
www.manaraa.com

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354203612

On the Frontiers of Software Science and Software Engineering

Article in Frontiers in Computer Science · September 2021

CITATIONS

0
READS

55

1 author:

Some of the authors of this publication are also working on these related projects:

Software Science: Theoretical Foundations of Software Engineering View project

Big Data Algebra (BDA) for Data Science and Engineering View project

Yingxu Wang

The University of Calgary

798 PUBLICATIONS 11,823 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yingxu Wang on 29 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354203612_On_the_Frontiers_of_Software_Science_and_Software_Engineering?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354203612_On_the_Frontiers_of_Software_Science_and_Software_Engineering?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Science-Theoretical-Foundations-of-Software-Engineering-2?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Big-Data-Algebra-BDA-for-Data-Science-and-Engineering?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yingxu-Wang-3?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yingxu-Wang-3?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Calgary?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yingxu-Wang-3?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yingxu-Wang-3?enrichId=rgreq-7a8834a592c88b4055f8da5c4da3e76b-XXX&enrichSource=Y292ZXJQYWdlOzM1NDIwMzYxMjtBUzoxMDYyMjAxMDkxNjkwNDk2QDE2MzAyNTk4ODMyMjg%3D&el=1_x_10&_esc=publicationCoverPdf

www.manaraa.com

 1

Y. Wang (2021). On the Frontiers of Software
Science and Software Engineering. Frontiers in

Computer Science – Software. 1(1):1-4.

On the Frontiers of Software Science and Software Engineering

Yingxu Wang, FIEEE, FBCS, FI2CICC, FAAIA, FWIF, PEng

Specialty Chief Editor, Frontiers in Computer Science - Software

President, International Institute of Cognitive Informatics and Cognitive Computing (I2CICC)

Dept. of Electrical and Software Engineering

Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Canada
Email: yingxu@ucalgary.ca

Abstract

Advances in software engineering, software science, computational intelligence, and intelligent mathematics have

led to the establishment of Frontiers in Computer Science – Software (FCSS). FCSS aims to promote transdisciplinary

research and engineering applications in software, autonomous systems, and computational intelligence. FCSS covers

not only classical empirical software engineering and industrial processes, but also contemporary topics of software

science, intelligent programming languages, autonomous code generation, mathematical foundations, and programming

knowledge bases. FCSS prompts empirical studies and emerging topics in software engineering including tools,

development platforms, industrial processes, management infrastructures, quality assurance schemes, big data systems,

and software migrations across languages and platforms.

Keywords: Software science, software engineering, theories, laws, architectures, requirement analyses, design

processes, intelligent mathematics, autonomous systems

1. Introduction

The latest advances in computer science, software theories, intelligence science, intelligent mathematics, and

autonomous systems have triggered the emergence of software science as a transdisciplinary field overarching software

engineering, programming theories, formal methods, and computational intelligence [1-8].

Software science studies the formal properties and mathematical models of software, general methodologies for

rigorous and efficient software development, and coherent theories underpinning software behaviors and software

engineering practices [6]. The discipline of software science encompasses theories and methodologies, denotational

mathematics, system software, fundamental algorithms, organizational theories, cognitive complexity of software, and

intelligent behavior generation theories. Recent developments in software science have paved the way to enable novel

technologies for AI programming.

Software engineering is a discipline underpinned by software science that adopts engineering approaches to

develop large-scale software towards high productivity, low cost, trustworthy quality, and controllable development

schedule [7]. Software engineering is one of the most complicated branches of engineering fields because its object is

highly abstract and intangible. It encompasses system modeling, architecting, development methodologies,

programming technologies, and development platforms. It also covers heuristic principles, tools/environments, best

practices, case studies, experiments, trials, and performance benchmarking.

This editorial addresses the objectives, mission, challenges, and latest development of Frontiers in Computer

Science – Software (FCSS). In the framework of FCSS, software science focuses on foundations and theoretical

software engineering, whilst software engineering covers heuristic principles, tools, development environments, best

practices, and programming technologies. A set of key challenges and opportunities of software science and

engineering has been recognized in Section 2. The emerging fields of software science and novel technologies of

software engineering are elaborated in Sections 3 and 4, respectively.

2. Challenges and Opportunities in Software Science and Engineering

Despite the fast growth of software engineering over the past 60 years, software development has still remained as

a manual work in the software industry [3, 4, 6]. This phenomenon indicates a fundamental challenge to both theories

and technologies of Software Science and Engineering (SSE), which are substantially constrained by the following

observations:

www.manaraa.com

 2

Y. Wang (2021). On the Frontiers of Software
Science and Software Engineering. Frontiers in

Computer Science – Software. 1(1):1-4.

a) The fundamental theories towards software science are immature;

b) The traditional perceptions on the essences of software or programs are questionable;

c) The classic human-based programming technologies are anti-productive;

d) Essential intelligent mathematics for modeling and manipulating human and software behaviors are missing;

e) The current programming languages constrained by deterministic condition-driven mechanisms have seriously

limited the programable power of software for autonomous intelligence generation.

A set of Key Fundamental Challenges (KFC) to SSE are identified in basic research findings [1-14, 21-24] in this

field represented by the following grand queries:

1) What are the necessary and sufficient conditions for enabling run-time software intelligence in SSE?

2) Why had AI and autonomous systems been developed by data-driven neural networks rather than program-

driven software engineering?

3) Does that of KFC2 indicate a theoretical or technical challenge to SSE?

4) How mature are our computing platforms and programming languages for enabling autonomous software

generation?

5) Is Stored-Program-Controlled (SPC) computers [1,2], i.e., von Neumann machines (VNM) [2], adequate

enough for intelligent software design? If not, what kind of computers will be needed for the next generation of

intelligent software engineering?

6) Are our programming languages sufficiently expressive for designing intelligent software? What would happen

to a software system if the deterministic if-then-else structures were indeterminable at designed-time or

exhausted at run-time?

7) Are our mathematical means ready for rigorously expressing software system requirements? Is our inference

power adequate for expressing real-time inexhaustive, indeterministic, and uncertain behaviors in SSE?

8) How may an intelligent software system be trusted and verified when its state space is infinitive in de facto,

such as those of self-driving vehicles and mission-critical robots?

9) How may a nondeterministic intelligent programming language be created in order to enable run-time

intelligent behavior for handling indeterministic events and autonomous decision-making requirements?

10) How will SSE enable the next generation of intelligent system software and autonomous code generation

systems?

The KFCs provide a set of theoretical and empirical challenges to and opportunities for SSE as well as the software

industry. Any breakthrough on KFCs will lead to a wide range of breakthroughs and applications in the software and

computational intelligence industries.

3. The Frontier of Software Science

It is recognized that a rigorous theoretical framework of software science is yet to be sought despite the plenty

repository of empirical knowledge about software development. As Edsger Dijkstra stated that “Software engineering is

programming when you can't [3].” Therefore, software science is what you can’t by empirical software engineering [6].

The pinnacle of software science is the theories of formal methods [1,4,5,8] and platforms of system software including

operating systems, compilers, database management systems, and Internet-based distributed systems [2,3,6]. C.A.R.

Hoare has revealed that software is a mathematical entity [4] that may be formally denoted by a behavioral process

known as the unified process theory in formal methods towards software engineering [5]. A set of 30+ laws of

programming has been created by Hoare and his colleagues [5]. Inspired by his genius vision, the author has developed

the Real-Time Process Algebra (RTPA) [16], where who was a visiting professor to Prof. Hoare at University of

Oxford in 1995. RTPA extends Hoare’s sequential process theory to a system of intelligent mathematics for formally

denotating system and human cognitive, inference, and behavioral processes as a general theory towards software

science [6]. Based on RTPA, a comprehensive set of 95 mathematical laws and associated theorems on software

structures, behaviors, and processes has been formally established [8].

Software science is a discipline that studies the formal properties and mathematical models of software, general

methodologies for rigorous and efficient software development, and coherent theories and laws underpinning software

behaviors, as well as software engineering practices. The architecture of software science encompasses theories and

methodologies, intelligent mathematics, intelligent system software, and software engineering processes [7]. It is

www.manaraa.com

 3

Y. Wang (2021). On the Frontiers of Software
Science and Software Engineering. Frontiers in

Computer Science – Software. 1(1):1-4.

noteworthy that the focuses of software science are on the fundamental platforms of Intelligent System Software (ISS)

including those of intelligent operating systems, intelligent requirement specifiers, intelligent compilers, and intelligent

programming knowledge bases. The development of ISS will be based on an indispensable foundation known as

intelligent mathematics that enables software engineering to be matured towards software science based on rigorous

denotational mathematics beyond inexpressive programming languages.

Intelligent mathematics (IM) [14, 15] is centric in software science as a category of denotational mathematical

structures. IM deals with complex mathematical entities beyond pure numbers such as abstract objects, complex

relations, behavioral information, concepts, knowledge, processes, programmable intelligence, and systems. IM is an

indispensable foundation for dealing with the abstract and complex entities of software structures and behaviors. A set

of IM have been created in the last decades embodied by system algebra [17], concept algebra [18], RTPA [16],

semantic algebra [19], inference algebra [20], and etc. IM provides a coherent set of contemporary mathematical

means and explicit expressive power for manipulating both complex mathematical objects and long-chains of serial and

embedded mathematical operations emerged in applied disciplines. Therefore, the maturity of IM indicates the maturity

of software science for rigorous processing system architectures and behaviors with abstract concepts, complex

relations, and dynamic processes [14]. In software science, a General Mathematical Model of Software (GMMS) [6] is

discovered based on RTPA that reveals any software system is a derived instance of GMMS for rigorously

manipulating the Structure Models (SMs) and Process Models (PMs) of arbitrary software as behavioral interactions in

the universe of discourse of software determined by the Cartesian product = PM x SM [6].

4. The Frontier of Software Engineering

The latest advances of theories and methodologies in software science, computational intelligence, and IM have

paved a way to enable machines to generate programs in software engineering [7]. The challenges to intelligent

program generation were constrained by the lack of autonomous programming theories and the difficulties stemmed

from the complexity of software. The missing of machine-understandable semantical rules of software behaviors has

prevented software engineering from advancing to intelligent program generation. Pilot studies indicate that a fusion of

the analytic (mathematical rule-based) and gray-box (machine-learning-based) methodologies will be necessarily

adopted towards autonomous program generation [23, 24].

An ultimate strategy for the next generation of software engineering is AI program (AIP) [24], which has been

enabled by a comprehensive set of software laws for software architectures, structures, and behaviors. In the AIP

approach to software engineering, IM services as rigorous mathematical means for conveying human programming

knowledge and skills to machines [6]. IM for AIP is underpinned by: a) System algebra for software architectural

design; b) Concept algebra and semantic algebra for rigorous requirement modeling; and c) RTPA for formally

manipulating software structures and behaviors. Not only the architectures of computational intelligent systems, but

also their dynamic behaviors can be rigorously and systematically manipulated by IM. Several large-scale projects

designed based IM have demonstrated that it is a set of powerful mathematical means for dealing with concepts,

knowledge, behavioral processes, and human/machine intelligence in real-world software engineering.

The relationship between software science and software engineering is explained by analogizing those of pure and

applied physics. Without theoretical physics there would be no maturity of applied physics; so is software science for

software engineering. It is recognized that the phenomena where almost all the fundamental problems that could not be

solved in the past 60 years in software engineering has been stemmed from the lack of coherent theories in the domain

of software science toward autonomous software generation.

5. Conclusion

The emerging field of software science and engineering (SSE) investigates into the theoretical foundations and

intelligent mathematics for autonomous software generation. This editorial has explored the latest basic research in

software science. Applications of software science and intelligent mathematics in software engineering and autonomous

code generation have been presented. A set of key challenges and opportunities for SSE has been formally reviewed

and analyzed towards intelligent software engineering.

www.manaraa.com

 4

Y. Wang (2021). On the Frontiers of Software
Science and Software Engineering. Frontiers in

Computer Science – Software. 1(1):1-4.

Acknowledgement

Many people have contributed to the establishment of FCSS. The Specialty Chief Editor (SCE) of FCSS would

like to thank the EIC of FCS, Prof. Kaleem Siddiqi, associate editors, regular reviewers, and authors. The SCE of FCSS

would like to acknowledge the professional initiative and support of Dr. Thomas Croft, Dr. Enrique Morillas, and Dr.

Bennett Colgan at the editorial office of Frontiers.

References

[1] A.M. Turing (1950). Computing machinery and intelligence. Mind (59):433–460.

[2] J. von Neumann. (1946). The Principles of Large-Scale Computing Machines. Annals of History of Computers,

3(3), 263-273

[3] E.W. Dijkstra (1976), A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ.

[4] C.A.R. Hoare (1978). Communicating Sequential Processes. Communications of the ACM, 21(8):666–677.

[5] C.A.R. Hoare, I.J. Hayes, J. He, etc. (1987). Laws of Programming. Communications of the ACM. 30(8):672–686.

[6] Y. Wang (2014). Software Science: On General Mathematical Models and Formal Properties of Software,

Journal of Advanced Mathematics and Applications, 3(2):130-147.

[7] Y. Wang (2007). Software Engineering Foundations: A Software Science Perspective. CRC/Auerbach

Publications, NY, USA, 1,580pp.

[8] Y. Wang (2008). Mathematical Laws of Software. Transactions of Computational Science, Springer, 2:46-83.

[9] Y. Wang, F. Karray, O. Kaynak, et al. (2021). Perspectives on the Philosophical, Cognitive and Mathematical

Foundations of Symbiotic Autonomous Systems. Philosophical Transactions of Royal Society (A). Oxford, UK,

379(2207):1-20.

[10] Y. Wang (2002). Cognitive Models of the Brain. Proceedings First IEEE International Conference on Cognitive

Informatics (ICCI’02), IEEE CS Press, Aug., pp. 259-269.

[11] Y. Wang (2007). the Cognitive Processes of Formal Inferences. Int’l Journal of Cognitive Informatics & Natural

Intelligence. 1(4):75-86.

[12] Y. Wang (2009). Formal Description of the Cognitive Process of Memorization. Transactions on Computational

Science, Springer, 5:81-98.

[13] Y. Wang, D. Liu, and G. Ruhe (2004). Formal Description of the Cognitive Process of Decision Making.

Proceedings of the 3rd IEEE International Conference on Cognitive Informatics, IEEE CS, Press, pp.124-130.

[14] Y. Wang (2020), Keynote: Intelligent Mathematics: A Basic Research on Foundations of Autonomous Systems,

General AI, Machine Learning, and Intelligence Science, IEEE 19th Int’l Conf. on Cognitive Informatics and

Cognitive Computing (ICCI*CC’20), Tsinghua Univ., Beijing, China, Sept., p.5.

[15] Y. Wang (2012), In Search of Denotational Mathematics: Novel Mathematical Means for Contemporary

Intelligence, Brain, and Knowledge Sciences, Journal of Advanced Mathematics and Applications, 1(1), 4-25.

[16] Y. Wang (2008). RTPA: A Denotational Mathematics for Manipulating Intelligent and Computational Behaviors,

Int’l Journal of Cognitive Informatics & Natural Intelligence, 2(2):44-62.

[17] Y. Wang (2008). On System Algebra: A Denotational Mathematical Structure for Abstract Systems, Modeling,

Int’l Journal of Cognitive Informatics & Natural Intelligence, 2(2):20-43.

[18] Y. Wang (2006). On Concept Algebra and Knowledge Representation. 5th IEEE Int’l Conference on Cognitive

Informatics (ICCI’06). vol. I., 320-331.

[19] Y. Wang (2013). On Semantic Algebra: A Denotational Mathematics for Cognitive Linguistics, Machine

Learning, and Cognitive Computing, Journal of Advanced Mathematics and Applications, 2(2):145-161.

[20] Y. Wang (2012). Inference Algebra (IA): A Denotational Mathematics for Cognitive Computing and Machine

Reasoning (II), Int’l Journal of Cognitive Informatics & Natural Intelligence, 6(1):21-47.

[21] Y. Wang (2008). On the Big-R Notation for Describing Interactive and Recursive Behaviors, International

Journal of Cognitive Informatics and Natural Intelligence. 2(1):17-28.

[22] Y. Wang (2012). On Visual Semantic Algebra (VSA): A Denotational Mathematical Structure for Modeling and

Manipulating Visual Objects and Patterns. Software and Intelligent Sciences: New Transdisciplinary Findings,

pp. 68-81.

[23] Y. Wang, Y. (2004), On Cognitive Informatics Foundations of Software Engineering, 3rd IEEE Int’l Conference

on Cognitive Informatics (ICCI'04), IEEE CS Press, Canada, pp. 22-31.

[24] J.Y. Xu and Y. Wang (2020), Formal Requirement Analysis and Specification Modeling for AI Software

Generation, IEEE 19th Int’l Conf. on Cognitive Informatics and Cognitive Computing (ICCI*CC’20), Tsinghua

Univ., Beijing, China, Sept., pp. 187-194.

View publication statsView publication stats

https://www.researchgate.net/publication/354203612

