world object is described which

contains numerous longer words. As we saw above, it is possible to have a

class with a name that is 46 characters long. Although the name is long, it is

very clear what this class does. Because of this, the recommendation for class

names being less than 20 characters is only advisory, not mandatory. If you

are about to choose between a class name that is short and clear and another

one which is longer and as clear as the short one, prefer the short name.

A bad advice would be to abbreviate names in order to keep them short. Are

the following class names clear enough: CustSuppNotifSrvc, FNFException?

Obviously they are not easy readable. Names like FileNotFoundException

and CustomerSupportNotificationService are much clearer, although

being longer.

Naming Interfaces and Other Types

Interface names should follow the same convention as class names: they

are written in Pascal Case and consist of a noun and possibly a few

www.manaraa.com

860 Fundamentals of Computer Programming with C#

adjectives. In order to distinguish them from the rest of the types, the

convention suggests prefixing them with an “I”.

Some good examples are: IEnumerable, IFormattable, IDataReader,

IList, IHttpModule, ICommandExecutor.

Bad examples would be: List, FindUsers, IFast, IMemoryOptimize,

Optimizer, FastFindInDatabase, CheckBox.

In .NET there is one more notation for naming interfaces: naming them so

that they end in "able": ICloneable, IEnumerable, IFormattable. These

are interfaces that most often augment the basic role of an object. Most

interfaces, however, do not follow this notation, such as the IList and

ICollection interfaces.

Names of Enumeration Types

A few formats are allowed for naming enumerations: [Noun] or [Verb] or

[Adjective]. Names can be in singular or plural form. Every member of an

enumerated type should be named in the same manner. The below examples

show correctly named enumerations:

enum Days
{
 Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
};

enum Color
{
 Black, Red, Green, Blue, Yellow, Orange, Pink, Gray, White
};

Attribute Names

Attribute names in C# should be suffixed with Attribute. For example:

WebServiceAttribute. Attributes are special annotations (metadata) for a

class / method or other piece of code which specify a special instruction for

the compiler or the runtime. For more information see the documentation in

MSDN: http://msdn.microsoft.com/en-us/library/z0w1kczw(v=vs.110).aspx.

Exception Names

The convention for naming exception classes suggests that exceptions end

with Exception. The name should be informative and Pascal case should be

used just like when naming classes. A good example of correctly named

exception class would be FileNotFoundException. A bad example for

exception class is FileNotFoundError.

http://msdn.microsoft.com/en-us/library/z0w1kczw(v=vs.110).aspx

www.manaraa.com

Chapter 21. High-Quality Programming Code 861

Delegate Names

Delegates in C# and .NET Framework should be suffixed with Delegate or

EventHandler. Thus DownloadFinishedDelegate would be a good example

while WakeUpNotification would not adhere to the convention. A delegate

is a data type which holds a reference to method with compatible signature.

For more information about delegates see the official documentation in MSDN:

http://msdn.microsoft.com/en-us/library/ms173171(v=vs.110).aspx.

Naming Namespaces

Namespaces, covered in details in the “Creating and Using Objects” chapter,

should use Pascal Case like class names. The following forms are preferable:

- Company.Product.Component…

- Product.Component…

Good example for naming a namespace is: Telerik.WinControls.GridView.

Bad examples for naming namespaces are: Classes, TELERIK.CONSTANTS

and Telerik_WinControlsGridView.

Assembly Names

Assembly names should match the name of the base namespace which

they hold. Good examples of correctly named assemblies are:

- Telerik.WinControls.GridView.dll

- Oracle.DataAccess.dll

- Interop.CAPICOM.dll

Improper (bad) assembly names are the following:

- Telerik_WinControlsGridView.dll

- OracleDataAccess.dll

- Oracle.dll

Method Names

Method names should be PascalCase, e.g. each separate word starts with an

uppercase letter.

Method names should be constructed according to the following pattern:

<verb> + <object>, for example PrintReport(), LoadSettings() or

SetUserName(). The object can be a noun or a noun and an adjective:

ShowAnswer(), ConnectToRandomTorrentServer() or FindMaxValue().

A method name should address what that method does. If you are not able

to come up with a good name, you most probably have to review the method

itself and whether it is decently written.

http://msdn.microsoft.com/en-us/library/ms173171(v=vs.110).aspx

www.manaraa.com

862 Fundamentals of Computer Programming with C#

Some bad examples for method names are: DoWork() (what kind of work?),

Printer() (no verb), Find2() (why not Find7() then?), ChkErr()

(abbreviations are not recommended), NextPosition() (no verb).

Sometimes a single verb is a good name for a method, as long as it becomes

clear what the particular method does and what objects it operates on. For

example, within a Task class, the methods Start(), Stop() and Cancel()

are well-named because it is clear that they start, stop or cancel a task. In

other cases a single verb is inappropriate. For example, within an Utils class,

methods called Evaluate(), Create() and Stop() are inadequate because

the context is not entirely clear.

Methods that Return a Value

Names of methods that return a value should describe the returned value

in some way, e.g. GetNumberOfProcessors(), FindMinPath(), GetPrice(),

GetRowsCount(), CreateNewInstance().

Bad examples for names of methods that return a value are the following:

ShowReport() (it is not clear what the method returns), Value() (should be

either GetValue() or HasValue()), Student() (no verb), Empty() (should be

IsEmpty()).

Whenever a value is returned, the measuring unit should be clear:

MeasureFontInPixels(…), instead of MeasureFont(…).

Single Purpose of a Method

A method that does more than one thing is hard to be appropriately named:

how would you call a method that does an annual income report, downloads

software updates from the web and scans the system for viruses? Maybe

CreateAnnualIncomesReportDownloadUpdatesAndScanForViruses?

Methods should have one purpose only, solving only one

task, not multiple tasks at the same time!

Methods solving multiple tasks (weak cohesion) cannot and should not be

named properly. They must be refactored.

Cohesion and Naming

A name should describe everything that the method does. If a suitable

name cannot be found, it most probably means that the cohesion is weak, i.e.

the method does many things and should be split up into separate methods.

Here is an example: we have a method that sends an e-mail, prints a report

and calculates the distance between two points in 3D Euclidean space. How

would you call it? Maybe SendEmailAndPrintReportAndCalc3DDistance()?

It is obvious that something is wrong with this method – we should

refactor it instead of striving to find a better name. It is even worse if that

method is simply called SendEmail(). This way we are misleading other

www.manaraa.com

Chapter 21. High-Quality Programming Code 863

programmers that this method only sends email, while in reality it does many

other things. The last is very, very bad practice.

Naming a method misleadingly is even worse than naming it

method1(). If a method calculates a cosine and we name it

sqrt(), we will likely enrage other colleagues that are willing

to use our code.

How Long Should Method Names Be?

The same recommendations apply here as for classes – you should not

abbreviate unless it is clear. The names should be meaningful and this is

more important than its length. If the method name is too long (e.g. more

than 50 characters), check whether it does a single task.

Good method names are: LoadCustomerSupportNotificationService(),

Math.Sqrt(), CreateMonthlyAndAnnualIncomesReport().

Bad method names are LoadCustSuppSrvc(), CreateMonthIncReport().

Method Parameters

Parameters should be named in the following form: [Noun] or [Adjective]

+ [Noun]. Every word of the name should start with an uppercase letter,

except for the first word. This notation is called camelCase. As with any other

code element, parameter naming should be meaningful and should carry

useful information.

Good examples of parameter names are the following: firstName, report,

fontSizeInPixels, speedKmH, font, usersList.

Bad examples of parameter names are: p, p1, p2, populate, LastName,

last_name, convertImage.

Property Names

Property names start with an uppercase letter (PascalCase, like methods),

but do not contain a verb (like variables). A property name consists of an

[Adjective] + [Noun] or just [Noun].

In the presence of a property called X, it is not a good practice to have a

method called GetX() – it will be confusing.

If the property is of type enumeration, you could think about naming the

property like the enumeration type itself. In the presence of an enumeration

called CacheLevel, the property would as well be called CacheLevel.

Using the same name for the property and its type is allowed and is usual

in .NET Framework class library. For example the property Cursor of the class

Button in Windows Forms is of type Cursor.

www.manaraa.com

864 Fundamentals of Computer Programming with C#

Variable Names

Variable names (local variables in a method) and member-variables (fields in

a class) should adhere to the camelCase notation, according to Microsoft.

Variables should have a good name, as all other identifiers in the code

should. A good variable name clearly and precisely describes the object that

the variable holds. Good variable names are: account, blockSize and

customerDiscount. Bad names are: r18pq, __hip, rcfd, val1, val2.

A name should address the problem that the variable solves. It should

answer the question “What?”, not “How?”. In this sense, good names are

employeeSalary, employees. Bad names are the ones that are irrelevant to

the solved problem: myArray, customerFile, customerHashTable.

Prefer names from the business domain in which the

software operates, not from the technical names that come

from the programming language: use CompanyNames rather

than StringArray.

The optimal length of a variable name is from 10 to 16 characters. The

length of the name depends on the scope – variables with wider scope and a

longer lifetime should have a more descriptive name:

protected Account[] customerAccounts;

Variables with a narrower scope and a shorter lifetime could have shorter

length:

for (int i=0; i < customers.Length; i++) { … }

Variable names should be instantly understandable. Because of this it is not

a good idea to remove vowels from the name in order to abbreviate it –

btnDfltSvRzlts is not quite understandable.

The most important thing is: whatever naming rules are chosen for variables,

they should be applied consistently throughout the code – in all the modules

of the project and by the whole team. An inconsistently applied rule is worse

than not having a rule at all.

Names of Boolean Identifiers

Parameters, properties and variables can be of a Boolean type. In this point

we describe the specifics of these identifiers.

Their names should be a prerequisite for either truth or falsehood. For

example, names like canRead, available, isOpen and valid are good.

Examples of inadequate names for Boolean variables are: student, read,

reader.

www.manaraa.com

Chapter 21. High-Quality Programming Code 865

It would be useful if Boolean identifiers start with is, has or can (with an

uppercase letter for properties), but only if this adds for clarity.

Negated names should not be used (avoid prefixing with “not”), because the

following oddities may occur:

if (! notFound) { … }

Good examples: configFileLoaded, hasPendingPayment, customerFound,

validAddress, positiveBalance, isPrime.

Bad examples: notFound, fsafdashghg, run, programStop, player, list,

findCustomerById, isUnsuccessfull.

Named Constants

Like we already know from the chapter “Defining Classes” constants in C# are

something like static immutable variables and are defined as follows:

public struct Int32
{
 public const int MaxValue = 2147483647;
}

Names of constants should be written in Pascal Case or entirely in

uppercase, with underscores between words (ALL_CAPS):

public static class Math
{
 public const double PI = 3.14159265359;
 public const double GoldenRatio = 1.61803398875;
}

Named constants should clearly describe what the purpose of the

particular number, string or whatever value is, rather than the value itself. A

constant named number314159 is useless and confusing.

The official recommendation from Microsoft for naming the constants (const

and readonly identifiers) is to use Pascal Case but some developers prefer

the ALL_CAPS style which is widely used in C++ and Java.

Naming of Specific Data Types

Names of variables used as counters are recommended to contain a word

that specifies that, for example usersCount, rolesCount, filesCount.

Variables that represent the state of an object should be named accordingly.

A few examples: threadState, transactionState.

www.manaraa.com

866 Fundamentals of Computer Programming with C#

Temporary variables should most often have common and short names,

which make obvious that they are temporary, with a very short lifetime. Good

examples are index, oldValue, count. Inappropriate names are a, aa,

tmpvar1, tmpvar2. Although using names like tmp and temp is acceptable it is

better to choose more meaningful name like oldValue and lastIndex.

Naming by Prefixing or Suffixing

Prefix and suffix naming conventions do exist in older languages such as C.

A very popular notation during many years has been the Hungarian

notation. Hungarian notation is a prefix naming notation in which every

variable comes with a prefix that indicates its type and purpose. For example,

in Win32 API, the name lpcstrUserName would mean a variable that is a

pointer to an array of characters, which ends in 0, and is interpreted as a

non-Unicode string.

In C#, .NET Framework, Java and all modern programming languages, similar

conventions have never gained popularity because the development

environments are able to show the type of any variable. Do not use

Hungarian notation in C#! Exceptions are made by some graphics libraries,

to a certain extent.

Code Formatting

Formatting, along with naming is one of the most basic prerequisites for

readable code. Without proper formatting, the code is not going to be

readable, whatever rules for naming and code structuring are chosen.

Formatting has two objectives: easier to read code, and, as a consequence

– code that is easy to maintain. Formatting that makes the code harder to

read is not good. Every aspect of formatting (indentation, empty lines,

alignment, etc.) can provide benefits as well as cause harm. Formatting

should follow the logical structure of the program so that the logical

understanding is supported.

The formatting of a program should represent its logical

structure. All formatting rules are introduced towards

improving code readability by exposing its logical structure.

In Visual Studio, the code can be automatically formatted with the [Ctrl+K,

Ctrl+F] key combination. Different standards can be applied whenever auto

formatting is performed – the Microsoft conventions as well as user-defined

standards are available. Try it yourself: select a piece of code and press

[Ctrl+K] followed by [Ctrl+F].

Now we are going to review the formatting rules according to the coding

convention of Microsoft for C#.

www.manaraa.com

Chapter 21. High-Quality Programming Code 867

Why Does Code Need Formatting?

First let’s look at the below example:

public const string FILE_NAME
="example.bin" ; static void Main (){
FileStream fs= new FileStream(FILE_NAME,FileMode
. CreateNew) // Create the writer for data .
;BinaryWriter w=new BinaryWriter (fs);//
Write data to Test.data.
for(int i=0;i<11;i++){w.Write((int)i);}w .Close();
fs . Close () // Create the reader for data.
;fs=new FileStream(FILE_NAME,FileMode. Open
, FileAccess.Read) ;BinaryReader r
= new BinaryReader(fs); // Read data from Test.data.
for (int i = 0; i < 11; i++){ Console .WriteLine
(r.ReadInt32 ())
;}r . Close (); fs . Close () ; }

Is that enough as an answer?

Block Formatting

Blocks are surrounded by “{” and “}”. In C# they should be on separate

lines (unlike in Java and JavaScript). The contents of the block should be

indented to the right by a single tab:

if (some condition)
{
 // Block contents indented by a single [Tab]
 // Don't use spaces for indentation
}

This rule applies for namespaces, classes, methods, conditional statements,

loops, etc.

Nested blocks are indented additionally. The body of the class here is

indented relative to the body of the namespace, and the body of the method

is indented additionally, as well as the conditional statement:

namespace Chapter_21_Quality_Code
{
 public class IndentationExample
 {
 private int Zero()
 {
 if (true)

www.manaraa.com

868 Fundamentals of Computer Programming with C#

 {
 return 0;
 }
 }
 }
}

Rules for Formatting a Method

According to the Microsoft’s coding convention, some formatting rules when

declaring methods should be adhered to.

Formatting Multiple Method Declarations

Whenever a class has more than one method, their declarations should be

separated by an empty line:

IndentationExample.cs

public class IndentationExample
{

 public static void FirstMethod()
 {
 // …
 } // One blank line follows

 public static void SecondMethod()
 {
 // …
 }
}

How to Put Parentheses?

The Microsoft coding convention suggests that a space should be put

between a keyword (for, while, if, switch) and an opening parenthesis:

while (!EOF)
{
 // … Code …
}

This is made for the keywords to stand out.

Next to a method name and before an opening parenthesis, no whitespace

should be present:

www.manaraa.com

Chapter 21. High-Quality Programming Code 869

public void CalculateCircumference(int radius)
{
 return 2 * Math.PI * radius;
}

In this line of thought, between the name of the method and the opening

parenthesis "(" there should not be any whitespace (spaces, tabs etc.):

public static void PrintLogo()
{
 // … Code …
}

Formatting the Parameter List of Methods: Space after Commas

When a method has many parameters, we should put a space between the

previous comma and the type of the next parameter, but not before the

comma:

public void CalcDistance(Point startPoint, Point endPoint)

Similarly, the same rule is applied when calling a method with more than one

parameter. Before the arguments preceded by a comma, a space should be

put:

DoSmth(1, 2, 3);

Rules for Formatting of Types

When classes, interfaces, structures and enumerations are created, a few

recommendations should be followed for formatting the code inside.

Rules for Ordering the Contents of a Class

As we know, the class name is declared on the first line, preceded by the

class keyword:

public class Dog
{

Constants follow next. They should be ordered according to their access

modifier – public constants are first, then protected and then private:

 // Static variables
 public const string SPECIES = "Canis Lupus Familiaris";

www.manaraa.com

870 Fundamentals of Computer Programming with C#

Then follow the non-static fields. Like static fields, those labeled public are

first, then protected and finally private fields follow:

 // Instance variables
 private int age;

After non-static class fields, constructor declarations follow:

 // Constructors
 public Dog(string name, int age)
 {
 this.Name = name;
 this.age = age;
 }

After the constructors, properties are declared:

 // Properties
 public string Name { get; set; }

Finally, after the properties, the methods are declared. It is recommended

that methods are grouped by functionality, not by access level or scope. For

example, a method with a private access modifier could easily be between

two methods with a public modifier in order to make reading and

understanding the code easier. We end by putting a curly bracket for the end

of the class:

 // Methods
 public void Breath()
 {
 // TODO: breathing process
 }

 public void Bark()
 {
 Console.WriteLine("wow-wow");
 }
}

Formatting Rules for Loops and Conditional

Statements

Formatting of loops and conditional statements follows the same rules as

methods and classes. The body of a conditional statement or a loop is always

put in a block beginning with “{” and ending with “}”. The opening bracket is

always on a new line, immediately after the condition of the loop or the

www.manaraa.com

Chapter 21. High-Quality Programming Code 871

conditional statement. The body of a loop or a conditional statement is always

indented to the right by a single tabulation. If the condition is long and does

not fit at a single line, it is carried over on a new line and then indented to the

right by two tabs. Here is an example of a correctly formatted loop and a

conditional statement:

static void Main()
{
 Dictionary<int, string> bulgarianNumbersHashtable =
 new Dictionary<int, string>();
 bulgarianNumbersHashtable.Add(1, "one");
 bulgarianNumbersHashtable.Add(2, "two");
 bulgarianNumbersHashtable.Add(3, "three");

 foreach (KeyValuePair<int, string> pair in
 bulgarianNumbersHashtable.ToArray())
 {
 Console.WriteLine("Pair: [{0},{1}]", pair.Key, pair.Value);
 }
}

It is especially wrong to indent the body of a loop or a conditional statement

as follows:

foreach (Student s in students) {
 Console.WriteLine(s.Name);
 Console.WriteLine(s.Age);
}

Usage of Empty Lines

It is very common for beginner programmers to insert empty lines in a

chaotic manner. Really, when new lines do not harm, why shouldn’t we put

them wherever we want and why should we remove them since they do not

affect the meaning of the code? The reason is very simple: empty lines are

used for separating parts of the program, which are not logically

connected, much like new lines separate the end and the beginning of two

paragraphs.

Empty lines are used to separate two methods, to separate a group of

member-variables from another group of member-variables with a different

logical task, for separating a group of related statements from another group

of related statements.

Here is a bad example of two methods in which empty lines are used

inappropriately and that hinders code readability:

www.manaraa.com

872 Fundamentals of Computer Programming with C#

public static void PrintList(IList<int> list)
{
 Console.Write("{ ");
 foreach (int item in list)
 {
 Console.Write(item);

 Console.Write(" ");

 }
 Console.WriteLine("}");
}
static void Main()
{
 IList<int> firstList = new List<int>();
 firstList.Add(1);

 firstList.Add(2);
 firstList.Add(3);
 firstList.Add(4);
 firstList.Add(5);
 Console.Write("firstList = ");
 PrintList(firstList);
 List<int> secondList = new List<int>();
 secondList.Add(2);

 secondList.Add(4);
 secondList.Add(6);
 Console.Write("secondList = ");
 PrintList(secondList);
 List<int> unionList = new List<int>();
 unionList.AddRange(firstList);
 Console.Write("union = ");

 PrintList(unionList);
}

You see that the empty lines do not represent the logical structure of the

program, and that is why they break the main rule in formatting.

If we reformat the program so that empty lines are properly used to

separate logically related groups of statements, we will come up with much

more readable code:

www.manaraa.com

Chapter 21. High-Quality Programming Code 873

public static void PrintList(IList<int> list)
{
 Console.Write("{ ");
 foreach (int item in list)
 {
 Console.Write(item);
 Console.Write(" ");
 }
 Console.WriteLine("}");
}

static void Main()
{
 IList<int> firstList = new List<int>();
 firstList.Add(1);
 firstList.Add(2);
 firstList.Add(3);
 firstList.Add(4);
 Console.Write("firstList = ");
 PrintList(firstList);

 List<int> secondList = new List<int>();
 secondList.Add(2);
 secondList.Add(4);
 secondList.Add(6);
 Console.Write("secondList = ");
 PrintList(secondList);

 List<int> unionList = new List<int>();
 unionList.AddRange(firstList);
 Console.Write("union = ");
 PrintList(unionList);
}

Rules for Moving to the Next Line and Alignment

When a line is longer, split it up into two or more lines and indent the lines

after the first one by a single tab:

Dictionary<int, string> egyptianNumbersHashtable =
 new Dictionary<int, string>();

It is wrong to align similar statements according to the longest of them,

since that can obstruct the maintenance of the code:

www.manaraa.com

874 Fundamentals of Computer Programming with C#

DateTime date = DateTime.Now.Date;
int count = 0;
Student student = new Strudent();
List<Student> students = new List<Student>();

Or

matrix[x, y] == 0;
matrix[x + 1, y + 1] == 0;
matrix[2 * x + y, 2 * y + x] == 0;
matrix[x * y, x * y] == 0;

It is wrong to align arguments to the right, based on the opening parenthesis

of a method call:

Console.WriteLine("word '{0}' is seen {1} times in the text",
 wordEntry.Key,
 wordEntry.Value);

The above code should be properly formatted as follows (this is not the only

proper way, though):

Console.WriteLine(
 "word '{0}' is seen {1} times in the text",
 wordEntry.Key,
 wordEntry.Value);

High-Quality Classes

Let’s now discuss the classes and the best practices about using efficiently

classes when writing high-quality code.

Software Design

When a system is designed, separate subtasks are often divided into

separate modules or subsystems. The task that each one solves must be

clearly defined. The relationships between the modules should be decided in

advance, not on the go.

In the previous chapter we explained OOP and we showed how object-

oriented modeling can be used to define classes of the real actors in the

domain of the solved problem. We mentioned design patterns as well.

Good software design has minimal complexity and is easy to understand.

It is maintained easily and changes are incorporated straightforwardly (see

the "Spaghetti Code" section in the previous chapter). Every program element

(method, class, module) is logically connected internally (strong cohesion),

www.manaraa.com

Chapter 21. High-Quality Programming Code 875

functionally-independent and minimally tied to the other modules (loose

coupling). Well-designed code is easily reused.

Object-Oriented Programming (OOP)

When creating quality classes, the main rules stem from the four main OO

principles: abstraction, inheritance, encapsulation and polymorphism.

Abstraction

A few basic rules:

- Public properties of a class should have the same level of abstraction.

- The interface of a class should be simple and clear.

- A class should describe only one thing.

- A class should hide its internal implementation.

Code is developed and changes and evolves over time. In spite of the

evolution of classes, their interfaces should remain in-tact. A bad practice of

a class having inconsistent interface is shown below:

class Employee
{
 public string firstName;
 public string lastName;
 …
 public SqlCommand FindByPrimaryKeySqlCommand(int id);
}

The latter method is incompatible with the level of abstraction at which

Employee works. The user of this class should not be aware at all that a

database is used internally.

Inheritance

Do not hide methods in derived classes:

public class Timer
{
 public void Start() { … }
}

public class AtomTimer : Timer
{
 public void Start() { … }
}

www.manaraa.com

876 Fundamentals of Computer Programming with C#

The method in the derived class hides the base (original) implementation.

This is not recommended. If, in a rare case, this is desired and necessary,

the keyword new should be used.

Move common methods, data and behavior as high as possible in the

inheritance tree. This way, functionality is less likely to be duplicated and will

be accessible to a wider audience.

If you have a class with a single successor only, consider this suspicious.

That level of abstraction is probably unnecessary. A suspicious method would

be one that re-implements a base method, but does nothing more than the

corresponding base method.

Deep inheritance with more than 6 levels is hard for tracing, debugging and

maintaining, and is not recommended. In a derived class, use member-

variables through properties, rather than directly.

The example below demonstrates wrongly written code when inheritance

should be preferred over type checking:

switch (shape.Type)
{
 case Shape.Circle:
 shape.DrawCircle();
 break;
 case Shape.Square:
 shape.DrawSquare();
 break;
 …

}

It would make more sense if Shape was inherited by Circle and Square,

which implement the virtual method Shape.Draw().

Encapsulation

A good approach is to make all members private. Only those of them that

should be visible from outside could be marked protected, or eventually

public.

Implementation details should be hidden. The user of a high-quality class

should not be aware of its inner-workings; he should only know what it does

and how it is used.

Member-variables (fields) should be hidden behind properties. Public

member-variables are a manifestation of low-quality code. Constants are an

exception in this regard.

The public members of a class should be consistent with the abstraction

represented by this class. Do not make assumptions about the usage scenario

of a class.

www.manaraa.com

Chapter 21. High-Quality Programming Code 877

Do not rely on undocumented, internal implementation logic.

Constructors

It is preferred that all class members are initialized in the constructor.

Usage of an uninitialized class is dangerous. A half-initialized class is maybe

even more dangerous. Initialize member-variables in the same order as they

are declared.

Deep and Shallow Copy

When we assign values sometime we need to copy an object (make a

duplicate). This can be done in two ways: deep copy or shallow copy.

Deep copies of an object are copies in which all member-variables are

copied, and their member-variables also, and so on, until no other member-

variables refer to objects. In a shallow copy, only the members at the first

level are copied. Example of deep copied object and its members:

Shallow copies work differently. When a shallow copy is created, the original

object and its copy share some of their members:

Original John 14yold

Irene 5yold

Barack 48yold

Copy

www.manaraa.com

878 Fundamentals of Computer Programming with C#

Shallow copies are dangerous because a change in one object leads to

indirect changes in others. Notice how the change of Iren’s age in the original

does not affect the age of Iren in the copy when we use deep copies. With

shallow copies, the change will be reflected in both places.

High-Quality Methods

The quality of our methods is of significant importance to creating high-quality

software and its maintenance. They contribute to more readable and more

comprehensible programs. Methods do help us reduce the complexity of

our software, in order to make it more flexible and easier to modify.

It is up to us, to what extent we will benefit from these advantages. The

higher the quality of our methods, the more we gain from their usage. In the

next paragraphs we are introducing some of the basic principles for creating

quality methods.

Why Should We Use Methods?

Before talking about good method names, let’s spend some time and

summarize the reasons for using methods.

A method solves a small problem. Many individual methods solve many

small problems. Taken together, they solve a bigger problem – this is an

illustration of the old Roman principle “Divide and conquer”, which, in this

case allows us to tackle smaller problems more easily.

With methods, the overall complexity of a task is reduced: complex

problems are being split up into simpler ones, additional layers of abstraction

are added, implementation details are hidden, and the risk of failure is

lowered. Code duplication is avoided as well. Complex sequences of

actions are hidden.

Since methods are the smallest reusable unit of code, their biggest advantage

is the ability they give us to reuse code. In fact, that’s exactly how methods

emerged.

What Should a Method Do?

A method should do the work described by its name, and nothing more.

If a method does not do what its name suggests, then either its name is

wrong, or it does many things at the same time, or the method simply is

incorrectly implemented. In any of these three cases, the method does not

meet the requirements for code quality and should be refactored accordingly.

A method should either do its expected job, or should inform for an error

and terminate. In .NET, informing for errors is done by throwing an

exception. In case of invalid input, it is unacceptable for a method to return

a wrong result. Instead, the method should inform the caller that it cannot do

its job because the necessary preconditions are not met (such as invalid

parameters being supplied, or an unexpected internal object state, etc.).

www.manaraa.com

Chapter 21. High-Quality Programming Code 879

For example, suppose we have a method for reading the contents of a file. It

should be called ReadFileContents() and should return byte[] or string,

depending on whether we are treating the contents as binary or text. If the

file does not exist or cannot be opened for whatever reason, the method

should throw an exception rather than return an empty string or null.

Returning a neutral value (such as null) instead of an error message is

generally not recommended, except in cases where that value does not

collide with an error condition, such as a Find() method returning null

because nothing was found. Otherwise, the caller loses its ability to handle

the error, and the cause of the error is lost because of the lack of a richly

informative exception.

A public method should either correctly accomplish exactly

what its name suggests, or should inform the caller for an

error by throwing an exception.

Any other behavior is incorrect!

The above rule has some exceptions when private methods are concerned.

Unlike public methods, which should either work correctly or throw an

exception, a compromise can be made for private methods. Since only the

author of the class is supposed to call them, he should be aware of the

validity of the passed arguments. Therefore, error conditions need not be

handled because they can be predicted and prevented in the first place. But

do not forget – this is still a compromise.

Two examples of high-quality methods:

long Sum(int[] elements)
{
 long sum = 0;
 foreach (int element in elements)
 {
 sum = sum + element;
 }
 return sum;
}

double CalcTriangleArea(double a, double b, double c)
{
 if (a <= 0 || b <= 0 || c <= 0)
 {
 throw new ArgumentException("Sides should be positive.");
 }
 double s = (a + b + c) / 2;
 double area = Math.Sqrt(s * (s - a) * (s - b) * (s - c));
 return area;

www.manaraa.com

880 Fundamentals of Computer Programming with C#

}

Strong Cohesion and Loose Coupling

The rules regarding the logical relatedness of the responsibilities (strong

cohesion) and the functional independence through a minimal amount of

interaction with other methods and classes (loose coupling) are of a major

importance when methods are concerned.

As we already explained, a method should solve only one problem, not

many. A method should not solve numerous unrelated problems and should

not have side effects. Otherwise, coming up with a precise and descriptive

name is hard. This means that all of our methods should have strong

cohesion, i.e. be concerned towards solving a single problem.

Methods should depend as little as possible on the rest of the methods in their

class and on the methods / properties / fields in other classes. This concept is

called loose coupling.

In the best-case scenario, a method should depend only on its parameters

and not use any other data as its input or output. Such methods can be easily

pulled out and reused in another project, because they are unbound to

the environment in which they execute.

Sometimes methods depend on private variables declared within their class,

or they alter the state of the object they belong to. This is not wrong and is

entirely OK. In such a case we are talking about coupling between the

method and its class. Such coupling is not problematic because the class

and its internal data and logic are encapsulated: the whole class can still be

moved into another project and reused without any modifications.

Most of the classes from .NET Common Type System (CTS) and .NET

Framework define methods that depend only on the data within their class

and the passed arguments. In standard libraries, the methods dependencies

from external classes are minimal and that is why they are easy to reuse.

The .NET Framework class library strongly follows the idea of loose coupling.

Whenever a method reads or modifies global data and depends on 10

additional objects, which must be initialized within the instance of its own

class, it is considered a coupled to its environment and to all of these

objects. This means that it functions in an overly complex way and is affected

by too many external conditions, therefore the probability for an error is high.

Methods that depend on too many external conditions are hard to read,

understand and maintain. Strong functional coupling is bad and should

be avoided as much as possible, because it often leads to spaghetti code.

Look at the same two methods like at our previous example. They are slightly

modified and no longer fulfill the requirements of loose coupling and strong

cohesion. Do you spot errors?

www.manaraa.com

Chapter 21. High-Quality Programming Code 881

long Sum(int[] elements)
{
 long sum = 0;
 for (int i = 0; i < elements.Length; i++)
 {
 sum = sum + elements[i];
 elements[i] = 0; // Hidden side effect
 }
 return sum;
}

double CalcTriangleArea(double a, double b, double c)
{
 if (a <= 0 || b <= 0 || c <= 0)
 {
 return 0; // Incorrect result
 }
 double s = (a + b + c) / 2;
 double area = Math.Sqrt(s * (s - a) * (s - b) * (s - c));
 return area;
}

How Long Should a Method Be?

Throughout the years, research has been done regarding the optimal length of

methods, but after all, a universal formula has not been found.

The practice shows that, in general, shorter methods (not longer than a

single screen) should be preferred. Such methods are visible on the screen

without scrolling and this simplifies their reading and understanding and the

probability for making mistakes.

The longer a method, the more complex it becomes. Consequent modifica-

tions become considerably harder and more time-consuming than with shorter

methods. These factors lead towards errors and harder maintenance.

The recommended length of a method is not more than a single screen, but

this recommendation is only advisory. If a method fits on the screen, it is

easier to read because scrolling is not needed. If a method is longer than one

screen, we should think whether we can split it up into a few simpler

methods. Since splitting is not always possible to be done in a meaningful

way, the recommendation about method length is only advisory.

Although longer methods are not preferred, the latter should not be an

absolute excuse for splitting up a method only to make it shorter. Methods

should be as long as necessary.

www.manaraa.com

882 Fundamentals of Computer Programming with C#

Strong cohesion of methods is much more important than

their length.

If we are implementing a complex algorithm and consequently come up with a

longer, meaningful method, which does one thing and does it well, the length

is not a problem.

In any case, we should at least consider splitting up a longer method into

smaller methods solving particular subtasks, whenever the method becomes

too long.

Method Parameters

One of the basic rules for ordering method parameters is that the primary

one(s) should precede the rest. For example:

public void Archive(PersonData person, bool persistent) { … }

The opposite would be much more confusing:

public void Archive(bool persistent, PersonData person) { … }

Another rule is to have meaningful parameter names. A common mistake

is to tie the parameter names to their type:

public void Archive(PersonData personData) { … }

Instead of the meaningless personData (which carries information only

about the type), we can use a better name so that it becomes clear what kind

of an object we are archiving:

public void Archive(PersonData loggedUser) { … }

If there are other methods with similar parameters, their ordering should

be consistent:

public void Archive(PersonData person, bool persistent) { … }

public void Retrieve(PersonData person, bool persistent) { … }

It is important that no parameters are left unused. Unused parameters can

only mislead the person who uses the code.

Parameters should not be used as local variables, that is, they should

not be modified. Modifying method parameters makes the code harder to read

and the logic becomes more convoluted. You can always declare a new

variable instead of modifying a parameter. Conserving memory is not an

excuse in such a scenario.

www.manaraa.com

Chapter 21. High-Quality Programming Code 883

Implicit assumptions should be documented. An example would be to

specify the measurement unit of a parameter to a method that computes the

cosine of an angle – whether the angle is in radians or degrees, in case the

name does not make it obvious.

The parameter count should not exceed 7. Seven is a special, magic

number. It is proven in the psychology that the human mind cannot trace

more than 7 (+/- 2) things simultaneously. As with parameter count, this

recommendation is only advisory. Sometimes you need to pass more

parameters. If that is the case, think about passing them as an object that

represents a class with many fields. For example, instead of having an

AddStudent(…) method with 15 parameters (name, address, contacts, etc.),

you can reduce them by grouping logically related parameters into separate

objects: AddStudent(personalData, contacts, universityDetails). This

way, each of the three parameters will contain a few fields inside, and the

same information will be passed to the method, but in an easier to understand

form.

Sometimes it is more appropriate, from a logical standpoint, to pass only one

or a few of the fields of an object, rather than the whole object. This

mostly depends on whether the method should be aware of the existence of

this object or not. Suppose we have a method that calculates the final grade

of a given student – CalcFinalGrade(Student s). Because the final grade

depends only on the previous grades and the rest of the student’s data does

not matter, it would be better if only the list of grades is passed –

CalcFinalGrade(IList<Grade>), instead of a Student object.

Proper Use of Variables

In this section we review a few good practices for using local variables.

Returning a Result

Whenever a result is returned, it should first be saved in a variable, before

being returned. The following example does not hint at what exactly is

returned:

return days * hoursPerDay * ratePerHour;

It would be better like that:

int salary = days * hoursPerDay * ratePerHour;
return salary;

There are a few reasons for saving the result before returning it. For one, the

additional variable contributes to self-documenting the code and makes it

clear exactly what is returned. Another reason is tracing the returned value

when debugging – we can stop the program from executing as soon as the

www.manaraa.com

884 Fundamentals of Computer Programming with C#

value is computed and then inspect it. A third reason is that it helps us avoid

long expressions, which can become quite convoluted.

Principles for Initialization

In .NET, all member-variables (fields) belonging to a class are initialized

automatically at the time of being declared (unlike C/C++). This is managed

by the runtime and provides for a safer environment, less prone to errors

caused from incorrectly initialized memory. All reference type variables are

initialized to null and all primitive types to 0 (false for bool).

The compiler forces the explicit initialization of all local variables;

otherwise a compile-time error is given. Here is an example that would cause

such an error, because an attempt is made to use an uninitialized variable:

static void Main()
{
 int value;
 Console.WriteLine(value);
}

Here is how the compilation attempt looks like in Visual Studio:

Here is how the compilation attempt looks like in the console C# compiler:

www.manaraa.com

Chapter 21. High-Quality Programming Code 885

Let’s look at the following more complex example:

int value;
if (condition1)
{
 if (condition2)
 {
 value = 1;
 }
}
else
{
 value = 2;
}
Console.WriteLine(value);

Fortunately, the compiler is smart enough to analyze the control flow and

to catch such problems – the same error is thrown, because not all scenarios

assign correctly the variable.

Note that adding an else to the nested if in the above code will make it

compile without errors. If the variable is not initialized at its declaration, but is

assigned to a value in all the possible paths of the control flow, the compiler

will still be happy.

A good practice, however, is to initialize all variables explicitly at the time of

their declaration:

int value = 0;
Student intern = null;

Partially Initialized Objects

Some objects, in order to be properly initialized, should have at least a few of

their fields set. For example, an object of type Person should have valid

values set for at least the name and the family name fields. This is

something the compiler cannot prevent us from forgetting.

www.manaraa.com

886 Fundamentals of Computer Programming with C#

One way to solve this problem is to remove the default constructor (the one

not taking any parameters) and to add one or more constructors, which take

the sufficient data as their parameters, to enable the proper initialization of

the object. This is the sole purpose of parameterized constructors.

Declaring a Variable within a Block or a Method

According to the coding convention for .NET, a local variable should be

declared at the beginning of its enclosing block or method:

static int Archive()
{
 int result = 0; // beginning of method body
 // … Code …
}

Another example:

if (condition)
{
 int result = 0; // beginning of an "if" block
 // … Code …
}

An exception is made for variables declared within the initialization part of a

for-loop:

for (int i = 0; i < data.Length; i++) { … }

The above recommendation is pretty disputable. Most good programmers

prefer to declare a local variable as close to its intended place of use as

possible. This helps reduce a variable’s lifetime (refer to the next paragraph),

and, at the same time, the probability for mistakes.

Scope, Lifetime and Span of Variables

The term variable scope actually denotes how “famous” a variable is. In

.NET, three layers of variable scope exist: static variables, member-variables

of a class (fields), and local variables inside a method.

Minimizing the Variable Scope

The wider the scope of a variable, the higher the probability that more code

will be tied to it, thereby increasing the level of coupling. Since strong

coupling is not desirable, variable scope should be as narrow as possible.

A good approach in using variables is to initially declare them with the

minimal scope, and extend it only when necessary. This is a natural way of

www.manaraa.com

Chapter 21. High-Quality Programming Code 887

assigning a variable the scope it needs. If you don’t know what scope to use,

start with private and if needed, switch to protected or public.

Static variables should best be private and accessing them should be

controlled via appropriate methods.

Here is an example of bad semantic coupling based on a static variable, a

horribly bad practice:

public class Globals
{
 public static int state = 0;
}

public class Genious
{
 public static void PrintSomething()
 {
 if (Globals.state == 0)
 Console.WriteLine("Hello.");
 else
 Console.WriteLine("Good bye.");
 }
}

If the state variable was marked private, such coupling would be

impossible, at least not possible directly.

Minimizing the Variable Span

The span of a variable corresponds to the average amount of lines

between its occurrences in the code. Considering minimal variable span,

variables should be declared and initialized as close as possible to their

first occurrence in the code, and not necessarily in the beginning of a

method or a code block.

Keep the variable span as small as possible! This improves the code

quality, readability, understandability and maintainability because less code

needs to be inspected in order to read and understand the code.

Minimizing the Variable Lifetime

The lifetime of a local variable inside a method lasts between the place of

its declaration (the beginning of a block, most usually), until the end of

the enclosing block. Class fields (member-variables) exist as long as their

class is instantiated. Static variables last throughout the entire execution of

the program.

As you may guess, the lifetime should be kept minimal. This reduces the

lines of code that you should consider at the same time when reading the

www.manaraa.com

888 Fundamentals of Computer Programming with C#

code. This will maximized the portion of the code you can safely ignore when

you read the code. This will reduce the total complexity in your brain, because

it works better with smaller and simpler pieces of code, right?

Minimizing the Variable Span and Lifetime – Example

Below we have an example of bad use of local variables (unnecessarily

large span):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

int count;
int[] numbers = new int[100];

for (int i = 0; i < numbers.Length; i++)
{
 numbers[i] = i;
}
count = 0;

for (int i = 0; i < numbers.Length / 2; i++)
{
 numbers[i] = numbers[i] * numbers[i];
}

for (int i = 0; i < numbers.Length; i++)
{
 if (numbers[i] % 3 == 0)
 {
 count++;
 }
}

Console.WriteLine(count);

lifetime =

23 lines

span =

23 / 4 =

5.75

In this example, the count variable’s purpose is to count the numbers, which

are evenly divisible by 3. It is used only in the last for loop, but is declared

and initialized long before it.

What's wrong with the above code? If you try to read it and find how the

count is calculated, you will need to inspect all its 23 lines, right? The code

might be written differently and the variable count might be declared and

zeroed just before the last for-loop. Thus if we need to read the code and

find how count is calculated, we will need to inspect only 10 lines, not 23.

See below how the above code fragment can be refactored in order to reduce

the lifetime and span of the count variable:

1 int[] numbers = new int[100];

www.manaraa.com

Chapter 21. High-Quality Programming Code 889

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

for (int i = 0; i < numbers.Length; i++)
{
 numbers[i] = i;
}

for (int i = 0; i < numbers.Length / 2; i++)
{
 numbers[i] = numbers[i] * numbers[i];
}

int count = 0;
for (int i = 0; i < numbers.Length; i++)
{
 if (numbers[i] % 3 == 0)
 {
 count++;
 }
}

Console.WriteLine(count);

lifetime =

10 lines

span =

10 / 3 =

3.33

It is important that the programmer tracks the usage of a particular variable,

along with its scope, span and lifetime. The main objective is to reduce the

scope, the lifetime and the span as much as possible. This leads to an

important rule about correctly using variables:

Declare local variables as late as possible, immediately

before using them for the first time. Initialize them at the

time of declaration.

Variables with a wider scope and a longer lifetime should have more

descriptive names, such as totalStudentsCount instead of count. That is

because they occur at more locations within a larger piece of code, and hence

the context around them is not going to be entirely clear.

Variables that span across just 4-5 lines can have short and simple names,

for example count. They do not need long names because their purpose

becomes clear from their limited context (a few lines), and ambiguities can

rarely arise there.

Use of Variables – More Rules

A very important rule is to use a variable for one purpose only. The excuse

that memory is conserved the other way is not generally convincing. If a

variable is used for multiple different purposes, what name can we give it?

Consider a variable that is used to count the number of students, and

www.manaraa.com

890 Fundamentals of Computer Programming with C#

occasionally the count of their grades. How would you call it: count,

studentsCount, gradesCount or studentsOrGradesCount?

Use one variable for a single purpose only. Otherwise, an

appropriate name cannot be found.

Unused local variables should not be present in the code. Their declarations

alone are useless. Fortunately, most of the decent development environments

do warn you about such anomalies.

The use of local variables with hidden meaning should be avoided. For

example, John has left the variable X for Tom to see, so that he could get to

the conclusion to implement another method that would use that same

variable. Didn’t get it? Good, let’s hope you don’t do it either.

Proper Use of Expressions

When using expressions, the simple rule is: avoid complex expressions! A

complex expression is one that performs more than one thing:

for (int i = 0; i < xCoord.Length; i++)
{
 for (int j = 0; j < yCoord.Length; j++)
 {
 matrix[i][j] =
 matrix[xCoord[FindMax(i) + 1]][yCoord[FindMin(i) + 1]] *
 matrix[yCoord[FindMax(i) + 1]][xCoord[FindMin(i) + 1]];
 }
}

In the above sample we have a complex calculation, which fills a given

matrix based on a computation over some coordinates. It is in fact very hard

to understand what exactly is going on, because the used expressions are

overly complex.

There are many reasons to avoid the use of complex expressions as in the

above example. Let’s mention a few:

- Code becomes hard to read. Therefore, tracing what is going on and

whether the code is correct becomes hard, too.

- Code is hard to maintain – think about the effort involved in fixing an

error, in case the code does not work as expected.

- Code is hard to fix in case of defects. If the above code throws

IndexOutOfRangeException, how would we know exactly which array

has been involved? It could be xCoord or yCoord or matrix, occurrences

of which are all scattered within the expressions.

www.manaraa.com

Chapter 21. High-Quality Programming Code 891

- Code is hard to debug. In case of an error, it would be much harder to

debug a complex expression because it stays on a single line, and

debuggers step through the code in terms of lines.

All of these reasons suggest that writing complex expressions is harmful

and should be avoided. Instead of a single complex expression, we can write

a few less complex ones and save them in variables with descriptive names.

In this way the code becomes simpler, easier to read and understand and

easier to maintain, debug and fix.

Let’s rewrite the above code without using complex expressions:

for (int i = 0; i < xCoord.Length; i++)
{
 for (int j = 0; j < yCoord.Length; j++)
 {
 int maxStartIndex = FindMax(i) + 1;
 int minStartIndex = FindMax(i) - 1;
 int minXcoord = xCoord[minStartIndex];
 int maxXcoord = xCoord[maxStartIndex];
 int minYcoord = yCoord[minStartIndex];
 int maxYcoord = yCoord[maxStartIndex];
 matrix[i][j] =
 matrix[maxXcoord][minYcoord] *
 matrix[maxYcoord][minXcoord];
 }
}

Notice how simple and readable the code has become. Without knowing the

exact calculation that this code is supposed to do, it is still hard to understand

it, but at least we can debug it in case of an exception and find which line is

causing it, and eventually fix it.

Do not write complex expressions. Only one operation should

be performed at one line, otherwise the code becomes hard

to read, maintain, debug and modify.

Use of Constants

Well written code should not contain “magic numbers” and “magic

strings”. Such constants are all the literals in a program having a value other

than 0, 1, -1, "" and null (with little exceptions).

In order to explain the concept why we need named constants, let’s

examine the code below. In this code we use the number 3.14159206 (π)

three times (directly and in a formula), which introduces duplicated code. If,

for example, we decide to increase the precision of this constant or change it,

we will need to modify the program at three different locations:

www.manaraa.com

892 Fundamentals of Computer Programming with C#

public class GeometryUtils
{
 public static double CalcCircleArea(double radius)
 {
 double area = 3.14159206 * radius * radius;
 return area;
 }

 public static double CalcCirclePerimeter(double radius)
 {
 double perimeter = 6.28318412 * radius;
 return perimeter;
 }

 public static double CalcElipseArea(
 double axis1, double axis2)
 {
 double area = 3.14159206 * axis1 * axis2;
 return area;
 }
}

It comes to mind that it is better to define the repeating values only once on

the code. In .NET such values are declared as named constants as follows:

public const double PI = 3.14159206;

After this declaration, the PI constant is accessible to the whole program and

can be used an unlimited number of times. In case we need to change the

value, we change it at one location only, and the changes are reflected

everywhere. Here is how our GeometryUtils class looks after declaring the

number 3.14159206 as a named constant:

public class GeometryUtils
{
 public const double PI = 3.14159206;

 public static double CalcCircleArea(double radius)
 {
 double area = PI * radius * radius;
 return area;
 }

 public static double CalcCirclePerimeter(double radius)
 {

www.manaraa.com

Chapter 21. High-Quality Programming Code 893

 double perimeter = 2 * PI * radius;
 return perimeter;
 }

 public static double CalcElipseArea(
 double axis1, double axis2)
 {
 double area = PI * axis1 * axis2;
 return area;
 }
}

When to Use Constants?

The use of constants allows us to avoid the use of “magic numbers” and

strings in our programs, and enables us to give names to the numbers and

strings we use. In the above example not only we avoided code

duplication, but we documented the fact that the number 3.14159206 is the

well-known mathematical constant π.

Constants should be used whenever we need to use numbers or strings

whose origin and meaning are not obvious. Constants should generally

be defined for every number or string that is used more than once in a

program (with some exceptions).

Here are a few typical cases in which named constants should be used:

- For filenames the program operates on. They need to be frequently

changed and it is convenient to have them as named constants at the

beginning of the program.

- For constants taking part in mathematical expressions. A good

constant name improves the chance of understanding the formula.

- For buffer sizes and sizes of memory blocks. These sizes often need

to be changed and that is why it is convenient to have them declared as

named constants. Apart from that, using a constant named

READ_BUFFER_SIZE rather than the number 8192 makes the code a lot

more readable and comprehensible.

When Not to Use Constants?

Although many books recommend that all numbers and strings except 0, -1,

1, "" and null are best declared as named constants, there are a few

exceptions in which declaring constants can be harmful. Remember,

declaring constants is made in order to improve the readability and the

maintainability of the code. When a constant does not contribute to the

readability of the code, you should avoid it.

www.manaraa.com

894 Fundamentals of Computer Programming with C#

Here are a few situations in which using a named constant can be harmful:

- Error messages and other messages intended for the user (“Enter your

name”, for example). Making such strings named constants will actually

hinder the readability.

- SQL queries in named constants are not recommended (in case you

are using a database, queries are usually written in SQL, and that is

usually a string in the terms of the programming language).

- Button labels, dialog box titles, menu entries and captions of other UI

components should not be declared as named constants.

The .NET Framework provides libraries that facilitate internationalization and

allow exporting all the messages, captions and labels from the UI in special

resource files. These are not constants, however. This approach is

encouraged if the program you are writing will have to be internationalized.

Use named constants to avoid the usage and duplication of

magic numbers and strings, and mostly to improve code

readability. If the introduction of a named constant hinders

the readability, better leave the hardcoded value in the code!

Proper Use of Control Flow Statements

Control flow statements are represented by loops and conditional statements.

We are going to review the good practices for using them properly.

With or Without Curly Brackets?

Loops and conditional statements allow their body to not be surrounded by

brackets, in case the body consists only of a single statement. This can be

dangerous. Consider the following example:

static void Main()
{
 int two = 2;
 if (two == 1)
 Console.WriteLine("This is the ...");
 Console.WriteLine("... number one.");
 Console.WriteLine(
 "Example of an if-clause without curly brackets.");
}

We are expecting to see only the last sentence, aren’t we? The result is a bit

unexpected:

... number one.
Example of an if-clause without curly brackets.

www.manaraa.com

Chapter 21. High-Quality Programming Code 895

That is because an if-statement without curly brackets only takes the first

statement as its body, regardless of the indentation, which makes matters

confusing.

Always enclose the body of loops and conditional statements

in curly brackets – { and }.

Proper Usage of Conditional Statements

Conditional statements in C# are represented by the if-else and the

switch-case statements.

if (condition)
{

}
else
{

}

Deep Nesting of Conditional Statements

Deep nesting of if statements is a bad practice because it obstructs the

comprehensibility of the code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

private int Max(int a, int b, int c, int d)
{
 if (a < b)
 {
 if (b < c)
 {
 if (c < d)
 {
 return d;
 }
 else
 {
 return c;
 }
 }
 else if (b > d)
 {
 return b;
 }

www.manaraa.com

896 Fundamentals of Computer Programming with C#

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

 else
 {
 return d;
 }
 }
 else if (a < c)
 {
 if (c < d)
 {
 return d;
 }
 else
 {
 return c;
 }
 }
 else if (a > d)
 {
 return a;
 }
 else
 {
 return d;
 }
}

This code is hardly readable because of the deep nesting. In order to improve

it, we could introduce a few more methods where parts of the logic are

exported and isolated. Here is how we could do that:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

private int Max(int a, int b)
{
 if (a < b)
 {
 return b;
 }
 else
 {
 return a;
 }
}

private int Max(int a, int b, int c)
{
 if (a < b)

www.manaraa.com

Chapter 21. High-Quality Programming Code 897

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 {
 return Max(b, c);
 }
 else
 {
 return Max(a, c);
 }
}

private int Max(int a, int b, int c, int d)
{
 if (a < b)
 {
 return Max(b, c, d);
 }
 else
 {
 return Max(a, c, d);
 }
}

Extracting parts of the code into separate methods is the easiest and most

efficient way to reduce the level of nesting of a group of conditional

statements, while preserving their logic.

The refactored method is split into a few smaller ones. The overall length of

the code has been decreased by 9 lines. Each of the new methods is simpler

and easier to read. As a side benefit, we get two methods that can be easily

reused for other purposes.

Proper Use of Loops

Proper use of the different looping constructs is very important to the creation

of quality software. In the next paragraphs we outline some of the principles,

which help us decide when, and how to use a particular loop construct.

Choosing an Appropriate Looping Construct

If we are not able to decide whether to use for, while or do-while loop, we

can easily pick up one, adhering to the following principles.

If we need a loop that will execute a fixed number of times, a for-loop is a

good fit. This kind of loop is used in the most basic situations where

interrupting the control is not necessary. The initialization, the check of the

condition and the incrementing are all in the for-construct and the loop body

does not care about that. The value of the counter should not be altered

within the body.

www.manaraa.com

898 Fundamentals of Computer Programming with C#

If it is necessary to check some conditions in order to stop the execution

of the loop, then it is probably better to pick a while loop. A while loop is

suitable in cases where the exact number of iterations is not known. The

execution there continues until the exit condition has been encountered. If the

prerequisites for using a while loop are in place, but the loop body must

unconditionally execute at least once, a do-while loop should be used

instead.

Do Not Nest Too Many Loops

As with conditional statements, deep nesting of loops is a bad practice.

Deep nesting usually happens because of a large number of loops and

conditional statements residing in one another. This makes the code hard to

read and maintain. Such code can easily be improved by moving away parts

of it into separate methods. Modern development environments can do such

refactoring automatically (we talk about that in the code refactoring section).

Defensive Programming

Defensive programming is a term denoting a practice towards defending the

code from incorrect data. Defensive programming keeps the code from

errors that nobody expects. It is implemented by checking the validity of

all input data. This is the data coming from external sources, input

parameters of methods, configuration files and settings, input from the user,

and even the data from another local method.

The main idea behind defensive programming is that methods should check

their input parameters (and other input data) and inform the caller when

the object’s internal state or the input parameters are incorrect.

Defensive programming requires that all data is checked, even if it is

coming from a trusted source. If this trusted source happens to have a bug,

the bug will be found earlier and more easily.

Defensive programming is implemented through assertions, exceptions and

other means of error handling.

Assertions

Assertions are special conditions that should always be met. If not met,

they throw an error message and the program terminates.

A quick example of assertion in C# is shown below:

void LoadTemplates(string fileName)
{
 bool templatesFileExist = File.Exists(fileName);
 Debug.Assert(templatesFileExist,
 "Can't load templates file: " + fileName);
}

www.manaraa.com

Chapter 21. High-Quality Programming Code 899

Assertions vs. Exceptions

Exceptions are announcements for an error or for an unexpected event.

They inform the programmer using the code for an error. Exceptions can be

caught and program execution can still continue.

Assertions produce fatal errors. They cannot be caught or handled,

because they are meant to indicate a bug in the code. A failed assertion

causes the program to terminate.

Assertions can be turned off. The concept is to have them turned on only

at the time of developing, in order to find as many bugs as possible. When

turned off, the conditions are no longer checked. Turning off the assertions is

plausible when the software goes to production, since these checks are

affecting the performance and the messages are not always meaningful to the

end user.

If a particular check should continue to exist when the software goes to

production (for example, checking the input that comes from the user), it

should not be implemented as an assertion in the first place. Exceptions

should be used in such cases instead.

Assertions should only be used for conditions that, if not

met, it is due to a bug in the program.

Defensive Programming with Exceptions

Exceptions provide a powerful mechanism for centralized handling of

errors and unusual conditions. They are covered in details in the

“Exception Handling” chapter.

Exceptions allow problematic situations to be handled at many levels. They

ease the writing and the maintenance of reliable program code.

Another difference between exceptions and assertions is that, in defensive

programming, exceptions are mainly used for protecting the public interface

of a class or component. This provides for a fail-safe mechanism.

If the Archive method described above was a part of the public interface of

an archiving component rather than an internal method, it would have to be

implemented as follows:

public int Archive(PersonData user, bool persistent)
{
 if (user == null)
 {
 throw new StorageException("null parameter");
 }

 // Do some processing

www.manaraa.com

900 Fundamentals of Computer Programming with C#

 int resultFromProcessing = …

 Debug.Assert(resultFromProcessing >= 0,
 "resultFromProcessing is negative. There is a bug!");

 return resultFromProcessing;
}

The Assert still remains because it is validating a variable created within the

method itself.

Exceptions should be used to inform other parts of the code for problems that

should not be ignored. Throwing an exception is reasonable only in

situations when an abnormal condition has occurred. For more

information on the situations considered exceptional, refer to the “Exception

Handling” chapter.

If a particular problem can be handled locally, the handling should be

performed in the method itself and no exceptions should be thrown. If a

problem cannot be handled locally, the exception should be thrown to the

caller.

The thrown exceptions should be at an appropriate level of abstraction. For

example GetEmployeeInfo() could throw EmployeeException, but not

FileNotFoundException. The last example throws StorageException rather

than NullReferenceException.

Code Documentation

The C# specification allows putting comments in the code. We are already

familiar with the basic principles for writing comments. In the next few

paragraphs we explain how to write effective comments.

Self-Documenting Code

A very important point to remember is that comments in the code are not the

primary source of documentation. Good programming style provides the

best documentation. Self-documenting code rarely needs comments

because its intention becomes clear directly by reading it. Self-documenting

code means a code that is easy-to-read and easy-to-understand without

having comments inside.

The best way to document the code is to write quality code.

Bad code should not be documented but should rather be

rewritten! Comments are only a complement to the well-

written code.

www.manaraa.com

Chapter 21. High-Quality Programming Code 901

Properties of Self-Documenting Code

Self-documenting code boasts a good structure: everything mentioned in

this chapter matters. The implementation should be as simple as possible so

that anyone can understand it.

Self-Documenting Code – Important Questions

In order to qualify our code as self-documenting, there are a few questions

we should ask ourselves:

- Is the class name appropriate and does it describe its main purpose?

- Is the public interface of the class intuitive to use?

- Does the name of a method describe its main purpose?

- Is every method performing a single, well-defined task?

- Are the names of the variables corresponding to the intent of their

use?

- Are loops performing only a single task?

- Are conditional statements deeply nested?

- Does the organization of the code illustrate its logical structure?

- Is the design clear and unambiguous?

- Are implementation details hidden as much as possible?

Effective Comments

Comments can sometimes do more harm than good. Good comments do

not repeat the code and do not explain it line by line: they rather clarify its

idea. Comments should describe at a higher level what our intentions are.

Comments enable us to think better about what we want to implement.

Here is an example of bad comments, which, instead of making the code

more comprehensible, are actually annoying:

public List<int> FindPrimes(int start, int end)
{
 // Create new list of integers
 List<int> primesList = new List<int>();
 // Perform a loop from start to end
 for (int num = start; num <= end; num++)
 {
 // Declare boolean variable, initially true
 bool prime = true;
 // Perform loop from 2 to sqrt(num)
 for (int div = 2; div <= Math.Sqrt(num); div++)

www.manaraa.com

902 Fundamentals of Computer Programming with C#

 {
 // Check if div divides num with no remainder
 if (num % div == 0)
 {
 // We found a divider -> the number is not prime
 prime = false;
 // Exit from the loop
 break;
 }
 // Continue with the next loop value
 }

 // Check if the number is prime
 if (prime)
 {
 // Add the number to the list of primes
 primesList.Add(num);
 }
 }

 // Return the list of primes
 return primesList;
}

If, instead of writing naive comments, we write comments to clarify the

unobvious facts in the code, comments can be very useful. Here is how the

same code can be commented meaningfully:

/// <summary>Finds the primes from a range [start, end] and
/// returns them in a list.</summary>
/// <param name="start">Top of range</param>
/// <param name="end">End of range</param>
/// <returns>a list of all the found primes</returns>
public List<int> FindPrimes(int start, int end)
{
 List<int> primesList = new List<int>();
 for (int num = start; num <= end; num++)
 {
 bool isPrime = IsPrime(num);
 if (isPrime)
 {
 primesList.Add(num);
 }
 }
 return primesList;

www.manaraa.com

Chapter 21. High-Quality Programming Code 903

}

/// <summary>Checks if a number is prime by checking for any
/// dividers in the range [2, sqrt(number)].</summary>
/// <param name="number">The number to be checked</param>
/// <returns>True if prime</returns>
public bool IsPrime(int number)
{
 for (int div = 2; div <= Math.Sqrt(number); div++)
 {
 if (number % div == 0)
 {
 return false;
 }
 }

 return true;
}

The logic of the code is obvious and does not need any comments. In such

case it is sufficient only to describe what are the particular method’s purpose

and its general idea, in a single sentence.

In order to write effective comments, it is desirable to use pseudo-code,

whenever possible. Comments should be written at the time the code is

written, not after that.

Productivity (i.e. writing code quickly) is never a good excuse for not writing

comments. Everything that is not instantly obvious should be documented.

Writing too much unnecessary comments is as bad as not having any at all.

Bad code cannot be improved by putting more comments. It should instead

be rewritten or refactored.

XML Documentation in C#

You might have already noted the special comments in the code that explain

the purpose of a class or a method and its parameters:

/// <summary>Finds the primes from a range [start, end] and
/// returns them in a list.</summary>
/// <param name="start">Top of range</param>
/// <param name="end">End of range</param>
/// <returns>a list of all the found primes</returns>
public List<int> FindPrimes(int start, int end)
{ … }

www.manaraa.com

904 Fundamentals of Computer Programming with C#

This special style of documentation built-in the C# source code is called XML

documentation. It is enclosed in the triple comments /// and uses few

special XML tags: to document a type / method summary (<summary>), to

describe method’s parameters (<param name="…">), to describe a method’s

return value (<returns>), to document exceptions that eventually might be

thrown (<exception cref="…"), to make a cross-reference link to related

type (<seealso cref="…"/>), to describe some remarks (<remarks>), to give

an example how to use the type / method (<example>), etc.

Using XML-style documentation in the source code has several advantages:

- The XML documentation is built-in the source code itself.

- The XML documentation is automatically processed by Visual Studio

and is displayed in its autocomplete feature.

- The XML documentation can be compiled into an MSDN-style web

site or e-book (in CHM format) through specialized tools like

Sandcastle (http://shfb.codeplex.com).

More about writing and using XML documentation can be found in MSDN

Library: http://msdn.microsoft.com/en-us/library/b2s063f7.aspx.

Code Refactoring

The term “refactoring” appears in 1993 and is popularized by Martin

Fowler in his book with the same name. This book reviews a lot of techniques

for code refactoring (called refactoring patterns). We are going to mention

a few of them.

A program needs refactoring in case of code duplication. Code duplication is

dangerous because a change in one place requires that all the other

duplicated code be changed as well. The latter is error-prone and

inconsistencies can arise therefore. Avoiding code duplication can be achieved

by putting the particular piece of code in a method, or by moving common

functionality to base classes.

Refactoring is necessary for methods, which have grown over time. The

excessive length of a method is a good reason to think about splitting it up

logically into few smaller and simpler methods.

Deeply nested constructs are another reason for refactoring. They can be

eliminated by taking out a block of code into a method.

Classes that do not provide a sufficiently good level of abstraction or ones

that perform unrelated tasks (weak cohesion) are candidates for refactoring

as well.

Long parameter lists and public fields should also go to the fix-it list.

Tightly coupled classes go in the same category.

http://shfb.codeplex.com/
http://msdn.microsoft.com/en-us/library/b2s063f7.aspx

www.manaraa.com

Chapter 21. High-Quality Programming Code 905

Refactoring at Data Level

A good practice is to avoid magic numbers scattered throughout the code.

They should be replaced by named constants. Variables with unclear names

should be renamed. Long conditional expressions can be refactored into

separate methods. Variables can be used to hold the intermediate results of

expressions. A group of data that always appears together can be refactored

into a separate class. Related constants should be grouped into enumerations.

Refactoring at Method and Class Level

Within a longer method, all tasks that are unrelated to its main purpose are

better moved into separate methods. Similar tasks should be grouped in

common classes, similar classes – in a common package. If a group of classes

have common functionality, it should be moved into a base class.

Circular dependencies between the classes should not exist, they should be

removed. In most cases the more common class has a reference to the more

specialized class (parent-child relationship).

Unit Testing

Unit testing means to write a program that tests a certain method or

class. A typical unit test executes the method that should be tested, passes a

sample data to (parameters and object states) and checks whether the

method’s result is correct (for this sample data), i.e. whether the method

does exactly what it should do and whether it does it correctly.

A single method usually is tested by several unit tests, each implementing a

different testing scenario. First, the typical case is checked. Then the border

cases are checked. The border cases are special cases which could need

special processing logic, e.g. the largest or the smallest possible value, the

first or last element, etc. Finally the method is tested with incorrect data

and an exception is expected to be thrown. Sometimes a performance test

may be involved to check whether the method is fast enough.

Unit Testing – Example

Let’s see a small example – a method that sums an array of numbers:

static int Sum(int[] numbers)
{
 int sum = numbers[0];
 for (int i = 1; i < numbers.Length; i++)
 {
 sum += numbers[i];
 }
 return sum;
}

www.manaraa.com

906 Fundamentals of Computer Programming with C#

The above method may look correct but in fact it has several bugs that we

will catch through unit testing. Let’s first test the typical case:

if (Sum(new int[] {1, 2}) != 3)
 throw new Exception("1 + 2 != 3");

Seems like the Sum(…) method is working correctly in its typical case: the

sum 1+2 is 3 (as expected) and the above code produces nothing. The above

piece of code is called “unit test”. It tests a certain method, class or other

functionality against certain testing scenario and notifies us if the code

behaves unexpectedly. If the test passes, the code produces no result.

Let’s now test the border cases. What will happen if we sum only one

number? Let’s try:

if (Sum(new int[] {1}) != 1)
 throw new Exception("Sum of 1 != 1");

Seems like our method still works correctly. New let’s try to sum an empty

list of numbers. Their sum should be 0, right? Let’s try this:

if (Sum(new int[] {}) != 0)
 throw new Exception("Sum of 0 numbers != 0");

The above code produces unexpected exception in the Sum(…) method:

Unhandled Exception: System.IndexOutOfRangeException: Index was
outside the bounds of the array.

We found a bug, right? Let’s fix it. We could start summing from 0 instead

from the first element in the array (which could be missing when an empty

array is passed as an argument). Below is the fixed code:

static int Sum(int[] numbers)
{
 int sum = 0;
 for (int i = 0; i < numbers.Length; i++)
 {
 sum += numbers[i];
 }
 return sum;
}

We repeat our last test (summing an empty array of numbers) and it now

passes correctly. Next we could try other special (border) cases, e.g.

summing negative numbers:

www.manaraa.com

Chapter 21. High-Quality Programming Code 907

if (Sum(new int[] {-1, -2}) != -3)
 throw new Exception("-1 + -2 != -3");

What else to try? Seems like our method work correctly. We could try to find

some extreme case when the method eventually fails. What will happen if

we sum too big numbers? Int32 cannot hold too big integers. Let’s try:

if (Sum(new int[] { 2000000000, 2000000000 }) != 4000000000)
 throw new Exception("2000000000 + 2000000000 != 4000000000");

We found another bug in our method for summing numbers:

Unhandled Exception: System.Exception: 2000000000 +
2000000000 != 4000000000

Obviously the integer type Int32 overflows and this causes incorrect result

when summing too large numbers. Let’s fix this. We can use long to keep the

sum of the numbers instead of int:

static long Sum(int[] numbers)
{
 long sum = 0;
 for (int i = 0; i < numbers.Length; i++)
 {
 sum += numbers[i];
 }
 return sum;
}

Let’s repeat the last test. Now it works. What else to test? What will happen if

we pass null as an argument to the Sum(…) method? The recommendations

about high-quality methods say that “a method should return what its

name says or throw and exception if it cannot do its job”. So our

method should throw an exception if we try to sum a null array. We could

test this in the following way:

try
{
 Sum(null);
 // An exception is expected --> the test fails
 throw new Exception("Null array cannot be summed.");
}
catch (NullReferenceException)
{
 // NullReferenceException is expected --> the test passes
}

www.manaraa.com

908 Fundamentals of Computer Programming with C#

The above unit test is a bit more complicated: it expects an exception and

if it is not thrown, it fails.

What else to test? Maybe we could make a performance test? For example

we could sum 10,000,000 numbers and expect this will take time less than 1

second (we assume a modern computer will run the tests):

DateTime startTime = DateTime.Now;
int[] arr = new int[10000000];
for (int i = 0; i < arr.Length; i++)
{
 arr[i] = 5;
}
if (Sum(arr) != 50000000)
 throw new Exception("5 + ... (10000000 times) != 50000000");
DateTime endTime = DateTime.Now;
if (endTime - startTime > new TimeSpan(0, 0, 1))
 throw new Exception("Performance issue: summing 10000000 " +
 "numbers takes more that 1 second");

The performance test passes without any issues.

We repeat all tests again to ensure that after the modifications we made all

tests are still working correctly. All tests pass! We can now be confident that

the Sum(…) method works correctly (even in unusual situations) and it is well

tested. Let’s think about what are the benefits if we test in similar manner

all methods in our code.

Benefits of Unit Testing

Unit testing has many benefits for our code quality. Let’s discuss the most

important of them:

- Unit testing significantly improves the code quality. If the unit tests

are well written and the entire functionality is covered, the code is

expected to be bug free. In practice it is very hard to cover with tests

any possible scenario so unit testing only dramatically reduces the

number of bugs but does not make the code bug free.

- Unit testing allows the tests to be executed many times, continuously,

e.g. at every hour. If some test fails, the problem is caught almost

instantly. In software engineering the practice of executing the unit

tests continuously is called “continuous integration”.

- The code quality is preserved every time the method is modified. This

dramatically simplifies the maintenance. If we change the algorithm

inside some method or class and we have covered it well with tests, we

will be sure that the new algorithm behaves the same way like the old.

www.manaraa.com

Chapter 21. High-Quality Programming Code 909

- Unit tests allow code refactoring without worrying of something being

broken. It can happen that we refactor the code to improve its internal

quality but by mistake after the refactoring the code does not work

correctly in all special cases.

All serious software development companies and software products use unit

testing. For example if you download the source code of Firefox, you will

notice that half of the code is written to perform unit tests over the other half

of code. In practice it is impossible to write complex product (like for

example MS Word or Android OS or Firefox browser) without unit testing.

Benefits of Unit Testing – Example

Let’s see one of the benefits of unit testing: the ability to change the internal

implementation of a method and re-test it to ensure the new implementation

works as expected. Consider the following new implementation of the Sum(…)

method that uses the Sum() extension method from System.Linq:

using System;
using System.Linq;

static long Sum(int[] numbers)
{
 return numbers.Sum();
}

We will explain how the above code works in the next chapter “Lambda

Expressions and LINQ”. Now let’s test it to ensure this code behaves as

expected. If we run the same set of tests we discussed above, we will find a

problem: two of our tests do not work. The first failing test is:

if (Sum(new int[] { 2000000000, 2000000000 }) != 4000000000)
 throw new Exception("2000000000 + 2000000000 != 4000000000");

We found a bug in our new implementation of our Sum(…) method: instead of

returning the correct result it produces System.OverflowException. We

cannot find an easy solution to this problem so we can either assume that

summing too big numbers will not be supported and modify the test to expect

OverflowException or we can rewrite the Sum(…) method with a new

implementation.

If we pass ahead, we will find that one more unit test fails: when we try to

sum a null array, we will get System.ArgumentNullException instead of

NullReferenceException. This is easy to fix by modifying the unit test code:

www.manaraa.com

910 Fundamentals of Computer Programming with C#

try
{
 Sum(null);
 // An exception is expected --> the test fails
 throw new Exception("Null array cannot be summed.");
}
catch (ArgumentNullException)
{
 // NullReferenceException is expected --> the test passes
}

Now all unit tests works correctly. The conclusion form the above experience

is that when we modify the code and a unit test fails, either the tested

code is incorrect, or the unit test is incorrect. In both cases we are

notified that our new code behaves differently than our old code. This is very

important in software engineering process. When we develop a complex

software product, we want the features that work in its current version to

continue to works the same way in all its next versions. For example, if we

work on MS Word and we add PDF export for its next version, we want to be

sure that saving in DOCX format still works after the PDF export is introduced.

Unit Testing Frameworks and Tools

To simplify writing unit tests and execute them many unit testing

frameworks and tools have emerged. In C# we can use Visual Studio

Team Test (VSTT) or NUnit frameworks to simplify the process of writing

tests, asserting test conditions and executing test cases and test suites.

Unit Testing with Visual Studio Team Test (VSTT)

If you have installed Visual Studio 2010 edition which supports unit testing

(e.g. Visual Studio 2010 Ultimate), you will have the [Create Unit Tests …]

feature in the popup menu when you right click at some method in your C#

code:

www.manaraa.com

Chapter 21. High-Quality Programming Code 911

The above feature was introduced in VS 2010 and is missing in VS 2012 for

unknown reason. So if you are using Visual Studio 2012, you need to create a
unit test project by hand (File New Project Unit Test Project).

The unit tests in Visual Studio Team Test look like the following:

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class SumatorTest
{
 [TestMethod]
 public void SumTestTypicalCase()
 {
 int[] numbers = new int[] { 1, 2 };
 long expected = 3;
 long actual = Sumator_Accessor.Sum(numbers);
 Assert.AreEqual(expected, actual);
 }

 [TestMethod]
 public void SumTestOverflow()
 {
 int[] numbers = new int[] { 2000000000, 2000000000 };
 long expected = 4000000000;
 long actual = Sumator_Accessor.Sum(numbers);
 Assert.AreEqual(expected, actual);
 }

 [TestMethod]
 [ExpectedException(typeof(NullReferenceException))]
 public void SumTestNullArray()
 {
 Sumator_Accessor.Sum(null);
 }
}

A detailed explanation of VSTT will not be given in this book, but anyone could

research how to use unit testing in Visual Studio. As you see from the

example above, VSTT simplifies unit testing by introducing test classes and

test methods. Each test method has a meaningful name which and tests a

certain test case. VSTT can test private methods, can set time limit for the

test execution and can expect exception to be thrown by certain test case –

things that simplify writing the testing code. Visual Studio can execute

and visualize the results of the test execution:

www.manaraa.com

912 Fundamentals of Computer Programming with C#

Additional Resources

We hope this chapter made the first steps in making you a real high-quality

software engineer. If you want to learn more about writing quality code, you

might refer to these additional resources:

The Bible of quality programming code is called “Code

Complete” and its second edition was published in 2004. Its

author, Steve McConnell, is a world-famous expert on

writing quality software, a former Microsoft employee. The

book contains a lot more examples and more general practices

for writing high-quality code.

Another good book on software quality is Martin Fowler’s

“Refactoring: Improving the Design of Existing Code”.

This book is considered to be the Bible of code refactoring.

Terms such as “extract method”, “encapsulate field”, “extract

constant” and other basic modern refactoring patterns were

first described in this book.

The free training course "High-Quality Code" @ Telerik

Software Academy – http://codecourse.telerik.com. It

provides comprehensive teaching materials, presentations,

examples, homework assignments and videos (in Bulgarian)

about writing high-quality code and high-quality software, unit

testing and code refactoring.

Exercises

1. Take the code from the first example in this chapter and refactor it to

meet the quality standards discussed in this chapter.

2. Review your own code from the exercises from the previous chapters

and find the mistakes you have made. Refactor the code to improve its

quality. Think how you can avoid such mistakes and bad coding style in the

future.

3. Open other people’s code and try to understand it only by reading the

code itself. Is everything obvious at first sight? What would you change in

that code, how would you write it?

http://codecourse.telerik.com/
http://www.cc2e.com
http://martinfowler.com/books/refactoring.html
http://codecourse.telerik.com/

www.manaraa.com

Chapter 21. High-Quality Programming Code 913

4. Review the classes from .NET Common Type System (CTS). Can you find

examples of low-quality code?

5. Have you used or seen any coding conventions? Having read this

chapter, would you consider them good or bad?

6. We are given a square matrix of n x n cells. A rotating walk in the

matrix is walk that starts from the top left corner of the matrix and goes

in down-right direction. When no continuation is available at the current

direction (either the matrix wall or non-empty cell is reached), the

direction is changed to the next possible direction clockwise. The eight

possible directions are as follows:

When no empty cell is available at all directions, the walk is restarted

from an empty cell at the smallest possible row and as close as possible to

the start of this row. When no empty cell is left in the matrix, the walk is

finished. Your task is to write a program that reads from the console an

integer number n (1 ≤ n ≤ 100) and displays the filled matrix on the

console.

Sample input:

n = 6

Sample output:

 1 16 17 18 19 20
15 2 27 28 29 21
14 31 3 26 30 22
13 36 32 4 25 23
12 35 34 33 5 24
11 10 9 8 7 6

Download a sample low-quality solution of that problem from here:

http://introcsharpbook.googlecode.com/files/High-Quality-Code.rar.

Refactor the code so that it meets the recommended standards for

quality code stated in this chapter. Note that fixing bugs in the solution

might be necessary if it does not work correctly.

Solutions and Guidelines

1. Use [Ctrl+K, Ctrl+F] in Visual Studio to reformat the code and see the

differences. Then rename the variables, omit the unnecessary statements

and variables, and make the output that is printed more meaningful.

2. Pay special attention to the recommendations for quality code from this

chapter. Remember your most frequent mistakes and try to avoid them.

The most often problem with the code written by inexperienced

programmers is the naming. You can use the “rename” feature in Visual

Studio (shortcut [Ctrl+R, Ctrl+R]) to rename the identifiers in the code

* * * *
* * *

*

http://introcsharpbook.googlecode.com/files/High-Quality-Code.rar

www.manaraa.com

914 Fundamentals of Computer Programming with C#

when necessary. You may need to reformat your code through [Ctrl+K,

Ctrl+F] in Visual Studio. You may need to extract pieces of code in
separate method. This can be done through “Refactor” “Extract

Method …” feature in Visual Studio (shortcut [Ctrl+R, Ctrl+M]).

3. Take some well-written software as an example (e.g. Wintellect Power

Collections for .NET – http://powercollections.codeplex.com). You would

probably find things that you would write in a different way, or things that

this chapter suggests should be done differently. Deviations are possible

and are completely normal. One of the biggest differences between low-

quality and high-quality code is the consistency in following the rules.

The rules in different projects may be different (e.g. different formatting

style, different documentation style, different naming style, different

project structure, etc.) but the general recommendations for writing

high-quality code will be followed.

Take another example: bad code that is hard to read, understand and

maintain. You may find many examples in Internet but to save time you

may look at the projects from the “High-Quality Code” course at Telerik

Software Academy (May 2011): https://qualitycode.googlecode.com/svn/

trunk/2011/Exams/Final-Projects-19-May-2011/High-Quality-Code-2011-

Final-Projects.rar. There are C#, Java, C++ and PHP projects with low-

quality code that needs deep refactoring and quality improvement.

4. The code from CTS is written by engineers with an extensive experience

and you can rarely encounter low-quality code there. Despite of that,

anomalies such as using complex expressions and inappropriately named

variables can still be seen. Try to find some examples of bad coding

practices in CTS. Use JustDecompile or other decompilation tool because

the source code of CTS is unavailable. Keep in mind that local variable

names and comments in the code are lost when the code is compiled and

decompiled so the variable names might be incorrect.

Instead of decompiling the .NET CTS you may look at the source code of

Mono (the open-source .NET implementation for Linux) at GitHub:

https://github.com/mono/mono/tree/master/mcs/class/corlib. An example

of code that needs improvement is the Dictionary<K,T> implementation

in Mono: Dictionary.cs.

5. Just answer based on your personal experience. You may ask your

colleagues whether they use coding conventions. You may also read the

official C# code conventions from Microsoft: http://msdn.microsoft.com/

en-us/library/vstudio/ff926074.aspx.

6. Review all the learned concepts from this chapter and apply them to the

code you are given. First understand how the code works and then fix

the bugs you discover. The best way to start is by reformatting the code

and renaming the identifiers. Then you may write unit tests to enable

refactoring without a risk to break something. Then step by step you may

extract methods, remove the duplicated code, and rewrite pieces of

the code which cannot be refactored. Be sure to test after each change.

http://powercollections.codeplex.com/
https://qualitycode.googlecode.com/svn/trunk/2011/Exams/Final-Projects-19-May-2011/High-Quality-Code-2011-Final-Projects.rar
https://qualitycode.googlecode.com/svn/trunk/2011/Exams/Final-Projects-19-May-2011/High-Quality-Code-2011-Final-Projects.rar
https://qualitycode.googlecode.com/svn/trunk/2011/Exams/Final-Projects-19-May-2011/High-Quality-Code-2011-Final-Projects.rar
https://github.com/mono/mono/tree/master/mcs/class/corlib
https://github.com/mono/mono/blob/master/mcs/class/corlib/System.Collections.Generic/Dictionary.cs
http://msdn.microsoft.com/en-us/library/vstudio/ff926074.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ff926074.aspx

www.manaraa.com

Chapter 22. Lambda
Expressions and LINQ

In This Chapter

In this chapter we will become acquainted with some of the advanced

capabilities of the C# language. To be more specific, we will pay attention on

how to make queries to collections, using lambda expressions and LINQ,

and how to add functionality to already created classes, using extension

methods. We will get to know the anonymous types, describe their usage

briefly and discuss lambda expressions and show in practice how most of the

built-in lambda functions work. Afterwards, we will pay more attention to

the LINQ syntax – we will learn what it is, how it works and what queries we

can build with it. In the end, we will get to know the meaning of the

keywords in LINQ, and demonstrate their capabilities with lots of examples.

Extension Methods

In practice, programmers often have to add new functionality to already

existing code. If the code is available, we can simply add the required

functionality and recompile. When a given assembly (.exe or .dll file) has

already been compiled, and the source code is not available, a common way

to extend the functionality of the types is trough inheritance. This approach

can be quite difficult to apply, due to the fact that we will have to change the

instances of the base class with the instances of the derived one to be able to

use our new functionality. Unfortunately, that is the least of our problems. If

the type we want to inherit is marked with the keyword sealed, inheritance is

not possible.

Extension methods solve that very same problem – they present to us the

opportunity to add new functionality to already existing type (class or

interface), without having to change its original code or use inheritance, i.e.

also works fine with types that cannot be inherited. Notice that trough

extension methods we can add “implemented methods” even to interfaces.

The extension methods are defined as static in ordinary static classes.

The type of their first argument is the class (or the interface) they extend. In

front of it, we should place the keyword this. That is what makes them

different from other static methods, and indicates the compiler that this is an

extension method. The parameter with the keyword this in front of it can be

used in the method body to create its functionality. Practically, it is the object

that is used by the extension method.

www.manaraa.com

916 Fundamentals of Computer Programming with C#

Extension methods can be applied directly to objects of the class/interface

they extend. They can also be invoked statically through the static class they

are defined in, but it is not a good practice.

To refer to a specific extension method, we should add

“using” and the corresponding namespace, where the static

class, describing this method, is defined. Otherwise the

compiler has no way of knowing about their existence.

Extension Methods – Examples

Let’s take for example the definition of an extension method that counts

the number of words in a given string. Have in mind, that the type string is

sealed, so it cannot be inherited.

public static class StringExtensions
{
 public static int WordCount(this string str)
 {
 return str.Split(new char[] { ' ', '.', '?', '!' },
 StringSplitOptions.RemoveEmptyEntries).Length;
 }
}

The method WordCount(…) extends the class String. This is indicated by the

keyword this before the type and the name of the first argument of the

method (in our case str). The method itself is static and it is defined in the

static class StringExtensions. The usage of the extension method is done

the same way as all the other methods of the class String. Do not forget to

add the corresponding namespace, where the static class, describing the

extension methods, is defined. Example of using an extension method:

static void Main()
{
 string helloString = "Hello, Extension Methods!";
 int wordCount = helloString.WordCount();
 Console.WriteLine(wordCount);
}

The method is invoked on the object helloString, which is of type string. It

also takes the object as an argument and works with it (in our case refers to

its Split(…) method and returns the number of elements of the array,

produced by the Split(…) method).

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 917

Extension Methods for Interfaces

Extension methods can not only be used on classes, but on interfaces as well.

Our next example takes an instance of a class, that implements the interface

list of integers (IList<int>), and increases their value by a certain number.

The method IncreaseWith(…) can access only those elements that are

included in the interface IList (e.g. the property Count).

public static class IListExtensions
{
 public static void IncreaseWith(
 this IList<int> list, int amount)
 {
 for (int i = 0; i < list.Count; i++)
 {
 list[i] += amount;
 }
 }
}

The extension methods also give us the opportunity to work on generic types.

Let’s take for example a method that loops trough a collection, using

foreach, implementing IEnumerable from generic type T. Its purpose is to

convert to a meaningful string a sequence of elements (e.g. a list of integers):

public static class IEnumerableExtensions
{
 public static string ToString<T>(
 this IEnumerable<T> enumeration)
 {
 StringBuilder result = new StringBuilder();
 result.Append("[");

 foreach (var item in enumeration)
 {
 result.Append(item.ToString());
 result.Append(", ");
 }

 if (result.Length > 1)
 result.Remove(result.Length - 2, 2);
 result.Append("]");
 return result.ToString();
 }
}

Example of how to use the two extension methods declared above:

www.manaraa.com

918 Fundamentals of Computer Programming with C#

static void Main()
{
 List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
 Console.WriteLine(numbers.ToString<int>());
 numbers.IncreaseWith(5);
 Console.WriteLine(numbers.ToString<int>());
}

The output of the execution of the program will be the following:

[1, 2, 3, 4, 5]
[6, 7, 8, 9, 10]

Anonymous Types

In object-oriented languages (such as C#), it is common to define small

classes that will be used only once. Typical example is the class Point that

has only two fields – the coordinates of a point. Creating a simple class with

the idea of using it just once is inconvenient and time consuming for the

programmer, especially when the standard operations for each class:

ToString(), Equals() and GetHashCode() have to be predefined.

In C# there is a built-in way to create single-use types, called anonymous

types. Objects of such type are created almost the same way as other

objects in C#. The thing with them is that we don’t need to define data type

for the variable in advance. The keyword var indicates to the compiler that

the type of the variable will be automatically detected by the expression, after

the equals sign. We actually don’t have a choice here, since we can’t tell the

specific type of the variable, because it is defined as one of an anonymous

type. After that, we specify name for the object, followed by the "=" operator

and the keyword new. In curly braces we enumerate the names and the

values of the properties of the anonymous type.

Anonymous Types – Example

Here is an example of creating an anonymous type that describes a car:

var myCar = new { Color = "Red", Brand = "BMW", Speed = 180 };

During compilation, the compiler will create a class with a unique name

(something like <>f__AnonymousType0) and will generate properties for it

(with getter and setter). In the example above, the compiler will guess by its

own, that the properties Color and Brand are of type string and Speed will

be set as int. Right after the initialization, the object of the anonymous type

can be used as one of an ordinary type with its three properties:

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 919

Console.WriteLine("My car is a {0} {1}.",
 myCar.Color, myCar.Brand);
Console.WriteLine("It runs {0} km/h.", myCar.Speed);

The output of the code above will be as follows:

My car is a Red BMW.
It runs 180 km/h.

More about Anonymous Types

As any other type in .NET, the anonymous ones inherit the class System.
Object. During compilation, the compiler will automatically redefine the

methods ToString(), Equals() and GetHashCode() for us.

Console.WriteLine("ToString: {0}", myCar.ToString());
Console.WriteLine("Hash code: {0}",
 myCar.GetHashCode().ToString());
Console.WriteLine("Equals? {0}", myCar.Equals(
 new { Color = "Red", Brand = "BMW", Speed = 180 }
));
Console.WriteLine("Type name: {0}", myCar.GetType().ToString());

The output of the code above will be the following:

ToString: { Color = Red, Brand = BMW, Speed = 180 }
Hash code: 1572002086
Equals? True
Type name:
<>f__AnonymousType0`3[System.String,System.String,System.Int32]

As we can see from the result, the method ToString() is redefined, so that

it can list the properties of the anonymous type in the order of their definition

in the initialization of the object (in our case myCar). The method

GetHashCode() is wrote in such a way, that it uses all fields and on their

basis it calculates a hash function with a small number of collisions. The

redefined by the compiler method Equals(…) compares the objects field by

field. As we can notice from the example, we have created a new object that

has exactly the same properties as myCar, and returns a result stating that

the newly created object and the old one have equal values.

Arrays of Anonymous Types

The anonymous types, like ordinary ones, can be used as elements of

arrays. We can initialize them with the keyword new, followed by square

brackets. The values of the elements of the array are listed the same way, as

www.manaraa.com

920 Fundamentals of Computer Programming with C#

the values assigned to the anonymous types. The values in the array should

be homogeneous, i.e. it is not possible to have different anonymous types in

the same array. An example of defining an array of anonymous types with

two properties (X and Y):

var arr = new[] {
 new { X = 3, Y = 5 },
 new { X = 1, Y = 2 },
 new { X = 0, Y = 7 }
};
foreach (var item in arr)
{
 Console.WriteLine(item.ToString());
}

The result of the execution of the code above will be the following:

{ X = 3, Y = 5 }
{ X = 1, Y = 2 }
{ X = 0, Y = 7 }

Lambda Expressions

Lambda expressions are anonymous functions that contain expressions

or sequence of operators. All lambda expressions use the lambda operator =>,

which can be read as “goes to”. The idea of the lambda expressions in C# is

borrowed from the functional programming languages (e.g. Haskell, Lisp,

Scheme, F# and others). The left side of the lambda operator specifies the

input parameters and the right side holds an expression or a code block

that works with the entry parameters and conceivably returns some result.

Usually lambda expressions are used as predicates or instead of delegates

(a type that references a method instance), which can be applied on

collections, processing their elements and/or returning a certain result.

Lambda Expressions – Examples

As an example, let’s take the extension method FindAll(…), which can be

used to filter the necessary elements. It works on a certain collection by

applying a given predicate on it that checks if an element matches a certain

requirement. In order to use it we have to add a reference to the assembly

System.Core.dll (if it is not already added) and include the namespace
System.Linq, because the extension methods for the collections are there.

For example, if we want to take only the even numbers from a collection of

integers, we can use the method FindAll(…) on that collection, passing a

lambda method to it that checks if a certain number is even:

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 921

List<int> list = new List<int>() { 1, 2, 3, 4, 5, 6 };
List<int> evenNumbers = list.FindAll(x => (x % 2) == 0);

foreach (var num in evenNumbers)
{
 Console.Write("{0} ", num);
}

Console.WriteLine();

The result is:

2 4 6

The example above loops through the whole collection of numbers and for

each element (named x) a check, if the number is multiple of 2, is made

(through the Boolean expression (x % 2) == 0).

Let’s now focus on an example in which trough an extension method and a

lambda expression we will create a collection, containing data from a

certain class. In the example, from the class Dog (with properties Name and

Age), we want to get a list that contains all dogs’ names. We can do that with

the extension method Select(…) (defined in the namespace System.Linq)

by assigning to it to turn each dog (x) into dog’s name (x.Name) and writing

that result in the variable names. With the keyword var, we tell the compiler

to define the type of the variable according to the result that we assign on the

right side of the equals sign.

class Dog
{
 public string Name { get; set; }
 public int Age { get; set; }
}

static void Main()
{
 List<Dog> dogs = new List<Dog>() {
 new Dog { Name = "Rex", Age = 4 },
 new Dog { Name = "Sean", Age = 0 },
 new Dog { Name = "Stacy", Age = 3 }
 };
 var names = dogs.Select(x => x.Name);
 foreach (var name in names)
 {
 Console.WriteLine(name);
 }

www.manaraa.com

922 Fundamentals of Computer Programming with C#

}

The result is:

Rex
Sean
Stacy

Using Lambda Expressions with Anonymous Types

We can create collections of anonymous types from a collection with some

elements by using lambda expressions. Let’s take the collection dogs,

containing elements of type Dog, and create new collection consisting of

elements of an anonymous type, having two properties – age and the initial

letter of the dog’s name:

var newDogsList = dogs.Select(
 x => new { Age = x.Age, FirstLetter = x.Name[0] });
foreach (var item in newDogsList)
{
 Console.WriteLine(item);
}

The result is:

{ Age = 4, FirstLetter = R }
{ Age = 0, FirstLetter = S }
{ Age = 3, FirstLetter = S }

As it is obvious from the example above, the newly created collection

newDogsList has elements of an anonymous type, taking the properties Age

and FirstLetter as parameters. The first line of the example can be read as

follows: "Create a variable of undefined (at this point) type, name it

newDogsList and create a new element of an anonymous type for each

element x of the dogs collection with two properties: Age that is equal to the

property Age of the element x, and the property FirstLetter that is equal to

the first character of the string x.Name".

Sorting with Lambda Expressions

If we want to sort the elements in a certain collection, we can use the

extension methods OrderBy(…) and OrderByDescending(…), by defining the

way of sorting in a lambda function. An example on our collection dogs:

var sortedDogs = dogs.OrderByDescending(x => x.Age);

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 923

foreach (var dog in sortedDogs)
{
 Console.WriteLine(string.Format(
 "Dog {0} is {1} years old.", dog.Name, dog.Age));
}

The result is:

Dog Rex is 4 years old.
Dog Stacy is 3 years old.
Dog Sean is 0 years old.

Statements in Lambda Expressions

Lambda functions can also have a body. So far we have used lambda

functions with only one statement. Now we will pay more attention to lambda

functions that have a body. Let’s return to the example with the even

numbers. Suppose we want to print to the console the values of all numbers,

to which our lambda function is applied to and to return the result if they are

even or not. We can do it the following way:

List<int> list = new List<int>() { 20, 1, 4, 8, 9, 44 };
// Process each argument with code statements
var evenNumbers = list.FindAll((i) =>
{
 Console.WriteLine("Value of i is: {0}", i);
 return (i % 2) == 0;
});

The result from the above code is:

Value of i is: 20
Value of i is: 1
Value of i is: 4
Value of i is: 8
Value of i is: 9
Value of i is: 44

Lambda Expressions as Delegates

Lambda functions can be written in delegates. Delegates are such a type of

variables that contains functions (methods). Some standard delegate types in

.NET are: Action, Action<in T>, Action<in T1, in T2>, and so on and

Func<out TResult>, Func<in T, out TResult>, Func<in T1, in T2,
out TResult> and so on. The types Func and Action are generic and

www.manaraa.com

924 Fundamentals of Computer Programming with C#

contain the types of the return value, and the types of the parameters of the

functions. The variables of such types are references to functions. Below is an

example for using and assigning values to these types:

Func<bool> boolFunc = () => true;
Func<int, bool> intFunc = (x) => x < 10;
if (boolFunc() && intFunc(5))
{
 Console.WriteLine("5 < 10");
}

The result is:

5 < 10

In the example above we define two delegates. The first one – boolFunc is

a function that has no input parameters and returns a Boolean result. We

have given an anonymous lambda function that does nothing and always

returns true as a value to that function. The second delegate intFunc takes

as an argument an int variable and returns a Boolean value – true when x is

less than ten, and false otherwise. At the end, in the if statement, we call

these two delegates as we give to the second one value of 5 as an argument,

and the result from their invocation is true, as we can see.

LINQ Queries

LINQ (Language-Integrated Query) is a set of extensions of the .NET

Framework, that includes language integrated queries and operations on the

elements of a certain data source (most often arrays or collections). LINQ is

a very powerful tool, similar to most SQL languages by logic and syntax. It

actually works with collections in the same way as SQL languages work with

table rows in databases. It is part of the syntax of C# and Visual Basic .NET

and consists of few special keywords like from, in and select. In order to

use LINQ queries in C#, we have to include a reference to System.Core.dll
and to include the namespace System.Linq in the beginning of the C#

program.

Data Sources with LINQ

To define the data source (collection, array and so on), we have to use the

keywords from and in and a variable for the iteration of the collection (the

iteration is similar to the one with the foreach operator). For example, a

query that starts like this:

from culture
in CultureInfo.GetCultures(CultureTypes.AllCultures)

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 925

can be read as follows: "for each element of the collection CultureInfo.
GetCultures(CultureTypes.AllCultures) assign the variable culture and

use it to refer to these items further in the query".

Data Filtering with LINQ

The keyword where can be used to set conditions, that should be kept by each

item of the collection, in order to continue with the execution of the query.

The expression after where is always of a Boolean type. We can say that

where works as a filter for the elements. For example, if we want to see

only those cultures, whose name begins with the lowercase Latin letter b, we

can continue the query from our last example like this:

where culture.Name.StartsWith("b")

As we can notice, after where … in, we use only the name we gave for the

iteration of the variables in the collection. The keyword where is compiled up

to the invoking of the extension method Where().

where culture.Name.StartsWith("b")

Results of LINQ Queries

To choose the output data for the query, we can use the keyword

select. The result is an object of an existing class or an anonymous type.

The result can also be a property of the objects, the query runs through or the

objects themselves. The select statement and everything following it is

placed always at the end of the query. The four keywords: from, in, where

and select, are completely enough to create a simple LINQ query. Here is an

example:

List<int> numbers = new List<int>() {
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
};
var evenNumbers =
 from num in numbers
 where num % 2 == 0
 select num;
foreach (var item in evenNumbers)
{
 Console.Write(item + " ");
}

The result is:

2 4 6 8 10

www.manaraa.com

926 Fundamentals of Computer Programming with C#

The example above runs a query over a collection of integers called

numbers and filters only the even ones in a new collection. The query can be

read as follows: "for each number num from numbers check if it is multiple of

2, and if so, add it to the new collection".

Sorting Data with LINQ

Sorting with LINQ queries is done through the keyword orderby. The

conditions, used for sorting the elements, are placed after it. For each

condition the order of arrangement can be indicated: ascending (using the

keyword ascending) and descending (with the keyword descending), as by

default the elements are ordered in ascending order. If we want to sort an

array of strings by their length in descending order, for example, we can write

the following query:

string[] words = { "cherry", "apple", "blueberry" };
var wordsSortedByLength =
 from word in words
 orderby word.Length descending
 select word;
foreach (var word in wordsSortedByLength)
{
 Console.WriteLine(word);
}

The result is:

blueberry
cherry
apple

If no instruction for the order is given (i.e. the keyword orderby is missing

from the query) the items are printed in the way they would be processed, if

the foreach operator was used.

Grouping Results with LINQ

To group the results by some criteria the keyword group should be used. The

pattern is as follows:

group [variable name] by [grouping condition] into [group name]

The result of grouping is a new collection of a special type that can be

used further in the query. After the grouping, however, the query stops

working with its initial variable. This means that in the select statement, we

can use only the group. An example of grouping:

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 927

int[] numbers =
 { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0, 10, 11, 12, 13 };
int divisor = 5;

var numberGroups =
 from number in numbers
 group number by number % divisor into group
 select new { Remainder = group.Key, Numbers = group };

foreach (var group in numberGroups)
{
 Console.WriteLine(
 "Numbers with a remainder of {0} when divided by {1}:",
 group.Remainder, divisor);
 foreach (var number in group.Numbers)
 {
 Console.WriteLine(number);
 }
}

The result is:

Numbers with a remainder of 0 when divided by 5:
5
0
10
Numbers with a remainder of 4 when divided by 5:
4
9
Numbers with a remainder of 1 when divided by 5:
1
6
11
Numbers with a remainder of 3 when divided by 5:
3
8
13
Numbers with a remainder of 2 when divided by 5:
7
2
12

As we can see from the example above, the numbers printed to the console

are grouped by their remainders of the division by 5. In the query, for each

number number % divisor is calculated, and for each different result a new

www.manaraa.com

928 Fundamentals of Computer Programming with C#

group is formed. Further in the query, the select operator works on the list

of created groups, and for each group creates an anonymous type with two

properties: Remainder and Numbers. To the property Remainder the key of

the group is assigned (in our case the remainder of the division by the

divisor of the number). And to the property Numbers the collection group is

assigned, that contains all the elements in the group. Notice that select is

executed only over the list of groups. The variable number cannot be used

there. Further in the example of two nested foreach statements, the

remainders (the groups) and the numbers that have the remainder (located in

the group) are printed.

Joining Data with LINQ

The join statement is a bit more complicated than the other LINQ

statements. It joins collections by certain matching criteria and extracts the

needed data. Its syntax is as follows:

from [variable name from collection 1] in [collection 1] join
[variable name from collection 2] in [collection 2] on [part of
the compare condition from collection 1] equals [part of the
compare condition from collection 2]

Further in the query (e.g. in the select part), both, the name of the variable

from collection 1, and the name of the variable from collection 2, can be used.

Example:

public class Product
{
 public string Name { get; set; }
 public int CategoryID { get; set; }
}

public class Category
{
 public int ID { get; set; }
 public string Name { get; set; }
}

The code that illustrates how to use LINQ joins:

List<Category> categories = new List<Category>()
{
 new Category() { ID = 1, Name = "Fruit" },
 new Category() { ID = 2, Name = "Food" },
 new Category() { ID = 3, Name = "Shoe" },
 new Category() { ID = 4, Name = "Juice" },

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 929

};
List<Product> products = new List<Product>()
{
 new Product() { Name = "Strawberry", CategoryID = 1 },
 new Product() { Name = "Banana", CategoryID = 1 },
 new Product() { Name = "Chicken meat", CategoryID = 2 },
 new Product() { Name = "Apple Juice", CategoryID = 4 },
 new Product() { Name = "Fish", CategoryID = 2 },
 new Product() { Name = "Orange Juice", CategoryID = 4 },
 new Product() { Name = "Sandal", CategoryID = 3 },
};
var productsWithCategories =
 from product in products
 join category in categories
 on product.CategoryID equals category.ID
 select new { Name = product.Name,
 Category = category.Name };
foreach (var item in productsWithCategories)
{
 Console.WriteLine(item);
}

The result is:

{ Name = Strawberry, Category = Fruit }
{ Name = Banana, Category = Fruit }
{ Name = Chicken meat, Category = Food }
{ Name = Apple Juice, Category = Juice }
{ Name = Fish, Category = Food }
{ Name = Orange Juice, Category = Juice }
{ Name = Sandal, Category = Shoe }

In the example above, we create two classes and an imaginary relationship

between them. To each product some category CategoryID (represented by

a number) corresponds, that matches the number ID from the class
Category in the collection categories. If we want to use this relation and to

create a new anonymous type, where to store the products and their names

and category, we can write the above LINQ query. It joins the collection of

elements of type Category with the one of type Product by the mentioned

criteria (match between ID from Category and CategoryID from Products).

In the select part of the query, we use both names category and product

to construct an anonymous type with the name of the product and the name

of the category.

www.manaraa.com

930 Fundamentals of Computer Programming with C#

Nested LINQ Queries

LINQ also supports nested queries. For example our last query can be

written by nesting two queries in the following way (the result is exactly the

same as the one with join):

var productsWithCategories =
 from product in products
 select new {
 Name = product.Name,
 Category =
 (from category in categories
 where category.ID == product.CategoryID
 select category.Name).First()
 };

Since each query in LINQ returns a collection of items (irrespective of whether

the result from it is of 0, 1 or more elements), we need to use the extension

method First() over the result of the nested query. The method First()

returns the first element (in our case the only one) of the collection it is

applied on. In this way we get the name of the category only by its ID

number.

LINQ Performance

As a rule using LINQ and extension methods is slower than using direct

operations over a collection of elements, so beware of using LINQ when

processing large collections or the performance is critical.

Let’s compare the speed of adding 50,000,000 elements to a list through

extension methods and directly with a for-loop:

List<int> l1 = new List<int>();
DateTime startTime = DateTime.Now;
l1.AddRange(Enumerable.Range(1, 50000000));
Console.WriteLine("Ext.method:\t{0}", DateTime.Now - startTime);

startTime = DateTime.Now;
List<int> l2 = new List<int>();
for (int i = 0; i < 50000000; i++) l2.Add(i);
Console.WriteLine("For-loop:\t{0}", DateTime.Now - startTime);

The result might be as follows (depends on the computer’s CPU speed):

Ext.method: 00:00:01.6430939
For-loop: 00:00:00.9120522

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 931

LINQ technology and extension methods work through the concept of

expression trees. Each LINQ query is translated by the compiler to an

expression tree and is executed when its results are actually accessed (not

earlier). For example let’s consider the following code:

List<int> list = new List<int>();
list.AddRange(Enumerable.Range(1, 100000));

DateTime start = DateTime.Now;
for (int i = 0; i < 10000; i++)
{
 var elements = list.Where(e => e > 20000);
}
Console.WriteLine("No execution:\t{0}", DateTime.Now - start);

start = DateTime.Now;
for (int i = 0; i < 10000; i++)
{
 var element = list.Where(e => e > 20000).First();
}
Console.WriteLine("Execution:\t{0}", DateTime.Now - start);

The result might be as follows (depends on the computer’s CPU speed):

No execution: 00:00:00.0070004
Execution: 00:00:02.7231558

This shows that if we call a .Where(…) filter (or where clause in LINQ) it is not

actually executed until its result is actually needed. The elements get filtered

on demand, at the time they are really required. In our case this is when we

invoke First() method. Moreover, if we get the first element of a sequence,

the rest elements are not processes until needed. Thus if we use change the

filtering lambda function from “e => e > 20000” to “e => e > 500000”, the

filtering becomes times slower because more elements are processed until the

first matching the filtering condition is found:

No execution: 00:00:00.0060004
Execution: 00:00:06.3663641

Standard .NET Framework collection classes like List<T>, HashSet<T> and

Dictionary<K,V> are optimized to work fast with LINQ. Most operations with

LINQ work almost as fast as if we run them directly. Let’s check this example:

HashSet<Guid> set = new HashSet<Guid>();
for (int i = 0; i < 50000; i++)
{

www.manaraa.com

932 Fundamentals of Computer Programming with C#

 set.Add(Guid.NewGuid()); // Add random GUID
}

Guid keyForSearching = new Guid();
DateTime start = DateTime.Now;
for (int i = 0; i < 50000; i++)
{
 // Use HashSet.Contains(…)
 bool found = set.Contains(keyForSearching);
}
Console.WriteLine("HashSet: {0}", DateTime.Now - start);

start = DateTime.Now;
for (int i = 0; i < 50000; i++)
{
 // Use IEnumerable<Guid>.Contains(…) extension method
 bool found = set.Contains<Guid>(keyForSearching);
}
Console.WriteLine("Contains: {0}", DateTime.Now - start);

start = DateTime.Now;
for (int i = 0; i < 50000; i++)
{
 // Use IEnumerable<Guid>.Where(…) extension method
 bool found = set.Where(g => g==keyForSearching).Count() > 0;
}
Console.WriteLine("Where: {0}", DateTime.Now - start);

The result is as follows (though it depends on the computer’s CPU speed):

HashSet: 00:00:00.0030002
Contains: 00:00:00.0040003
Where: 00:02:49.9717218

Seems like .NET Framework takes into account the capability to search in

constant time O(1) in a HashSet<T>, so searching though the native method

Contains(…) and though the extension methods IEnumerable.Contains(…)

both run in time O(1). By contrast, the IEnumerable.Where(…) method is

dramatically slower and runs in linear time O(n). This is expected, because

the Where(…) method checks certain condition for each element in a collection

and it is expected to process all elements one by one. By contrast the

Contains(…) method just searches for single element which is fast operation.

In case you do not remember about the asymptotic notation O(1) and O(n),

please check the chapter “Data Structures and Algorithm Complexity”.

www.manaraa.com

Chapter 22. Lambda Expressions and LINQ 933

In the above example we use the system structure Guid. This is a global

unique identifier often used in computer technologies to identify an object. It

may look like the following: 8668f585-faf8-4685-8025-6a8d1d2aba0a. If

you want to generate a global unique (world-wide) identifier, you might

benefit from the method Guid.NewGuid(), like we do in the code above.

Exercises

1. Implement an extension method Substring(int index, int length) for

the class StringBuilder that returns a new StringBuilder and has the

same functionality as the method Substring(…) of the class String.

2. Implement the following extension methods for the classes, implementing

the interface IEnumerable<T>: Sum(), Min(), Max(), Average().

3. Write a class Student with the following properties: first name, last name

and age. Write a method that for a given array of students finds those,

whose first name is before their last one in alphabetical order. Use LINQ.

4. Create a LINQ query that finds the first and the last name of all students,

aged between 18 and 24 years including. Use the class Student from the

previous exercise.

5. By using the extension methods OrderBy(…) and ThenBy(…) with lambda

expression, sort a list of students by their first and last name in

descending order. Rewrite the same functionality using a LINQ query.

6. Write a program that prints to the console all numbers from a given array

(or list), that are multiples of 7 and 3 at the same time. Use the built-

in extension methods with lambda expressions and then rewrite the

same using a LINQ query.

7. Write an extension method for the class String that capitalizes all

letters, which are the beginning of a word in a sentence in English. For

example: "this iS a Sample sentence." should be converted to "This
Is A Sample Sentence.".

8. Create a hash-table to hold a phone book: a set of person names and

their phone numbers (e.g. Kate Wilson +3592981981, +3598862536;

Alex & Co. 1-800-ALEX; Steve Milton +496023456). Fill enough

random data (e.g. 50,000 key-value pairs). Measure how much time it

takes to perform searching by key in the hash-table using its native search

capabilities, using the extension methods IEnumerable.Contains(…) and

IEnumerable.Where(…). Can you explain the difference?

Solutions and Guidelines

1. Follow the syntax explained in the section “Extension Methods”. You

may create a new StringBuilder and to write in it all the characters with

indices, starting from index and with length length, from the object that

the extension method will work on.

www.manaraa.com

934 Fundamentals of Computer Programming with C#

2. For generic implementation of the Min() and Max() methods for any

generic type T you can add a restriction to the passed type T to be

comparable, i.e. you should have something like this:

public static T Min<T>(this IEnumerable<T> elements)
 where T : IComparable<T>
{ … }

Since not all data types have predefined operators + and /, it will not be

possible to apply the functions Sum() and Average() to all types directly.

There are no interfaces ISummable<T> and IDividable<T> in .NET. One

way to work around this problem is to convert all input objects to

decimal and then to calculate sum / average and return decimal as result.

For the conversion you can use the static method Convert.ToDecimal(…).

Another interesting approach is to use the dynamic data type in C# to

hold the arguments and results and to execute the operations over them at

runtime (due to the dynamic evaluation capabilities in C#):

public static dynamic Min<T>(this IEnumerable<T> elements)
{ … }

This is easier to implement and works better but could have performance

issues and some special cases to be handled.

3. Review the keywords from, where and select from the "LINQ Queries"

section in this chapter.

4. Write a LINQ query to select the described students in an anonymous

type that contains only two properties – FirstName and LastName.

5. For the LINQ query use from, orderby, descending and select. For the

implementation with the lambda expressions, you can use the methods

OrderByDescending(…) and ThenByDescending(…).

6. It is enough to check if the numbers are multiples of 21, instead of writing

two where conditions.

7. Use the method ToTitleCase(…) of the property TextInfo in the culture

en-US in the following way:

new CultureInfo("en-US", false).TextInfo.ToTitleCase(text);

8. See the examples at the end of the section “LINQ Performance”. You can

use Dictionary<string, List<string>> to hold the phone book. You

may explain the difference in the execution speed by trying to explain

how searching works internally and by the assumption that searching in a

hash-table takes time O(1) and searching in a collection element by

element runs in linear time O(n).

www.manaraa.com

Chapter 23. Methodology
of Problem Solving

In This Chapter

In this chapter we will discuss one recommended practice for efficiently

solving computer programming problems and make a demonstration with

appropriate examples. We will discuss the basic engineering principles of

problem solving, why we should follow them when solving computer

programming problems (the same principles can also be applied to find the

solutions of many mathematical and scientific problems as well) and we will

make an example of their use. We will describe the steps, in which we

should go in order to solve some sample problems and show the mistakes

that can occur when we do not follow these same steps. We will pay attention

to some important steps from the methodology of problem solving, that we

usually skip, e.g. the testing. We hope to be able to prove you, with proper

examples, that the solving of computer programming problems has a "recipe"

and it is very useful.

Basic Principles of Solving Computer
Programming Problems

You probably think this chapter is about an idle talk like "first think, then act"

or "be careful when you write and try to not miss something". In fact this

chapter will not be so tedious and boring and will give you some practical

guidelines for solving algorithmic problems as well as other problems.

Without making any claim of completeness, we will give you some important

suggestions, based on Svetlin Nakov’s personal experience acquired

during his work of 10+ years as a competitor in International and Bulgarian

programming competitions. Svetlin has gained tens of International awards

from programming contests including medals from International Olympiad in

Informatics (IOI) and has been training students from Sofia University St.

Kliment Ohridski (SU), New Bulgarian University (NBU), Technical

University of Sofia (TU-Sofia), National Academy for Software

Development (NASD), and Telerik Software Academy, and his experience

during the last 10 years confirms that this methodology works well in practice.

Let’s start with the first key suggestion.

http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics

www.manaraa.com

936 Fundamentals of Computer Programming with C#

Use Pen and Paper

The use of a pen and sheet of paper and the making of drafts and sketches

when solving problems is something normal and natural, which every

experienced mathematician, physicist and software engineer does when

tasked with a non-trivial problem.

Unfortunately, our experience with students showed us most of the novice

programmers do not even bring with them a pen and paper. They have

the false perception that in order to solve programming problem they only

need a keyboard. Most of them need some time and exams’ failures to finally

realize that the making of some kind of drafts on paper is crucial for

understanding the problem and constructing a correct solution.

Everyone who does not use a pen and paper will be in a

serious trouble when solving computer programming

problems. It is important always to make drafts of your

ideas on paper or blackboard before even start typing on the

keyboard.

Maybe, it is a little old-fashioned, but the "era of the paper" is not over

yet! The easiest way for you to visualize your idea is to put it on paper. It is

very difficult for most people to try and think about a problem without some

kind of visualization. The visual system in the human brain, which

absorbs information, is strongly connected to these parts of the brain, which

are responsible for the creative potential and logical thinking.

People who have well-developed their visual system in the brain are able to

easily "see" the solution of a problem in their mind. Then they only have to

polish their idea and implement it. These people actively use their visual

memory and their ability to create visual imagery, which is the reason why

they can quickly create ideas and reflect on algorithms for solving problems.

These people can quickly recognize and discard the wrong ideas and

visualize the correct algorithm for the programming problem in a matter

of seconds. Regardless of whether you are a "visual" type of person or not,

writing down and sketching your idea is very useful and will most certainly

help your thoughts on the matter. Most people have the ability to easily

present information to the brain visually.

Think for example, how hard it is for you to multiply five digit numbers in

your head and how less effort does it cost when you use a pen and paper

(we eliminate the possibility of using electronic calculating devices, of course).

It is basically the same with problem-solving, when you need a clear view

on the problem you should use pen and paper. When you need to check for

flaws in your algorithm, you should make some calculations using a pen and

paper. When you need to think about a case in which your algorithm might

not work, you should use pen and paper. That’s why you should always

use pen and paper!

www.manaraa.com

Chapter 23. Methodology of Problem Solving 937

Generate Ideas and Give Them a Try!

As we have mentioned previously, the first thing to do is to sketch some

sample examples for the problem on a piece of paper. When we have a real

example of the problem in front of us, we can reflect on it and the ideas

come.

When the idea is a fact, we need more examples in order to check if it is a

good one. Then we need some more examples, drafted on paper to verify it

again. We should be completely sure our solution is correct. Then we should

go through our solution one more time, step by step, the same way like one

actual computer program would do, and see if everything runs correctly.

The next thing to do is to try "breaking" our solution and thinking of a

case, in which our idea would not work properly (a counter-example). If we

fail at that, then our idea is probably right. If our solution definitely has a

flaw, we should think of a way to fix it. If our idea does not pass every test,

we should invent a new one. Not always the first idea that comes to your

mind is the right one and is a true solution of the problem.

Problem-solving is an iterative process, which represents the invention of

ideas and then testing them over different examples until you reach one,

which seems to work correctly with every example that you could think of.

Sometimes it can take hours for you to try and find the right solution of

a given problem. This is completely normal. Nobody has an ability to instantly

find the correct solution of a problem, but surely the more experience you

have the faster the good ideas will come. If a particular problem has

something in common with one that you have solved in the past, then the

proper idea will come to your mind more quickly, because one of the basic

characteristics of the human brain is to work with analogies. The

experience you get from solving given type of problems will help you with the

invention of ideas for a solution of other analogical problems.

In order to generate ideas and test them it is mandatory to have a piece of

paper, pen and different examples, which you need to visualize with the

help of drafts, sketches or other means. That can help you a lot to quickly try

different ideas and reflect on the solutions, which can occur to you. The basic

things you need to do when you solve problems is to logically think of some

problems that are analogical to the current one, summarize or try to use

general ideas and then construct your solution using pen and paper. When

you have a sketch in front of you it is easier to imagine what could possibly

go wrong. This might give you an idea for the next step or make you give up

your current idea entirely. In this way we can get a complete algorithm, the

correctness that can be tested by a specific example.

The problem solving starts with the invention of ideas and

testing them. This is best done with a pen and paper in hand

and sample sketches and drafts to help you think. Always

test your ideas and solutions with proper examples!

www.manaraa.com

938 Fundamentals of Computer Programming with C#

The recommendations given above are also very useful in one more case –

when you are at a job interview. Every experienced interviewer could agree,

that when he gives an algorithmic problem to the interviewee he expects from

him to take a pen and piece of paper, to reflect on the problem out loud

and to give different suggestions for the solution. This is a sign this person

can think and has a proper approach to the problem solving. Thinking out

loud and rejecting different ideas shows that the interviewee has the right

thinking. Even if he fails to solve the problem, this behavior will make a good

impression to the interviewer!

Decompose the Task into Smaller Subtasks

Complex tasks can always be divided into smaller more manageable

subtasks. We will show this with some examples below. There is not a single

complex problem in this world that has been solved with one try. The correct

formula for solving such a task is to split it into smaller simpler tasks,

which have to be independent and different from one another. If these smaller

subtasks prove to be complicated, we should split them again. This technique

is called "divide and conquer" and it is in use since the time of the Roman

Empire.

The division of the problem into smaller units is easier said than done. The

essence of solving algorithmic problems is in the good technique of division of

the given task into simpler subproblems and, of course, the invention of good

ideas that can be achieved with gaining more experience.

Complex tasks can always be divided into smaller more

manageable subtasks. When you have to solve big

complicated tasks, you should always try to divide it into

simpler problems, which are easier to solve.

"Cards Shuffle" Problem – Example

Let’s give the following example: we have one ordered deck of cards and

we have to shuffle it in random order. Let’s assume that the deck is

represented as an array or list of N objects (every card is an object). These

types of tasks require multiple repeating steps (series of removal, placing,

replacing and realignment of elements). Each of these steps itself is simpler,

easier and more manageable subtask, than the "Cards Shuffle" task as a

whole. If we succeed in decomposing the complex task into smaller subtasks,

we will basically find the right way to solve the problem. Exactly this is the

essence of the algorithmic thinking: the ability to decompose complex

problems into smaller ones and then find the correct solutions for them. Of

course, this principle can be applied not only to programming problems, but

also to ones from other scientific disciplines like math and physics. In fact this

algorithmic thinking is the reason why the mathematicians and the physicists

show a rapid progress when they begin to learn computer programming.

www.manaraa.com

Chapter 23. Methodology of Problem Solving 939

Now let’s go back to the given task and think about how to find the simple

subtasks, which are needed in order to meet the requirements to randomly

shuffle the cards.

If we take one deck of cards in our hands or try to sketch something on paper

(e.g. series of rectangular cells, each of them representing one card), some

ideas instantly come up, for example we need to change or realign

elements from the deck.

Thinking like this, we can easily reach the conclusion we need to make more

than one swap of one or more cards. If we make only one swap, the deck of

cards would not be completely random. Therefore we need many simpler

operations for a single swap (exchange).

We reached the point where we do the first decomposition into smaller

subtasks: we need series of swaps, which can be considered as smaller

tasks, a part of the bigger problem.

First Subtask: a Single Swap

How do we make a single swap of cards in the deck? We can answer this

question in many ways and take the first idea that come to our mind. If it is

any good, we will use it. Otherwise we will think of something else.

Our first idea can be: if we have a deck of cards, we can split it at random

card and then separate and swap the two parts. Now do we have an idea for a

single swap? Yes, we have. The next thing to do is to check if our solution is

working properly (we will demonstrate this after a while).

Now let’s go back to the base task: after applying our idea, we need the

deck of cards to be randomly shuffled. Now we split and swap it many times

and check the result. It seems that our algorithm works fine and the subtask

"single swap" will do the work.

Second Subtask: Choosing a Random Number

How to generate a random number and use it to split the deck? If we have N

cards, we need a random number between 1 and N-1, don’t we?

In order to solve this problem we might need an additional help. If we know

that in .NET Framework this task is already solved, we can simply use the

integrated random number generator.

Otherwise we have to think of a solution e.g. we can read one line from the

keyboard and then measure the time span between the start of the program

and the pressing of the button [Enter]. Since the time of every input is

different (especially, if we report with accuracy to nanoseconds), we have a

way to calculate a random number. The only problem now is to find a way

to place this number in the interval [1…N-1] and probably most of us will

remember that we can use the remainder of its division by (N-1).

We can see that even the simplest subtasks can be divided into smaller

tasks, which sometimes can be already solved for us. When we find a

www.manaraa.com

940 Fundamentals of Computer Programming with C#

suitable solution for the current subtask, we need to go back to the base

problem and test everything and see if it is working correctly put together.

Let’s do that now, shall we?

Third Subtask: Combining Swaps

Let’s go back to the main task. We have reached the conclusion we have to

make as many "single swap" operations as needed to ensure the deck of

cards will be correctly shuffled. This idea seems right and we should try it.

Now this raises the question how many operations "single swap" are

enough? Are 100 enough? Aren’t they too many? And what about 5 times? In

order to give a good answer to this question, we need to think for a while.

How many cards do we have? If we have several cards in the deck, we need

fewer swaps. And if we have many cards, we need much more swaps, right?

Therefore the number of swaps depends on the number of cards in the deck.

To see how many swaps are enough, we can take one standard deck of cards.

How many cards are there in one standard deck? Most of us know there are

52 cards in it. Well then try to figure out how many "single swap" operations

are needed to randomly shuffle one deck of 52 cards. Are 52 enough? It

seems enough because if we swap 52 times at random position it is likely that

we will split the deck at every card (this conclusion is clear even if we do not

know anything about Probability and Statistics). 52 "single swap"

operations seem too much, isn’t it? Let’s think of even smaller number.

What about the half of the number 52? It seems fine as well, but it would be

more difficult to explain why.

Some of you probably think that the best way to find the correct number is to

use complex formulas from the probability theory, but does it make any

sense? The number 52 is small enough and there is no need to look for

other number. One loop of 52 iterations is fast enough. The cards in the deck

would not be billions, would they? Therefore we do not have to think in that

direction. We assume that the correct number of "single swap" equals the

number of the cards in the deck – neither too big nor too small. And this is

the end of the current subtask.

Another Example: Sorting Numbers

Let’s think of another example. We are given an array of numbers and our

task is to sort it in ascending order. There is an abundance of algorithms

for this problem and some of them conceptually different from one another.

Even you could think of some ideas to solve this problem, some of them

would be right and others – not quite.

So we have to solve this task and we are not allowed to use built-in .NET

Framework sorting methods. The first obvious thing to do is to take a pen and

piece of paper and to think of one example and then to reflect on the task.

Thus we can invent multiple and very different ideas like:

www.manaraa.com

Chapter 23. Methodology of Problem Solving 941

- First idea: we can find the smallest number, print it and then remove it

from the array of numbers. The next thing to do is to repeat the same

action until the array is empty. Thinking like this, we can decompose

this task into simpler tasks: finding the smallest number in array;

deleting a number from array; printing a number.

- Next idea: we can find the smallest number and put it at the first

position of the array (swap operation). Then we can do the same action

for the rest of the array. Since we have already placed number on the

first position, we go to the next one. If we repeat this k times, we will

have the first k smallest numbers from the array at the first k positions.

This approach takes us naturally to a task, which can be very easily

divided into smaller subtasks: finding the number with the smallest

value in a part of the array and exchanging the positions of two

numbers from the array. The second subtask can be divided one more

time: removing an element from a given position and placing an

element at a given position.

- Another idea, which uses a method, conceptually different from the

previous two solutions: we split the array into two subarrays with

approximately the same number of elements. Then we sort them

individually and finally we merge them into one. We can do this action

recursively with every subarray until every one of them holds exactly

one element. Array with one element is a sorted one. Here, like in the

previous two ideas, we can divide the complex problem into smaller

more manageable problems: splitting one array into two parts with

approximately equal number of elements; merging two arrays into one

big array.

There is no need to continue, right? It is obvious that every one of you can

think of several different solutions or you can read about the subject in a book

about algorithms. We demonstrated that every complicated problem can

be divided into smaller simpler problems. These is a correct approach to

solving computer programming problems – to think of the big task like it is a

collection of smaller easier subtasks. This technique may be hard to learn, but

in time you will get used to it.

Verify Your Ideas!

It seems that we have figured out everything. We have an idea. It seems to

work properly. The only thing for us to do is to check if our idea is correct or it

is only correct in our minds. After that we can start with the implementation.

How to verify an idea? Usually this happens with the help of some

examples. We should choose examples that fully cover all different cases,

which our algorithm should be able to pass. The sample examples should not

be too easy for your algorithm, but also they should not be so hard to be

sketched. We call these certain types of examples "good representatives of

the common case".

www.manaraa.com

942 Fundamentals of Computer Programming with C#

E.g. if our task is to sort an array in ascending order, then a suitable example

would be an array with 5-6 elements. Two of the numbers in the array

should be equal and the other – different. The numbers should be randomly

placed in the array. This is a good example, because it covers most of the

common cases, in which our algorithm should work.

There are many inappropriate examples for the sorting numbers problem

that could not help you test your idea properly. For example if you use an

array of only two elements. Your solution could work correctly with it, but

your core idea could be completely wrong. Another inappropriate example is

an array of equal numbers. Every sorting algorithm would work correctly with

it. And another bad example – we can use an array that is already sorted.

Algorithm could also work correctly and yet the idea could be wrong.

When verifying your ideas, choose your examples carefully.

They should be simple and easy enough for you to be able to

sketch them down by hand in a minute and at the same time

they should represent most general case in which your idea

should work. Your examples should be good representatives

of the common case and cover as much cases as possible

without being too big and complicated.

"Cards Shuffle" Problem: Verifying the Idea

Let’s think of one sample example for our "Cards Shuffle" task. Let’s say we

have 6 cards. In order our example to be good, our deck of cards should not

be too small (e.g. 2-3 cards), because in this way our example might

become very easy. Also, if we want to easily check our idea with the deck, it

should not be too big. Initially it is a good idea to get six cards and order

them in the deck. In this way it would be easier for us to see if the cards are

well shuffled or partially shuffled or not shuffled at all. So one of the smartest

things to do is to choose 6 cards regardless of their suit and order them by

value.

Now we already have one example, which is a good representative of the

common case of our problem. Let’s now sketch it down on a piece of paper

and check our algorithm on it. We should split the deck into two parts, at a

random position 6 times and then swap them. Our cards are ordered by

value. At the end we expect them to be randomly shuffled.

Let’s see what is going to happen:

www.manaraa.com

Chapter 23. Methodology of Problem Solving 943

There is no need to do 6 swaps. After only 3 swaps we came back to the

starting position. This is probably not an accident. What happened? We have

just found an error in our algorithm. When we reflect on the problem we

can see that with every swap at a random position we rotate the deck to left

and after N times it goes to the starting position. So it was a good thing that

we tested our idea before even started writing some code, wasn’t it?

Sorting Numbers: Verifying the Idea

It is time to check our first idea considering the sorting numbers problem.

We can easily see if it is right or wrong. We start with an array of N elements

and we find the smallest number, print it and then delete it from the array N

times. Even if we do not sketch the idea, it seems faultless. Still let’s think of

one example and see what is going to happen. We take 5 numbers, two of

them are equal: 3, 2, 6, 1, 2. We have 5 steps to do:

1) 3, 2, 6, 1, 2 → 1

2) 3, 2, 6, 2 → 2

3) 3, 6, 2 → 2

4) 3, 6 → 3

5) 6 → 6

Seems like our algorithm works properly. Our result is correct and we do

not have a reason to think that our idea will not work with any other example.

If a Problem Occurs, Invent a New Idea!

When you find your idea is incorrect, the obvious thing to do is to invent a

new, better idea. We can do this in two ways: we can either try to fix our

old idea or create a completely new one. Let’s see how this works with our

cards shuffle problem, shall we?

6
♥

7
♠

5
♣

4
♦

3
♣

2
♠

6
♥

7
♠

5
♣

4
♦

3
♣

2
♠

3
♣

2
♠

3
♣

2
♠

6
♥

7
♠

5
♣

4
♦

6
♥

7
♠

5
♣

4
♦

4
♦

5
♣

6
♥

7
♠

3
♣

2
♠

4
♦

5
♣

6
♥

7
♠

3
♣

2
♠

4
♦

5
♣

6
♥

4
♦

5
♣

6
♥

3
♣

2
♠

7
♠

3
♣

2
♠

7
♠

7
♠

2
♠

3
♣

4
♦

6
♥

5
♣

7
♠

2
♠

3
♣

4
♦

6
♥

5
♣

7
♠
7
♠

6
♥

5
♣

4
♦

3
♣

2
♠

6
♥

5
♣

4
♦

3
♣

2
♠

2
♠

3
♣

4
♦

5
♣

7
♠

6
♥

2
♠

3
♣

4
♦

5
♣

7
♠

6
♥

…

www.manaraa.com

944 Fundamentals of Computer Programming with C#

The creating of a solution for a computer programming

problem is an iterative process, which consists of inventing

ideas, verifying them and sometimes, when problem occurs,

inventing new ones. Sometimes the first idea that comes to

our mind is the right one, but most of the times we need to

go through many different ideas until we reach the best one.

Let’s go back to our card shuffle problem. Firstly let’s see why our premier

idea is wrong and is it possible to fix it? The problem here is easily

recognized: the continuous splitting and card swapping does not shuffle them

randomly; it simply rotates them to left.

How to fix this algorithm? We need to think of a new and better way to

make a "single swap" operation, don’t we? Our new idea for one single swap

is: randomly choose two cards from the deck and swap their places. If we do

this N number of times, we would probably get randomly shuffled deck. This

idea looks better than the previous one and maybe it would work correctly

this time. We already know that before we even start thinking of

implementing our new algorithm it is better to check it and see if it is

working properly. We can verify our idea by using pen and paper and the

example with the 6 cards that we used above.

In this moment we think of an even better idea, instead of choosing 2 random

cards from the deck, why not just pick one random card and swap it with

the first card from the deck? Isn’t this idea simpler and easier to

implement? The result should be random too. Let’s start by choosing a

random card at position k1 and swap it with the first card. Now we have a

random card at the first position and the first card is at the k1 position. On the

next step of the algorithm we pick another card at random position k2 and

then swap it with the card from the first position (previously the card from the

position k1). It is apparent that with only 2 steps we have changed the place

of the first, the k1-st and the k2-nd cards from the deck with random cards. It

seems that at every step one card changes its position with a random one.

After N number of steps we can expect that every card from the deck has

changed its position averagely one time. Hence our solution is working and

the cards should be well shuffled.

Now we should test our new idea. Does it work properly? Let’s make sure

that what has happened last time will not happen again, shall we? Let’s

thoroughly check this idea as well. Again, we can take the 6 cards example,

which represents most of the general cases of the card shuffle problem

(good representative of the common case). Then use the new algorithm and

shuffle them. We should do this 6 times in a row. This is the result:

www.manaraa.com

Chapter 23. Methodology of Problem Solving 945

From the example above we can see that the result is correct – we have

randomly shuffled six cards. If our algorithm works well with 6 cards, it should

work with decks with different number of cards as well. If we are not sure in

that, we should think of another more complicated example and then test the

algorithm again.

Otherwise we could avoid drawing new examples and continue with our task.

Let’s summarize what we have done so far and how with consecutive

actions we have figured out a solution for our problem. As we have gone

through every step, we have done so far the following steps:

- We have used a sheet of paper and pen to sketch a deck of cards.

We have visually represented the deck of cards as an array of boxes.

- As we already have a visual feedback, we could easily think of some

sample ideas: firstly we should make some kind of a single swap

operation and secondly we do this N number of times.

- We had decided that our "single swap" operation was going to be

splitting the deck at random position into left and right part and then

swap them.

- We have decided that we should do this "single swap" as much times as

the number of cards in the given deck.

- We have considered the problem of choosing a random number, but

have finally decided to use a ready solution for the job.

6
♥

7
♠

5
♣

4
♦

3
♣

2
♠

6
♥

7
♠

5
♣

4
♦

3
♣

2
♠

2
♠

7
♠

5
♣

4
♦

3
♣

6
♥

2
♠

7
♠

5
♣

4
♦

3
♣

6
♥

2
♠

7
♠

5
♣

4
♦

3
♣

6
♥

2
♠

7
♠

5
♣

4
♦

3
♣

6
♥

2
♠

7
♠

5
♣

4
♦

6
♥

3
♣

2
♠

7
♠

5
♣

4
♦

6
♥

3
♣

2
♠

7
♠

5
♣

4
♦

6
♥

3
♣

2
♠

7
♠

5
♣

4
♦

6
♥

3
♣

2
♠

3
♣

5
♣

4
♦

6
♥

7
♠

2
♠

3
♣

5
♣

4
♦

6
♥

7
♠

2
♠

3
♣

5
♣

4
♦

6
♥

7
♠

2
♠

3
♣

5
♣

4
♦

6
♥

7
♠

2
♠

3
♣

7
♠

4
♦

6
♥

5
♣

2
♠

3
♣

7
♠

4
♦

6
♥

5
♣

2
♠

3
♣

7
♠

4
♦

6
♥

5
♣

2
♠

3
♣

7
♠

4
♦

6
♥

5
♣

5
♣

3
♣

7
♠

4
♦

6
♥

2
♠

5
♣

3
♣

7
♠

4
♦

6
♥

2
♠

5
♣

3
♣

7
♠

4
♦

6
♥

2
♠

5
♣

3
♣

7
♠

4
♦

6
♥

2
♠

5
♣

3
♣

2
♠

4
♦

6
♥

7
♠

5
♣

3
♣

2
♠

4
♦

6
♥

7
♠

www.manaraa.com

946 Fundamentals of Computer Programming with C#

- We have decomposed the main problem into three smaller subtasks:

"single swap" operation; choosing a random split point; combining a

sequence of "single swap" operations.

- We have checked our idea for mistakes and found one. It was a good

thing to check it when we did, because it was not too late to fix it.

- We have thought of a new, more reliable solution of the single swap

operation.

- We have checked our new idea with an appropriate example and

we assured ourselves that this time the solution was right.

Now we finally have a working idea, backed up with good examples. This is

the most important thing to do in order to solve a given problem – inventing

of the algorithm. The easier part remains – the implementation of our

idea. Let’s see how this can be done.

Choose Appropriate Data Structures!

If we already have a correct and working idea for the solution of the problem,

the next thing to do is to write the program code. We have missed something,

right? What have we missed? Have we done everything necessary to be able

to write fast, easy and trouble-free implementation of our solution?

The thing that we have missed is the manner in which our idea (which we

have checked on a sheet of paper) is going to be implemented as a computer

program. The implementation is not always a simple task and sometimes

it requires additional ideas. This is the next major step: to think of our ideas

in terms of the computer programming. This means to think for specific data

structures and not for abstract ones like "card" and "deck". We should choose

the right data structures, which are going to help us build a correct solution.

Before you even start with the implementation of your idea,

you should choose the proper data structures. It may turn

out that your current idea is not as good as it seems. The

solution could be inefficient or difficult to implement. It is

better to figure this out before you write any programming

code!

In our case we have spoken of swapping one card from the deck with another,

but in terms of programming this means to swap two elements from

specific data structure (i.e. array, list or something else). We have reached

the moment where we have to choose one data structure and show you how

it is done.

What Kind of Data Structure Should We Use?

The first question that comes to our mind is: What kind of data structure

should we use? We may have all kinds of different ideas for data structures,

but not all of them can do the work. Let’s reflect for a while, shall we? We

www.manaraa.com

Chapter 23. Methodology of Problem Solving 947

have a collection of cards and the way in which the cards are ordered matters.

That’s why we need a data structure that can hold a collection of elements

and keep their order.

Can We Use an Array?

The first thing we can think of is using the structure "array". The array

structure is the simplest data structure, which can hold a collection of

elements. The array also keeps the order of the elements (first, second, third

and so on) and we can reach each element by index. The array has a fixed

number of elements and we cannot change its size during the execution of the

program.

Is the array the correct data structure for us? To answer this question we

have to know what kind of operations we are going to apply on the deck,

represented as an array, and whether they are feasible and efficient.

What kind of operations are we going to apply in order to implement our

algorithm? Let’s enumerate them:

- Choosing a random card. Since we can access every element from the

array by index we can easily pick a random position k between the

interval [1…N-1].

- Swapping the first card with the k-positioned one (single swap).

After choosing the random card, we should swap it with the first one.

Again this operation seems easy enough. We can do the swap with three

simple steps and one temporary variable.

- More operations that we might use: initialization of the deck;

traversing the deck; printing the deck. All these operations seem trivial

when applied on array.

It seems that one simple data structure like the array can represent a deck of

cards quite well.

Can We Use Another Data Structure?

It is normal to ask ourselves whether an array is the best data structure for

our problem. It seems that every operation that we use in our algorithm can

be applied efficiently to the array.

But still, let’s try and think of an even better data structure for the deck of

cards than the array. What other options do we have?

- Linked list – we do not have an indexer and it will be difficult for us to

access element at a random position.

- Array with a non-defined size (List<T>) – this structure seems to

have all the benefits of the arrays and we can apply every operation to it

as well. If we use List<T>, we increase our comfort – we can easily

remove and add elements, which may help us to initialize the deck

faster and do some other helpful operations.

www.manaraa.com

948 Fundamentals of Computer Programming with C#

- Stack / queue – the deck of cards does not have a behavior of FIFO or

LIFO, so these structures are not appropriate for our algorithm.

- Sets (TreeSet<T> / HashSet<T>) – with the use of sets we lose the

original order of the elements which is a major obstacle. The use of sets

is inappropriate.

- Hash table – the structure card deck is not from the type key-value, so

the structure hash table cannot store the deck efficiently. Also it does

not allow us to keep the original order of the elements.

Generally speaking, we have just covered the basic data structures, which

can hold a collection of elements. We have reached the conclusion that either

array or List<T> will be suitable for the job. List<T> is more flexible than the

ordinary array, so we decide to use List<T> to represent our deck of cards.

The choice of data structure begins with the consideration of

all key operations that we are going to perform on it. Next

we analyze all suitable structures and choose the one that

will be the most efficient and easiest to use. And sometimes

we should make a compromise between efficiency and the

simplicity.

How to Represent the Other Data Objects?

We have already decided how to represent our deck of cards and now we

should do the same with the other objects that we are going to use in our

algorithm. If we think about it, it seems that beside the two objects a "card"

and "deck", which we use in our algorithm, we do not use other data objects.

The next question that arises is how to represent a single card? We can

represent it as a string, number or class, which has two fields – face and suit.

There are, of course, other variants, which have their advantages and

disadvantages.

Before we even start considering which of these representations of one card is

"the best", we should go back to the requirements of the task. It suggests

that we are given a deck of cards (as an array or list) and our task is to

shuffle it. How a card is represented is not of importance in the task. So it

does not matter what we shuffle, we could shuffle cards, chess figures, boxes

of tomatoes or other objects. We have an ordered collection of elements

and we need to randomly shuffle it. The fact that we shuffle cards is not

significant for our task, that’s why we do not need to waste time to choose

the best way to represent one card. Let’s use the first thing that come to our

mind, i.e. we will define a class Card with 2 fields – Face and Suit. Even if we

use a number between 1 and 52 to represent one card, it still does not

change anything. We shall not discuss this any further.

www.manaraa.com

Chapter 23. Methodology of Problem Solving 949

Sorting Numbers: Choosing a Data Structures

Let’s go back to the sorting numbers problem and choose an appropriate

data structures for it too. We choose to use the simplest algorithm that we

could think of: to pick the smallest number until we can, print it and after that

delete it. This solution can be easily sketched on a piece of paper and checked

for errors.

Again, in order to answer this question we need to figure out what kind of

operations we are going to use in our algorithm. The operations are as

follows:

- Searching for the smallest number in the structure.

- Removing of the previously found smallest number.

Obviously, the use of an array is not reasonable, because we need the

operation "remove". The use of List<T> seems better, because both

operations can be simply and easily implemented. Data structures like stack

or queue have a little use for us, because we do not have a LIFO or FIFO

behavior. There is not much sense to use a hash table, because the "search

by value" operation is not fast, despite the fact that the removal of an

element should be very efficient.

Let’s talk about the two sets – HashSet<T> and TreeSet<T>. The two sets

have one major problem. They cannot contain elements with an equal value.

Despite that let’s see what they can do. The HashSet<T> is not of any

interest, because like the hash tables it does not support efficient way to find

the element with the smallest value. The data structure TreeSet<T>,

however, looks very promising. Let’s take a look, shall we?

The TreeSet<T> class is a balanced search tree by design, so it supports

the operation "finding the smallest element". That’s interesting, isn’t it? Now

we have a new solution for the task, we put all the input elements in a

TreeSet<T> and then we get the smallest from the set until it remains empty.

Easy, simple and very efficient. The two operations, which we want, are

internally implemented (searching for the smallest number and deleting it).

While we skim through the documentation, we figure out something very

interesting: the TreeSet<T> stores its elements ordered by value. And this

is the solution of our problem, right? Therefore if we keep all the input

elements in a TreeSet<T> and then traverse the ordered set (with the help of

the built-in enumeration), we will have all the elements ordered by value.

Problem solved!

We are now very happy, we found one very nice way to solve our task, but

soon we discover one major problem: TreeSet<T> does not store two

elements with the same value. I.e. if we add the number 5 several times,

at the end there will be only one entry with a value 5. Eventually we will lose

some of the input elements irreversibly.

www.manaraa.com

950 Fundamentals of Computer Programming with C#

Naturally we want this problem fixed. If there was a way to store how many

times one number occurs in a set that would solve our problem. Then we

think of the SortedDictionary<K,T>. This class can store ordered keys,

which have a value. We can store the number of occurrences of a key in its

corresponding value. We can traverse all the elements and then store the

number of occurrences in the SortedDictionary<K,T>. Although it seems our

problem is solved, it is not going to be implemented as elegant and simple as

with List<T> or TreeSet<T>.

If we read the documentation of the SortedDictionary<K,T> carefully, we

will find that this class internally uses a red–black tree and some day we can

implement that this type of sorting is very famous and it is called a Binary

Tree Sorting (http://en.wikipedia.org/wiki/Binary_tree_sort).

With this little demonstration we showed you how when you put some

thoughts into the selection of the best data structures, you can come up

with some new solutions for the problem. We start with an algorithm, which

leads us to a new, better one. This is normal to happen during the process of

consideration of our algorithm and not after we have written 300 lines of

code, which we will then have to be redone. This is another proof it is better

to firstly think of the best data structures and then to start writing the

programming code.

Think about the Efficiency!

Again, it seems we should grab the keyboard and start writing a programming

code. And again, it is better not to hurry. The thing is that we have not

thought of something very important: the efficiency and performance of

our algorithm.

You should think of efficiency before writing even a line of a

programming code. Otherwise, you risk to waste time

implementing an algorithm, which is inefficient and slow.

Let’s return to our "card-shuffle" problem. We have a working idea for solving

the problem (we have invented the algorithm). The idea appears to be correct

(we have checked the algorithm with examples). We should not have any

problems implementing our idea (we are going to use List<Card> for the

deck and class Card for a single card). Everything seems fine, but let’s think

about how many cards we are going to shuffle. Is our idea going to work

fast enough when using the chosen data structures?

How to Estimate the Performance of Given Algorithm?

How fast is our algorithm? To answer this question we should estimate how

many operations it performs when shuffling one deck of 52 cards.

For one deck of 52 cards our algorithm makes 52 "single swap"

operations, do you agree? How many elementary operations cost one "single

http://en.wikipedia.org/wiki/Binary_tree_sort

www.manaraa.com

Chapter 23. Methodology of Problem Solving 951

swap"? 4 operations: the choice of one random card; the placing of the first

card in a temporary variable; the replacing of the first card with the random

card; the replacing of the random card with the first card (from the temporary

variable). How many operations does our algorithm do? They are

approximately 52 * 4 = 208.

Are 208 operations too much? Let’s do a loop with 208 iterations. Are they too

much? Give it a try! We can assure you that one loop with 1,000,000

iterations on a modern computer goes imperceptibly fast, and one with 208 –

for an insignificant amount of time. Therefore we can easily conclude that our

algorithm has a good performance. Our algorithm is extremely fast when

working with 52 cards.

Despite the fact that in reality we rarely play cards with more than 1 – 2

decks, let’s assume that we have 50,000 cards in the deck. Let’s estimate

the performance of our algorithm with a large number of cards. We have

50,000 single swap operations and each of them consists of 4 operations,

which makes about 200,000 operations, which are going to be executed for a

small amount of time as well.

The Efficiency Is a Matter of Compromise

Finally we can conclude that our algorithm is efficient and will work well even

with decks with large amount of cards. Here we had luck. Usually the things

are not so simple and we must make a compromise with the performance and

the efforts, which we put, when we implement our algorithm. For example if

we sort numbers, we can solve this problem in minutes when we use some of

the simplest sorting algorithms. We can also do this much more efficiently

when we use some of the more complex algorithms, but that will waste

more of our time (in searching and reading books and Internet).

Is it worth it? We should consider that. If we have to sort 20 numbers, it does

not matter which algorithm we are going to use. It will always be fast, even

with the most naive algorithm. If we are going to sort 20,000 numbers, the

algorithm matters, and if we need to sort 20,000,000, we should look at the

task from a completely new angle. The efforts for solving efficiently the

problem of sorting 20,000,000 numbers is far more than the efforts for

writing a straightforward algorithm to sort 20 numbers. We should answer the

question: is it worth it?

The efficiency is a matter of compromise – sometimes it

does not worth to complicate your algorithm and put time

and effort to make it work faster. But occasionally the

performance is crucial and we should pay serious attention

to it.

www.manaraa.com

952 Fundamentals of Computer Programming with C#

Sorting Numbers: Estimating the Performance

It is obvious that the performance depends on whether a particular task

requires it. And now let’s return to the sorting numbers problem, because we

want to show you that the efficiency is directly related to the right

choice of data structures.

Let’s go back to the point where we have decided what kind of data structures

to use for keeping the input data. Which is better: List<T> or

SortedDictionary<K,T>? Shouldn’t we use a data structure that we know

well instead of some complex structure that we have never used? Do you

know well red-black trees (the internal implementation of the

SortedDictionary<K,T>)? With what are they better than List<T>? In fact it

may turn out that you do not need to answer this question after all.

If we have to sort 20 numbers, does it matter what data structure are we

going to use? We can choose the simplest algorithm and the first data

structure that is actually suitable for the job and that’s it. It does not matter

how fast is the algorithm and the data structure, because the numbers are

not so many.

But if we have to sort 300,000 numbers, then everything is different. We

should carefully study how exactly the class SortedDictionary<K,T>

behaves. We should figure out how fast is the "search" operation. How fast

does this data structure add elements? How fast can you traverse through

every element of the collection? If we read the documentation of the class we

will see that the adding of an element takes on average log2(N) steps, where

N is the number of the elements in the structure. After few simple

mathematical calculations (which require additional skills), we can roughly

estimate that we need about 5-6 million steps to sort all numbers. For

300,000 numbers this number is reasonably small.

Similarly we can prove that the search and delete operations in List<T> with

N elements take N steps. Therefore for 300,000 elements we will need

roughly 2 * 300,000 * 300,000 steps. In fact this number is an approximate

guess, because at the beginning we have one number in the list, not 300,000

elements. Nevertheless this estimation is approximately right, maybe a bit

rough but right. We can see that the number of steps needed in this case is

extremely large, that is why here the simple algorithm will not work

properly (the program might "hang").

And again we reach a point where we need to choose between one simple

and one complex algorithm. One of them can be very easily but slow when

implemented. The other is more efficient, but very difficult to implement and

we will probably need an additional reading of documentation and thick books

in order to correctly estimate the performance. Everything is a matter of

compromise.

Naturally, at this point we can think of some of the other algorithms that we

have considered previously. And precisely, to split the array into two parts

then to sort them separately (by a recursive call) and then merge the two

www.manaraa.com

Chapter 23. Methodology of Problem Solving 953

parts into one sorted array. As we consider this algorithm we will find that this

solution will work efficiently with such structures like the dynamic array

(List<T>). This sorting algorithm has an average and worst-case perfor-

mance of n*log(n) steps, where n is the count of the elements in the array.

This algorithm will work efficiently with 300,000 numbers. Let’s not go any

further, if you want more details about the algorithm you should read more

about MergeSort in Wikipedia (http://en.wikipedia.org/wiki/Merge_sort).

Implement Your Algorithm!

We have finally reached the time where we can start with the

implementation of our solution. We already have a working idea, we have

chosen the best data structure and now it is the time to start writing the

programming code. If we have not done some of the previous steps, we

should go back to them before start writing the code.

If you do not have an invented idea, do not start writing

programming code! What are you going to write if you do

not have a working idea? This is like to go to the train

station and get on the first train that you can see, without

even deciding where you are going.

This is typical for novice programmers: once they see the requirements,

they proceed with the writing of the programming code. After some time, that

they waste in a pursuit of wrong ideas (that occur to them during the writing),

they realize that it is better to stop and think a bit more about the solution.

This whole concept is wrong and the main goal of this chapter is to protect

you from this frivolous and very inefficient approach to problem-solving.

If you have not checked your ideas, there is no sense to start

implementing them! Is it necessary to write 300 lines of

code before implementing that your idea is totally wrong? Is

it necessary for you to start over?

The implementation of already invented and checked idea is very easy and

simple. But the implementation itself requires additional skills and mostly

experience. The more experience you have the faster and easier it will be for

you to write efficient programming code. With lots of practice, which will come

with time, you will become very skilled in writing high-quality code and you

will be able to write code faster. If you want to know more about high-quality

programming code you should read the chapter "High-Quality Programming

Code". But for now let’s focus on the implementation of our ideas.

We assume that you should already know the basic steps needed to write

programming code: you know how to work with the development environment

(Visual Studio), the compiler; how to understand the error messages and use

the "auto complete" function; how to create methods, constructors and

properties and fix errors and use the debugger. Therefore these next advices

http://en.wikipedia.org/wiki/Merge_sort

www.manaraa.com

954 Fundamentals of Computer Programming with C#

are not so much connected with the writing itself but with the overall

approach when writing programming code.

Write the Code Step by Step!

Have you written 200-300 lines of code without even compiling or testing it?

Do not do that! Do not write large lumps of code at one time, instead you

should write small parts and then test them.

How to write code step by step? This depends on the given task and the way,

in which it is decomposed into smaller tasks. For example if the main task

consists of 3 independent parts, we should write one of them, compile and

test it with a proper input data until we are sure that it works correctly. After

that we move to the second part – write code, compile, test and then

proceed with the third part with the same approach and finally integrate

the parts and test everything as a whole.

Why to write code step by step? Because we reduce the amount of code

that we have to concentrate on in any given moment. By treating the

problem in parts, we decrease its complexity. Remember: the large and

complicated task could always be divided into several smaller and simpler

subtasks. And it is always easier to solve simple problems.

When writing large chunks of code, without compiling it, we accumulate a

great amount of errors, which could easily be avoided by a simple

compilation. The modern programming environments (like Visual Studio) try

to recognize the syntactic errors automatically while we are writing the code.

Use this function and fix the obvious coding errors as early as possible. Early

troubleshooting takes less time and nerves. However if we delay the

troubleshooting, it could cost us a lot of efforts, sometimes even rewriting the

whole programming code.

When you write a huge amount of code, which is not tested, and decide to

test it as a whole with some input data, you usually receive a lot of errors,

which can be avoided if one just compiles. The larger the code is, more

difficult it is to be fixed. These problems could be caused by a variety of

reasons: incorrect use of data structures; wrong algorithm; badly structured

code; bad condition in the if-statement; wrongly implemented loop; going

out of bounds of the array and many other problems that could have been

fixed earlier. Do not wait for the last moment. Eliminate the mistakes

as soon as possible!

Write your program in parts, not at once! Take, write and

compile one logically independent part, fix the errors, test it

and if it works fine, move to the next part.

Writing Code Step by Step – Example

In order to demonstrate how to write code step by step, we should

illustrate it with the "card-shuffle" algorithm that we invented previously.

www.manaraa.com

Chapter 23. Methodology of Problem Solving 955

Step 1 – Defining the Class "Card"

Our task is to shuffle the card deck, so let’s start with the definition of the

class "card". If we do not have an idea of how to represent one single card,

we could not have any idea how to represent a deck as well. Therefore it will

not be possible to define a method for shuffling the cards. We have already

agreed the representation of one card does not matter, so any kind of them

might work.

We will define a class "card" with fields face and suit. We will use a string

variable for the face of the card (with possible values: "2", "3", "4", "5", "6",

"7", "8", "9", "10", "J", "Q", "K" or "A") and enumerable variable for the suit of

the card (possible values: "Club", "Diamond", "Heart", "Spade"). The class

Card might look like the following code:

Card.cs

class Card
{
 public string Face { get; set; }
 public Suit Suit { get; set; }

 public override string ToString()
 {
 string card = "(" + this.Face + " " + this.Suit + ")";
 return card;
 }
}

enum Suit
{
 CLUB, DIAMOND, HEART, SPADE
}

For comfort we have overridden the method ToString() for the class Card.

In this way we could easily print a single card on the console. We have

defined enumerable type for the Suit.

Testing of the Class "Card"

Some of us would probably proceed with writing the code, but if we follow the

principle "Writing Code Step by Step", we should firstly compile and test

how the class Card works.

In order to do so, we can write a small simple program to initialize a single

card (e.g. Ace of Clubs) and print it on the console. This will check whether

our class Card, its constructor and its ToString() method work correctly:

www.manaraa.com

956 Fundamentals of Computer Programming with C#

static void Main()
{
 Card card = new Card() { Face="A", Suit=Suit.CLUB };
 Console.WriteLine(card);
}

We start the program and check if the card is printed correctly. We should see

the following:

(A CLUB)

Step 2 – Creating and Printing a Deck of Cards

Before we proceed with the main task (randomly shuffling the deck of cards)

we should try to initialize and print a whole deck of 52 cards. Thus we

will be completely sure that the input data for the card-shuffle method is

correct. Based on our previous analysis on the data structures, we should use

List<Card> in order to represent the deck. Let’s create and print a deck of

five cards, shall we? Later we can try with a full deck of 52 cards.

CardsShuffle.cs

class CardsShuffle
{
 static void Main()
 {
 List<Card> cards = new List<Card>();
 cards.Add(new Card() { Face = "7", Suit = Suit.HEART });
 cards.Add(new Card() { Face = "A", Suit = Suit.SPADE });
 cards.Add(new Card() { Face = "10", Suit = Suit.DIAMOND });
 cards.Add(new Card() { Face = "2", Suit = Suit.CLUB });
 cards.Add(new Card() { Face = "6", Suit = Suit.DIAMOND });
 cards.Add(new Card() { Face = "J", Suit = Suit.CLUB });
 PrintCards(cards);
 }

 static void PrintCards(List<Card> cards)
 {
 foreach (Card card in cards)
 {
 Console.Write(card);
 }
 Console.WriteLine();
 }
}

www.manaraa.com

Chapter 23. Methodology of Problem Solving 957

Printing the Deck – Testing the Code

Before we proceed forward, let’s start the program and verify the output

result. It seems that there are no mistakes, the result is correct:

(7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6 DIAMOND)(J CLUB)

Step 3 – Single Swap

Let’s implement the next step to the task solution – the subtask "single

swap". When we have a logically independent piece of code, the best thing to

do is to extract it as a separate method. We should think of what is our input

and output. Our input should be a single deck of cards (List<Card>). As a

result of its work the method should change the input deck List<card>. The

method should not return any result, because it does not create a new

List<Card>, it just operates with the already created and submitted list.

What should be the name of the method? Following the recommendations for

working with methods, we should give "descriptive" name (with 1-2 words)

what the method is for. Suitable name for it is: PerformSingleSwap(…). The

name clearly describes what the method does: executes a single swap.

Let’s firstly define the method and then write its body. This is a good practice,

because before we proceed with the implementation of the method, we should

be aware: what does it do; how does it work and what is its name. Here it is

the definition of the method:

static void PerformSingleSwap(List<Card> cards)
{
 // TODO: Implement the method body
}

The next thing to do is to write the body itself. Firstly let’s recall the

algorithm: we choose one random number k in the interval between 1 and

the length of the array minus 1 and then swap the element at the position

k with the first element. Everything seems easy, but how do we generate a

random number in a given interval with the language C#?

Search in Google!

When we encounter a common problem, which we cannot solve, but we are

sure that many people have faced it, the easiest way to cope with it is to

search for information in Google. We should adequately structure our search.

In our case we look for sample C# code, which returns as a result a

random number in a given interval. We could try the following search:

C# random number example

www.manaraa.com

958 Fundamentals of Computer Programming with C#

Among the first results there is a C# program, which uses the class

System.Random for generating a random number. Now we have a direction

in which we look for a solution. We know that in .NET Framework there is a

standard class called Random, which serves for generating random numbers.

After that we could try to guess how this class works (most of the times it

takes less time to guess instead of reading the documentation). We are trying

to find an appropriate static method for generating a random number, but it

seems there is none. Then we make an instance and search for a method,

which could return a number in given a diapason. We have luck, there is a

method Next(minValue, maxValue), which returns what we need.

Let’s try to write the whole code for the method. We have the following:

static void PerformSingleSwap(List<Card> cards)
{
 Random rand = new Random();
 int randomIndex = rand.Next(1, cards.Count - 1);
 Card firstCard = cards[1];
 Card randomCard = cards[randomIndex];
 cards[1] = randomCard;
 cards[randomIndex] = firstCard;
}

Single Swap – Testing the Code

The next step is to test the code. Before proceeding forward, we have to be

sure that the single swap (exchange) operation works properly. We do not

want to find an eventual problem just when we test the "card-shuffle" method

with the entire deck? It is better when there is a problem to be found

immediately and when there is none, to continue forward with confidence.

We act step by step – before going to the next step we should make sure that

the current step is working fine. For this purpose we make a small test
program, let’s say with 3 cards (2♣, 3♥ and 4♠):

static void Main()
{
 List<Card> cards = new List<Card>();
 cards.Add(new Card() { Face = "2", Suit = Suit.CLUB });
 cards.Add(new Card() { Face = "3", Suit = Suit.HEART });
 cards.Add(new Card() { Face = "4", Suit = Suit.SPADE });
 PerformSingleSwap(cards);
 PrintCards(cards);
}

Let’s perform several times a single swap operation with our 3 cards.

The first card (card 2♣) is supposed to be with one of the other two cards

(cards 3♥ or 4♠). We execute the program several times in a sequence. We

www.manaraa.com

Chapter 23. Methodology of Problem Solving 959

should expect the half of the obtained results to contain (3♥, 2♣, 4♠) and the

other half – (4♠, 3♥, 2♣), shouldn’t we? Let’s see what is going to happen. We

start the program and see the following results:

(2 CLUB)(3 HEART)(4 SPADE)

We start it again and again and the result is the same – no swap is made.

How is that possible? What has just happened? Did we miss to execute the

single swap before printing the cards? There is something wrong here. It

seems that the program did not make even one swap in the deck of cards.

How did this happen?

Single Swap – Correcting the Mistakes

It is obvious that there is a mistake. Let’s put a breakpoint and follow what

is happening via the debugger of Visual Studio:

It is clear that during the first execution the random position happens to be

one. This is acceptable so we continue on. When we look the code we follow,

we notice that we swap the random element at index 1 with the element

at position 1 i.e. with itself. We apparently did something wrong. And

then we remember that indexing in List<T> is zero-based i.e. the first

element is at position 0. We immediately change the code:

static void PerformSingleSwap(List<Card> cards)
{
 Random rand = new Random();
 int randomIndex = rand.Next(1, cards.Count - 1);
 Card firstCard = cards[0];
 Card randomCard = cards[randomIndex];
 cards[0] = randomCard;
 cards[randomIndex] = firstCard;
}

We start the program several times and we get unexpected results, again:

(3 HEART)(2 CLUB)(4 SPADE)

www.manaraa.com

960 Fundamentals of Computer Programming with C#

(3 HEART)(2 CLUB)(4 SPADE)
(3 HEART)(2 CLUB)(4 SPADE)

It seems that the random number is not so random. What to do now? Do

not rush to blame .NET Framework, CLR, Visual Studio and all other usual

suspects! It is possible that the mistake is ours. Let’s look at the execution

of the method Next(…). Since cards' count is 3, we always call Next(1, 2)

and expect from it to return a number between one and two. It seems correct

but if we read what the documentation says for the method Next(…), we will

notice that the second parameter should be one unit bigger than the upper

border we want to obtain.

We were wrong about the diapason of the random number that we

selected. We correct the code and once again we test it to see how it works.

After the second correction we get the following results:

static void PerformSingleSwap(List<Card> cards)
{
 Random rand = new Random();
 int randomIndex = rand.Next(1, cards.Count);
 Card firstCard = cards[0];
 Card randomCard = cards[randomIndex];
 cards[0] = randomCard;
 cards[randomIndex] = firstCard;
}

Here are the possible results after several executions of the previous method:

(3 HEART)(2 CLUB)(4 SPADE)
(4 SPADE)(3 HEART)(2 CLUB)
(4 SPADE)(3 HEART)(2 CLUB)
(3 HEART)(2 CLUB)(4 SPADE)
(4 SPADE)(3 HEART)(2 CLUB)
(3 HEART)(2 CLUB)(4 SPADE)

It seems that after enough executions the first card is replaced by each of the

other two cards i.e. we have a random swap indeed and every card has the

equal chance to be randomly chosen. We are finally ready with the method

"single swap". It is better that we found these two mistakes now and not

later when the whole program is supposed to start working, right?

Step 4 – Card Shuffling

The last step is simple: we use the single-swap method N times:

static void ShuffleCards(List<Card> cards)
{

www.manaraa.com

Chapter 23. Methodology of Problem Solving 961

 for (int i = 1; i <= cards.Count; i++)
 {
 PerformSingleSwap(cards);
 }
}

We now can put it all together. We combine all the pieces of code we

already wrote, tested and we checked they work correctly. The entire code of

our program looks like this:

CardsShuffle.cs

using System;
using System.Collections.Generic;

class CardsShuffle
{
 static void Main()
 {
 List<Card> cards = new List<Card>();
 cards.Add(new Card() { Face = "2", Suit = Suit.CLUB });
 cards.Add(new Card() { Face = "6", Suit = Suit.DIAMOND });
 cards.Add(new Card() { Face = "7", Suit = Suit.HEART });
 cards.Add(new Card() { Face = "A", Suit = Suit.SPADE });
 cards.Add(new Card() { Face = "J", Suit = Suit.CLUB });
 cards.Add(new Card() { Face = "10", Suit = Suit.DIAMOND });

 Console.Write("Initial deck: ");
 PrintCards(cards);

 ShuffleCards(cards);
 Console.Write("After shuffle: ");
 PrintCards(cards);
 }

 static void PerformSingleSwap(List<Card> cards)
 {
 Random rand = new Random();
 int randomIndex = rand.Next(1, cards.Count);
 Card firstCard = cards[0];
 Card randomCard = cards[randomIndex];
 cards[0] = randomCard;
 cards[randomIndex] = firstCard;
 }

www.manaraa.com

962 Fundamentals of Computer Programming with C#

 static void ShuffleCards(List<Card> cards)
 {
 for (int i = 1; i <= cards.Count; i++)
 {
 PerformSingleSwap(cards);
 }
 }

 static void PrintCards(List<Card> cards)
 {
 foreach (Card card in cards)
 {
 Console.Write(card);
 }
 Console.WriteLine();
 }
}

Card Shuffling – Testing

Now we only need to test whether the algorithm for shuffling a deck of cards

works correctly. Here is the output of our program:

Initial deck: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)
After shuffle: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)

As we can see, we encounter a problem: after the shuffle the cards did not

change their order. We run the program several times and the result is the

same. Did we forget to call the card-shuffling method ShuffleCards?

We take a close look at our source code: everything looks fine. We decide

to set a breakpoint after the call of the method PerformSingleSwap(…) in the

body of the loop, responsible for the shuffling of the cards. We run our

program in debugging mode by pressing the [F5] button. After the first

stop of the debugger at our breakpoint everything seems good – the first

card is exchanged with another one, as it supposed to. After the second stop

of the debugger everything is still all right – a random card is swapped with

the first one. We continue tracing the program execution with the debugger

and everything seems to work just fine.

The card shuffling program works flawlessly when we run it step by step

through the Visual Studio debugger:

www.manaraa.com

Chapter 23. Methodology of Problem Solving 963

But why is the final result wrong? We decide to set another breakpoint in the

body of ShuffleCards(…) at the end. The debugger stops and at this point

and the result is still correct – the cards are randomly shuffled. We continue

debugging and we reach the place where we print the deck. We go pass it and

the cards are printed to the console in random order. Strangely: still the

correct result. What is the problem?

We start the program without debugging it with [Ctrl+F5]. The result is

wrong – the cards are not shuffled. We run our program in debugging mode

again with the press of [F5]. The debugger once more stops at the

breakpoints and the program yet again is working without any problem. It

looks like that, when we run our program in debug mode the result is

correct, but when we start it normally, without the debugger, the answer

is wrong. Strange indeed!

We decide to add a line of code, which is going to print the deck after

every single swap:

static void ShuffleCards(List<Card> cards)
{
 for (int i = 1; i <= cards.Count; i++)
 {
 PerformSingleSwap(cards);
 PrintCards(cards);
 }
}

We run our program in debug mode (with [F5]), observe the execution step

by step and we find that it works correctly:

Initial deck: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)
(A SPADE)(7 HEART)(10 DIAMOND)(2 CLUB)(6 DIAMOND)(J CLUB)
(6 DIAMOND)(7 HEART)(10 DIAMOND)(2 CLUB)(A SPADE)(J CLUB)
(J CLUB)(7 HEART)(10 DIAMOND)(2 CLUB)(A SPADE)(6 DIAMOND)
(2 CLUB)(7 HEART)(10 DIAMOND)(J CLUB)(A SPADE)(6 DIAMOND)

www.manaraa.com

964 Fundamentals of Computer Programming with C#

(A SPADE)(7 HEART)(10 DIAMOND)(J CLUB)(2 CLUB)(6 DIAMOND)
(10 DIAMOND)(7 HEART)(A SPADE)(J CLUB)(2 CLUB)(6 DIAMOND)
After shuffle: (10 DIAMOND)(7 HEART)(A SPADE)(J CLUB)(2 CLUB)(6
DIAMOND)

We run again our program in normal mode (with [Ctrl+F5]) and the answer

is still incorrect. Yet again we try to find out why it is happening:

Initial deck: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)
(6 DIAMOND)(A SPADE)(10 DIAMOND)(2 CLUB)(7 HEART)(J CLUB)
(7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6 DIAMOND)(J CLUB)
(6 DIAMOND)(A SPADE)(10 DIAMOND)(2 CLUB)(7 HEART)(J CLUB)
(7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6 DIAMOND)(J CLUB)
(6 DIAMOND)(A SPADE)(10 DIAMOND)(2 CLUB)(7 HEART)(J CLUB)
(7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6 DIAMOND)(J CLUB)
After shuffle: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)

We can clearly see that at every step, on which we expect to be done a
single-swap, actually the same cards are swapped: 7♥ and 6♦. The only

way this to happen is if every time the random number is the same. The

conclusion is that we have a problem with the generation of random numbers.

The random generator does not work correctly.

We instantly think about taking a look at the documentation of the class

System.Random(). On MSDN we can read, that by creating a new instance of

the generator of pseudo-random numbers with the constructor Random(), the

generator is initialized with a value, equal to the current system time. In

the documentation we can further read that by creating two or more instances

of the class Random in a relatively short time span, there is a great chance the

numbers to be the same. It turns that the problem consists in the misuse of

the class Random.

Now being more familiar with the current problem, we could correct it by

creating an instance of the class Random only once at the beginning of

the program. After that, if we need a random number, we are going to use

the already created generator of pseudo-random numbers. After the

correction, the code looks like this:

class CardsShuffle
{
 …

 static Random rand = new Random();

www.manaraa.com

Chapter 23. Methodology of Problem Solving 965

 static void PerformSingleSwap(List<Card> cards)
 {
 int randomIndex = rand.Next(1, cards.Count);
 Card firstCard = cards[0];
 Card randomCard = cards[randomIndex];
 cards[0] = randomCard;
 cards[randomIndex] = firstCard;
 }
 …
}

It seems that the program finally works correctly. At every run the order

of the cards is different and looks randomly:

Initial deck: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)
After shuffle: (2 CLUB)(A SPADE)(J CLUB)(10 DIAMOND)(7 HEART)(6
DIAMOND)
--
Initial deck: (7 HEART)(A SPADE)(10 DIAMOND)(2 CLUB)(6
DIAMOND)(J CLUB)
After shuffle: (6 DIAMOND)(10 DIAMOND)(J CLUB)(2 CLUB)(A
SPADE)(7 HEART)

We try some other tests and the final result is still correct. Now we can say

that we have a correct implementation of our algorithm, which we have

designed earlier.

Step 5 – Console Input

Now we only need to be able to read the deck from the console so that the

user can enter the cards, which need to be shuffled. Notice that we left this

step as last. Why? The answer is pretty simple: we do not want to enter the

same data at the start of our program just to check whether a piece of our

code works correctly. By having the needed data hard-coded in the source

code, we save a lot of time during the developing process.

If the problem involves entering data from the console, leave

this as last step and be sure that everything else works

flawlessly before implementing the reading of the input.

While writing the source code, do your tests with hard-coded

examples so that you don’t have to enter any data. This way

you are going to save your time and your nerves.

Data entry is a low-priority task, which everyone can handle. You only

need to think of the format the cards are entered – are they entered one by

www.manaraa.com

966 Fundamentals of Computer Programming with C#

one or at once; are the face and the color entered at once or separately.

There is nothing difficult so we leave this to our readers.

Sorting Numbers – Step by Step

Till this moment, we showed you how important it is to write your

program step by step and before proceeding to the next step you must be

sure that the previous one is working correctly.

Let’s take a look at the problem of ordering numbers in ascending order.

The steps for solving this problem are the same. Once again the right

approach for solving this task is to work step by step. Let’s see shortly

which the steps are. We are not going to write any code, but we are going to

consider the main parts of the solution. Suppose that we use List<int>, in

which we successively find the lowest number, print it and erase it from the

list of numbers. These are the steps:

Step 1. Think up a good test data (example). For example the numbers:

7, 2, 4, 1, 8 and 2. We create a List<int> and fill it with the numbers

from the example. We create a method, which outputs the numbers.

We compile and test the piece of code we just wrote.

Step 2. We create a method to find the lowest number in the array and

return its position.

We test the method, responsible for the search of the lowest number. We

try different sets of numbers to be sure that the search works correctly (we

set the lowest element at the beginning, at the end, at the middle; we also

consider a case when the lowest number occurs more than once).

Step 3. We create a method to find the lowest number, print it and

after that delete it.

We test with our example if the method works correctly. We must also

try with other examples.

Step 4. We create a method to sort the numbers. This method executes

N times the previous one (where N is the count of the numbers).

We must test whether everything works correctly.

Step 5. If data input is required we implement it after everything else.

You can see that the approach to break the main problem into smaller

problems can work well for all tasks. Simply we just need to figure out which

are the smaller problems, from the bigger one, and implement them. On

every smaller problem implemented we need to test it. After every step we

need to start our program to be sure that till this moment everything works

flawlessly. In this way we are be able to find out errors quickly and debug

them. It would be much faster than trying to debug them after we have

written tons of code.

www.manaraa.com

Chapter 23. Methodology of Problem Solving 967

Test Your Solution!

Does the following sound familiar to you: "I am ready with the first task so I

have to start the next one."? Everybody has thought of this on an exam. But

in programming to be ready with a task means:

1. I have understood well the description of the task.

2. I have come up with an algorithm to solve the problem.

3. I have tested my algorithm on a piece of paper and I am sure that is

correct.

4. I have thought up for the data structures we need and for the

complexity of my algorithm.

5. I have written a program, which implements my algorithm correctly.

6. I have tested my program with suitable examples so that I can be

sure that everything works flawlessly, even in unusual situations.

Inexperienced software developers often forget about the last step. They

think that testing is not their job, which is their biggest mistake. It is like to

think that Microsoft is not supposed to test Windows and let it crash every

minute.

Testing is an important part of the programmer’s duties.

Writing code without testing is like typing on the keyboard

without looking at the screen – you think that the text, you

have written, is correct, but most likely it is full of bugs.

Experienced programmers know that untested code is not finished. In

most software companies it is completely unacceptable not to test your work.

In the software industry is widely spread the idea of unit testing –

automatic testing of every unit of code (methods, classes and modules).

Unit testing means, that for every program, we create another one, which to

test our work. In some companies firstly they think up the testing scenario,

build the tests and only then start working on the program. The things you

should know about unit testing are quite many, but you will get more familiar

with them as you get deeper in the "software engineering". For now we are

going to focus on the manual testing every programmer must do. Unit testing

frameworks and test automation can be used to simplify the process.

How to Test?

A program works correctly if it can handle every kind of input data. Testing is

a process, which aims to find any type of bugs. It cannot detect whether a

program works flawlessly, but it can help you to find most of the bugs, which

cause incorrect results and other types of errors.

Sadly you can’t predict all cases and test them. Therefore you must think up

examples, which cover most of the situations, which could happen. In this

www.manaraa.com

968 Fundamentals of Computer Programming with C#

way you could with minimum efforts (i.e. with minimum count of simple tests)

to check all common cases of usage of the program. If no bugs are found

after testing, this doesn’t mean that the program works 100% correctly, but

in this way we reduce the chance of the program to crash in a later phase.

Testing can only find the existence of bugs. It can’t prove

that a program works flawlessly! Programs, which are

carefully tested, have fewer bugs than untested or not

carefully tested programs.

It is good to start testing with a typical case for our program. Often this is

the same example we have tested on a piece of paper and which our

algorithm can handle correctly.

Normally, after the code is written we only need to fix some minor bugs so

that our program can pass the test correctly. After that we have to test our

program with more difficult and bigger examples to see how our program

behaves in more complicated situations. We now have to test with borderline

cases and test for performance. Depending on the complexity of the current

task, we do from 1-2 to dozens of tests to cover the main cases of usage.

With more complicated software, i.e. Microsoft Word, the number of tests can

be thousands, even hundreds of thousands. If a program’s functionality is

not carefully tested you can’t say that it works correctly. Testing during

software development is as important as writing the code. In big software

companies for every programmer there is a tester. For example in Microsoft

for every programmer, who writes the code (software developer), there are

two people hired to test the code (software quality assurance engineers).

Although these people do not write the main software, they write testing

software and therefore we call them software engineers.

Testing with Good Examples of the Common Cases

As we already mentioned, it is good to start testing with a good example of a

common situation. This is a test, which is enough simple to be written

down on a piece of paper and accurate enough to cover the usual usage

of the program excluding special cases. The steps are as follows:

1. Think up a test, which is a good example of a common situation.

2. Test this example on a piece of paper.

3. Expect the program to work correctly for that test.

4. Be sure that the example works correctly after the program is written

and the errors in the development process are fixed.

Sadly, many programmers end their testing at this moment. Some

inexperienced programmers do something even worse: think up a stupid test

case (which is a special case for the current program), don’t write it down,

write some code and, after the program passes the example, they continue.

Don’t do like this! This is like repairing a car and once you are finished,

www.manaraa.com

Chapter 23. Methodology of Problem Solving 969

driving it downhill, thinking that the car is repaired (but the car has no power

to drive uphill).

What Else to Test For?

Testing the case, drawn on a piece of paper, is only the first step. Next you

need to do some additional tests to be sure that your program works

correctly:

- A hard common-case test. The goal is to check whether your program

can handle a bigger and harder to compute example. For our task that

kind of a test is to shuffle a deck of 52 cards.

- Borderline tests. They check whether your program can handle an

unusual case, which could happen. In our case this could be shuffling a

deck, which contains only one card.

- Performance tests. These tests put our program in extreme

conditions. Usually these tests consist of large data, which needs to be

inputted and processed.

Let’s take a look at the groups of tests above one be one.

A Hard Common-Case Test

We have already tested our program for one case, which we have written

down on a piece of paper. Our program works correctly. This case covers a

typical scenario of usage of our program. What more do we have to test for?

It is possible our program to be incorrect, but accidentally to work for our

test.

How to think up a harder test? It depends on the task. It must consist of

larger amounts of data and we must be able to see whether the output of our

program is correct.

In our case we have to test with a full deck – 52 cards. We can easily produce

such a test with two nested loops. After the execution of our program we

could also easily check whether the answer is correct – the cards must be

randomly shuffled. It is necessary to check whether the cards are again

randomly shuffled after two consecutive executions of this test. The code for

this test looks like this:

static void TestShuffle52Cards()
{
 List<Card> cards = new List<Card>();
 string[] allFaces = new string[] { "2", "3", "4", "5",
 "6", "7", "8", "9", "10", "J", "Q", "K", "A" };
 Suit[] allSuits = new Suit[] { Suit.CLUB, Suit.DIAMOND,
 Suit.HEART, Suit.SPADE };
 foreach (string face in allFaces)

www.manaraa.com

970 Fundamentals of Computer Programming with C#

 {
 foreach (Suit suit in allSuits)
 {
 Card card = new Card() { Face = face, Suit = suit };
 cards.Add(card);
 }
 }
 ShuffleCards(cards);
 PrintCards(cards);
}

If we execute it, the returned result is:

(4 DIAMOND)(2 DIAMOND)(6 HEART)(2 SPADE)(A SPADE)(7 SPADE)(3
DIAMOND)(3 SPADE)(4 SPADE)(4 HEART)(6 CLUB)(K HEART)(5 CLUB)(5
DIAMOND)(5 HEART)(A HEART)(9 CLUB)(10 CLUB)(A CLUB)(6 SPADE)(7
CLUB)(7 DIAMOND)(3 CLUB)(9 HEART)(8 CLUB)(3 HEART)(9 SPADE)(4
CLUB)(8 HEART)(9 DIAMOND)(5 SPADE)(8 DIAMOND)(J HEART)(10
DIAMOND)(10 HEART)(10 SPADE)(Q HEART)(2 CLUB)(J CLUB)(J SPADE)(Q
CLUB)(7 HEART)(2 HEART)(Q SPADE)(K CLUB)(J DIAMOND)(6 DIAMOND)(K
SPADE)(8 SPADE)(A DIAMOND)(Q DIAMOND)(K DIAMOND)

If we take a careful look we notice that most of the cards are at the same

place. After the first 4 cards, the half of the cards didn’t change their
place after the shuffle: 2♦ and 2♠.

It is never late to find a bug in our program and the only way we can do

that is to test it with many tests, which cover practical situations. It was

useful to test with a real deck of 52 cards, wasn’t it? We came upon a serious

bug, which cannot be left unfixed.

How to fix the problem? The first idea, we come up with, is to do more

single-swaps (obviously N times are not enough). Another idea is at the Nth

single-swap to swap the Nth card from the deck with a random one

instead of changing it with the first one. In this way we can guarantee

that every card is going to be swapped. The second idea is better. Let’s

implement it. We have the following changes in the code:

static void PerformSingleSwap(List<Card> cards, int index)
{
 int randomIndex = rand.Next(1, cards.Count);
 Card firstCard = cards[index];
 Card randomCard = cards[randomIndex];
 cards[index] = randomCard;
 cards[randomIndex] = firstCard;
}

www.manaraa.com

Chapter 23. Methodology of Problem Solving 971

static void ShuffleCards(List<Card> cards)
{
 for (int i = 0; i < cards.Count; i++)
 {
 PerformSingleSwap(cards, i);
 }
}

We execute the program and get a better shuffle of the deck of 52 cards:

(9 HEART)(5 CLUB)(3 CLUB)(7 SPADE)(6 CLUB)(5 SPADE)(6 HEART)(4
CLUB)(10 CLUB)(3 SPADE)(K DIAMOND)(10 HEART)(8 CLUB)(A CLUB)(J
DIAMOND)(K SPADE)(9 SPADE)(7 CLUB)(10 DIAMOND)(9 DIAMOND)(8
HEART)(6 DIAMOND)(8 SPADE)(5 DIAMOND)(4 HEART)(10 SPADE)(J
CLUB)(Q SPADE)(9 CLUB)(J HEART)(K CLUB)(2 HEART)(7 HEART)(A
HEART)(3 DIAMOND)(K HEART)(A SPADE)(8 DIAMOND)(4 SPADE)(3
HEART)(5 HEART)(Q HEART)(4 DIAMOND)(2 SPADE)(A DIAMOND)(2
DIAMOND)(J SPADE)(7 DIAMOND)(Q DIAMOND)(2 CLUB)(6 SPADE)(Q
CLUB)

It looks like the cards are finally randomly ordered at every execution of

our program. For now we don’t see any bugs (i.e. repeating or missing cards,

or cards, which are at the same place). The program is fast and it doesn’t fall

asleep. It looks like we have done well.

Let’s take a look at the other sample task: sorting numbers. What would be

a serious common-case test? Easy for us would be to generate 100 or even

1000 random numbers and sort them. It is easy to check whether the final

answer is correct: the numbers must be sorted by size. Another good test

would be to enter the numbers from 1000 to 1 in descending order. The

output must also consist of 1000 numbers, but sorted in ascending order. We

could say that the hardest test is to check whether our program can handle

many numbers – then we could say that our program probably works

correctly.

Let’s take a look at some other types of tests, which we must consider when

we solve programming problems.

Borderline Cases

The step, we often miss in problem solving, is testing for borderline cases.

Borderline situations occur when the input data is on the border between a

normal situation and a situation, which most likely will not happen. In this

situation the program often crashes, because very large or very small

amounts of data are not considered, although they are possible to be entered.

This is clearly a programmer’s fault, because he has not thought that this

could happen.

www.manaraa.com

972 Fundamentals of Computer Programming with C#

How to think up borderline cases? We analyze all of the data, which is being

entered, to our program and think up such extreme values, which are

possible to be entered. These values could be extremely small, extremely

large or just strange. If it is said that the upper limit is 52 cards, the values

around 52 are also borderlines and they could cause errors.

Borderline Case: Shuffling One Card

In our shuffling-cards problem a borderline case is to shuffle only one card.

This case is absolutely valid (although it is quite unusual), but our program

may not handle it correctly. Let’s take a look what could happen if we enter a

deck of one card. We could write the following little test:

static void TestShuffleOneCard()
{
 List<Card> cards = new List<Card>();
 cards.Add(new Card() { Face = "A", Suit = Suit.CLUB });
 CardsShuffle.ShuffleCards(cards);
 CardsShuffle.PrintCards(cards);
}

We execute our program and get an unexpected result:

Unhandled Exception: System.ArgumentOutOfRangeException: Index
was out of range. Must be non-negative and less than the size of
the collection. Parameter name: index
 at
System.ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArg
ument argument, ExceptionResource resource)
 at System.ThrowHelper.ThrowArgumentOutOfRangeException()
 at System.Collections.Generic.List`1.get_Item(Int32 index)
 at CardsShuffle.PerformSingleSwap(List`1 cards, Int32 index)
in D:\Projects\Cards\CardsShuffle.cs:line 61
…

The error occurred because the arguments passed to the method, which

generates random numbers, were invalid. Our program can handle a normal

deck of cards, but it can’t handle a deck of one card. We found an easy fix

for this bug, which we could miss lightly, if we skipped checking the borderline

cases. After we have established the nature of the problem, we can fix it:

static void ShuffleCards(List<Card> cards)
{
 if (cards.Count > 1)
 {
 for (int i = 0; i < cards.Count; i++)
 {

www.manaraa.com

Chapter 23. Methodology of Problem Solving 973

 PerformSingleSwap(cards, i);
 }
 }
}

We test again and we are sure that the bug is fixed.

Borderline Case: Shuffling Two Cards

After there is a problem with one card, there may be also a problem with

two cards. It sounds logical, does it? It doesn’t bother us to test it. We run

the program several times with only two cards to be shuffled and expect to

get a different order on every run. Here is an example source code that will

do the trick:

static void TestShuffleTwoCards()
{
 List<Card> cards = new List<Card>();
 cards.Add(new Card() { Face = "A", Suit = Suit.CLUB });
 cards.Add(new Card() { Face = "3", Suit = Suit.DIAMOND });
 CardsShuffle.ShuffleCards(cards);
 CardsShuffle.PrintCards(cards);
}

We run the program several times and the output is always the same:

(3 DIAMOND)(A CLUB)

It seems something is still not right. If we take a look at the source code

or run the debugger we notice that two swaps are made: this first card with

the second and immediately after that the second with the first one. The

result is one and the same. How to solve this problem? Instantly we can think

up a few solutions:

- We perform N+K single swaps, where K is a random number between 0

and 1.

- We assume that the random position can be also a zero position.

- We consider a deck of 2 cards as a special case and write a separate

method to handle this case.

This second solution is the simplest to be implemented. Let’s try it. Here is

the source code:

static void PerformSingleSwap(List<Card> cards, int index)
{
 int randomIndex = rand.Next(0, cards.Count);
 Card firstCard = cards[index];

www.manaraa.com

974 Fundamentals of Computer Programming with C#

 Card randomCard = cards[randomIndex];
 cards[index] = randomCard;
 cards[randomIndex] = firstCard;
}

We test again and it looks like the program works correctly: sometimes

the cards are shuffled and sometimes not.

If there is a problem with 2 cards, there may be also a problem with 3 cards,

right? If we do a test with 3 cards we see that it works flawlessly. After a few

runs we get every possible order of the cards (all permutations of the cards).

This time we did not find any bugs and we do not need to edit the code.

Borderline Case: Shuffling Zero Cards

What other tests do we need to do? Are there other unusual, borderline

cases? Let’s think. What is going to happen if we shuffle an empty list of

cards? This really is a bit strange, but a program must work correctly or it

must properly alert for an error. Let’s look at result of our program. The result

is an empty list. Is this correct? Yes, if we try to shuffle zero cards the answer

should be again a deck of zero cards. Everything looks fine.

With the input of invalid data the program must not return

an incorrect result. It must return a correct result or alert

that the input data is wrong.

What do you think about the rule above? It is logical, right? Imagine a

program, which displays images. What is going happen if we input an image,

which is actually an empty file? This is an unusual situation, which should not

happen, but it may happen. If with the input of an empty file the program

crashes or throws an unprocessed exception, this would be annoying for the

user. Normally, instead of an empty file, a special image should be displayed

or an alert should pop-up, which contains that the image is invalid.

Think about how many borderline cases are there in Windows. What

happens if we try to print an empty file? Does Windows crash or the “the blue

screen of death” appears? What happens if in the Windows’ calculator we try

divide by zero? What happens if we try to copy an empty file (with size of 0

bytes) using Windows Explorer? What happens if try to save a file without a

name in Notepad (with an empty string as a name)? You see that there are

many borderline cases. Our duty as programmers is to fix the bugs before

the product is released on the market.

Let’s go back to the card-shuffling problem. Thinking about other borderline

and unusual cases, we consider a case with -1 cards to be shuffled? Because

we cannot initialize an array of -1 elements, we consider it as incorrect.

We don’t have an upper bound, so we don’t have any other special cases

(similar to the case with 1 card). We stop searching for borderline cases

www.manaraa.com

Chapter 23. Methodology of Problem Solving 975

having to do with the count of the cards. It looks like we considered all of the

cases.

Now we only need to check whether there are such values of the input,

which can cause errors – an invalid suit, a card with negative value (i.e. -1

club). Actually our algorithm does not care about what is being shuffled (cards

or books), so this should not be a problem. If we have any doubts, we could

do a test and be sure, that even with an invalid deck of cards, the answer is

correct.

We look around for other borderline case in the input data, but we could not

think up any. We only need to do a performance test, right? Actually we

forgot to test our program again after the corrections.

Regression Testing

While fixing bugs, we often create new bugs without to notice. For example if

we fix a bug for two cards with editing the method, responsible for the

shuffling of the cards, a new bug with 3 cards may occur. On every edit of

code, which concerns other cases, we must again do the same test, we have

done earlier. That’s why it is a good idea to save the tests as methods

(naming them with a prefix Test) and be able to run them again. Re-testing

with the tests already passed in the past is called “regression testing”. We

may also use the unit testing framework that comes with Visual Studio (see

Unit Testing section in the “High-Quality Code” chapter) to simplify re-running

the tests after making changes in the code.

The idea of repeating the tests is implicit in the concept of unit testing. As

we mentioned earlier, this concept is for more advanced programmers.

After the changes we need to try again shuffling 0 cards, 1 card, 2 cards, 3

cards and 52 cards.

When you have found and fixed in your code a bug, which

concerns a specific test, make sure that no other bugs have

been introduced after the code has been changed. It is a

good idea to keep the tests saved for repeated execution.

Performance Tests

It is normal to have some performance requirements about a module or the

program at all. No one likes his computer to be slow, right? That’s why you

have to write software, which works slow only if there is a good reason.

How to check the speed (performance) of our program? We must firstly

consider whether we have any performance requirements. Then what are

they? If we don’t have any, we should use some conventional criteria.

www.manaraa.com

976 Fundamentals of Computer Programming with C#

Shuffling Cards – Performance Tests

Let’s take a look at our deck-shuffling program. What are the performance

criteria? Do we have such? We don’t have any requirements like: "the

program must compute the answer in less than a second with an upper bound

of 500 cards on a modern computer". After we don’t have such explicit

criteria, we should set our own.

Because the data is a set of cards, we consider testing with a normal deck of

52 cards. We already ran such a test and the answer was output immediately.

It looks like our program works fast in normal conditions.

It is normal to test also with a deck of many more cards (i.e. 52,000). In a

very particular situation someone might like to shuffle a deck of 52,000

cards and we could not allow our program to crash at this later phase. We

can easily create such a test by adding 1000 times our 52 cards. Here is some

example code:

static void TestShuffle52000Cards()
{
 List<Card> cards = new List<Card>();
 string[] allFaces = new string[] {"2", "3", "4", "5",
 "6", "7", "8", "9", "10", "J", "Q", "K", "A"};
 Suit[] allSuits = new Suit[] { Suit.CLUB, Suit.DIAMOND,
 Suit.HEART, Suit.SPADE};
 for (int i = 0; i < 1000; i++)
 {
 foreach (string face in allFaces)
 {
 foreach (Suit suit in allSuits)
 {
 Card card = new Card() { Face = face, Suit = suit };
 cards.Add(card);
 }
 }
 }
 ShuffleCards(cards);
 PrintCards(cards);
}

We start the program and notice that it works without stopping for 5-10

seconds. Of course with slower computers it is going to take more time.

What is happening? The count of the operations with a deck of 52,000 cards is

almost the same as with a deck of 52 cards for example. Why is the program

so slow? Advanced programmers will immediately guess that the delay is

because we output big amounts of data and printing to the console is a

slow operation. If we comment the line, where the printing is done, as a

www.manaraa.com

Chapter 23. Methodology of Problem Solving 977

comment, we will see how fast our program is, even with a deck of 52,000

cards. Here’s how we can count the time:

static void TestShuffle52000Cards()
{
 …
 DateTime oldTime = DateTime.Now;
 ShuffleCards(cards);
 DateTime newTime = DateTime.Now;
 Console.WriteLine("Execution time: {0}", newTime - oldTime);
 //PrintCards(cards);
}

We can check how long it takes for the method, responsible for the shuffling

of the cards, to be executed:

Execution time: 00:00:00.0156250

One millisecond is absolutely acceptable. We don’t have any performance

problems.

Sorting Numbers – Performance Tests

Let’s take a look at another one of our problems: sorting an array of

numbers. Here performance might be a problem. We have thought up a

simple solution: our algorithm finds the lowest number in the array and swaps

it with the number at position 0. Then it finds the next lowest number and

sets it at position 1. The algorithm continues until we reach the last position.

We will not comment the correctness of the algorithm. It is well known as

"Selection sort" (http://en.wikipedia.org/wiki/Selection_sort).

Let’s suppose that we have passed all the steps for solving a programming

problem, except the last one. Therefore we will try to sort 10,000 random

numbers:

Sort10000Numbers.cs

using System;

public class Sort10000Numbers
{
 static void Main()
 {
 int[] numbers = new int[10000];
 Random rnd = new Random();
 for (int i = 0; i < numbers.Length; i++)
 {

http://en.wikipedia.org/wiki/Selection_sort

www.manaraa.com

978 Fundamentals of Computer Programming with C#

 numbers[i] = rnd.Next(2 * numbers.Length);
 }
 SortNumbers(numbers);
 PrintNumbers(numbers);
 }

 static void SortNumbers(int[] numbers)
 {
 for (int i = 0; i < numbers.Length - 1; i++)
 {
 int minIndex = i;
 for (int j = i + 1; j < numbers.Length; j++)
 {
 if (numbers[j] < numbers[minIndex])
 {
 minIndex = j;
 }
 }

 int oldNumber = numbers[i];
 numbers[i] = numbers[minIndex];
 numbers[minIndex] = oldNumber;
 }
 }

 static void PrintNumbers(int[] numbers)
 {
 Console.Write("[");
 for (int i = 0; i < numbers.Length; i++)
 {
 Console.Write(numbers[i]);
 if (i < numbers.Length - 1)
 {
 Console.Write(", ");
 }
 }
 Console.WriteLine("]");
 }
}

We run our program and it looks like it finishes in less than a second on a

typical modern computer. The shortened result would be something like that:

[0, 14, 19, 20, 20, 22, …, 19990, 19993, 19995, 19996]

www.manaraa.com

Chapter 23. Methodology of Problem Solving 979

We do another test, this time with an array of 300,000 random numbers,

and notice that our program falls asleep or it is just too slow. This is a

serious performance problem.

Before we start fixing it, we must ask ourselves: is this a real situation. If we

sort students’ marks, the elements will not be more than a couple of dozens.

However if we sort the stocks’ currencies of a large software company for its

being on the stock market, we have a lot of numbers to be sorted. This is

because the price of the stocks can change every second. In about ten years

the price can change hundreds of thousands times of times. In this case we

should look for a better sorting algorithm.

We can easily find information about sorting algorithms in many websites and

books. In our case, it is most appropriate to use the non-comparative integer

sorting algorithm "radix sort" (en.wikipedia.org/wiki/Radix_sort) which runs

in linear time, but this discussion is beyond the objectives of this book.

Let’s recall the efficiency rule:

You must always make a compromise between the time,

spent on writing the program, and the performance, which

we want to achieve. Otherwise you might lose your time for

solving a problem, that doesn’t exist, or come up with a

solution, which is inefficient.

We must consider that for some problems there aren’t any fast algorithms.

For example there aren’t any fast solutions for finding all prime dividers of

an integer (take a look at http://en.wikipedia.org/wiki/Integer_factorization).

In some situations the input data is too small and we don’t need a fast

algorithm to process it. For example: sorting the students’ marks. It can be

solved with every sorting algorithm, because the count of the students is

small.

General Conclusions

Before you have started reading this chapter, you have probably thought that

it is going to be boring. We believe that you think of this chapter in a different

way now. Many people think that they can solve programming problems and

that there is no recommended approach (you just have to do it).

Unfortunately, there are lots of approaches for solving problems. We did not

only tell you how, we showed you how! We convinced you that our

approach can give good results, right?

Just think how many bugs we found while we were solving quite an easy

problem: shuffling a deck of cards. Would we have written an efficient

solution, if we had not considered the steps above? And what will happen if

we try to solve a more difficult problem, i.e. finding the optimal path through

the traffic jams in New York with a map and current statistics given? It’s

absolutely insane to try the first idea you come up with without considering

many more. The first step in acquiring programming-problem-solving

http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Integer_factorization

www.manaraa.com

980 Fundamentals of Computer Programming with C#

techniques is to learn to approach the problem systematically and to

acquire the recipe for problem solving, we demonstrated earlier. Of course,

this is not enough, but it is a crucial step!

There is a recipe for programming-problem solving! Use a

systematical approach for better results, instead of your

sense. Even professionals, with more than 10 years of

experience, use the approach described in this chapter. Use

it yourself and you will be convinced that it works! Don’t

forget to test your solution seriously and deeply.

Finally we want to take a note on the cards shuffle algorithm. The “cards

shuffling” is well-known problem in computer science and there are classic

algorithms for solving it like the "Fisher-Yates Shuffle". Read more in

Wikipedia: http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle.

Exercises

1. Using the described in this chapter methodology of solving

programming problems, solve this problem: In a plane N points are

given (N < 100,000). The coordinates of the points are integers (xi, yi).

Write a program, which finds all horizontal and vertical lines, such

that they split the plane into two parts, each containing an equal set of

points (points lying on the line are note counted).

2. Using the described in this chapter methodology of solving programming

problems, solve this problem: A set S of n integers and a positive integer

k (k ≤ n ≤ 10) are given. An alternating sequence is a sequence, which

changes its behavior from ascending to descending and vice versa after

every element. Write a program, which generates all possible sequences

s1, s2, …, sk containing k different elements from S.

Example: S = { 2, 5, 3, 4 }, K = 3: {2, 4, 3}, {2, 5, 3}, {2, 5, 4}, {3,

2, 4}, {3, 2, 5}, {3, 4, 2}, {3, 5, 2}, {3, 5, 4}, {4, 2, 3}, {4, 2, 5}, {4,

3, 5}, {4, 5, 2}, {4, 5, 3}, {5, 2, 3}, {5, 2, 4}, {5, 3, 4}.

3. Using the described methodology of creating solutions to programming

problems, solve the following problem: a map of a city is given. At this

map there are given roads and crossroads. For every road a length is

given. One crossroad can connect a couple of roads. Your program must

find the shortest path from one crossroad to another (the shortest

path is measured as the sum of the lengths of all includes roads).

A sample map is given below. At this map the shortest path between the

crossings A and D has length of 70 and it is shown on the figure with

bold lines. As you can see, this is not the only path from A to D: there are

more paths with different lengths. Note that not always the first shortest

road considered as current next node leads to finding the shortest path,

neither does the lowest count of roads. Between some crossings there

may not even be a road. This creates a very interesting problem.

http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

www.manaraa.com

Chapter 23. Methodology of Problem Solving 981

The input data is contained in the file map.txt. A list of the roads and

their length are given first, followed by a blank line and the pairs of

crossroads, between which we need to find the shortest path. At the end

of the file a blank line is given. Crossroads are denoted by a single letter

of sequence of letters. Here is a sample input file:

A B 20
A H 30
B H 5
…
L M 5
(blank line)
A D
H K
A E
(blank line)

The result from the execution of your program should be printed on the

console in the following format: for every pair of crossroads from the

input file, the shortest path length should be printed, followed by the

path itself. For the map above the output will look like this:

70 ABJCFD
No path!
35 ABHE

4. * In a plane N points are given with integer positive coordinates. These

points represent trees in a field. The gardener wants to enclose all

trees using a minimum amount of fence. Write a program, which

20

30

10

30

25

25

20

15

15

10

30

20
45

40

15

5

10

25

Start

End

A

D

C

E

F

G

H

I

J

B

5

K

L
10

M

5

www.manaraa.com

982 Fundamentals of Computer Programming with C#

finds the appropriate points, through which the fence goes. Use the

methodology of solving programming problems!

For example the garden may look like this:

The input data is read from the text file garden.txt. On the first line we

are given N – the number of points is given. Next we are given N pairs –

the coordinates of the points. For our example garden the file contains

the following data:

13
60 50
100 30
40 40
20 70
50 20
30 70
10 10
110 70
90 60
80 20
70 80
20 20
30 60

The output data must be printed to the console as a sequence of points,

through which the fence goes. Here is an output example:

0 10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

(10, 10)

(20, 20)

(20, 70)

(100, 30)

(60, 50)

(40, 40)

(80, 20)

(70, 80)

(110, 70)

(30, 60)

(50, 20)

(90, 60)

(30, 70)

www.manaraa.com

Chapter 23. Methodology of Problem Solving 983

(10, 10) - (20, 70) - (70, 80) - (110, 70) - (100, 30) -
(80, 20) - (10, 10)

Solutions and Guidelines

1. First find a sheet of paper, on which you can draw the coordinate

system and the points. In this way you can easily think up a solution and

consider some tests. Consider different solutions and compare them in

terms of quality, performance and time needed to be implemented. Hint:

you may sort the points by X or Y and find the lines with a linear scan.

2. Again take a pencil and a sheet. Write down many examples and consider

them. What ideas do you come up with? Do you need more examples?

Think over your ideas, write them down on a sheet of paper, if you are

sure they are correct – implement them. Think for examples that your

program may not handle. It is always a good idea to think up specific

examples and then to implement them. Think how your solution will work

with different values of K and different values and count of elements in S.

3. Use the described methodology for creating solutions to programming

problems! The problem is difficult and you will have to spend more time

on it. First draw the map on a sheet of paper. Try to think up a correct

algorithm for finding the shortest path yourself. Then search for "shortest

path algorithm" in the Internet. Most likely you will be able to find some

article about the problem quickly.

Check whether the algorithm is correct. Test with different cases.

In what data structure are you going to keep the map of the city? Think

about which are the operations your algorithm is going to use. Probably

you will come up with idea to keep a list of the roads for every

crossroad and the crossroads in a hash table.

Think about the performance. Will your algorithm handle 1,000

crossings and 5,000 roads fast enough?

Write the code step by step. First write the method, which reads the

input file. In this case the data is entered from a file and therefore you

can consider it as your first step. If the data was entered from the

console, we would have to leave it as our last step. Then implement the

algorithm for finding the minimum path length. If you can, break up the

implementation into smaller steps. For example you could firstly find

the length of the minimal path without the path itself, because it is easier.

Then implement the finding of the shortest path itself (as a list of

crossroads). Think what could happen if there are several shortest

paths. Finally implement the output of the result.

Test your solution! Test with an empty map. Test with a map with one

crossroad. Test with an example, in which there are no roads between the

crossroads. Test with a big map (1,000 crossings and 5,000 roads). You

www.manaraa.com

984 Fundamentals of Computer Programming with C#

can generate such a case with a small program. For the names of the

crossroads you have to use string instead of char, right? If you use

char, it will not be possible to have 1,000 crossings? Is your solution fast?

Does it work correctly?

Be careful with the input and output data formats. Comply with the

described format requirements in the problem statement!

4. If you are not very good with analytic geometry, you may not come up

with a correct solution by yourself. Search in the Internet for “convex

hull algorithm”. Knowing that the fence is called a “convex hull” of a set

of points in the plane, you will be able to find hundreds of articles – even

some with source code in C#. Don’t copy others’ mistakes, especially the

source code! Think! Study how the algorithm works.

Check whether the algorithm is correct. Test with different examples

(firstly on a sheet of paper). What could happen if there are a couple of

points, lying on a line in the plane? Do you need to include all of them?

Think what could happen if there is a couple of convex hulls. From which

point will the hull start? Will you move clockwise or counterclockwise? Is

there a requirement in the description of the task how must the points be

ordered? What if some of the points are the same? What should happen if

we have no points or just one point in the field?

In what data structure will you keep the points? In what data structure

will you keep the convex hull?

Think about the performance. Will your algorithm work for 1,000 points?

Write your program step by step. First implement the reading of the

input data. Implement your convex hull finding algorithm. If it is possible,

break your algorithm into smaller parts. Finally implement the output

of the result in the described format.

Test your solution! What will happen if we have 0 points? Try with 1

point. Try with 2 points. Try with 5 point, which lie on a line. Does your

algorithm work? What will happen if we have 10 points and another 10,

which match the first 10? What will happen if we have 10 points, which lie

one over another? What will happen if you have many points, i.e. 1,000?

Does your algorithm work fast? What will happen if the coordinates of the

points are large numbers (100,000,000; 200,000,000)? Does this affect

your algorithm? Can you face precision errors in the calculations?

Be careful with the input and output data. Consider the format in the

проблем description! Do not invent your own format of the input and

output data. The formats are defined and they must be respected.

If you want, you could implement visualization of the points and the

convex hull using Windows Forms or in WPF. You may implement a

generator of random tests and test your solution many times by

observing the visualization of the hull – does it really wrap the points.

www.manaraa.com

Chapter 24. Sample
Programming Exam –

Topic #1

In This Chapter

In this chapter we will look at and offer solutions to three problems from

a sample programming exam. While solving them we will put into practice

the methodology described in the chapter "Methodology of Problem Solving".

Problem 1: Extract Text from HTML Document

We are given HTML file named Problem1.html. Write a program, which

removes all HTML tags and retains only the text inside them. Output should

be written into the file Problem1.txt.

Sample input file for Problem1.html:

<html>
<head><title>Welcome to our site!</title></head>
<body>
<center>

Home
Contacts
About<p>
</center>
</body>
</html>

Sample output file for Problem1.txt:

Welcome to our site!
Home
Contacts
About

www.manaraa.com

986 Fundamentals of Computer Programming with C#

Inventing an Idea

The first thing that occurs to us as an idea for solving this problem is to

read sequentially (e.g. line by line) the input file and to remove any tags. It is

easily seen that all tags starting with the character "<" and end with the

character ">". This also applies to opening and closing tags. This means that

for each line in the file we should remove all substrings starting with "<" and

ending with ">".

Checking the Idea

We have an idea for solving the problem. Whether the idea is correct? First

we should check it. We can ensure it is correct for the sample input file, and

then consider whether there are specific cases where the idea could be

incorrect.

We take a pen and paper and check by manually whether the idea is

correct. We do this by striking out all text substrings that start with the

character "<" and end with the character ">". As we do so, we see that there

is only pure text and any tags disappear:

<html>
<head><title>Welcome to our site!</title></head>
<body>
<center>

Home
Contacts
About<p>
</center>
</body>
</html>

Now we have to think of some more special cases. We do not want to write

200 lines of code and only then think about special case, finding out we have

to redesign the entire program. It is important to check the problematic

situations now, before we begin writing the code of the solution. We can think

of the following special example:

<html><body>
Clickon this
linkfor more info.

This isboldtext.
</body></html>

There are two things to consider:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 987

- There are tags containing text that open and close at separate lines.

Such tags in our example are <html>, <body> and <a>.

- There are tags that contain text and other tags in themselves (nested

tags). For example <body> and <html>.

What should be the result of this example? If we directly remove all tags we

will get something like this:

Clickon this
linkfor more info.
This isboldtext.

Or maybe we should follow the rules of the HTML language and get the

following result:

Click on this link for more info.
This is bold text.

There are other options, such as putting each piece of text, which is not a

tag, on a new line:

Click
on this
link
for more info.
This is
bold
text.

If we remove all the text in tags and snap the other text, we will get words

that are stuck together. From the task’s description it is not clear if this is

the requested result or it must be as in the HTML language. In the HTML

language each series of separators (spaces, new lines, tabs, etc.) appear as a

space. However, this was not mentioned in the task’s description it is not

clear from the sample input and output.

It is not clear yet whether to print the words that are in a tag which holds

other tags or to skip them. If we print only the contents of the tags, which

consist of text only, we will get something like this:

on this
link
bold

It is yet not clear from the description, how to display the text that

is located on a few lines inside a tag.

www.manaraa.com

988 Fundamentals of Computer Programming with C#

Clarification of the Statement of the Problem

The first thing to do when we find ambiguity in the description of the task is

to read it carefully. In this case the problem statement is not really clear

and does not give us the answers. Probably we should not follow the HTML

rules, because they are not described in the problem statement, but it is not

clear whether to connect the words in neighboring tags or separate them by a

space or new line.

This leaves us only one thing – to ask. If we have an exam, we will ask the

one who gives us the task. In real life, someone is an owner of the software

we develop, and he could answer the questions. If nobody can give an

answer, choose one option that seems most correct under the information we

have and act on it. Assume that we need to print text, which remains after

removing all opening and closing tags, using a blank line separator at the

positions of the tags. If there are blank lines in the text, we keep them. For

our example, we should obtain the following correct output:

Click
on this
link
for more info.
This is
bold
text.

A New Idea for Solving the Problem

So, after adapting these new requirements, the following idea comes: read

file line by line and substitute each tag with a new line. To avoid

duplication of new lines in the resulting file, replace every two consecutive

lines of new results with a new line.

We check the new idea with the example from the original statement of the

problem with our example to ensure it is correct. It remains to implement it.

Break a Task into Subtasks

The task can easily break into 3 subtasks:

- Read the input file.

- Processing of a line of input file: replace tags with a new line.

- Print results in the output file.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 989

What Data Structures to Use?

In this task we must perform simple word processing and file management.

The question of what data structures to use is not a problem – for word

processing we use string and if necessary – StringBuilder.

Consider the Efficiency

If we read the lines one by one, it will not be a slow operation. Processing of

one line can be done by replacing some characters with others – a quick

operation. We should not have performance problems.

A possible problem could be the clearing of the empty lines. If we collect all

lines in a buffer (StringBuilder) and then remove double blank lines, this

buffer will occupy too much memory for large input files (for example 500 MB

input file).

To save memory, we will try to clean the excess blank lines just after the

replacement tags with the white space character.

Now we examined the idea of solving the task, we ensured that it is good and

covers the special cases that may arise, and believe we will have no

performance issues.

Now we can safely proceed to implementation of the algorithm. We will

write the code step by step to find errors as early as possible.

Step 1 – Read the Input File

The first step solving the given task is reading the input file. In our case it

is a HTML file. This should not bother us, because HTML is a text format.

Therefore, to read it, we will use the StreamReader class. We will traverse

the input file line by line and each line we will derive (for now it is not

important how we will do it) all the information we need (if any) and save it

into an object of type StringBuilder. Extraction we will implement in the

next step (step 2). Let’s write the necessary code for the implementation of

our first step:

string line = string.Empty;
StreamReader reader = new StreamReader("Problem1.html");

while ((line = reader.ReadLine()) != null)
{
 // Find what we need and save it in the result
}

reader.Close();

With this code we will read the input file line by line. Let’s think whether we

have completed a good first step. Do you know what we have missed?

www.manaraa.com

990 Fundamentals of Computer Programming with C#

From the code written we will read the input file, but only if it exists. What if

the input file does not exist or could not be opened for some reason? Our

present decision does not deal with these problems. There is another problem

in our code too: if an error occurs while reading or processing the data file, it

will not be closed.

With File.Exists(…) we will check if the input file exists. If not – we will

display an appropriate message and stop program execution. To avoid the

second problem we will use the try-catch-finally statement (we may use

the using statement in C# as well). Thus, if an exception arises, we will

process it and will always close the file, which we worked with. We must not

forget that the object of the StreamReader class must be declared outside the

try block, otherwise it will be unavailable in the finally block. This is not a

fatal error, but often made by novice programmers.

It is better to define the input file name as a constant, because we

probably will use it in several places.

Another thing: when reading from a text file it is appropriate to specify

explicitly the character encoding. Let’s see what we get:

using System;
using System.IO;
using System.Text;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 string line;
 while ((line = reader.ReadLine()) != null)
 {

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 991

 // Find what we need and save it in the result
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }
 }
 }
}

Test the Input File Reading Code

We handled the described problems and it seems we have implemented

the reading of the input file. We wrote a lot of code. To be convinced that

it is correct, we can test our unfinished code. For example let’s print the

content of the input file to the console, and then try processing nonexistent

files. The writing will be done in a while loop using Console.WriteLine(…):

…
while ((line = reader.ReadLine()) != null)
{
 Console.WriteLine(line);
}
…

If we test the piece of code we have with the Problem1.html sample file from

the problem description, the result is correct – the input file itself:

<html>
<head>
<title>Welcome to our site!</title>
</head>
<body>
<center>

Home -

www.manaraa.com

992 Fundamentals of Computer Programming with C#

Contacts -
About<p>
</center>
</body>
</html>

Let’s try a nonexistent file. We change the file name Problem1.html with
Problem2.html. The result is the following:

File Problem2.html not found

We are convinced that the code till now is correct. Let’s move to the next

step of the implementation of our idea (algorithm).

Step 2 – Remove the Tags

Now we want to find a suitable way to remove all tags. How should we do

this?

One possible way is to check the line character by character. For each

character in the current row we will look for the character "<". On the right

side of it we will know that we have a tag (opening or closing). The end tag

character is ">". So we can find tags and remove them. To not get the words

connected between adjacent tags, each tag will be replaced with the character

for a blank line "\n".

The algorithm is simple to implement, but isn’t there a more clever way? Can

we use regular expressions? They can easily look for tags and replace them

with "\n", right? In the same time the code will be simple and in case of

errors, they will be removed more easily. We will consider this option. What

should we do? First we need to write a regular expression. Here is how it may

look:

<[^>]*>

The idea is simple: any string, that starts with "<", continues with arbitrary

sequence of characters, other than ">" and ends with ">" is an HTML tag.

Here’s how we can replace the tags with a new line:

private static string RemoveAllTags(string str)
{
 string textWithoutTags = Regex.Replace(str, "<[^>]*>", "\n");
 return textWithoutTags;
}

After coding this step, we should test it. For this purpose again we print to the

console the strings we found via Console.WriteLine(…). And test the code:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 993

HtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 line = RemoveAllTags(line);
 Console.WriteLine(line);
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }

www.manaraa.com

994 Fundamentals of Computer Programming with C#

 }
 }

 private static string RemoveAllTags(string str)
 {
 string strWithoutTags =
 Regex.Replace(str, "<[^>]*>", "\n");
 return strWithoutTags;
 }
}

Testing the Tag Removal Code

Let’s test the program with the following input file:

<html><body>
Clickon this
linkfor more info.

This isboldtext.
</body></html>

The result is as follows:

(empty rows)
Click
on this
link
for more info.
(empty row)
This is
bold
text.
(empty rows)

Everything works perfectly, only that we have extra blank lines. Can we

remove them? This will be our next step.

Step 3 – Remove the Empty Lines

We can remove unnecessary blank lines, replacing a double blank line "\n\n"

with a single blank line "\n". We should not have groups of more than one

character for a new line "\n". Here is an example how we can perform the

substitution:

private static string RemoveDoubleNewLines(string str)

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 995

{
 return str.Replace("\n\n", "\n");
}

Testing the Empty Lines Removal Code

As always, before we move forward, we test whether the method works

correctly. We try a text, which has no blank rows, and then add 2, 3, 4 and 5

blank lines, including at the beginning and at the end of text.

We find that the above method does not work correctly, when there are

4 blank lines one after another. For example, if we submit as input

"ab\n\n\n\ncd", we will get "ab\n\n\cd" instead of "ab\ncd". This defect

occurs because the Replace(…) finds and replaces a single match, scanning

the text from left to right. If in result of a substitution the searched string

reappears, it is skipped.

See how useful it is when each method is tested on time. We do not end up

wondering why the program does not work when we have 200 lines of code,

full of errors. Early detection of defects is very useful and we should do it

whenever possible. Here is the corrected code:

private static string RemoveDoubleNewLines(string str)
{
 string pattern = "[\n]+";
 return Regex.Replace(str, pattern, "\n");
}

The above code uses a regular expression to find any sequence of \n

characters and replaces it with a single \n.

After a series of tests, we are convinced that the method works

correctly. We are ready to test the program that removes all unnecessary

newlines. For this purpose we make the following changes:

while ((line = reader.ReadLine()) != null)
{
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 Console.WriteLine(line);
}

We test the code again. Still it seems there are blank lines. Where do they

come from? Perhaps, if we have a line that contains only tags, it will cause a

problem. Therefore we may prevent this case. We add the following checks:

if (!string.IsNullOrEmpty(line))

www.manaraa.com

996 Fundamentals of Computer Programming with C#

{
 Console.WriteLine(line);
}

This removes most of the blank lines, but not all.

Remove the Empty Lines: Second Attempt

If we think more, it could happen so, that a line begins or ends with a tag.

Then this tag will be replaced with a single blank line and so at the beginning

or at the end of the line we may get a blank line. This means that we should

clean the empty rows at the beginning and at the end of each line. Here’s how

we can make the cleaning:

private static string TrimNewLines(string str)
{
 int start = 0;
 while (start < str.Length && str[start] == '\n')
 {
 start++;
 }

 int end = str.Length - 1;
 while (end >= 0 && str[end] == '\n')
 {
 end--;
 }

 if (start > end)
 {
 return string.Empty;
 }

 string trimmed = str.Substring(start, end - start + 1);
 return trimmed;
}

The method works very simply: goes from left to right and skips all newline

characters. Then passes from right to left and skips again all newline

characters. If the left and right positions have passed each other, this means

that the string is either empty or contains only newlines. Then the method

returns an empty string. Otherwise it returns back everything to the right of

the start position and to the left of the end position.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 997

Remove the Empty Lines: Test Again

As always, we test whether the above method works correctly with

several examples, including an empty string, no string breaks, string breaks

left or right or both sides and a string with new lines. We make sure, that the

method now works correctly.

Now we have to modify the logic of processing the input file:

while ((line = reader.ReadLine()) != null)
{
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 line = TrimNewLines(line);
 if (!string.IsNullOrEmpty(line))
 {
 Console.WriteLine(line);
 }
}

Step 4 – Print Results in a File

It remains to print the results in the output file. To print the results in the

output file we will use the StreamWriter. This step is trivial. We must only

consider that writing to a file can cause an exception and that’s why we need

to change the logic for error handling slightly, opening and closing the flow of

input and output to the file.

Here is what we finally get as a complete source code of the program:

HtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

class HtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {

www.manaraa.com

998 Fundamentals of Computer Programming with C#

 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);

 string line;
 while ((line = reader.ReadLine()) != null)
 {
 line = RemoveAllTags(line);
 line = RemoveDoubleNewLines(line);
 line = TrimNewLines(line);
 if (!string.IsNullOrEmpty(line))
 {
 writer.WriteLine(line);
 }
 }
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Can not read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }

 if (writer != null)
 {
 writer.Close();
 }
 }
 }

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 999

 /// <summary>
 /// Replaces every tag with new line
 /// </summary>
 private static string RemoveAllTags(string str)
 {
 string strWithoutTags =
 Regex.Replace(str, "<[^>]*>", "\n");
 return strWithoutTags;
 }

 /// <summary>
 /// Replaces sequence of new lines with only one new line
 /// </summary>
 private static string RemoveDoubleNewLines(string str)
 {
 string pattern = "[\n]+";
 return Regex.Replace(str, pattern, "\n");
 }

 /// <summary>
 /// Removes new lines from start and end of string
 /// </summary>
 private static string TrimNewLines(string str)
 {
 int start = 0;
 while (start < str.Length && str[start] == '\n')
 {
 start++;
 }

 int end = str.Length - 1;
 while (end >= 0 && str[end] == '\n')
 {
 end--;
 }

 if (start > end)
 {
 return string.Empty;
 }

 string trimmed = str.Substring(start, end - start + 1);
 return trimmed;

www.manaraa.com

1000 Fundamentals of Computer Programming with C#

 }
}

Testing the Solution

Until now, we were testing the individual steps for the solution of the task.

Through the tests of individual steps we reduced the possibility of errors, but

that does not mean that we should not test the whole solution. We may have

missed something, right? Now let’s thoroughly test the code.

- Test with the sample input file from the problem statement. Everything

works correctly.

- Test our "complex" example. Everything works fine.

- Test the border cases and run an output test.

- We test with a blank file. Output is correct – an empty file.

- Test with a file that contains only one word "Hello" and does not

contain tags. The result is correct – the output contains only the word

"Hello".

- Test with a file that contains only tags and no text. The result is

again correct – an empty file.

- Try to put blank lines of at the most amazing places in the input file.

These empty lines should all be removed. For example we can run the

following test:

 Hello

I am here

I am not here

The result is as follows:

 Hello
I
 am here
I am not
Here

It seems we found a small defect. There is a space at the beginning of

some of the lines.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1001

Fixing the Leading Spaces Defect

Under the problem description it is not clear whether this is a defect but let’s

try to fix it. We could add the following code when processing the next line of

the input file:

line = line.Trim();

The defect is fixed, but only from the first line. We run the debugger and we

notice why it is so. The reason is that we print into the output file a string of

characters with value "I\n am here" and so we get a space after a blank line.

We can correct the defect, by replacing all blank lines, followed by white

space (blank lines, spaces, tabs, etc.) with a single blank line. Here is the

correction:

private static string RemoveDoubleNewLines(string str)
{
 string pattern = "\n\\s+";
 return Regex.Replace(str, pattern, "\n");
}

We fixed that error too. Now we have only to change this name to a more

appropriate one, for example RemoveNewLinesWithWhiteSpace(…).

Now we need to test again after the “fixes” in the code (regression test).

We put new lines and spaces scattered randomly and make sure that

everything works correctly now.

Performance Test

One last test remains: performance. We can create easily create a large

input file. We open a site, for example http://www.microsoft.com, grab the

source code and copy it 1000 times. We get a large enough input file. In our

case, we get a 44 MB file with 947,000 lines. Processing it takes under 10

seconds, which is a perfectly acceptable speed. When we test the solution

we should not forget that the processing of the file depends on our hardware

(our test was performed in 2009 on an average fast laptop).

Taking a look at the result, however, we notice a very troublesome problem.

There are parts of a tag. More precisely, we see the following:

<!--
var s_pageName="home page"
//-->

It quickly becomes clear that we missed a very interesting case. In an

HTML tag can be closed few lines after its opening, e.g. a single tag may

span several consecutive lines. That was exactly our case: we have a

http://www.microsoft.com/

www.manaraa.com

1002 Fundamentals of Computer Programming with C#

comment tag that contains JavaScript code. If the program worked correctly,

it would have cut the entire tag rather than keep it in the source file.

Did you see how testing is useful and how testing is important? In some

big companies (like Microsoft) having a solution without tests is considered as

only 50% of the work. This means that if you write code for 2 hours, you

should spend on testing (manual or automated) at least 2 more hours! This is

the only way to create high-quality software.

What a pity that we discovered the problem just now, instead of at the

beginning, when we were checking whether our idea for the task is correct,

before we wrote the program. Sometimes it happens, unfortunately.

How to Fix the Problem with the Tag at Two Lines?

The first idea that occurs to us is to load in memory the entire input file

and process it as one big string rather than row by row. This is an idea that

seems to work but will run slow and consume large amounts of memory.

Let’s look for another idea.

A New Idea: Processing the Text Char by Char

Obviously we cannot read the file line by line. Can we read it character

by character? If yes, how we will treat tags? It occurs to us that if we read

the file character by character, we can know at any moment, whether we are

in or outside of a tag, and if we are outside the tag, we can print everything

that we read (followed by a new line). We need to avoid adding new lines, as

well as and trailing whitespace. We will get something like this:

bool inTag = false;
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 if (!inTag)
 {
 PrintBuffer(ch);
 }
 }

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1003

}

Implementing the New Idea

The idea is very simple and easy to implement. If we implement it

directly, we will have a problem with empty lines and the problem of merging

text from adjacent tags. To solve this problem, we can accumulate the text in

the StringBuilder and print it at the end of file or when switching from text

to a tag. We will get something like this:

bool inTag = false;
StringBuilder buffer = new StringBuilder();
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 if (!inTag)
 {
 PrintBuffer(buffer);
 }
 buffer.Clear();
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 if (!inTag)
 {
 buffer.Append(ch);
 }
 }
}
PrintBuffer(buffer);

The missing PrintBuffer(…) method should clean the whitespace from the

text in the buffer and print it in the output followed by a new line. Exception is

when we have whitespace only in the buffer (it should not be printed).

We already have most of the code, so step-by-step implementation mat

not be necessary. We can just replace the pieces of wrong old code with the

new code implementing the new idea. If we add the logic for avoiding empty

www.manaraa.com

1004 Fundamentals of Computer Programming with C#

lines as well as reading input and writing the result we obtain is a complete

solution to the task with the new algorithm:

SimpleHtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

public class SimpleHtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";
 private static Regex regexWhitespace = new Regex("\n\\s+");

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);
 RemoveHtmlTags(reader, writer);
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Cannot read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1005

 reader.Close();
 }
 if (writer != null)
 {
 writer.Close();
 }
 }
 }

 /// <summary>Removes the tags from a HTML text</summary>
 /// <param name="reader">Input text</param>
 /// <param name="writer">Output text (result)</param>
 private static void RemoveHtmlTags(
 StreamReader reader, StreamWriter writer)
 {
 StringBuilder buffer = new StringBuilder();
 bool inTag = false;
 while (true)
 {
 int nextChar = reader.Read();
 if (nextChar == -1)
 {
 // End of file reached
 PrintBuffer(writer, buffer);
 break;
 }
 char ch = (char)nextChar;
 if (ch == '<')
 {
 if (!inTag)
 {
 PrintBuffer(writer, buffer);
 }
 buffer.Clear();
 inTag = true;
 }
 else if (ch == '>')
 {
 inTag = false;
 }
 else
 {
 // We have other character (not "<" or ">")
 if (!inTag)

www.manaraa.com

1006 Fundamentals of Computer Programming with C#

 {
 buffer.Append(ch);
 }
 }
 }
 }

 /// <summary>Removes the whitespace and prints the buffer
 /// in a file</summary>
 /// <param name="writer">the result file</param>
 /// <param name="buffer">the input for processing</param>
 private static void PrintBuffer(
 StreamWriter writer, StringBuilder buffer)
 {
 string str = buffer.ToString();
 string trimmed = str.Trim();
 string textOnly = regexWhitespace.Replace(trimmed, "\n");
 if (!string.IsNullOrEmpty(textOnly))
 {
 writer.WriteLine(textOnly);
 }
 }
}

The input file is read character by character with the class StreamReader.

Originally the buffer for accumulating of text is empty. In the main loop we

analyze each read character. We have the following cases:

- If we get to the end of file, we print whatever is in the buffer and the

algorithm ends.

- When we encounter the character "<" (start tag) we first print the

buffer (if we find that the transition is from text to tag). Then we clear

the buffer and set inTag = true.

- When we encounter the character ">" (end tag) we set inTag = false.

This will allow the next characters after the tag to accumulate in the

buffer.

- When we encounter another character (text or blank space), it is

added to the buffer, if we are outside tags. If we are in a tag the

character is ignored.

Printing of the buffer takes care of removing empty lines in text and

clearing the empty space at the beginning and end of text (trimming the

leading and trailing whitespace). How exactly we do this, we already

discussed in the previous solution of the problem.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1007

In the second solution the processing of the buffer is much lighter and

shorter, so the buffer is processed immediately before printing.

In the previous solution of the task we used regular expressions for replacing

with the static methods of the class Regex. For improved performance now

we create the regular expression object just once (as a static field). Thus

the regular expression pattern is compiled just once to a state machine.

Testing the New Solution

It remains to test thoroughly the new solution. We have to perform all

tests conducted on the previous solution. Add test with tags, which are spread

over several lines. Again, test performance with the Microsoft website copied

1000 times. Assure that the program works correctly and is even faster.

Let’s try with another site, such as the official website of this book –

http://www.introprogramming.info (as of April 2011). Again, take the source

code of the site and run the solution of our task with it. After carefully

reviewing the input data (source code on the website of the book) and the

output file, we notice that there is a problem again. Some content of this

tag is printed in the output file:

<!--

Read the free book by Svetlin Nakov and team for developing with
Java.
…
…
-->

Where Is the Problem?

The problem seems to occur when one tag meets another tag, before the

first tag is closed. This can happen in HTML comments. Here’s how to get to

the error:

<!--

…

As we know, in the solution of the task we use Boolean variable (inTag), to

know whether the current character is in the tag or not. On the figure above

we have shown that in moment 1 we set inTag = true. So far so good. Then

comes moment 2, where the current character read is ">". At this point we

find inTag = false. The problem is that the tag, which is open from moment

1 is not yet closed, and the Boolean variable indicates that we are not in the

1. inTag = true

2. inTag = false

http://www.introprogramming.info/

www.manaraa.com

1008 Fundamentals of Computer Programming with C#

tag anymore and the following characters are saved in the buffer. If between

the two tags for a new line (
) we have text, it would also be saved in

the buffer.

How to Fix the Problem?

It turned out that in the second solution there is a mistake. The program

does not work correctly in the presence of nested tags in a comment tag.

By Boolean variable can only know whether we are in a tag or not, but cannot

remember if we are still in the preceding. This tells us that instead of using a

Boolean variable, we can store the number of tags in which we are (in

variable of type int – tag counter). We will modify the solution:

int openedTags = 0;
StringBuilder buffer = new StringBuilder();
while (! <end of file is reached>)
{
 char ch = (read the next character);
 if (ch == '<')
 {
 if (openedTags == 0)
 {
 PrintBuffer(buffer);
 }
 buffer.Remove(0, buffer.Length);
 openedTags++;
 }
 else if (ch == '>')
 {
 openedTags--;
 }
 else
 {
 if (openedTags == 0)
 {
 buffer.Append(ch);
 }
 }
}
PrintBuffer(buffer);

In the main loop we analyze each read character. We have the following

cases:

- If we get to the end of the file, print whatever is in the buffer and the

algorithm ends.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1009

- When we encounter the character "<" (start tag) first we print the

buffer (if we find that the transition from text to the tag). Then we clear

the buffer and increase the counter by one.

- When we encounter the character ">" (end tag) we reduce the

counter by one. Closing of a nested tag will not allow accumulation in

the buffer. If after closing a tag we are out of all tags, the characters will

begin to accumulate in the buffer.

- When we encounter another character (text or blank space), it is

added to the buffer, if we are outside all tags. If we are inside a tag –

the character is ignored.

It remains to write the whole solution again and then test it. The logic

for reading the input file and printing the buffer remains the same:

SimpleHtmlTagRemover.cs

using System;
using System.IO;
using System.Text;
using System.Text.RegularExpressions;

public class SimpleHtmlTagRemover
{
 private const string InputFileName = "Problem1.html";
 private const string OutputFileName = "Problem1.txt";
 private const string Charset = "windows-1251";
 private static Regex regexWhitespace = new Regex("\n\\s+");

 static void Main()
 {
 if (!File.Exists(InputFileName))
 {
 Console.WriteLine(
 "File " + InputFileName + " not found.");
 return;
 }

 StreamReader reader = null;
 StreamWriter writer = null;
 try
 {
 Encoding encoding = Encoding.GetEncoding(Charset);
 reader = new StreamReader(InputFileName, encoding);
 writer = new StreamWriter(OutputFileName, false,
 encoding);

www.manaraa.com

1010 Fundamentals of Computer Programming with C#

 RemoveHtmlTags(reader, writer);
 }
 catch (IOException)
 {
 Console.WriteLine(
 "Cannot read file " + InputFileName + ".");
 }
 finally
 {
 if (reader != null)
 {
 reader.Close();
 }
 if (writer != null)
 {
 writer.Close();
 }
 }
 }

 /// <summary>Removes the tags from a HTML text</summary>
 /// <param name="reader">Input text</param>
 /// <param name="writer">Output text (result)</param>
 private static void RemoveHtmlTags(
 StreamReader reader, StreamWriter writer)
 {
 int openedTags = 0;
 StringBuilder buffer = new StringBuilder();
 while (true)
 {
 int nextChar = reader.Read();
 if (nextChar == -1)
 {
 // End of file reached
 PrintBuffer(writer, buffer);
 break;
 }
 char ch = (char)nextChar;
 if (ch == '<')
 {
 if (openedTags == 0)
 {
 PrintBuffer(writer, buffer);
 buffer.Length = 0;

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1011

 }
 openedTags++;
 }
 else if (ch == '>')
 {
 openedTags--;
 }
 else
 {
 // We aren't in tags (not "<" or ">")
 if (openedTags == 0)
 {
 buffer.Append(ch);
 }
 }
 }
 }

 /// <summary>Removes the whitespace and prints the buffer
 /// in a file</summary>
 /// <param name="writer">the result file</param>
 /// <param name="buffer">the input for processing</param>
 private static void PrintBuffer(
 StreamWriter writer, StringBuilder buffer)
 {
 string str = buffer.ToString();
 string trimmed = str.Trim();
 string textOnly = regexWhitespace.Replace(trimmed, "\n");
 if (!string.IsNullOrEmpty(textOnly))
 {
 writer.WriteLine(textOnly);
 }
 }
}

Testing the New Solution

Again we test the solution of the problem. We perform all tests made on

the previous solution (see section "Testing the Solution"). We also try the site

of MSDN (http://msdn.microsoft.com). Let’s carefully check the output file.

We can see that at its end the file contains wrong characters (in April 2011).

After carefully reviewing the source code of the MSDN site, we notice that

there is an incorrect representation of the character ">" (to visualize this

character in the HTML document ">" should be used, not ">"). However,

this is an error in the MSDN site, not in our program.

http://msdn.microsoft.com/

www.manaraa.com

1012 Fundamentals of Computer Programming with C#

Now it remains to test the performance of our program with the site of this

book (http://www.introprogramming.info) copied 1000 times. We assure that

the program works fast enough for it too.

Finally we are ready for the next task.

Problem 2: Escape from Labyrinth

We are given a labyrinth, which consists of N x N squares and each of it

can be passable (0) or not (x). Our hero Jack is in one of the squares (*):

x x x x x x

0 x 0 0 0 x

x * 0 x 0 x

x x x x 0 x

0 0 0 0 0 x

0 x x x 0 x

Two of the squares are neighboring, if they have a common wall. In one

step Jack can pass from one passable square to its neighboring passable

square. If Jack steps in a cell, which is on the edge of the labyrinth, he can go

out from the labyrinth with one step.

Write a program, which by a given labyrinth prints the minimal number of

steps, which Jack needs, to go out from the labyrinth or -1 if there is no

way out.

The input data is read from a text file named Problem2.in. On the first line of

the file is the number N (2 < N < 100). On the each of next N lines there are

N characters, each of them is either "0" or "x" or "*". The output is one

number and must be in the file Problem2.out.

Sample input – Problem2.in:

6
xxxxxx
0x000x
x*0x0x
xxxx0x
00000x
0xxx0x

Sample output – Problem2.out:

9

http://www.introprogramming.info/

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1013

Figure Out an Idea for a Solution

We have a labyrinth and we should find the shortest path in it. This is not

an easy task and we should think a lot or we should read somewhere how to

solve such kinds of tasks.

Our algorithm will begin its movement from the initial point we are given. We

know we can move to a neighboring cell horizontally or vertically, but not

diagonally. Our algorithm must traverse the labyrinth in some way, to find the

shortest path in it. How to traverse the cells in the labyrinth?

One possible decision is the following: we start from the initial cell. Move to

one of its neighboring cells, after this in a neighboring cell of the current

(which is passable and still unvisited), after this in a neighboring cell of the

last visited (which is passable and still unvisited) and we go on forward

recursively until we reach an exit of the labyrinth, or we reach a place where

we can’t continue (there is no neighboring cell which is free or unvisited). In

this moment we go back from the recursion (to the previous cell) and visit

another neighboring cell for the previous cell. If we can’t continue, we go back

again. The described recursive process is the process of traversing the

labyrinth in depth (remember the chapter "Recursion" and DFS traversal).

The question “Is it needed to walk through one cell more than once” occurs to

us? If we walk through one cell at most once, we can walk through the whole

labyrinth faster and if there is an exit, we will find it. But will this be the

minimal path? If we draw the whole process on a paper, we will find out

quickly the path will not be the minimal.

If we mark the cell we leave on the way back of the recursion as free, this will

allow us to reach each cell repeatedly, coming from a different path. The full

recursive walk of the labyrinth will find all possible paths from the

initial cell to any other cell. From all the found paths we can choose the

shortest path to a cell on the bound of the labyrinth (exit) and that’s how we

will find a solution for the problem.

Verification of the Idea

It seems we have an idea for solving the problem: with recursive walk we

find all the possible paths in the labyrinth from the initial cell to a cell on

the bounds of the labyrinth and from all these paths we choose the shortest

one. Let’s check the idea.

We take a sheet of paper and make one example of the labyrinth. We try the

algorithm. It’s obvious it finds all the paths from the initial cell to the one of

the exits and it travels a lot forwards-backwards. As a result it finds all exits

and among all paths it can be chosen the shortest one.

Does the idea work if there is no exit? We create a second labyrinth, which

is without exit. We try out the algorithm on it, again on a sheet of paper. We

see after long circulation forwards-backwards that the algorithm does not find

an exit and finishes.

www.manaraa.com

1014 Fundamentals of Computer Programming with C#

It looks we have a correct idea for solving the problem. Let’s move forward

and think for the data structures.

What Data Structures to Use?

First, we have to decide how to store the labyrinth. It’s natural to use a

matrix of characters, just as the one on the figure. We will consider that one

cell is passable and we can enter it, if it has a character, different from the

character 'x'. We can store the labyrinth in a matrix of numbers and Boolean

values, but the difference is not significant. The matrix of characters is

comfortable for printing, and this will help us while debugging. There are not

many options. We will store the labyrinth in a matrix of characters.

After this, we have to decide in what structure to keep the visited through

the recursion (current path) cells. We always need the last visited cell. This

leads us to a structure, which is “last in, first out”, i.e. stack. We can use

Stack<Cell>, where Cell is a class, containing the coordinates of one cell

(number of row and number of column). It remains to think where to keep

the found paths, to find the shortest of them. If we think of it, it is not

necessary to keep all the paths. It is enough to keep the current path and the

shortest till this moment. It’s not even necessary to keep the shortest path till

this moment but only its length. Every time we find a path to an exit of the

labyrinth we can take its length and if it is shorter than the shortest path to

this moment to keep it.

It seems we found efficient data structures. According to our recommen-

dations for problem solving, it is early to write the code of the program,

because we have to think of the efficiency of the algorithm.

Think About the Efficiency

Let’s check our idea against efficiency. What are we doing? We find all the

possible paths and we take the shortest. There’s no argument the algorithm

will not work, but if the labyrinth is way bigger, will it work fast?

To answer this question, we should think how much paths there are. If we

take an empty labyrinth, on the each step of the recursion we will have an

average number of 3 free cells to go (without the cell we are coming from).

If we have for example a labyrinth 10x10, the path could be 100 cells and

while we travel on each step we will have 3 neighboring cells. It seems the

numbers of paths are sort of 3 to the power of 100. It’s obvious the

algorithm will slow down the computer very much and very fast.

We found a serious problem with the algorithm. It will work very slowly,

even with small labyrinths, and with bigger ones it will not work at all! The

good news is that we haven’t written a single line of code and the general

change of our approach to the problem will not cost us much time.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1015

Think of Another Idea

We found that walking through all the paths in the labyrinth is wrong

approach, so we have to think of another.

Let’s start with the initial cell and walk through all its neighboring cells and

mark them as visited. For each visited cell we can keep a number equal

to the number of cells, which we have travelled to reach it (the length

of the minimal path from the initial cell to the current cell).

For the initial cell the length of the path is 0. For its neighboring cells it should

be 1, because we can reach them from the initial cell with one move. For the

neighboring cells for the neighbors of the initial cell the length of the path is

2. We can continue this way and we will get to the following algorithm:

1. Write the length of the path 0 for the initial cell. Mark it as visited.

2. For each neighboring cell to the initial we mark the length of the path is

1. Mark these cells as visited.

3. For each cell, which is, neighboring to a cell with length of the path 1

and it is not visited, write the length of the path is 2. Mark the cells as

visited.

4. Continuing analogous, on the N step we find all the still unvisited cells,

which are on a distance of N moves from the initial cell and mark them

as visited.

Check the New Idea

To check whether the new idea for solving the “Escape from the Labyrinth”

problem is correct we can visualize the process. We take another labyrinth

to test our idea in a better way. At each step k our goal is to fill with the

number k all cells that can be reached in k steps. If at step 0 we fill the initial

cell with 0, at step 1 we fill all cells reachable in 1 step from the initial cell, at

step 2 we fill all cells reachable in 2 steps, etc. we will be sure that when we

fill a cell with a number, this number reflects the minimal number of steps

to reach this cell starting from the initial cell, right?

Step 0 – mark the distance from the initial cell to itself with 0 (mark the free

cells with "-"):

x x x x x x

- x - - - x

x 0 - x - x

x - - x - x

x - - - - x

- x x x - x

Step 1– mark with 1 all the neighbors to cells with a value of 0:

www.manaraa.com

1016 Fundamentals of Computer Programming with C#

x x x x x x

- x - - - x

x 0 1 x - x

x 1 - x - x

x - - - - x

- x x x - x

Step 2 – mark with 2 all the passable neighbors to cells with value 1:

x x x x x x

- x 2 - - x

x 0 1 x - x

x 1 2 x - x

x 2 - - - x

- x x x - x

Step 3 – mark with 3 all passable neighbors to cells with value of 2:

x x x x x x

- x 2 3 - x

x 0 1 x - x

x 1 2 x - x

x 2 3 - - x

- x x x - x

Continuing this way, in a moment either we will reach a cell at the edge of the

labyrinth (an exit) or we will find such a cell is unreachable. It seems like our

algorithm works correctly. It will either find an exit or will find that there is

no reachable exit. If at some step an exit is found, the path to it will be

guaranteed to be the shortest possible (otherwise the exit should already

be found at some of the earlier steps).

Breaking the Problem into Subproblems

Having invented the idea for solving the labyrinth escaping problem, it will be

easy to break it into subproblems. The main subproblems could be: reading

the input labyrinth, finding the shortest path to some of its exits and

printing the results. The path finding subproblem could be further

divided into subproblems (steps) which we discussed in the previous section.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1017

Checking the Performance of the New Algorithm

Because we never visit a cell more than once, the number of steps, which this

algorithm does, should not be big. For example, if we have a labyrinth with

size 100 x 100, it will have 10,000 cells, we will visit each of the cells at most

once and for each of them we will check every neighbor if it is free, i.e. we

will check 4 times each cell. At the end we will do at most 40,000 checks and

we will visit at most 10,000 cells. We will do a total amount of 50,000

operations. This means the algorithm will work instantly.

Check If the New Algorithm Is Correct

It seems this time we don’t have a problem with the performance. We have a

fast algorithm.

Let’s check if it is correct. For this purpose we draw a bigger and more

complex example on a sheet of paper, which has many exits and a lot of

paths, and we begin to perform the algorithm. After this we try with a

labyrinth with no exit. It seems the algorithm ends, but does not find an exit

so it’s working. We try another 2-3 examples and convince ourselves this

algorithm always finds the shortest path to an exit and always works

fast, because it visits each of the cells of the labyrinth at most once.

What Data Structures to Use?

With the new algorithm we walk consequently through all neighboring cells to

the initial cell. We can put them into a data structure, for example in an

array or better a list (or list of lists), because we can’t add in the array.

Then we take the list of the reached cells on the last step and we add

their neighbors in another list.

That’s how if we index the lists we have list0, which contains the initial cell,

list1, which contains passable neighboring cells to the initial, after this

list2, which contains passable neighbors to list1 and so on. At the N step

we have the listn, which contains all the cells, which we can reach in exactly

N steps, i.e. which are at a distance of n from the initial cell.

It seems we can use a list of lists, to keep the cells on each step. If we think

about it, to get the n list, we need the (n-1)-list. So it seems we don’t need

list of lists but only the list from the last step.

We can make general conclusion: cells are processed in the order of entry:

when the cells of step k are finished, then we process the cells from step k+1,

and just after them – the cells from step k+2, and so on. The process seems

like a queue: earlier accessed cells are processed earlier. If we dig a bit

inside, we will conclude, that we have just re-invented the Breadth-First-

Search algorithm (read about BFS in Wikipedia).

To implement the BFS algorithm we can use a queue of cells. For this

purpose we have to define class Cell, which contains the coordinates of

http://en.wikipedia.org/wiki/Breadth-first_search

www.manaraa.com

1018 Fundamentals of Computer Programming with C#

given cell (row and column). We can keep the distance from each cell to the

initial cell in a matrix. If the distance is not calculated yet, we store -1.

If we think a little more, the distance from the initial cell can be kept in the

cell itself (in the class Cell) instead of creating a special matrix for the

distances. That way we will save memory.

Now we are clear about the data structures. Now we have to implement the

algorithm step by step.

Step 1 – The Class Cell

We can begin with the definition of the Cell class. We need it to save the

initial cell, from which begins the searching of the path. We will use auto-

implemented properties to make the code shorter and more readable. Here is

the Cell class:

public class Cell
{
 public int Row { get; set; }
 public int Column { get; set; }
 public int Distance { get; set; }
}

We can add a constructor to simplify the way we use this class:

public Cell(int row, int column, int distance)
{
 this.Row = row;
 this.Column = column;
 this.Distance = distance;
}

Generally it is a good idea to test the code after each step, but the above

code is too simple to be tested. We will test is later as part of some more

complex piece of code.

Step 2 – Reading the Input File

We will read the input file line by line using the well-known class

StreamReader. On the each of the lines we will analyze the characters and we

will write them in a matrix of characters. When we reach the character "*" we

will keep its coordinates in an instance of class Cell to know where to start

the searching of the shortest path for getting out of the labyrinth.

We can define a class Maze and keep the matrix of the labyrinth and the

initial cell in it:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1019

Maze.cs

public class Maze
{
 private char[,] maze;
 private int size;
 private Cell startCell = null;

 public void ReadFromFile(string fileName)
 {
 using (StreamReader reader = new StreamReader(fileName))
 {
 // Read the maze size and create the maze
 this.size = int.Parse(reader.ReadLine());
 this.maze = new char[this.size, this.size];

 // Read the maze cells from the file
 for (int row = 0; row < this.size; row++)
 {
 string line = reader.ReadLine();
 for (int col = 0; col < this.size; col++)
 {
 this.maze[row, col] = line[col];
 if (line[col] == '*')
 {
 this.startCell = new Cell(row, col, 0);
 }
 }
 }
 }
 }
}

For simplicity we will skip processing the errors while reading and writing in a

file. When an exception occurs we will skip to catch it in the main method

and thus we will leave the CLR to print it on the console.

Testing the Input File Reading Code

We already have the class Maze and appropriate representation of data of the

input file. To be sure the written so far is correct we should test. We can

check if the matrix is truly filled as we print it on the console. The other

possibility is to view the values of the fields in the class Maze through the

debugger of Visual Studio. We add a Main() method which invokes the maze

reading method and we test it:

www.manaraa.com

1020 Fundamentals of Computer Programming with C#

static void Main()
{
 Maze maze = new Maze();
 maze.ReadFromFile("Problem2.in");
}

Through the Visual Studio debugger we get convinced that the input file is

correctly read from the input file:

Step 3 – Finding the Shortest Path

We can implement the algorithm directly from what we already discussed.

We must define a queue and put in its beginning the initial cell. Afterwards we

must take the cell in turn from the queue and add all of its passable unvisited

neighbors in a loop. At each step there is a chance to enter in a cell, which is

at the border of the labyrinth, and we see we have found an exit and the

searching ends. We repeat the loop until the queue is empty. At each

visitation of a given cell we check if it is free and if it is, we mark it as

impassable. This way we avoid repeatedly visiting the same cell.

Here is how the implementation of the algorithm looks like:

public int FindShortestPath()
{
 // Queue for traversing the cells in the maze
 Queue<Cell> visitedCells = new Queue<Cell>();
 VisitCell(visitedCells, this.startCell.Row,
 this.startCell.Column, 0);

 // Perform Breadth-First Search (BFS)
 while (visitedCells.Count > 0)
 {
 Cell currentCell = visitedCells.Dequeue();
 int row = currentCell.Row;

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1021

 int column = currentCell.Column;
 int distance = currentCell.Distance;
 if ((row == 0) || (row == size - 1)
 || (column == 0) || (column == size - 1))
 {
 // We are at the maze border
 return distance + 1;
 }
 VisitCell(visitedCells, row, column + 1, distance + 1);
 VisitCell(visitedCells, row, column - 1, distance + 1);
 VisitCell(visitedCells, row + 1, column, distance + 1);
 VisitCell(visitedCells, row - 1, column, distance + 1);
 }

 // We didn't reach any cell at the maze border -> no path
 return -1;
}

private void VisitCell(Queue<Cell> visitedCells,
 int row, int column, int distance)
{
 if (this.maze[row, column] != 'x')
 {
 // The cell is free --> visit it
 maze[row, column] = 'x';
 Cell cell = new Cell(row, column, distance);
 visitedCells.Enqueue(cell);
 }
}

Checking after Step 3

Before the next step, we must test, to check our algorithm. We must try

the normal case and the border cases, when there is no exit, when we step

on an exit, when the input file doesn’t exist or the square matrix is with size

of 0. Only then can we start doing the next step. Let’s start with testing the

normal (typical) case. We create the following code to quickly test it:

static void Main()
{
 Maze maze = new Maze();
 maze.ReadFromFile("Problem2.in");
 Console.WriteLine(maze.FindShortestPath());
}

www.manaraa.com

1022 Fundamentals of Computer Programming with C#

We run the above code over the sample input file from the problem

description and it works. The code correctly returns the length of the

shortest path to the nearest exit:

9

Now let’s test the border cases, e.g. a labyrinth of size 0. Unfortunately

we get the following result:

Unhandled Exception: System.NullReferenceException: Object
reference not set to an instance of an object.
 at Maze.FindShortestPath()

We’ve made a mistake. The problem is when the variable, in which we keep

the initial cell, is initialized with null. This can happen in many scenarios. If

the labyrinth has no cells (e.g. size of 0) or the initial cell is missing, the

result that the program should return is -1, but not an exception.

To fix the bug we just found we can add a check in the beginning of the

FindShortestPath() method:

public int FindShortestPath()
{
 if (this.startCell == null)
 {
 // Start cell is missing -> no path
 return -1;
 }
 …

We retest the code with the typical and the border cases. After the fix it

seems the algorithm works correctly now.

Step 4 – Writing the Result to a File

It remains to write the result of the FindShortestPath() to the output file.

This is a trivial problem:

public void SaveResult(String fileName, int result)
{
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine("The shortest way is: " + result);
 }
}

Here is how the complete source code of the solution looks:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1023

Maze.cs

using System;
using System.IO;
using System.Collections.Generic;

public class Maze
{
 private const string InputFileName = "Problem2.in";
 private const string OutputFileName = "Problem2.out";

 public class Cell
 {
 public int Row { get; set; }
 public int Column { get; set; }
 public int Distance { get; set; }

 public Cell(int row, int column, int distance)
 {
 this.Row = row;
 this.Column = column;
 this.Distance = distance;
 }
 }

 private char[,] maze;
 private int size;
 private Cell startCell = null;

 public void ReadFromFile(string fileName)
 {
 using (StreamReader reader = new StreamReader(fileName))
 {
 // Read maze size and create maze
 this.size = int.Parse(reader.ReadLine());
 this.maze = new char[this.size, this.size];

 // Read the maze cells from the file
 for (int row = 0; row < this.size; row++)
 {
 string line = reader.ReadLine();
 for (int col = 0; col < this.size; col++)
 {
 this.maze[row, col] = line[col];

www.manaraa.com

1024 Fundamentals of Computer Programming with C#

 if (line[col] == '*')
 {
 this.startCell = new Cell(row, col, 0);
 }
 }
 }
 }
 }

 public int FindShortestPath()
 {
 if (this.startCell == null)
 {
 // Start cell is missing -> no path
 return -1;
 }

 // Queue for traversing the cells in the maze
 Queue<Cell> visitedCells = new Queue<Cell>();
 VisitCell(visitedCells, this.startCell.Row,
 this.startCell.Column, 0);

 // Perform Breadth-First Search (BFS)
 while (visitedCells.Count > 0)
 {
 Cell currentCell = visitedCells.Dequeue();
 int row = currentCell.Row;
 int column = currentCell.Column;
 int distance = currentCell.Distance;
 if ((row == 0) || (row == size - 1)
 || (column == 0) || (column == size - 1))
 {
 // We are at the maze border
 return distance + 1;
 }

 VisitCell(visitedCells, row, column + 1, distance + 1);
 VisitCell(visitedCells, row, column - 1, distance + 1);
 VisitCell(visitedCells, row + 1, column, distance + 1);
 VisitCell(visitedCells, row - 1, column, distance + 1);
 }

 // We didn't reach any cell at the maze border -> no path
 return -1;

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1025

 }

 private void VisitCell(Queue<Cell> visitedCells,
 int row, int column, int distance)
 {
 if (this.maze[row, column] != 'x')
 {
 // The cell is free --> visit it
 maze[row, column] = 'x';
 Cell cell = new Cell(row, column, distance);
 visitedCells.Enqueue(cell);
 }
 }

 public void SaveResult(string fileName, int result)
 {
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine(result);
 }
 }

 static void Main()
 {
 Maze maze = new Maze();
 maze.ReadFromFile(InputFileName);
 int pathLength = maze.FindShortestPath();
 maze.SaveResult(OutputFileName, pathLength);
 }
}

Testing the Complete Solution of the Problem

After we have a solution of the problem we must test it. We have already

tested the typical case and the border cases (like missing exit or when

the initial position stays at the labyrinth edge). We will execute these

tests again to get convinced that the algorithm behaves correctly:

Input Output Input Output Input Output Input Output

0 -1 2
00
xx

-1 3
0x0
x*x
0x0

-1 3
000
000
00*

1

www.manaraa.com

1026 Fundamentals of Computer Programming with C#

The algorithm works correctly. The output for each of the test is correct.

It remains to test with a large labyrinth (performance test), for example

1000 x 1000. We can make such a labyrinth very easy – with copy / paste.

We perform the test and we convince ourselves the program is working

correctly for the big test and works extremely fast – there is no delay.

While testing we should try every way to break our solution. We run a

few more difficult examples (for example a labyrinth with passable cells in

the form of spiral). We can put large labyrinth with a lot of paths, but without

exit. We can try whatever else we wish.

At the end we make sure, that we have a correct solution and we pass to

the next problem from the exam.

Problem 3: Store for Car Parts

A company is planning to create a system for managing a store for auto

parts. A single part can be used for different car models and it has following

characteristics: code, name, category (e.g. suspension, tires and wheels,

engine, accessories and etc.), purchase price, sale price, list of car

models, with which it is compatible (each car is described with brand, model

and year of manufacture, e. g. Mercedes C320, 2008) and manufacturing

company. Manufacturing companies are described with name, country,

address, phone and fax.

Design a set of classes with relationships between them, which model the

data for the store. Write a demonstration program, which demonstrates

the classes and their all functionality work correctly with some sample data.

Inventing an Idea for Solution

We have a non-algorithmic problem which is intended to check whether the

students at the exam know how to use object-oriented programming

(OOP), how to design classes and relationships between them to model real-

world objects (object-oriented analysis and design) and how to use

appropriate data structures to hold collections of objects.

We are required to create an aggregation of classes and relationships between

them, which have to describe the data of the store. We have to find which

nouns are important for solving the problem. They are objects from the real

world, which correspond to classes.

Which are these nouns that interest us? We have a store, car parts, cars

and manufacturing companies. We have to create a class defining a store.

It could be named Shop. Other classes are Part, Car and Manufacturer. In

the requirements of the problem there are other nouns too, like code for one

part or year of manufacturing of given car. For these nouns we are not

creating individual classes, but instead these will be fields in the already

created classes. For example in the Part class there will be let’s say a field

code of string type.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1027

We already know which will be our classes, and fields to describe them.

We have to identify the relationships between the objects.

Checking the Idea

We will not check the idea because there is nothing to be proven with

examples and counterexamples or checked whether it will work. We need to

write few classes to model a real-world situation: a store for car parts.

What Data Structures to Use to Describe the Relationship

between Two Classes?

The data structures, needed for this problem, are of two main groups:

classes and relationships between the classes. The interesting part is

how to describe relationships.

To describe a relationship (link) between two classes we can use an array.

With an array we have access of its elements by index, but once it is created

we can’t change its length. This makes it uncomfortable for our problem,

because we don’t know how many parts we will have in the store and more

parts can be delivered or somebody can buy parts so we have to delete or

change the data. List<T> is more comfortable. It has the advantages of an

array and also is with variable length and it is easy to add or delete elements.

So far it seems List<T> is the most appropriate for holding aggregations of

objects inside another object. To be convinced we will analyze a few more

data structures. For example hash-table – it is not appropriate in this case,

because the structure “parts” is not of the key-value type. It would be

appropriate if each of the parts in the store has unique number (e.g. barcode)

and we needed to search them by this unique number. Structures like stack

and queue are inappropriate.

The structure “set” and its implementation HashSet<T> is used when we have

uniqueness for given key. It would be good sometimes to use this structure

to avoid duplicates. We must recall that HashSet<T> requires the methods

GetHashCode() and Equals(…) to be correctly defined by the T type.

Our final decision is to use List<T> for the aggregations and HashSet<T> for

the aggregations which require uniqueness.

Dividing the Task into Subtasks

Now we have to think from where to start writing the code. If we start to

write the Shop class, we will need the Part class. This reminds us we will

have to start with a class, which does not depend on others. We will divide

the writing of each class to а subtask, and we will start from the independent

classes:

- Class describing a car – Car

- Class describing manufacturer of parts – Manufacturer

- Class or enumeration for the categories of the parts – PartCategory

www.manaraa.com

1028 Fundamentals of Computer Programming with C#

- Class describing part for a car – Part

- Class for the store – Shop

- Class for testing rest of the classes with sample data – TestShop

Implementation: Step by Step

We start writing classes, which we described in our idea. We will create them

in the same sequence as in the list above.

Step 1: The Class Car

We start solving the problem by defining the class Car. In the definition we

have three fields, which keep the manufacturer, the model and the year of

manufacturing of the car and the standard method ToString(), which returns

a human-readable string holding the information about the car. We define the

class Car in the following way:

Car.cs

public class Car
{
 private string brand;
 private string model;
 private int productionYear;

 public Car(string brand, string model, int productionYear)
 {
 this.brand = brand;
 this.model = model;
 this.productionYear = productionYear;
 }

 public override string ToString()
 {
 return "<" + this.brand + "," + this.model + ","
 + this.productionYear + ">";
 }
}

Note that the class Car is designed to be immutable. This means that once

created, the car’s properties cannot be later modified. This design is not

always the best choice. Sometimes we want the class properties to be freely

modifiable; sometimes. For our case the immutable design will work well.

Testing the Class Car

Once we have the class Car, we could test it by the following code:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1029

Car bmw316i = new Car("BMW", "316i", 1994);
Console.WriteLine(bmw316i);

The result is as expected:

<BMW,316i,1994>

We are convinced the class Car is correct so far and we can continue with the

other classes.

Step 2: The Class Manufacturer

We have to implement the definition of the class Manufacturer, which

describes the manufacturer for given part. It will have five fields – name,

country, address, phone number and fax. The class will be immutable,

because we will not need to change its members after creation. We also

define the standard method ToString() for representing the object as

human-readable string.

Manufacturer.cs

public class Manufacturer
{
 private string name;
 private string country;
 private string address;
 private string phoneNumber;
 private string fax;

 public Manufacturer(string name, string country,
 string address, string phoneNumber, string fax)
 {
 this.name = name;
 this.country = country;
 this.address = address;
 this.phoneNumber = phoneNumber;
 this.fax = fax;
 }

 public override string ToString()
 {
 return this.name + " <" + this.country + "," + this.address
 + "," + this.phoneNumber + "," + this.fax + ">";
 }
}

www.manaraa.com

1030 Fundamentals of Computer Programming with C#

Testing the Class Manufacturer

We test the class Manufacturer just like we tested the class Car. It works.

Step 3: The Part Category Enumeration

Part categories are fixes set of values and do not have additional details

(like name, code and description). This makes them perfect to be modeled as

enumeration:

PartCategory.cs

public enum PartCategory
{
 Engine,
 Tires,
 Exhaust,
 Suspention,
 Brakes
}

Step 4: The Class Part

Now we have to define the class Part. Its definition will include the

following fields: name, code, category, list with cars, where we can use the

given part, starting and closing price and manufacturer. Here we will use the

data structure HashSet<Car> to hold all compatible cars.

The field that keeps the manufacturer of the part will be of Manufacturer

class, because the task requires us to keep additional information about the

manufacturer. If it was required to keep only the name of the manufacturer

(as in the case with class Car) this class should not be necessary. We would

have a field of string type.

We need a method for adding a car (object of type Car) to the list of cars (in

HashSet<Car>). It will be named AddSupportedCar(Car car).

Below is the code of the class Part which is also designed as set of

immutable fields (except that it accepts adding cars):

Part.cs

public class Part
{
 private string name;
 private string code;
 private PartCategory category;
 private HashSet<Car> supportedCars;
 private decimal buyPrice;

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1031

 private decimal sellPrice;
 private Manufacturer manufacturer;

 public Part(string name, decimal buyPrice, decimal sellPrice,
 Manufacturer manufacturer, string code,
 PartCategory category)
 {
 this.name = name;
 this.buyPrice = buyPrice;
 this.sellPrice = sellPrice;
 this.manufacturer = manufacturer;
 this.code = code;
 this.category = category;
 this.supportedCars = new HashSet<Car>();
 }

 public void AddSupportedCar(Car car)
 {
 this.supportedCars.Add(car);
 }

 public override string ToString()
 {
 StringBuilder result = new StringBuilder();
 result.Append("Part: " + this.name + "\n");
 result.Append("-code: " + this.code + "\n");
 result.Append("-category: " + this.category + "\n");
 result.Append("-buyPrice: " + this.buyPrice + "\n");
 result.Append("-sellPrice: " + this.sellPrice + "\n");
 result.Append("-manufacturer: " + this.manufacturer +"\n");
 result.Append("---Supported cars---" + "\n");
 foreach (Car car in this.supportedCars)
 {
 result.Append(car);
 result.Append("\n");
 }
 result.Append("----------------------\n");
 return result.ToString();
 }
}

In the class Part we use HashSet<Car> so it is necessary to redefine the

methods Equals(…) and GetHashCode() for the class Car:

www.manaraa.com

1032 Fundamentals of Computer Programming with C#

// The Equals(…) and GetHashCode() methods for the class Car

public override bool Equals(object obj)
{
 Car otherCar = obj as Car;
 if (otherCar == null)
 {
 return false;
 }
 bool equals =
 object.Equals(this.brand, otherCar.brand) &&
 object.Equals(this.model, otherCar.model) &&
 object.Equals(this.productionYear,otherCar.productionYear);
 return equals;
}

public override int GetHashCode()
{
 const int prime = 31;
 int result = 1;
 result = prime * result + ((this.brand == null) ? 0 :
 this.brand.GetHashCode());
 result = prime * result + ((this.model == null) ? 0 :
 this.model.GetHashCode());
 result = prime * result + this.productionYear;
 return result;
}

Testing the Class Part

We test the class Part. It is a bit more complicated than when testing the

classes Car and Manufacturer, because Part it is more complex class. We

can create a part, assign all its properties and print it:

Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
Part partEngineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
Car bmw316i = new Car("BMW", "316i", 1994);
partEngineOil.AddSupportedCar(bmw316i);
Car mazdaMX5 = new Car("Mazda", "MX5", 1999);
partEngineOil.AddSupportedCar(mazdaMX5);
Console.WriteLine(partEngineOil);

Seems like the result is correct:

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1033

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<Mazda,MX5,1999>

Before we can continue with the next class, we could test for duplicated

cars in the set of supported cars for certain part. Duplicates are not allowed

by design and we should check whether this is enforced:

Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
Part partEngineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
partEngineOil.AddSupportedCar(new Car("BMW", "316i", 1994));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2006));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2007));
partEngineOil.AddSupportedCar(new Car("BMW", "X5", 2006));
partEngineOil.AddSupportedCar(new Car("BMW", "316i", 1994));
Console.WriteLine(partEngineOil);

The result is correct. The duplicated cars are taken into account only once:

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<BMW,X5,2006>
<BMW,X5,2007>

Step 5: The Class Shop

We already have all needed classes for creating the class Shop. It will have

two fields: name and list of parts, which are for sale. The list will be

List<Part>. We will add the method AddPart(Part part), with which we

www.manaraa.com

1034 Fundamentals of Computer Programming with C#

will add new parts. With a redefined ToString() we will print the name of the

shop and the parts in it.

Here is an example of implementation of our class Shop holding the catalog of

auto parts (its name is immutable but it can add parts):

Shop.cs

public class Shop
{
 private string name;
 private List<Part> parts;

 public Shop(string name)
 {
 this.name = name;
 this.parts = new List<Part>();
 }

 public void AddPart(Part part)
 {
 this.parts.Add(part);
 }

 public override string ToString()
 {
 StringBuilder result = new StringBuilder();
 result.Append("Shop: " + this.name + "\n\n");
 foreach (Part part in this.parts)
 {
 result.Append(part);
 result.Append("\n");
 }
 return result.ToString();
 }
}

It might be a subject of discussion whether we should use List<Part>

or Set<Part> for the parts in the car shop. The set data structure has an

advantage that it avoids any duplicates. Thus if we have for example few

tires of certain model, they will be found only once in the set. To use set we

need to be sure the parts are uniquely identified by their code or by some

other unique identifier. In our case we assume we could have parts with

exactly the same code, name, etc. which come at different buy and sell prices

(e.g. if the prices change over the time). So we need to allow duplicated parts

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1035

and thus using a set will not be appropriate. Parts in the shop will be kept

in List<Part>.

We will test the class Shop though the especially written class TestShop.

Step 6: The Class TestShop

We created all classes we need. We have to create one more, with which we

will have to demonstrate the usage of the rest of the classes. It will be

named TestShop. In the Main() method we will create two manufacturers

and a few cars. We will add them to two parts. We will add the parts to the

Shop. At the end we will print everything on the console.

TestShop.cs

public class TestShop
{
 static void Main()
 {
 Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
 Manufacturer lada = new Manufacturer("Lada",
 "Russia", "Moscow", "653443", "893321");

 Car bmw316i = new Car("BMW", "316i", 1994);
 Car ladaSamara = new Car("Lada", "Samara", 1987);
 Car mazdaMX5 = new Car("Mazda", "MX5", 1999);
 Car mercedesC500 = new Car("Mercedes", "C500", 2008);
 Car trabant = new Car("Trabant", "super", 1966);
 Car opelAstra = new Car("Opel", "Astra", 1997);

 Part cheapPart = new Part("Tires 165/50/R13", 302.36m,
 345.58m, lada, "T332", PartCategory.Tires);
 cheapPart.AddSupportedCar(ladaSamara);
 cheapPart.AddSupportedCar(trabant);

 Part expensivePart = new Part("Universal Car Engine",
 6733.17m, 6800.0m, bmw, "EU33", PartCategory.Engine);
 expensivePart.AddSupportedCar(bmw316i);
 expensivePart.AddSupportedCar(mazdaMX5);
 expensivePart.AddSupportedCar(mercedesC500);
 expensivePart.AddSupportedCar(opelAstra);

 Shop newShop = new Shop("Tuning Pro Shop");
 newShop.AddPart(cheapPart);
 newShop.AddPart(expensivePart);

www.manaraa.com

1036 Fundamentals of Computer Programming with C#

 Console.WriteLine(newShop);
 }
}

This is the result of the execution of the above code:

Shop: Tuning Pro Shop

Part: Tires 165/50/R13
-code: T332
-category: Tires
-buyPrice: 302.36
-sellPrice: 345.58
-manufacturer: Lada <Russia,Moscow,653443,893321>
---Supported cars---
<Lada,Samara,1987>
<Trabant,super,1966>

Part: Universal Car Engine
-code: EU33
-category: Engine
-buyPrice: 6733.17
-sellPrice: 6800.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>
<Mazda,MX5,1999>
<Mercedes,C500,2008>
<Opel,Astra,1997>

Testing the Solution

At the end we need to test our code. In fact we have done this in the class

TestShop. This doesn’t mean that we have tested entirely our problem. We

have to check the border cases, for example when some of the lists are

empty. Let’s make a little change of the code in Main() method, to start the

program with an empty list:

static void Main()
{
 Shop emptyShop = new Shop("Empty Shop");
 Console.WriteLine(emptyShop);

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1037

 Manufacturer lada = new Manufacturer("Lada",
 "Russia", "Moscow", "653443", "893321");
 Part tires = new Part("Tires 165/50/R13", 302.36m,
 345.58m, lada, "T332", PartCategory.Tires);

 Manufacturer bmw = new Manufacturer("BWM",
 "Germany", "Bavaria", "665544", "876666");
 Part engineOil = new Part("BMW Engine Oil",
 633.17m, 670.0m, bmw, "Oil431", PartCategory.Engine);
 engineOil.AddSupportedCar(new Car("BMW", "316i", 1994));

 Shop ultraTuningShop = new Shop("Ultra Tuning Shop");
 ultraTuningShop.AddPart(tires);
 ultraTuningShop.AddPart(engineOil);

 Console.WriteLine(ultraTuningShop);
}

The result of this test is:

Shop: Empty Shop

Shop: Ultra Tuning Shop

Part: Tires 165/50/R13
-code: T332
-category: Tires
-buyPrice: 302.36
-sellPrice: 345.58
-manufacturer: Lada <Russia,Moscow,653443,893321>
---Supported cars---

Part: BMW Engine Oil
-code: Oil431
-category: Engine
-buyPrice: 633.17
-sellPrice: 670.0
-manufacturer: BWM <Germany,Bavaria,665544,876666>
---Supported cars---
<BMW,316i,1994>

www.manaraa.com

1038 Fundamentals of Computer Programming with C#

From the result it seems the first shop is empty and in the second shop the

list of cars for the first part is empty. This is the correct output. Therefore

our program works correctly with the border case of empty lists.

We can continue testing with other border cases (e.g. missing part name,

missing price, missing manufacturer, etc.), as well as with some kind of

performance test (e.g. shop with 300,000 parts for 5,000 cars and 200

manufacturers). We will leave this for the readers.

Exercises

1. You are given an input file mails.txt, which contains names of users

and their email addresses. Each line of the file looks like this:

<first name> <last name> <username>@<host>.<domain>

There is a requirement for email addresses – <username> can be a

sequence of Latin letters (a-z, A-Z) and underscore (_), <host> is a

sequence of lower Latin letters (a-z), and <domain> has a limit of 2 to 4

lower Latin letters (a-z). Following the guidelines for problem solving

write a program, which finds the valid email addresses and writes

them together with the names of the users (in the same format as in the

input) to an output file valid-mails.txt.

Sample input file (mails.txt):

Steve Smith steven_smith@yahoo.com
Peter Miller pm<5.gmail.com
Svetlana Green svetlana_green@hotmail.com
Mike Johnson mike*j@888.com
Larry Cutts larry.cutts@gmail.com
Angela Hurd angel&7@freemail.hut.fi

Output file (valid-mails.txt):

Steve Smith steven_smith@yahoo.com
Svetlana Green svetlana_green@hotmail.com
Larry Cutts larry.cutts@gmail.com

2. You are given a labyrinth, which consists of N x N squares, and each of

them can be passable (0) or not (x).

In one of the squares our hero Jack (*) is positioned. Two squares are

neighbors, if they have a common wall. At one step Jack can pass from

one passable square to its neighboring passable square. Write a program,

which prints the number of possible exits from given labyrinth. At the

figure below we have 7 possible exits, reachable from the start position.

www.manaraa.com

Chapter 24. Sample Programming Exam – Topic #1 1039

x x x 0 x x

0 x 0 0 0

0 * 0 x 0 0

x x x x 0 x

0 0 0 0 0 x

0 x 0 x x 0

The input data is read from a text file named Labyrinth.in. At the first

line in the file is the number N (2 < N < 1000). At the next N lines there

are N characters, each either "0" or "x" or "*". The output is a single

number and should be printed in the file Labyrinth.out.

3. You are given a labyrinth, which consists of N x N squares, each of it

can be passable or not. Passable cells consist of lower Latin letter

between "a" and "z", and the non-passable – '#'. In one of the squares is

Jack. It is marked with "*".

Two squares are neighbors, if they have common wall. At one step Jack

can pass from one passable square to its neighboring passable square.

When Jack passes through passable squares, he writes down the letters

from each square. At each exit he gets a word. Write a program, which

from a given labyrinth prints the words, which Jack gets from all the

possible exits. At the example below Jack can get 10 different words

corresponding to its 10 possible paths he could find to some of the exits:

a, az, aza, madk, madkm, madam, madamk, dir, did, difid.

a # # k m #

z # a d a #

a * m # # #

d # # # #

r i f i d #

d # d # t

The input data is read from a text file named Labyrinth.in. At the first

line in the file there is the number N (2 < N < 10). At each of the next N

lines there are N characters, each of them is either Latin letter between

"a" and "z" or "#" (impassable wall) or "*" (Jack). The output must be

printed in the file Labyrinth.out.

4. A company plans to create a system for managing of a sound

recording company. The sound recording company has a name,

address, owner and performers. Each performer has name, nickname

and created albums. Albums are described with name, genre, year of

creation, number of sold copies and list of songs. The songs are

described with name and duration. Design a set of classes with

www.manaraa.com

1040 Fundamentals of Computer Programming with C#

relationships between each other, which models the data of the record

company. Implement a test class, which demonstrates the work of rest of

the classes.

5. A company plans on creating of a system for managing a company

for real estates. The company has name, owner, tax ID, employees and

has a list of estates for sale. Employees are described with name, work

position and experience. The company sells several types of estates:

apartments, houses, undeveloped areas and shops. All of them are

characterized with area, price of square meters and location. For some of

them there is additional information. For the apartments there is data

about the number of the floor, whether there is an elevator in the block,

and if it is furnished. For the houses the data is – square meters for the

undeveloped area and for the developed (yard), how many floors it has

and whether it is furnished. Design a set of classes with relationships

between them, which model the data for the company. Implement a

test class, which demonstrates the work of the rest of the classes.

Solutions and Guidelines

1. The problem is similar to the first problem from our sample exam. Again

we can read line by line the input file and with appropriate regular

expression to check the email addresses. Test the solution carefully

before you go to the next problem.

2. Possible exits from the labyrinth are all the cells, which are positioned

at the border of the labyrinth and are reachable from the initial cell. The

problem could be solved using BFS with just little modification of the

solution of the “Escape from Labyrinth”. Test your solution carefully!

3. The problem is similar to the previous one, but all possible paths to the

exit are required. You can do recursive search with backtracking (DFS)

and keep in a StringBuilder the letters to the exit, to create the words,

which you have to print. With bigger labyrinths the problem has no

optimal solution (there is no way to print all the paths, without generating

all of them, but they grow exponentially to the labyrinth size). Test

carefully your solution and think of special cases that need special care.

4. You must write the required classes: MusicCompany, Artist, Album,

Song. Think of the links between classes and what data structures to use

for them. For the printing redefine the method ToString() from

System.Object. Test all methods and the border cases.

5. The classes you must write are EstateCompany, Employee, Apartment,

House, Shop and UndevelopedArea. Export all shared characteristics in

separate abstract base class Estate. Encapsulate all fields with

properties. Override the method ToString(), which to collect the data of

the corresponding class and print it to the console. Test all methods and

special border cases (like missing property values).

www.manaraa.com

Chapter 25. Sample
Programming Exam –

Topic #2

In This Chapter

In this chapter, we will take a look at the specifications of a few practical

algorithmic problems from a sample programming exam, and we will offer

solutions. While solving the problems, we will follow the guidelines from the

chapter “Problem Solving Methodology”, and we are going to illustrate their

implementation.

Problem 1: Counting the Uppercase / Lowercase
Words in a Text

Write a program that counts the words in a text entered from the console.

The program must output the total number of words, the number of words

written in uppercase and the number of words written in lowercase. If a

word appears more than once in the text, each repetition counts as a new

occurrence. Every character that is not a letter counts as a word separator.

Sample input:

Welcome to your first programming exam! Can you think of a
solution to this problem and write it down? GOOD LUCK!

Sample output:

Word count: 21
Upper case words: 2
Lower case words: 17

Coming Up with an Appropriate Idea for a Solution

Intuitively, it comes to mind, that the problem may be solved by splitting

the text up into separate words and counting those that meet the

specified conditions.

Obviously, this approach is correct, but far too general, and it doesn’t lead to

a particular method for solving the problem. Let’s try to be more specific,

and see if by doing so, we could implement an algorithm that will lead to a

www.manaraa.com

1042 Fundamentals of Computer Programming with C#

solution. It might turn out that the implementation is difficult, or that the

complexity of the solution is too great for the program to complete its

execution even with today’s powerful computers. If that is the case, we would

have to find another solution to the problem.

Breaking Down the Problem into Subproblems

A useful approach for solving algorithmic problems is to try breaking them

down into smaller problems that are easier and quicker to solve. Let’s try

defining the necessary steps for solving this problem.

First of all, we have to split the text up into separate words. This, in and

of itself, is not a simple task, but it is the first step towards breaking down the

problem into smaller, although still complicated, subproblems.

Then we need to count the words that concern us. This is the second major

problem we have to solve. Let’s take a look at both problems separately and

try breaking them down even further.

How Do We Split the Text Up into Separate Words?

In order to split the text up into separate words, we need to find a way to

identify them first. According to the problem specifications every non-letter

character functions as a word separator. Therefore, we must first identify

these separators and use them to split the text in tokens.

So far, we have formulated two subproblems – finding the separators and

partitioning (splitting) the text in accordance with the characters found.

We can implement their solutions right away. This was in fact our goal from

the start – breaking down complicated problems into smaller and easier

subproblems.

In order to find the separators, all we need to do is iterate through all

characters and extract those that aren’t letters.

Once we have identified the separators, we can implement the text

partitioning by invoking the Split(…) method of the String class.

How Do We Count the Words?

Let’s assume we already have a list of all words from the text. We want to

find the total word count, the number of words in uppercase and the

number of words in lowercase.

To do this, we can go through each and every word from the list and check if

it meets either of the necessary conditions. At each step we increment the

total word count. We check if the current word is in uppercase and, if so, we

increment the number of words in uppercase. Likewise, we check if the

word consists only of lowercase letters and increment the lowercase word

counter.

Thus, we have defined another two subproblems – recognizing uppercase

and lowercase words. These appear to be very easy. It might even turn out

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1043

that the string class provides such functionality. After we check, it turns out

this is not the case. Yet we notice that there are methods that allow us to

convert a string to an uppercase or a lowercase string. This might be of use.

To check if a word consists only of uppercase letters, all we have to do is

compare it to the string resulting after converting the word to uppercase. If

the two are equal, then the comparison returns true. Performing the check for

lowercase words is done likewise.

Verifying the Idea

It seems our idea is a good one. We’ve broken down the problem into

subproblems and we know how to solve each of them. Should we continue

towards the implementation? Haven’t we overlooked something?

Shouldn’t we have verified the idea by writing down a few examples on

paper? Perhaps we would come across something we have missed. We could

start with the example given in the problem statement:

The separators would be: spaces, ? and !. The words that have come up

are the following: Welcome, to, your, first, programming, exam, Can,
you, think, of, a, solution, to, this, problem, and, write, it, down,
GOOD, LUCK.

Counting the words we acquire the correct result. It seems the idea is

adequate, and it works. Now we can proceed towards implementing it. We

will do this step by step and at each step we will implement one subproblem.

Let’s Consider the Data Structures

The problem is simple and doesn’t need complex data structures.

We can use the char data type for storing each separator. During the process

of finding the separator characters we add each of them to a list. We can use

either char[] or List<char>. In this case, we will choose the latter.

As for the words in the text, we can use an array of strings string[] or

List<string>.

Let’s Consider the Efficiency

Are there any performance requirements? How long can the text be?

Since the text will be entered from the console, it’s unlikely to be very long.

No one is going to type 1MB of text into the console. We can assume that the

solution’s performance is not critical.

Welcome to your first programming exam! Can you think of a
solution to this problem and write it down? GOOD LUCK!

www.manaraa.com

1044 Fundamentals of Computer Programming with C#

Let’s Write Down the Solution

It’s very good practice to write the solution down on a piece of paper

before typing it on the computer. This helps uncover drawbacks in our idea or

implementation beforehand. In addition, implementing the solution will be

considerably quicker, because of the outlines we can provide and because we

would then have a better grasp of both the problem and the solution.

Step 1: Finding the Separators in the Text

We will define a method that extracts all non-letter characters from the

text and return them as an array of characters. Then we will use that array

for splitting the text up into separate words. We will use List<char> to keep

the separators we find when passing through the text:

private static char[] ExtractSeparators(string text)
{
 List<char> separators = new List<char>();
 foreach (char character in text)
 {
 // If the character is not a letter,
 // then by definition it is a separator
 if (!char.IsLetter(character))
 {
 separators.Add(character);
 }
 }
 return separators.ToArray();
}

We use a loop to iterate through all of the characters in the text. We check if

the current character is a letter by invoking the IsLetter() method of the

primitive data type char. If it’s not, we add the character to the separators.

Finally, our method returns an array containing the separators.

Testing the ExtractSeparators(…) Method

Before we go any further, it’s advisable to test if extracting the separators

is working correctly. For this purpose, we will write two additional methods.

The first of these is TestExtractSeparators() which will test the execution

of ExtractSeparators(…) and the second – GetTestData() – will return

different texts, which will allow us to test our solution:

private static void TestExtractSeparators()
{
 List<string> testData = GetTestData();
 foreach (string testCase in testData)

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1045

 {
 Console.WriteLine(
 "Test Case:{0}{1}", Environment.NewLine, testCase);
 Console.WriteLine("Result:");
 foreach (char separator in ExtractSeparators(testCase))
 {
 Console.Write("{0} ", separator);
 }
 Console.WriteLine();
 }
}

private static List<string> GetTestData()
{
 List<string> testData = new List<string>();
 testData.Add("This is wonderful!!! All separators like " +
 "these ,.(? and these /* are recognized. It works.");
 testData.Add("SingleWord");
 testData.Add(string.Empty);
 testData.Add(">?!>?#@?");
 return testData;
}

static void Main()
{
 TestExtractSeparators();
}

We start the program and check if the separators have been correctly

identified. The first test’s result is as follows:

Test Case:
This is wonderful!!! All separators like these ,.(? and these /*
are recognized.
 It works.
Result:
 ! ! ! , . (? / * . .
Test Case:
SingleWord
Result:

Test Case:

Result:

www.manaraa.com

1046 Fundamentals of Computer Programming with C#

Test Case:
>?!>?#@?
Result:
> ? ! > ? # @ ?

We might think of the above output as partially correct. In fact it does

extract correctly the separators between the words but most of them are

duplicated several times. We need all the separators without duplications,

right?

Correcting the ExtractSeparators(…) Method

To correct the method for extracting the separators between the words in the

text, we can use a different data structure to keep them. We know that sets

keep elements without duplications. So we could use HashSet<char> instead

of List<char> to hold the separator characters we find in the text:

private static char[] ExtractSeparators(string text)
{
 HashSet<char> separators = new HashSet<char>();
 foreach (char character in text)
 {
 // If the character is not a letter,
 // then by definition it is a separator
 if (!char.IsLetter(character))
 {
 separators.Add(character);
 }
 }
 return separators.ToArray();
}

The code is almost the same, but we use a set instead of list to avoid

duplicated separators. We might need to include the System.Linq namespace

in the start of the program to use the ToArray() extension method for

converting a hash set to an array.

Testing Again after the Fix

We test the above method with the same testing code and we find it now

works correctly. The separators are extracted correctly with no duplicates:

Test Case:
This is wonderful!!! All separators like these ,.(? and these
/* are recognized.
 It works.

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1047

Result:
 ! , . (? / *
Test Case:
SingleWord
Result:

Test Case:

Result:

Test Case:
>?!>?#@?
Result:
> ? ! # @

We test also with some borderline cases – text consisting of a single word

without separators; text consisting of separators only; an empty string. We’ve

already included such tests in our GetTestData() method. It seems that the

method works fine and we can proceed to the next step.

Step 2: Splitting Up the Text in Separate Words

We will use string’s Split(…) method with the specified separators for

splitting up the text by the separators and extracting the words from it. This

is how our method looks like:

private static string[] ExtractWords(string text)
{
 char[] separators = ExtractSeparators(text);
 string[] words = text.Split(separators,
 StringSplitOptions.RemoveEmptyEntries);
 return words;
}

Testing the Word Extracting Method

Before we carry on to the next step, we have to see if the method works

correctly. To do this, we will reuse the GetTestData() for the input test data

and we will test the new ExtractWords(…) method:

private static void TestExtractWords()
{
 List<string> testData = GetTestData();
 foreach (string testCase in testData)
 {

www.manaraa.com

1048 Fundamentals of Computer Programming with C#

 Console.WriteLine("\nTest Case: {0}", testCase);
 string[] words = ExtractWords(testCase);
 Console.WriteLine("Result: {0}", string.Join(" ", words));
 }
}

static void Main()
{
 TestExtractWords();
}

The result from the above test looks correct:

Test Case: This is wonderful!!! All separators like these ,.(?
and these /* are
recognized. It works.
Result: This is wonderful All separators like these and these
are recognized It
works

Test Case: SingleWord
Result: SingleWord

Test Case:
Result:

Test Case: >?!>?#@?
Result:

We check the results from the other test cases. We verify that they are

correct and that our algorithm is accurate (till this stop).

Step 3: Determining Whether a Word Is in Uppercase

or Lowercase

We already have an idea how to implement the uppercase / lowercase

checks, and we can write the corresponding methods directly:

private static bool IsUpperCase(string word)
{
 bool result = word.Equals(word.ToUpper());
 return result;
}

private static bool IsLowerCase(string word)

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1049

{
 bool result = word.Equals(word.ToLower());
 return result;
}

We test the above methods by passing words in uppercase, lowercase and

mixed case. The results are correct.

Step 4: Counting the Words

Now we can proceed to solving the problem itself – counting the words. All

we have to do is iterate through the list of words and depending on the word’s

type to increment the corresponding counters. Then we print the result:

private static void CountWords(string[] words)
{
 int allUpperCaseWordsCount = 0;
 int allLowerCaseWordsCount = 0;
 foreach (string word in words)
 {
 if (IsUpperCase(word))
 {
 allUpperCaseWordsCount++;
 }
 else if (IsLowerCase(word))
 {
 allLowerCaseWordsCount++;
 }
 }

 Console.WriteLine("Total words count: {0}", words.Length);
 Console.WriteLine("Upper case words count: {0}",
 allUpperCaseWordsCount);
 Console.WriteLine("Lower case words count: {0}",
 allLowerCaseWordsCount);
}

Testing the Word Counting Method

Let’s check if we count the words correctly. We will write another test

method using the data from the GetTestData() method and the previously

written and tested ExtractWords(…) method:

private static void TestCountWords()
{

www.manaraa.com

1050 Fundamentals of Computer Programming with C#

 List<string> testData = GetTestData();
 foreach (string testCase in testData)
 {
 Console.WriteLine("Test Case: {0}", testCase);
 Console.WriteLine("Result: ");
 CountWords(ExtractWords(testCase));
 Console.WriteLine();
 }
}

static void Main()
{
 TestCountWords();
}

Executing the application, we obtain the correct result:

Test Case: This is wonderful!!! All separators like these ,.(? and these /* are

recognized. It works.

Result:

Total words count: 13

Upper case words count: 0

Lower case words count: 10

Test Case: SingleWord

Result:

Total words count: 1

Upper case words count: 0

Lower case words count: 0

Test Case:

Result:

Total words count: 0

Upper case words count: 0

Lower case words count: 0

Test Case: >?!>?#@?

Result:

Total words count: 0

Upper case words count: 0

Lower case words count: 0

The above results are correct (the typical case and a few borderline

cases). We perform few other borderline tests, e.g. when the list contains

words in uppercase or lowercase only, or when the list is empty. All of them

work correctly.

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1051

Note that it is a good idea to use unit testing instead of these semi-

automated tests. Recall how we write unit tests in Visual Studio (in the

chapter “High-Quality Code”) and try to convert our test methods to unit tests

for the Visual Studio Team Test (VSTT) framework.

Step 5: Console Input

All that’s left to implement is the final step – allowing the user to input text:

private static string ReadText()
{
 Console.WriteLine("Enter text:");
 return Console.ReadLine();
}

Note that as a rule unless the input comes from a text file or is very short

(e.g. just one number or few characters) it should be read as a final step.

Otherwise we will need to enter the input data each time when we start the

program and this will waste a lot of time and can lead to errors.

Step 6: Putting All Together

Now after all subproblems have been solved, we can proceed to the

complete solution to the problem. We need to add a Main(…) method, which

will combine together the different parts of the solution:

static void Main()
{
 string text = ReadText();
 string[] words = ExtractWords(text);
 CountWords(words);
}

Testing the Solution

While implementing the solution, we wrote test methods for every

method, integrating them with each other gradually. For the moment, we are

certain they interact correctly; there’s nothing we have overlooked and there

is no method that does unnecessary work or that returns incorrect results.

If we would like to test the solution with more data, we would only need

to add it to the GetTestData(…) method. If we want, we may even rewrite

the GetTestData(…) method so that it reads the test data from an external

source, e.g. from a text file.

Here’s how the final solution looks like at the end:

WordsCounter.cs

www.manaraa.com

1052 Fundamentals of Computer Programming with C#

using System;
using System.Collections.Generic;
using System.Linq;

public class WordsCounter
{
 static void Main()
 {
 string text = ReadText();
 string[] words = ExtractWords(text);
 CountWords(words);
 }

 private static string ReadText()
 {
 Console.WriteLine("Enter text:");
 return Console.ReadLine();
 }

 private static char[] ExtractSeparators(string text)
 {
 HashSet<char> separators = new HashSet<char>();
 foreach (char character in text)
 {
 // If the character is not a letter,
 // then by definition it is a separator
 if (!char.IsLetter(character))
 {
 separators.Add(character);
 }
 }
 return separators.ToArray();
 }

 private static string[] ExtractWords(string text)
 {
 char[] separators = ExtractSeparators(text);
 string[] words = text.Split(separators,
 StringSplitOptions.RemoveEmptyEntries);
 return words;
 }

 private static bool IsUpperCase(string word)
 {

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1053

 bool result = word.Equals(word.ToUpper());
 return result;
 }

 private static bool IsLowerCase(string word)
 {
 bool result = word.Equals(word.ToLower());
 return result;
 }

 private static void CountWords(string[] words)
 {
 int allUpperCaseWordsCount = 0;
 int allLowerCaseWordsCount = 0;

 foreach (string word in words)
 {
 if (IsUpperCase(word))
 {
 allUpperCaseWordsCount++;
 }
 else if (IsLowerCase(word))
 {
 allLowerCaseWordsCount++;
 }
 }

 Console.WriteLine("Total words count: {0}", words.Length);
 Console.WriteLine("Upper case words count: {0}",
 allUpperCaseWordsCount);
 Console.WriteLine("Lower case words count: {0}",
 allLowerCaseWordsCount);
 }
}

We removed the testing methods from our code to simplify it. The best

practice is instead of removing the tests to create a separate testing

project and put all the tests in a testing class. This is best achieved though

the Visual Studio’s unit testing framework, as it was shown in the chapter

“High-Quality Code”.

A Word on Performance

Since there are no explicit performance requirements, we will only make

a suggestion for dealing with the situation when the algorithm turns out to be

slow. Splitting the text with separators assumes that the entire text will be

www.manaraa.com

1054 Fundamentals of Computer Programming with C#

loaded into memory. The list of words, after partitioning the text, will also

be written to memory. Therefore, if the input text is large, the program will

also consume a large amount of memory. For example, if the input text is

200MB long, then the program will consume at least 800MB of memory,

because each word is stored as 2 bytes for every character (.NET uses UTF-16

character encoding for the strings in memory).

If we want to avoid high memory consumption then the words must not

be stored in memory all at once. We can come up with another algorithm:

scanning the text char by char and storing the letters into a buffer (such

as StringBuilder). If at a certain moment a separator is encountered, then

the buffer contains the most recent word. We can analyze its casing and then

empty the buffer. We can repeat this until the end of the file is reached. This

appears to be more efficient, doesn’t it?

A more efficient lower / upper case checker would be to iterate through

all letters using a loop and to examine them char by char. That way we can

skip a lower / upper case conversion, which allocates extra memory for every

word. After the word has been processed, the memory will be freed, which

would eventually lead to extra CPU utilization (for the .NET garbage collector).

Obviously, the latter solution is more efficient. The question is if we should

scrap the original solution and write a completely different one. It all

depends on the performance requirements. The problem description

doesn’t hint at an input text measuring in the hundreds of megabytes.

Therefore the current solution, although not optimal, is still correct and will

suffice. We suggest the reader to implement the proposed fast solution

and to compare how faster it is, e.g. by processing an input of 100 MB.

Problem 2: A Matrix of Prime Numbers

Write a program that reads a positive integer N from the standard input and

prints the first N2 prime numbers as a square matrix of size N x N. The

matrix must be filled with numbers starting from the first row and ending at

the last one. Each row must be filled with prime numbers from left to right.

Note: A prime number is a number that has no divisors other than 1 and

itself. The number 1 is not a prime number.

Sample input:

2 3 4

Sample output:

2 3 2 3 5 2 3 5 7
5 7 7 11 13 11 13 17 19
 17 19 23 23 29 31 37
 41 43 47 53

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1055

Coming Up with an Appropriate Idea for a Solution

We can solve the problem by printing the rows and columns of the resulting

matrix using two nested loops. For each of its elements we will extract and

print the corresponding prime number.

Breaking Down the Problem into Subproblems

We must solve at least two subproblems – finding each successive

prime number and printing the prime numbers into a matrix. We can

print the matrix right away, but the process of finding each successive prime

number will require additional thinking. Perhaps the most intuitive way to

accomplish this is to start testing the primality of each number starting from

the last prime number that we found. When a new prime is encountered, it is

returned as a result. Thus, a new subproblem has come up – checking

whether or not a number is a prime.

Verifying the Idea

Our idea for a solution leads directly to the required result. We write down a

couple of examples on a piece of paper and make sure that it works.

Consider the Data Structures

The problem makes use of one data structure only – a matrix. It’s only

natural to use a two-dimensional array (matrix).

Consider the Efficiency

Displaying at the console large matrices (for example of size 1000 x 1000)

cannot be properly handled. This means our solution should work for

reasonably large matrices, e.g. on the order of N ≤ 200. We don’t need to

consider cases where the matrix is too large. When N = 200, our algorithm

will find the first 40,000 prime numbers and should not run slowly.

Now we are ready for the implementation of the algorithm we invented.

Step 1: Check to Find If a Number Is a Prime

To test a number for primality, we can define a method called IsPrime(…).

The test will verify that dividing the number by any of its predecessors always

yields a division remainder. To be more precise, it is sufficient to check the

integers between 2 and the square root of the number. This holds true,

because if the number p has a divisor x, then p = x.y, and at least one or

both of the numbers x and y will be less than or equal to the square root of p.

What follows is an implementation of the method:

private static bool IsPrime(int number)
{

www.manaraa.com

1056 Fundamentals of Computer Programming with C#

 int maxDivider = (int)Math.Sqrt(number);
 for (int divider = 2; divider <= maxDivider; divider++)
 {
 if (number % divider == 0)
 {
 return false;
 }
 }
 return true;
}

The algorithm complexity of the above example is O(sqrt(number)),

because the amount of checks that will be made is not greater than the

square root of the number. This complexity will suffice for the problem at

hand, but is it possible to optimize this method even further?

Come to think about it, every second number is even and all even numbers

are divisible by 2. In that case, if the number we are testing is odd, the above

method will needlessly check all odd numbers from 2 to the square root of the

number. How can we omit these unnecessary checks? We could find out if the

number is even at the very beginning of the method. If it’s not, it will be

processed in a modified version of the main loop that skips even numbers.

Using this new approach, we have achieved the same computational

complexity of O(sqrt(number)), but with a better constant 1/2.

This example illustrates how to optimize a bit the existing method:

private static bool IsPrime(int number)
{
 if (number == 2)
 {
 return true;
 }
 if (number % 2 == 0)
 {
 return false;
 }

 int maxDivider = (int)Math.Sqrt(number);
 for (int divider = 3; divider <= maxDivider; divider += 2)
 {
 if (number % divider == 0)
 {
 return false;
 }
 }

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1057

 return true;
}

As we can see, there was a minimal amount of changes compared to the non-

optimized version.

Testing the Prime Checking Method

We can make sure both methods work correctly by consecutively passing to

them different numbers, some of which will be primes, and verifying the

results.

Always test a method to make sure it works before

optimizing it.

The reason to test your methods is that after optimization, the code usually

gets longer, more difficult to read and therefore more difficult to debug, if it is

incorrect.

Be careful when optimizing a piece of code. Do not go to

extremes by making unnecessary optimizations that will

make your program marginally faster at the expense of

readability and maintenance.

To check the prime checking method we could write a piece of code like this:

static void Main()
{
 Console.WriteLine(IsPrime(2));
 Console.WriteLine(IsPrime(3));
 Console.WriteLine(IsPrime(4));
 Console.WriteLine(IsPrime(5));
 Console.WriteLine(IsPrime(121));
}

It runs as expected and the produced results are correct:

True
True
False
True
False

Step 2: Finding the Next Prime Number

In order to find the next prime number, we can define a method that takes

an integer as a parameter and returns the first prime number equal or larger

www.manaraa.com

1058 Fundamentals of Computer Programming with C#

than it. To check if the number is prime, we will use the method from the

previous step. Below is an implementation of the method:

private static int FindNextPrime(int startNumber)
{
 int number = startNumber;
 while (!IsPrime(number))
 {
 number++;
 }
 return number;
}

Testing the Next Prime Number Finder

Once again we have to test the method by passing a few numbers and

verifying that the result is correct:

static void Main()
{
 Console.WriteLine(FindNextPrime(2));
 Console.WriteLine(FindNextPrime(3));
 Console.WriteLine(FindNextPrime(4));
 Console.WriteLine(FindNextPrime(5));
 Console.WriteLine(FindNextPrime(121));
}

The result is correct, as expected:

2
3
5
5
127

Step 3: Printing the Matrix

Now that we have defined the previous methods, we are all set to print the

entire matrix of prime numbers:

private static void PrintMatrixOfPrimes(int dimension)
{
 int lastPrime = 1;
 for (int row = 0; row < dimension; row++)
 {
 for (int col = 0; col < dimension; col++)

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1059

 {
 int nextPrime = FindNextPrime(lastPrime + 1);
 Console.Write("{0,4}", nextPrime);
 lastPrime = nextPrime;
 }
 Console.WriteLine();
 }
}

We will test this method as part of testing the entire program.

Step 4: Console Input

All that’s left is to add functionality allowing us to read N from the console.

static void Main()
{
 int n = ReadInput();
 PrintMatrixOfPrimes(n);
}

private static int ReadInput()
{
 Console.Write("N = ");
 string input = Console.ReadLine();
 int n = int.Parse(input);
 return n;
}

Testing the Entire Solution

After we have completed all other steps, we can proceed with testing the

entire solution. To do this, we could look up the first 25 prime numbers (at

a sheet of paper) and test the program’s output for values of N between 1 and

5. We should include special border cases like N=0 and N=1. We know that

at border cases the likelihood of making a mistake is significantly higher.

In our case, we can confine ourselves with the examples from the problem

description, provided that the methods have been thoroughly tested at each

step. This is the output of the program for N = 1, 2, 3 and 4 respectively:

2 2 3 2 3 5 2 3 5 7
 5 7 7 11 13 11 13 17 19
 17 19 23 23 29 31 37
 41 43 47 53

www.manaraa.com

1060 Fundamentals of Computer Programming with C#

The result is correct and after few more tests we get convinced that we have

solved correctly the problem “Matrix of Prime Numbers”.

We can make sure the solution works relatively fast even for larger values of

N. For example, there is no perceived lag for N = 200.

A Word on Performance

We should point out, that our solution does not find prime numbers in the

most efficient way. Despite of this drawback, due to the solution’s clarity

and the reasonably small size of the matrix, we can utilize this algorithm

without performance issues.

Improved Performance: Sieve of Eratosthenes

If we have to improve the performance, we can find the first N2 prime

numbers using the Sieve of Eratosthenes. That way we will not need to check

if every number is prime until we find N2 prime numbers. You might ask

yourself how large Eratosthenes’s Sieve will be needed if we want to find

the first N2 prime numbers. You might use the following approximation

(without any mathematical proof):

long sieveSize =
 (long)Math.Truncate(2.4 * n * n * Math.Log(n, Math.E)) + 2;

If the Eratosthenes’s Sieve is at least sieveSize elements large, it will be

enough to produce the first N2 prime numbers and not too much above them.

You could check this manually or you might invite a better formula using

complex mathematical calculations (see http://en.wikipedia.org/wiki/Prime-

counting_function). For example if N=10, the estimated sieveSize will be

554 and it will find the first 101 prime numbers (we need 102 = 100 prime

numbers to fill the matrix, so these 101 prime numbers are enough). If

N=1,000, the sieveSize will be 16,578,614 and it will find the first 1,065,855

prime numbers. For N=5,000 the sieveSize will be 511,031,593 and it will

find the first 26,905,486 prime numbers. For significantly bigger sizes

Eratosthenes’s Sieve will not fit in the memory. You might try to implement

this algorithm and check how faster it is. When comparing the speed, you

may redirect the output to a file to save some time which is spent in printing

the matrix.

Problem 3: Evaluate an Arithmetic Expression

Write a program that evaluates a simple arithmetic expression consisting

of unsigned integers and the arithmetic operations "+" and "-". There will be

no blank spaces between the integers.

The expression will have the following format:

<number><operation>…<number>

http://en.wikipedia.org/wiki/Prime-counting_function
http://en.wikipedia.org/wiki/Prime-counting_function

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1061

Sample input:

1+2-7+2-1+28+2+3-37+22

Sample output:

15

Coming Up with an Appropriate Idea for a Solution

To solve this problem, we can take advantage of the strict expression format,

which guarantees we have a sequence of a number, operation, another

number and so on.

That way, we can first extract all numbers from the expression, and then

we can extract all operators and finally evaluate the result by combining

the numbers with the operators.

Verifying the Idea

Sure enough, if we test this approach with a few expressions using pen and

paper, we acquire a correct result. Initially, the result is equal to the first

number and at each step we either add or subtract the next number

depending on the current operator.

Data Structures and Efficiency

The problem is too simple for us to use complex data structures. The

numbers and characters can be stored in arrays. Performance issues are out

of the question, because the characters and numbers are processed exactly

once, i.e. the complexity of the algorithm is linear. Even with millions of

integers and operators, the algorithm is expected to work fast.

Breaking Down the Problem into Subproblems

Now that we have made sure the idea works, we can move on to breaking

down the problem into subproblems. The first subproblem we will have to

solve is extracting the numbers from the expression. The second –

extracting the operators. Finally, we will evaluate the entire expression

using the extracted numbers and operators.

Step 1: Extracting the Numbers

In order to extract the numbers, we need to split the expression using the

operators (+ and -) as separators. This is easily done using the Split(…)

method of the string class. Afterwards, we have to convert the resulting

array of strings to an array of integers:

www.manaraa.com

1062 Fundamentals of Computer Programming with C#

private static int[] ExtractNumbers(string expression)
{
 string[] splitResult = expression.Split('+', '-');
 int[] resultNumbers = new int[splitResult.Length];
 for (int i = 0; i < splitResult.Length; i++)
 {
 resultNumbers[i] = int.Parse(splitResult[i]);
 }
 return resultNumbers;
}

We use the Parse(…) method of the Int32 class to convert strings to

integers. It takes a string as a parameter and returns the integer value that

the string represents.

Why do we use an array to store the numbers? Can’t we use a linked list

or a dynamic array? Of course we can, but in our case we only need to store

the integers and iterate through them when evaluating the result. Therefore,

an array is sufficient and is the simplest collection that will work.

Testing the Extraction of Numbers

Before we move on to the next step we should check if the numbers are

extracted correctly. We may use the following example:

static void Main()
{
 int[] numbers = ExtractNumbers("1+2-7+2-1+28");
 foreach (int x in numbers)
 {
 Console.Write("{0} ", x);
 }
}

The result is exactly as it should be:

1 2 7 2 1 28

We examine the border case when the expression consists only of one

number and no operators, and we make sure it is handled properly.

Step 2: Extracting the Operators

We can extract the operators by iterating through each consecutive

character from the string and check if it is one of the specified operators:

private static char[] ExtractOperators(string expression)

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1063

{
 string operatorCharacters = "+-";
 List<char> operators = new List<char>();
 foreach (char c in expression)
 {
 if(operatorCharacters.Contains(c))
 {
 operators.Add(c);
 }
 }
 return operators.ToArray();
}

Testing the Extraction of Operators

Here’s how we test whether or not the method works correctly:

static void Main()
{
 char[] operators = ExtractOperators("1+2-7+2-1+28+3+1");
 foreach (char oper in operators)
 {
 Console.Write("{0} ", oper);
 }
}

The output after the program’s execution is correct:

+ - + - + + +

We create a test for the border case when the expression consists of only

one number and no operators. Just as expected, we get an empty array and

the output of the above testing program is and empty string.

Step 3: Evaluating the Expression

When evaluating the expression, we can make use of the fact that the

numbers’ count is always greater than the operators’ count by one.

Using a single loop we can evaluate the expression, provided we have the lists

of numbers and operators:

private static int CalculateExpression(int[] numbers,
 char[] operators)
{
 int result = numbers[0];
 for (int i = 1; i < numbers.Length; i++)

www.manaraa.com

1064 Fundamentals of Computer Programming with C#

 {
 char operation = operators[i - 1];
 int nextNumber = numbers[i];
 if (operation == '+')
 {
 result += nextNumber;
 }
 else if (operation == '-')
 {
 result -= nextNumber;
 }
 }
 return result;
}

Test the Evaluation of Expression

We test the method’s execution:

static void Main()
{
 // Expression: 1 + 2 - 3 + 4
 int[] numbers = new int[] { 1, 2, 3, 4 };
 char[] operators = new char[] { '+', '-', '+' };
 int result = CalculateExpression(numbers, operators);
 // Expected result is 4
 Console.WriteLine(result);
}

The result seems to be correct:

4

We perform few other tests (e.g. a 1, 1+2, 1-1) and it still works correctly.

Step 4: Console Input

We have to provide the user with the means to enter an expression:

private static string ReadExpression()
{
 Console.Write("Enter expression: ");
 string expression = Console.ReadLine();
 return expression;
}

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1065

This could be left untested, because it is too simple and it will be tested later

when the entire program is finished and gets tested.

Step 5: Putting All Together

All that’s left is to integrate all methods so that they can function together.

static void Main()
{
 string expression = ReadExpression();

 int[] numbers = ExtractNumbers(expression);
 char[] operators = ExtractOperators(expression);

 int result = CalculateExpression(numbers, operators);
 Console.WriteLine("{0} = {1}", expression, result);
}

Testing the Solution

We can use the example from the problem description when testing the

solution. We get a correct result:

Enter expression: 1+2-7+2-1+28+2+3-37+22
1+2-7+2-1+28+2+3-37+22 = 15

In order to make sure the solution runs correctly, we must create a few

more tests with different parameters, which will include the case when the

expression consists of one number only.

We can even test with an empty string. It’s not clear if such input is valid,

but we can take it into account just to be on the safe side. It’s also ambiguous

what would happen, if "2 + 3" (with spaces) is entered, instead of "2+3". It’s

a good idea to cope with these situations.

One test case we neglected occurs when a number doesn’t fit in an int
variable. What do you think would happen, if the user enters the expression

"11111111111111111111111111111+222222222222222222222222222222"?

Small Corrections and Repeated Testing

The program will raise an exception (of type System.FormatException or

System.OverflowException in all likelihood) when the expression is invalid.

It’s sufficient to catch the exceptions, and when they are thrown, to report

that an invalid expression has been entered. Below is the solution’s full

implementation after this correction:

www.manaraa.com

1066 Fundamentals of Computer Programming with C#

SimpleExpressionEvaluator.cs

using System;
using System.Collections.Generic;
using System.Linq;

public class SimpleExpressionEvaluator
{
 private static int[] ExtractNumbers(string expression)
 {
 string[] splitResult = expression.Split('+', '-');
 int[] resultNumbers = new int[splitResult.Length];
 for (int i = 0; i < splitResult.Length; i++)
 {
 resultNumbers[i] = int.Parse(splitResult[i]);
 }
 return resultNumbers;
 }

 private static char[] ExtractOperators(string expression)
 {
 string operationsCharacters = "+-";
 List<char> operators = new List<char>();
 foreach (char c in expression)
 {
 if (operationsCharacters.Contains(c))
 {
 operators.Add(c);
 }
 }
 return operators.ToArray();
 }

 private static int CalculateExpression(
 int[] numbers, char[] operators)
 {
 int result = numbers[0];
 for (int i = 1; i < numbers.Length; i++)
 {
 char operation = operators[i - 1];
 int nextNumber = numbers[i];
 if (operation == '+')
 {
 result += nextNumber;

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1067

 }
 else if (operation == '-')
 {
 result -= nextNumber;
 }
 }
 return result;
 }

 private static string ReadExpression()
 {
 Console.WriteLine("Enter expression:");
 string expression = Console.ReadLine();
 return expression;
 }

 static void Main()
 {
 try
 {
 string expression = ReadExpression();

 int[] numbers = ExtractNumbers(expression);
 char[] operators = ExtractOperators(expression);

 int result = CalculateExpression(numbers, operators);
 Console.WriteLine("{0} = {1}", expression, result);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Invalid expression!");
 }
 }
}

To ensure everything works correctly after the fix we need to test the above

code again with: single number, two numbers, typical expression (like the

sample input from the problem description), expression with spaces (e.g. "1 +

2 -3"), expression with large numbers, invalid expression (e.g. -1).

Performance Test

Finally we could test with very long expression (performance test), e.g. sum

of 1,000,000 ones. We could generate a test of 1,000,000 numbers with the

following sample code:

www.manaraa.com

1068 Fundamentals of Computer Programming with C#

static void Main()
{
 StringBuilder expression = new StringBuilder();
 expression.Append("0");
 for (int i = 0; i < 1000000; i++)
 {
 expression.Append("+");
 expression.Append("1");
 }
 string expr = expression.ToString();
 int[] numbers = ExtractNumbers(expr);
 char[] operators = ExtractOperators(expr);
 int result = CalculateExpression(numbers, operators);
 Console.WriteLine(result);
}

The running time seems acceptable and the result is correct.

But what will happen if we sum 1,000,000 times the value of 5,000,000?

We will get an integer overflow. We might fix this by using long for the sum

instead of int:

private static long CalculateExpression(
 int[] numbers, char[] operators)
{
 long result = numbers[0];
 for (int i = 1; i < numbers.Length; i++)
 {
 char operation = operators[i - 1];
 int nextNumber = numbers[i];
 if (operation == '+')
 {
 result += nextNumber;
 }
 else if (operation == '-')
 {
 result -= nextNumber;
 }
 }
 return result;
}

After this small fix we sum 1,000,000 times the value of 5,000,000 and we

get the correct result: 5,000,000,000,000. The problem is solved.

www.manaraa.com

Chapter 25. Sample Programming Exam – Topic #2 1069

Exercises

1. Solve the problem "Counting the Number of Words in a Text" by using

a buffer (StringBuilder) to read the text. Was there a change in the

complexity of your algorithm?

2. Implement a more efficient solution to the problem "A Matrix of Prime

Numbers" by using the "Sieve of Eratosthenes":

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

3. Add support for integer multiplication and division to the solution of

"Arithmetic Expression". Bear in mind that these operations have priority

over addition and multiplication!

4. Add support for floating point numbers in the solution of the "Arithmetic

Expression" problem.

5. * Add parentheses support to the solution of "Arithmetic Expression".

Try to process correctly the unary minus (e.g. in the expression -2 + 3).

6. * Write a program that validates an arithmetic expression. For example,

"2*(2.25+5.25)-17/3" is a valid expression, but "*232*-25+(33+a" is not.

Solutions and Guidelines

1. Your program can read from the input file character by character. If the

current character is a letter, append it to the buffer, and if it is a

separator, analyze the buffer (since it holds the current word) and clear it.

When the end of the input file is reached and the file does not end with a

separator, analyze the last word in the buffer. Test the solution!

2. First, estimate the count of prime numbers you will need. Then consider

what the upper limit of the iterations for the Sieve of Eratosthenes

should be, so that there are enough numbers to fill the matrix. You can

come up with a formula by experimenting or you may use the formula

from the section “Improved Performance: Sieve of Eratosthenes”.

3. Taking into account that in math multiplication and division has a priority

over addition and subtraction you can calculate all multiplications and

divisions first, replace them with their result and then all the additions

and subtractions. For example, let’s the expression is “2*5-8/2+11”. You

may first calculate all multiplications and divisions and replace them with
the results of their execution: “2*5-8/2+11” “10-4+11”. Then you may

use the algorithm from the “Evaluate an Arithmetic Expression” section.

Did you consider division by zero? Test your code. Think of special cases.

4. Floating point arithmetic can be implemented by allowing the use of the

character "." and replacing int with double or decimal. Test your code!

5. You can do the following: locate the first closing parenthesis and match

it with its corresponding opening parenthesis. What remains between

them is an arithmetic expression that can be evaluated with the same

algorithm recursively. You can substitute the expression with its value and

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

www.manaraa.com

1070 Fundamentals of Computer Programming with C#

repeat the process until there aren’t any more parentheses. Eventually,

you will end up with an expression without parentheses.

For example, if the expression "2*((3+5)*(4-7*2))" is entered, you will

substitute "(3+5)" with 8, and "(4-7*2)" with -10. Finally, you will replace

"(8*-10)" with -80 and calculate 2*-80, thus getting the result -160. You

will have to consider the arithmetic operations with negative numbers, i.e.

adding negative numbers support when parsing the numbers.

There is one more algorithm. It utilizes a stack and converts the expression

to reverse Polish notation (RPN). Look up the terms "postfix
notation" and "shunting yard algorithm" on the Internet.

To handle correctly the unary minus, you may consider two situations.

The first is a leading unary minus (e.g. -3 + 5). The second is a minus

after another operator or after a bracket, e.g. “3 * -2 + 4”. The minus can

be applied to a number of to an expression in brackets. In both cases you

may insert “0-” and put the number or expression on the right in

brackets. Examples:

- “-3 + 5” “(0-3) + 5”

- “3 * -2 + 5” “3 * (0-2) + 5”

- “-(3+2)” “(0-(3+2))”

- “-(-1) * 3 - -1” “(0-((0-1))) * 3 – (0-1)”

6. If you evaluate the expression using reverse polish notation, you can

expand your algorithm to check the expression for validity. Follow

these rules: when you expect a digit, but the next token is not a digit, then

the expression is invalid; when an arithmetic operation is expected, but the

next token is not a valid operator, then the expression is invalid; when the

parentheses do not match, the stack will either underflow or remain non-

empty at the end. Don’t forget the special cases "-1", "-(2+4)", etc. Test

thoroughly your code! There are many special cases to consider.

www.manaraa.com

Chapter 26. Sample
Programming Exam –

Topic #3

In This Chapter

In the present chapter we will review some sample exam problems and

suggest solutions for them. While solving the problems we will stick to the

advices given in the chapter "Methodology of Problem Solving".

Problem 1: Spiral Matrix

With a given number N (input from the keyboard) generate and print a

square matrix containing the numbers from 0 to N2-1, located as a

spiral beginning from the center of the matrix and moving clockwise starting

downwards (look at the examples).

Sample output for N=3 and N=4:

Start Thinking on the Problem

It’s obvious from the requirement that we are given an algorithmic

problem. Contriving the appropriate algorithm for filling up the square matrix

cells in the required way is the main part of the solution to the problem. We

will demonstrate to the reader the typical reasoning needed for solving this

particular problem.

Inventing an Idea for the Solution

The next step is to think up the idea for the algorithm, which we will

implement. We must fill the matrix with the numbers from 0 to N2-1 and we

may immediately notice that this could be made by a loop, which puts one

of the numbers in the supposed cell of the matrix at each iteration. We

first put 0 at its place, then put 1 at its place, then put 2, and so on until we

finish with putting N2-1 at its place.

www.manaraa.com

1072 Fundamentals of Computer Programming with C#

Let’s suppose we know the starting position – the one we have to put the

first number on (the zero). That’s how the problem is reduced to finding a

method for determining each of the next positions, which we must put a

number at – this is our primary subtask.

We try to find an approach for determining the next to the current

position: we search a strict regularity for changing the indices during the

traversal of the cells. It looks like the directions of the numbers are changed

from time to time, right? First the direction if down, then the direction is

changed to left, later to up, then to right then again to down. Changing of the

directions is always clockwise and the initial direction is always

downwards.

If we define an integer variable direction that holds the current moving

direction, it will take sequentially the values 0 (down), 1 (left), 2 (up), 3

(right) and then again 0, 1, 2, … Looking at the problem examples (for N=3

and N=4) we can conclude that the direction stays down for some time, then

changes to left, stays some time, then changes to up, stays some time, etc.

We can assume that with changing the moving direction we can increase the

value of direction by one and take its remainder of division by 4. Thus the

next direction after 3 (right) will be 0 (down).

The next step is to determine when the moving direction changes: what is

the number of moves in each direction. This may take some time. We can

take a sheet of paper and test few hypotheses we might have.

From the two examples we can see that the number of moves in the
consequent directions does form special sequences: for N=3 1, 1, 2, 2, 2

and for N=4 1, 1, 2, 2, 3, 3, 3. This means that for N=3 we move 1 cell

down, then 1 cell left, then 2 cells up, then 2 cells right and finally 2 down.

For N=4, the process is the same. We found an interesting dependency

which can evolve into an algorithm for filling the spiral matrix.

If we write down a bigger matrix of the same type on a sheet of paper, we will

see that the sequence of the changes of direction follows the same

pattern: the numbers increases by 1 at an interval of two and the last number

does not increase.

Seems like we have an idea to solve the problem: start from the middle of

the matrix and move 1 cell down, 1 cell left, 2 cells up, 2 cells right, 3 cells

down, 3 cells left, etc. During the moving we can fill the numbers from 0 to

N2-1 consequently at the cells we visit.

Checking the Idea

Let’s check the idea. First we need to find the starting cell and check we

have a correct algorithm for it. If N is odd, the starting cell seems to be the

absolute center cell of the matrix. We can check this for N=1, N=3 and N=5

on a sheet of paper and this confirms to be correct. If N is even number, it

seems like the starting cell is located upper-right from the central point of

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1073

the matrix. At the figure below the central point is shown for a matrix of size

4 x 4 and the starting point located at the upper-right direction:

Now let’s check the matrix filling algorithm. We take for example N=4.

Let’s start from the starting cell. The first direction is down. We go down 1

cell, then left 1 cell, then up 2 cells, then right 2 cells, then down 3 cells, then

left 3 cells and finally up 3 cells. For simplicity we can assume the last step is

4 cells up but we stop at the first moment when the entire matrix if filled. The

figure below shows what we could draw on a sheet of paper to trace how

the algorithm works. See the small sketch of our algorithm, done by hand

during the idea checking process:

After sketching the algorithm paper for N = 1, 2 and 3 on a sheet of paper

we see that it works correctly. Seems like the idea is correct and we can

thinks about how to implement it.

Data Structures and Efficiency

Let’s start with choosing the data structure for implementing the matrix. It’s

appropriate to have direct access to each element of the matrix so we will

choose a two-dimensional array matrix of integer type. When starting the

program we read from the standard input the dimensionality n of the matrix

and initialize it as it follows:

int[,] matrix = new int[n,n];

In this case the choice of a data structure is unambiguous. We will keep

the matrix in a two-dimensional array. We have no other data. We will not

have problems with the performance because the program will make as much

steps as the elements in the matrix are.

upper-right

from the center

the central point

in the matrix

www.manaraa.com

1074 Fundamentals of Computer Programming with C#

Implementation of the Idea: Step by Step

We may split the implementation into few steps. A loop runs from 0 to N2-1

and at each iteration it does the following steps:

- Fill the current cell of the matrix with the next number (this is a single

move in the current direction).

- Check whether the current direction should be changed and if

yes, change it and calculate the number of moves in the new direction.

- Move the current position to the next cell in the current direction

(e.g. one position down / left / up / right).

Implementing the First Few Steps

We can represent the current position with integer variables positionX and

positionY – the two coordinates for the position. At each iteration we will

move to the next cell in the current direction and positionX and positionX

will change accordingly.

For modeling the behavior of filling the spiral matrix we will use the variables

stepsCount (total number of moves in the current direction), stepPosition

(the move number in the current direction) and stepChange (flag showing if

we have to change the value of stepCount – increments after every 2

direction changes).

Let’s see how we can implement this idea as a code:

for (int i = 0; i < count; i++)
{
 // Fill the current cell with the current value
 matrix[positionY, positionX] = i;

 // Check for direction / step changes
 if (stepPosition < stepsCount)
 {
 stepPosition++;
 }
 else
 {
 stepPosition = 1;
 if (stepChange == 1)
 {
 stepsCount++;
 }
 stepChange = (stepChange + 1) % 2;
 direction = (direction + 1) % 4;
 }

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1075

 // Move to the next cell in the current direction
 switch (direction)
 {
 case 0:
 positionY++;
 break;
 case 1:
 positionX--;
 break;
 case 2:
 positionY--;
 break;
 case 3:
 positionX++;
 break;
 }
}

Performing a Partial Check after the First Few Steps

This is the moment to point out the unlikelihood of creating the body of such a

loop from the first time, without making any mistakes. We already know the

rule for writing the code step by step and testing after each piece of

code is written but for the body of this loop the rule is hard to be applied –

we have no independent subproblems, which can be tested separately

of each other. To test the above code we need first to finish it: to assign initial

values for all the variables used.

Assigning the Initial Values

After we have a well thought-out idea for the algorithm (even if we are not

completely sure that the written code will work correctly), it remains to set

initial values of the already defined variables and to print the matrix,

obtained after the implementation of the loop.

It is clear that the number of loop iterations is exactly N2 and that’s why we

replace the variable count with this value. From the two given examples and

our own additional examples (written on a paper) we determine the initial

position in the matrix depending on the parity (odd / even) of its size:

int positionX = n / 2; // The middle of the matrix
int positionY = n % 2 == 0 ? (n / 2) - 1 : (n / 2); // middle

To the rest of the variables we give the following initial values (we have

already explained their semantics):

www.manaraa.com

1076 Fundamentals of Computer Programming with C#

int direction = 0; // The initial direction is "down"
int stepsCount = 1; // Perform 1 step in the current direction
int stepPosition = 0; // 0 steps already performed
int stepChange = 0; // Steps count will change after 2 steps

Putting All Together

The last subproblem we have to solve for creating a working program is

printing the matrix on the standard output. Let’s write it, then put all code

together and start testing.

The fully implemented solution is shown below. It includes reading the

input data (matrix size), filling the matrix in a spiral (calculating the matrix

center and filling it cell by cell) and output the result:

MatrixSpiral.cs

using System;

public class MatrixSpiral
{
 static void Main()
 {
 Console.Write("N = ");
 int n = int.Parse(Console.ReadLine());
 int[,] matrix = new int[n, n];

 FillMatrix(matrix, n);

 PrintMatrix(matrix, n);
 }

 private static void FillMatrix(int[,] matrix, int n)
 {
 int positionX = n / 2; // The middle of the matrix
 int positionY = n % 2 == 0 ? (n / 2) - 1 : (n / 2);

 int direction = 0; // The initial direction is "down"
 int stepsCount = 1; // Perform 1 step in current direction
 int stepPosition = 0; // 0 steps already performed
 int stepChange = 0; // Steps count changes after 2 steps

 for (int i = 0; i < n * n; i++)
 {
 // Fill the current cell with the current value
 matrix[positionY, positionX] = i;

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1077

 // Check for direction / step changes
 if (stepPosition < stepsCount)
 {
 stepPosition++;
 }
 else
 {
 stepPosition = 1;
 if (stepChange == 1)
 {
 stepsCount++;
 }
 stepChange = (stepChange + 1) % 2;
 direction = (direction + 1) % 4;
 }

 // Move to the next cell in the current direction
 switch (direction)
 {
 case 0:
 positionY++;
 break;
 case 1:
 positionX--;
 break;
 case 2:
 positionY--;
 break;
 case 3:
 positionX++;
 break;
 }
 }
 }

 private static void PrintMatrix(int[,] matrix, int n)
 {
 for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < n; j++)
 {
 Console.Write("{0,3}", matrix[i, j]);
 }

www.manaraa.com

1078 Fundamentals of Computer Programming with C#

 Console.WriteLine();
 }
 }
}

Testing the Solution

After we have implemented the solution it is appropriate to test it with enough

values of N to ensure it works properly. We start with the sample values 3

and 4 and then we check for 5, 6, 7, 8, 9, … It works well.

It is important to check the border cases: 0 and 1. They work correctly as

well. We do few more tests and we make sure all cases work correctly. We

might notice that when N is large (e.g. 50) the output looks ugly, but this

cannot be improved much. We can add more spaces between the numbers

but the console is limited to 80 characters and the result is still ugly. We will

not try to improve this further.

It is not necessary to test the program for speed (performance test, for

example with N=1,000) because with a very big N the output will be

extremely large and the task will be pointless.

We cannot find any non-working cases so we assume the algorithm and its

implementation are both correct and the problem is successfully solved.

Now we are ready for the next problem from the exam.

Problem 2: Counting Words in a Text File

We are given a text file words.txt, which contains several words, one per

each line. Each word consists of Latin letters only. Write a program, which

retrieves the number of matches of each of the given words as a

substring in the file text.txt. The counting is case insensitive. The result

should be written into a text file named result.txt in the following format

(the words should appear in the same order as given in the input file

words.txt):

<word1> --> <number of matches>
<word2> --> <number of matches>
…

Sample input file words.txt:

for
academy
student
Java
develop

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1079

CAD

Sample input file text.txt:

The Telerik Academy for software development engineers is a
famous center for free professional training of .NET experts.
Telerik Academy offers courses designed to develop practical
computer programming skills. Students graduated the Academy are
guaranteed to have a job as a software developers in Telerik.

Sample result file result.txt:

for --> 2
academy --> 3
student --> 1
Java --> 0
develop --> 3
CAD --> 3

Below are the locations of the matched words from the above example:

The Telerik Academy for software development engineers is a
famous center for free professional training of .NET experts.
Telerik Academy offers courses designed to develop practical
computer programming skills. Students graduated the Academy are
guaranteed to have a job as a software developers in Telerik.

Start Thinking on the Problem

The emphasis of the given problem seems not so much on the algorithm,

but on its technical implementation. In order to write the solution we must

be familiar with working with files in C# and with the basic data structures, as

well as string processing in .NET Framework.

Inventing an Idea for a Solution

We get a piece of paper, write few examples and we come up with the

following idea: we read the words file, scan through the text and check

each word from the text for matches with the preliminary given list of

words and increase the counter for each matched word.

Checking the Idea

The above idea for solving the task is trivial but we can still check it by

writing down on a piece of paper the sample input (words and text) and the

expected result. We just scan through the text word by word in our paper

www.manaraa.com

1080 Fundamentals of Computer Programming with C#

example and when we find a match with some of the preliminary given words

(as a substring) we increment the counter for the matched word. The idea

works in our example.

Now let’s think of counterexamples. In the same time we might also come

with few questions regarding the implementation:

- How do we scan the text and search for matches? We can scan the

text character by character or line by line or we can read the

entire text in the memory and then scan it in the memory (by string

matching or by a regular expression). All of these approaches might

work correctly but the performance could vary, right? We will think

about the performance a bit later.

- How do we extract the words from the text? Maybe we can read the

text and split it by all any non-letter characters? Where shall we take

these non-letter characters from? Or we can read the text char by char

and once we find a non-letter character we will have the next word from

the text? The second idea seems faster and will require less memory

because we don’t need to read all the text at once. We should think

about this, right?

- How do we match two words? This is a good question. Very good

question. Suppose we have a word from the text and we want to match

it with the words from the file words.txt. For example, we have

“Academy” in the text and we should find whether it matches as

substring the “CAD” word from the list of words. This will require

searching each word from the list as a substring in each word from the

text. Also can we have some word appearing several times inside

another? This is possible, right?

From all the above questions we can conclude that we don’t need to read

the text word by word. We need to match substrings, not words! The title

of the problem is misleading. It says “Counting Words in a Text File” but it

should be “Counting Substrings in a Text File”.

It is really good that we found we have to match substrings (instead of

words), before we have implemented the code for the above idea, right?

Inventing a Better Idea

Now, considering the requirement for substring matching, we come with few

new and probably better ideas about solving the problem:

- Scan the text line by line and for each line from the text and each

word check how many times the word appears as substring in the

line. The last can be counted with String.IndexOf(…) method in a

loop. We already have solved this subproblem in the chapter “Strings

and Text Processing” (see the section “Finding All Occurrences of a

Substring”).

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1081

- Read the entire text and count the occurrences of each word in it

(as a substring). This idea is very similar to the previous idea but it

will require much memory to read the entire text. Maybe this will not be

efficient. We gain nothing, but potentially we will run “out of memory”.

- Scan the text char by char and store the read characters in a buffer.

After each character read we check if the text in the buffer ends

with some of the words from the list. We will not need to search the

words in the buffer because we check for each word after each character

is read. We could also clear the buffer when we read any non-letter

character (because the list of words for matching should contain letters

only). Thus the memory consumption will be very low.

The first and the last idea seem to be good. Which of them to implement?

Maybe we could implement both of them and choose the faster one. Having

two solutions will also improve the testing because we should get identical

results with both of the solutions on all test cases.

Checking the New Ideas

We have two good ideas and we need to check them for correctness

before thinking about implementation. How to check the ideas? We can invent

a good test case on a piece of paper and try the ideas on it.

Let’s have the following list of words:

Word
S
MissingWord
DS
aa

We might be interested to find the number of occurrences of the above words

in the following text:

Word? We have few words: first word, second word, third word.
Some passwords: PASSWORD123, @PaSsWoRd!456, AAaA, !PASSWORD

The expected result is as follows:

Word --> 9
S --> 13
MissingWord --> 0
DS --> 2
aa --> 3

In the above example we have many different special cases: whole-word

matching, matching as a substring, matching in different casing, matches in

the start / end of the text, several matches inside the same word, overlapping

www.manaraa.com

1082 Fundamentals of Computer Programming with C#

matches, etc. This example is a very good representative of the common

case for this problem. It is important to have such short but

comprehensive test case when solving programming problems. It is

important to have it early, when checking the ideas, before any code is

written. This avoids mistakes, catches incorrect algorithms and saves time!

Checking the Line by Line Algorithm

Now let’s check the first algorithm: read the two lines of text and check

how many times each of the words from the given list occurs in each line

ignoring the character casing. At the first line we find as substrings (ignoring

the case) “word” 5 times, “s” 3 times, “MissingWord” 0 times, “aa” 0 times

and “ds” – 1 time. At the second line we find as substrings (ignoring the case)

“word” 4 times, “s” 10 times, “MissingWord” 0 times, “aa” 3 times and “ds” –

1 time. We sum the occurrences and we find that the result is correct.

We try to find counterexamples, but we can’t. The algorithm may not work

with words spanning multiple lines. This is not possible by definition. It may

also have issues with the overlapping matches like finding “aa” in “AAaA”.

This will be definitely checked after the algorithm is implemented.

Checking the Char by Char Algorithm

Let’s check the other algorithm: scan through the text char by char,

holding the characters in a buffer. After each character if the buffer ends with

some of the words (ignoring the character casing), the occurrences of the

matched word are increased. If a non-letter is occurred, the buffer is cleaned.

We start from empty buffer and append the first char from the text “W” to

the buffer. None of the words match the end of the buffer. We append

“o” and the buffer holds “Wo”. No matches. Then we append “r”. The buffer

holds “Wor”. Again no matches are found with any of the words. We append

the next char “d” and the buffer holds “Word”. We have found a match

with the word form a list: “word”. We increase the number of occurrences of

the matched word from zero to one. The next char is “?” and we clean the

buffer, because it is not a letter. The next char is “ ” (space). We again clean

the buffer. The next char is “W”. We append it to the buffer. No matches with

any of the words. We continue further and further… After the last character is

processed, the algorithm finishes and the results are correct.

We try to find counterexamples, but we can’t. The algorithm may not work

with words spanning multiple lines, but this is not possible by definition.

Decompose the Problem into Subproblems

Now let’s try to divide the problem into subproblems. This should be done

separately for the both algorithms we want to try because they differ

significantly.

Line by Line Algorithm Decomposed into Subproblems

Let’s decompose the line by line algorithm into subproblems (sub-steps):

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1083

1. Read the input words. We can read the file words.txt by using

File.ReadAllLines(…). It reads a text file in a string[] array of lines.

2. Process the lines of the text one by one to count the occurrences of

each word in it. Initially assign zero occurrences for each word. Read the

input file text.txt line by line. For each line from the text and for

each word check the number of its occurrences (this is a separate

subproblem) and increase the counters for each match. The occurrences

counting should be case-insensitive.

3. Count the number of occurrences of certain substring in certain

text. This is a separate subproblem. We find the leftmost occurrence of

the substring in the text though string.IndexOf(…). If the returned

index > -1 (the substring exists), we increase the counter and find the

next occurrence of the substring on the right from the last found index.

We perform this in a loop until we find -1 as a result which means that

there are no more matches. To perform case-insensitive searching we

can pass a special parameter StringComparison.OrdinalIgnoreCase

to the IndexOf() method.

4. Print the results. Process all words and for each word print it along

with its counter holding its occurrences in the output file result.txt.

Char by Char Algorithm Decomposed into Subproblems

Let’s decompose the char by char algorithm into subproblems (sub-steps):

1. Read the input words. We can read the file words.txt by using

File.ReadAllLines(…). It reads a text file in a string[] array of lines.

The original words can be saved and a copy of them in lowercase can be

made to simplify the matching with ignoring the character casing.

2. Process the text char by char. Read the input file text.txt and

append the letters into a buffer (StringBuilder). After each letter

appended check whether the text in the buffer ends with some of the

words in the input list of words (this check is a separate subproblem). If

so, increase the number occurrences of the matched word. If a non-

letter character is found, clean the buffer. Letters are converted to

lowercase before added in the buffer.

3. Check whether a certain text (StringBuilder) ends by a certain

string. In case the string has length n lower than the length of the text,

the result is false. Otherwise the n letters of the string should be

compared one by one with the last n letters of the text. If a mismatch is

found, the result is false. If all checks pass, the result is true.

4. Print the results. Process all words and for each word print it along

with its counter holding its occurrences in the output file result.txt.

www.manaraa.com

1084 Fundamentals of Computer Programming with C#

Think about the Data Structures

In the line by line algorithm we don’t have any need of special data

structures. We can keep the words in an array or list of strings. We can

keep the number of occurrences for each word in array of integer values.

The text lines we can keep in strings.

In the char by char algorithm the situation is similar. We don’t need any

special data structures. We can keep the words in an array or list of

strings. We can keep the number of occurrences for each word in array of

integer values. The buffer for the characters we can implement by

StringBuilder (because we need to append chars many times).

Think about the Performance

Following the guidelines for problem solving from the chapter “Methodology of

Problem Solving” we should think about the efficiency and performance

before writing any code.

The line by line algorithm will process the entire text line by line and for

each text line it will search for all of the words. Thus if the text has a total size

of t characters and the number of words are w, the algorithm will totally

perform w string searches in t characters. Each search for a word in the text

will pass through the entire text (at least once, but maybe not always). If we

assume that searching for a word in a text is a linear time operation, we will

have w scans through the entire text, so the excepted running time in

quadratic: O(w*t). If we search in MSDN or in Internet, we will be unable to

find any information about how exactly String.IndexOf(…) works internally

and whether it runs in linear time or it is slower. This method calls a Win32

API function so it cannot be decompiled. Thus the best way to check its

performance is by measuring.

The char by char algorithm will process the entire text char by char and for

each character it will perform a string matching for each of the words.

Suppose the text has t characters and the number of the words is w. In the

average case the string matching will run in constant time (it will require just

one check if the first letter is not matching, two checks if the first letter

matches, etc.). In the worst case the string matching will require n

comparisons where n is the length of the word being matched. Thus in the

average case the expected running time of the algorithm will be

quadratic: O(w*t). In the worst case it will be significantly slower.

It seems like the line by line algorithm is expected to run faster but we

are uncertain about how fast is string.IndexOf(…), so this cannot be

definitely stated. If we are at an exam, we will probably choose to implement

the line by line algorithm. Just for the experiment, let’s implement both of

them and compare their performance.

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1085

Implementation: Step by Step

If we directly follow the steps, which we have already identified we can

write the code with ease. Of course it is better to implement the algorithms

step-by-step, to find and fix the bugs early.

Line by Line Algorithm: Step by Step Implementation

We can start implementing the line by line algorithm for word counting in a

text file from the method that counts how many times a substring

appears in a text. It should look like the following:

static int CountOccurrences(string substring, string text)
{
 int count = 0;
 int index = 0;
 while (true)
 {
 index = text.IndexOf(substring, index);
 if (index == -1)
 {
 // No more matches
 break;
 }
 count++;
 }
 return count;
}

Let’s test it before going further:

Console.WriteLine(
 CountOccurrences("hello", "Hello World Hello"));

The result is 0 – wrong! It seems like we have forgotten to ignore the

character casing. Let’s fix this. We need to change the name of the method

as well and add the StringComparison.OrdinalIgnoreCase option when

searching for the given substring:

static int CountOccurrencesIgnoreCase(
 string substring, string text)
{
 int count = 0;
 int index = 0;
 while (true)
 {

www.manaraa.com

1086 Fundamentals of Computer Programming with C#

 index = text.IndexOf(substring, index,
 StringComparison.OrdinalIgnoreCase);
 if (index == -1)
 {
 // No more matches
 break;
 }
 count++;
 }
 return count;
}

Let’s test again with the same example. The program hangs! What

happens? We step through the code using the debugger and we find that the

variable index takes the first occurrence at position 0 and at the next

iteration it takes the same occurrence again at position 0 and the program

enters into an endless loop. This is easy to fix. Just start searching from

position index+1 (the next position on the right), not from index:

static int CountOccurrencesIgnoreCase(
 string substring, string text)
{
 int count = 0;
 int index = 0;
 while (true)
 {
 index = text.IndexOf(substring, index + 1,
 StringComparison.OrdinalIgnoreCase);
 if (index == -1)
 {
 // No more matches
 break;
 }
 count++;
 }
 return count;
}

We run the fixed code with the same test. Now the result is incorrect (1

occurrence instead of 2). We again trace the program with the debugger and

we find that the first match is at position 12. Immediately we find out why

this happens: initially we start from position 1 (index + 1 when index is 0)

and we skip the start of the text (position 0).

This is easy to fix:

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1087

static int CountOccurrencesIgnoreCase(
 string substring, string text)
{
 int count = 0;
 int index = -1;
 while (true)
 {
 index = text.IndexOf(substring, index + 1,
 StringComparison.OrdinalIgnoreCase);
 if (index == -1)
 {
 // No more matches
 break;
 }
 count++;
 }
 return count;
}

We test again with the same example and finally the result is correct. We

take another, more complex test:

Console.WriteLine(CountOccurrencesIgnoreCase(
 "Word", "Word? We have few words: first word, second word," +
 "third word. Passwords: PASSWORD123, @PaSsWoRd, !PASSWORD"));

The result is again correct (9 matches). We test with missing word and the

result is again correct (0 matches). This is enough. We assume the method

works correctly. Now let’s continue with the next step: read the words.

string[] words = File.ReadAllLines("words.txt");

There is no need to test this code. It is too simple to have bugs. We will

test it when we test the entire solution. Let’s not write the main logic of the

program which reads the text line by line and counts the occurrences of

each of the input words in each of the lines:

int[] occurrences = new int[words.Length];
using (StreamReader text = File.OpenText("text.txt"))
{
 string line;
 while ((line = text.ReadLine()) != null)
 {
 for (int i = 0; i < words.Length; i++)
 {

www.manaraa.com

1088 Fundamentals of Computer Programming with C#

 string word = words[i];
 int wordOccurrences =
 CountOccurrencesIgnoreCase(word, line);
 occurrences[i] += wordOccurrences;
 }
 }
}

This code definitely should be tested but it will be easier to write the code

which prints the results to simplify testing. Let’s do this:

using (StreamWriter result = File.CreateText("result.txt"))
{
 for (int i = 0; i < words.Length; i++)
 {
 result.WriteLine("{0} --> {1}", words[i], occurrences[i]);
 }
}

The complete implementation of the line by line string occurrences

counting algorithms looks as follows:

CountSubstringsLineByLine.cs

using System;
using System.IO;

public class CountSubstringsLineByLine
{
 static void Main()
 {
 // Read the input list of words
 string[] words = File.ReadAllLines("words.txt");

 // Process the file line by line
 int[] occurrences = new int[words.Length];
 using (StreamReader text = File.OpenText("text.txt"))
 {
 string line;
 while ((line = text.ReadLine()) != null)
 {
 for (int i = 0; i < words.Length; i++)
 {
 string word = words[i];
 int wordOccurrences =

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1089

 CountOccurrencesIgnoreCase(word, line);
 occurrences[i] += wordOccurrences;
 }
 }
 }

 // Print the result
 using (StreamWriter result = File.CreateText("result.txt"))
 {
 for (int i = 0; i < words.Length; i++)
 {
 result.WriteLine("{0} --> {1}",
 words[i], occurrences[i]);
 }
 }
 }

 static int CountOccurrencesIgnoreCase(
 string substring, string text)
 {
 int count = 0;
 int index = -1;
 while (true)
 {
 index = text.IndexOf(substring, index + 1,
 StringComparison.OrdinalIgnoreCase);
 if (index == -1)
 {
 // No more matches
 break;
 }
 count++;
 }
 return count;
 }
}

Testing the Line by Line Algorithm

Now let’s test the entire code of the program. We try our test and it

works as expected!

text.txt

www.manaraa.com

1090 Fundamentals of Computer Programming with C#

Word? We have few words: first word, second word, third word.
Some passwords: PASSWORD123, @PaSsWoRd!456, AAaA, !PASSWORD

words.txt

Word
S
MissingWord
DS
aa

result.txt

Word --> 9
S --> 13
MissingWord --> 0
DS --> 2
aa --> 3

We also try the sample test from the problem description and it also

works correctly. We try few other tests and all they work correctly. We try

also few border cases like empty text and empty list of words. All these

cases are handled correctly. It seems like our line by line word counting

algorithm and its implementation correctly solve the problem.

We need to conduct only a performance test but let’s first implement the

other algorithm to be able to compare which is faster.

Char by Char Algorithm: Step by Step Implementation

Let’s now implement the char by char string occurrences counting

algorithm. We will need a StringBuilder to hold the characters we read

and a method to check for a match at the end of the StringBuilder. Let’s

define this method first. For more flexibility it can be implemented as

extension method to the StringBuilder class (recall how extension

methods work from the chapter “Lambda Expressions and LINQ”):

static bool EndsWith(this StringBuilder buffer, string str)
{
 for (int bufIndex = buffer.Length-str.Length, strIndex = 0;
 strIndex < str.Length;
 bufIndex++, strIndex++)
 {
 if (buffer[bufIndex] != str[strIndex])
 {
 return false;

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1091

 }
 }
 return true;
}

Let’s test the method with a sample text and its ending:

Console.WriteLine(
 new StringBuilder("say hello").EndsWith("hello"));

This test produces a correct result: True. Let’s test the negative case:

Console.WriteLine(new StringBuilder("abc").EndsWith("xx"));

This test produces a correct result: False. Let’s test what will happen if the

ending is longer than the test:

Console.WriteLine(new StringBuilder("a").EndsWith("abcdef"));

We get IndexOutOfRangeException. We found a bug! It is easy to fix – we

can return false if the ending string is longer than the text where it should

be found:

static bool EndsWith(this StringBuilder buffer, string str)
{
 if (buffer.Length < str.Length)
 {
 return false;
 }
 for (int bufIndex = buffer.Length - str.Length, strIndex = 0;
 strIndex < str.Length;
 bufIndex++, strIndex++)
 {
 if (buffer[bufIndex] != str[strIndex])
 {
 return false;
 }
 }
 return true;
}

We run all the tests again and all of them pass. We assume the above

method is correctly implemented.

Now let’s continue with the step-by-step implementation. Let’s implement the

reading of the words:

www.manaraa.com

1092 Fundamentals of Computer Programming with C#

string[] wordsOriginal = File.ReadAllLines("words.txt");

This is the same code from the line by line algorithm and it should work.

Let’s now implement the main program logic which reads the text char by

char in a buffer of characters and after each letter checks all input words for

matches at the ending of the buffer:

int[] occurrences = new int[words.Length];
using (StreamReader text = File.OpenText("text.txt"))
{
 StringBuilder buffer = new StringBuilder();
 int nextChar;
 while ((nextChar = text.Read()) != -1)
 {
 char ch = (char)nextChar;
 if (char.IsLetter(ch))
 {
 // A letter is found --> check all words for matches
 buffer.Append(ch);
 for (int i = 0; i < words.Length; i++)
 {
 string word = words[i];
 if (buffer.EndsWith(word))
 {
 occurrences[i]++;
 }
 }
 }
 else
 {
 // A non-letter character is found --> clean the buffer
 buffer.Clear();
 }
 }
}

To test the code we will need few lines of code to print the output:

using (StreamWriter result = File.CreateText("result.txt"))
{
 for (int i = 0; i < words.Length; i++)
 {
 result.WriteLine("{0} --> {1}",
 words[i], occurrences[i]);

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1093

 }
}

Now the program is completed and we should test it.

Testing the Char by Char Algorithm

Let’s test the entire code of the program. We try our test and it fails. The

produced result is incorrect:

Word --> 1
S --> 6
MissingWord --> 0
DS --> 0
aa --> 0

What’s wrong? Maybe the character casing? Do we compare the

characters in case-insensitive fashion? No. We found the problem.

How to fix the character casing? Maybe we need to fix the EndsWith(…)

method. We search in MSDN and in Internet and we cannot find a method to

compare case-insensitively characters. We can do something like this:

if (char.ToLower(ch1) != char.ToLower(ch2)) …

The above code will work but it will convert the characters to lowercase many

times, at each character comparison. This may be slow so it is better to

lowercase the words and the text preliminary before comparing. If we

lowercase the words, they will be printed in lowercase at the output and this

will be incorrect. So we need to remember the original words and to make a

copy of them in lowercase. Let’s try it. We can use the built-in extension

methods from System.Linq to perform the lowercase conversion:

string[] wordsOriginal = File.ReadAllLines("words.txt");
string[] wordsLowercase =
 wordsOriginal.Select(w => w.ToLower()).ToArray();

We need to apply few other fixes and finally we get the following full source

code of the char by char algorithm for counting the occurrences of a list of

substrings in given text:

CountSubstringsCharByChar.cs

using System.IO;
using System.Linq;
using System.Text;

www.manaraa.com

1094 Fundamentals of Computer Programming with C#

public static class CountSubstringsCharByChar
{
 static void Main()
 {
 // Read the input list of words
 string[] wordsOriginal = File.ReadAllLines("words.txt");
 string[] wordsLowercase =
 wordsOriginal.Select(w => w.ToLower()).ToArray();

 // Process the file char by char
 int[] occurrences = new int[wordsLowercase.Length];
 StringBuilder buffer = new StringBuilder();
 using (StreamReader text = File.OpenText("text.txt"))
 {
 int nextChar;
 while ((nextChar = text.Read()) != -1)
 {
 char ch = (char)nextChar;
 if (char.IsLetter(ch))
 {
 // A letter is found --> check all words for matches
 ch = char.ToLower(ch);
 buffer.Append(ch);
 for (int i = 0; i < wordsLowercase.Length; i++)
 {
 string word = wordsLowercase[i];
 if (buffer.EndsWith(word))
 {
 occurrences[i]++;
 }
 }
 }
 else
 {
 // A non-letter is found --> clean the buffer
 buffer.Clear();
 }
 }
 }

 // Print the result
 using (StreamWriter result = File.CreateText("result.txt"))
 {
 for (int i = 0; i < wordsOriginal.Length; i++)

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1095

 {
 result.WriteLine("{0} --> {1}",
 wordsOriginal[i], occurrences[i]);
 }
 }
 }

 static bool EndsWith(this StringBuilder buffer, string str)
 {
 if (buffer.Length < str.Length)
 {
 return false;
 }
 for (int bufIndex = buffer.Length-str.Length, strIndex = 0;
 strIndex < str.Length;
 bufIndex++, strIndex++)
 {
 if (buffer[bufIndex] != str[strIndex])
 {
 return false;
 }
 }
 return true;
 }
}

We need to test again with our example. Now the program works. The

result is correct:

Word --> 9
S --> 13
MissingWord --> 0
DS --> 2
aa --> 3

We test with all other tests we have (the test from the problem statement,

the border cases, etc.) and all of them pass correctly.

Testing for Performance

Now it is time to test for performance both our solutions. We need a big

test. We can do it with copy-paste. It is easy to copy-paste the text from

our text example 10,000 times and its words 100 times. The repeating

words might cause inaccuracies in performance measuring so we manually

replace the last 26 words with the letters from “a” to “z”. We also play a bit

with the rectangular selection in Visual Studio ([Alt] + mouse selection)

http://lmgtfy.com/?q=rectangular+selection+Visual+Studio

www.manaraa.com

1096 Fundamentals of Computer Programming with C#

and we insert the alphabet as a vertical column in few other places. All this

will result in 20,000 lines of text (1.2 MB) and 500 words (3 KB).

To measure the execution time we add two lines of code – before the first

line of the Main() method and after the last line of the Main() method:

static void Main()
{
 DateTime startTime = DateTime.Now;
 // The original code goes here
 Console.WriteLine(DateTime.Now - startTime);
}

Now we execute first the line by line algorithm and it seems not very fast.

On average computer from 2008 it prints the following result:

00:01:33.6393559

After that we execute the char by char algorithm. It produces the

following output:

00:00:18.1080357

Unbelievable! Our char by char processing algorithm is more than 5 times

faster than the line by line processing algorithm! But … it still is slow! 18

seconds for 1 MB file is not fast. How about processing 500 MB input and

search for 10,000 words?

Invent a Better Idea (Again)

If we are at exam, we could decide whether to take the risk to submit the

char by char solution or spend more time to think of faster algorithm.

This depends on how much time we have to the end of the exam and how

much problems we have already solved, how hard are the unsolved problems,

etc. Suppose we have enough time and we want to think more.

What makes our solution slow? If we have 500 words, we check for each

of them at each character. We do 500 * length(text) string comparisons.

The text is scanned only once (char by char). This cannot be improved, right?

If we do not scan the entire text, we will be unable to find all occurrences. So

if we want to improve the performance, we should look how to check the

words faster after each character is read, right? For 500 words we perform

500 checks after each character is read. This is slow! Can’t we do it faster?

In fact we perform a kind of searching for a matching word in a list of

words? From the data structures we know that this takes linear time. Also,

from the data structures we know that the fastest data structure for

searching is the hash-table. OK, can’t we use a hash table? Instead of

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1097

searching the words by trying each of them one by one, can’t we directly find

the word we need through a hast-table lookup?

We take a sheet of paper and the pencil and we start making sketches and

thinking. Suppose we have the text “passwords” and the word “s”. We can

check the word that we obtain when we append the letters one after another:

p, pa, pas, pass, passw, passwo, passwor, password, passwords

In this case we will not match the word “s”, right. In fact, when we find a

word in the text, we should check all its substrings in the hash table. For

example if the text is “password”, all its substrings are:

p, pa, a, pas, as, s, pass, ass, ss, s, passw, assw, ssw, sw, w, passwo,

asswo, sswo, swo, wo, o, passwor, asswor, sswor, swor, wor, or, r,

password, assword, ssword, sword, word, ord, rd, d, passwords,

asswords, sswords, swords, words, ords, rds, ds, s

There are 45 substrings of the word “password”. In a word of n characters we

have n*(n+1)/2 substrings. This will work well with short words (e.g. 3-4

characters) and will be slow for the long words (e.g. 15-20 characters).

We get into another idea? This multi-pattern matching problem should have

a standard solution. Why don’t we search for it in Internet? We try to search

for “multi-pattern matching algorithm” in Google and after exploring the

first few results we learn about the “Aho-Corasick string matching algorithm”.

Once we know the algorithm name we search for “Aho Corasick C#” and we

find a nice C# implementation: https://github.com/tupunco/Tup.AhoCorasick.

The theory says that after we have a new idea, we should check it for

correctness. The best way to check this idea is by putting the code we found

in action. In fact we do not implement the algorithm. We just try to adopt it to

solve the problem we have.

Counting Substrings with the Aho-Corasick Algorithm

From the open-source implementation of the Aho-Corasick multi-pattern

string matching algorithm mentioned above we can take the class

AhoCorasickSearch and put it in action. We write a new solution of the

substring counting problem based on what we have learned from the previous

solutions. We find all matches of all words by the SearchAll(…) method of

the AhoCorasickSearch class. Then we use a hash-table to count the number

of occurrences for each of the words. To ensure we ignore the character

casing we convert the text and the words into lowercase. This is the code:

CountSubstringsAhoCorasick.cs

using System;
using System.Collections.Generic;

http://lmgtfy.com/?q=multi-pattern+matching+algorithm
http://lmgtfy.com/?q=multi-pattern+matching+algorithm
http://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm
http://lmgtfy.com/?q=Aho+Corasick+C%23
https://github.com/tupunco/Tup.AhoCorasick

www.manaraa.com

1098 Fundamentals of Computer Programming with C#

using System.Linq;
using System.IO;

class CountSubstringsAhoCorasick
{
 static void Main()
 {
 DateTime startTime = DateTime.Now;

 // Read the input list of words
 string[] wordsOriginal = File.ReadAllLines("words.txt");
 string[] wordsLowercase =
 wordsOriginal.Select(w => w.ToLower()).ToArray();

 // Read the text
 string text = File.ReadAllText("text.txt").ToLower();

 // Find all word matches and count them
 var search = new AhoCorasickSearch();
 var matches = search.SearchAll(text, wordsLowercase);
 Dictionary<string, int> occurrences =
 new Dictionary<string, int>();
 foreach (string word in wordsLowercase)
 {
 occurrences[word] = 0;
 }
 foreach (var match in matches)
 {
 string word = match.Match;
 occurrences[word]++;
 }

 // Print the result
 using (StreamWriter result = File.CreateText("result.txt"))
 {
 foreach (string word in wordsOriginal)
 {
 result.WriteLine("{0} --> {1}", word,
 occurrences[word.ToLower()]);
 }
 }

 Console.WriteLine(DateTime.Now - startTime);
 }

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1099

}

We test the above code with all tests we already have and it seems to work

correctly. We try the performance test and this time we can be amazed

by its speed:

00:00:00.6540374

It runs really fast. This is the solution we needed and if we are allowed to

use Internet at the exam, the best way to start when we have a standard

well-known problem is to look for a well-known solution.

Problem 3: School

Students, which are studying in a school, are separated into groups. Each

of the groups has a teacher. The following information is kept for the

students: first name and last name. The following information is kept for the

groups: name, a list of students and teacher. The following information is kept

for the teachers: first name, last name and a list of groups he is teaching.

Each teacher can teach more than one group. The following information is

kept for the school: name, list of the teachers, list of the groups and list of

the students. Your task is to:

1. Design a set of classes and relationships between them to model the

school, its students, teachers and groups.

2. Implement functionality for add / edit / delete teachers, students,

groups and their properties.

3. Implement functionality for printing in human-readable form the

school, the teachers, the students, the groups and their properties.

4. Write a sample test program, which demonstrates the work of the

implemented classes and methods.

Example of school with teachers, students and groups:

School "Freedom". Teachers: Tom Johnson, Elizabeth Hall.
Group "English": David Russell, Nicholas Grant, Emma Fletcher,
John Brown, Emily Cooper, teacher Elizabeth Hall.
Group "French": Kevin Simmons, Ian Hayes, teacher Elizabeth
Hall.
Group "Informatics": Jessica Carter, Andrew Cooper, Ashley
Moore, Olivia Adams, Jonathan Smith, teacher Tom Johnson.

Start Thinking on the Problem

This is a good example of an exam assignment the purpose of which is to test

your abilities to use object-oriented programming (OOP) for modeling

www.manaraa.com

1100 Fundamentals of Computer Programming with C#

problems from the real life, design classes and relationships between them

as well as working with collections.

All we need to solve this problem is to use our object-oriented modeling

skills that we have gained from chapter “Object-Oriented Programming

Principles”, especially from the section “Object-Oriented Modeling (OOM)”.

Inventing an Idea for Solution

In this task there is nothing complex to invent. It is not algorithmic and

there is not anything to be thought up. We must define a class for each of

the described in the problem description objects (students, teachers,

school students, groups, school, etc.) and after that we should define in each

class properties to describe its characteristics and methods to implements

the actions the class can do, e.g. printing in human-readable form. That’s all.

Following the directions from the section “Object-Oriented Modeling (OOM)”

we could identify the nouns in the problem description. Some of them

should be modeled as classes; some of them as properties; and some of them

may not be important and could be disregarded.

Reading the text from the problem description and analyzing the nouns, we

could come to the idea to model the school through defining few interrelated

classes: Student, Group, Teacher and School. For testing the classes we

could create a class SchoolTest, which will create few objects of each class

and will demonstrate their work in action.

Checking the Idea

We will not check the idea because there is nothing to be proven or

checked. We need to write few classes to model a real-world situation: a

school with students, teachers and groups.

Dividing the Problem into Subproblems

The implementation of each of the classes we already identified can be

considered a subproblem of the given school modeling problem. Thus we

have the following subproblems:

- Class for the students – Student. Students will have first name, last

name and a method for printing in human-readable form – ToString().

- Class for the groups – Group. Groups will have a name, a teacher and a

list of students. It will also have а method for printing in human-

readable form.

- Class for the teachers – Teacher. Teachers will have first name, last

name and a list of groups, as well as а method for printing in human-

readable form.

- Class for the school – School. It will have a name and will hold all

students, all teachers and all groups.

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1101

- Class for testing the other classes – SchoolTest. It will create a school

with a few students, a few groups holding subsets of the students and a

few teachers. It will assign one teacher per group and a few groups per

teacher accordingly. Finally the class will print the school and all its

teachers, groups and students.

Think about the Data Structures

The data structures, needed for this problem, are of two main groups:

classes and relationships between the classes. Classes will be classes.

We have nothing to decide here. The interesting part is how to describe the

relationships between the classes, e.g. when a group has a collection of

students.

To describe a relationship (link) between two classes we can use an array.

With an array we have access to its elements by index, but once it is created

we will not be able to add or delete items (arrays have a fixed size). This

makes it uncomfortable for our problem, because we don’t know how

many students we will have in the school and more students can be added or

removed after the school is once created.

List<T> seems more comfortable. It has the advantages of an array and

also has a variable length – it is easy to add or delete elements. List<T> can

hold lists of students (inside the school and inside a group), lists of teachers

(inside a school) and lists of groups (inside a school and inside a teacher).

So far it seems List<T> is the most appropriate for holding aggregations of

objects inside another object. To be convinced we will analyze a few more

data structures. For example hash-table – it is not appropriate in this case,

because the school, teachers, students and groups are not of a key-value

type. A hash-table would be appropriate if we need to search a student by its

unique student ID, but this is not the case. Structures like stack and queue

are inappropriate – we do not have LIFO or FIFO behavior.

The structure “set” and its implementation HashSet<T> may be used when we

need to have uniqueness for given key. It would be good sometimes to use

this structure to avoid duplicates. We must recall that HashSet<T> requires

the methods GetHashCode() and Equals(…) to be correctly defined by the T

type. Shall we use sets and where? To answer this question we need to

recall the problem description. What is says? We need to design a set of

classes to model the school, its students, teachers and groups and

functionality for add / edit / delete teachers, students, groups and their

properties. The easiest way to implement it is to hold a list of students in the

school, a list of groups for each teacher, etc. Lists are easier to implement.

Sets give uniqueness, but require Equals() and GetHashCode(). Sets need

more effort to be used. So we may use lists to simplify our work.

According to the requirements the school should allow add / edit / delete of

students, teachers and groups. The easiest way to implement this is to expose

the lists of students, teachers and groups as public properties. List<T>

www.manaraa.com

1102 Fundamentals of Computer Programming with C#

already have methods for add and delete of its elements and its elements are

accessible by index and editable. It does the job.

Finally we choose to use List<T> for all aggregations in our classes and we

will expose all the class members as properties with read and write access.

We do not have a good reason to restrict the access to the members or

implement immutable behavior.

Implementation: Step by Step

It’s appropriate to start the implementation with the class Student because it

does not depend on any of the other classes.

Step 1: Class Student

In the problem definition we have only two fields representing the first name

and the last name of a student. We may add a property Name, which returns

a string with the full name of the student and a ToString() implementation

to print the student in human-readable form. We might define the class

Student as follows:

Student.cs

public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Student(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public string Name
 {
 get
 {
 return this.FirstName + " " + this.LastName;
 }
 }

 public override string ToString()
 {
 return "Student: " + this.Name;
 }
}

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1103

We want to allow the class members to be editable so we define the

FirstName and LastName as public read-write properties.

Testing the Class Student

Before continuing forward we want to test the class Student to be sure it is

correct. Let’s create a testing class with a Main() method and create a

student in it and print the student:

class TestSchool
{
 static void Main()
 {
 Student studentPeter = new Student("Peter", "Lee");
 Console.WriteLine(studentPeter);
 }
}

We run the testing program and we get a correct result:

Student: Peter Lee

Now we can continue with the implementation of the other classes.

Step 2: Class Group

The next class we can define is Group. We choose it because the only one

required for its definition is the class Student. The properties, which we will

define, are the name of the group, a list of the students, which belong to

the group, and a teacher who teaches the group. To implement the list with

of the students we will use List<Student>. We will add a ToString()

method to enable printing the group in a human-readable text form. Let’s see

the implementation of the class Group:

Group.cs

using System.Collections.Generic;

public class Group
{
 public string Name { get; set; }
 public List<Student> Students { get; set; }

 public Group(string name)
 {
 this.Name = name;
 this.Students = new List<Student>();

www.manaraa.com

1104 Fundamentals of Computer Programming with C#

 }

 public override string ToString()
 {
 StringBuilder groupAsString = new StringBuilder();
 groupAsString.AppendLine("Group name: " + this.Name);
 groupAsString.Append("Students in the group: " +
 this.Students);
 return groupAsString.ToString();
 }
}

It is important when we create a group to assign an empty list of students

to it. If we leave the list of students unassigned, it will be null and when we

try to add a student, we will get an exception.

Testing the Class Group

Let’s now test the Group class. Let’s create a sample group, add few

students to it and print the group at the console:

static void Main()
{
 Student studentPeter = new Student("Peter", "Lee");
 Student studentMaria = new Student("Maria", "Steward");
 Group groupEnglish = new Group("English language course");
 groupEnglish.Students.Add(studentPeter);
 groupEnglish.Students.Add(studentMaria);
 Console.WriteLine(groupEnglish);
}

We run the above testing code and we find a bug:

Group name: English language course
Students in the group:
System.Collections.Generic.List`1[Student]

It seems like the list of students is printed incorrectly. It is easy to find

why. The List<T> class does not correctly implement ToString() and we

need to use another way to print a list of students. We can do this with a for-

loop but let’s try something shorter and more elegant:

using System.Linq;
…
groupAsString.Append("Students in the group: " +
 string.Join(", ", this.Students.Select(s => s.Name)));

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1105

The above code uses an extension method and a lambda expression to

select all students’ names as IEnumerable<string> and then combines them

into a string using a comma as separator. Let’s test the Group class again

after the fix:

Group name: English language course
Students in the group: Peter Lee, Maria Steward

The group class now works correctly.

Let’s think a bit: who is teaching the students in the group? We should have

a teacher, right. Let’s try to add the simplest possible class Teacher and

define a property of it in the Group class:

public class Teacher
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public string Name

 {
 get
 {
 return this.FirstName + ' ' + this.LastName;
 }
 }
}

public class Group
{
 public string Name { get; set; }
 public List<Student> Students { get; set; }
 public Teacher Teacher { get; set; }

 public Group(string name)
 {
 this.Name = name;
 this.Students = new List<Student>();
 }

 public override string ToString()
 {
 StringBuilder groupAsString = new StringBuilder();
 groupAsString.AppendLine("Group name: " + this.Name);
 groupAsString.Append("Students in the group: " +
 string.Join(", ", this.Students.Select(s => s.Name)));

www.manaraa.com

1106 Fundamentals of Computer Programming with C#

 groupAsString.Append("\nGroup teacher: " +
 this.Teacher.Name);
 return groupAsString.ToString();
 }
}

Let’s test again with our sample groups of two students studying English:

Student studentPeter = new Student("Peter", "Lee");
Student studentMaria = new Student("Maria", "Steward");
Group groupEnglish = new Group("English language course");
groupEnglish.Students.Add(studentPeter);
groupEnglish.Students.Add(studentMaria);
Console.WriteLine(groupEnglish);

We find another bug:

Unhandled Exception: System.NullReferenceException: Object
reference not set to an instance of an object.
 at Group.ToString() …

We step through the debugger and we see that we try to print the teacher’s

name but there is no teacher (it is null). This is easy to fix. We could check

whether the teacher exists prior to printing it in the ToString() method:

if (this.Teacher != null)
{
 groupAsString.Append("\nGroup teacher: " + this.Teacher.Name);
}

Let’s test again after the fix. Now we get the following correct result:

Group name: English language course
Students in the group: Peter Lee, Maria Steward

Let’s now add a teacher to the testing group and check what happens:

Student studentPeter = new Student("Peter", "Lee");
Student studentMaria = new Student("Maria", "Steward");
Group groupEnglish = new Group("English language course");
groupEnglish.Students.Add(studentPeter);
groupEnglish.Students.Add(studentMaria);
Teacher teacherNatasha = new Teacher() {
 FirstName = "Natasha", LastName = "Walters" };
groupEnglish.Teacher = teacherNatasha;

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1107

Console.WriteLine(groupEnglish);

The result is correct:

Group name: English language course
Students in the group: Peter Lee, Maria Steward
Group teacher: Natasha Walters

Now the Group class works correctly. We can continue with the next class.

Step 3: Class Teacher

Let’s define the class Teacher. We already have some piece of it, but let’s

define it in a better way. The teacher should have first name, last name and a

list of group he teaches and should be printable in human-readable form. We

can define it directly repeating the logic in the Group class:

Teacher.cs

public class Teacher
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public List<Group> Groups { get; set; }

 public Teacher(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.Groups = new List<Group>();
 }

 public string Name
 {
 get
 {
 return this.FirstName + " " + this.LastName;
 }
 }

 public override string ToString()
 {
 StringBuilder teacherAsString = new StringBuilder();
 teacherAsString.AppendLine("Teacher name: " + this.Name);
 teacherAsString.Append("Groups of this teacher: " +

www.manaraa.com

1108 Fundamentals of Computer Programming with C#

 string.Join(", ", this.Groups.Select(s => s.Name)));
 return teacherAsString.ToString();
 }
}

Like in the class Group, it is important to create and empty list of groups

instead of leaving the Groups property uninitialized.

Testing the Class Teacher

Before going further, let’s test the class Teacher. We can create a teacher

with a few groups and print it at the console:

static void Main()
{
 Teacher teacherNatasha = new Teacher("Natasha", "Walters");
 Group groupEnglish = new Group("English language");
 Group groupFrench= new Group("French language");
 teacherNatasha.Groups.Add(groupEnglish);
 teacherNatasha.Groups.Add(groupFrench);
 Console.WriteLine(teacherNatasha);
}

The result is correct:

Teacher name: Natasha Walters
Groups of this teacher: English language, French language

This was expected. We just repeated the same logic like in the Group class

which was already tested and all bugs in it was fixed. We found once again

how important is to write the code step by step with testing and bug-

fixing after each step, right? The bug with incorrectly printing the list of

students would have been repeated when printing the list of groups, right?

Step 4: Class School

We finish our object model with the definition of the class School, which

uses all of the classes we already defined. It should have a name and should

hold a list of students, a list of teachers and a list of groups:

public class School
{
 public string Name { get; set; }
 public List<Teacher> Teachers { get; set; }
 public List<Group> Groups { get; set; }
 public List<Student> Students { get; set; }

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1109

 public School(string name)
 {
 this.Name = name;
 this.Teachers = new List<Teacher>();
 this.Groups = new List<Group>();
 this.Students = new List<Student>();
 }
}

Before testing the class, let’s think what the class School is expected to

do. It should hold the students, teachers and groups and should be printable

at the console, right? If we print the school, what should be printed? Maybe

we should print its name, all its students (with their inner details), all its

teachers (with their inner details) and all its groups (with their inner details).

Let’s try to define the ToString() method for the class School:

public override string ToString()
{
 StringBuilder schoolAsString = new StringBuilder();
 schoolAsString.AppendLine("School name: " + this.Name);
 schoolAsString.AppendLine("Teachers: " +
 string.Join(", ", this.Teachers.Select(s => s.Name)));
 schoolAsString.AppendLine("Students: " +
 string.Join(", ", this.Students.Select(s => s.Name)));
 schoolAsString.Append("Groups: " +
 string.Join(", ", this.Groups.Select(s => s.Name)));
 foreach (var teacher in this.Teachers)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(teacher);
 }
 foreach (var group in this.Groups)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(group);
 }
 foreach (var student in this.Students)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(student);
 }
 return schoolAsString.ToString();
}

www.manaraa.com

1110 Fundamentals of Computer Programming with C#

We shall not test the class School, because this will be the main purpose of

our last class: SchoolTest.

Step 5: Class SchoolTest

The final thing is the implementation of the class SchoolTest the purpose of

which is to demonstrate all the classes we have defined (Student, Group,

Teacher and School) and their methods and properties. This is our last

subproblem. For the demonstration we create a sample school with a few

students, a few teachers and a few groups and we print it:

SchoolTest.cs

class TestSchool
{
 static void Main()
 {
 // Create a few students
 Student studentPeter = new Student("Peter", "Lee");
 Student studentGeorge = new Student("George", "Redwood");
 Student studentMaria = new Student("Maria", "Steward");
 Student studentMike = new Student("Michael", "Robinson");

 // Create a group and add a few students to it
 Group groupEnglish = new Group("English language course");
 groupEnglish.Students.Add(studentPeter);
 groupEnglish.Students.Add(studentMike);
 groupEnglish.Students.Add(studentMaria);
 groupEnglish.Students.Add(studentGeorge);

 // Create a group and add a few students to it
 Group groupJava = new Group("Java Programming course");
 groupJava.Students.Add(studentMaria);
 groupJava.Students.Add(studentPeter);

 // Create a teacher and assign it to few groups
 Teacher teacherNatasha = new Teacher("Natasha", "Walters");
 teacherNatasha.Groups.Add(groupEnglish);
 teacherNatasha.Groups.Add(groupJava);
 groupEnglish.Teacher = teacherNatasha;
 groupJava.Teacher = teacherNatasha;

 // Create another teacher and a group he teaches
 Teacher teacherSteve = new Teacher("Steve", "Porter");
 Group groupHTML = new Group("HTML course");
 groupHTML.Students.Add(studentMike);

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1111

 groupHTML.Students.Add(studentMaria);
 groupHTML.Teacher = teacherSteve;
 teacherSteve.Groups.Add(groupHTML);

 // Create a school with few students, groups and teachers
 School school = new School("Saint George High School");
 school.Students.Add(studentPeter);
 school.Students.Add(studentGeorge);
 school.Students.Add(studentMaria);
 school.Students.Add(studentMike);
 school.Groups.Add(groupEnglish);
 school.Groups.Add(groupJava);
 school.Groups.Add(groupHTML);
 school.Teachers.Add(teacherNatasha);
 school.Teachers.Add(teacherSteve);

 // Modify some of the groups, student and teachers
 groupEnglish.Name = "Advanced English";
 groupEnglish.Students.RemoveAt(0);
 studentPeter.LastName = "White";
 teacherNatasha.LastName = "Hudson";

 // Print the school
 Console.WriteLine(school);
 }
}

We run the program and we get the expected result:

School name: Saint George High School
Teachers: Natasha Hudson, Steve Porter
Students: Peter White, George Redwood, Maria Steward, Michael
Robinson
Groups: Advanced English, Java Programming course, HTML course

Teacher name: Natasha Hudson
Groups of this teacher: Advanced English, Java Programming
course

Teacher name: Steve Porter
Groups of this teacher: HTML course

Group name: Advanced English
Students in the group: Michael Robinson, Maria Steward, George

www.manaraa.com

1112 Fundamentals of Computer Programming with C#

Redwood
Group teacher: Natasha Hudson

Group name: Java Programming course
Students in the group: Maria Steward, Peter White
Group teacher: Natasha Hudson

Group name: HTML course
Students in the group: Michael Robinson, Maria Steward
Group teacher: Steve Porter

Student: Peter White

Student: George Redwood

Student: Maria Steward

Student: Michael Robinson

Of course in real life programs do not start from the first time, but in this task

the mistakes you could make are trivial so there’s no point in discussing

them. All classes are implemented and tested. We are almost finished

with this problem.

Testing the Solution

As usually, it remains to test if the entire solution is working correctly.

We’ve already done this. We tested all the classes in their nominal case.

We can do some tests with the border cases, for instance a group without

students, empty school, etc. It seems like these cases work correctly. We

might test a student without a name, but it is unclear whether the class

should keep itself of incorrect names and what is a correct name. We can

leave these classes without checks for the names. It will be a responsibility of

their caller to put correct names though their constructors and properties. The

problem description says nothing about this.

It is interesting how we delete a student. In our current implementation, if

we delete a student, we will need to remove it from the school and to remove

it from all groups he belongs to. The removal itself will require the student to

have the Equals() method defined correctly or we should compare students

by hand (property by property). It is unclear from the problem description

how exactly the “delete student” operation should work.

We assume we don’t have time and we submit the solution in its current state

without efficient delete operation. Sometimes it takes too much time to

fix something and it is better to leave it in not perfect form. Below is the full

source code of the solution of the school modeling problem:

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1113

School.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Student(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public string Name
 {
 get
 {
 return this.FirstName + " " + this.LastName;
 }
 }

 public override string ToString()
 {
 return "Student: " + this.Name;
 }
}

public class Group
{
 public string Name { get; set; }
 public List<Student> Students { get; set; }
 public Teacher Teacher { get; set; }

 public Group(string name)
 {
 this.Name = name;
 this.Students = new List<Student>();
 }

www.manaraa.com

1114 Fundamentals of Computer Programming with C#

 public override string ToString()
 {
 StringBuilder groupAsString = new StringBuilder();
 groupAsString.AppendLine("Group name: " + this.Name);
 groupAsString.Append("Students in the group: " +
 string.Join(", ", this.Students.Select(s => s.Name)));
 if (this.Teacher != null)
 {
 groupAsString.Append("\nGroup teacher: " +
 this.Teacher.Name);
 }
 return groupAsString.ToString();
 }
}

public class Teacher
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public List<Group> Groups { get; set; }

 public Teacher(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.Groups = new List<Group>();
 }

 public string Name
 {
 get
 {
 return this.FirstName + " " + this.LastName;
 }
 }

 public override string ToString()
 {
 StringBuilder teacherAsString = new StringBuilder();
 teacherAsString.AppendLine("Teacher name: " + this.Name);
 teacherAsString.Append("Groups of this teacher: " +
 string.Join(", ", this.Groups.Select(s => s.Name)));
 return teacherAsString.ToString();

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1115

 }
}

public class School
{
 public string Name { get; set; }
 public List<Teacher> Teachers { get; set; }
 public List<Group> Groups { get; set; }
 public List<Student> Students { get; set; }

 public School(string name)
 {
 this.Name = name;
 this.Teachers = new List<Teacher>();
 this.Groups = new List<Group>();
 this.Students = new List<Student>();
 }

 public override string ToString()
 {
 StringBuilder schoolAsString = new StringBuilder();
 schoolAsString.AppendLine("School name: " + this.Name);
 schoolAsString.AppendLine("Teachers: " +
 string.Join(", ", this.Teachers.Select(s => s.Name)));
 schoolAsString.AppendLine("Students: " +
 string.Join(", ", this.Students.Select(s => s.Name)));
 schoolAsString.Append("Groups: " +
 string.Join(", ", this.Groups.Select(s => s.Name)));
 foreach (var teacher in this.Teachers)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(teacher);
 }
 foreach (var group in this.Groups)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(group);
 }
 foreach (var student in this.Students)
 {
 schoolAsString.Append("\n---\n");
 schoolAsString.Append(student);
 }
 return schoolAsString.ToString();

www.manaraa.com

1116 Fundamentals of Computer Programming with C#

 }
}

class TestSchool
{
 static void Main()
 {
 // Create a few students
 Student studentPeter = new Student("Peter", "Lee");
 Student studentGeorge = new Student("George", "Redwood");
 Student studentMaria = new Student("Maria", "Steward");
 Student studentMike = new Student("Michael", "Robinson");

 // Create a group and add a few students to it
 Group groupEnglish = new Group("English language course");
 groupEnglish.Students.Add(studentPeter);
 groupEnglish.Students.Add(studentMike);
 groupEnglish.Students.Add(studentMaria);
 groupEnglish.Students.Add(studentGeorge);

 // Create a group and add a few students to it
 Group groupJava = new Group("Java Programming course");
 groupJava.Students.Add(studentMaria);
 groupJava.Students.Add(studentPeter);

 // Create a teacher and assign it to few groups
 Teacher teacherNatasha = new Teacher("Natasha", "Walters");
 teacherNatasha.Groups.Add(groupEnglish);
 teacherNatasha.Groups.Add(groupJava);
 groupEnglish.Teacher = teacherNatasha;
 groupJava.Teacher = teacherNatasha;

 // Create another teacher and a group he teaches
 Teacher teacherSteve = new Teacher("Steve", "Porter");
 Group groupHTML = new Group("HTML course");
 groupHTML.Students.Add(studentMike);
 groupHTML.Students.Add(studentMaria);
 groupHTML.Teacher = teacherSteve;
 teacherSteve.Groups.Add(groupHTML);

 // Create a school with few students, groups and teachers
 School school = new School("Saint George High School");
 school.Students.Add(studentPeter);
 school.Students.Add(studentGeorge);

www.manaraa.com

Chapter 26. Sample Programming Exam – Topic #3 1117

 school.Students.Add(studentMaria);
 school.Students.Add(studentMike);
 school.Groups.Add(groupEnglish);
 school.Groups.Add(groupJava);
 school.Groups.Add(groupHTML);
 school.Teachers.Add(teacherNatasha);
 school.Teachers.Add(teacherSteve);

 // Modify some of the groups, student and teachers
 groupEnglish.Name = "Advanced English";
 groupEnglish.Students.RemoveAt(0);
 studentPeter.LastName = "White";
 teacherNatasha.LastName = "Hudson";

 // Print the school
 Console.WriteLine(school);
 }
}

We will not run performance tests because the task is not of a

computational nature which requires a fast algorithm. Operations that could

be slow are deleting of elements from a collection. Creating objects,

assigning their properties and adding elements to their collections of child

elements are all fast operations. Only the deletion could be slow. We could

improve its performance by using HashSet<T> instead of List<T> in all

aggregations. We leave this to the reader.

Let’s make just one more note. Why we did not notice the performance

problem with deleting elements earlier? Let’s recall how we proceeded

with solving this problem. After thinking about the data structures we had to

thing about the performance right? Did we do this step? We omitted this step

and we found the problem too late. The conclusion is: follow the guidelines for

problem solving. They are very wise.

Exercises

1. Write a program, which prints a square spiral matrix beginning from

the number 1 in the upper right corner and moving clockwise. Examples

for N=3 and N=4:

4567

314158

213169

1121110

4567

314158

213169

1121110

345

296

187

345

296

187

www.manaraa.com

1118 Fundamentals of Computer Programming with C#

2. Write a program, which counts the phrases in a text file. Any

sequence of characters could be given as phrase for counting, even

sequences containing separators. For instance in the text "I am a student

in Sofia" the phrases "s", "stu", "a" and "I am" are found respectively 2,

1, 3 and 1 times.

3. Model with OOP the file system of a computer running Windows. We

have devices, directories and files. The devices are for instance floppy

disk, HDD, CD-ROM, etc. They have a name and a tree of directories and

files. Each directory has a name, date of last change and list of files and

directories, which it holds. Each file has a name, date of creation, date of

last change and content. Each file is placed in one of the directories. Each

file can be text or binary. Text files contain text (string), and the

binary ones – sequence of bytes (byte[]). Create a class, which tests

the other classes and demonstrates how we can build a model for

devices, directories and files in the computer.

4. Using the classes from the previous task write a program which takes

the real file system from your computer and loads it in your

classes (just the names of the devices, directories and files, without the

content of the files because you will run out of memory).

Solutions and Guidelines

1. The task is analogical to the first task of the sample exam. You can

modify the sample solution given above.

2. You may read the text char by char and after each char to append it to

the current buffer buf and check each of the searched word for a match

with EndsWith() in the buffer’s end. Of course you cannot use efficiently

hash-table and you will have a loop for each letter from the text, which is

not the fastest solution. This is a modification of the “char by char

algorithm for word counting”.

Implementing a faster solution needs to adapt the Aho-Corasick

algorithm. Try to play with it and modify the code from the section

“Counting Substrings with the Aho-Corasick Algorithm”.

3. The problem is analogical with the “School” problem from the sample

exam and it can be solved by using the same approach. Define classes

Device, Directory, File, ComputerStorage and ComputerStorageTest.

Think of what properties each of these classes has and what are the

relationships between the classes. Create a base abstract class File

and inherit it from TextFile and BinaryFile. Test your code with

sample hierarchy of devices, files and folders. Note: a file can be listed in

more than one directory at the same time (unlike in the file system).

4. Use the class System.IO.Directory and its static methods GetFiles(),

GetDirectories() and GetLogicalDrives(). Traverse the files system

using the BFS or DFS graph traversal algorithm. Load partially the

content of long files (e.g. the first 128 bytes / chars) to save memory.

www.manaraa.com

Conclusion

If you are reading this conclusion and if you have read carefully the entire

book, then please accept our well-deserved congratulations! We are

certain that you have earned valuable knowledge in the principles of

programming that will stick for life. Even if the years pass, even if technology

evolves and computers are far from their current state, the fundamental

knowledge of data structures in programming and the algorithmic way of

thinking as well as the experience gained in solving programming problems

will always aid you, if you work in the field of information technology.

Did You Solve All Problems?

If you have solved all problems from all chapters, in addition to reading

carefully the entire book, then you can proudly declare yourself a

programmer. Whatever technology you pick up from now on will be child’s

play. Now that you have grasped the basics and fundamental principles of

programming, you’ll easily learn to use databases and SQL, develop Web

applications and server-side software (e.g. with ASP.NET and WCF), write

HTML5 applications, develop for mobile devices and whatever else you’d like.

You have a great advantage over the majority of programmers who do

not know what a hash-table is, how searching in a tree works and what

algorithm complexity is. If you have really made the tremendous effort to

solve all problems from the book, then you have most certainly reached a

level of fundamental understanding of the concepts of programming

and a programmer’s way of thinking, which will aid you for many years.

Have You Encountered Difficulties with the
Exercises?

If you haven’t solved all exercise problems or at least the vast majority of

them, turn back and solve them! Yes, it does take a lot of time, but that’s

the way to learn programming – with a lot of work and effort. You won’t learn

programming without practicing it diligently!

If you have encountered difficulties, use the discussion forum of the

courses on fundamentals of programming at the Software Academy, which

follow this book: http://forums.academy.telerik.com. Several hundred people

have taken these courses and the majority of them have solved all problems

and shared their solutions. So, examine them, try solving the problems and

then try again without using any guides.

http://softuni.bg/
http://forums.academy.telerik.com/

www.manaraa.com

1120 Fundamentals of Computer Programming with C#

Many lectures and video tutorials have been uploaded on the book’s Web

site (http://www.introprogramming.info). We have free PowerPoint slides

and videos in English and Bulgarian for each chapter of the book. They will

be of great use to you, especially if this is the first time you are getting

involved in programming. If you decide to teach C#, programming or data

structures and algorithms, the slides and exercises will help you focus on the

training and save time preparing the content. It’s worth checking them out.

Also, check out the free courses available from Telerik Software Academy

(http://academy.telerik.com). All of their lectures' study materials and video

recordings have been made available for free download on each course’s

respective Web site. These courses are an excellent follow-up to your

progress as software engineers and professionals in software development. All

materials (lecture slides, exercises, demos) and some video recordings, both

at this book’s and at Telerik Academy’s Web site, are available in English.

How Do You Proceed After Reading the Book?

Maybe you are wondering how you should continue your development as a

software engineer. You’ve laid solid foundations with this book, so it won’t be

difficult. We can give you the following instructions:

1. Choose a language and a programming platform, e. g. C# + .NET

Framework, Java + Java EE, Ruby + Rails or PHP + CakePHP. There’s

nothing wrong with giving up C#. Focus on the technologies your platform

supports; you’ll learn the corresponding language quickly. For example, if

you choose Objective-C and iPhone / iPad / iOS / Xcode programming, the

algorithmic way of thinking you have acquired with this book will help you

make progress.

2. Read a book on databases and learn how to model your application’s

data using tables and relations between them. Learn how to build queries

for selecting and updating data in SQL. Learn how to work with a database

server, like Oracle, SQL Server or MySQL. The next natural course of

action is to acquire some ORM technology, like ADO.NET Entity

Framework, Hibernate or JPA. You might also try the NoSQL database

systems available in the public clouds.

3. Acquire a technology for building dynamic Web sites. Start with a

book on HTML, CSS, JavaScript and jQuery, or with our free course on

HTML5, CSS3 and JavaScript (http://html5course.telerik.com). Then

explore the web development tools your platform supports, such as

ASP.NET Web Forms / ASP.NET MVC using the .NET Platform and C#,

Servlets / JSP / JSF using the Java platform, CakePHP / Symfony / Zend

Framework with PHP, Ruby on Rails using Ruby or Django using Python.

Learn how to make simple Web sites with dynamic content. Try creating a

Web application for mobile devices using some mobile UI toolkit.

4. Learn to write mobile applications. Start for example with HTML5 and

Cordova, try to deploy your apps in the large marketplaces maintained by

Google, Apple, Microsoft and Amazon. Try to learn native mobile

http://www.introprogramming.info/
http://academy.telerik.com/
http://html5course.telerik.com/

www.manaraa.com

Conclusion 1121

development (e.g. Java and Android development or Objective C and

iOS development). Create a mobile app (e.g. some game) and deploy it in

some major marketplace. Thus you will pass through the entire design /

develop /publish cycle and this will give you real-world mobile development

experience.

5. Take up working on a more serious project, like a Web market or a

program for managing warehouse or accounting software. This will give

you the opportunity to encounter the practical problems of practical

software development. You’ll gain the more valuable practical experience

and you’ll see for yourself that coding advanced software is much more

difficult than coding simple programs.

6. Get a job at a software company! This is very important. If you have

really solved all problems from this book, you’ll easily get a job offer. By

working on practical software projects you’ll learn a great deal of new

software technologies, unlike your colleagues, and you’ll come to realize

that, even though you know a lot about programming, you are only at the

very beginning of your career as a software engineer. You’ll only get to

tackle the challenges of team work in practice, and acquire the tools for

dealing with them by working on actual software projects at an actual work

environment. You’ll have to work at least for a few years until you establish

yourself as a software development professional. Then, perhaps, you’ll

remember about this book and you’ll realize that you haven’t gone wrong

by starting with data structures and algorithms rather than directly with

Web technologies, databases and mobile development.

Free Courses at Telerik Software Academy

You can save yourself a lot of trouble and nerves, if you decide to go through

all of the above steps of your development as a software engineer at Telerik

Software Academy. You’ll learn under the guidance of Svetlin Nakov and

instructors with practical experience in the software industry. The Academy is

the easiest and absolutely free-of-charge way to lay the foundations of your

development career, but it is not the only way. Everything depends on you!

Good Luck to Everyone!

On behalf of the entire panel of authors, we wish you endless success in your

career and personal life!

Svetlin Nakov,

Manager of the "Technical Training" Department, Telerik Corporation,

Telerik Software Academy – http://academy.telerik.com

August 24th, 2013

http://academy.telerik.com/
http://academy.telerik.com/
http://www.nakov.com/
http://academy.telerik.com/

www.manaraa.com

Fundamentals of Computer Programming with C#

(The Bulgarian C# Programming Book)

by Svetlin Nakov and Co.

http://www.introprogramming.info

Book Back Cover

http://www.introprogramming.info/
http://www.introprogramming.info

	Contents
	Detailed Table of Contents
	Preface
	About the Book
	Please Excuse Us for the Bugs in the Translation!
	Who Is This Book Aimed At?
	Previous Knowledge Is Not Required!
	What Is the Scope of This Book?
	What Will This Book Not Teach You?
	How Is the Information Presented?

	C# and .NET Framework
	The C# Programming Language
	The Microsoft .NET Framework
	Why C#?
	C# or Java?
	Why Not PHP?
	Why Not C or C++?

	Advantages of C#
	Examples Are Given in C# 5 and Visual Studio 2012

	How То Read This Book?
	Do Not Skip the Exercises!
	How Much Time Will We Need for This Book?
	Exercises: Complex or Easy?

	Why Are Data Structures and Algorithms Emphasized?
	Job Interviews at Google
	Job Interviews at Microsoft
	About the LINQ Technology

	Do You Really Want to Become a Programmer?
	Motivate Yourself to Become a Programmer or Find Another Job!

	A Look at the Book’s Contents
	Chapter 0: Preface
	Chapter 1: Introduction to Programming
	Chapter 2: Primitive Types and Variables
	Chapter 3: Operators and Expressions
	Chapter 4: Console Input and Output
	Chapter 5: Conditional Statements
	Chapter 6: Loops
	Chapter 7: Arrays
	Chapter 8: Numeral Systems
	Chapter 9: Methods
	Chapter 10: Recursion
	Chapter 11: Creating and Using Objects
	Chapter 12: Exception Handling
	Chapter 13: Strings and Text Processing
	Chapter 14: Defining Classes
	Chapter 15: Text Files
	Chapter 16: Linear Data Structures
	Chapter 17: Trees and Graphs
	Chapter 18: Dictionaries, Hash Tables and Sets
	Chapter 19: Data Structures and Algorithm Complexity
	Chapter 20: Object-Oriented Programming Principles
	Chapter 21: High-Quality Programming Code
	Chapter 22: Lambda Expressions and LINQ
	Chapter 23: Methodology of Problem Solving
	Chapters 24, 25, 26: Sample Programming Exam
	Chapters 28: Conclusion

	History: How Did This Book Come to Be?
	The Origins of This Book
	The Java Programming Fundamentals Book
	The C# Programming Fundamentals Book
	The Translation of the C# Book: from Bulgarian to English
	Bulgaria? Bulgarian Authors? Is This True?

	Authors and Contributors
	The Panel of Authors
	Dilyan Dimitrov
	Hristo Germanov
	Iliyan Murdanliev
	Mihail Stoynov
	Mihail Valkov
	Mira Bivas
	Nikolay Kostov
	Nikolay Nedyalkov
	Nikolay Vasilev
	Pavel Donchev
	Pavlina Hadjieva
	Radoslav Ivanov
	Radoslav Kirilov
	Radoslav Todorov
	Stanislav Zlatinov
	Stefan Staev
	Svetlin Nakov
	Teodor Bozhikov
	Teodor Stoev
	Tsvyatko Konov
	Veselin Georgiev
	Veselin Kolev
	Yordan Pavlov
	Yosif Yosifov

	The Java Book Authors
	The Editors
	The Translators
	Other Contributors

	The Book Is Free of Charge!
	Reviews
	Review by Nikola Mihaylov, Microsoft
	Review by Vassil Bakalov, Microsoft
	Review by Vassil Terziev, Telerik
	Review by Veselin Raychev, Google
	Review by Vassil Popovski, VMware
	Review by Pavlin Dobrev, ProSyst Labs
	Review by Nikolay Manchev, Oracle
	Review by Panayot Dobrikov, SAP AG
	Review by Lyubomir Ivanov, Mobiltel
	Review by Hristo Deshev, Entrepreneur
	Review by Hristo Radkov, Clever IT (London, UK)

	License
	Common Definitions
	Rights and Limitations of the Users
	Rights and Limitations of the Authors

	Resources Coming with the Book
	The Book’s Website
	Discussion Forum
	Presentation Slides Coming with the Book
	Video Materials for Self-Education with the Book
	Interactive Mind Maps
	C# Book Fan Club

	Chapter 1. Introduction to Programming
	In This Chapter
	What Does It Mean "To Program"?
	How Do Computers Process Information?
	Managing the Computer
	The Essence of Programming

	Stages in Software Development
	Gathering the Requirements
	Planning and Preparing the Architecture and Design
	Implementation
	Product Testing
	Deployment and Operation
	Technical Support
	Documentation
	Software Development Is More than Just Coding

	Our First C# Program
	How Does Our First C# Program Work?
	Defining a Class
	Defining the Main() Method
	Contents of the Main() Method

	C# Distinguishes between Uppercase and Lowercase!
	The Program Code Must Be Correctly Formatted
	Main Formatting Rules
	File Names Correspond to Class Names

	The C# Language and the .NET Platform
	The C# Language
	Keywords
	Automatic Memory Management

	Independence from the Environment and the Programming Language
	Mono (.NET for Linux)

	Microsoft Intermediate Language (MSIL)
	Common Language Runtime (CLR) – the Heart of .NET
	The .NET Platform
	.NET Framework

	.NET Technologies
	Application Programming Interface (API)
	.NET Documentation

	What We Need to Program in C#?
	.NET Framework
	Text Editor

	Compilation and Execution of C# Programs
	Creating C# Programs in the Windows Console
	Compiling C# Programs in Windows
	Compiling and Running C# Programs in Windows
	Changing the System Paths in Windows

	Visual Studio IDE
	Integrated Development Environments
	What Is Visual Studio?
	Creating a New C# Project
	Compiling the Source Code
	Starting the Project
	Debugging the Program

	Alternatives to Visual Studio
	SharpDevelop
	MonoDevelop

	Decompiling Code
	C# in Linux, iOS and Android
	Other .NET Languages
	Exercises
	Solutions and Guidelines

	Chapter 2. Primitive Types and Variables
	In This Chapter
	What Is a Variable?
	Data Types
	Characteristics
	Types
	Correspondence between C# and .NET Types
	Integer Types
	Integer Types – Example

	Real Floating-Point Types
	Real Type Float
	Special Values of the Real Types
	Real Type Double
	Real Floating-Point Types – Example
	Precision of the Real Types
	Accuracy of Real Types – Example
	About the Presentation of the Real Types
	Errors in Calculations with Real Types

	Real Types with Decimal Precision
	Boolean Type
	Boolean Type – Example

	Character Type
	Character Type – Example

	Strings
	Strings – Example

	Object Type
	Using Objects – Example

	Nullable Types

	Variables
	Characteristics of Variables
	Naming Variables – Rules
	Naming Variables – Examples
	Naming Variables – Recommendations
	Declaring Variables
	Assigning a Value
	Initialization of Variables
	Default Variable Values

	Value and Reference Types
	Value and Reference Types and the Memory

	Literals
	Types of Literals
	Boolean Literals
	Boolean Literals – Example

	Integer Literals
	Integer Literals – Examples

	Real Literals
	Real Literals – Examples

	Character Literals
	Escaping Sequences
	Escaping Sequences – Examples

	String Literals
	String Literals – Examples

	Exercises
	Solutions and Guidelines

	Chapter 3. Operators and Expressions
	In This Chapter
	Operators
	What Is an Operator?
	Operators in C#
	Operator Categories
	Types of Operators by Number of Arguments
	Operators – Example

	Operator Precedence in C#
	Arithmetical Operators
	Arithmetical Operators – Example

	Logical Operators
	Logical Operators – Example
	Laws of De Morgan

	Operator for Concatenation of Strings
	Operator for Concatenation of Strings – Example

	Bitwise Operators
	Bitwise Operators and Their Performance
	Bitwise Operators – Example

	Comparison Operators
	Comparison Operators – Example

	Assignment Operators
	Assignment Operators – Example
	Cascade Assignment
	Compound Assignment Operators

	Conditional Operator ?:
	Conditional Operator "?:" – Example

	Other Operators
	The "." Operator
	Square Brackets [] Operator
	Brackets () Operator
	Type Conversion Operator
	Operator "as"
	Operator "new"
	Operator "is"
	Operator "??"
	Other Operators – Examples

	Type Conversion and Casting
	Implicit Type Conversion
	Implicit Type Conversion – Examples
	Possible Implicit Conversions

	Explicit Type Conversion
	Explicit Type Conversion – Example
	Data Loss during Type Conversion
	Forcing Overflow Exceptions during Casting
	Possible Explicit Conversions

	Conversion to String
	Conversion to String – Example

	Expressions
	Side Effects of Expressions
	Expressions, Data Types and Operator Priorities
	Division by Zero
	Using Brackets to Make the Code Clear

	Exercises
	Solutions and Guidelines

	Chapter 4. Console Input and Output
	In This Chapter
	What Is the Console?
	Communication between the User and the Program
	When to Use the Console?
	How to Launch the Console?
	More about Consoles
	Basic Console Commands
	Windows Console Commands

	Standard Input-Output
	Printing to the Console
	Standard Input and Standard Output
	Devices for Console Input and Output
	Console.Out Stream
	Using Console.Write(…) and Console.WriteLine(…)
	Concatenation of Strings
	Concatenation of Mixed Types
	Some Features of String Concatenation

	Formatted Output with Write(…) and WriteLine(…)
	Formatted Output – Examples
	Composite Formatting
	Composite Formatting String
	Formatting Items
	Index Component
	Alignment Component
	The "formatString" Component
	Format String Components for Numbers
	Standard Formats for Numbers
	Standard Formats for Numbers – Example
	Custom Formats for Numbers
	Format String Components for Dates
	Standard Defined Date Formats
	Custom Date Formats
	Format String Enumeration Components
	Formatting Strings and Localization

	Console Input
	Reading through Console.ReadLine()
	Reading through Console.Read()
	Reading Numbers
	Parsing Numbers Conditionally
	Reading by Console.ReadKey()
	Simplified Reading of Numbers through Nakov.IO.Cin

	Console Input and Output – Examples
	Printing a Letter
	Area of a Rectangle or a Triangle

	Exercises
	Solutions and Guidelines

	Chapter 5. Conditional Statements
	In This Chapter
	Comparison Operators and Boolean Expressions
	Comparison Operators
	Comparison of Integers and Characters
	Comparison of References to Objects
	Logical Operators
	Logical Operators && and ||
	Logical Operators & and |
	Logical Operators ^ and !

	Conditional Statements "if" and "if-else"
	Conditional Statement "if"
	Conditional Statement "if" – Example
	Conditional Statement "if" and Curly Brackets

	Conditional Statement "if-else"
	Conditional Statement "if-else" – Example

	Nested "if" Statements
	Nested "if" Statements – Example

	Sequences of "if-else-if-else-…"
	Conditional "if" Statements – Good Practices

	Conditional Statement "switch-case"
	How Does the "switch-case" Statement Work?
	Rules for Expressions in Switch
	Using Multiple Labels
	Good Practices When Using "switch-case"

	Exercises
	Solutions and Guidelines

	Chapter 6. Loops
	In This Chapter
	What Is a "Loop"?
	While Loops
	Usage of While Loops
	Summing the Numbers from 1 to N
	Check If a Number Is Prime – Example
	Operator "break"
	Calculating Factorial – Example

	Do-While Loops
	Usage of Do-While Loops
	Calculating Factorial – Example
	Factorial of a Large Number – Example
	Product in the Range [N…M] – Example

	For Loops
	Initialization of For Loops
	Condition of the For Loop
	Update of the Loop Variables
	The Body of the Loop
	For-Loop – Example
	Calculating N^M – Example
	For-Loop with Several Variables
	Operator "continue"

	Foreach Loops
	Nested Loops
	Printing a Triangle – Example
	Prime Numbers in an Interval – Example
	Lucky Numbers – Example
	Lottery 6/49 – Example

	Exercises
	Solutions and Guidelines

	Chapter 7. Arrays
	In This Chapter
	What Is an "Array"?
	Declaration and Allocation of Memory for Arrays
	Declaring an Array
	Creation of an Array – the Operator "new"
	Array Initialization and Default Values
	Declaration and Initialization of an Array – Example
	Boundaries of an Array

	Access to the Elements of an Array
	Going Out of Bounds of the Array
	Reversing an Array – Example

	Reading an Array from the Console
	Check for Symmetric Array – Example

	Printing an Array to the Console
	Iteration through Elements of an Array
	Iteration with a For Loop
	Iteration with "foreach" Loop
	Iteration with "foreach" Loop – Example

	Multidimensional Arrays
	What Is a Multidimensional Array? What Are Matrices?
	Multidimensional Array Declaration and Allocation
	Two-Dimensional Array Initialization
	Accessing the Elements of a Multidimensional Array
	Length of Multidimensional Arrays
	Printing Matrices – Example
	Reading Matrices from the Console – Example
	Maximal Platform in a Matrix – Example

	Arrays of Arrays
	Declaration and Allocation an Array of Arrays
	Memory Allocation
	Initialization and Access to the Elements
	Pascal’s Triangle – Example

	Exercises
	Solutions and Guidelines

	Chapter 8. Numeral Systems
	In This Chapter
	History in a Nutshell
	Applications of the Sexagesimal Numeral System
	Short Summary

	Numeral Systems
	What Are Numeral Systems?
	Positional Numeral Systems
	Non-Positional Numeral Systems
	Roman Numeral System
	Greek Numeral System

	The Binary Numeral System – Foundation of Computing Technology
	Decimal Numbers
	Binary Numbers
	Converting From Binary to Decimal Numeral System
	Horner Scheme

	Converting from Decimal to Binary Numeral System
	Operations with Binary Numbers
	Bitwise "and"
	Bitwise "or"
	Bitwise "exclusive or"
	Bitwise Negation

	Hexadecimal Numbers
	Fast Transition from Binary to Hexadecimal Numbers
	Numeral Systems – Summary

	Representation of Numbers
	Representing Integer Numbers in the Memory
	Unsigned Integers
	Representing Negative Numbers
	Integer Types in C#
	Big-Endian and Little-Endian Representation
	Representing Real Floating-Point Numbers
	Representing Floating-Point Numbers – Example
	Mantissa Normalization

	The Float and Double Types in C#
	Errors When Using Floating-Point Numbers
	Precision of Floating-Point Numbers
	The Decimal Type
	Character Data (Strings)
	Encoding Schemes (Encodings)
	Presenting a Sequence of Characters
	Char Type
	String Type

	Exercises
	Solutions and Guidelines

	Chapter 9. Methods
	In This Chapter
	Subroutines in Programming
	What Is a "Method"?
	Why to Use Methods?
	Better Structured Program and More Readable Code
	Avoid Duplicated Code
	Code Reuse

	How to Declare, Implement and Invoke a Method?
	Declaring Our Own Method
	Where Is Method Declaration Allowed?
	Method Declaration
	Method Signature
	Method Names
	Rules to Name a Method
	Modifiers

	Implementation (Creation) of Own Method
	The Body of a Method
	Local Variables

	Invoking a Method
	Who Takes Control over the Program when We Invoke a Method?
	Where a Method Can Be Invoked From?
	Method Declaration and Method Invocation

	Parameters in Methods
	Declaring Methods with Parameters
	Method to Display a Company Logo – Example
	Method to Calculate the Sum of Prices of Books – Example
	Method Behavior According to Its Input
	Method to Show whether a Number is Positive – Example
	Method with Multiple Parameters
	Difference in Declaration of Methods with Multiple Parameters

	Invoking Methods with Parameters
	Difference between Parameters and Arguments of a Method
	Passing Arguments of a Primitive Type
	Passing Arguments of Reference Type
	Passing of Expressions as Method Arguments
	Passing of Arguments Compatible with the Parameter Type
	Compatibility of the Method Parameter and the Passed Value
	Keeping the Declaration Sequence of the Arguments Types

	Variable Number of Arguments (var-args)
	How to Declare Method with Variable Number of Arguments
	Variable Number of Arguments: Arrays vs. "params"
	Position and Declaration of a Method with Variable Arguments
	Limitations on the Count for the Variable Arguments
	Specifics of Empty Parameter List
	Method with Variable Number of Arguments – Example

	Optional Parameters and Named Arguments
	Method Overloading
	Method Parameters and Method Signature
	Overloaded Methods Invocation
	Methods with Coinciding Signatures

	Triangles with Different Size – Example

	Returning a Result from a Method
	Declaring a Method that Returns a Result
	How to Use the Returned Value?
	Assigning to a Variable
	Usage in Expressions
	Using the Returned Value as Method Parameter

	Returned Value Type
	The Operator "return"
	Compatibility of the Result and the Retuning Type
	Using an Expression after the Return Operator
	Features of the Return Operator
	Multiple Return Statements

	Why Is the Returned Value Type not a Part of the Method Signature?
	Fahrenheit to Celsius Conversion – Example
	Difference between Two Months – Example
	Input Data Validation – Example
	Sorting – Example

	Best Practices when Using Methods
	Exercises
	Solutions and Guidelines

	Chapter 10. Recursion
	In This Chapter
	What Is Recursion?
	Example of Recursion
	Direct and Indirect Recursion
	Bottom of Recursion
	Creating Recursive Methods
	Recursive Calculation of Factorial
	Recurrent Definition
	Finding a Recurrent Dependence
	Algorithm Implementation

	Recursion or Iteration?
	Simulation of N Nested Loops
	Nested Loops – Recursive Version
	Nested Loops – Iterative Version

	Which is Better: Recursion or Iteration?
	Fibonacci Numbers – Inefficient Recursion
	Fibonacci Numbers – Efficient Recursion
	Fibonacci Numbers – Iterative Solution
	More about Recursion and Iteration
	Searching for Paths in a Labyrinth – Example
	Paths in a Labyrinth – Recursive Algorithm
	Paths in a Labyrinth – Implementation
	Paths in a Labyrinth – Saving the Paths
	Paths in a Labyrinth – Testing the Program

	Using Recursion – Conclusions
	Exercises
	Solutions and Guidelines

	Chapter 11. Creating and Using Objects
	In This Chapter
	Classes and Objects
	What Is Object-Oriented Programming?
	What Is an Object?
	What Is a Class?
	Classes, Attributes and Behavior
	Objects – Instances of Classes

	Classes in C#
	What Are Classes in C#?
	An Example Class
	System Classes

	Creating and Using Objects
	Creating and Releasing Objects
	Creating Objects with Set Parameters
	Releasing the Objects

	Access to Fields of an Object
	Access to the Memory and Properties of an Object – Example

	Calling Methods of Objects
	Calling Methods of Objects – Example

	Constructors
	Constructor with Parameters
	Calling Constructors – Example

	Static Fields and Methods
	When to Use Static Fields and Methods?
	Static Fields and Methods – Example

	Examples of System C# Classes
	The System.Environment Class
	The System.String Class
	The System.Math Class
	The System.Math Class – More Examples
	The System.Random Class
	The System.Random Class – Generating a Random Password

	Namespaces
	What Are Namespaces in C#?
	Defining Namespaces
	Nested Namespaces
	Full Names of Classes
	Inclusion of a Namespace
	Using a Namespace – Example

	Exercises
	Solutions and Guidelines

	Chapter 12. Exception Handling
	In This Chapter
	What Is an Exception?
	Exceptions
	Catching and Handling Exceptions
	Exceptions in the Object-Oriented Programming
	Exceptions in .NET
	An Example Code Throwing an Exception
	How Do Exceptions Work?
	Catching Exceptions in C#
	The try-catch Programming Construct
	Catching Exceptions – Example
	Stack Trace
	Stack Trace – Example
	Reading the Stack Trace
	Throwing Exceptions (the throw Construct)

	Exceptions Hierarchy
	The Exception Class
	Exception – Constructors, Methods and Properties
	Application vs. System Exceptions

	Throwing and Catching Exceptions
	Nested Exceptions
	How to Read the Stack Trace with Nested Exceptions?
	Visualizing Exceptions
	Which Exceptions to Handle and Which Not?
	Throwing Exceptions from the Main() Method – Example
	Catching Exceptions at Different Levels – Example

	The try-finally Construct
	When Should We Use try-finally?
	Resource Cleanup – Defining the Problem
	Resource Cleanup – Solving the Problem
	Resource Cleanup – Better Solution
	Multiple Resources Cleanup

	IDisposable and the "using" Statement
	IDisposable
	The Keyword "using"
	Nested "using" Statements
	When to Use the "using" Statement?

	Advantages of Using Exceptions
	Separation of the Exception Handling Code
	Error Handling without Exceptions
	Error Handling with Exceptions

	Grouping Different Error Types
	Catching Exceptions at the Most Appropriate Place

	Best Practices when Using Exceptions
	When to Rely on Exceptions?
	Throw Exceptions to the End User?
	Throw Exceptions at the Appropriate Level of Abstraction!
	If Your Exception Has a Source, Use It!
	Give a Detailed Descriptive Error Message!
	Error Messages with Wrong Content
	Use English for All Exception Messages
	Never Ignore the Exceptions You Catch!
	Dump the Error Messages in Extreme Cases Only!
	Don’t Catch All Exceptions!
	Only Catch Exceptions You Know How to Process!

	Exercises
	Solutions and Guidelines

	Chapter 13. Strings and Text Processing
	In This Chapter
	Strings
	What Is a String?
	The System.String Class
	The String Class: Universal Solution?
	Strings are Immutable
	Strings and Char Arrays

	Strings – Simple Example
	Strings Escaping
	Declaring a String
	Creating and Initializing a String
	Setting a String Literal
	Assigning Value of Another String
	Passing a String Expression

	Reading and Printing to the Console
	Reading Strings
	Printing Strings

	Strings Operations
	Comparing Strings in Alphabetical Order
	Comparison for Equality
	Comparing Strings in Alphabetical Order
	The == and != Operators
	Memory Optimization for Strings (Interning)

	Operations for Manipulating Strings
	Strings Concatenation
	Switching to Uppercase and Lowercase Letters
	Searching for a String within Another String
	Searching into a String – Example
	Searching with IndexOf(…) – Example
	Finding All Occurrences of a Substring – Example

	Extracting a Portion of a String
	Extracting a File Name and File Extension – Example

	Splitting the String by a Separator
	Splitting Strings by Multiple Separators – Example
	How to Remove the Empty Elements after Splitting?

	Replacing a Substring
	Regular Expressions
	Regular Expressions – Example
	Explaining the Arguments of Regex.Replace(…)

	Removing Unnecessary Characters at the Beginning and at the End of a String
	Removing Unnecessary Characters by a Given List

	Constructing Strings: the StringBuilder Class
	Strings Concatenation in a Loop: Never Do This!
	How Does the String Concatenation Works?
	Why Concatenating Strings in a Loop is a Bad Practice?
	Concatenating in Loop of 200,000 Iterations – Example
	Processing Strings in the Memory

	Building and Changing Strings with StringBuilder
	Reversing a String – Example

	How Does the StringBuilder Class Work?
	StringBuilder – More Important Methods
	Extracting All Capital Letters from a Text – Example
	StringBuilder: the Right Solution

	String Formatting
	The ToString(…) Method
	Using of String.Format(…)
	Parsing Data
	Parsing Numeric Types
	Parsing Dates

	Exercises
	Solutions and Guidelines

	Chapter 14. Defining Classes
	In This Chapter
	Custom Classes
	Let’s Recall: What Does It Mean Class and Object?
	What Does a Class Contain?
	Elements of the Class
	Sample Class: Dog

	Usage of Class and Objects
	How to Use a Class Defined by Us (Custom Class)?
	Example – A Dog Meeting
	Nature of Objects

	Organizing Classes in Files and Namespaces
	Organizing Classes in Namespaces
	Encoding of Files and Using of Cyrillic and Unicode

	Modifiers and Access Levels (Visibility)
	Modifiers and Access Levels
	Access Level "public"
	Access Level "private"
	Access Level "internal"
	Assembly

	Declaring Classes
	Class Visibility
	Access Level "public"
	Access Level "internal"
	Access Level "private"

	Body of the Class
	Class Naming Convention

	The Reserved Word "this"
	Fields
	Declaring Fields in a Class
	Scope

	Initialization during Declaration
	Default Values of the Fields
	Automated Initialization of Local Variables and Fields
	Custom Default Values

	Modifiers "const" and "readonly"
	Constants Based on "const"
	Constants Based on "readonly"

	Methods
	Declaring of Class Method
	Example – Method Declaration

	Accessing Non-Static Data of the Class
	Accessing Non-Static Fields from Non-Static Method
	Calling Non-Static Methods
	Skip "this" Keyword When Accessing Non-Static Data

	Hiding Fields with Local Variables
	Visibility of Fields and Methods
	Access Level "public"
	Access Level "internal"
	Access Level "private"
	How to Decide Which Access Level to Use?

	Constructors
	What Is a Constructor?
	Calling a Constructor

	Declaring a Constructor
	Constructor’s Name
	Parameter List
	Modifiers

	Visibility of the Constructors
	Initialization of the Fields in the Constructor
	Fields Initialization in the Constructor
	Representation in the Memory
	Order of Initialization of the Fields

	Declaring a Constructor with Parameters
	Scope of Parameters of the Constructor

	Constructor with Variable Number of Arguments
	Constructor Overloading
	Reusing Constructors

	Default Constructor
	How the Default Constructor Works?
	When a Default Constructor Will Not Be Created?
	Difference between a Default Constructor and a Constructor without Parameters

	Properties
	Properties in C# – Introduction by Example
	Properties – Encapsulation of Fields
	Example of Encapsulation

	Physical Presentation of the Properties in a Class
	Property without Declaration of a Field

	Declaring Properties in C#
	The Body of a Property
	Method for Reading the Value of a Property (Getter)
	Calling a Method for Reading Property’s Value
	Method for Modifying Property’s Value (Setter)
	Calling a Method for Modifying the Property’s Value
	Assertion of the Input Values

	Automatic Properties in C#
	Types of Properties

	Static Classes and Static Members
	What the Static Elements Are Used For?
	Method to Sum Two Numbers
	Instance Counter for Given Class

	What Is a Static Member?
	Static Fields
	Declaration of Static Fields
	Initialization during Declaration
	Accessing Static Fields
	Modification of the Static Field Values

	Constants
	Compile-Time Constants (const)
	Assigning Constant Values at Runtime
	Runtime Constants (readonly)
	Naming the Constants
	Using Constants

	Static Methods
	Declaration of Static Methods
	Accessing Static Methods

	Access between Static and Non-Static Members
	Accessing Non-Static Members from Non-Static Method
	Accessing Static Elements from Non-Static Method
	Accessing Static Elements of the Class from Static Method
	Accessing Non-Static Elements from Static Method
	Unauthorized Access to Non-Static Field – Example
	Illegal Call of Non-Static Method from Static Method – Example

	Static Properties of the Class
	Static Properties and the Keyword “this”
	Accessing Static Properties

	Static Classes
	Static Constructors
	Static Constructor – Example

	Structures
	Structure (struct) – Example
	Structures are Value Types
	Class or Structure?

	Enumerations
	Declaration of Enumerations
	Nature of Enumerations
	Hidden Numerical Value of Constants in Enumeration
	Use of Enumerations

	Inner Classes (Nested Classes)
	Declaration of Inner Classes
	Inner Classes – Example
	Usage of Inner Classes
	Declare Enumeration in a Class

	Generics
	Shelter for Homeless Animals – Example
	What Is a Generic Class?
	Declaration of Generic Class
	Specifying Generic Classes
	Using Unknown Types by Declaring Fields
	Using Unknown Types in a Method’s Declaration
	Typifying (Generics) – Behind the Scenes
	Generic Methods
	Features by Declaration of Generic Methods in Generic Classes
	Using a Keyword "default" in a Generic Source Code
	Advantages and Disadvantages of Generics
	Naming the Parameters of the Generic Types

	Exercises
	Solutions and Guidelines

	Chapter 15. Text Files
	In This Chapter
	Streams
	What Is a Stream?
	Basic Things You Need to Know about Streams
	Basic Operations with Streams
	Creation
	Reading
	Writing
	Positioning
	Closing

	Streams in .NET – Basic Classes
	Binary and Text Streams
	Binary Streams
	Text Streams
	Relationship between Text and Binary Streams

	Reading from a Text File
	StreamReader Class for Reading a Text File
	Opening a Text File for Reading
	Full and Relative Paths
	Universal Relative to Physical Path Resolver
	Reading a Text File Line by Line – Example

	Automatic Closing of the Stream after Working with It
	File Encodings. Reading in Cyrillic
	Character Encodings
	Reading a Cyrillic Content
	The Unicode Standard. Reading in Unicode

	Writing to a Text File
	The StreamWriter Class
	Printing the Numbers [1…20] in a Text File – Example

	Input / Output Exception Handling
	Intercepting Exceptions when Working with Files
	Catching an Exception when Opening a File – Example

	Text Files – More Examples
	Occurrences of a Substring in a File – Example
	Editing a Subtitles File – Example

	Exercises
	Solutions and Guidelines

	Chapter 16. Linear Data Structures
	In This Chapter
	Abstract Data Structures
	What Is a Data Structure?
	What Is an Abstract Data Type?
	Basic Data Structures in Programming

	List Data Structures
	List
	Abstract Data Structure "List"
	Static List (Array-Based Implementation)
	Linked List (Dynamic Implementation)
	Comparing the Static and the Dynamic Lists
	Doubly-Linked List

	The ArrayList Class
	The ArrayList Class – Example
	ArrayList of Numbers – Example

	Generic Collections
	The List<T> Class
	The List Class – Array-Based Implementation
	When to Use List<T>?
	Prime Numbers in Given Interval – Example
	Union and Intersection of Lists – Example
	Converting a List to Array and Vice Versa

	The LinkedList<T> Class
	When Should We Use LinkedList<T>?
	Basic Operations in the LinkedList<T> Class
	When Should We Use LinkedList<T>?

	Stack
	The Abstract Data Type "Stack"
	Static Stack (Array-Based Implementation)
	Linked Stack (Dynamic Implementation)

	The Stack<T> Class
	The Stack<T> Class – Basic Operations
	Stack Usage – Example
	Correct Brackets Check – Example

	Queue
	Abstract Data Type "Queue"
	Static Queue (Array-Based Implementation)
	Linked Queue (Dynamic Implementation)

	The Queue<T> Class
	The Queue<T> – Basic Operations
	Queue Usage – Example
	Sequence N, N+1, 2*N – Example

	Exercises
	Solutions and Guidelines

	Chapter 17. Trees and Graphs
	In This Chapter
	Tree Data Structures
	Trees
	Example – Hierarchy of the Participants in a Project
	Trees Terminology
	Tree Implementation – Example
	How Does Our Implementation Work?
	Depth-First-Search (DFS) Traversal
	Creating a Tree

	Traverse the Hard Drive Directories
	Recursive DFS Traversal of the Directories
	Breadth-First Search (BFS)

	Binary Trees
	Binary Tree – Example
	Binary Tree Traversal
	Recursive Traversal of Binary Tree – Example
	How Does the Example Work?

	Ordered Binary Search Trees
	Comparability between Objects
	Properties of the Ordered Binary Search Trees
	Ordered Binary Search Trees – Example
	Ordered Binary Search Trees: Implementation of the Nodes
	Comparability between Objects in C#
	Ordered Binary Trees – Implementation of the Main Class
	Inserting an Element
	Searching for an Element
	Removing an Element

	Balanced Trees
	The Hidden Class TreeSet<T> in .NET Framework

	Graphs
	Graphs – Basic Concepts
	Graphs – Presentations
	Graphs – Basic Operations
	Common Graph Applications

	Exercises
	Solutions and Guidelines

	Chapter 18. Dictionaries, Hash-Tables and Sets
	In This Chapter
	Dictionary Data Structure
	Dictionary Data Structure – Example
	The Abstract Data Structure “Dictionary” (Associative Array, Map)
	The Interface IDictionary<K, V>

	Implementation of Dictionary with Red-Black Tree
	The Class SortedDictionary<K, V>
	Using SortedDictionary Class – Example
	IComparable<K> Interface
	IComparer<T> Interface

	Hash-Tables
	Dictionary Implementation with Hash-Table
	What is a Hash-Table?
	Class Dictionary <K, V>
	Class Dictionary<K, V> – Main Operations
	Students and Marks – Example

	Hashing and Hash-Functions
	Hash-Functions
	The Method GetHashCode() in .NET Framework
	Collisions with Hash-Functions
	Implementing the Method GetHashCode()
	Implementing GetHashCode() – Example
	Interface IEqualityComparer<T>

	Resolving the Collision Problem
	Chaining in a List

	Implementation of a Dictionary with Hash-Table and Chaining
	Open Addressing Methods for Collision Resolution
	Linear Probing
	Quadratic Probing
	Double Hashing
	Cuckoo Hashing

	The "Set" Data Structure
	The Abstract Data Structure "Set"
	Set Implementations in .NET Framework
	Implementation with Hash-Table – HashSet<T>
	Implementation with Red-Black Tree – SortedSet<T>

	Exercises
	Solutions and Guidelines

	Chapter 19. Data Structures and Algorithm Complexity
	In This Chapter
	Why Are Data Structures So Important?
	Algorithm Complexity
	Typical Algorithm Complexities
	Complexity and Execution Time
	Complexity by Several Variables
	Best, Worst and Average Case
	Roughly Estimated Complexity
	Complexity by Memory
	Estimating Complexity – Examples

	Comparison between Basic Data Structures
	When to Use a Particular Data Structure?
	Array (T[])
	Singly / Doubly Linked List (LinkedList<T>)
	Dynamic Array (List<T>)
	Stack
	Queue
	Dictionary, Implemented with a Hash-Table (Dictionary<K, T>)
	Dictionary, Implemented with a Balanced Tree (SortedDictionary<K,T>)
	Set, Implemented with a Hash-Table (HashSet<T>)
	Set, Implemented with a Balanced Tree (SortedSet<T>)

	Choosing a Data Structure – Examples
	Generating Subsets
	Sorting Students
	Sorting a Phone Book
	Searching in a Phone Book
	Choosing a Data Structure – Conclusions

	External Libraries with .NET Collections
	Power Collections for .NET
	C5 Collections for .NET

	Exercises
	Solutions and Guidelines

	Chapter 20. Object-Oriented Programming Principles
	In This Chapter
	Let’s Review: Classes and Objects
	Object-Oriented Programming (OOP)
	Fundamental Principles of OOP
	Inheritance
	How Does Inheritance Work in .NET?
	Inheritance of Classes – Example

	The "base" Keyword
	Constructors with Inheritance
	Constructors and the Keyword "base" – Example

	Access Modifiers of Class Members and Inheritance
	The System.Object Class
	.NET, Standard Libraries and Object
	The Base Type Object Upcasting and Downcasting – Example
	The Object.ToString() Method
	Object.ToString() – Example
	Overriding ToString() – Example

	Virtual Methods: the "override" and "new" Keywords
	Transitive Properties of Inheritance
	Transitiveness – Example
	Inheritance Hierarchy

	Class Diagrams
	What is UML Class Diagram?
	A Class Based on a Class Diagram – Example
	Class Diagram – Example of Generalization
	Associations
	From Diagrams to Classes
	Aggregation
	Composition

	Abstraction
	Abstraction – Abstract Data Example
	Interfaces
	Interfaces – Key Concepts
	Interfaces – Example
	Abstraction and Interfaces
	When Should We Use Abstraction and Interfaces?
	When Should We Write Interfaces?

	Encapsulation
	Encapsulation – Examples

	Polymorphism
	Abstract Classes
	Abstract Class – Examples
	Purely Abstract Classes

	Virtual Methods
	Virtual Methods – Example
	Virtual Methods and Methods Hiding
	The Difference between Virtual and Non-Virtual Methods

	When Should We Use Polymorphism?

	Cohesion and Coupling
	Cohesion
	Strong Cohesion
	Strong Cohesion in a Class
	Strong Cohesion in a Class – Example
	Strong Cohesion in a Method
	Weak Cohesion
	Weak Cohesion – Example
	Best Practices with Cohesion

	Coupling
	Loose Coupling
	Loose Coupling – Example
	Tight Coupling
	Tight Coupling – Example
	Best Practices with Coupling

	Spaghetti Code
	Cohesion and Coupling in Engineering Disciplines

	Object-Oriented Modeling (OOM)
	Steps in Object-Oriented Modeling
	Identification of Classes
	Identification of Class Attributes
	Identification of Operations on Classes
	Identification of Relationships between Classes

	UML Notation
	Use Case Diagrams
	Use Case Diagrams – Example

	Sequence Diagrams
	Sequence Diagrams – Example
	Messages – Example

	Statechart Diagrams
	Activity Diagrams

	Design Patterns
	The Singleton Design Pattern
	The Singleton Design Pattern – Example

	The Factory Method Design Pattern
	The Factory Method Design Pattern – Example

	Other Design Patterns

	Exercises
	Solutions and Guidelines

	Chapter 21. High-Quality Programming Code
	In This Chapter
	Why Is Code Quality Important?
	What Does Quality Programming Code Mean?
	Characteristics of Quality Code

	Why Should We Write Quality Code?
	Coding Conventions
	Managing Complexity

	Identifier Naming
	Avoid Abbreviations
	Use English
	Consistency in Naming
	Names of Classes, Interfaces and Other Types
	How Long Should Class Names Be?
	Naming Interfaces and Other Types
	Names of Enumeration Types
	Attribute Names
	Exception Names
	Delegate Names
	Naming Namespaces
	Assembly Names

	Method Names
	Methods that Return a Value
	Single Purpose of a Method
	Cohesion and Naming
	How Long Should Method Names Be?
	Method Parameters

	Property Names
	Variable Names
	Names of Boolean Identifiers
	Named Constants
	Naming of Specific Data Types
	Naming by Prefixing or Suffixing

	Code Formatting
	Why Does Code Need Formatting?
	Block Formatting
	Rules for Formatting a Method
	Formatting Multiple Method Declarations
	How to Put Parentheses?
	Formatting the Parameter List of Methods: Space after Commas

	Rules for Formatting of Types
	Rules for Ordering the Contents of a Class

	Formatting Rules for Loops and Conditional Statements
	Usage of Empty Lines
	Rules for Moving to the Next Line and Alignment

	High-Quality Classes
	Software Design
	Object-Oriented Programming (OOP)
	Abstraction
	Inheritance
	Encapsulation
	Constructors
	Deep and Shallow Copy

	High-Quality Methods
	Why Should We Use Methods?
	What Should a Method Do?
	Strong Cohesion and Loose Coupling
	How Long Should a Method Be?
	Method Parameters

	Proper Use of Variables
	Returning a Result
	Principles for Initialization
	Partially Initialized Objects

	Declaring a Variable within a Block or a Method
	Scope, Lifetime and Span of Variables
	Minimizing the Variable Scope
	Minimizing the Variable Span
	Minimizing the Variable Lifetime
	Minimizing the Variable Span and Lifetime – Example

	Use of Variables – More Rules

	Proper Use of Expressions
	Use of Constants
	When to Use Constants?
	When Not to Use Constants?

	Proper Use of Control Flow Statements
	With or Without Curly Brackets?
	Proper Usage of Conditional Statements
	Deep Nesting of Conditional Statements

	Proper Use of Loops
	Choosing an Appropriate Looping Construct
	Do Not Nest Too Many Loops

	Defensive Programming
	Assertions
	Assertions vs. Exceptions
	Defensive Programming with Exceptions

	Code Documentation
	Self-Documenting Code
	Properties of Self-Documenting Code
	Self-Documenting Code – Important Questions
	Effective Comments
	XML Documentation in C#

	Code Refactoring
	Refactoring at Data Level
	Refactoring at Method and Class Level

	Unit Testing
	Unit Testing – Example
	Benefits of Unit Testing
	Benefits of Unit Testing – Example
	Unit Testing Frameworks and Tools
	Unit Testing with Visual Studio Team Test (VSTT)

	Additional Resources
	Exercises
	Solutions and Guidelines

	Chapter 22. Lambda Expressions and LINQ
	In This Chapter
	Extension Methods
	Extension Methods – Examples
	Extension Methods for Interfaces

	Anonymous Types
	Anonymous Types – Example
	More about Anonymous Types
	Arrays of Anonymous Types

	Lambda Expressions
	Lambda Expressions – Examples
	Using Lambda Expressions with Anonymous Types
	Sorting with Lambda Expressions
	Statements in Lambda Expressions
	Lambda Expressions as Delegates

	LINQ Queries
	Data Sources with LINQ
	Data Filtering with LINQ
	Results of LINQ Queries
	Sorting Data with LINQ
	Grouping Results with LINQ
	Joining Data with LINQ

	Nested LINQ Queries
	LINQ Performance
	Exercises
	Solutions and Guidelines

	Chapter 23. Methodology of Problem Solving
	In This Chapter
	Basic Principles of Solving Computer Programming Problems
	Use Pen and Paper
	Generate Ideas and Give Them a Try!
	Decompose the Task into Smaller Subtasks
	"Cards Shuffle" Problem – Example
	First Subtask: a Single Swap
	Second Subtask: Choosing a Random Number
	Third Subtask: Combining Swaps

	Another Example: Sorting Numbers

	Verify Your Ideas!
	"Cards Shuffle" Problem: Verifying the Idea
	Sorting Numbers: Verifying the Idea

	If a Problem Occurs, Invent a New Idea!
	Choose Appropriate Data Structures!
	What Kind of Data Structure Should We Use?
	Can We Use an Array?
	Can We Use Another Data Structure?
	How to Represent the Other Data Objects?

	Sorting Numbers: Choosing a Data Structures

	Think about the Efficiency!
	How to Estimate the Performance of Given Algorithm?
	The Efficiency Is a Matter of Compromise
	Sorting Numbers: Estimating the Performance

	Implement Your Algorithm!
	Write the Code Step by Step!
	Writing Code Step by Step – Example
	Step 1 – Defining the Class "Card"
	Testing of the Class "Card"
	Step 2 – Creating and Printing a Deck of Cards
	Printing the Deck – Testing the Code
	Step 3 – Single Swap
	Search in Google!
	Single Swap – Testing the Code
	Single Swap – Correcting the Mistakes
	Step 4 – Card Shuffling
	Card Shuffling – Testing
	Step 5 – Console Input

	Sorting Numbers – Step by Step

	Test Your Solution!
	How to Test?
	Testing with Good Examples of the Common Cases
	What Else to Test For?
	A Hard Common-Case Test
	Borderline Cases
	Borderline Case: Shuffling One Card
	Borderline Case: Shuffling Two Cards
	Borderline Case: Shuffling Zero Cards

	Regression Testing
	Performance Tests
	Shuffling Cards – Performance Tests
	Sorting Numbers – Performance Tests

	General Conclusions
	Exercises
	Solutions and Guidelines

	Chapter 24. Sample Programming Exam – Topic #1
	In This Chapter
	Problem 1: Extract Text from HTML Document
	Inventing an Idea
	Checking the Idea
	Clarification of the Statement of the Problem
	A New Idea for Solving the Problem
	Break a Task into Subtasks
	What Data Structures to Use?
	Consider the Efficiency
	Step 1 – Read the Input File
	Test the Input File Reading Code

	Step 2 – Remove the Tags
	Testing the Tag Removal Code

	Step 3 – Remove the Empty Lines
	Testing the Empty Lines Removal Code
	Remove the Empty Lines: Second Attempt
	Remove the Empty Lines: Test Again

	Step 4 – Print Results in a File
	Testing the Solution
	Fixing the Leading Spaces Defect
	Performance Test

	How to Fix the Problem with the Tag at Two Lines?
	A New Idea: Processing the Text Char by Char
	Implementing the New Idea
	Testing the New Solution
	Where Is the Problem?
	How to Fix the Problem?
	Testing the New Solution

	Problem 2: Escape from Labyrinth
	Figure Out an Idea for a Solution
	Verification of the Idea

	What Data Structures to Use?
	Think About the Efficiency
	Think of Another Idea
	Check the New Idea

	Breaking the Problem into Subproblems
	Checking the Performance of the New Algorithm
	Check If the New Algorithm Is Correct
	What Data Structures to Use?
	Step 1 – The Class Cell
	Step 2 – Reading the Input File
	Testing the Input File Reading Code

	Step 3 – Finding the Shortest Path
	Checking after Step 3

	Step 4 – Writing the Result to a File
	Testing the Complete Solution of the Problem

	Problem 3: Store for Car Parts
	Inventing an Idea for Solution
	Checking the Idea
	What Data Structures to Use to Describe the Relationship between Two Classes?

	Dividing the Task into Subtasks
	Implementation: Step by Step
	Step 1: The Class Car
	Testing the Class Car
	Step 2: The Class Manufacturer
	Testing the Class Manufacturer
	Step 3: The Part Category Enumeration
	Step 4: The Class Part
	Testing the Class Part
	Step 5: The Class Shop
	Step 6: The Class TestShop

	Testing the Solution

	Exercises
	Solutions and Guidelines

	Chapter 25. Sample Programming Exam – Topic #2
	In This Chapter
	Problem 1: Counting the Uppercase / Lowercase Words in a Text
	Coming Up with an Appropriate Idea for a Solution
	Breaking Down the Problem into Subproblems
	How Do We Split the Text Up into Separate Words?
	How Do We Count the Words?

	Verifying the Idea
	Let’s Consider the Data Structures
	Let’s Consider the Efficiency
	Let’s Write Down the Solution
	Step 1: Finding the Separators in the Text
	Testing the ExtractSeparators(…) Method
	Correcting the ExtractSeparators(…) Method
	Testing Again after the Fix

	Step 2: Splitting Up the Text in Separate Words
	Testing the Word Extracting Method

	Step 3: Determining Whether a Word Is in Uppercase or Lowercase
	Step 4: Counting the Words
	Testing the Word Counting Method

	Step 5: Console Input
	Step 6: Putting All Together
	Testing the Solution
	A Word on Performance

	Problem 2: A Matrix of Prime Numbers
	Coming Up with an Appropriate Idea for a Solution
	Breaking Down the Problem into Subproblems
	Verifying the Idea
	Consider the Data Structures
	Consider the Efficiency
	Step 1: Check to Find If a Number Is a Prime
	Testing the Prime Checking Method

	Step 2: Finding the Next Prime Number
	Testing the Next Prime Number Finder

	Step 3: Printing the Matrix
	Step 4: Console Input
	Testing the Entire Solution
	A Word on Performance
	Improved Performance: Sieve of Eratosthenes

	Problem 3: Evaluate an Arithmetic Expression
	Coming Up with an Appropriate Idea for a Solution
	Verifying the Idea
	Data Structures and Efficiency
	Breaking Down the Problem into Subproblems
	Step 1: Extracting the Numbers
	Testing the Extraction of Numbers

	Step 2: Extracting the Operators
	Testing the Extraction of Operators

	Step 3: Evaluating the Expression
	Test the Evaluation of Expression

	Step 4: Console Input
	Step 5: Putting All Together
	Testing the Solution
	Small Corrections and Repeated Testing
	Performance Test

	Exercises
	Solutions and Guidelines

	Chapter 26. Sample Programming Exam – Topic #3
	In This Chapter
	Problem 1: Spiral Matrix
	Start Thinking on the Problem
	Inventing an Idea for the Solution
	Checking the Idea
	Data Structures and Efficiency
	Implementation of the Idea: Step by Step
	Implementing the First Few Steps
	Performing a Partial Check after the First Few Steps
	Assigning the Initial Values
	Putting All Together

	Testing the Solution

	Problem 2: Counting Words in a Text File
	Start Thinking on the Problem
	Inventing an Idea for a Solution
	Checking the Idea
	Inventing a Better Idea
	Checking the New Ideas
	Checking the Line by Line Algorithm
	Checking the Char by Char Algorithm

	Decompose the Problem into Subproblems
	Line by Line Algorithm Decomposed into Subproblems
	Char by Char Algorithm Decomposed into Subproblems

	Think about the Data Structures
	Think about the Performance
	Implementation: Step by Step
	Line by Line Algorithm: Step by Step Implementation
	Testing the Line by Line Algorithm
	Char by Char Algorithm: Step by Step Implementation
	Testing the Char by Char Algorithm
	Testing for Performance
	Invent a Better Idea (Again)
	Counting Substrings with the Aho-Corasick Algorithm

	Problem 3: School
	Start Thinking on the Problem
	Inventing an Idea for Solution
	Checking the Idea
	Dividing the Problem into Subproblems
	Think about the Data Structures
	Implementation: Step by Step
	Step 1: Class Student
	Testing the Class Student
	Step 2: Class Group
	Testing the Class Group
	Step 3: Class Teacher
	Testing the Class Teacher
	Step 4: Class School
	Step 5: Class SchoolTest

	Testing the Solution

	Exercises
	Solutions and Guidelines

	Conclusion
	Did You Solve All Problems?
	Have You Encountered Difficulties with the Exercises?
	How Do You Proceed After Reading the Book?
	Free Courses at Telerik Software Academy
	Good Luck to Everyone!

