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Figure Figure Figure Figure 3333....26262626    Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for 

mask opening =1emask opening =1emask opening =1emask opening =1e----4 m4 m4 m4 m    
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Figure Figure Figure Figure 3333....27272727    Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for Variation of imprinted profile with various values of mask thickness, for 

mask opening =mask opening =mask opening =mask opening =3333eeee----4 m4 m4 m4 m    

Figure 3.25 plots the variation of the anode surface profile with increase in 

the thickness of the membrane. We plot the anode surface profile at three values of 

the membrane thickness: 12.5 µm, 25 µm and 50 µm. The membrane thickness has a 

remarkable effect on the depth of cut on the anode surface. We find that increasing 

the membrane thickness decreases the depth of cut by a significant amount. This 

arises due to the fact that the membrane diffusivity and conductivity are much less 

than that of the electrolyte, for all ions. Specifically, the membrane diffusivity 

(proportional to the conductivity) for Copper, sulphate and hydrogen ion is 7.5,31 

and 23 times lower than that of the electrolyte. Hence a thicker membrane provides 

much higher resistance to the transport of the ions from the anode to the cathode, 

which results in a monotonic decrease in the effect ionic current for the same 

potential drop. This results in a decrease in the depth of cut of the anode. 
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Figure 3.26 and Figure 3.27 plots the variation of the anode surface with 

change in the mask thickness at two distinct opening radius. As shown earlier, at 

small relative mask opening, the electric field produced by the mask edge also 

contributes to the etching of the anode at the center. When the mask thickness 

increase, the mask appears to have a low effective curvature(lower value of 

/ ( )mask membrane gapT T T+ ), hence leading to a decrease in the electric field contribution on 

the anode surface. Since the etching of the anode depends on the electric field 

produced by the mask, an increase in the thickness leads to a decrease in the 

material removal rate and hence the depth of cut on the anode surface.  
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3.8.3.8.3.8.3.8. Variation with curvature of membraneVariation with curvature of membraneVariation with curvature of membraneVariation with curvature of membrane    

    

(a)(a)(a)(a)    

    

(b)(b)(b)(b)    

Figure Figure Figure Figure 3333....28282828    (a)Variation of the imprinted profile with eccentricity/curvature of (a)Variation of the imprinted profile with eccentricity/curvature of (a)Variation of the imprinted profile with eccentricity/curvature of (a)Variation of the imprinted profile with eccentricity/curvature of 

membrane, eccentricity = h/w. Whilmembrane, eccentricity = h/w. Whilmembrane, eccentricity = h/w. Whilmembrane, eccentricity = h/w. While eccentricity is not equal to the curvature it is e eccentricity is not equal to the curvature it is e eccentricity is not equal to the curvature it is e eccentricity is not equal to the curvature it is 

proportional to the curvature of the membrane. (b) Schematic depicting the proportional to the curvature of the membrane. (b) Schematic depicting the proportional to the curvature of the membrane. (b) Schematic depicting the proportional to the curvature of the membrane. (b) Schematic depicting the 

eccentricity of the membrane.eccentricity of the membrane.eccentricity of the membrane.eccentricity of the membrane.    
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Figure 3.28 shows the variation of the imprinted profile with curvature of the 

membrane. The curved nature of the membrane tends to curve and focus the electric 

lines of force originating from the cathode. Due to this focusing nature of the curved 

membrane, the electric field produced at the surface of the anode increases, which in 

turn leads to larger number of ions being removed from the anode. Hence we find an 

increase in the net dissolution rate at the anode. The increase in the etching is 

almost uniform over the entire region under the opening. However since a larger 

number of electric lines of force are focused within the opening, fewer fringe lines of 

force reach the ends of the cell thus. Thus we find a slightly reduction of the etching 

rate away from the mask edge as the curvature is increased. This slight reduction in 

the mask etching away from the edge and a higher etching within the opening, also 

gives rise to a sharper slope of the torroidal structure. 
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3.9.3.9.3.9.3.9. Variation of surface profile with timeVariation of surface profile with timeVariation of surface profile with timeVariation of surface profile with time    

    

Figure Figure Figure Figure 3333....29292929    Variation of Variation of Variation of Variation of Dimensionless Copper concentration over anode surfaceDimensionless Copper concentration over anode surfaceDimensionless Copper concentration over anode surfaceDimensionless Copper concentration over anode surface, , , , 

with timewith timewith timewith time, mask opening= 200e, mask opening= 200e, mask opening= 200e, mask opening= 200e----6 m6 m6 m6 m    
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Figure Figure Figure Figure 3333....30303030    Variation of the concentration profile on Variation of the concentration profile on Variation of the concentration profile on Variation of the concentration profile on anode surface with time, at anode surface with time, at anode surface with time, at anode surface with time, at 

long time scaleslong time scaleslong time scaleslong time scales    
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Figure Figure Figure Figure 3333....31313131    Variation of Variation of Variation of Variation of Effective surface overpotential(Effective surface overpotential(Effective surface overpotential(Effective surface overpotential( ( )cu anodeV V U− − ) along anode ) along anode ) along anode ) along anode 

surfacesurfacesurfacesurface, , , , mask opening= 200emask opening= 200emask opening= 200emask opening= 200e----6 m6 m6 m6 m    
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Figure Figure Figure Figure 3333....32323232    variation of the Surface Overpotential at the anode surface, at long time variation of the Surface Overpotential at the anode surface, at long time variation of the Surface Overpotential at the anode surface, at long time variation of the Surface Overpotential at the anode surface, at long time 

scalesscalesscalesscales    
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Figure Figure Figure Figure 3333....33333333    Variation of anodic current density with timeVariation of anodic current density with timeVariation of anodic current density with timeVariation of anodic current density with time, mask opening= 200e, mask opening= 200e, mask opening= 200e, mask opening= 200e----6 m6 m6 m6 m    
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Figure Figure Figure Figure 3333....34343434    Variation of the current density at anode surface, at long time scalesVariation of the current density at anode surface, at long time scalesVariation of the current density at anode surface, at long time scalesVariation of the current density at anode surface, at long time scales    

  



www.manaraa.com

 84 

 

 

    

FigureFigureFigureFigure        3333....35353535    Variation of imprinted surface profilVariation of imprinted surface profilVariation of imprinted surface profilVariation of imprinted surface profile, mask opening= 200ee, mask opening= 200ee, mask opening= 200ee, mask opening= 200e----6 m6 m6 m6 m    

        



www.manaraa.com

 85 

 

    

Figure Figure Figure Figure 3333....36363636    Variation of the imprinted surface profile, at long time scales.Variation of the imprinted surface profile, at long time scales.Variation of the imprinted surface profile, at long time scales.Variation of the imprinted surface profile, at long time scales.    
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Figure Figure Figure Figure 3333....37373737        Variation of the average slope of the anode surface within the mask Variation of the average slope of the anode surface within the mask Variation of the average slope of the anode surface within the mask Variation of the average slope of the anode surface within the mask 

opening with time. Note that the shown slope slightly understates the actual slope opening with time. Note that the shown slope slightly understates the actual slope opening with time. Note that the shown slope slightly understates the actual slope opening with time. Note that the shown slope slightly understates the actual slope 

due to the nature of the calculation.due to the nature of the calculation.due to the nature of the calculation.due to the nature of the calculation.    
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Figure Figure Figure Figure 3333....38383838        Variation of Ratio Variation of Ratio Variation of Ratio Variation of Ratio 1 0/d dH H with time. with time. with time. with time. 1dH =displacement of bottom =displacement of bottom =displacement of bottom =displacement of bottom 

most point on the profile from the original anode surface, most point on the profile from the original anode surface, most point on the profile from the original anode surface, most point on the profile from the original anode surface, 0dH =displacement at the =displacement at the =displacement at the =displacement at the 

center of the mask opening center of the mask opening center of the mask opening center of the mask opening     

 

 

To understand the variation of the surface profile with passage of time we 

plot Figure 3.29 - Figure  3.35. Figure  3.35 shows the variation of the imprinted 

profile with time. With the onset of a potential difference between the cathode and 

the anode, the imprinted profile tends to shift by a constant magnitude in the 

opening of the mask, with a slightly increased value at the edge. As time progresses 

and the anode is incrementally etched, it appears that the anode surface just beneath 

the edge of the mask, tends to be etched at a higher rate compared to that of the 

region at the center of the cell. The reason for this is illustrated by plotting Figure 
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3.29 to Figure 3.33. It must be remembered that in these simulations the potential at 

the anode-electrolyte interface or the cathode-electrolyte interface is not held 

constant but is determined by the Butler-Volmer equation. The simulation starts 

with a zero potential everywhere in the cell. Hence there is a very high current 

density at the start of the simulation. This high current density results in generation 

of a high copper ion density just near the surface of the anode. However copper ions 

far away from the opening, face far more resistance to move. As a result only limited 

number of copper ions can be removed away from the anode, the farther we move 

away from the opening. Since only a small amount of copper can be moved away, 

and thus generated, the surface overpotential obtained is lower as we move away 

from the opening.(On the contrary, if a high surface overpotential were present far 

away from the opening, a very high electric field would have to be present away 

from the opening, to remove the high amount of copper ions generated, so as to 

overcome the high resistance for the copper ions to move towards the opening, which 

is not possible under these circumstances). The effective surface overpotential is 

almost uniform underneath the opening, with a slight bump at the edges. This 

increase arises because of the increased electric field underneath the mask edge. 

Because of this increased electric field, generated by the discontinuity in the 

dielectric constant, the flux of copper ions that can be sustained is comparatively 

higher than at the center of the opening, where the electric field is lower. Hence a 

higher overpotential and a higher anodic current is obtained.  

Figure 3.37 and Figure 3.38 plot two distinct measures of the sharpness of the 

torroidal feature formed just beneath the edge of the mask. It can be seen that the 

slope of the surface within the opening, increases almost exponentially. It is 

interesting to note that the anodic current also becomes increasingly sharp at the 

position corresponding to the mask edge. Because of the higher flux at the position 

corresponding to the mask edge, a higher number of copper ions reside at the anode 

surface. (This is similar to having a high heat flux at the surface of an object. Higher 

the heat flux, higher will be the temperature of the surface on which the heat flux is 
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imposed). Since the anodic current is proportional to the copper concentration, the 

anodic current density too tends to become sharper as time progresses. Hence we 

observe a higher aspect ratio of the torus shaped structure generated on the mask. 

While the position corresponding to the mask edge becomes increasingly sharp, it 

should also be noticed that the overall etching rate (MRR) tends to decrease with 

time. This can be clearly observed from Figure 3.36. Here we plot the surface profile 

upto time = 5.5 s. Further proof of this can be seen from the current density 

variation at time = 5.5 seconds from Figure 3.34, which shows that the current 

density initially increases and becomes sharper. However beyond a certain critical 

time scale, the current density tends to flatten out and start decreasing with time. It 

is expected that the current density will eventually attain a fixed distribution over 

the entire anode surface, perturbed only by the changing surface shape of the anode. 

Since the anode current density at the mask opening center is higher than that 

beneath the anode, the sharp feature obtained should eventually be completely 

erased. It is also interesting to note that while the current density initially increases 

and then decreases, the copper ion density doesn’t go through this bifurcation, rather 

it increases monotonically and then equilibrates to an asysmptotic value, determined 

only by the surface shape of the anode.  
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3.10.3.10.3.10.3.10. Variation with Electrode potentialVariation with Electrode potentialVariation with Electrode potentialVariation with Electrode potential    

    

Figure Figure Figure Figure 3333....39393939    Variation of the Variation of the Variation of the Variation of the imprinted profileimprinted profileimprinted profileimprinted profile    with with with with potential difference between potential difference between potential difference between potential difference between 

anode and cathodeanode and cathodeanode and cathodeanode and cathode    
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Figure Figure Figure Figure 3333....40404040    Variation of Material removal rate with current from experimental setup Variation of Material removal rate with current from experimental setup Variation of Material removal rate with current from experimental setup Variation of Material removal rate with current from experimental setup 

for Nonfor Nonfor Nonfor Non----contact mask modulated electric field printingcontact mask modulated electric field printingcontact mask modulated electric field printingcontact mask modulated electric field printing    
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Figure Figure Figure Figure 3333....41414141    Variation of Material removal rate (nm/s) with current (experiment) Variation of Material removal rate (nm/s) with current (experiment) Variation of Material removal rate (nm/s) with current (experiment) Variation of Material removal rate (nm/s) with current (experiment) 

and voltage(simulation) respectively.and voltage(simulation) respectively.and voltage(simulation) respectively.and voltage(simulation) respectively.    



www.manaraa.com

 93 

 

    

Figure Figure Figure Figure 3333....42424242        Variation of dimensionless imprinted profiVariation of dimensionless imprinted profiVariation of dimensionless imprinted profiVariation of dimensionless imprinted profilelelele    depicting the flattening of depicting the flattening of depicting the flattening of depicting the flattening of 

the bottom surface with increasing potential difference between anode and cathode.the bottom surface with increasing potential difference between anode and cathode.the bottom surface with increasing potential difference between anode and cathode.the bottom surface with increasing potential difference between anode and cathode.    
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Figure Figure Figure Figure 3333....43434343    Experimentally obtained profile using stainless steel 570 Experimentally obtained profile using stainless steel 570 Experimentally obtained profile using stainless steel 570 Experimentally obtained profile using stainless steel 570 µµµµm mask, (a) m mask, (a) m mask, (a) m mask, (a) 

I= 1.052 A (b) I=1.885 A (DC voltage, standoff distance = 150 I= 1.052 A (b) I=1.885 A (DC voltage, standoff distance = 150 I= 1.052 A (b) I=1.885 A (DC voltage, standoff distance = 150 I= 1.052 A (b) I=1.885 A (DC voltage, standoff distance = 150 µµµµm. Exposure = 300 m. Exposure = 300 m. Exposure = 300 m. Exposure = 300 

sec, electrolyte = 1.80 M Hsec, electrolyte = 1.80 M Hsec, electrolyte = 1.80 M Hsec, electrolyte = 1.80 M H2222SOSOSOSO4444    + 0.25 M CuSO+ 0.25 M CuSO+ 0.25 M CuSO+ 0.25 M CuSO4444    

  

a b 
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As expected, with a larger applied electric potential difference between the 

anode and the cathode, a larger erosion of the copper substrate takes place. This 

occurs due to the generation of higher electric fields in the domain and at the 

boundaries, thus removing the generated copper ions at the anode to the cathode. 

This results in a decrease in the surface overpotential, thus giving rise to a higher 

rate of material removal. A similar trend can be observed from the experimental 

results as well. As seen from Figure 3.40 the material removal rate tends to increase 

with the current density. However it should also be observed from the figure, that 

the net change in the surface profile per Volt increase in the potential difference 

decreases with increasing potential difference. While the experimental and numerical 

results cannot be directly compared we can compare the dimensionless values. Figure 

3.41 plots the non-dimensionalized values and compares the experimental and 

theoretical results. In these cases the non-dimensionalization is carried out using the 

least potential difference and depth of cut for experimental and numerical results 

obtained. While the trends predicted are correct, the simulation and experimental 

trends tend to differ by a magnitude of around 3. This suggests that some sort of 

passivation might be taking place at the anode surface, and hence relatively lower 

increase in the MRR. The Butler-Volmer equation used here, doesn’t consider 

passivation of the anode, and hence results in the overprediction of the MRR. 
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3.11.3.11.3.11.3.11. Variation withVariation withVariation withVariation with    HHHH2222SOSOSOSO4444    concentrationconcentrationconcentrationconcentration    

    

Figure Figure Figure Figure 3333....44444444    Variation of imprinted profile Variation of imprinted profile Variation of imprinted profile Variation of imprinted profile with/without Hwith/without Hwith/without Hwith/without H2222SOSOSOSO4444    at time t=.04 secondsat time t=.04 secondsat time t=.04 secondsat time t=.04 seconds    
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Figure Figure Figure Figure 3333....45454545    Variation of imprinted profile with variousVariation of imprinted profile with variousVariation of imprinted profile with variousVariation of imprinted profile with various    concentrationconcentrationconcentrationconcentrationssss    of Hof Hof Hof H2222SOSOSOSO4444    
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Figure Figure Figure Figure 3333....46464646    Variation of Copper Ion Concentration with concentration of sulphVariation of Copper Ion Concentration with concentration of sulphVariation of Copper Ion Concentration with concentration of sulphVariation of Copper Ion Concentration with concentration of sulphuric uric uric uric 

acidacidacidacid    
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Figure Figure Figure Figure 3333....47474747    Variation of Potential at ElectrolyteVariation of Potential at ElectrolyteVariation of Potential at ElectrolyteVariation of Potential at Electrolyte----Anode Interface with sulphuric acid Anode Interface with sulphuric acid Anode Interface with sulphuric acid Anode Interface with sulphuric acid 

concentrationconcentrationconcentrationconcentration    
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FigureFigureFigureFigure        3333....48484848    Perforated stainless steel 570Perforated stainless steel 570Perforated stainless steel 570Perforated stainless steel 570μμμμm, comparison of MRR at different m, comparison of MRR at different m, comparison of MRR at different m, comparison of MRR at different 

electrolyte concentrations. (DC voltage, Insulated perforated stainless steel hole, electrolyte concentrations. (DC voltage, Insulated perforated stainless steel hole, electrolyte concentrations. (DC voltage, Insulated perforated stainless steel hole, electrolyte concentrations. (DC voltage, Insulated perforated stainless steel hole, 

insulated cathode chamber with added round electrode, P = 1inHg, standoff distance insulated cathode chamber with added round electrode, P = 1inHg, standoff distance insulated cathode chamber with added round electrode, P = 1inHg, standoff distance insulated cathode chamber with added round electrode, P = 1inHg, standoff distance 

= 20= 20= 20= 20μμμμm, exposure = 60sec.)m, exposure = 60sec.)m, exposure = 60sec.)m, exposure = 60sec.)    
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Figure Figure Figure Figure 3333....49494949    Variation of Variation of Variation of Variation of Dimensionless Dimensionless Dimensionless Dimensionless MRR (nm/s) with concentration of sulphuric MRR (nm/s) with concentration of sulphuric MRR (nm/s) with concentration of sulphuric MRR (nm/s) with concentration of sulphuric 

acidacidacidacid    
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To understand the increase in the depth of cut with increasing concentration 

of sulphuric acid, we plot the copper ion concentration and the electrolyte potential 

at the anode in Figure 3.46 and Figure 3.47 respectively. From Section 2.1.3, we 

know that the copper ion anodic current density depends both on the copper ion 

concentration as well as the surface overpotential at the anode surface. As the 

copper ion concentration goes up for constant surface overpotential, we should 

expect an increase in the anodic current and hence an increase in the material 

removal. Similarly for constant copper concentration we can expect an increase in 

the anodic current and hence the material removal with increase in surface 

overpotential. 

Figure 3.46 shows us that for increasing concentration of sulphuric acid, the 

copper ion concentration at the anodic surface also tends to increase dramatically. 

The above phenomena can be explained by observing how the copper ions is 

generated and dissolved. For higher concentration of sulphuric acid, there are higher 

number of hydrogen ions and sulphate ions at the anode surface. When copper ions 

are generated at the anode, the charge neutrality is temporarily violated, and in an 

effort to neutralize the volume containing higher number of copper ions, sulphate 

ions can either move into the region containing a higher number of copper ions or 

hydrogen ions can move out of the region, and into the bulk of the electrolyte. In 

actual practice, both phenomenon occur simultaneously. However since hydrogen has 

a much higher diffusivity and mobility, it is expected that the movement of 

hydrogen ion away from the electrolyte will occur faster and will thus determine the 

copper dissolution rate. A higher number of hydrogen ions present in the vicinity 

would mean that it can sustain and facilitate a higher rate of copper dissolution. 

Hence as the sulphuric acid concentration increases we find an increase in the copper 

ion concentration and an increase in the dissolution rate at the anode surface. While 

there is a small change in the surface overpotential at the anode, with change in the 

sulphuric acid concentration, the change is very small and is not expected to have 

any important effect on the copper dissolution rate. 
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Experimental data of the material removal rate as shown in Figure  3.48, 

show that the MRR increases with increasing concentration of sulphuric acid and 

copper sulphate. Hence the experimental results clearly support the above 

hypothesis. 

3.12.3.12.3.12.3.12. Variation with mask Variation with mask Variation with mask Variation with mask and membrane and membrane and membrane and membrane dielectric constantdielectric constantdielectric constantdielectric constant    

    

Figure Figure Figure Figure 3333....50505050    Variation of imprinted profile with various values of Variation of imprinted profile with various values of Variation of imprinted profile with various values of Variation of imprinted profile with various values of mask dielectric mask dielectric mask dielectric mask dielectric 

constant.constant.constant.constant.    
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Figure Figure Figure Figure 3333....51515151    Variation of imprinted profile with various values of Variation of imprinted profile with various values of Variation of imprinted profile with various values of Variation of imprinted profile with various values of mask dielectric mask dielectric mask dielectric mask dielectric 

constant.constant.constant.constant.    
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To understand the effect of the dielectric constant of the mask and the 

membrane on the dissolution, we plot Figure 3.50 and Figure 3.51. The above figures 

show that there is no effect of the variation of the dielectric constant of mask or the 

membrane on the anode surface profile. This lack of variation of the anode surface 

on the dielectric constants arise due to the small value of 
F

ε

. A more formal proof of 

this is derived below using perturbation theory. 

We express Cuc , 
4SOc , Hc  and Φ  as expansions in terms of the perturbation 

parameter 
F

ε

. Since Cuc , 
4SOc , and Hc  have similar governing equations, we expand 

the boundary and governing equations only for Cuc and Φ . 

Hence we obtain 

 
2

0 1 2 ....Cu Cu CuCuc c c c
F F

   
= + + +   

   

ε ε

 (1.61) 

 
2

0 1 2 ....Cu Cu Cu
F F

   
= + +Φ Φ Φ +   

   
Φ

ε ε

 (1.62) 

Expanding Equation (1.38) we have 
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 2 2 0 2 1
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 
=

ε  (1.65) 



www.manaraa.com

 106 

 

Hence we can separate the zeroth order and first order terms on both sides of 

Equation (1.63) and Equation (1.64) to obtain the following equations  

 ( )
0

0 0 2 0
Φ ( )cu

cu cu cu cu cu

c
z Fu c D c

t

∂
= ∇ ∇ + ∇

∂
i  (1.66) 
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 ∇ ∇∂  
= + ∇ 

∂ +∇ ∇  

i

i

 (1.67) 

For Φ we have  

 ( )
4 4

0 0 0
0SO SO Hu cu Hcz c z c z c+ + =  (1.68) 

 ( )
4 4

1 1 1 2 0

SO SOcu c Hu Hz c z c z c+ = −∇ Φ+
 (1.69) 

As we can see from the above Equations (3.6) — (3.9), the value of ε , doesn’t 

affect the value of 0Φ , 1Φ , 0

cuc or 1

cuc . The term
F

ε

 enters and affects the total solution 

only through the first order expansion term as shown in Equation (1.61) and 

Equation (1.62). Assuming that the zeroth order first order terms of the 

concentration and potential fields are of approximately the same magnitude, since 

F

ε

, has a value of 161 10−× , we can conclude that any reasonable change in the 

dielectric constant of the mask, membrane or electrolyte won’t cause any observable 

change in the amount of material removal, the shape of the anode or the 

concentration distribution. This was also tested numerically, by substituting a value 

of ~1, for 
F

ε

, and observing the change when 
F

ε

 was varied. We did obtain 

significant changes in the material removal, the shape of the anode or the 

concentration distribution. The above derivation only shows the governing equation 

so as to show the basis of the argument, however a complete derivation considering 

the three dielectric constants of the membrane, electrolyte and mask, and the effect 

of the boundary conditions is expected to lead to the same conclusions. 
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No comparison of the above simulations could be made to experiments since, 

there was no experimental data using different mask and membrane materials, and 

using similar sizes and periodicity of the mask. 
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CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4 CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    

The present thesis provides a basic model to understand various experimental 

results which were obtained by Khiam et al. Electrochemical phenomenon are 

complex and require solving multiple coupled equations simultaneously. Further at 

micro/nanoscales the phenomena become stochastic. Hence to get accurate 

simulation results it is necessary to carry out stochastic simulations at the microscale 

coupled with continuum simulations at the macroscale. The model presented here 

can be vastly improved if a more rigorous method of implementation using finite 

element codes which can be modified with appropriate numerical methods to capture 

the proper phenomena. Since the process was simulated with a commercial 

generalized finite element code made primarily for linear system of equations, and 

the system being studied had non-linear boundary conditions, I believe the software 

had some difficulty capturing the phenomena properly. While there are algorithms to 

capture these non-linear phenomena properly, they cannot be directly incorporated 

into the software, since the source code for COMSOL cannot be altered or modified. 

Secondly, the software becomes very unstable as the model becomes complicated. 

Only basic models for the Nafion, the electrolyte, the interfaces and the electrode 

kinetics could be incorporated. While attempts were made to incorporate improved 

models for Nafion and the electrode kinetics, simulations couldn’t be run properly. 

In spite of these inherent problems, the present model does support the basic 

phenomena observed in the experiments qualitatively, especially for direct current 

simulations. Comparisons of the simulation results with the experimental results 

show that the model captures the trends quite well. Chopped DC simulations 

however are not very well correlated to the simulation results obtained here. It is 

presumed that some other phenomena occur in this case, which is not captured 

properly in these simulations. However a physical reasoning can be drawn by 

observing the variation of the surface profile, current density with time. It is seen 

that while the profile as well as the current density becomes sharper with increase in 
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time, beyond a critical value of time, the current density tends to become parabolic 

in shape with the highest value being obtained at the center of the mask opening. 

Hence at some point in time history, it is expected that the indentation obtained at 

lower time scales will be erased and the final surface left will have a parabolic profile 

as well, for all values of the mask radius. It seems Chopped DC simulations, 

somehow stop this evolution of the parabolic current density profile, and initiate the 

generation of sharpened current density profile at repeated intervals of time. 

Further, studies at smaller values of the opening radius show that this critical value 

of time depends on the opening radius, and with increase in the opening radius, this 

critical value of time tends to increase. Hence to obtain an optimally sharp 

indentation, we need to know this critical value of time, so that the frequency of the 

oscillation of the potential can be modified.  

These simulations also indicate the importance of various length scales in 

determining appropriate surface features. While it was initially predicted that the 

curvature of the membrane would play a significant role in determining the shape of 

the profile, simulations seem to indicate the role is actually small. There is definitely 

an increase in the feature depth with increase in curvature; however, the increase is 

small compared to similar changes in the lenth scale of other features. Particularly, 

the opening radius, the standoff distance between the anode and the cathode, and 

the thickness of the mask/membrane, seem to play significant roles determining the 

shape of the features. It is observed that two non-dimensional parameters 

W/(Tmembrane+ Tgap) and [Tmask /(Tmembrane+ Tgap)] play significant roles 

in determining the shape of the features. The overall shape of the profile is 

determined primarily by W/(Tmembrane+ Tgap). Tmask /(Tmembrane+ Tgap) on 

the other hand determines the sharpness of the indenetation depth. 
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