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Preface 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Contents of This Edition 
Guidelines for Using This Book 
Acknowledgments

This book introduces the fundamental concepts necessary for designing, using, and implementing 
database systems and applications. Our presentation stresses the fundamentals of database modeling 
and design, the languages and facilities provided by database management systems, and system 
implementation techniques. The book is meant to be used as a textbook for a one- or two-semester 
course in database systems at the junior, senior, or graduate level, and as a reference book. We assume 
that readers are familiar with elementary programming and data-structuring concepts and that they have 
had some exposure to basic computer organization.  

We start in Part 1 with an introduction and a presentation of the basic concepts from both ends of the 
database spectrum—conceptual modeling principles and physical file storage techniques. We conclude 
the book in Part 6 with an introduction to influential new database models, such as active, temporal, 
and deductive models, along with an overview of emerging technologies and applications, such as data 
mining, data warehousing, and Web databases. Along the way—in Part 2 through Part 5—we provide 
an indepth treatment of the most important aspects of database fundamentals.  

The following key features are included in the third edition:  

 

• The entire book has a self-contained, flexible organization that can be tailored to individual 
needs.  

• Complete and updated coverage is provided on the relational model—including new material 
on Oracle and Microsoft Access as examples of relational systems—in Part 2.  

• A comprehensive new introduction is provided on object databases and object-relational 
systems in Part 3, including the ODMG object model and the OQL query language, as well as 
an overview of object-relational features of SQL3, INFORMIX, and ORACLE 8.  

• Updated coverage of EER conceptual modeling has been moved to Chapter 4 to follow the 
basic ER modeling in Chapter 3, and includes a new section on notation for UML class 
diagrams.  

• Two examples running throughout the book—called COMPANY and UNIVERSITY—allow 
the reader to compare different approaches that use the same application.  

• Coverage has been updated on database design, including conceptual design, normalization 
techniques, physical design, and database tuning.  
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The chapters on DBMS system implementation concepts, including catalog, query processing, 
concurrency control, recovery, and security, now include sections on how these concepts are 
implemented in real systems.  

• New sections with examples on client-server architecture, active databases, temporal 
databases, and spatial databases have been added.  

• There is updated coverage of recent advances in decision support applications of databases, 
including overviews of data warehousing/OLAP, and data mining.  

• State-of-the-art coverage is provided on new database technologies, including Web, mobile, 
and multimedia databases.  

• There is a focus on important new application areas of databases at the turn of the millennium: 
geographic databases, genome databases, and digital libraries.  

 
 

Contents of This Edition 
Part 1 describes the basic concepts necessary for a good understanding of database design and 
implementation, as well as the conceptual modeling techniques used in database systems. Chapter 1 
and Chapter 2 introduce databases, their typical users, and DBMS concepts, terminology, and 
architecture. In Chapter 3, the concepts of the Entity-Relationship (ER) model and ER diagrams are 
presented and used to illustrate conceptual database design. Chapter 4 focuses on data abstraction and 
semantic data modeling concepts, and extends the ER model to incorporate these ideas, leading to the 
enhanced-ER (EER) data model and EER diagrams. The concepts presented include subclasses, 
specialization, generalization, and union types (categories). The notation for the class diagrams of 
UML are also introduced. These are similar to EER diagrams and are used increasingly in conceptual 
object modeling. Part 1 concludes with a description of the physical file structures and access methods 
used in database systems. Chapter 5 describes the primary methods of organizing files of records on 
disk, including static and dynamic hashing. Chapter 6 describes indexing techniques for files, including 
B-tree and B+-tree data structures and grid files.  

Part 2 describes the relational data model and relational DBMSs. Chapter 7 describes the basic 
relational model, its integrity constraints and update operations, and the operations of the relational 
algebra. Chapter 8 gives a detailed overview of the SQL language, covering the SQL2 standard, which 
is implemented in most relational systems. Chapter 9 begins with two sections that describe relational 
schema design, starting from a conceptual database design in an ER or EER model, and concludes with 
three sections introducing the formal relational calculus languages and an overview of the QBE 
language. Chapter 10 presents overviews of the Oracle and Microsoft Access database systems as 
examples of popular commercial relational database management systems.  

Part 3 gives a comprehensive introduction to object databases and object-relational systems. Chapter 11 
introduces object-oriented concepts and how they apply to object databases. Chapter 12 gives a detailed 
overview of the ODMG object model and its associated ODL and OQL languages, and gives examples 
of two commercial object DBMSs. Chapter 13 describes how relational databases are being extended to 
include object-oriented concepts and presents the features of two object-relational systems—Informix 
Universal Server and ORACLE 8, as well as giving an overview of some of the features of the 
proposed SQL3 standard, and the nested relational data model.  

Part 4 covers several topics related to database design. Chapter 14 and Chapter 15 cover the 
formalisms, theory, and algorithms developed for relational database design by normalization. This 
material includes functional and other types of dependencies and normal forms for relations. Step by 
step intuitive normalization is presented in Chapter 14, and relational design algorithms are given in 
Chapter 15, which also defines other types of dependencies, such as multivalued and join 
dependencies. Chapter 16 presents an overview of the different phases of the database design process 
for medium-sized and large applications, and it also discusses physical database design issues and 
includes a discussion on database tuning.  

1 Page 13 of 893



www.manaraa.com

Part 5 discusses the techniques used in implementing database management systems. Chapter 17 
introduces DBMS system architectures, including centralized and client-server architectures, then 
describes the system catalog, which is a vital part of any DBMS. Chapter 18 presents the techniques 
used for processing and optimizing queries specified in a high-level database language—such as 
SQL—and discusses various algorithms for implementing relational database operations. A section on 
query optimization in ORACLE has been added. Chapter 19, Chapter 20 and Chapter 21 discuss 
transaction processing, concurrency control, and recovery techniques—this material has been revised to 
include discussions of how these concepts are realized in SQL. Chapter 22 discusses database security 
and authorization techniques.  

Part 6 covers a number of advanced topics. Chapter 23 gives detailed introductions to the concepts of 
active and temporal databases—which are increasingly being incorporated into database applications—
and also gives an overview of spatial and multimedia database concepts. Chapter 24 discusses 
distributed databases, issues for design, query and transaction processing with data distribution, and the 
different types of client-server architectures. Chapter 25 introduces the concepts of deductive database 
systems and surveys a few implementations. Chapter 26 discusses the new technologies of data 
warehousing and data mining for decision support applications. Chapter 27 surveys the new trends in 
database technology including Web, mobile and multimedia databases and overviews important 
emerging applications of databases: geographic information systems (GIS), human genome databases, 
and digital libraries.  

Appendix A gives a number of alternative diagrammatic notations for displaying a conceptual ER or 
EER schema. These may be substituted for the notation we use, if the instructor so wishes. Appendix B 
gives some important physical parameters of disks. Appendix C and Appendix D cover legacy database 
systems, based on the network and hierarchical database models. These have been used for over 30 
years as a basis for many existing commercial database applications and transaction-processing 
systems and will take decades to replace completely. We consider it important to expose students of 
database management to these long-standing approaches. Full chapters from the second edition can be 
found at the Website for this edition.  

 
 

Guidelines for Using This Book 
There are many different ways to teach a database course. The chapters in Part 1, Part 2 and Part 3 can 
be used in an introductory course on database systems in the order they are given or in the preferred 
order of each individual instructor. Selected chapters and sections may be left out, and the instructor 
can add other chapters from the rest of the book, depending on the emphasis of the course. At the end 
of each chapter’s opening section, we list sections that are candidates for being left out whenever a less 
detailed discussion of the topic in a particular chapter is desired. We suggest covering up to Chapter 14 
in an introductory database course and including selected parts of Chapter 11, Chapter 12 and Chapter 
13, depending on the background of the students and the desired coverage of the object model. For an 
emphasis on system implementation techniques, selected chapters from Part 5 can be included. For an 
emphasis on database design, further chapters from Part 4 can be used.  

Chapter 3 and Chapter 4, which cover conceptual modeling using the ER and EER models, are 
important for a good conceptual understanding of databases. However, they may be partially covered, 
covered later in a course, or even left out if the emphasis is on DBMS implementation. Chapter 5 and 
Chapter 6 on file organizations and indexing may also be covered early on, later, or even left out if the 
emphasis is on database models and languages. For students who have already taken a course on file 
organization, parts of these chapters could be assigned as reading material or some exercises may be 
assigned to review the concepts.  

Chapter 10 and Chapter 13 include material specific to commercial relational database management 
systems (RDBMSs)—ORACLE, Microsoft Access, and Informix. Because of the constant revision of 
these products, no exercises have been assigned in these chapters. Depending on local availability of 
RDBMSs, material from these chapters may be used in projects. A total life-cycle database design and 
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implementation project covers conceptual design (Chapter 3 and Chapter 4), data model mapping 
(Chapter 9), normalization (Chapter 14), and implementation in SQL (Chapter 8). Additional 
documentation on the specific RDBMS would be required.  

The book has been written so that it is possible to cover topics in a variety of orders. The chart included 
here shows the major dependencies between chapters. As the diagram illustrates, it is possible to start 
with several different topics following the first two introductory chapters. Although the chart may seem 
complex, it is important to note that if the chapters are covered in order, the dependencies are not lost. 
The chart can be consulted by instructors wishing to use an alternative order of presentation.  

 

 

 
 

For a single-semester course based on this book, some chapters can be assigned as reading material. 
Chapter 5, Chapter 6, Chapter 16, Chapter 17, Chapter 26, and Chapter 27 can be considered for such 
an assignment. The book can also be used for a two-semester sequence. The first course, "Introduction 
to Database Design/Systems," at the sophomore, junior, or senior level, could cover most of Chapter 1 
to Chapter 15. The second course, "Database Design and Implementation Techniques," at the senior or 
first-year graduate level, can cover Part 4, Part 5 and Part 6. Chapters from Part 6 can be used 
selectively in either semester, and material describing the DBMS available to the students at the local 
institution can be covered in addition to the material in the book. Part 6 can also serve as introductory 
material for advanced database courses, in conjunction with additional assigned readings.  
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Contents of This Edition 
(Fundamentals of Database Systems, Third Edition) 

Part 1 describes the basic concepts necessary for a good understanding of database design and 
implementation, as well as the conceptual modeling techniques used in database systems. Chapter 1 
and Chapter 2 introduce databases, their typical users, and DBMS concepts, terminology, and 
architecture. In Chapter 3, the concepts of the Entity-Relationship (ER) model and ER diagrams are 
presented and used to illustrate conceptual database design. Chapter 4 focuses on data abstraction and 
semantic data modeling concepts, and extends the ER model to incorporate these ideas, leading to the 
enhanced-ER (EER) data model and EER diagrams. The concepts presented include subclasses, 
specialization, generalization, and union types (categories). The notation for the class diagrams of 
UML are also introduced. These are similar to EER diagrams and are used increasingly in conceptual 
object modeling. Part 1 concludes with a description of the physical file structures and access methods 
used in database systems. Chapter 5 describes the primary methods of organizing files of records on 
disk, including static and dynamic hashing. Chapter 6 describes indexing techniques for files, including 
B-tree and B+-tree data structures and grid files.  

Part 2 describes the relational data model and relational DBMSs. Chapter 7 describes the basic 
relational model, its integrity constraints and update operations, and the operations of the relational 
algebra. Chapter 8 gives a detailed overview of the SQL language, covering the SQL2 standard, which 
is implemented in most relational systems. Chapter 9 begins with two sections that describe relational 
schema design, starting from a conceptual database design in an ER or EER model, and concludes with 
three sections introducing the formal relational calculus languages and an overview of the QBE 
language. Chapter 10 presents overviews of the Oracle and Microsoft Access database systems as 
examples of popular commercial relational database management systems.  

Part 3 gives a comprehensive introduction to object databases and object-relational systems. Chapter 11 
introduces object-oriented concepts and how they apply to object databases. Chapter 12 gives a detailed 
overview of the ODMG object model and its associated ODL and OQL languages, and gives examples 
of two commercial object DBMSs. Chapter 13 describes how relational databases are being extended to 
include object-oriented concepts and presents the features of two object-relational systems—Informix 
Universal Server and ORACLE 8, as well as giving an overview of some of the features of the 
proposed SQL3 standard, and the nested relational data model.  

Part 4 covers several topics related to database design. Chapter 14 and Chapter 15 cover the 
formalisms, theory, and algorithms developed for relational database design by normalization. This 
material includes functional and other types of dependencies and normal forms for relations. Step by 
step intuitive normalization is presented in Chapter 14, and relational design algorithms are given in 
Chapter 15, which also defines other types of dependencies, such as multivalued and join 
dependencies. Chapter 16 presents an overview of the different phases of the database design process 
for medium-sized and large applications, and it also discusses physical database design issues and 
includes a discussion on database tuning.  

Part 5 discusses the techniques used in implementing database management systems. Chapter 17 
introduces DBMS system architectures, including centralized and client-server architectures, then 
describes the system catalog, which is a vital part of any DBMS. Chapter 18 presents the techniques 
used for processing and optimizing queries specified in a high-level database language—such as 
SQL—and discusses various algorithms for implementing relational database operations. A section on 
query optimization in ORACLE has been added. Chapter 19, Chapter 20 and Chapter 21 discuss 
transaction processing, concurrency control, and recovery techniques—this material has been revised to 
include discussions of how these concepts are realized in SQL. Chapter 22 discusses database security 
and authorization techniques.  
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Part 6 covers a number of advanced topics. Chapter 23 gives detailed introductions to the concepts of 
active and temporal databases—which are increasingly being incorporated into database applications—
and also gives an overview of spatial and multimedia database concepts. Chapter 24 discusses 
distributed databases, issues for design, query and transaction processing with data distribution, and the 
different types of client-server architectures. Chapter 25 introduces the concepts of deductive database 
systems and surveys a few implementations. Chapter 26 discusses the new technologies of data 
warehousing and data mining for decision support applications. Chapter 27 surveys the new trends in 
database technology including Web, mobile and multimedia databases and overviews important 
emerging applications of databases: geographic information systems (GIS), human genome databases, 
and digital libraries.  

Appendix A gives a number of alternative diagrammatic notations for displaying a conceptual ER or 
EER schema. These may be substituted for the notation we use, if the instructor so wishes. Appendix B 
gives some important physical parameters of disks. Appendix C and Appendix D cover legacy database 
systems, based on the network and hierarchical database models. These have been used for over 30 
years as a basis for many existing commercial database applications and transaction-processing 
systems and will take decades to replace completely. We consider it important to expose students of 
database management to these long-standing approaches. Full chapters from the second edition can be 
found at the Website for this edition.  
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Guidelines for Using This Book 
(Fundamentals of Database Systems, Third Edition) 

There are many different ways to teach a database course. The chapters in Part 1, Part 2 and Part 3 can 
be used in an introductory course on database systems in the order they are given or in the preferred 
order of each individual instructor. Selected chapters and sections may be left out, and the instructor 
can add other chapters from the rest of the book, depending on the emphasis of the course. At the end 
of each chapter’s opening section, we list sections that are candidates for being left out whenever a less 
detailed discussion of the topic in a particular chapter is desired. We suggest covering up to Chapter 14 
in an introductory database course and including selected parts of Chapter 11, Chapter 12 and Chapter 
13, depending on the background of the students and the desired coverage of the object model. For an 
emphasis on system implementation techniques, selected chapters from Part 5 can be included. For an 
emphasis on database design, further chapters from Part 4 can be used.  

Chapter 3 and Chapter 4, which cover conceptual modeling using the ER and EER models, are 
important for a good conceptual understanding of databases. However, they may be partially covered, 
covered later in a course, or even left out if the emphasis is on DBMS implementation. Chapter 5 and 
Chapter 6 on file organizations and indexing may also be covered early on, later, or even left out if the 
emphasis is on database models and languages. For students who have already taken a course on file 
organization, parts of these chapters could be assigned as reading material or some exercises may be 
assigned to review the concepts.  

Chapter 10 and Chapter 13 include material specific to commercial relational database management 
systems (RDBMSs)—ORACLE, Microsoft Access, and Informix. Because of the constant revision of 
these products, no exercises have been assigned in these chapters. Depending on local availability of 
RDBMSs, material from these chapters may be used in projects. A total life-cycle database design and 
implementation project covers conceptual design (Chapter 3 and Chapter 4), data model mapping 
(Chapter 9), normalization (Chapter 14), and implementation in SQL (Chapter 8). Additional 
documentation on the specific RDBMS would be required.  

The book has been written so that it is possible to cover topics in a variety of orders. The chart included 
here shows the major dependencies between chapters. As the diagram illustrates, it is possible to start 
with several different topics following the first two introductory chapters. Although the chart may seem 
complex, it is important to note that if the chapters are covered in order, the dependencies are not lost. 
The chart can be consulted by instructors wishing to use an alternative order of presentation.  

 

 

 
 

For a single-semester course based on this book, some chapters can be assigned as reading material. 
Chapter 5, Chapter 6, Chapter 16, Chapter 17, Chapter 26, and Chapter 27 can be considered for such 
an assignment. The book can also be used for a two-semester sequence. The first course, "Introduction 
to Database Design/Systems," at the sophomore, junior, or senior level, could cover most of Chapter 1 
to Chapter 15. The second course, "Database Design and Implementation Techniques," at the senior or 
first-year graduate level, can cover Part 4, Part 5 and Part 6. Chapters from Part 6 can be used 
selectively in either semester, and material describing the DBMS available to the students at the local 
institution can be covered in addition to the material in the book. Part 6 can also serve as introductory 
material for advanced database courses, in conjunction with additional assigned readings.  
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Part 1: Basic Concepts 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Chapter 1: Databases and Database Users 
Chapter 2: Database System Concepts and Architecture 
Chapter 3: Data Modeling Using the Entity-Relationship Model 
Chapter 4: Enhanced Entity-Relationship and Object Modeling 
Chapter 5: Record Storage and Primary File Organizations 
Chapter 6: Index Structures for Files

Chapter 1: Databases and Database Users 
1.1 Introduction 
1.2 An Example 
1.3 Characteristics of the Database Approach 
1.4 Actors on the Scene 
1.5 Workers behind the Scene 
1.6 Advantages of Using a DBMS 
1.7 Implications of the Database Approach 
1.8 When Not to Use a DBMS 
1.9 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

Databases and database systems have become an essential component of everyday life in modern 
society. In the course of a day, most of us encounter several activities that involve some interaction 
with a database. For example, if we go to the bank to deposit or withdraw funds; if we make a hotel or 
airline reservation; if we access a computerized library catalog to search for a bibliographic item; or if 
we order a magazine subscription from a publisher, chances are that our activities will involve someone 
accessing a database. Even purchasing items from a supermarket nowadays in many cases involves an 
automatic update of the database that keeps the inventory of supermarket items.  

The above interactions are examples of what we may call traditional database applications, where 
most of the information that is stored and accessed is either textual or numeric. In the past few years, 
advances in technology have been leading to exciting new applications of database systems. 
Multimedia databases can now store pictures, video clips, and sound messages. Geographic 
information systems (GIS) can store and analyze maps, weather data, and satellite images. Data 
warehouses and on-line analytical processing (OLAP) systems are used in many companies to 
extract and analyze useful information from very large databases for decision making. Real-time and 
active database technology is used in controlling industrial and manufacturing processes. And 
database search techniques are being applied to the World Wide Web to improve the search for 
information that is needed by users browsing through the Internet.  
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To understand the fundamentals of database technology, however, we must start from the basics of 
traditional database applications. So, in Section 1.1 of this chapter we define what a database is, and 
then we give definitions of other basic terms. In Section 1.2, we provide a simple UNIVERSITY database 
example to illustrate our discussion. Section 1.3 describes some of the main characteristics of database 
systems, and Section 1.4 and Section 1.5 categorize the types of personnel whose jobs involve using 
and interacting with database systems. Section 1.6, Section 1.7, and Section 1.8 offer a more thorough 
discussion of the various capabilities provided by database systems and of the implications of using the 
database approach. Section 1.9 summarizes the chapter.  

The reader who desires only a quick introduction to database systems can study Section 1.1 through 
Section 1.5, then skip or browse through Section 1.6, Section 1.7 and Section 1.8 and go on to Chapter 
2.  

 
 

1.1 Introduction 

Databases and database technology are having a major impact on the growing use of computers. It is 
fair to say that databases play a critical role in almost all areas where computers are used, including 
business, engineering, medicine, law, education, and library science, to name a few. The word database 
is in such common use that we must begin by defining a database. Our initial definition is quite 
general.  

A database is a collection of related data (Note 1). By data, we mean known facts that can be recorded 
and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of 
the people you know. You may have recorded this data in an indexed address book, or you may have 
stored it on a diskette, using a personal computer and software such as DBASE IV or V, Microsoft 
ACCESS, or EXCEL. This is a collection of related data with an implicit meaning and hence is a 
database.  

The preceding definition of database is quite general; for example, we may consider the collection of 
words that make up this page of text to be related data and hence to constitute a database. However, the 
common use of the term database is usually more restricted. A database has the following implicit 
properties:  

• A database represents some aspect of the real world, sometimes called the miniworld or the 
Universe of Discourse (UoD). Changes to the miniworld are reflected in the database.  

• A database is a logically coherent collection of data with some inherent meaning. A random 
assortment of data cannot correctly be referred to as a database.  

• A database is designed, built, and populated with data for a specific purpose. It has an 
intended group of users and some preconceived applications in which these users are 
interested.  

In other words, a database has some source from which data are derived, some degree of interaction 
with events in the real world, and an audience that is actively interested in the contents of the database.  

A database can be of any size and of varying complexity. For example, the list of names and addresses 
referred to earlier may consist of only a few hundred records, each with a simple structure. On the other 
hand, the card catalog of a large library may contain half a million cards stored under different 
categories—by primary author’s last name, by subject, by book title—with each category organized in 
alphabetic order. A database of even greater size and complexity is maintained by the Internal Revenue 
Service to keep track of the tax forms filed by U.S. taxpayers. If we assume that there are 100 million 
tax-payers and if each taxpayer files an average of five forms with approximately 200 characters of 
information per form, we would get a database of 100*(106)*200*5 characters (bytes) of information. 
If the IRS keeps the past three returns for each taxpayer in addition to the current return, we would get 
a database of 4*(1011) bytes (400 gigabytes). This huge amount of information must be organized and 
managed so that users can search for, retrieve, and update the data as needed.  
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A database may be generated and maintained manually or it may be computerized. The library card 
catalog is an example of a database that may be created and maintained manually. A computerized 
database may be created and maintained either by a group of application programs written specifically 
for that task or by a database management system.  

A database management system (DBMS) is a collection of programs that enables users to create and 
maintain a database. The DBMS is hence a general-purpose software system that facilitates the 
processes of defining, constructing, and manipulating databases for various applications. Defining a 
database involves specifying the data types, structures, and constraints for the data to be stored in the 
database. Constructing the database is the process of storing the data itself on some storage medium 
that is controlled by the DBMS. Manipulating a database includes such functions as querying the 
database to retrieve specific data, updating the database to reflect changes in the miniworld, and 
generating reports from the data.  

It is not necessary to use general-purpose DBMS software to implement a computerized database. We 
could write our own set of programs to create and maintain the database, in effect creating our own 
special-purpose DBMS software. In either case—whether we use a general-purpose DBMS or not—we 
usually have to employ a considerable amount of software to manipulate the database. We will call the 
database and DBMS software together a database system. Figure 01.01 illustrates these ideas.  

 

 

 
 

1.2 An Example 

Let us consider an example that most readers may be familiar with: a UNIVERSITY database for 
maintaining information concerning students, courses, and grades in a university environment. Figure 
01.02 shows the database structure and a few sample data for such a database. The database is 
organized as five files, each of which stores data records of the same type (Note 2). The STUDENT file 
stores data on each student; the COURSE file stores data on each course; the SECTION file stores data on 
each section of a course; the GRADE_REPORT file stores the grades that students receive in the various 
sections they have completed; and the PREREQUISITE file stores the prerequisites of each course.  

 

 

 
 

To define this database, we must specify the structure of the records of each file by specifying the 
different types of data elements to be stored in each record. In Figure 01.02, each STUDENT record 
includes data to represent the student’s Name, StudentNumber, Class (freshman or 1, sophomore or 2, . 
. .), and Major (MATH, computer science or CS, . . .); each COURSE record includes data to represent 
the CourseName, CourseNumber, CreditHours, and Department (the department that offers the course); 
and so on. We must also specify a data type for each data element within a record. For example, we 
can specify that Name of STUDENT is a string of alphabetic characters, StudentNumber of STUDENT is an 
integer, and Grade of GRADE_REPORT is a single character from the set {A, B, C, D, F, I}. We may also 
use a coding scheme to represent a data item. For example, in Figure 01.02 we represent the Class of a 
STUDENT as 1 for freshman, 2 for sophomore, 3 for junior, 4 for senior, and 5 for graduate student.  

To construct the UNIVERSITY database, we store data to represent each student, course, section, grade 
report, and prerequisite as a record in the appropriate file. Notice that records in the various files may 
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be related. For example, the record for "Smith" in the STUDENT file is related to two records in the 
GRADE_REPORT file that specify Smith’s grades in two sections. Similarly, each record in the 
PREREQUISITE file relates two course records: one representing the course and the other representing the 
prerequisite. Most medium-size and large databases include many types of records and have many 
relationships among the records.  

Database manipulation involves querying and updating. Examples of queries are "retrieve the 
transcript—a list of all courses and grades—of Smith"; "list the names of students who took the section 
of the Database course offered in fall 1999 and their grades in that section"; and "what are the 
prerequisites of the Database course?" Examples of updates are "change the class of Smith to 
Sophomore"; "create a new section for the Database course for this semester"; and "enter a grade of A 
for Smith in the Database section of last semester." These informal queries and updates must be 
specified precisely in the database system language before they can be processed.  

 
 

1.3 Characteristics of the Database Approach 

1.3.1 Self-Describing Nature of a Database System 
1.3.2 Insulation between Programs and Data, and Data Abstraction 
1.3.3 Support of Multiple Views of the Data 
1.3.4 Sharing of Data and Multiuser Transaction Processing

A number of characteristics distinguish the database approach from the traditional approach of 
programming with files. In traditional file processing, each user defines and implements the files 
needed for a specific application as part of programming the application. For example, one user, the 
grade reporting office, may keep a file on students and their grades. Programs to print a student’s 
transcript and to enter new grades into the file are implemented. A second user, the accounting office, 
may keep track of students’ fees and their payments. Although both users are interested in data about 
students, each user maintains separate files—and programs to manipulate these files—because each 
requires some data not available from the other user’s files. This redundancy in defining and storing 
data results in wasted storage space and in redundant efforts to maintain common data up-to-date.  

In the database approach, a single repository of data is maintained that is defined once and then is 
accessed by various users. The main characteristics of the database approach versus the file-processing 
approach are the following.  

 
 

1.3.1 Self-Describing Nature of a Database System 

A fundamental characteristic of the database approach is that the database system contains not only the 
database itself but also a complete definition or description of the database structure and constraints. 
This definition is stored in the system catalog, which contains information such as the structure of each 
file, the type and storage format of each data item, and various constraints on the data. The information 
stored in the catalog is called meta-data, and it describes the structure of the primary database (Figure 
01.01).  

The catalog is used by the DBMS software and also by database users who need information about the 
database structure. A general purpose DBMS software package is not written for a specific database 
application, and hence it must refer to the catalog to know the structure of the files in a specific 
database, such as the type and format of data it will access. The DBMS software must work equally 
well with any number of database applications—for example, a university database, a banking 
database, or a company database—as long as the database definition is stored in the catalog.  
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In traditional file processing, data definition is typically part of the application programs themselves. 
Hence, these programs are constrained to work with only one specific database, whose structure is 
declared in the application programs. For example, a PASCAL program may have record structures 
declared in it; a C++ program may have "struct" or "class" declarations; and a COBOL program has 
Data Division statements to define its files. Whereas file-processing software can access only specific 
databases, DBMS software can access diverse databases by extracting the database definitions from the 
catalog and then using these definitions.  

In the example shown in Figure 01.02, the DBMS stores in the catalog the definitions of all the files 
shown. Whenever a request is made to access, say, the Name of a STUDENT record, the DBMS software 
refers to the catalog to determine the structure of the STUDENT file and the position and size of the 
Name data item within a STUDENT record. By contrast, in a typical file-processing application, the file 
structure and, in the extreme case, the exact location of Name within a STUDENT record are already 
coded within each program that accesses this data item.  

 
 

1.3.2 Insulation between Programs and Data, and Data Abstraction 

In traditional file processing, the structure of data files is embedded in the access programs, so any 
changes to the structure of a file may require changing all programs that access this file. By contrast, 
DBMS access programs do not require such changes in most cases. The structure of data files is stored 
in the DBMS catalog separately from the access programs. We call this property program-data 
independence. For example, a file access program may be written in such a way that it can access only 
STUDENT records of the structure shown in Figure 01.03. If we want to add another piece of data to each 
STUDENT record, say the Birthdate, such a program will no longer work and must be changed. By 
contrast, in a DBMS environment, we just need to change the description of STUDENT records in the 
catalog to reflect the inclusion of the new data item Birthdate; no programs are changed. The next time 
a DBMS program refers to the catalog, the new structure of STUDENT records will be accessed and 
used.  

 

 

 
 

In object-oriented and object-relational databases (see Part III), users can define operations on data as 
part of the database definitions. An operation (also called a function) is specified in two parts. The 
interface (or signature) of an operation includes the operation name and the data types of its arguments 
(or parameters). The implementation (or method) of the operation is specified separately and can be 
changed without affecting the interface. User application programs can operate on the data by invoking 
these operations through their names and arguments, regardless of how the operations are implemented. 
This may be termed program-operation independence.  

The characteristic that allows program-data independence and program-operation independence is 
called data abstraction. A DBMS provides users with a conceptual representation of data that does 
not include many of the details of how the data is stored or how the operations are implemented. 
Informally, a data model is a type of data abstraction that is used to provide this conceptual 
representation. The data model uses logical concepts, such as objects, their properties, and their 
interrelationships, that may be easier for most users to understand than computer storage concepts. 
Hence, the data model hides storage and implementation details that are not of interest to most database 
users.  

For example, consider again Figure 01.02. The internal implementation of a file may be defined by its 
record length—the number of characters (bytes) in each record—and each data item may be specified 
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by its starting byte within a record and its length in bytes. The STUDENT record would thus be 
represented as shown in Figure 01.03. But a typical database user is not concerned with the location of 
each data item within a record or its length; rather the concern is that, when a reference is made to 
Name of STUDENT, the correct value is returned. A conceptual representation of the STUDENT records is 
shown in Figure 01.02. Many other details of file-storage organization—such as the access paths 
specified on a file—can be hidden from database users by the DBMS; we will discuss storage details in 
Chapter 5 and Chapter 6.  

In the database approach, the detailed structure and organization of each file are stored in the catalog. 
Database users refer to the conceptual representation of the files, and the DBMS extracts the details of 
file storage from the catalog when these are needed by the DBMS software. Many data models can be 
used to provide this data abstraction to database users. A major part of this book is devoted to 
presenting various data models and the concepts they use to abstract the representation of data.  

With the recent trend toward object-oriented and object-relational databases, abstraction is carried one 
level further to include not only the data structure but also the operations on the data. These operations 
provide an abstraction of miniworld activities commonly understood by the users. For example, an 
operation CALCULATE_GPA can be applied to a student object to calculate the grade point average. 
Such operations can be invoked by the user queries or programs without the user knowing the details of 
how they are internally implemented. In that sense, an abstraction of the miniworld activity is made 
available to the user as an abstract operation.  

 
 

1.3.3 Support of Multiple Views of the Data 

A database typically has many users, each of whom may require a different perspective or view of the 
database. A view may be a subset of the database or it may contain virtual data that is derived from 
the database files but is not explicitly stored. Some users may not need to be aware of whether the data 
they refer to is stored or derived. A multiuser DBMS whose users have a variety of applications must 
provide facilities for defining multiple views. For example, one user of the database of Figure 01.02 
may be interested only in the transcript of each student; the view for this user is shown in Figure 
01.04(a). A second user, who is interested only in checking that students have taken all the 
prerequisites of each course they register for, may require the view shown in Figure 01.04(b).  

 

 

 
 

1.3.4 Sharing of Data and Multiuser Transaction Processing 

A multiuser DBMS, as its name implies, must allow multiple users to access the database at the same 
time. This is essential if data for multiple applications is to be integrated and maintained in a single 
database. The DBMS must include concurrency control software to ensure that several users trying to 
update the same data do so in a controlled manner so that the result of the updates is correct. For 
example, when several reservation clerks try to assign a seat on an airline flight, the DBMS should 
ensure that each seat can be accessed by only one clerk at a time for assignment to a passenger. These 
types of applications are generally called on-line transaction processing (OLTP) applications. A 
fundamental role of multiuser DBMS software is to ensure that concurrent transactions operate 
correctly.  

The preceding characteristics are most important in distinguishing a DBMS from traditional file-
processing software. In Section 1.6 we discuss additional functions that characterize a DBMS. First, 
however, we categorize the different types of persons who work in a database environment.  
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1.4 Actors on the Scene 

1.4.1 Database Administrators 
1.4.2 Database Designers 
1.4.3 End Users 
1.4.4 System Analysts and Application Programmers (Software Engineers)

For a small personal database, such as the list of addresses discussed in Section 1.1, one person 
typically defines, constructs, and manipulates the database. However, many persons are involved in the 
design, use, and maintenance of a large database with a few hundred users. In this section we identify 
the people whose jobs involve the day-to-day use of a large database; we call them the "actors on the 
scene." In Section 1.5 we consider people who may be called "workers behind the scene"—those who 
work to maintain the database system environment, but who are not actively interested in the database 
itself.  

 
 

1.4.1 Database Administrators 

In any organization where many persons use the same resources, there is a need for a chief 
administrator to oversee and manage these resources. In a database environment, the primary resource 
is the database itself and the secondary resource is the DBMS and related software. Administering 
these resources is the responsibility of the database administrator (DBA). The DBA is responsible for 
authorizing access to the database, for coordinating and monitoring its use, and for acquiring software 
and hardware resources as needed. The DBA is accountable for problems such as breach of security or 
poor system response time. In large organizations, the DBA is assisted by a staff that helps carry out 
these functions.  

 
 

1.4.2 Database Designers 

Database designers are responsible for identifying the data to be stored in the database and for 
choosing appropriate structures to represent and store this data. These tasks are mostly undertaken 
before the database is actually implemented and populated with data. It is the responsibility of database 
designers to communicate with all prospective database users, in order to understand their 
requirements, and to come up with a design that meets these requirements. In many cases, the designers 
are on the staff of the DBA and may be assigned other staff responsibilities after the database design is 
completed. Database designers typically interact with each potential group of users and develop a view 
of the database that meets the data and processing requirements of this group. These views are then 
analyzed and integrated with the views of other user groups. The final database design must be capable 
of supporting the requirements of all user groups.  

 
 

1.4.3 End Users 

End users are the people whose jobs require access to the database for querying, updating, and 
generating reports; the database primarily exists for their use. There are several categories of end users:  
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• Casual end users occasionally access the database, but they may need different information 
each time. They use a sophisticated database query language to specify their requests and are 
typically middle- or high-level managers or other occasional browsers.  

• Naive or parametric end users make up a sizable portion of database end users. Their main 
job function revolves around constantly querying and updating the database, using standard 
types of queries and updates—called canned transactions—that have been carefully 
programmed and tested. The tasks that such users perform are varied:  

Bank tellers check account balances and post withdrawals and deposits.  

Reservation clerks for airlines, hotels, and car rental companies check availability for a given request 
and make reservations.  

Clerks at receiving stations for courier mail enter package identifications via bar codes and descriptive 
information through buttons to update a central database of received and in-transit packages.  

• Sophisticated end users include engineers, scientists, business analysts, and others who 
thoroughly familiarize themselves with the facilities of the DBMS so as to implement their 
applications to meet their complex requirements.  

• Stand-alone users maintain personal databases by using ready-made program packages that 
provide easy-to-use menu- or graphics-based interfaces. An example is the user of a tax 
package that stores a variety of personal financial data for tax purposes. 

 
 

A typical DBMS provides multiple facilities to access a database. Naive end users need to learn very 
little about the facilities provided by the DBMS; they have to understand only the types of standard 
transactions designed and implemented for their use. Casual users learn only a few facilities that they 
may use repeatedly. Sophisticated users try to learn most of the DBMS facilities in order to achieve 
their complex requirements. Stand-alone users typically become very proficient in using a specific 
software package.  

 
 

1.4.4 System Analysts and Application Programmers (Software Engineers) 

System analysts determine the requirements of end users, especially naive and parametric end users, 
and develop specifications for canned transactions that meet these requirements. Application 
programmers implement these specifications as programs; then they test, debug, document, and 
maintain these canned transactions. Such analysts and programmers (nowadays called software 
engineers) should be familiar with the full range of capabilities provided by the DBMS to accomplish 
their tasks.  

 
 

1.5 Workers behind the Scene 

In addition to those who design, use, and administer a database, others are associated with the design, 
development, and operation of the DBMS software and system environment. These persons are 
typically not interested in the database itself. We call them the "workers behind the scene," and they 
include the following categories.  

• DBMS system designers and implementers are persons who design and implement the 
DBMS modules and interfaces as a software package. A DBMS is a complex software system 
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that consists of many components or modules, including modules for implementing the 
catalog, query language, interface processors, data access, concurrency control, recovery, and 
security. The DBMS must interface with other system software, such as the operating system 
and compilers for various programming languages.  

• Tool developers include persons who design and implement tools—the software packages 
that facilitate database system design and use, and help improve performance. Tools are 
optional packages that are often purchased separately. They include packages for database 
design, performance monitoring, natural language or graphical interfaces, prototyping, 
simulation, and test data generation. In many cases, independent software vendors develop 
and market these tools.  

• Operators and maintenance personnel are the system administration personnel who are 
responsible for the actual running and maintenance of the hardware and software environment 
for the database system.  

Although the above categories of workers behind the scene are instrumental in making the database 
system available to end users, they typically do not use the database for their own purposes.  

 
 

1.6 Advantages of Using a DBMS 

1.6.1 Controlling Redundancy 
1.6.2 Restricting Unauthorized Access 
1.6.3 Providing Persistent Storage for Program Objects and Data Structures 
1.6.4 Permitting Inferencing and Actions Using Rules 
1.6.5 Providing Multiple User Interfaces 
1.6.6 Representing Complex Relationships Among Data 
1.6.7 Enforcing Integrity Constraints 
1.6.8 Providing Backup and Recovery

In this section we discuss some of the advantages of using a DBMS and the capabilities that a good 
DBMS should possess. The DBA must utilize these capabilities to accomplish a variety of objectives 
related to the design, administration, and use of a large multiuser database.  

 
 

1.6.1 Controlling Redundancy 

In traditional software development utilizing file processing, every user group maintains its own files 
for handling its data-processing applications. For example, consider the UNIVERSITY database example 
of Section 1.2; here, two groups of users might be the course registration personnel and the accounting 
office. In the traditional approach, each group independently keeps files on students. The accounting 
office also keeps data on registration and related billing information, whereas the registration office 
keeps track of student courses and grades. Much of the data is stored twice: once in the files of each 
user group. Additional user groups may further duplicate some or all of the same data in their own 
files.  

This redundancy in storing the same data multiple times leads to several problems. First, there is the 
need to perform a single logical update—such as entering data on a new student—multiple times: once 
for each file where student data is recorded. This leads to duplication of effort. Second, storage space is 
wasted when the same data is stored repeatedly, and this problem may be serious for large databases. 
Third, files that represent the same data may become inconsistent. This may happen because an update 
is applied to some of the files but not to others. Even if an update—such as adding a new student—is 
applied to all the appropriate files, the data concerning the student may still be inconsistent since the 
updates are applied independently by each user group. For example, one user group may enter a 
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student’s birthdate erroneously as JAN-19-1974, whereas the other user groups may enter the correct 
value of JAN-29-1974.  

In the database approach, the views of different user groups are integrated during database design. For 
consistency, we should have a database design that stores each logical data item—such as a student’s 
name or birth date—in only one place in the database. This does not permit inconsistency, and it saves 
storage space. However, in some cases, controlled redundancy may be useful for improving the 
performance of queries. For example, we may store StudentName and CourseNumber redundantly in a 
GRADE_REPORT file (Figure 01.05a), because, whenever we retrieve a GRADE_REPORT record, we want 
to retrieve the student name and course number along with the grade, student number, and section 
identifier. By placing all the data together, we do not have to search multiple files to collect this data. 
In such cases, the DBMS should have the capability to control this redundancy so as to prohibit 
inconsistencies among the files. This may be done by automatically checking that the StudentName-
StudentNumber values in any GRADE_REPORT record in Figure 01.05(a) match one of the Name-
StudentNumber values of a STUDENT record (Figure 01.02). Similarly, the SectionIdentifier-
CourseNumber values in GRADE_REPORT can be checked against SECTION records. Such checks can be 
specified to the DBMS during database design and automatically enforced by the DBMS whenever the 
GRADE_REPORT file is updated. Figure 01.05(b) shows a GRADE_REPORT record that is inconsistent with 
the STUDENT file of Figure 01.02, which may be entered erroneously if the redundancy is not 
controlled.  

 

 

 
 

1.6.2 Restricting Unauthorized Access 

When multiple users share a database, it is likely that some users will not be authorized to access all 
information in the database. For example, financial data is often considered confidential, and hence 
only authorized persons are allowed to access such data. In addition, some users may be permitted only 
to retrieve data, whereas others are allowed both to retrieve and to update. Hence, the type of access 
operation—retrieval or update—must also be controlled. Typically, users or user groups are given 
account numbers protected by passwords, which they can use to gain access to the database. A DBMS 
should provide a security and authorization subsystem, which the DBA uses to create accounts and 
to specify account restrictions. The DBMS should then enforce these restrictions automatically. Notice 
that we can apply similar controls to the DBMS software. For example, only the DBA’s staff may be 
allowed to use certain privileged software, such as the software for creating new accounts. Similarly, 
parametric users may be allowed to access the database only through the canned transactions developed 
for their use.  

 
 

1.6.3 Providing Persistent Storage for Program Objects and Data Structures 

Databases can be used to provide persistent storage for program objects and data structures. This is 
one of the main reasons for the emergence of the object-oriented database systems. Programming 
languages typically have complex data structures, such as record types in PASCAL or class definitions 
in C++. The values of program variables are discarded once a program terminates, unless the 
programmer explicitly stores them in permanent files, which often involves converting these complex 
structures into a format suitable for file storage. When the need arises to read this data once more, the 
programmer must convert from the file format to the program variable structure. Object-oriented 
database systems are compatible with programming languages such as C++ and JAVA, and the DBMS 
software automatically performs any necessary conversions. Hence, a complex object in C++ can be 
stored permanently in an object-oriented DBMS, such as ObjectStore or O2 (now called Ardent, see 
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Chapter 12). Such an object is said to be persistent, since it survives the termination of program 
execution and can later be directly retrieved by another C++ program.  

The persistent storage of program objects and data structures is an important function of database 
systems. Traditional database systems often suffered from the so-called impedance mismatch 
problem, since the data structures provided by the DBMS were incompatible with the programming 
language’s data structures. Object-oriented database systems typically offer data structure 
compatibility with one or more object-oriented programming languages.  

 
 

1.6.4 Permitting Inferencing and Actions Using Rules 

Some database systems provide capabilities for defining deduction rules for inferencing new 
information from the stored database facts. Such systems are called deductive database systems. For 
example, there may be complex rules in the miniworld application for determining when a student is on 
probation. These can be specified declaratively as rules, which when compiled and maintained by the 
DBMS can determine all students on probation. In a traditional DBMS, an explicit procedural program 
code would have to be written to support such applications. But if the miniworld rules change, it is 
generally more convenient to change the declared deduction rules than to recode procedural programs. 
More powerful functionality is provided by active database systems, which provide active rules that 
can automatically initiate actions.  

 
 

1.6.5 Providing Multiple User Interfaces 

Because many types of users with varying levels of technical knowledge use a database, a DBMS 
should provide a variety of user interfaces. These include query languages for casual users; 
programming language interfaces for application programmers; forms and command codes for 
parametric users; and menu-driven interfaces and natural language interfaces for stand-alone users. 
Both forms-style interfaces and menu-driven interfaces are commonly known as graphical user 
interfaces (GUIs). Many specialized languages and environments exist for specifying GUIs. 
Capabilities for providing World Wide Web access to a database—or web-enabling a database—are 
also becoming increasingly common.  

 
 

1.6.6 Representing Complex Relationships Among Data 

A database may include numerous varieties of data that are interrelated in many ways. Consider the 
example shown in Figure 01.02. The record for Brown in the student file is related to four records in 
the GRADE_REPORT file. Similarly, each section record is related to one course record as well as to a 
number of GRADE_REPORT records—one for each student who completed that section. A DBMS must 
have the capability to represent a variety of complex relationships among the data as well as to retrieve 
and update related data easily and efficiently.  

 
 

1.6.7 Enforcing Integrity Constraints 

Most database applications have certain integrity constraints that must hold for the data. A DBMS 
should provide capabilities for defining and enforcing these constraints. The simplest type of integrity 
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constraint involves specifying a data type for each data item. For example, in Figure 01.02, we may 
specify that the value of the Class data item within each student record must be an integer between 1 
and 5 and that the value of Name must be a string of no more than 30 alphabetic characters. A more 
complex type of constraint that occurs frequently involves specifying that a record in one file must be 
related to records in other files. For example, in Figure 01.02, we can specify that "every section record 
must be related to a course record." Another type of constraint specifies uniqueness on data item 
values, such as "every course record must have a unique value for CourseNumber." These constraints 
are derived from the meaning or semantics of the data and of the miniworld it represents. It is the 
database designers’ responsibility to identify integrity constraints during database design. Some 
constraints can be specified to the DBMS and automatically enforced. Other constraints may have to be 
checked by update programs or at the time of data entry.  

A data item may be entered erroneously and still satisfy the specified integrity constraints. For 
example, if a student receives a grade of A but a grade of C is entered in the database, the DBMS 
cannot discover this error automatically, because C is a valid value for the Grade data type. Such data 
entry errors can only be discovered manually (when the student receives the grade and complains) and 
corrected later by updating the database. However, a grade of Z can be rejected automatically by the 
DBMS, because Z is not a valid value for the Grade data type.  

 
 

1.6.8 Providing Backup and Recovery 

A DBMS must provide facilities for recovering from hardware or software failures. The backup and 
recovery subsystem of the DBMS is responsible for recovery. For example, if the computer system 
fails in the middle of a complex update program, the recovery subsystem is responsible for making sure 
that the database is restored to the state it was in before the program started executing. Alternatively, 
the recovery subsystem could ensure that the program is resumed from the point at which it was 
interrupted so that its full effect is recorded in the database.  

 
 

1.7 Implications of the Database Approach 

Potential for Enforcing Standards 
Reduced Application Development Time 
Flexibility 
Availability of Up-to-Date Information 
Economies of Scale

In addition to the issues discussed in the previous section, there are other implications of using the 
database approach that can benefit most organizations.  

 
 

Potential for Enforcing Standards 

The database approach permits the DBA to define and enforce standards among database users in a 
large organization. This facilitates communication and cooperation among various departments, 
projects, and users within the organization. Standards can be defined for names and formats of data 
elements, display formats, report structures, terminology, and so on. The DBA can enforce standards in 
a centralized database environment more easily than in an environment where each user group has 
control of its own files and software.  
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Reduced Application Development Time 

A prime selling feature of the database approach is that developing a new application—such as the 
retrieval of certain data from the database for printing a new report—takes very little time. Designing 
and implementing a new database from scratch may take more time than writing a single specialized 
file application. However, once a database is up and running, substantially less time is generally 
required to create new applications using DBMS facilities. Development time using a DBMS is 
estimated to be one-sixth to one-fourth of that for a traditional file system.  

 
 

Flexibility 

It may be necessary to change the structure of a database as requirements change. For example, a new 
user group may emerge that needs information not currently in the database. In response, it may be 
necessary to add a file to the database or to extend the data elements in an existing file. Modern 
DBMSs allow certain types of changes to the structure of the database without affecting the stored data 
and the existing application programs.  

 
 

Availability of Up-to-Date Information 

A DBMS makes the database available to all users. As soon as one user’s update is applied to the 
database, all other users can immediately see this update. This availability of up-to-date information is 
essential for many transaction-processing applications, such as reservation systems or banking 
databases, and it is made possible by the concurrency control and recovery subsystems of a DBMS.  

 
 

Economies of Scale 

The DBMS approach permits consolidation of data and applications, thus reducing the amount of 
wasteful overlap between activities of data-processing personnel in different projects or departments. 
This enables the whole organization to invest in more powerful processors, storage devices, or 
communication gear, rather than having each department purchase its own (weaker) equipment. This 
reduces overall costs of operation and management.  

 
 

1.8 When Not to Use a DBMS 

In spite of the advantages of using a DBMS, there are a few situations in which such a system may 
involve unnecessary overhead costs as that would not be incurred in traditional file processing. The 
overhead costs of using a DBMS are due to the following:  

• High initial investment in hardware, software, and training.  
• Generality that a DBMS provides for defining and processing data.  
• Overhead for providing security, concurrency control, recovery, and integrity functions.  
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Additional problems may arise if the database designers and DBA do not properly design the database 
or if the database systems applications are not implemented properly. Hence, it may be more desirable 
to use regular files under the following circumstances:  

• The database and applications are simple, well defined, and not expected to change.  
• There are stringent real-time requirements for some programs that may not be met because of 

DBMS overhead.  
• Multiple-user access to data is not required.  

 
 

1.9 Summary 

In this chapter we defined a database as a collection of related data, where data means recorded facts. 
A typical database represents some aspect of the real world and is used for specific purposes by one or 
more groups of users. A DBMS is a generalized software package for implementing and maintaining a 
computerized database. The database and software together form a database system. We identified 
several characteristics that distinguish the database approach from traditional file-processing 
applications:  

• Existence of a catalog.  
• Program-data independence and program-operation independence.  
• Data abstraction.  
• Support of multiple user views.  
• Sharing of data among multiple transactions.  

We then discussed the main categories of database users, or the "actors on the scene":  

• Administrators.  
• Designers.  
• End users.  
• System analysts and application programmers.  

We noted that, in addition to database users, there are several categories of support personnel, or 
"workers behind the scene," in a database environment:  

• DBMS system designers and implementers.  
• Tool developers.  
• Operators and maintenance personnel.  

Then we presented a list of capabilities that should be provided by the DBMS software to the DBA, 
database designers, and users to help them design, administer, and use a database:  

• Controlling redundancy.  
• Restricting unauthorized access.  
• Providing persistent storage for program objects and data structures.  
• Permitting inferencing and actions by using rules.  
• Providing multiple user interfaces.  
• Representing complex relationships among data.  
• Enforcing integrity constraints.  
• Providing backup and recovery.  

We listed some additional advantages of the database approach over traditional file-processing 
systems:  
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• Potential for enforcing standards.  
• Reduced application development time.  
• Flexibility.  
• Availability of up-to-date information to all users.  
• Economies of scale.  

Finally, we discussed the overhead costs of using a DBMS and discussed some situations in which it 
may not be advantageous to use a DBMS.  

 
 

Review Questions 

1.1. Define the following terms: data, database, DBMS, database system, database catalog, program-
data independence, user view, DBA, end user, canned transaction, deductive database system, 
persistent object, meta-data, transaction processing application.  

1.2. What three main types of actions involve databases? Briefly discuss each.  

1.3. Discuss the main characteristics of the database approach and how it differs from traditional file 
systems.  

1.4. What are the responsibilities of the DBA and the database designers?  

1.5. What are the different types of database end users? Discuss the main activities of each.  

1.6. Discuss the capabilities that should be provided by a DBMS.  

 
 

Exercises 

  1.7. Identify some informal queries and update operations that you would expect to apply to the 
database shown in Figure 01.02.  

  1.8. What is the difference between controlled and uncontrolled redundancy? Illustrate with 
examples.  

  1.9. Name all the relationships among the records of the database shown in Figure 01.02.  

1.10. Give some additional views that may be needed by other user groups for the database shown in 
Figure 01.02.  

1.11. Cite some examples of integrity constraints that you think should hold on the database shown in 
Figure 01.02.  

 
 

Selected Bibliography 

The October 1991 issue of Communications of the ACM and Kim (1995) includes several articles 
describing "next-generation" DBMSs; many of the database features discussed in this issue are now 
commercially available. The March 1976 issue of ACM Computing Surveys offers an early introduction 
to database systems and may provide a historical perspective for the interested reader.  
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Footnotes 

Note 1 
Note 2

Note 1 

We will use the word data in both singular and plural, as is common in database literature; context will 
determine whether it is singular or plural. In standard English, data is used only for plural; datum is 
used for singular.  

 
 

Note 2 

At a conceptual level, a file is a collection of records that may or may not be ordered.  
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The architecture of DBMS packages has evolved from the early monolithic systems, where the whole 
DBMS software package is one tightly integrated system, to the modern DBMS packages that are 
modular in design, with a client-server system architecture. This evolution mirrors the trends in 
computing, where the large centralized mainframe computers are being replaced by hundreds of 
distributed workstations and personal computers connected via communications networks. In a basic 
client-server architecture, the system functionality is distributed between two types of modules. A 
client module is typically designed so that it will run on a user workstation or personal computer. 
Typically, application programs and user interfaces that access the database run in the client module. 
Hence, the client module handles user interaction and provides the user-friendly interfaces such as 
forms or menu-based GUIs (graphical user interfaces). The other kind of module, called a server 
module, typically handles data storage, access, search, and other functions.  

We will discuss client-server architectures in Chapter 17 and Chapter 24. First, we must study more 
basic concepts that will give us a better understanding of the modern database architectures when they 
are presented later in this book. In this chapter we thus present the terminology and basic concepts that 
will be used throughout the book. We start, in Section 2.1, by discussing data models and defining the 
concepts of schemas and instances, which are fundamental to the study of database systems. We then 
discuss the three-schema DBMS architecture and data independence in Section 2.2; this provides a 
user’s perspective on what a DBMS is supposed to do. In Section 2.3, we describe the types of 
interfaces and languages that are typically provided by a DBMS. Section 2.4 discusses the database 
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system software environment, and Section 2.5 presents a classification of the types of DBMS packages. 
Section 2.6 summarizes the chapter.  

The material in Section 2.4 and Section 2.5 provides more detailed concepts that may be looked upon 
as a supplement to the basic introductory material.  

 
 

2.1 Data Models, Schemas, and Instances 

2.1.1 Categories of Data Models 
2.1.2 Schemas, Instances, and Database State

One fundamental characteristic of the database approach is that it provides some level of data 
abstraction by hiding details of data storage that are not needed by most database users. A data 
model—a collection of concepts that can be used to describe the structure of a database—provides the 
necessary means to achieve this abstraction (Note 1). By structure of a database we mean the data 
types, relationships, and constraints that should hold on the data. Most data models also include a set of 
basic operations for specifying retrievals and updates on the database.  

In addition to the basic operations provided by the data model, it is becoming more common to include 
concepts in the data model to specify the dynamic aspect or behavior of a database application. This 
allows the database designer to specify a set of valid user-defined operations that are allowed on the 
database objects (Note 2). An example of a user-defined operation could be COMPUTE_GPA, which can 
be applied to a STUDENT object. On the other hand, generic operations to insert, delete, modify, or 
retrieve any kind of object are often included in the basic data model operations. Concepts to specify 
behavior are fundamental to object-oriented data models (see Chapter 11 and Chapter12) but are also 
being incorporated in more traditional data models by extending these models. For example, object-
relational models (see Chapter 13) extend the traditional relational model to include such concepts, 
among others.  

 
 

2.1.1 Categories of Data Models 

Many data models have been proposed, and we can categorize them according to the types of concepts 
they use to describe the database structure. High-level or conceptual data models provide concepts 
that are close to the way many users perceive data, whereas low-level or physical data models provide 
concepts that describe the details of how data is stored in the computer. Concepts provided by low-
level data models are generally meant for computer specialists, not for typical end users. Between these 
two extremes is a class of representational (or implementation) data models, which provide 
concepts that may be understood by end users but that are not too far removed from the way data is 
organized within the computer. Representational data models hide some details of data storage but can 
be implemented on a computer system in a direct way.  

Conceptual data models use concepts such as entities, attributes, and relationships. An entity represents 
a real-world object or concept, such as an employee or a project, that is described in the database. An 
attribute represents some property of interest that further describes an entity, such as the employee’s 
name or salary. A relationship among two or more entities represents an interaction among the 
entities; for example, a works-on relationship between an employee and a project. In Chapter 3, we will 
present the Entity-Relationship model—a popular high-level conceptual data model. Chapter 4 
describes additional data modeling concepts, such as generalization, specialization, and categories.  

Representational or implementation data models are the models used most frequently in traditional 
commercial DBMSs, and they include the widely-used relational data model, as well as the so-called 
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legacy data models—the network and hierarchical models—that have been widely used in the past. 
Part II of this book is devoted to the relational data model, its operations and languages, and also 
includes an overview of two relational systems (Note 3). The SQL standard for relational databases is 
described in Chapter 8. Representational data models represent data by using record structures and 
hence are sometimes called record-based data models.  

We can regard object data models as a new family of higher-level implementation data models that 
are closer to conceptual data models. We describe the general characteristics of object databases, 
together with an overview of two object DBMSs, in Part III of this book. The ODMG proposed 
standard for object databases is described in Chapter 12. Object data models are also frequently utilized 
as high-level conceptual models, particularly in the software engineering domain.  

Physical data models describe how data is stored in the computer by representing information such as 
record formats, record orderings, and access paths. An access path is a structure that makes the search 
for particular database records efficient. We discuss physical storage techniques and access structures 
in Chapter 5 and Chapter 6.  

 
 

2.1.2 Schemas, Instances, and Database State 

In any data model it is important to distinguish between the description of the database and the 
database itself. The description of a database is called the database schema, which is specified during 
database design and is not expected to change frequently (Note 4). Most data models have certain 
conventions for displaying the schemas as diagrams (Note 5). A displayed schema is called a schema 
diagram. Figure 02.01 shows a schema diagram for the database shown in Figure 01.02; the diagram 
displays the structure of each record type but not the actual instances of records. We call each object in 
the schema—such as STUDENT or COURSE—a schema construct.  

 

 

 
 

A schema diagram displays only some aspects of a schema, such as the names of record types and data 
items, and some types of constraints. Other aspects are not specified in the schema diagram; for 
example, Figure 02.01 shows neither the data type of each data item nor the relationships among the 
various files. Many types of constraints are not represented in schema diagrams; for example, a 
constraint such as "students majoring in computer science must take CS1310 before the end of their 
sophomore year" is quite difficult to represent.  

The actual data in a database may change quite frequently; for example, the database shown in Figure 
01.02 changes every time we add a student or enter a new grade for a student. The data in the database 
at a particular moment in time is called a database state or snapshot. It is also called the current set of 
occurrences or instances in the database. In a given database state, each schema construct has its own 
current set of instances; for example, the STUDENT construct will contain the set of individual student 
entities (records) as its instances. Many database states can be constructed to correspond to a particular 
database schema. Every time we insert or delete a record, or change the value of a data item in a record, 
we change one state of the database into another state.  

The distinction between database schema and database state is very important. When we define a new 
database, we specify its database schema only to the DBMS. At this point, the corresponding database 
state is the empty state with no data. We get the initial state of the database when the database is first 
populated or loaded with the initial data. From then on, every time an update operation is applied to 
the database, we get another database state. At any point in time, the database has a current state (Note 
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6). The DBMS is partly responsible for ensuring that every state of the database is a valid state—that 
is, a state that satisfies the structure and constraints specified in the schema. Hence, specifying a correct 
schema to the DBMS is extremely important, and the schema must be designed with the utmost care. 
The DBMS stores the descriptions of the schema constructs and constraints—also called the meta-
data—in the DBMS catalog so that DBMS software can refer to the schema whenever it needs to. The 
schema is sometimes called the intension, and a database state an extension of the schema.  

Although, as mentioned earlier, the schema is not supposed to change frequently, it is not uncommon 
that changes need to be applied to the schema once in a while as the application requirements change. 
For example, we may decide that another data item needs to be stored for each record in a file, such as 
adding the DateOfBirth to the STUDENT schema in Figure 02.01. This is known as schema evolution. 
Most modern DBMSs include some operations for schema evolution that can be applied while the 
database is operational.  

 
 

2.2 DBMS Architecture and Data Independence 

2.2.1 The Three-Schema Architecture 
2.2.2 Data Independence

Three important characteristics of the database approach, listed in Section 1.3, are (1) insulation of 
programs and data (program-data and program-operation independence); (2) support of multiple user 
views; and (3) use of a catalog to store the database description (schema). In this section we specify an 
architecture for database systems, called the three-schema architecture (Note 7), which was proposed 
to help achieve and visualize these characteristics. We then discuss the concept of data independence.  

 
 

2.2.1 The Three-Schema Architecture 

The goal of the three-schema architecture, illustrated in Figure 02.02, is to separate the user 
applications and the physical database. In this architecture, schemas can be defined at the following 
three levels:  

1. The internal level has an internal schema, which describes the physical storage structure of 
the database. The internal schema uses a physical data model and describes the complete 
details of data storage and access paths for the database.  

2. The conceptual level has a conceptual schema, which describes the structure of the whole 
database for a community of users. The conceptual schema hides the details of physical 
storage structures and concentrates on describing entities, data types, relationships, user 
operations, and constraints. A high-level data model or an implementation data model can be 
used at this level.  

3. The external or view level includes a number of external schemas or user views. Each 
external schema describes the part of the database that a particular user group is interested in 
and hides the rest of the database from that user group. A high-level data model or an 
implementation data model can be used at this level.  

 

 
 

The three-schema architecture is a convenient tool for the user to visualize the schema levels in a 
database system. Most DBMSs do not separate the three levels completely, but support the three-
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schema architecture to some extent. Some DBMSs may include physical-level details in the conceptual 
schema. In most DBMSs that support user views, external schemas are specified in the same data 
model that describes the conceptual-level information. Some DBMSs allow different data models to be 
used at the conceptual and external levels.  

Notice that the three schemas are only descriptions of data; the only data that actually exists is at the 
physical level. In a DBMS based on the three-schema architecture, each user group refers only to its 
own external schema. Hence, the DBMS must transform a request specified on an external schema into 
a request against the conceptual schema, and then into a request on the internal schema for processing 
over the stored database. If the request is a database retrieval, the data extracted from the stored 
database must be reformatted to match the user’s external view. The processes of transforming requests 
and results between levels are called mappings. These mappings may be time-consuming, so some 
DBMSs—especially those that are meant to support small databases—do not support external views. 
Even in such systems, however, a certain amount of mapping is necessary to transform requests 
between the conceptual and internal levels.  

 
 

2.2.2 Data Independence 

The three-schema architecture can be used to explain the concept of data independence, which can be 
defined as the capacity to change the schema at one level of a database system without having to 
change the schema at the next higher level. We can define two types of data independence:  

1. Logical data independence is the capacity to change the conceptual schema without having 
to change external schemas or application programs. We may change the conceptual schema 
to expand the database (by adding a record type or data item), or to reduce the database (by 
removing a record type or data item). In the latter case, external schemas that refer only to the 
remaining data should not be affected. For example, the external schema of Figure 01.04(a) 
should not be affected by changing the GRADE_REPORT file shown in Figure 01.02 into the one 
shown in Figure 01.05(a). Only the view definition and the mappings need be changed in a 
DBMS that supports logical data independence. Application programs that reference the 
external schema constructs must work as before, after the conceptual schema undergoes a 
logical reorganization. Changes to constraints can be applied also to the conceptual schema 
without affecting the external schemas or application programs.  

2. Physical data independence is the capacity to change the internal schema without having to 
change the conceptual (or external) schemas. Changes to the internal schema may be needed 
because some physical files had to be reorganized—for example, by creating additional access 
structures—to improve the performance of retrieval or update. If the same data as before 
remains in the database, we should not have to change the conceptual schema. For example, 
providing an access path to improve retrieval of SECTION records (Figure 01.02) by Semester 
and Year should not require a query such as "list all sections offered in fall 1998" to be 
changed, although the query would be executed more efficiently by the DBMS by utilizing the 
new access path.  

Whenever we have a multiple-level DBMS, its catalog must be expanded to include information on 
how to map requests and data among the various levels. The DBMS uses additional software to 
accomplish these mappings by referring to the mapping information in the catalog. Data independence 
is accomplished because, when the schema is changed at some level, the schema at the next higher 
level remains unchanged; only the mapping between the two levels is changed. Hence, application 
programs referring to the higher-level schema need not be changed.  

The three-schema architecture can make it easier to achieve true data independence, both physical and 
logical. However, the two levels of mappings create an overhead during compilation or execution of a 
query or program, leading to inefficiencies in the DBMS. Because of this, few DBMSs have 
implemented the full three-schema architecture.  
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2.3 Database Languages and Interfaces 

2.3.1 DBMS Languages 
2.3.2 DBMS Interfaces

In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS must provide 
appropriate languages and interfaces for each category of users. In this section we discuss the types of 
languages and interfaces provided by a DBMS and the user categories targeted by each interface.  

 
 

2.3.1 DBMS Languages 

Once the design of a database is completed and a DBMS is chosen to implement the database, the first 
order of the day is to specify conceptual and internal schemas for the database and any mappings 
between the two. In many DBMSs where no strict separation of levels is maintained, one language, 
called the data definition language (DDL), is used by the DBA and by database designers to define 
both schemas. The DBMS will have a DDL compiler whose function is to process DDL statements in 
order to identify descriptions of the schema constructs and to store the schema description in the 
DBMS catalog.  

In DBMSs where a clear separation is maintained between the conceptual and internal levels, the DDL 
is used to specify the conceptual schema only. Another language, the storage definition language 
(SDL), is used to specify the internal schema. The mappings between the two schemas may be 
specified in either one of these languages. For a true three-schema architecture, we would need a third 
language, the view definition language (VDL), to specify user views and their mappings to the 
conceptual schema, but in most DBMSs the DDL is used to define both conceptual and external 
schemas.  

Once the database schemas are compiled and the database is populated with data, users must have some 
means to manipulate the database. Typical manipulations include retrieval, insertion, deletion, and 
modification of the data. The DBMS provides a data manipulation language (DML) for these 
purposes.  

In current DBMSs, the preceding types of languages are usually not considered distinct languages; 
rather, a comprehensive integrated language is used that includes constructs for conceptual schema 
definition, view definition, and data manipulation. Storage definition is typically kept separate, since it 
is used for defining physical storage structures to fine-tune the performance of the database system, and 
it is usually utilized by the DBA staff. A typical example of a comprehensive database language is the 
SQL relational database language (see Chapter 8), which represents a combination of DDL, VDL, and 
DML, as well as statements for constraint specification and schema evolution. The SDL was a 
component in earlier versions of SQL but has been removed from the language to keep it at the 
conceptual and external levels only.  

There are two main types of DMLs. A high-level or nonprocedural DML can be used on its own to 
specify complex database operations in a concise manner. Many DBMSs allow high-level DML 
statements either to be entered interactively from a terminal (or monitor) or to be embedded in a 
general-purpose programming language. In the latter case, DML statements must be identified within 
the program so that they can be extracted by a pre-compiler and processed by the DBMS. A low-level 
or procedural DML must be embedded in a general-purpose programming language. This type of 
DML typically retrieves individual records or objects from the database and processes each separately. 
Hence, it needs to use programming language constructs, such as looping, to retrieve and process each 
record from a set of records. Low-level DMLs are also called record-at-a-time DMLs because of this 
property. High-level DMLs, such as SQL, can specify and retrieve many records in a single DML 
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statement and are hence called set-at-a-time or set-oriented DMLs. A query in a high-level DML 
often specifies which data to retrieve rather than how to retrieve it; hence, such languages are also 
called declarative.  

Whenever DML commands, whether high-level or low-level, are embedded in a general-purpose 
programming language, that language is called the host language and the DML is called the data 
sublanguage (Note 8). On the other hand, a high-level DML used in a stand-alone interactive manner 
is called a query language. In general, both retrieval and update commands of a high-level DML may 
be used interactively and are hence considered part of the query language (Note 9).  

Casual end users typically use a high-level query language to specify their requests, whereas 
programmers use the DML in its embedded form. For naive and parametric users, there usually are 
user-friendly interfaces for interacting with the database; these can also be used by casual users or 
others who do not want to learn the details of a high-level query language. We discuss these types of 
interfaces next.  

 
 

2.3.2 DBMS Interfaces 

Menu-Based Interfaces for Browsing 
Forms-Based Interfaces 
Graphical User Interfaces 
Natural Language Interfaces 
Interfaces for Parametric Users 
Interfaces for the DBA

User-friendly interfaces provided by a DBMS may include the following.  

 
 

Menu-Based Interfaces for Browsing 

These interfaces present the user with lists of options, called menus, that lead the user through the 
formulation of a request. Menus do away with the need to memorize the specific commands and syntax 
of a query language; rather, the query is composed step by step by picking options from a menu that is 
displayed by the system. Pull-down menus are becoming a very popular technique in window-based 
user interfaces. They are often used in browsing interfaces, which allow a user to look through the 
contents of a database in an exploratory and unstructured manner.  

 
 

Forms-Based Interfaces 

A forms-based interface displays a form to each user. Users can fill out all of the form entries to insert 
new data, or they fill out only certain entries, in which case the DBMS will retrieve matching data for 
the remaining entries. Forms are usually designed and programmed for naive users as interfaces to 
canned transactions. Many DBMSs have forms specification languages, special languages that help 
programmers specify such forms. Some systems have utilities that define a form by letting the end user 
interactively construct a sample form on the screen.  
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Graphical User Interfaces 

A graphical interface (GUI) typically displays a schema to the user in diagrammatic form. The user can 
then specify a query by manipulating the diagram. In many cases, GUIs utilize both menus and forms. 
Most GUIs use a pointing device, such as a mouse, to pick certain parts of the displayed schema 
diagram.  

 
 

Natural Language Interfaces 

These interfaces accept requests written in English or some other language and attempt to "understand" 
them. A natural language interface usually has its own "schema," which is similar to the database 
conceptual schema. The natural language interface refers to the words in its schema, as well as to a set 
of standard words, to interpret the request. If the interpretation is successful, the interface generates a 
high-level query corresponding to the natural language request and submits it to the DBMS for 
processing; otherwise, a dialogue is started with the user to clarify the request.  

 
 

Interfaces for Parametric Users 

Parametric users, such as bank tellers, often have a small set of operations that they must perform 
repeatedly. Systems analysts and programmers design and implement a special interface for a known 
class of naive users. Usually, a small set of abbreviated commands is included, with the goal of 
minimizing the number of keystrokes required for each request. For example, function keys in a 
terminal can be programmed to initiate the various commands. This allows the parametric user to 
proceed with a minimal number of keystrokes.  

 
 

Interfaces for the DBA 

Most database systems contain privileged commands that can be used only by the DBA’s staff. These 
include commands for creating accounts, setting system parameters, granting account authorization, 
changing a schema, and reorganizing the storage structures of a database.  

 
 

2.4 The Database System Environment 

2.4.1 DBMS Component Modules 
2.4.2 Database System Utilities 
2.4.3 Tools, Application Environments, and Communications Facilities

A DBMS is a complex software system. In this section we discuss the types of software components 
that constitute a DBMS and the types of computer system software with which the DBMS interacts.  

 
 

2.4.1 DBMS Component Modules 
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Figure 02.03 illustrates, in a simplified form, the typical DBMS components. The database and the 
DBMS catalog are usually stored on disk. Access to the disk is controlled primarily by the operating 
system (OS), which schedules disk input/output. A higher-level stored data manager module of the 
DBMS controls access to DBMS information that is stored on disk, whether it is part of the database or 
the catalog. The dotted lines and circles marked A, B, C, D, and E in Figure 02.03 illustrate accesses 
that are under the control of this stored data manager. The stored data manager may use basic OS 
services for carrying out low-level data transfer between the disk and computer main storage, but it 
controls other aspects of data transfer, such as handling buffers in main memory. Once the data is in 
main memory buffers, it can be processed by other DBMS modules, as well as by application 
programs.  

 

 

 
 

The DDL compiler processes schema definitions, specified in the DDL, and stores descriptions of the 
schemas (meta-data) in the DBMS catalog. The catalog includes information such as the names of files, 
data items, storage details of each file, mapping information among schemas, and constraints, in 
addition to many other types of information that are needed by the DBMS modules. DBMS software 
modules then look up the catalog information as needed.  

The run-time database processor handles database accesses at run time; it receives retrieval or update 
operations and carries them out on the database. Access to disk goes through the stored data manager. 
The query compiler handles high-level queries that are entered interactively. It parses, analyzes, and 
compiles or interprets a query by creating database access code, and then generates calls to the run-time 
processor for executing the code. 

The pre-compiler extracts DML commands from an application program written in a host 
programming language. These commands are sent to the DML compiler for compilation into object 
code for database access. The rest of the program is sent to the host language compiler. The object 
codes for the DML commands and the rest of the program are linked, forming a canned transaction 
whose executable code includes calls to the runtime database processor.  

Figure 02.03 is not meant to describe a specific DBMS; rather it illustrates typical DBMS modules. 
The DBMS interacts with the operating system when disk accesses—to the database or to the catalog—
are needed. If the computer system is shared by many users, the OS will schedule DBMS disk access 
requests and DBMS processing along with other processes. The DBMS also interfaces with compilers 
for general-purpose host programming languages. User-friendly interfaces to the DBMS can be 
provided to help any of the user types shown in Figure 02.03 to specify their requests.  

 
 

2.4.2 Database System Utilities 

In addition to possessing the software modules just described, most DBMSs have database utilities 
that help the DBA in managing the database system. Common utilities have the following types of 
functions:  

1. Loading: A loading utility is used to load existing data files—such as text files or sequential 
files—into the database. Usually, the current (source) format of the data file and the desired 
(target) database file structure are specified to the utility, which then automatically reformats 
the data and stores it in the database. With the proliferation of DBMSs, transferring data from 
one DBMS to another is becoming common in many organizations. Some vendors are 
offering products that generate the appropriate loading programs, given the existing source 
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and target database storage descriptions (internal schemas). Such tools are also called 
conversion tools.  

2. Backup: A backup utility creates a backup copy of the database, usually by dumping the entire 
database onto tape. The backup copy can be used to restore the database in case of 
catastrophic failure. Incremental backups are also often used, where only changes since the 
previous backup are recorded. Incremental backup is more complex but it saves space.  

3. File reorganization: This utility can be used to reorganize a database file into a different file 
organization to improve performance.  

4. Performance monitoring: Such a utility monitors database usage and provides statistics to the 
DBA. The DBA uses the statistics in making decisions such as whether or not to reorganize 
files to improve performance.  

Other utilities may be available for sorting files, handling data compression, monitoring access by 
users, and performing other functions.  

 
 

2.4.3 Tools, Application Environments, and Communications Facilities 

Other tools are often available to database designers, users, and DBAs. CASE tools (Note 10) are used 
in the design phase of database systems. Another tool that can be quite useful in large organizations is 
an expanded data dictionary (or data repository) system. In addition to storing catalog information 
about schemas and constraints, the data dictionary stores other information, such as design decisions, 
usage standards, application program descriptions, and user information. Such a system is also called 
an information repository. This information can be accessed directly by users or the DBA when 
needed. A data dictionary utility is similar to the DBMS catalog, but it includes a wider variety of 
information and is accessed mainly by users rather than by the DBMS software.  

Application development environments, such as the PowerBuilder system, are becoming quite 
popular. These systems provide an environment for developing database applications and include 
facilities that help in many facets of database systems, including database design, GUI development, 
querying and updating, and application program development.  

The DBMS also needs to interface with communications software, whose function is to allow users at 
locations remote from the database system site to access the database through computer terminals, 
workstations, or their local personal computers. These are connected to the database site through data 
communications hardware such as phone lines, long-haul networks, local-area networks, or satellite 
communication devices. Many commercial database systems have communication packages that work 
with the DBMS. The integrated DBMS and data communications system is called a DB/DC system. In 
addition, some distributed DBMSs are physically distributed over multiple machines. In this case, 
communications networks are needed to connect the machines. These are often local area networks 
(LANs) but they can also be other types of networks.  

 
 

2.5 Classification of Database Management Systems 

Several criteria are normally used to classify DBMSs. The first is the data model on which the DBMS 
is based. The two types of data models used in many current commercial DBMSs are the relational 
data model and the object data model. Many legacy applications still run on database systems based 
on the hierarchical and network data models. The relational DBMSs are evolving continuously, and, 
in particular, have been incorporating many of the concepts that were developed in object databases. 
This has led to a new class of DBMSs that are being called object-relational DBMSs. We can hence 
categorize DBMSs based on the data model: relational, object, object-relational, hierarchical, network, 
and other.  
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The second criterion used to classify DBMSs is the number of users supported by the system. Single-
user systems support only one user at a time and are mostly used with personal computers. Multiuser 
systems, which include the majority of DBMSs, support multiple users concurrently.  

A third criterion is the number of sites over which the database is distributed. A DBMS is centralized 
if the data is stored at a single computer site. A centralized DBMS can support multiple users, but the 
DBMS and the database themselves reside totally at a single computer site. A distributed DBMS 
(DDBMS) can have the actual database and DBMS software distributed over many sites, connected by 
a computer network. Homogeneous DDBMSs use the same DBMS software at multiple sites. A recent 
trend is to develop software to access several autonomous preexisting databases stored under 
heterogeneous DBMSs. This leads to a federated DBMS (or multidatabase system), where the 
participating DBMSs are loosely coupled and have a degree of local autonomy. Many DDBMSs use a 
client-server architecture.  

A fourth criterion is the cost of the DBMS. The majority of DBMS packages cost between $10,000 and 
$100,000. Single-user low-end systems that work with microcomputers cost between $100 and $3000. 
At the other end, a few elaborate packages cost more than $100,000.  

We can also classify a DBMS on the basis of the types of access path options for storing files. One 
well-known family of DBMSs is based on inverted file structures. Finally, a DBMS can be general-
purpose or special-purpose. When performance is a primary consideration, a special-purpose DBMS 
can be designed and built for a specific application; such a system cannot be used for other applications 
without major changes. Many airline reservations and telephone directory systems developed in the 
past are special-purpose DBMSs. These fall into the category of on-line transaction processing 
(OLTP) systems, which must support a large number of concurrent transactions without imposing 
excessive delays.  

Let us briefly elaborate on the main criterion for classifying DBMSs: the data model. The basic 
relational data model represents a database as a collection of tables, where each table can be stored as a 
separate file. The database in Figure 01.02 is shown in a manner very similar to a relational 
representation. Most relational databases use the high-level query language called SQL and support a 
limited form of user views. We discuss the relational model, its languages and operations, and two 
sample commercial systems in Chapter 7 through Chapter 10.  

The object data model defines a database in terms of objects, their properties, and their operations. 
Objects with the same structure and behavior belong to a class, and classes are organized into 
hierarchies (or acyclic graphs). The operations of each class are specified in terms of predefined 
procedures called methods. Relational DBMSs have been extending their models to incorporate object 
database concepts and other capabilities; these systems are referred to as object-relational or 
extended-relational systems. We discuss object databases and extended-relational systems in Chapter 
11, Chapter 12 and Chapter 13.  

The network model represents data as record types and also represents a limited type of 1:N 
relationship, called a set type. Figure 02.04 shows a network schema diagram for the database of 
Figure 01.02, where record types are shown as rectangles and set types are shown as labeled directed 
arrows. The network model, also known as the CODASYL DBTG model (Note 11), has an associated 
record-at-a-time language that must be embedded in a host programming language. The hierarchical 
model represents data as hierarchical tree structures. Each hierarchy represents a number of related 
records. There is no standard language for the hierarchical model, although most hierarchical DBMSs 
have record-at-a-time languages. We give a brief overview of the network and hierarchical models in 
Appendix C and Appendix D (Note 12).  
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2.6 Summary 

In this chapter we introduced the main concepts used in database systems. We defined a data model, 
and we distinguished three main categories of data models:  

• High-level or conceptual data models (based on entities and relationships).  
• Low-level or physical data models.  
• Representational or implementation data models (record-based, object-oriented).  

We distinguished the schema, or description of a database, from the database itself. The schema does 
not change very often, whereas the database state changes every time data is inserted, deleted, or 
modified. We then described the three-schema DBMS architecture, which allows three schema levels:  

• An internal schema describes the physical storage structure of the database. 
• A conceptual schema is a high-level description of the whole database.  
• External schemas describe the views of different user groups.  

A DBMS that cleanly separates the three levels must have mappings between the schemas to transform 
requests and results from one level to the next. Most DBMSs do not separate the three levels 
completely. We used the three-schema architecture to define the concepts of logical and physical data 
independence.  

We then discussed the main types of languages and interfaces that DBMSs support. A data definition 
language (DDL) is used to define the database conceptual schema. In most DBMSs, the DDL also 
defines user views and, sometimes, storage structures; in other DBMSs, separate languages (VDL, 
SDL) may exist for specifying views and storage structures. The DBMS compiles all schema 
definitions and stores their descriptions in the DBMS catalog. A data manipulation language (DML) is 
used for specifying database retrievals and updates. DMLs can be high-level (set-oriented, 
nonprocedural) or low-level (record-oriented, procedural). A high-level DML can be embedded in a 
host programming language, or it can be used as a stand-alone language; in the latter case it is often 
called a query language.  

We discussed different types of interfaces provided by DBMSs, and the types of DBMS users with 
which each interface is associated. We then discussed the database system environment, typical DBMS 
software modules, and DBMS utilities for helping users and the DBA perform their tasks.  

In the final section, we classified DBMSs according to several criteria: data model, number of users, 
number of sites, cost, types of access paths, and generality. The main classification of DBMSs is based 
on the data model. We briefly discussed the main data models used in current commercial DBMSs.  

 
 

Review Questions 

  2.1. Define the following terms: data model, database schema, database state, internal schema, 
conceptual schema, external schema, data independence, DDL, DML, SDL, VDL, query 
language, host language, data sublanguage, database utility, catalog, client-server architecture. 

  2.2. Discuss the main categories of data models.  

  2.3. What is the difference between a database schema and a database state?  

  2.4. Describe the three-schema architecture. Why do we need mappings between schema levels? 
How do different schema definition languages support this architecture?  

  2.5. What is the difference between logical data independence and physical data independence?  
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  2.6. What is the difference between procedural and nonprocedural DMLs?  

  2.7. Discuss the different types of user-friendly interfaces and the types of users who typically use 
each.  

  2.8. With what other computer system software does a DBMS interact?  

  2.9. Discuss some types of database utilities and tools and their functions.  

 
 

Exercises 

2.10. Think of different users for the database of Figure 01.02. What types of applications would each 
user need? To which user category would each belong, and what type of interface would each 
need?  

2.11. Choose a database application with which you are familiar. Design a schema and show a sample 
database for that application, using the notation of Figure 02.01 and Figure 01.02. What types of 
additional information and constraints would you like to represent in the schema? Think of 
several users for your database, and design a view for each.  
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Many database textbooks, including Date (1995), Silberschatz et al. (1998), Ramakrishnan (1997), 
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Tsichritzis and Klug (1978) and Jardine (1977) present the three-schema architecture, which was first 
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(ANSI) report (1975). An in-depth analysis of the relational data model and some of its possible 
extensions is given in Codd (1992). The proposed standard for object-oriented databases is described in 
Cattell (1997).  

An example of database utilities is the ETI Extract Toolkit (www.eti.com) and the database 
administration tool DB Artisan from Embarcadero Technologies (www.embarcadero.com).  
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Note 3 
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Note 12
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Note 1 

Sometimes the word model is used to denote a specific database description, or schema—for example, 
"the marketing data model." We will not use this interpretation.  

 
 

Note 2 

The inclusion of concepts to describe behavior reflects a trend where database design and software 
design activities are increasingly being combined into a single activity. Traditionally, specifying 
behavior is associated with software design.  

 
 

Note 3 

A summary of the network and hierarchical data models is included in Appendix C and Appendix D. 
The full chapters from the second edition of this book are accessible from 
http://cseng.aw.com/book/0,,0805317554,00.html.  

 
 

Note 4 

Schema changes are usually needed as the requirements of the database applications change. Newer 
database systems include operations for allowing schema changes, although the schema change process 
is more involved than simple database updates.  

 
 

Note 5 

It is customary in database parlance to use schemas as plural for schema, even though schemata is the 
proper plural form. The word scheme is sometimes used for schema.  

 
 

Note 6 

The current state is also called the current snapshot of the database.  

 
 

Note 7 

This is also known as the ANSI/SPARC architecture, after the committee that proposed it (Tsichritzis 
and Klug 1978).  
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Note 8 

In object databases, the host and data sublanguages typically form one integrated language—for 
example, C++ with some extensions to support database functionality. Some relational systems also 
provide integrated languages—for example, ORACLE’s PL/SQL.  

 
 

Note 9 

According to the meaning of the word query in English, it should really be used to describe only 
retrievals, not updates.  

 
 

Note 10 

Although CASE stands for Computer Aided Software Engineering, many CASE tools are used 
primarily for database design.  

 
 

Note 11 

CODASYL DBTG stands for Computer Data Systems Language Data Base Task Group, which is the 
committee that specified the network model and its language.  

 
 

Note 12 

The full chapters on the network and hierarchical models from the second edition of this book are 
available at http://cseng.aw.com/book/0,,0805317554,00.html.  

 
 

Chapter 3: Data Modeling Using the Entity-
Relationship Model 
3.1 Using High-Level Conceptual Data Models for Database Design 
3.2 An Example Database Application 
3.3 Entity Types, Entity Sets, Attributes, and Keys 
3.4 Relationships, Relationship Types, Roles, and Structural Constraints 
3.5 Weak Entity Types 
3.6 Refining the ER Design for the COMPANY Database 
3.7 ER Diagrams, Naming Conventions, and Design Issues 
3.8 Summary 
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Review Questions 
Exercises 
Selected Bibliography 
Footnotes

Conceptual modeling is an important phase in designing a successful database application. Generally, 
the term database application refers to a particular database—for example, a BANK database that keeps 
track of customer accounts—and the associated programs that implement the database queries and 
updates—for example, programs that implement database updates corresponding to customers making 
deposits and withdrawals. These programs often provide user-friendly graphical user interfaces (GUIs) 
utilizing forms and menus. Hence, part of the database application will require the design, 
implementation, and testing of these application programs. Traditionally, the design and testing of 
application programs has been considered to be more in the realm of the software engineering domain 
than in the database domain. However, it is becoming clearer that there is some commonality between 
database design methodologies and software engineering design methodologies. As database design 
methodologies attempt to include more of the concepts for specifying operations on database objects, 
and as software engineering methodologies specify in more detail the structure of the databases that 
software programs will use and access, it is certain that this commonality will increase. We will briefly 
discuss some of the concepts for specifying database operations in Chapter 4, and again when we 
discuss object databases in Part III of this book.  

In this chapter, we will follow the traditional approach of concentrating on the database structures and 
constraints during database design. We will present the modeling concepts of the Entity-Relationship 
(ER) model, which is a popular high-level conceptual data model. This model and its variations are 
frequently used for the conceptual design of database applications, and many database design tools 
employ its concepts. We describe the basic data-structuring concepts and constraints of the ER model 
and discuss their use in the design of conceptual schemas for database applications.  

This chapter is organized as follows. In Section 3.1 we discuss the role of high-level conceptual data 
models in database design. We introduce the requirements for an example database application in 
Section 3.2 to illustrate the use of the ER model concepts. This example database is also used in 
subsequent chapters. In Section 3.3 we present the concepts of entities and attributes, and we gradually 
introduce the diagrammatic technique for displaying an ER schema. In Section 3.4, we introduce the 
concepts of binary relationships and their roles and structural constraints. Section 3.5 introduces weak 
entity types. Section 3.6 shows how a schema design is refined to include relationships. Section 3.7 
reviews the notation for ER diagrams, summarizes the issues that arise in schema design, and discusses 
how to choose the names for database schema constructs. Section 3.8 summarizes the chapter.  

The material in Section 3.3 and Section 3.4 provides a somewhat detailed description, and some may 
be left out of an introductory course if desired. On the other hand, if more thorough coverage of data 
modeling concepts and conceptual database design is desired, the reader should continue on to the 
material in Chapter 4 after concluding Chapter 3. In Chapter 4, we describe extensions to the ER model 
that lead to the Enhanced-ER (EER) model, which includes concepts such as specialization, 
generalization, inheritance, and union types (categories). We also introduce object modeling and the 
Universal Modeling Language (UML) notation in Chapter 4, which has been proposed as a standard for 
object modeling.  

 
 

3.1 Using High-Level Conceptual Data Models for Database Design 

Figure 03.01 shows a simplified description of the database design process. The first step shown is 
requirements collection and analysis. During this step, the database designers interview prospective 
database users to understand and document their data requirements. The result of this step is a 
concisely written set of users’ requirements. These requirements should be specified in as detailed and 
complete a form as possible. In parallel with specifying the data requirements, it is useful to specify the 
known functional requirements of the application. These consist of the user-defined operations (or 
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transactions) that will be applied to the database, and they include both retrievals and updates. In 
software design, it is common to use data flow diagrams, sequence diagrams, scenarios, and other 
techniques for specifying functional requirements. We will not discuss any of these techniques here 
because they are usually part of software engineering texts.  

 

 

 
 

Once all the requirements have been collected and analyzed, the next step is to create a conceptual 
schema for the database, using a high-level conceptual data model. This step is called conceptual 
design. The conceptual schema is a concise description of the data requirements of the users and 
includes detailed descriptions of the entity types, relationships, and constraints; these are expressed 
using the concepts provided by the high-level data model. Because these concepts do not include 
implementation details, they are usually easier to understand and can be used to communicate with 
nontechnical users. The high-level conceptual schema can also be used as a reference to ensure that all 
users’ data requirements are met and that the requirements do not include conflicts. This approach 
enables the database designers to concentrate on specifying the properties of the data, without being 
concerned with storage details. Consequently, it is easier for them to come up with a good conceptual 
database design.  

During or after the conceptual schema design, the basic data model operations can be used to specify 
the high-level user operations identified during functional analysis. This also serves to confirm that the 
conceptual schema meets all the identified functional requirements. Modifications to the conceptual 
schema can be introduced if some functional requirements cannot be specified in the initial schema.  

The next step in database design is the actual implementation of the database, using a commercial 
DBMS. Most current commercial DBMSs use an implementation data model—such as the relational or 
the object database model—so the conceptual schema is transformed from the high-level data model 
into the implementation data model. This step is called logical design or data model mapping, and its 
result is a database schema in the implementation data model of the DBMS.  

Finally, the last step is the physical design phase, during which the internal storage structures, access 
paths, and file organizations for the database files are specified. In parallel with these activities, 
application programs are designed and implemented as database transactions corresponding to the 
high-level transaction specifications. We will discuss the database design process in more detail, 
including an overview of physical database design, in Chapter 16.  

We present only the ER model concepts for conceptual schema design in this chapter. The 
incorporation of user-defined operations is discussed in Chapter 4, when we introduce object modeling.  

 
 

3.2 An Example Database Application 

In this section we describe an example database application, called COMPANY, which serves to illustrate 
the ER model concepts and their use in schema design. We list the data requirements for the database 
here, and then we create its conceptual schema step-by-step as we introduce the modeling concepts of 
the ER model. The COMPANY database keeps track of a company’s employees, departments, and 
projects. Suppose that, after the requirements collection and analysis phase, the database designers 
stated the following description of the "miniworld"—the part of the company to be represented in the 
database:  
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1. The company is organized into departments. Each department has a unique name, a unique 
number, and a particular employee who manages the department. We keep track of the start 
date when that employee began managing the department. A department may have several 
locations.  

2. A department controls a number of projects, each of which has a unique name, a unique 
number, and a single location.  

3. We store each employee’s name, social security number (Note 1), address, salary, sex, and 
birth date. An employee is assigned to one department but may work on several projects, 
which are not necessarily controlled by the same department. We keep track of the number of 
hours per week that an employee works on each project. We also keep track of the direct 
supervisor of each employee.  

4. We want to keep track of the dependents of each employee for insurance purposes. We keep 
each dependent’s first name, sex, birth date, and relationship to the employee.  

Figure 03.02 shows how the schema for this database application can be displayed by means of the 
graphical notation known as ER diagrams. We describe the process of deriving this schema from the 
stated requirements—and explain the ER diagrammatic notation—as we introduce the ER model 
concepts in the following section.  

 

 

 
 

3.3 Entity Types, Entity Sets, Attributes, and Keys 

3.3.1 Entities and Attributes 
3.3.2 Entity Types, Entity Sets, Keys, and Value Sets 
3.3.3 Initial Conceptual Design of the COMPANY Database

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1 we introduce the 
concepts of entities and their attributes. We discuss entity types and key attributes in Section 3.3.2. 
Then, in Section 3.3.3, we specify the initial conceptual design of the entity types for the COMPANY 
database. Relationships are described in Section 3.4.  

 
 

3.3.1 Entities and Attributes 

Entities and Their Attributes 
Composite Versus Simple (Atomic) Attributes 
Single-valued Versus Multivalued Attributes 
Stored Versus Derived Attributes 
Null Values 
Complex Attributes

Entities and Their Attributes 

The basic object that the ER model represents is an entity, which is a "thing" in the real world with an 
independent existence. An entity may be an object with a physical existence—a particular person, car, 
house, or employee—or it may be an object with a conceptual existence—a company, a job, or a 
university course. Each entity has attributes—the particular properties that describe it. For example, 
an employee entity may be described by the employee’s name, age, address, salary, and job. A 
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particular entity will have a value for each of its attributes. The attribute values that describe each 
entity become a major part of the data stored in the database.  

Figure 03.03 shows two entities and the values of their attributes. The employee entity e1 has four 
attributes: Name, Address, Age, and HomePhone; their values are "John Smith," "2311 Kirby, 
Houston, Texas 77001," "55," and "713-749-2630," respectively. The company entity c1 has three 
attributes: Name, Headquarters, and President; their values are "Sunco Oil," "Houston," and "John 
Smith," respectively.  

 

 

 
 

Several types of attributes occur in the ER model: simple versus composite; single-valued versus 
multivalued; and stored versus derived. We first define these attribute types and illustrate their use via 
examples. We then introduce the concept of a null value for an attribute.  

 
 

Composite Versus Simple (Atomic) Attributes 

Composite attributes can be divided into smaller subparts, which represent more basic attributes with 
independent meanings. For example, the Address attribute of the employee entity shown in Figure 
03.03 can be sub-divided into StreetAddress, City, State, and Zip (Note 2), with the values "2311 
Kirby," "Houston," "Texas," and "77001." Attributes that are not divisible are called simple or atomic 
attributes. Composite attributes can form a hierarchy; for example, StreetAddress can be subdivided 
into three simple attributes, Number, Street, and ApartmentNumber, as shown in Figure 03.04. The 
value of a composite attribute is the concatenation of the values of its constituent simple attributes.  

 

 

 
 

Composite attributes are useful to model situations in which a user sometimes refers to the composite 
attribute as a unit but at other times refers specifically to its components. If the composite attribute is 
referenced only as a whole, there is no need to subdivide it into component attributes. For example, if 
there is no need to refer to the individual components of an address (Zip, Street, and so on), then the 
whole address is designated as a simple attribute.  

 
 

Single-valued Versus Multivalued Attributes 

Most attributes have a single value for a particular entity; such attributes are called single-valued. For 
example, Age is a single-valued attribute of person. In some cases an attribute can have a set of values 
for the same entity—for example, a Colors attribute for a car, or a CollegeDegrees attribute for a 
person. Cars with one color have a single value, whereas two-tone cars have two values for Colors. 
Similarly, one person may not have a college degree, another person may have one, and a third person 
may have two or more degrees; so different persons can have different numbers of values for the 
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CollegeDegrees attribute. Such attributes are called multivalued. A multivalued attribute may have 
lower and upper bounds on the number of values allowed for each individual entity. For example, the 
Colors attribute of a car may have between one and three values, if we assume that a car can have at 
most three colors.  

 
 

Stored Versus Derived Attributes 

In some cases two (or more) attribute values are related—for example, the Age and BirthDate attributes 
of a person. For a particular person entity, the value of Age can be determined from the current 
(today’s) date and the value of that person’s BirthDate. The Age attribute is hence called a derived 
attribute and is said to be derivable from the BirthDate attribute, which is called a stored attribute. 
Some attribute values can be derived from related entities; for example, an attribute 
NumberOfEmployees of a department entity can be derived by counting the number of employees 
related to (working for) that department.  

 
 

Null Values 

In some cases a particular entity may not have an applicable value for an attribute. For example, the 
ApartmentNumber attribute of an address applies only to addresses that are in apartment buildings and 
not to other types of residences, such as single-family homes. Similarly, a CollegeDegrees attribute 
applies only to persons with college degrees. For such situations, a special value called null is created. 
An address of a single-family home would have null for its ApartmentNumber attribute, and a person 
with no college degree would have null for CollegeDegrees. Null can also be used if we do not know 
the value of an attribute for a particular entity—for example, if we do not know the home phone of 
"John Smith" in Figure 03.03. The meaning of the former type of null is not applicable, whereas the 
meaning of the latter is unknown. The unknown category of null can be further classified into two 
cases. The first case arises when it is known that the attribute value exists but is missing—for example, 
if the Height attribute of a person is listed as null. The second case arises when it is not known whether 
the attribute value exists—for example, if the HomePhone attribute of a person is null.  

 
 

Complex Attributes 

Notice that composite and multivalued attributes can be nested in an arbitrary way. We can represent 
arbitrary nesting by grouping components of a composite attribute between parentheses ( ) and 
separating the components with commas, and by displaying multivalued attributes between braces {}. 
Such attributes are called complex attributes. For example, if a person can have more than one 
residence and each residence can have multiple phones, an attribute AddressPhone for a PERSON entity 
type can be specified as shown in Figure 03.05.  

 

 

 
 

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets 
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Entity Types and Entity Sets 
Key Attributes of an Entity Type 
Value Sets (Domains) of Attributes

Entity Types and Entity Sets 

A database usually contains groups of entities that are similar. For example, a company employing 
hundreds of employees may want to store similar information concerning each of the employees. These 
employee entities share the same attributes, but each entity has its own value(s) for each attribute. An 
entity type defines a collection (or set) of entities that have the same attributes. Each entity type in the 
database is described by its name and attributes. Figure 03.06 shows two entity types, named EMPLOYEE 
and COMPANY, and a list of attributes for each. A few individual entities of each type are also illustrated, 
along with the values of their attributes. The collection of all entities of a particular entity type in the 
database at any point in time is called an entity set; the entity set is usually referred to using the same 
name as the entity type. For example, EMPLOYEE refers to both a type of entity as well as the current set 
of all employee entities in the database.  

 

 

 
 

An entity type is represented in ER diagrams (Note 3) (see Figure 03.02) as a rectangular box enclosing 
the entity type name. Attribute names are enclosed in ovals and are attached to their entity type by 
straight lines. Composite attributes are attached to their component attributes by straight lines. 
Multivalued attributes are displayed in double ovals.  

An entity type describes the schema or intension for a set of entities that share the same structure. The 
collection of entities of a particular entity type are grouped into an entity set, which is also called the 
extension of the entity type.  

 
 

Key Attributes of an Entity Type 

An important constraint on the entities of an entity type is the key or uniqueness constraint on 
attributes. An entity type usually has an attribute whose values are distinct for each individual entity in 
the collection. Such an attribute is called a key attribute, and its values can be used to identify each 
entity uniquely. For example, the Name attribute is a key of the COMPANY entity type in Figure 03.06, 
because no two companies are allowed to have the same name. For the PERSON entity type, a typical 
key attribute is SocialSecurityNumber. Sometimes, several attributes together form a key, meaning that 
the combination of the attribute values must be distinct for each entity. If a set of attributes possesses 
this property, we can define a composite attribute that becomes a key attribute of the entity type. Notice 
that a composite key must be minimal; that is, all component attributes must be included in the 
composite attribute to have the uniqueness property (Note 4). In ER diagrammatic notation, each key 
attribute has its name underlined inside the oval, as illustrated in Figure 03.02.  

Specifying that an attribute is a key of an entity type means that the preceding uniqueness property 
must hold for every extension of the entity type. Hence, it is a constraint that prohibits any two entities 
from having the same value for the key attribute at the same time. It is not the property of a particular 
extension; rather, it is a constraint on all extensions of the entity type. This key constraint (and other 
constraints we discuss later) is derived from the constraints of the miniworld that the database 
represents.  
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Some entity types have more than one key attribute. For example, each of the VehicleID and 
Registration attributes of the entity type CAR (Figure 03.07) is a key in its own right. The Registration 
attribute is an example of a composite key formed from two simple component attributes, 
RegistrationNumber and State, neither of which is a key on its own. An entity type may also have no 
key, in which case it is called a weak entity type (see Section 3.5).  

 

 

 
 

Value Sets (Domains) of Attributes 

Each simple attribute of an entity type is associated with a value set (or domain of values), which 
specifies the set of values that may be assigned to that attribute for each individual entity. In Figure 
03.06, if the range of ages allowed for employees is between 16 and 70, we can specify the value set of 
the Age attribute of EMPLOYEE to be the set of integer numbers between 16 and 70. Similarly, we can 
specify the value set for the Name attribute as being the set of strings of alphabetic characters separated 
by blank characters and so on. Value sets are not displayed in ER diagrams.  

Mathematically, an attribute A of entity type E whose value set is V can be defined as a function from 
E to the power set (Note 5) P(V) of V:  

 
 

A : E â P(V)  

 
 

We refer to the value of attribute A for entity e as A(e). The previous definition covers both single-
valued and multivalued attributes, as well as nulls. A null value is represented by the empty set. For 
single-valued attributes, A(e) is restricted to being a singleton for each entity e in E whereas there is no 
restriction on multivalued attributes (Note 6). For a composite attribute A, the value set V is the 
Cartesian product of P(), P(), . . ., P(), where , , . . ., are the value sets of the simple component 
attributes that form A:  

 
 

 
 

3.3.3 Initial Conceptual Design of the COMPANY Database 

We can now define the entity types for the COMPANY database, based on the requirements described in 
Section 3.2. After defining several entity types and their attributes here, we refine our design in Section 
3.4 (after introducing the concept of a relationship). According to the requirements listed in Section 
3.2, we can identify four entity types—one corresponding to each of the four items in the specification 
(see Figure 03.08):  

1. An entity type DEPARTMENT with attributes Name, Number, Locations, Manager, and 
ManagerStartDate. Locations is the only multivalued attribute. We can specify that both Name 
and Number are (separate) key attributes, because each was specified to be unique.  
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2. An entity type PROJECT with attributes Name, Number, Location, and ControllingDepartment. 
Both Name and Number are (separate) key attributes.  

3. An entity type EMPLOYEE with attributes Name, SSN (for social security number), Sex, 
Address, Salary, BirthDate, Department, and Supervisor. Both Name and Address may be 
composite attributes; however, this was not specified in the requirements. We must go back to 
the users to see if any of them will refer to the individual components of Name—FirstName, 
MiddleInitial, LastName—or of Address.  

4. An entity type DEPENDENT with attributes Employee, DependentName, Sex, BirthDate, and 
Relationship (to the employee).  

 

 
 

So far, we have not represented the fact that an employee can work on several projects, nor have we 
represented the number of hours per week an employee works on each project. This characteristic is 
listed as part of requirement 3 in Section 3.2, and it can be represented by a multivalued composite 
attribute of EMPLOYEE called WorksOn with simple components (Project, Hours). Alternatively, it can 
be represented as a multivalued composite attribute of PROJECT called Workers with simple 
components (Employee, Hours). We choose the first alternative in Figure 03.08, which shows each of 
the entity types described above. The Name attribute of EMPLOYEE is shown as a composite attribute, 
presumably after consultation with the users.  

 
 

3.4 Relationships, Relationship Types, Roles, and Structural 
Constraints 

3.4.1 Relationship Types, Sets and Instances 
3.4.2 Relationship Degree, Role Names, and Recursive Relationships 
3.4.3 Constraints on Relationship Types 
3.4.4 Attributes of Relationship Types

In Figure 03.08 there are several implicit relationships among the various entity types. In fact, 
whenever an attribute of one entity type refers to another entity type, some relationship exists. For 
example, the attribute Manager of DEPARTMENT refers to an employee who manages the department; 
the attribute ControllingDepartment of PROJECT refers to the department that controls the project; the 
attribute Supervisor of EMPLOYEE refers to another employee (the one who supervises this employee); 
the attribute Department of EMPLOYEE refers to the department for which the employee works; and so 
on. In the ER model, these references should not be represented as attributes but as relationships, 
which are discussed in this section. The COMPANY database schema will be refined in Section 3.6 to 
represent relationships explicitly. In the initial design of entity types, relationships are typically 
captured in the form of attributes. As the design is refined, these attributes get converted into 
relationships between entity types.  

This section is organized as follows. Section 3.4.1 introduces the concepts of relationship types, sets, 
and instances. Section 3.4.2 defines the concepts of relationship degree, role names, and recursive 
relationships. Section 3.4.3 discusses structural constraints on relationships, such as cardinality ratios 
(1:1, 1:N, M:N) and existence dependencies. Section 3.4.4 shows how relationship types can also have 
attributes.  

 
 

3.4.1 Relationship Types, Sets and Instances 
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A relationship type R among n entity types , , . . ., defines a set of associations—or a relationship 
set—among entities from these types. As for entity types and entity sets, a relationship type and its 
corresponding relationship set are customarily referred to by the same name R. Mathematically, the 
relationship set R is a set of relationship instances , where each associates n individual entities (, , . . ., 
), and each entity in is a member of entity type , 1 1 j 1 n. Hence, a relationship type is a mathematical 
relation on , , . . ., , or alternatively it can be defined as a subset of the Cartesian product x x . . . x . 
Each of the entity types , , . . ., is said to participate in the relationship type R, and similarly each of 
the individual entities , , . . ., is said to participate in the relationship instance = (, , . . ., ).  

Informally, each relationship instance in R is an association of entities, where the association includes 
exactly one entity from each participating entity type. Each such relationship instance represents the 
fact that the entities participating in are related in some way in the corresponding miniworld situation. 
For example, consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and 
DEPARTMENT, which associates each employee with the department the employee works for. Each 
relationship instance in the relationship set WORKS_FOR associates one employee entity and one 
department entity. Figure 03.09 illustrates this example, where each relationship instance is shown 
connected to the employee and department entities that participate in . In the miniworld represented by 
Figure 03.09, employees e1, e3, and e6 work for department d1; e2 and e4 work for d2; and e5 and e7 work 
for d3.  

 

 

 
 

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are connected by 
straight lines to the rectangular boxes representing the participating entity types. The relationship name 
is displayed in the diamond-shaped box (see Figure 03.02).  

 
 

3.4.2 Relationship Degree, Role Names, and Recursive Relationships 

Degree of a Relationship Type 
Relationships as Attributes 
Role Names and Recursive Relationships

Degree of a Relationship Type 

The degree of a relationship type is the number of participating entity types. Hence, the WORKS_FOR 
relationship is of degree two. A relationship type of degree two is called binary, and one of degree 
three is called ternary. An example of a ternary relationship is SUPPLY, shown in Figure 03.10, where 
each relationship instance associates three entities—a supplier s, a part p, and a project j—whenever s 
supplies part p to project j. Relationships can generally be of any degree, but the ones most common 
are binary relationships. Higher-degree relationships are generally more complex than binary 
relationships, and we shall characterize them further in Chapter 4.  
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Relationships as Attributes 

It is sometimes convenient to think of a relationship type in terms of attributes, as we discussed in 
Section 3.3.3. Consider the WORKS_FOR relationship type of Figure 03.09. One can think of an attribute 
called Department of the EMPLOYEE entity type whose value for each employee entity is (a reference to) 
the department entity that the employee works for. Hence, the value set for this Department attribute is 
the set of all DEPARTMENT entities. This is what we did in Figure 03.08 when we specified the initial 
design of the entity type EMPLOYEE for the COMPANY database. However, when we think of a binary 
relationship as an attribute, we always have two options. In this example, the alternative is to think of a 
multivalued attribute Employees of the entity type DEPARTMENT whose values for each department 
entity is the set of employee entities who work for that department. The value set of this Employees 
attribute is the EMPLOYEE entity set. Either of these two attributes—Department of EMPLOYEE or 
Employees of DEPARTMENT—can represent the WORKS_FOR relationship type. If both are represented, 
they are constrained to be inverses of each other (Note 7). 

 
 

Role Names and Recursive Relationships 

Each entity type that participates in a relationship type plays a particular role in the relationship. The 
role name signifies the role that a participating entity from the entity type plays in each relationship 
instance, and helps to explain what the relationship means. For example, in the WORKS_FOR 
relationship type, EMPLOYEE plays the role of employee or worker and DEPARTMENT plays the role of 
department or employer.  

Role names are not technically necessary in relationship types where all the participating entity types 
are distinct, since each entity type name can be used as the role name. However, in some cases the 
same entity type participates more than once in a relationship type in different roles. In such cases the 
role name becomes essential for distinguishing the meaning of each participation. Such relationship 
types are called recursive relationships, and Figure 03.11 shows an example. The SUPERVISION 
relationship type relates an employee to a supervisor, where both employee and supervisor entities are 
members of the same EMPLOYEE entity type. Hence, the EMPLOYEE entity type participates twice in 
SUPERVISION: once in the role of supervisor (or boss), and once in the role of supervisee (or 
subordinate). Each relationship instance in SUPERVISION associates two employee entities ej and ek, one 
of which plays the role of supervisor and the other the role of supervisee. In Figure 03.11, the lines 
marked "1" represent the supervisor role, and those marked "2" represent the supervisee role; hence, e1 
supervises e2 and e3; e4 supervises e6 and e7; and e5 supervises e1 and e4.  

 

 

 
 

3.4.3 Constraints on Relationship Types 

Cardinality Ratios for Binary Relationships 
Participation Constraints and Existence Dependencies

Relationship types usually have certain constraints that limit the possible combinations of entities that 
may participate in the corresponding relationship set. These constraints are determined from the 
miniworld situation that the relationships represent. For example, in Figure 03.09, if the company has a 
rule that each employee must work for exactly one department, then we would like to describe this 
constraint in the schema. We can distinguish two main types of relationship constraints: cardinality 
ratio and participation.  
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Cardinality Ratios for Binary Relationships 

The cardinality ratio for a binary relationship specifies the number of relationship instances that an 
entity can participate in. For example, in the WORKS_FOR binary relationship type, 
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department can be related to (that 
is, employs) numerous employees (Note 8), but an employee can be related to (work for) only one 
department. The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.  

An example of a 1:1 binary relationship is MANAGES (Figure 03.12), which relates a department entity 
to the employee who manages that department. This represents the miniworld constraints that an 
employee can manage only one department and that a department has only one manager. The 
relationship type WORKS_ON (Figure 03.13) is of cardinality ratio M:N, because the miniworld rule is 
that an employee can work on several projects and a project can have several employees.  

 

 

 

 

 
 

Cardinality ratios for binary relationships are displayed on ER diagrams by displaying 1, M, and N on 
the diamonds as shown in Figure 03.02.  

 
 

Participation Constraints and Existence Dependencies 

The participation constraint specifies whether the existence of an entity depends on its being related 
to another entity via the relationship type. There are two types of participation constraints—total and 
partial—which we illustrate by example. If a company policy states that every employee must work for 
a department, then an employee entity can exist only if it participates in a WORKS_FOR relationship 
instance (Figure 03.09). Thus, the participation of EMPLOYEE in WORKS_FOR is called total 
participation, meaning that every entity in "the total set" of employee entities must be related to a 
department entity via WORKS_FOR. Total participation is also called existence dependency. In Figure 
03.12 we do not expect every employee to manage a department, so the participation of EMPLOYEE in 
the MANAGES relationship type is partial, meaning that some or "part of the set of" employee entities 
are related to a department entity via MANAGES, but not necessarily all. We will refer to the cardinality 
ratio and participation constraints, taken together, as the structural constraints of a relationship type.  

In ER diagrams, total participation is displayed as a double line connecting the participating entity type 
to the relationship, whereas partial participation is represented by a single line (see Figure 03.02).  

 
 

3.4.4 Attributes of Relationship Types 
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Relationship types can also have attributes, similar to those of entity types. For example, to record the 
number of hours per week that an employee works on a particular project, we can include an attribute 
Hours for the WORKS_ON relationship type of Figure 03.13. Another example is to include the date on 
which a manager started managing a department via an attribute StartDate for the MANAGES relationship 
type of Figure 03.12.  

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the participating entity 
types. For example, the StartDate attribute for the MANAGES relationship can be an attribute of either 
EMPLOYEE or DEPARTMENT—although conceptually it belongs to MANAGES. This is because MANAGES is 
a 1:1 relationship, so every department or employee entity participates in at most one relationship 
instance. Hence, the value of the StartDate attribute can be determined separately, either by the 
participating department entity or by the participating employee (manager) entity.  

For a 1:N relationship type, a relationship attribute can be migrated only to the entity type at the N-side 
of the relationship. For example, in Figure 03.09, if the WORKS_FOR relationship also has an attribute 
StartDate that indicates when an employee started working for a department, this attribute can be 
included as an attribute of EMPLOYEE. This is because each employee entity participates in at most one 
relationship instance in WORKS_FOR. In both 1:1 and 1:N relationship types, the decision as to where a 
relationship attribute should be placed—as a relationship type attribute or as an attribute of a 
participating entity type—is determined subjectively by the schema designer.  

For M:N relationship types, some attributes may be determined by the combination of participating 
entities in a relationship instance, not by any single entity. Such attributes must be specified as 
relationship attributes. An example is the Hours attribute of the M:N relationship WORKS_ON (Figure 
03.13); the number of hours an employee works on a project is determined by an employee-project 
combination and not separately by either entity.  

 
 

3.5 Weak Entity Types 

Entity types that do not have key attributes of their own are called weak entity types. In contrast, 
regular entity types that do have a key attribute are sometimes called strong entity types. Entities 
belonging to a weak entity type are identified by being related to specific entities from another entity 
type in combination with some of their attribute values. We call this other entity type the identifying or 
owner entity type (Note 9), and we call the relationship type that relates a weak entity type to its 
owner the identifying relationship of the weak entity type (Note 10). A weak entity type always has a 
total participation constraint (existence dependency) with respect to its identifying relationship, 
because a weak entity cannot be identified without an owner entity. However, not every existence 
dependency results in a weak entity type. For example, a DRIVER_LICENSE entity cannot exist unless it is 
related to a PERSON entity, even though it has its own key (LicenseNumber) and hence is not a weak 
entity.  

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of the 
dependents of each employee via a 1:N relationship (Figure 03.02). The attributes of DEPENDENT are 
Name (the first name of the dependent), BirthDate, Sex, and Relationship (to the employee). Two 
dependents of two distinct employees may, by chance, have the same values for Name, BirthDate, Sex, 
and Relationship, but they are still distinct entities. They are identified as distinct entities only after 
determining the particular employee entity to which each dependent is related. Each employee entity is 
said to own the dependent entities that are related to it.  

A weak entity type normally has a partial key, which is the set of attributes that can uniquely identify 
weak entities that are related to the same owner entity (Note 11). In our example, if we assume that no 
two dependents of the same employee ever have the same first name, the attribute Name of DEPENDENT 
is the partial key. In the worst case, a composite attribute of all the weak entity’s attributes will be the 
partial key.  

1 Page 64 of 893



www.manaraa.com

In ER diagrams, both a weak entity type and its identifying relationship are distinguished by 
surrounding their boxes and diamonds with double lines (see Figure 03.02). The partial key attribute is 
underlined with a dashed or dotted line.  

Weak entity types can sometimes be represented as complex (composite, multivalued) attributes. In the 
preceding example, we could specify a multivalued attribute Dependents for EMPLOYEE, which is a 
composite attribute with component attributes Name, BirthDate, Sex, and Relationship. The choice of 
which representation to use is made by the database designer. One criterion that may be used is to 
choose the weak entity type representation if there are many attributes. If the weak entity participates 
independently in relationship types other than its identifying relationship type, then it should not be 
modeled as a complex attribute.  

In general, any number of levels of weak entity types can be defined; an owner entity type may itself be 
a weak entity type. In addition, a weak entity type may have more than one identifying entity type and 
an identifying relationship type of degree higher than two, as we shall illustrate in Chapter 4.  

 
 

3.6 Refining the ER Design for the COMPANY Database 

We can now refine the database design of Figure 03.08 by changing the attributes that represent 
relationships into relationship types. The cardinality ratio and participation constraint of each 
relationship type are determined from the requirements listed in Section 3.2. If some cardinality ratio or 
dependency cannot be determined from the requirements, the users must be questioned to determine 
these structural constraints.  

In our example, we specify the following relationship types:  

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT. EMPLOYEE 
participation is partial. DEPARTMENT participation is not clear from the requirements. We 
question the users, who say that a department must have a manager at all times, which implies 
total participation (Note 12). The attribute StartDate is assigned to this relationship type.  

2. WORKS_FOR, a 1:N relationship type between DEPARTMENT and EMPLOYEE. Both participations 
are total.  

3. CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT. The participation of 
PROJECT is total, whereas that of DEPARTMENT is determined to be partial, after consultation 
with the users.  

4. SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervisor role) and 
EMPLOYEE (in the supervisee role). Both participations are determined to be partial, after the 
users indicate that not every employee is a supervisor and not every employee has a 
supervisor.  

5. WORKS_ON, determined to be an M:N relationship type with attribute Hours, after the users 
indicate that a project can have several employees working on it. Both participations are 
determined to be total.  

6. DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and DEPENDENT, which is also 
the identifying relationship for the weak entity type DEPENDENT. The participation of 
EMPLOYEE is partial, whereas that of DEPENDENT is total.  

After specifying the above six relationship types, we remove from the entity types in Figure 03.08 all 
attributes that have been refined into relationships. These include Manager and ManagerStartDate from 
DEPARTMENT; ControllingDepartment from PROJECT; Department, Supervisor, and WorksOn from 
EMPLOYEE; and Employee from DEPENDENT. It is important to have the least possible redundancy when 
we design the conceptual schema of a database. If some redundancy is desired at the storage level or at 
the user view level, it can be introduced later, as discussed in Section 1.6.1.  
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3.7 ER Diagrams, Naming Conventions, and Design Issues 

3.7.1 Summary of Notation for ER Diagrams 
3.7.2 Proper Naming of Schema Constructs 
3.7.3 Design Choices for ER Conceptual Design 
3.7.4 Alternative Notations for ER Diagrams

3.7.1 Summary of Notation for ER Diagrams 

Figure 03.09 through Figure 03.13 illustrate the entity types and relationship types by displaying their 
extensions—the individual entities and relationship instances. In ER diagrams the emphasis is on 
representing the schemas rather than the instances. This is more useful because a database schema 
changes rarely, whereas the extension changes frequently. In addition, the schema is usually easier to 
display than the extension of a database, because it is much smaller.  

Figure 03.02 displays the COMPANY ER database schema as an ER diagram. We now review the full 
ER diagrams notation. Entity types such as EMPLOYEE, DEPARTMENT, and PROJECT are shown in 
rectangular boxes. Relationship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are 
shown in diamond-shaped boxes attached to the participating entity types with straight lines. Attributes 
are shown in ovals, and each attribute is attached by a straight line to its entity type or relationship type. 
Component attributes of a composite attribute are attached to the oval representing the composite 
attribute, as illustrated by the Name attribute of EMPLOYEE. Multivalued attributes are shown in double 
ovals, as illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names 
underlined. Derived attributes are shown in dotted ovals, as illustrated by the NumberOfEmployees 
attribute of DEPARTMENT.  

Weak entity types are distinguished by being placed in double rectangles and by having their 
identifying relationship placed in double diamonds, as illustrated by the DEPENDENT entity type and the 
DEPENDENTS_OF identifying relationship type. The partial key of the weak entity type is underlined 
with a dotted line.  

In Figure 03.02 the cardinality ratio of each binary relationship type is specified by attaching a 1, M, or 
N on each participating edge. The cardinality ratio of DEPARTMENT: EMPLOYEE in MANAGES is 1:1, 
whereas it is 1:N for DEPARTMENT:EMPLOYEE in WORKS_FOR, and it is M:N for WORKS_ON. The 
participation constraint is specified by a single line for partial participation and by double lines for total 
participation (existence dependency).  

In Figure 03.02 we show the role names for the SUPERVISION relationship type because the EMPLOYEE 
entity type plays both roles in that relationship. Notice that the cardinality is 1:N from supervisor to 
supervisee because, on the one hand, each employee in the role of supervisee has at most one direct 
supervisor, whereas an employee in the role of supervisor can supervise zero or more employees.  

Figure 03.14 summarizes the conventions for ER diagrams.  

 

 

 
 

3.7.2 Proper Naming of Schema Constructs 

The choice of names for entity types, attributes, relationship types, and (particularly) roles is not 
always straightforward. One should choose names that convey, as much as possible, the meanings 
attached to the different constructs in the schema. We choose to use singular names for entity types, 
rather than plural ones, because the entity type name applies to each individual entity belonging to that 

1 Page 66 of 893



www.manaraa.com

entity type. In our ER diagrams, we will use the convention that entity type and relationship type names 
are in uppercase letters, attribute names are capitalized, and role names are in lowercase letters. We 
have already used this convention in Figure 03.02.  

As a general practice, given a narrative description of the database requirements, the nouns appearing 
in the narrative tend to give rise to entity type names, and the verbs tend to indicate names of 
relationship types. Attribute names generally arise from additional nouns that describe the nouns 
corresponding to entity types.  

Another naming consideration involves choosing relationship names to make the ER diagram of the 
schema readable from left to right and from top to bottom. We have generally followed this guideline 
in Figure 03.02. One exception is the DEPENDENTS_OF relationship type, which reads from bottom to 
top. This is because we say that the DEPENDENT entities (bottom entity type) are DEPENDENTS_OF 
(relationship name) an EMPLOYEE (top entity type). To change this to read from top to bottom, we could 
rename the relationship type to HAS_DEPENDENTS, which would then read: an EMPLOYEE entity (top 
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom entity type).  

 
 

3.7.3 Design Choices for ER Conceptual Design 

It is occasionally difficult to decide whether a particular concept in the miniworld should be modeled 
as an entity type, an attribute, or a relationship type. In this section, we give some brief guidelines as to 
which construct should be chosen in particular situations.  

In general, the schema design process should be considered an iterative refinement process, where an 
initial design is created and then iteratively refined until the most suitable design is reached. Some of 
the refinements that are often used include the following:  

1. A concept may be first modeled as an attribute and then refined into a relationship because it 
is determined that the attribute is a reference to another entity type. It is often the case that a 
pair of such attributes that are inverses of one another are refined into a binary relationship. 
We discussed this type of refinement in detail in Section 3.6.  

2. Similarly, an attribute that exists in several entity types may be refined into its own 
independent entity type. For example, suppose that several entity types in a UNIVERSITY 
database, such as STUDENT, INSTRUCTOR, and COURSE each have an attribute Department in 
the initial design; the designer may then choose to create an entity type DEPARTMENT with a 
single attribute DeptName and relate it to the three entity types (STUDENT, INSTRUCTOR, and 
COURSE) via appropriate relationships. Other attributes/relationships of DEPARTMENT may be 
discovered later.  

3. An inverse refinement to the previous case may be applied—for example, if an entity type 
DEPARTMENT exists in the initial design with a single attribute DeptName and related to only 
one other entity type STUDENT. In this case, DEPARTMENT may be refined into an attribute of 
STUDENT.  

4. In Chapter 4, we will discuss other refinements concerning specialization/generalization and 
relationships of higher degree.  

 
 

3.7.4 Alternative Notations for ER Diagrams 

There are many alternative diagrammatic notations for displaying ER diagrams. Appendix A gives 
some of the more popular notations. In Chapter 4, we will also introduce the Universal Modeling 
Language (UML) notation, which has been proposed as a standard for conceptual object modeling.  

1 Page 67 of 893



www.manaraa.com

In this section, we describe one alternative ER notation for specifying structural constraints on 
relationships. This notation involves associating a pair of integer numbers (min, max) with each 
participation of an entity type E in a relationship type R, where 0 1 min 1 max and max 1. The 
numbers mean that, for each entity e in E, e must participate in at least min and at most max 
relationship instances in R at any point in time. In this method, min = 0 implies partial participation, 
whereas min > 0 implies total participation.  

Figure 03.15 displays the COMPANY database schema using the (min, max) notation (Note 13). Usually, 
one uses either the cardinality ratio/single line/double line notation or the min/max notation. The 
min/max notation is more precise, and we can use it easily to specify structural constraints for 
relationship types of any degree. However, it is not sufficient for specifying some key constraints on 
higher degree relationships, as we shall discuss in Chapter 4.  

 

 

 
 

Figure 03.15 also displays all the role names for the COMPANY database schema.  

 
 

3.8 Summary 

In this chapter we presented the modeling concepts of a high-level conceptual data model, the Entity-
Relationship (ER) model. We started by discussing the role that a high-level data model plays in the 
database design process, and then we presented an example set of database requirements for the 
COMPANY database, which is one of the examples that is used throughout this book. We then defined 
the basic ER model concepts of entities and their attributes. We discussed null values and presented the 
various types of attributes, which can be nested arbitrarily to produce complex attributes:  

• Simple or atomic  
• Composite  
• Multivalued  

We also briefly discussed stored versus derived attributes. We then discussed the ER model concepts at 
the schema or "intension" level:  

• Entity types and their corresponding entity sets.  
• Key attributes of entity types.  
• Value sets (domains) of attributes.  
• Relationship types and their corresponding relationship sets.  
• Participation roles of entity types in relationship types.  

We presented two methods for specifying the structural constraints on relationship types. The first 
method distinguished two types of structural constraints:  

• Cardinality ratios (1:1, 1:N, M:N for binary relationships)  
• Participation constraints (total, partial)  

We noted that, alternatively, another method of specifying structural constraints is to specify minimum 
and maximum numbers (min, max) on the participation of each entity type in a relationship type. We 
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discussed weak entity types and the related concepts of owner entity types, identifying relationship 
types, and partial key attributes.  

Entity-Relationship schemas can be represented diagrammatically as ER diagrams. We showed how to 
design an ER schema for the COMPANY database by first defining the entity types and their attributes 
and then refining the design to include relationship types. We displayed the ER diagram for the 
COMPANY database schema.  

The ER modeling concepts we have presented thus far—entity types, relationship types, attributes, 
keys, and structural constraints—can model traditional business data-processing database applications. 
However, many newer, more complex applications—such as engineering design, medical information 
systems, or telecommunications—require additional concepts if we want to model them with greater 
accuracy. We will discuss these advanced modeling concepts in Chapter 4. We will also describe 
ternary and higher-degree relationship types in more detail in Chapter 4, and discuss the circumstances 
under which they are distinguished from binary relationships.  

 
 

Review Questions 

  3.1.  Discuss the role of a high-level data model in the database design process.  

  3.2.  List the various cases where use of a null value would be appropriate.  

  3.3.  Define the following terms: entity, attribute, attribute value, relationship instance, composite 
attribute, multivalued attribute, derived attribute, complex attribute, key attribute, value set 
(domain).  

  3.4.  What is an entity type? What is an entity set? Explain the differences among an entity, an entity 
type, and an entity set.  

  3.5.  Explain the difference between an attribute and a value set.  

  3.6.  What is a relationship type? Explain the differences among a relationship instance, a relationship 
type, and a relationship set.  

  3.7.  What is a participation role? When is it necessary to use role names in the description of 
relationship types?  

  3.8.  Describe the two alternatives for specifying structural constraints on relationship types. What 
are the advantages and disadvantages of each?  

  3.9.  Under what conditions can an attribute of a binary relationship type be migrated to become an 
attribute of one of the participating entity types?  

3.10.  When we think of relationships as attributes, what are the value sets of these attributes? What 
class of data models is based on this concept?  

3.11.  What is meant by a recursive relationship type? Give some examples of recursive relationship 
types.  

3.12.  When is the concept of a weak entity used in data modeling? Define the terms owner entity type, 
weak entity type, identifying relationship type, and partial key.  

3.13.  Can an identifying relationship of a weak entity type be of a degree greater than two? Give 
examples to illustrate your answer.  

3.14.  Discuss the conventions for displaying an ER schema as an ER diagram.  

3.15.  Discuss the naming conventions used for ER schema diagrams.  
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Exercises 

  3.16.  Consider the following set of requirements for a university database that is used to keep track 
of students’ transcripts. This is similar but not identical to the database shown in Figure 01.02:  

a. The university keeps track of each student’s name, student number, social security 
number, current address and phone, permanent address and phone, birthdate, sex, 
class (freshman, sophomore, . . ., graduate), major department, minor department (if 
any), and degree program (B.A., B.S., . . ., Ph.D.). Some user applications need to 
refer to the city, state, and zip code of the student’s permanent address and to the 
student’s last name. Both social security number and student number have unique 
values for each student.  

b. Each department is described by a name, department code, office number, office 
phone, and college. Both name and code have unique values for each department.  

c. Each course has a course name, description, course number, number of semester 
hours, level, and offering department. The value of course number is unique for each 
course.  

d. Each section has an instructor, semester, year, course, and section number. The 
section number distinguishes sections of the same course that are taught during the 
same semester/year; its values are 1, 2, 3, . . ., up to the number of sections taught 
during each semester.  

e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2, 3, or 4).  

Design an ER schema for this application, and draw an ER diagram for that schema. Specify 
key attributes of each entity type and structural constraints on each relationship type. Note any 
unspecified requirements, and make appropriate assumptions to make the specification 
complete.  

  3.17.  Composite and multivalued attributes can be nested to any number of levels. Suppose we want 
to design an attribute for a STUDENT entity type to keep track of previous college education. 
Such an attribute will have one entry for each college previously attended, and each such entry 
will be composed of college name, start and end dates, degree entries (degrees awarded at that 
college, if any), and transcript entries (courses completed at that college, if any). Each degree 
entry contains the degree name and the month and year the degree was awarded, and each 
transcript entry contains a course name, semester, year, and grade. Design an attribute to hold 
this information. Use the conventions of Figure 03.05.  

  3.18.  Show an alternative design for the attribute described in Exercise 3.17 that uses only entity 
types (including weak entity types, if needed) and relationship types.  

  3.19.  Consider the ER diagram of Figure 03.16, which shows a simplified schema for an airline 
reservations system. Extract from the ER diagram the requirements and constraints that 
produced this schema. Try to be as precise as possible in your requirements and constraints 
specification.  

 
 

  3.20.  In Chapter 1 and Chapter 2, we discussed the database environment and database users. We 
can consider many entity types to describe such an environment, such as DBMS, stored 
database, DBA, and catalog/data dictionary. Try to specify all the entity types that can fully 
describe a database system and its environment; then specify the relationship types among 
them, and draw an ER diagram to describe such a general database environment.  

  3.21.  Design an ER schema for keeping track of information about votes taken in the U.S. House of 
Representatives during the current two-year congressional session. The database needs to keep 
track of each U.S. STATE’s Name (e.g., Texas, New York, California) and includes the Region 
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of the state (whose domain is {Northeast, Midwest, Southeast, Southwest, West}). Each 
CONGRESSPERSON in the House of Representatives is described by their Name, and includes 
the District represented, the StartDate when they were first elected, and the political Party they 
belong to (whose domain is {Republican, Democrat, Independent, Other}). The database keeps 
track of each BILL (i.e., proposed law), and includes the BillName, the DateOfVote on the bill, 
whether the bill PassedOrFailed (whose domain is {YES, NO}), and the Sponsor (the 
congressperson(s) who sponsored—i.e., proposed—the bill). The database keeps track of how 
each congressperson voted on each bill (domain of vote attribute is {Yes, No, Abstain, 
Absent}). Draw an ER schema diagram for the above application. State clearly any 
assumptions you make.  

  3.22.  A database is being constructed to keep track of the teams and games of a sports league. A 
team has a number of players, not all of whom participate in each game. It is desired to keep 
track of the players participating in each game for each team, the positions they played in that 
game, and the result of the game. Try to design an ER schema diagram for this application, 
stating any assumptions you make. Choose your favorite sport (soccer, baseball, football, . . .).  

  3.23.  Consider the ER diagram shown in Figure 03.17 for part of a BANK database. Each bank can 
have multiple branches, and each branch can have multiple accounts and loans.  

a. List the (nonweak) entity types in the ER diagram.  
b. Is there a weak entity type? If so, give its name, partial key, and identifying 

relationship.  
c. What constraints do the partial key and the identifying relationship of the weak entity 

type specify in this diagram?  
d. List the names of all relationship types, and specify the (min, max) constraint on each 

participation of an entity type in a relationship type. Justify your choices.  
e. List concisely the user requirements that led to this ER schema design.  
f. Suppose that every customer must have at least one account but is restricted to at most 

two loans at a time, and that a bank branch cannot have more than 1000 loans. How 
does this show up on the (min, max) constraints?  

 
 

  3.24.  Consider the ER diagram in Figure 03.18. Assume that an employee may work in up to two 
departments, but may also not be assigned to any department. Assume that each department 
must have one and may have up to three phone numbers. Supply (min, max) constraints on this 
diagram. State clearly any additional assumptions you make. Under what conditions would the 
relationship HAS_PHONE be redundant in the above example?  

 
 

  3.25.  Consider the ER diagram in Figure 03.19. Assume that a course may or may not use a 
textbook, but that a text by definition is a book that is used in some course. A course may not 
use more than five books. Instructors teach from two to four courses. Supply (min, max) 
constraints on this diagram. State clearly any additional assumptions you make. If we add the 
relationship ADOPTS between INSTRUCTOR and TEXT, what (min, max) constraints would you 
put on it? Why?  

 
 

  3.26.  Consider an entity type SECTION in a UNIVERSITY database, which describes the section 
offerings of courses. The attributes of SECTION are: SectionNumber, Semester, Year, 
CourseNumber, Instructor, RoomNo (where section is taught), Building (where section is 
taught), Weekdays (domain is the possible combinations of weekdays in which a section can be 
offered {MWF, MW, TT, etc.}), and Hours (domain is all possible time periods during which 
sections are offered {9–9.50 A.M., 10–10.50 A.M., . . ., 3.30–4.50 P.M., 5.30–6.20 P.M., 
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etc.}). Assume that SectionNumber is unique for each course within a particular semester/year 
combination (that is, if a course is offered multiple times during a particular semester, its 
section offerings are numbered 1, 2, 3, etc.). There are several composite keys for SECTION, 
and some attributes are components of more than one key. Identify three composite keys, and 
show how they can be represented in an ER schema diagram.  

 
 

Selected Bibliography 

The Entity-Relationship model was introduced by Chen (1976), and related work appears in Schmidt 
and Swenson (1975), Wiederhold and Elmasri (1979), and Senko (1975). Since then, numerous 
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Wiederhold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attributes are 
incorporated in the ER model in Elmasri et al. (1985). Although we did not discuss languages for the 
entity-relationship model and its extensions, there have been several proposals for such languages. 
Elmasri and Wiederhold (1981) propose the GORDAS query language for the ER model. Another ER 
query language is proposed by Markowitz and Raz (1983). Senko (1980) presents a query language for 
Senko’s DIAM model. A formal set of operations called the ER algebra was presented by Parent and 
Spaccapietra (1985). Gogolla and Hohenstein (1991) present another formal language for the ER 
model. Campbell et al. (1985) present a set of ER operations and show that they are relationally 
complete. A conference for the dissemination of research results related to the ER model has been held 
regularly since 1979. The conference, now known as the International Conference on Conceptual 
Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997), Washington (ER 1981), 
Chicago (ER 1985), Dijon, France (ER 1986), New York City (ER 1987), Rome (ER 1988), Toronto 
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1995), Cottbus, Germany (ER 1996), and Singapore (ER 1998).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13

Note 1 

The social security number, or SSN, is a unique 9-digit identifier assigned to each individual in the 
United States to keep track of their employment, benefits, and taxes. Other countries may have similar 
identification schemes, such as personal identification card numbers.  
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Note 2 

The zip code is the name used in the United States for a postal code. 

 
 

Note 3 

We are using a notation for ER diagrams that is close to the original proposed notation (Chen 1976). 
Unfortunately, many other notations are in use. We illustrate some of the other notations in Appendix 
A and in this chapter.  

 
 

Note 4 

Superfluous attributes must not be included in a key; however, a superkey may include superfluous 
attributes, as we explain in Chapter 7. 

 
 

Note 5 

The power set P(V) of a set V is the set of all subsets of V.  

 
 

Note 6 

A singleton is a set with only one element (value).  

 
 

Note 7 

This concept of representing relationship types as attributes is used in a class of data models called 
functional data models. In object databases (see Chapter 11 and Chapter 12), relationships can be 
represented by reference attributes, either in one direction or in both directions as inverses. In relational 
databases (see Chapter 7 and Chapter 8), foreign keys are a type of reference attribute used to represent 
relationships.  

 
 

Note 8 

N stands for any number of related entities (zero or more).  
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Note 9 

The identifying entity type is also sometimes called the parent entity type or the dominant entity 
type.  

 
 

Note 10 

The weak entity type is also sometimes called the child entity type or the subordinate entity type.  

 
 

Note 11 

The partial key is sometimes called the discriminator.  

 
 

Note 12 

The rules in the miniworld that determine the constraints are sometimes called the business rules, since 
they are determined by the "business" or organization that will utilize the database.  

 
 

Note 13 

In some notations, particularly those used in object modeling, the placing of the (min, max) is on the 
opposite sides to the ones we have shown. For example, for the WORKS_FOR relationship in Figure 
03.15, the (1,1) would be on the DEPARTMENT side and the (4,N) would be on the EMPLOYEE side. We 
used the original notation from Abrial (1974).  

 
 

Chapter 4: Enhanced Entity-Relationship and Object 
Modeling 
4.1 Subclasses, Superclasses, and Inheritance 
4.2 Specialization and Generalization 
4.3 Constraints and Characteristics of Specialization and Generalization 
4.4 Modeling of UNION Types Using Categories 
4.5 An Example UNIVERSITY EER Schema and Formal Definitions for the EER Model 
4.6 Conceptual Object Modeling Using UML Class Diagrams 
4.7 Relationship Types of a Degree Higher Than Two 
4.8 Data Abstraction and Knowledge Representation Concepts 
4.9 Summary 
Review Questions 
Exercises 
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Selected Bibliography 
Footnotes

The ER modeling concepts discussed in Chapter 3 are sufficient for representing many database 
schemas for "traditional" database applications, which mainly include data-processing applications in 
business and industry. Since the late 1970s, however, newer applications of database technology have 
become commonplace; these include databases for engineering design and manufacturing (CAD/CAM 
(Note 1)), telecommunications, images and graphics, multimedia (Note 2), data mining, data 
warehousing, geographic information systems (GIS), and databases for indexing the World Wide Web, 
among many other applications. These types of databases have more complex requirements than do the 
more traditional applications. To represent these requirements as accurately and clearly as possible, 
designers of database applications must use additional semantic data modeling concepts. Various 
semantic data models have been proposed in the literature.  

In this chapter, we describe features that have been proposed for semantic data models, and show how 
the ER model can be enhanced to include these concepts, leading to the enhanced-ER or EER model 
(Note 3). We start in Section 4.1 by incorporating the concepts of class/subclass relationships and type 
inheritance into the ER model. Then, in Section 4.2, we add the concepts of specialization and 
generalization. Section 4.3 discusses constraints on specialization/generalization, and Section 4.4 
shows how the UNION construct can be modeled by including the concept of category in the EER 
model. Section 4.5 gives an example UNIVERSITY database schema in the EER model, and summarizes 
the EER model concepts by giving formal definitions.  

The object data model (see Chapter 11 and Chapter 12) includes many of the concepts proposed for 
semantic data models. Object modeling methodologies, such as OMT (Object Modeling Technique) 
and UML (Universal Modeling Language) are becoming increasingly popular in software design and 
engineering. These methodologies go beyond database design to specify detailed design of software 
modules and their interactions using various types of diagrams. An important part of these 
methodologies—namely, the class diagrams (Note 4)—are similar in many ways to EER diagrams. 
However, in addition to specifying attributes and relationships in class diagrams, the operations on 
objects are also specified. Operations can be used to specify the functional requirements during 
database design, as we discussed in Section 3.1 and illustrated in Figure 03.01. We will present the 
UML notation and concepts for class diagrams in Section 4.6, and briefly compare these to EER 
notation and concepts.  

Section 4.7 discusses some of the more complex issues involved in modeling of ternary and higher-
degree relationships. In Section 4.8, we discuss the fundamental abstractions that are used as the basis 
of many semantic data models. Section 4.9 summarizes the chapter.  

For a detailed introduction to conceptual modeling, Chapter 4 should be considered a continuation of 
Chapter 3. However, if only a basic introduction to ER modeling is desired, this chapter may be 
omitted. Alternatively, the reader may choose to skip some or all of the later sections of this chapter 
(Section 4.3 through Section 4.8).  

 
 

4.1 Subclasses, Superclasses, and Inheritance 

The EER (Enhanced-ER) model includes all the modeling concepts of the ER model that were 
presented in Chapter 3. In addition, it includes the concepts of subclass and superclass and the related 
concepts of specialization and generalization (see Section 4.2 and Section 4.3). Another concept 
included in the EER model is that of a category (see Section 4.4), which is used to represent a 
collection of objects that is the union of objects of different entity types. Associated with these 
concepts is the important mechanism of attribute and relationship inheritance. Unfortunately, no 
standard terminology exists for these concepts, so we use the most common terminology. Alternative 
terminology is given in footnotes. We also describe a diagrammatic technique for displaying these 
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concepts when they arise in an EER schema. We call the resulting schema diagrams enhanced-ER or 
EER diagrams.  

The first EER model concept we take up is that of a subclass of an entity type. As we discussed in 
Chapter 3, an entity type is used to represent both a type of entity, and the entity set or collection of 
entities of that type that exist in the database. For example, the entity type EMPLOYEE describes the type 
(that is, the attributes and relationships) of each employee entity, and also refers to the current set of 
EMPLOYEE entities in the COMPANY database. In many cases an entity type has numerous subgroupings 
of its entities that are meaningful and need to be represented explicitly because of their significance to 
the database application. For example, the entities that are members of the EMPLOYEE entity type may 
be grouped further into SECRETARY, ENGINEER, MANAGER, TECHNICIAN, SALARIED_EMPLOYEE, 
HOURLY_EMPLOYEE, and so on. The set of entities in each of the latter groupings is a subset of the 
entities that belong to the EMPLOYEE entity set, meaning that every entity that is a member of one of 
these subgroupings is also an employee. We call each of these subgroupings a subclass of the 
EMPLOYEE entity type, and the EMPLOYEE entity type is called the superclass for each of these 
subclasses.  

We call the relationship between a superclass and any one of its subclasses a superclass/subclass or 
simply class/subclass relationship (Note 5). In our previous example, EMPLOYEE/SECRETARY and 
EMPLOYEE/TECHNICIAN are two class/subclass relationships. Notice that a member entity of the subclass 
represents the same real-world entity as some member of the superclass; for example, a SECRETARY 
entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano’. Hence, the subclass member is the same as 
the entity in the superclass, but in a distinct specific role. When we implement a superclass/subclass 
relationship in the database system, however, we may represent a member of the subclass as a distinct 
database object—say, a distinct record that is related via the key attribute to its superclass entity. In 
Section 9.2, we discuss various options for representing superclass/subclass relationships in relational 
databases.  

An entity cannot exist in the database merely by being a member of a subclass; it must also be a 
member of the superclass. Such an entity can be included optionally as a member of any number of 
subclasses. For example, a salaried employee who is also an engineer belongs to the two subclasses 
ENGINEER and SALARIED_EMPLOYEE of the EMPLOYEE entity type. However, it is not necessary that 
every entity in a superclass be a member of some subclass.  

An important concept associated with subclasses is that of type inheritance. Recall that the type of an 
entity is defined by the attributes it possesses and the relationship types in which it participates. 
Because an entity in the subclass represents the same real-world entity from the superclass, it should 
possess values for its specific attributes as well as values of its attributes as a member of the superclass. 
We say that an entity that is a member of a subclass inherits all the attributes of the entity as a member 
of the superclass. The entity also inherits all the relationships in which the superclass participates. 
Notice that a subclass, with its own specific (or local) attributes and relationships together with all the 
attributes and relationships it inherits from the superclass, can be considered an entity type in its own 
right (Note 6).  

 
 

4.2 Specialization and Generalization 

 
Generalization

Specialization is the process of defining a set of subclasses of an entity type; this entity type is called 
the superclass of the specialization. The set of subclasses that form a specialization is defined on the 
basis of some distinguishing characteristic of the entities in the superclass. For example, the set of 
subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that 
distinguishes among EMPLOYEE entities based on the job type of each entity. We may have several 
specializations of the same entity type based on different distinguishing characteristics. For example, 
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another specialization of the EMPLOYEE entity type may yield the set of subclasses 
{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}; this specialization distinguishes among employees based 
on the method of pay.  

Figure 04.01 shows how we represent a specialization diagrammatically in an EER diagram. The 
subclasses that define a specialization are attached by lines to a circle, which is connected to the 
superclass. The subset symbol on each line connecting a subclass to the circle indicates the direction of 
the superclass/subclass relationship (Note 7). Attributes that apply only to entities of a particular 
subclass—such as TypingSpeed of SECRETARY—are attached to the rectangle representing that 
subclass. These are called specific attributes (or local attributes) of the subclass. Similarly, a subclass 
can participate in specific relationship types, such as the HOURLY_EMPLOYEE subclass participating in 
the BELONGS_TO relationship in Figure 04.01. We will explain the d symbol in the circles of Figure 
04.01 and additional EER diagram notation shortly.  

 

 

 
 

Figure 04.02 shows a few entity instances that belong to subclasses of the {SECRETARY, ENGINEER, 
TECHNICIAN} specialization. Again, notice that an entity that belongs to a subclass represents the same 
real-world entity as the entity connected to it in the EMPLOYEE superclass, even though the same entity 
is shown twice; for example, e1 is shown in both EMPLOYEE and SECRETARY in Figure 04.02. As this 
figure suggests, a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat resembles 
a 1:1 relationship at the instance level (see Figure 03.12). The main difference is that in a 1:1 
relationship two distinct entities are related, whereas in a superclass/subclass relationship the entity in 
the subclass is the same real-world entity as the entity in the superclass but playing a specialized role—
for example, an EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in the role 
of TECHNICIAN.  

 

 

 
 

There are two main reasons for including class/subclass relationships and specializations in a data 
model. The first is that certain attributes may apply to some but not all entities of the superclass. A 
subclass is defined in order to group the entities to which these attributes apply. The members of the 
subclass may still share the majority of their attributes with the other members of the superclass. For 
example, the SECRETARY subclass may have an attribute TypingSpeed, whereas the ENGINEER subclass 
may have an attribute EngineerType, but SECRETARY and ENGINEER share their other attributes as 
members of the EMPLOYEE entity type.  

The second reason for using subclasses is that some relationship types may be participated in only by 
entities that are members of the subclass. For example, if only HOURLY_EMPLOYEEs can belong to a 
trade union, we can represent that fact by creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and 
relating the subclass to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illustrated 
in Figure 04.01.  

In summary, the specialization process allows us to do the following:  

• Define a set of subclasses of an entity type.  
• Establish additional specific attributes with each subclass.  
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• Establish additional specific relationship types between each subclass and other entity types or 
other subclasses.  

 
 

Generalization 

We can think of a reverse process of abstraction in which we suppress the differences among several 
entity types, identify their common features, and generalize them into a single superclass of which the 
original entity types are special subclasses. For example, consider the entity types CAR and TRUCK 
shown in Figure 04.03(a); they can be generalized into the entity type VEHICLE, as shown in Figure 
04.03(b). Both CAR and TRUCK are now subclasses of the generalized superclass VEHICLE. We use the 
term generalization to refer to the process of defining a generalized entity type from the given entity 
types.  

 

 

 
 

Notice that the generalization process can be viewed as being functionally the inverse of the 
specialization process. Hence, in Figure 04.03 we can view {CAR, TRUCK} as a specialization of 
VEHICLE, rather than viewing VEHICLE as a generalization of CAR and TRUCK. Similarly, in Figure 04.01 
we can view EMPLOYEE as a generalization of SECRETARY, TECHNICIAN, and ENGINEER. A diagrammatic 
notation to distinguish between generalization and specialization is used in some design methodologies. 
An arrow pointing to the generalized superclass represents a generalization, whereas arrows pointing to 
the specialized subclasses represent a specialization. We will not use this notation, because the decision 
as to which process is more appropriate in a particular situation is often subjective. Appendix A gives 
some of the suggested alternative diagrammatic notations for schema diagrams/class diagrams.  

So far we have introduced the concepts of subclasses and superclass/subclass relationships, as well as 
the specialization and generalization processes. In general, a superclass or subclass represents a 
collection of entities of the same type and hence also describes an entity type; that is why superclasses 
and subclasses are shown in rectangles in EER diagrams (like entity types). We now discuss in more 
detail the properties of specializations and generalizations.  

 
 

4.3 Constraints and Characteristics of Specialization and 
Generalization 

Constraints on Specialization/Generalization 
Specialization/Generalization Hierarchies and Lattices 
Utilizing Specialization and Generalization in Conceptual Data Modeling

In this section, we first discuss constraints that apply to a single specialization or a single 
generalization; however, for brevity, our discussion refers only to specialization even though it applies 
to both specialization and generalization. We then discuss the differences between 
specialization/generalization lattices (multiple inheritance) and hierarchies (single inheritance), and 
elaborate on the differences between the specialization and generalization processes during conceptual 
database schema design.  
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Constraints on Specialization/Generalization 

In general, we may have several specializations defined on the same entity type (or superclass), as 
shown in Figure 04.01. In such a case, entities may belong to subclasses in each of the specializations. 
However, a specialization may also consist of a single subclass only, such as the {MANAGER} 
specialization in Figure 04.01; in such a case, we do not use the circle notation.  

In some specializations we can determine exactly the entities that will become members of each 
subclass by placing a condition on the value of some attribute of the superclass. Such subclasses are 
called predicate-defined (or condition-defined) subclasses. For example, if the EMPLOYEE entity type 
has an attribute JobType, as shown in Figure 04.04, we can specify the condition of membership in the 
SECRETARY subclass by the predicate (JobType = ‘Secretary’), which we call the defining predicate of 
the subclass. This condition is a constraint specifying that members of the SECRETARY subclass must 
satisfy the predicate and that all entities of the EMPLOYEE entity type whose attribute value for JobType 
is ‘Secretary’ must belong to the subclass. We display a predicate-defined subclass by writing the 
predicate condition next to the line that connects the subclass to the specialization circle.  

 

 

 
 

If all subclasses in a specialization have the membership condition on the same attribute of the 
superclass, the specialization itself is called an attribute-defined specialization, and the attribute is 
called the defining attribute of the specialization (Note 8). We display an attribute-defined 
specialization, as shown in Figure 04.04, by placing the defining attribute name next to the arc from the 
circle to the superclass.  

When we do not have a condition for determining membership in a subclass, the subclass is called 
user-defined. Membership in such a subclass is determined by the database users when they apply the 
operation to add an entity to the subclass; hence, membership is specified individually for each entity 
by the user, not by any condition that may be evaluated automatically.  

Two other constraints may apply to a specialization. The first is the disjointness constraint, which 
specifies that the subclasses of the specialization must be disjoint. This means that an entity can be a 
member of at most one of the subclasses of the specialization. A specialization that is attribute-defined 
implies the disjointness constraint if the attribute used to define the membership predicate is single-
valued. Figure 04.04 illustrates this case, where the d in the circle stands for disjoint. We also use the d 
notation to specify the constraint that user-defined subclasses of a specialization must be disjoint, as 
illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 04.01. If the 
subclasses are not constrained to be disjoint, their sets of entities may overlap; that is, the same (real-
world) entity may be a member of more than one subclass of the specialization. This case, which is the 
default, is displayed by placing an o in the circle, as shown in Figure 04.05.  

The second constraint on specialization is called the completeness constraint, which may be total or 
partial. A total specialization constraint specifies that every entity in the superclass must be a member 
of some subclass in the specialization. For example, if every EMPLOYEE must be either an 
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization {HOURLY_EMPLOYEE, 
SALARIED_EMPLOYEE} of Figure 04.01 is a total specialization of EMPLOYEE; this is shown in EER 
diagrams by using a double line to connect the superclass to the circle. A single line is used to display a 
partial specialization, which allows an entity not to belong to any of the subclasses. For example, if 
some EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER, TECHNICIAN} of 
Figure 04.01 and Figure 04.04, then that specialization is partial (Note 9). Notice that the disjointness 
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and completeness constraints are independent. Hence, we have the following four possible constraints 
on specialization:  

• Disjoint, total  
• Disjoint, partial  
• Overlapping, total  
• Overlapping, partial  

 

 
 

Of course, the correct constraint is determined from the real-world meaning that applies to each 
specialization. However, a superclass that was identified through the generalization process usually is 
total, because the superclass is derived from the subclasses and hence contains only the entities that are 
in the subclasses.  

Certain insertion and deletion rules apply to specialization (and generalization) as a consequence of the 
constraints specified earlier. Some of these rules are as follows:  

• Deleting an entity from a superclass implies that it is automatically deleted from all the 
subclasses to which it belongs.  

• Inserting an entity in a superclass implies that the entity is mandatorily inserted in all 
predicate-defined (or attribute-defined) subclasses for which the entity satisfies the defining 
predicate.  

• Inserting an entity in a superclass of a total specialization implies that the entity is 
mandatorily inserted in at least one of the subclasses of the specialization.  

The reader is encouraged to make a complete list of rules for insertions and deletions for the various 
types of specializations.  

 
 

Specialization/Generalization Hierarchies and Lattices 

A subclass itself may have further subclasses specified on it, forming a hierarchy or a lattice of 
specializations. For example, in Figure 04.06 ENGINEER is a subclass of EMPLOYEE and is also a 
superclass of ENGINEERING_MANAGER; this represents the real-world constraint that every engineering 
manager is required to be an engineer. A specialization hierarchy has the constraint that every 
subclass participates as a subclass in only one class/subclass relationship. In contrast, for a 
specialization lattice a subclass can be a subclass in more than one class/subclass relationship. Hence, 
Figure 04.06 is a lattice.  

 

 

 
 

Figure 04.07 shows another specialization lattice of more than one level. This may be part of a 
conceptual schema for a UNIVERSITY database. Notice that this arrangement would have been a 
hierarchy except for the STUDENT_ASSISTANT subclass, which is a subclass in two distinct class/subclass 
relationships. In Figure 04.07, all person entities represented in the database are members of the 
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PERSON entity type, which is specialized into the subclasses {EMPLOYEE, ALUMNUS, STUDENT}. This 
specialization is overlapping; for example, an alumnus may also be an employee and may also be a 
student pursuing an advanced degree. The subclass STUDENT is superclass for the specialization 
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}, while EMPLOYEE is superclass for the specialization 
{STUDENT_ASSISTANT, FACULTY, STAFF}. Notice that STUDENT_ASSISTANT is also a subclass of STUDENT. 
Finally, STUDENT_ASSISTANT is superclass for the specialization into {RESEARCH_ASSISTANT, 
TEACHING_ASSISTANT}.  

 

 

 
 

In such a specialization lattice or hierarchy, a subclass inherits the attributes not only of its direct 
superclass but also of all its predecessor superclasses all the way to the root of the hierarchy or lattice. 
For example, an entity in GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and 
as a PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy, where a leaf node is 
a class that has no subclasses of its own. For example, a member of GRADUATE_STUDENT may also be a 
member of RESEARCH_ASSISTANT.  

A subclass with more than one superclass is called a shared subclass. For example, if every 
ENGINEERING_MANAGER must be an ENGINEER but must also be a SALARIED_EMPLOYEE and a MANAGER, 
then ENGINEERING_MANAGER should be a shared subclass of all three superclasses (Figure 04.06). This 
leads to the concept known as multiple inheritance, since the shared subclass ENGINEERING_MANAGER 
directly inherits attributes and relationships from multiple classes. Notice that the existence of at least 
one shared subclass leads to a lattice (and hence to multiple inheritance); if no shared subclasses 
existed, we would have a hierarchy rather than a lattice. An important rule related to multiple 
inheritance can be illustrated by the example of the shared subclass STUDENT_ASSISTANT in Figure 
04.07, which inherits attributes from both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT 
inherit the same attributes from PERSON. The rule states that if an attribute (or relationship) originating 
in the same superclass (PERSON) is inherited more than once via different paths (EMPLOYEE and 
STUDENT) in the lattice, then it should be included only once in the shared subclass 
(STUDENT_ASSISTANT). Hence, the attributes of PERSON are inherited only once in the 
STUDENT_ASSISTANT subclass of Figure 04.07.  

It is important to note here that some inheritance mechanisms do not allow multiple inheritance (shared 
subclasses). In such a model, it is necessary to create additional subclasses to cover all possible 
combinations of classes that may have some entity belong to all these classes simultaneously. Hence, 
any overlapping specialization would require multiple additional subclasses. For example, in the 
overlapping specialization of PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it 
would be necessary to create seven subclasses of PERSON: E, A, S, E_A, E_S, A_S, and E_A_S in order to 
cover all possible types of entities. Obviously, this can lead to extra complexity.  

It is also important to note that some inheritance mechanisms that allow multiple inheritance do not 
allow an entity to have multiple types, and hence an entity can be a member of only one class (Note 
10). In such a model, it is also necessary to create additional shared subclasses as leaf nodes to cover all 
possible combinations of classes that may have some entity belong to all these classes simultaneously. 
Hence, we would require the same seven subclasses of PERSON.  

Although we have used specialization to illustrate our discussion, similar concepts apply equally to 
generalization, as we mentioned at the beginning of this section. Hence, we can also speak of 
generalization hierarchies and generalization lattices.  
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Utilizing Specialization and Generalization in Conceptual Data Modeling 

We now elaborate on the differences between the specialization and generalization processes during 
conceptual database design. In the specialization process, we typically start with an entity type and then 
define subclasses of the entity type by successive specialization; that is, we repeatedly define more 
specific groupings of the entity type. For example, when designing the specialization lattice in Figure 
04.07, we may first specify an entity type PERSON for a university database. Then we discover that 
three types of persons will be represented in the database: university employees, alumni, and students. 
We create the specialization {EMPLOYEE, ALUMNUS, STUDENT} for this purpose and choose the 
overlapping constraint because a person may belong to more than one of the subclasses. We then 
specialize EMPLOYEE further into {STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into 
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize STUDENT_ASSISTANT into 
{RESEARCH_ASSISTANT, TEACHING_ASSISTANT}. This successive specialization corresponds to a top-
down conceptual refinement process during conceptual schema design. So far, we have a hierarchy; 
we then realize that STUDENT_ASSISTANT is a shared subclass, since it is also a subclass of STUDENT, 
leading to the lattice.  

It is possible to arrive at the same hierarchy or lattice from the other direction. In such a case, the 
process involves generalization rather than specialization and corresponds to a bottom-up conceptual 
synthesis. In this case, designers may first discover entity types such as STAFF, FACULTY, ALUMNUS, 
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT, TEACHING_ASSISTANT, and so 
on; then they generalize {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT} into STUDENT; then they 
generalize {RESEARCH_ASSISTANT, TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then they 
generalize {STAFF, FACULTY, STUDENT_ASSISTANT} into EMPLOYEE; and finally they generalize 
{EMPLOYEE, ALUMNUS, STUDENT} into PERSON.  

In structural terms, hierarchies or lattices resulting from either process may be identical; the only 
difference relates to the manner or order in which the schema superclasses and subclasses were 
specified. In practice, it is likely that neither the generalization process nor the specialization process is 
followed strictly, but a combination of the two processes is employed. In this case, new classes are 
continually incorporated into a hierarchy or lattice as they become apparent to users and designers. 
Notice that the notion of representing data and knowledge by using superclass/subclass hierarchies and 
lattices is quite common in knowledge-based systems and expert systems, which combine database 
technology with artificial intelligence techniques. For example, frame-based knowledge representation 
schemes closely resemble class hierarchies. Specialization is also common in software engineering 
design methodologies that are based on the object-oriented paradigm.  

 
 

4.4 Modeling of UNION Types Using Categories 

All of the superclass/subclass relationships we have seen thus far have a single superclass. A shared 
subclass such as ENGINEERING_MANAGER in the lattice of Figure 04.06 is the subclass in three distinct 
superclass/subclass relationships, where each of the three relationships has a single superclass. It is not 
uncommon, however, that the need arises for modeling a single superclass/subclass relationship with 
more than one superclass, where the superclasses represent different entity types. In this case, the 
subclass will represent a collection of objects that is (a subset of) the UNION of distinct entity types; 
we call such a subclass a union type or a category (Note 11). 

For example, suppose that we have three entity types: PERSON, BANK, and COMPANY. In a database for 
vehicle registration, an owner of a vehicle can be a person, a bank (holding a lien on a vehicle), or a 
company. We need to create a class (collection of entities) that includes entities of all three types to 
play the role of vehicle owner. A category OWNER that is a subclass of the UNION of the three entity 
sets of COMPANY, BANK, and PERSON is created for this purpose. We display categories in an EER 
diagram, as shown in Figure 04.08. The superclasses COMPANY, BANK, and PERSON are connected to the 
circle with the D symbol, which stands for the set union operation. An arc with the subset symbol 
connects the circle to the (subclass) OWNER category. If a defining predicate is needed, it is displayed 
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next to the line from the superclass to which the predicate applies. In Figure 04.08 we have two 
categories: OWNER, which is a subclass of the union of PERSON, BANK, and COMPANY; and 
REGISTERED_VEHICLE, which is a subclass of the union of CAR and TRUCK.  

 

 

 
 

A category has two or more superclasses that may represent distinct entity types, whereas other 
superclass/subclass relationships always have a single superclass. We can compare a category, such as 
OWNER in Figure 04.08, with the ENGINEERING_MANAGER shared subclass of Figure 04.06. The latter is 
a subclass of each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE, so an entity 
that is a member of ENGINEERING_MANAGER must exist in all three. This represents the constraint that 
an engineering manager must be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, 
ENGINEERING_MANAGER is a subset of the intersection of the three subclasses (sets of entities). On the 
other hand, a category is a subset of the union of its superclasses. Hence, an entity that is a member of 
OWNER must exist in only one of the superclasses. This represents the constraint that an OWNER may be 
a COMPANY, a BANK, or a PERSON in Figure 04.08.  

Attribute inheritance works more selectively in the case of categories. For example, in Figure 04.08 
each OWNER entity inherits the attributes of a COMPANY, a PERSON, or a BANK, depending on the 
superclass to which the entity belongs. On the other hand, a shared subclass such as 
ENGINEERING_MANAGER (Figure 04.06) inherits all the attributes of its superclasses 
SALARIED_EMPLOYEE, ENGINEER, and MANAGER.  

It is interesting to note the difference between the category REGISTERED_VEHICLE (Figure 04.08) and the 
generalized superclass VEHICLE (Figure 04.03(b)). In Figure 04.03(b) every car and every truck is a 
VEHICLE; but in Figure 04.08 the REGISTERED_VEHICLE category includes some cars and some trucks but 
not necessarily all of them (for example, some cars or trucks may not be registered). In general, a 
specialization or generalization such as that in Figure 04.03(b), if it were partial, would not preclude 
VEHICLE from containing other types of entities, such as motorcycles. However, a category such as 
REGISTERED_VEHICLE in Figure 04.08 implies that only cars and trucks, but not other types of entities, 
can be members of REGISTERED_VEHICLE.  

A category can be total or partial. For example, ACCOUNT_HOLDER is a predicate-defined partial 
category in Figure 04.09(a), where c1 and c2 are predicate conditions that specify which COMPANY and 
PERSON entities, respectively, are members of ACCOUNT_HOLDER. However, the category PROPERTY in 
Figure 04.09(b) is total because every building and lot must be a member of PROPERTY; this is shown 
by a double line connecting the category and the circle. Partial categories are indicated by a single line 
connecting the category and the circle, as in Figure 04.08 and Figure 04.09(a).  

 

 

 
 

The superclasses of a category may have different key attributes, as demonstrated by the OWNER 
category of Figure 04.08; or they may have the same key attribute, as demonstrated by the 
REGISTERED_VEHICLE category. Notice that if a category is total (not partial), it may be represented 
alternatively as a specialization (or a generalization), as illustrated in Figure 04.09(b). In this case the 
choice of which representation to use is subjective. If the two classes represent the same type of entities 
and share numerous attributes, including the same key attributes, specialization/generalization is 
preferred; otherwise, categorization (union type) is more appropriate.  
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4.5 An Example UNIVERSITY EER Schema and Formal Definitions 
for the EER Model 

The UNIVERSITY Database Example 
Formal Definitions for the EER Model Concepts

In this section, we first give an example of a database schema in the EER model to illustrate the use of 
the various concepts discussed here and in Chapter 3. Then, we summarize the EER model concepts 
and define them formally in the same manner in which we formally defined the concepts of the basic 
ER model in Chapter 3.  

 
 

The UNIVERSITY Database Example 

For our example database application, consider a UNIVERSITY database that keeps track of students and 
their majors, transcripts, and registration as well as of the university’s course offerings. The database 
also keeps track of the sponsored research projects of faculty and graduate students. This schema is 
shown in Figure 04.10. A discussion of the requirements that led to this schema follows.  

 

 

 
 

For each person, the database maintains information on the person’s Name [Name], social security 
number [Ssn], address [Address], sex [Sex], and birth date [BDate]. Two subclasses of the PERSON 
entity type were identified: FACULTY and STUDENT. Specific attributes of FACULTY are rank [Rank] 
(assistant, associate, adjunct, research, visiting, etc.), office [FOffice], office phone [FPhone], and 
salary [Salary], and all faculty members are related to the academic department(s) with which they are 
affiliated [BELONGS] (a faculty member can be associated with several departments, so the relationship 
is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sophomore = 2, . . . , graduate 
student = 5). Each student is also related to his or her major and minor departments, if known ([MAJOR] 
and [MINOR]), to the course sections he or she is currently attending [REGISTERED], and to the courses 
completed [TRANSCRIPT]. Each transcript instance includes the grade the student received [Grade] in 
the course section.  

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate Class = 5. For each graduate 
student, we keep a list of previous degrees in a composite, multivalued attribute [Degrees]. We also 
relate the graduate student to a faculty advisor [ADVISOR] and to a thesis committee [COMMITTEE] if one 
exists.  

An academic department has the attributes name [DName], telephone [DPhone], and office number 
[Office] and is related to the faculty member who is its chairperson [CHAIRS] and to the college to 
which it belongs [CD]. Each college has attributes college name [CName], office number [COffice], 
and the name of its dean [Dean].  

A course has attributes course number [C#], course name [Cname], and course description [CDesc]. 
Several sections of each course are offered, with each section having the attributes section number 
[Sec#] and the year and quarter in which the section was offered ([Year] and [Qtr]) (Note 12). Section 
numbers uniquely identify each section. The sections being offered during the current semester are in a 
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subclass CURRENT_SECTION of SECTION, with the defining predicate Qtr = CurrentQtr and Year = 
CurrentYear. Each section is related to the instructor who taught or is teaching it ([TEACH], if that 
instructor is in the database).  

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and GRAD_STUDENT and 
includes all faculty, as well as graduate students who are supported by teaching or research. Finally, the 
entity type GRANT keeps track of research grants and contracts awarded to the university. Each grant 
has attributes grant title [Title], grant number [No], the awarding agency [Agency], and the starting 
date [StDate]. A grant is related to one principal investigator [PI] and to all researchers it supports 
[SUPPORT]. Each instance of support has as attributes the starting date of support [Start], the ending 
date of the support (if known) [End], and the percentage of time being spent on the project [Time] by 
the researcher being supported.  

 
 

Formal Definitions for the EER Model Concepts 

We now summarize the EER model concepts and give formal definitions. A class (Note 13) is a set or 
collection of entities; this includes any of the EER schema constructs that group entities such as entity 
types, subclasses, superclasses, and categories. A subclass S is a class whose entities must always be a 
subset of the entities in another class, called the superclass C of the superclass/subclass (or IS-A) 
relationship. We denote such a relationship by C/S. For such a superclass/subclass relationship, we 
must always have  

 

 

 
 

A specialization Z = {, , . . . , } is a set of subclasses that have the same superclass G; that is, G/ is a 
superclass/subclass relationship for i = 1, 2, . . . , n. G is called a generalized entity type (or the 
superclass of the specialization, or a generalization of the subclasses {, , . . . , }). Z is said to be total 
if we always (at any point in time) have  

 

   

 
 

otherwise, Z is said to be partial. Z is said to be disjoint if we always have  

 

 

 
 

Otherwise, Z is said to be overlapping.  
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A subclass S of C is said to be predicate-defined if a predicate p on the attributes of C is used to 
specify which entities in C are members of S; that is, S = C[p], where C[p] is the set of entities in C that 
satisfy p. A subclass that is not defined by a predicate is called user-defined.  

A specialization Z (or generalization G) is said to be attribute-defined if a predicate (A = ), where A is 
an attribute of G and is a constant value from the domain of A, is used to specify membership in each 
subclass in Z. Notice that, if cj for i j, and A is a single-valued attribute, then the specialization will be 
disjoint.  

A category T is a class that is a subset of the union of n defining superclasses , , . . . , , n > 1, and is 
formally specified as follows:  

 

 

 
 

A predicate on the attributes of can be used to specify the members of each that are members of T. If a 
predicate is specified on every , we get  

 

 

 
 

We should now extend the definition of relationship type given in Chapter 3 by allowing any class—
not only any entity type—to participate in a relationship. Hence, we should replace the words entity 
type with class in that definition. The graphical notation of EER is consistent with ER because all 
classes are represented by rectangles.  

 
 

4.6 Conceptual Object Modeling Using UML Class Diagrams 

Object modeling methodologies, such as UML (Universal Modeling Language) and OMT (Object 
Modeling Technique) are becoming increasingly popular. Although these methodologies were 
developed mainly for software design, a major part of software design involves designing the databases 
that will be accessed by the software modules. Hence, an important part of these methodologies—
namely, the class diagrams (Note 14)—are similar to EER diagrams in many ways. Unfortunately, the 
terminology often differs. In this section, we briefly review some of the notation, terminology, and 
concepts used in UML class diagrams, and compare them with EER terminology and notation. Figure 
04.11 shows how the COMPANY ER database schema of Figure 03.15 can be displayed using UML 
notation. The entity types in Figure 03.15 are modeled as classes in Figure 04.11. An entity in ER 
corresponds to an object in UML.  
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In UML class diagrams, a class is displayed as a box (see Figure 04.11) that includes three sections: the 
top section gives the class name; the middle section includes the attributes for individual objects of the 
class; and the last section includes operations that can be applied to these objects. Operations are not 
specified in EER diagrams. Consider the EMPLOYEE class in Figure 04.11. Its attributes are Name, Ssn, 
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain of an attribute if 
desired, by placing a : followed by the domain name or description (see the Name, Sex, and Bdate 
attributes of EMPLOYEE in Figure 04.11). A composite attribute is modeled as a structured domain, as 
illustrated by the Name attribute of EMPLOYEE. A multivalued attribute will generally be modeled as a 
separate class, as illustrated by the LOCATION class in Figure 04.11.  

Relationship types are called associations in UML terminology, and relationship instances are called 
links. A binary association (binary relationship type) is represented as a line connecting the 
participating classes (entity types), and may (optional) have a name. A relationship attribute, called a 
link attribute, is placed in a box that is connected to the association’s line by a dashed line. The (min, 
max) notation described in Section 3.7.4 is used to specify relationship constraints, which are called 
multiplicities in UML terminology. Multiplicities are specified in the form min..max, and an asterisk 
(*) indicates no maximum limit on participation. However, the multiplicities are placed on the opposite 
ends of the relationship when compared to the notation discussed in Section 3.7.4 (compare Figure 
04.11 and Figure 03.15). In UML, a single asterisk indicates a multiplicity of 0..*, and a single 1 
indicates a multiplicity of 1..1. A recursive relationship (see Section 3.4.2) is called a reflexive 
association in UML, and the role names—like the multiplicities—are placed at the opposite ends of an 
association when compared to the placing of role names in Figure 03.15.  

In UML, there are two types of relationships: association and aggregation. Aggregation is meant to 
represent a relationship between a whole object and its component parts, and it has a distinct 
diagrammatic notation. In Figure 04.11, we modeled the locations of a department and the single 
location of a project as aggregations. However, aggregation and association do not have different 
structural properties, and the choice as to which type of relationship to use is somewhat subjective. In 
the EER model, both are represented as relationships. UML also distinguishes between unidirectional 
associations/aggregations—which are displayed with an arrow to indicate that only one direction for 
accessing related objects is needed—and bi-directional associations/aggregations—which are the 
default. In addition, relationship instances may be specified to be ordered. Relationship (association) 
names are optional in UML, and relationship attributes are displayed in a box attached with a dashed 
line to the line representing the association/aggregation (see StartDate and Hours in Figure 04.11).  

The operations given in each class are derived from the functional requirements of the application, as 
we discussed in Section 3.1. It is generally sufficient to specify the operation names initially for the 
logical operations that are expected to be applied to individual objects of a class, as shown in Figure 
04.11. As the design is refined, more details are added, such as the exact argument types (parameters) 
for each operation, plus a functional description of each operation. UML has function descriptions and 
sequence diagrams to specify some of the operation details, but these are beyond the scope of our 
discussion, and are usually described in software engineering texts.  

Weak entities can be modeled using the construct called qualified association (or qualified 
aggregation) in UML; this can represent both the identifying relationship and the partial key, which is 
placed in a box attached to the owner class. This is illustrated by the DEPENDENT class and its qualified 
aggregation to EMPLOYEE in Figure 04.11 (Note 15). 

Figure 04.12 illustrates the UML notation for generalization/specialization by giving a possible UML 
class diagram corresponding to the EER diagram in Figure 04.07. A blank triangle indicates a disjoint 
specialization/generalization, and a filled triangle indicates overlapping.  
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The above discussion and examples give a brief overview of UML class diagrams and terminology. 
There are many details that we have not discussed because they are outside the scope of this book. The 
bibliography at this end of the chapter gives some references to books that describe complete details of 
UML.  

 
 

4.7 Relationship Types of a Degree Higher Than Two 

Choosing Between Binary and Ternary (or Higher-Degree) Relationships 
Constraints on Ternary (or Higher-Degree) Relationships

In Section 3.4.2 we defined the degree of a relationship type as the number of participating entity types 
and called a relationship type of degree two binary and a relationship type of degree three ternary. In 
this section, we elaborate on the differences between binary and higher-degree relationships, when to 
choose higher-degree or binary relationships, and constraints on higher-degree relationships.  

 
 

Choosing Between Binary and Ternary (or Higher-Degree) Relationships 

The ER diagram notation for a ternary relationship type is shown in Figure 04.13(a), which displays the 
schema for the SUPPLY relationship type that was displayed at the instance level in Figure 03.10. In 
general, a relationship type R of degree n will have n edges in an ER diagram, one connecting R to 
each participating entity type.  

 

 

 
 

Figure 04.13(b) shows an ER diagram for the three binary relationship types CAN_SUPPLY, USES, and 
SUPPLIES. In general, a ternary relationship type represents more information than do three binary 
relationship types. Consider the three binary relationship types CAN_SUPPLY, USES, and SUPPLIES. 
Suppose that CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever supplier s 
can supply part p (to any project); USES, between PROJECT and PART, includes an instance (j, p) 
whenever project j uses part p; and SUPPLIES, between SUPPLIER and PROJECT, includes an instance (s, 
j) whenever supplier s supplies some part to project j. The existence of three relationship instances (s, 
p), (j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not necessarily imply that an 
instance (s, j, p) exists in the ternary relationship SUPPLY because the meaning is different! It is often 
tricky to decide whether a particular relationship should be represented as a relationship type of degree 
n or should be broken down into several relationship types of smaller degrees. The designer must base 
this decision on the semantics or meaning of the particular situation being represented. The typical 
solution is to include the ternary relationship plus one or more of the binary relationships, as needed.  

Some database design tools are based on variations of the ER model that permit only binary 
relationships. In this case, a ternary relationship such as SUPPLY must be represented as a weak entity 
type, with no partial key and with three identifying relationships. The three participating entity types 
SUPPLIER, PART, and PROJECT are together the owner entity types (see Figure 04.13c). Hence, an entity 
in the weak entity type SUPPLY of Figure 04.13(c) is identified by the combination of its three owner 
entities from SUPPLIER, PART, and PROJECT.  
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Another example is shown in Figure 04.14. The ternary relationship type OFFERS represents 
information on instructors offering courses during particular semesters; hence it includes a relationship 
instance (i, s, c) whenever instructor i offers course c during semester s. The three binary relationship 
types shown in Figure 04.14 have the following meaning: CAN_TEACH relates a course to the instructors 
who can teach that course; TAUGHT_DURING relates a semester to the instructors who taught some 
course during that semester; and OFFERED_DURING relates a semester to the courses offered during that 
semester by any instructor. In general, these ternary and binary relationships represent different 
information, but certain constraints should hold among the relationships. For example, a relationship 
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in TAUGHT_DURING, an 
instance (s, c) exists in OFFERED_DURING, and an instance (i, c) exists in CAN_TEACH. However, the 
reverse is not always true; we may have instances (i, s), (s, c), and (i, c) in the three binary relationship 
types with no corresponding instance (i, s, c) in OFFERS. Under certain additional constraints, the latter 
may hold—for example, if the CAN_TEACH relationship is 1:1 (an instructor can teach one course, and a 
course can be taught by only one instructor). The schema designer must analyze each specific situation 
to decide which of the binary and ternary relationship types are needed.  

 

 

 
 

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identifying relationship 
type. In this case, the weak entity type can have several owner entity types. An example is shown in 
Figure 04.15.  

 

 

 
 

Constraints on Ternary (or Higher-Degree) Relationships 

There are two notations for specifying structural constraints on n-ary relationships, and they specify 
different constraints. They should thus both be used if it is important to fully specify the structural 
constraints on a ternary or higher-degree relationship. The first notation is based on the cardinality ratio 
notation of binary relationships, displayed in Figure 03.02. Here, a 1, M, or N is specified on each 
participation arc. Let us illustrate this constraint using the SUPPLY relationship in Figure 04.13.  

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p), where s is a 
SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint exists that for a particular 
project-part combination, only one supplier will be used (only one supplier supplies a particular part to 
a particular project). In this case, we place 1 on the SUPPLIER participation, and M, N on the PROJECT, 
PART participations in Figure 04.13. This specifies the constraint that a particular (j, p) combination can 
appear at most once in the relationship set. Hence, any relationship instance (s, j, p) is uniquely 
identified in the relationship set by its (j, p) combination, which makes (j, p) a key for the relationship 
set. In general, the participations that have a 1 specified on them are not required to be part of the key 
for the relationship set (Note 16).  

The second notation is based on the (min, max) notation displayed in Figure 03.15 for binary 
relationships. A (min, max) on a participation here specifies that each entity is related to at least min 
and at most max relationship instances in the relationship set. These constraints have no bearing on 
determining the key of an n-ary relationship, where n > 2 (Note 17), but specify a different type of 
constraint that places restrictions on how many relationship instances each entity can participate in.  
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4.8 Data Abstraction and Knowledge Representation Concepts 

4.8.1 Classification and Instantiation 
4.8.2 Identification 
4.8.3 Specialization and Generalization 
4.8.4 Aggregation and Association

In this section we discuss in abstract terms some of the modeling concepts that we described quite 
specifically in our presentation of the ER and EER models in Chapter 3 and Chapter 4. This 
terminology is used both in conceptual data modeling and in artificial intelligence literature when 
discussing knowledge representation (abbreviated as KR). The goal of KR techniques is to develop 
concepts for accurately modeling some domain of discourse by creating an ontology (Note 18) that 
describes the concepts of the domain. This is then used to store and manipulate knowledge for drawing 
inferences, making decisions, or just answering questions. The goals of KR are similar to those of 
semantic data models, but we can summarize some important similarities and differences between the 
two disciplines:  

• Both disciplines use an abstraction process to identify common properties and important 
aspects of objects in the miniworld (domain of discourse) while suppressing insignificant 
differences and unimportant details.  

• Both disciplines provide concepts, constraints, operations, and languages for defining data and 
representing knowledge.  

• KR is generally broader in scope than semantic data models. Different forms of knowledge, 
such as rules (used in inference, deduction, and search), incomplete and default knowledge, 
and temporal and spatial knowledge, are represented in KR schemes. Database models are 
being expanded to include some of these concepts (see Chapter 23).  

• KR schemes include reasoning mechanisms that deduce additional facts from the facts stored 
in a database. Hence, whereas most current database systems are limited to answering direct 
queries, knowledge-based systems using KR schemes can answer queries that involve 
inferences over the stored data. Database technology is being extended with inference 
mechanisms (see Chapter 25).  

• Whereas most data models concentrate on the representation of database schemas, or meta-
knowledge, KR schemes often mix up the schemas with the instances themselves in order to 
provide flexibility in representing exceptions. This often results in inefficiencies when these 
KR schemes are implemented, especially when compared to databases and when a large 
amount of data (or facts) needs to be stored.  

In this section we discuss four abstraction concepts that are used in both semantic data models, such 
as the EER model, and KR schemes: (1) classification and instantiation, (2) identification, (3) 
specialization and generalization, and (4) aggregation and association. The paired concepts of 
classification and instantiation are inverses of one another, as are generalization and specialization. The 
concepts of aggregation and association are also related. We discuss these abstract concepts and their 
relation to the concrete representations used in the EER model to clarify the data abstraction process 
and to improve our understanding of the related process of conceptual schema design.  

 
 

4.8.1 Classification and Instantiation 

The process of classification involves systematically assigning similar objects/entities to object 
classes/entity types. We can now describe (in DB) or reason about (in KR) the classes rather than the 
individual objects. Collections of objects share the same types of attributes, relationships, and 
constraints, and by classifying objects we simplify the process of discovering their properties. 
Instantiation is the inverse of classification and refers to the generation and specific examination of 
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distinct objects of a class. Hence, an object instance is related to its object class by the IS-AN-
INSTANCE-OF relationship (Note 19).  

In general, the objects of a class should have a similar type structure. However, some objects may 
display properties that differ in some respects from the other objects of the class; these exception 
objects also need to be modeled, and KR schemes allow more varied exceptions than do database 
models. In addition, certain properties apply to the class as a whole and not to the individual objects; 
KR schemes allow such class properties (Note 20).  

In the EER model, entities are classified into entity types according to their basic properties and 
structure. Entities are further classified into subclasses and categories based on additional similarities 
and differences (exceptions) among them. Relationship instances are classified into relationship types. 
Hence, entity types, subclasses, categories, and relationship types are the different types of classes in 
the EER model. The EER model does not provide explicitly for class properties, but it may be extended 
to do so. In UML, objects are classified into classes, and it is possible to display both class properties 
and individual objects.  

Knowledge representation models allow multiple classification schemes in which one class is an 
instance of another class (called a meta-class). Notice that this cannot be represented directly in the 
EER model, because we have only two levels—classes and instances. The only relationship among 
classes in the EER model is a superclass/subclass relationship, whereas in some KR schemes an 
additional class/instance relationship can be represented directly in a class hierarchy. An instance may 
itself be another class, allowing multiple-level classification schemes.  

 
 

4.8.2 Identification 

Identification is the abstraction process whereby classes and objects are made uniquely identifiable by 
means of some identifier. For example, a class name uniquely identifies a whole class. An additional 
mechanism is necessary for telling distinct object instances apart by means of object identifiers. 
Moreover, it is necessary to identify multiple manifestations in the database of the same real-world 
object. For example, we may have a tuple <Matthew Clarke, 610618, 376-9821> in a PERSON relation 
and another tuple <301-54-0836, CS, 3.8> in a STUDENT relation that happens to represent the same 
real-world entity. There is no way to identify the fact that these two database objects (tuples) represent 
the same real-world entity unless we make a provision at design time for appropriate cross-referencing 
to supply this identification. Hence, identification is needed at two levels:  

• To distinguish among database objects and classes.  
• To identify database objects and to relate them to their real-world counterparts.  

In the EER model, identification of schema constructs is based on a system of unique names for the 
constructs. For example, every class in an EER schema—whether it is an entity type, a subclass, a 
category, or a relationship type—must have a distinct name. The names of attributes of a given class 
must also be distinct. Rules for unambiguously identifying attribute name references in a specialization 
or generalization lattice or hierarchy are needed as well.  

At the object level, the values of key attributes are used to distinguish among entities of a particular 
entity type. For weak entity types, entities are identified by a combination of their own partial key 
values and the entities they are related to in the owner entity type(s). Relationship instances are 
identified by some combination of the entities that they relate, depending on the cardinality ratio 
specified.  

 
 

4.8.3 Specialization and Generalization 
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Specialization is the process of classifying a class of objects into more specialized subclasses. 
Generalization is the inverse process of generalizing several classes into a higher-level abstract class 
that includes the objects in all these classes. Specialization is conceptual refinement, whereas 
generalization is conceptual synthesis. Subclasses are used in the EER model to represent 
specialization and generalization. We call the relationship between a subclass and its superclass an IS-
A-SUBCLASS-OF relationship or simply an IS-A relationship.  

 
 

4.8.4 Aggregation and Association 

Aggregation is an abstraction concept for building composite objects from their component objects. 
There are three cases where this concept can be related to the EER model. The first case is the situation 
where we aggregate attribute values of an object to form the whole object. The second case is when we 
represent an aggregation relationship as an ordinary relationship. The third case, which the EER model 
does not provide for explicitly, involves the possibility of combining objects that are related by a 
particular relationship instance into a higher-level aggregate object. This is sometimes useful when the 
higher-level aggregate object is itself to be related to another object. We call the relationship between 
the primitive objects and their aggregate object IS-A-PART-OF; the inverse is called IS-A-
COMPONENT-OF. UML provides for all three types of aggregation.  

The abstraction of association is used to associate objects from several independent classes. Hence, it 
is somewhat similar to the second use of aggregation. It is represented in the EER model by 
relationship types and in UML by associations. This abstract relationship is called IS-ASSOCIATED-
WITH.  

In order to understand the different uses of aggregation better, consider the ER schema shown in Figure 
04.16(a), which stores information about interviews by job applicants to various companies. The class 
COMPANY is an aggregation of the attributes (or component objects) CName (company name) and 
CAddress (company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name, Address, and 
Phone. The relationship attributes ContactName and ContactPhone represent the name and phone 
number of the person in the company who is responsible for the interview. Suppose that some 
interviews result in job offers, while others do not. We would like to treat INTERVIEW as a class to 
associate it with JOB_OFFER. The schema shown in Figure 04.16(b) is incorrect because it requires each 
interview relationship instance to have a job offer. The schema shown in Figure 04.16(c) is not 
allowed, because the ER model does not allow relationships among relationships (although UML 
does).  

 

 

 
 

One way to represent this situation is to create a higher-level aggregate class composed of COMPANY, 
JOB_APPLICANT, and INTERVIEW and to relate this class to JOB_OFFER, as shown in Figure 04.16(d). 
Although the EER model as described in this book does not have this facility, some semantic data 
models do allow it and call the resulting object a composite or molecular object. Other models treat 
entity types and relationship types uniformly and hence permit relationships among relationships 
(Figure 04.16c).  

To represent this situation correctly in the ER model as described here, we need to create a new weak 
entity type INTERVIEW, as shown in Figure 04.16(e), and relate it to JOB_OFFER. Hence, we can always 
represent these situations correctly in the ER model by creating additional entity types, although it may 
be conceptually more desirable to allow direct representation of aggregation as in Figure 04.16(d) or to 
allow relationships among relationships as in Figure 04.16(c).  
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The main structural distinction between aggregation and association is that, when an association 
instance is deleted, the participating objects may continue to exist. However, if we support the notion 
of an aggregate object—for example, a CAR that is made up of objects ENGINE, CHASSIS, and TIRES—
then deleting the aggregate CAR object amounts to deleting all its component objects.  

 
 

4.9 Summary 

In this chapter we first discussed extensions to the ER model that improve its representational 
capabilities. We called the resulting model the enhanced-ER or EER model. The concept of a subclass 
and its superclass and the related mechanism of attribute/relationship inheritance were presented. We 
saw how it is sometimes necessary to create additional classes of entities, either because of additional 
specific attributes or because of specific relationship types. We discussed two main processes for 
defining superclass/subclass hierarchies and lattices—specialization and generalization.  

We then showed how to display these new constructs in an EER diagram. We also discussed the 
various types of constraints that may apply to specialization or generalization. The two main 
constraints are total/partial and disjoint/overlapping. In addition, a defining predicate for a subclass or a 
defining attribute for a specialization may be specified. We discussed the differences between user-
defined and predicate-defined subclasses and between user-defined and attribute-defined 
specializations. Finally, we discussed the concept of a category, which is a subset of the union of two 
or more classes, and we gave formal definitions of all the concepts presented.  

We then introduced the notation and terminology of the Universal Modeling Language (UML), which 
is being used increasingly in software engineering. We briefly discussed similarities and differences 
between the UML and EER concepts, notation, and terminology. We also discussed some of the issues 
concerning the difference between binary and higher-degree relationships, under which circumstances 
each should be used when designing a conceptual schema, and how different types of constraints on n-
ary relationships may be specified. In Section 4.8 we discussed briefly the discipline of knowledge 
representation and how it is related to semantic data modeling. We also gave an overview and summary 
of the types of abstract data representation concepts: classification and instantiation, identification, 
specialization and generalization, aggregation and association. We saw how EER and UML concepts 
are related to each of these.  

 
 

Review Questions 

  4.1. What is a subclass? When is a subclass needed in data modeling?  

  4.2. Define the following terms: superclass of a subclass, superclass/subclass relationship, IS-A 
relationship, specialization, generalization, category, specific (local) attributes, specific 
relationships. 

  4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it useful? 

  4.4. Discuss user-defined and predicate-defined subclasses, and identify the differences between the 
two.  

  4.5. Discuss user-defined and attribute-defined specializations, and identify the differences between 
the two.  

  4.6. Discuss the two main types of constraints on specializations and generalizations.  

  4.7. What is the difference between a specialization hierarchy and a specialization lattice? 

  4.8. What is the difference between specialization and generalization? Why do we not display this 
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difference in schema diagrams?  

  4.9. How does a category differ from a regular shared subclass? What is a category used for? 
Illustrate your answer with examples.  

4.10. For each of the following UML terms, discuss the corresponding term in the EER model, if any: 
object, class, association, aggregation, generalization, multiplicity, attributes, discriminator, 
link, link attribute, reflexive association, qualified association. 

4.11. Discuss the main differences between the notation for EER schema diagrams and UML class 
diagrams by comparing how common concepts are represented in each. 

4.12. Discuss the two notations for specifying constraints on n-ary relationships, and what each can be 
used for. 

4.13. List the various data abstraction concepts and the corresponding modeling concepts in the EER 
model. 

4.14. What aggregation feature is missing from the EER model? How can the EER model be further 
enhanced to support it? 

4.15. What are the main similarities and differences between conceptual database modeling 
techniques and knowledge representation techniques. 

 
 

Exercises 

4.16. Design an EER schema for a database application that you are interested in. Specify all 
constraints that should hold on the database. Make sure that the schema has at least five entity 
types, four relationship types, a weak entity type, a superclass/subclass relationship, a category, 
and an n-ary (n > 2) relationship type.  

4.17. Consider the BANK ER schema of Figure 03.17, and suppose that it is necessary to keep track of 
different types of ACCOUNTS (SAVINGS_ACCTS, CHECKING_ACCTS, . . .) and LOANS (CAR_LOANS, 
HOME_LOANS, . . .). Suppose that it is also desirable to keep track of each account’s 
TRANSACTIONs (deposits, withdrawals, checks, . . .) and each loan’s PAYMENTs; both of these 
include the amount, date, and time. Modify the BANK schema, using ER and EER concepts of 
specialization and generalization. State any assumptions you make about the additional 
requirements.  

4.18. The following narrative describes a simplified version of the organization of Olympic facilities 
planned for the 1996 Olympics in Atlanta. Draw an EER diagram that shows the entity types, 
attributes, relationships, and specializations for this application. State any assumptions you 
make. The Olympic facilities are divided into sports complexes. Sports complexes are divided 
into one-sport and multisport types. Multisport complexes have areas of the complex designated 
to each sport with a location indicator (e.g., center, NE-corner, etc.). A complex has a location, 
chief organizing individual, total occupied area, and so on. Each complex holds a series of 
events (e.g., the track stadium may hold many different races). For each event there is a planned 
date, duration, number of participants, number of officials, and so on. A roster of all officials 
will be maintained together with the list of events each official will be involved in. Different 
equipment is needed for the events (e.g., goal posts, poles, parallel bars) as well as for 
maintenance. The two types of facilities (one-sport and multisport) will have different types of 
information. For each type, the number of facilities needed is kept, together with an approximate 
budget.  

4.19. Identify all the important concepts represented in the library database case study described 
below. In particular, identify the abstractions of classification (entity types and relationship 
types), aggregation, identification, and specialization/generalization. Specify (min, max) 
cardinality constraints, whenever possible. List details that will impact eventual design, but have 
no bearing on the conceptual design. List the semantic constraints separately. Draw an EER 
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diagram of the library database. 

Case Study: The Georgia Tech Library (GTL) has approximately 16,000 members, 100,000 
titles, and 250,000 volumes (or an average of 2.5 copies per book). About 10 percent of the 
volumes are out on loan at any one time. The librarians ensure that the books that members want 
to borrow are available when the members want to borrow them. Also, the librarians must know 
how many copies of each book are in the library or out on loan at any given time. A catalog of 
books is available on-line that lists books by author, title, and subject area. For each title in the 
library, a book description is kept in the catalog that ranges from one sentence to several pages. 
The reference librarians want to be able to access this description when members request 
information about a book. Library staff is divided into chief librarian, departmental associate 
librarians, reference librarians, check-out staff, and library assistants. Books can be checked out 
for 21 days. Members are allowed to have only five books out at a time. Members usually return 
books within three to four weeks. Most members know that they have one week of grace before 
a notice is sent to them, so they try to get the book returned before the grace period ends. About 
5 percent of the members have to be sent reminders to return a book. Most overdue books are 
returned within a month of the due date. Approximately 5 percent of the overdue books are 
either kept or never returned. The most active members of the library are defined as those who 
borrow at least ten times during the year. The top 1 percent of membership does 15 percent of 
the borrowing, and the top 10 percent of the membership does 40 percent of the borrowing. 
About 20 percent of the members are totally inactive in that they are members but do never 
borrow. To become a member of the library, applicants fill out a form including their SSN, 
campus and home mailing addresses, and phone numbers. The librarians then issue a numbered, 
machine-readable card with the member’s photo on it. This card is good for four years. A month 
before a card expires, a notice is sent to a member for renewal. Professors at the institute are 
considered automatic members. When a new faculty member joins the institute, his or her 
information is pulled from the employee records and a library card is mailed to his or her 
campus address. Professors are allowed to check out books for three-month intervals and have a 
two-week grace period. Renewal notices to professors are sent to the campus address. The 
library does not lend some books, such as reference books, rare books, and maps. The librarians 
must differentiate between books that can be lent and those that cannot be lent. In addition, the 
librarians have a list of some books they are interested in acquiring but cannot obtain, such as 
rare or out-of-print books and books that were lost or destroyed but have not been replaced. The 
librarians must have a system that keeps track of books that cannot be lent as well as books that 
they are interested in acquiring. Some books may have the same title; therefore, the title cannot 
be used as a means of identification. Every book is identified by its International Standard Book 
Number (ISBN), a unique international code assigned to all books. Two books with the same 
title can have different ISBNs if they are in different languages or have different bindings (hard 
cover or soft cover). Editions of the same book have different ISBNs. The proposed database 
system must be designed to keep track of the members, the books, the catalog, and the 
borrowing activity.  

4.20. Design a database to keep track of information for an art museum. Assume that the following 
requirements were collected:  

• The museum has a collection of ART_OBJECTs. Each ART_OBJECT has a unique 
IdNo, an Artist (if known), a Year (when it was created, if known), a Title, and a 
Description. The art objects are categorized in several ways as discussed below.  

• ART_OBJECTs are categorized based on their type. There are three main types: 
PAINTING, SCULPTURE, and STATUE, plus another type called OTHER to 
accommodate objects that do not fall into one of the three main types.  

• A PAINTING has a PaintType (oil, watercolor, etc.), material on which it is DrawnOn 
(paper, canvas, wood, etc.), and Style (modern, abstract, etc.).  

• A SCULPTURE has a Material from which it was created (wood, stone, etc.), Height, 
Weight, and Style.  

• An art object in the OTHER category has a Type (print, photo, etc.) and Style.  
• ART_OBJECTs are also categorized as PERMANENT_COLLECTION that are owned 

by the museum (which has information on the DateAcquired, whether it is OnDisplay 
or stored, and Cost) or BORROWED, which has information on the Collection (from 
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which it was borrowed), DateBorrowed, and DateReturned.  
• ART_OBJECTs also have information describing their country/culture using 

information on country/culture of Origin (Italian, Egyptian, American, Indian, etc.), 
Epoch (Renaissance, Modern, Ancient, etc.).  

• The museum keeps track of ARTIST’s information, if known: Name, DateBorn, 
DateDied (if not living), CountryOfOrigin, Epoch, MainStyle, Description. The Name 
is assumed to be unique.  

• Different EXHIBITIONs occur, each having a Name, StartDate, EndDate, and is 
related to all the art objects that were on display during the exhibition.  

• Information is kept on other COLLECTIONs with which the museum interacts, 
including Name (unique), Type (museum, personal, etc.), Description, Address, Phone, 
and current ContactPerson.  

Draw an EER schema diagram for this application. Discuss any assumptions you made, and that 
justify your EER design choices.  

4.21. Figure 04.17 shows an example of an EER diagram for a small private airport database that is 
used to keep track of airplanes, their owners, airport employees, and pilots. From the 
requirements for this database, the following information was collected. Each airplane has a 
registration number [Reg#], is of a particular plane type [OF-TYPE], and is stored in a particular 
hangar [STORED-IN]. Each plane type has a model number [Model], a capacity [Capacity], and a 
weight [Weight]. Each hangar has a number [Number], a capacity [Capacity], and a location 
[Location]. The database also keeps track of the owners of each plane [OWNS] and the 
employees who have maintained the plane [MAINTAIN]. Each relationship instance in OWNS 
relates an airplane to an owner and includes the purchase date [Pdate]. Each relationship 
instance in MAINTAIN relates an employee to a service record [SERVICE]. Each plane undergoes 
service many times; hence, it is related by [PLANE-SERVICE] to a number of service records. A 
service record includes as attributes the date of maintenance [Date], the number of hours spent 
on the work [Hours], and the type of work done [Workcode]. We use a weak entity type 
[SERVICE] to represent airplane service, because the airplane registration number is used to 
identify a service record. An owner is either a person or a corporation. Hence, we use a union 
category [OWNER] that is a subset of the union of corporation [CORPORATION] and person 
[PERSON] entity types. Both pilots [PILOT] and employees [EMPLOYEE] are subclasses of PERSON. 
Each pilot has specific attributes license number [Lic-Num] and restrictions [Restr]; each 
employee has specific attributes salary [Salary] and shift worked [Shift]. All person entities in 
the database have data kept on their social security number [Ssn], name [Name], address 
[Address], and telephone number [Phone]. For corporation entities, the data kept includes name 
[Name], address [Address], and telephone number [Phone]. The database also keeps track of the 
types of planes each pilot is authorized to fly [FLIES] and the types of planes each employee can 
do maintenance work on [WORKS-ON]. Show how the SMALL AIRPORT EER schema of Figure 
04.17 may be represented in UML notation. (Note: We have not discussed how to represent 
categories (union types) in UML so you do not have to map the categories in this and the 
following question).  

 
 

4.22. Show how the UNIVERSITY EER schema of Figure 04.10 may be represented in UML notation.  

 
 

Selected Bibliography 

Many papers have proposed conceptual or semantic data models. We give a representative list here. 
One group of papers, including Abrial (1974), Senko’s DIAM model (1975), the NIAM method 
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Swenson (1975), Navathe and Schkolnick (1978), Codd’s RM/T model (1979), Furtado (1978), and the 
structural model of Wiederhold and Elmasri (1979).  

The ER model was proposed originally by Chen (1976) and is formalized in Ng (1981). Since then, 
numerous extensions of its modeling capabilities have been proposed, as in Scheuermann et al. (1979), 
Dos Santos et al. (1979), Teorey et al. (1986), Gogolla and Hohenstein (1991), and the Entity-
Category-Relationship (ECR) model of Elmasri et al. (1985). Smith and Smith (1977) present the 
concepts of generalization and aggregation. The semantic data model of Hammer and McLeod (1981) 
introduced the concepts of class/subclass lattices, as well as other advanced modeling concepts.  

A survey of semantic data modeling appears in Hull and King (1987). Another survey of conceptual 
modeling is Pillalamarri et al. (1988). Eick (1991) discusses design and transformations of conceptual 
schemas. Analysis of constraints for n-ary relationships is given in Soutou (1998). UML is described in 
detail in Booch, Rumbaugh, and Jacobson (1999).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20

Note 1 

This stands for computer-aided design/computer-aided manufacturing.  

 
 

Note 2 

These store multimedia data, such as pictures, voice messages, and video clips.  

 
 

Note 3 
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EER has also been used to stand for extended ER model.  

 
 

Note 4 

A class is similar to an entity type in many ways.  

 
 

Note 5 

A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we 
refer to the concept. We say "a SECRETARY IS-AN EMPLOYEE," "a TECHNICIAN IS-AN EMPLOYEE," and 
so forth.  

 
 

Note 6 

In some object-oriented programming languages, a common restriction is that an entity (or object) has 
only one type. This is generally too restrictive for conceptual database modeling.  

 
 

Note 7 

There are many alternative notations for specialization; we present the UML notation in Section 4.6 
and other proposed notations in Appendix A.  

 
 

Note 8 

Such an attribute is called a discriminator in UML terminology.  

 
 

Note 9 

The notation of using single/double lines is similar to that for partial/total participation of an entity type 
in a relationship type, as we described in Chapter 3.  

 
 

Note 10 

In some cases, the class is further restricted to be a leaf node in the hierarchy or lattice.  
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Note 11 

Our use of the term category is based on the ECR (Entity-Category-Relationship) model (Elmasri et al. 
1985).  

 
 

Note 12 

We assume that the quarter system rather than the semester system is used in this university.  

 
 

Note 13 

The use of the word class here differs from its more common use in object-oriented programming 
languages such as C++. In C++, a class is a structured type definition along with its applicable 
functions (operations).  

 
 

Note 14 

A class is similar to an entity type except that it can have operations.  

 
 

Note 15 

Qualified associations are not restricted to modeling weak entities, and they can be used to model other 
situations as well.  

 
 

Note 16 

This is also true for cardinality ratios of binary relationships.  

 
 

Note 17 

The (min, max) constraints can determine the keys for binary relationships, though.  
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Note 18 

An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and 
exceptions.  

 
 

Note 19 

UML diagrams allow a form of instantiation by permitting the display of individual objects. We did not 
describe this feature in Section 4.6.  

 
 

Note 20 

UML diagrams also allow specification of class properties.  

 
 

Chapter 5: Record Storage and Primary File 
Organizations 
5.1 Introduction 
5.2 Secondary Storage Devices 
5.3 Parallelizing Disk Access Using RAID Technology 
5.4 Buffering of Blocks 
5.5 Placing File Records on Disk 
5.6 Operations on Files 
5.7 Files of Unordered Records (Heap Files) 
5.8 Files of Ordered Records (Sorted Files) 
5.9 Hashing Techniques 
5.10 Other Primary File Organizations 
5.11 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

Databases are stored physically as files of records, which are typically stored on magnetic disks. This 
chapter and the next Chapter deal with the organization of databases in storage and the techniques for 
accessing them efficiently using various algorithms, some of which require auxiliary data structures 
called indexes. We start in Section 5.1 by introducing the concepts of computer storage hierarchies and 
how they are used in database systems. Section 5.2 is devoted to a description of magnetic disk storage 
devices and their characteristics, and we also briefly describe magnetic tape storage devices. Section 
5.3 describes a more recent data storage system alternative called RAID (Redundant Arrays of 
Inexpensive (or Independent) Disks), which provides better reliability and improved performance. 
Having discussed different storage technologies, we then turn our attention to the methods for 
organizing data on disks. Section 5.4 covers the technique of double buffering, which is used to speed 
retrieval of multiple disk blocks. In Section 5.5 we discuss various ways of formatting and storing 
records of a file on disk. Section 5.6 discusses the various types of operations that are typically applied 
to records of a file. We then present three primary methods for organizing records of a file on disk: 
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unordered records, discussed in Section 5.7; ordered records, in Section 5.8; and hashed records, in 
Section 5.9.  

Section 5.10 very briefly discusses files of mixed records and other primary methods for organizing 
records, such as B-trees. These are particularly relevant for storage of object-oriented databases, which 
we discuss later in Chapter 11 and Chapter 12. In Chapter 6 we discuss techniques for creating 
auxiliary data structures, called indexes, that speed up the search for and retrieval of records. These 
techniques involve storage of auxiliary data, called index files, in addition to the file records 
themselves.  

Chapter 5 and Chapter 6 may be browsed through or even omitted by readers who have already studied 
file organizations. They can also be postponed and read later after going through the material on the 
relational model and the object-oriented models. The material covered here is necessary for 
understanding some of the later chapters in the book—in particular, Chapter 16 and Chapter 18.  

 
 

5.1 Introduction 

5.1.1 Memory Hierarchies and Storage Devices 
5.1.2 Storage of Databases

The collection of data that makes up a computerized database must be stored physically on some 
computer storage medium. The DBMS software can then retrieve, update, and process this data as 
needed. Computer storage media form a storage hierarchy that includes two main categories:  

• Primary storage. This category includes storage media that can be operated on directly by the 
computer central processing unit (CPU), such as the computer main memory and smaller but 
faster cache memories. Primary storage usually provides fast access to data but is of limited 
storage capacity.  

• Secondary storage. This category includes magnetic disks, optical disks, and tapes. These 
devices usually have a larger capacity, cost less, and provide slower access to data than do 
primary storage devices. Data in secondary storage cannot be processed directly by the CPU; 
it must first be copied into primary storage.  

We will first give an overview of the various storage devices used for primary and secondary storage in 
Section 5.1.1 and will then discuss how databases are typically handled in the storage hierarchy in 
Section 5.1.2.  

 
 

5.1.1 Memory Hierarchies and Storage Devices 

In a modern computer system data resides and is transported throughout a hierarchy of storage media. 
The highest-speed memory is the most expensive and is therefore available with the least capacity. The 
lowest-speed memory is tape storage, which is essentially available in indefinite storage capacity.  

At the primary storage level, the memory hierarchy includes at the most expensive end cache memory, 
which is a static RAM (Random Access Memory). Cache memory is typically used by the CPU to 
speed up execution of programs. The next level of primary storage is DRAM (Dynamic RAM), which 
provides the main work area for the CPU for keeping programs and data and is popularly called main 
memory. The advantage of DRAM is its low cost, which continues to decrease; the drawback is its 
volatility (Note 1) and lower speed compared with static RAM. At the secondary storage level, the 
hierarchy includes magnetic disks, as well as mass storage in the form of CD-ROM (Compact Disk–
Read-Only Memory) devices, and finally tapes at the least expensive end of the hierarchy. The storage 
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capacity is measured in kilobytes (Kbyte or 1000 bytes), megabytes (Mbyte or 1 million bytes), 
gigabytes (Gbyte or 1 billion bytes), and even terabytes (1000 Gbytes).  

Programs reside and execute in DRAM. Generally, large permanent databases reside on secondary 
storage, and portions of the database are read into and written from buffers in main memory as needed. 
Now that personal computers and workstations have tens of megabytes of data in DRAM, it is 
becoming possible to load a large fraction of the database into main memory. In some cases, entire 
databases can be kept in main memory (with a backup copy on magnetic disk), leading to main 
memory databases; these are particularly useful in real-time applications that require extremely fast 
response times. An example is telephone switching applications, which store databases that contain 
routing and line information in main memory.  

Between DRAM and magnetic disk storage, another form of memory, flash memory, is becoming 
common, particularly because it is nonvolatile. Flash memories are high-density, high-performance 
memories using EEPROM (Electrically Erasable Programmable Read-Only Memory) technology. The 
advantage of flash memory is the fast access speed; the disadvantage is that an entire block must be 
erased and written over at a time (Note 2).  

CD-ROM disks store data optically and are read by a laser. CD-ROMs contain prerecorded data that 
cannot be overwritten. WORM (Write-Once-Read-Many) disks are a form of optical storage used for 
archiving data; they allow data to be written once and read any number of times without the possibility 
of erasing. They hold about half a gigabyte of data per disk and last much longer than magnetic disks. 
Optical juke box memories use an array of CD-ROM platters, which are loaded onto drives on 
demand. Although optical juke boxes have capacities in the hundreds of gigabytes, their retrieval times 
are in the hundreds of milliseconds, quite a bit slower than magnetic disks (Note 3). This type of 
storage has not become as popular as it was expected to be because of the rapid decrease in cost and 
increase in capacities of magnetic disks. The DVD (Digital Video Disk) is a recent standard for optical 
disks allowing four to fifteen gigabytes of storage per disk.  

Finally, magnetic tapes are used for archiving and backup storage of data. Tape jukeboxes—which 
contain a bank of tapes that are catalogued and can be automatically loaded onto tape drives—are 
becoming popular as tertiary storage to hold terabytes of data. For example, NASA’s EOS (Earth 
Observation Satellite) system stores archived databases in this fashion.  

It is anticipated that many large organizations will find it normal to have terabytesized databases in a 
few years. The term very large database cannot be defined precisely any more because disk storage 
capacities are on the rise and costs are declining. It may very soon be reserved for databases containing 
tens of terabytes.  

 
 

5.1.2 Storage of Databases 

Databases typically store large amounts of data that must persist over long periods of time. The data is 
accessed and processed repeatedly during this period. This contrasts with the notion of transient data 
structures that persist for only a limited time during program execution. Most databases are stored 
permanently (or persistently) on magnetic disk secondary storage, for the following reasons:  

• Generally, databases are too large to fit entirely in main memory.  
• The circumstances that cause permanent loss of stored data arise less frequently for disk 

secondary storage than for primary storage. Hence, we refer to disk—and other secondary 
storage devices—as nonvolatile storage, whereas main memory is often called volatile 
storage.  

• The cost of storage per unit of data is an order of magnitude less for disk than for primary 
storage.  
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Some of the newer technologies—such as optical disks, DVDs, and tape jukeboxes—are likely to 
provide viable alternatives to the use of magnetic disks. Databases in the future may therefore reside at 
different levels of the memory hierarchy from those described in Section 5.1.1. For now, however, it is 
important to study and understand the properties and characteristics of magnetic disks and the way data 
files can be organized on disk in order to design effective databases with acceptable performance.  

Magnetic tapes are frequently used as a storage medium for backing up the database because storage on 
tape costs even less than storage on disk. However, access to data on tape is quite slow. Data stored on 
tapes is off-line; that is, some intervention by an operator—or an automatic loading device—to load a 
tape is needed before this data becomes available. In contrast, disks are on-line devices that can be 
accessed directly at any time.  

The techniques used to store large amounts of structured data on disk are important for database 
designers, the DBA, and implementers of a DBMS. Database designers and the DBA must know the 
advantages and disadvantages of each storage technique when they design, implement, and operate a 
database on a specific DBMS. Usually, the DBMS has several options available for organizing the 
data, and the process of physical database design involves choosing from among the options the 
particular data organization techniques that best suit the given application requirements. DBMS system 
implementers must study data organization techniques so that they can implement them efficiently and 
thus provide the DBA and users of the DBMS with sufficient options.  

Typical database applications need only a small portion of the database at a time for processing. 
Whenever a certain portion of the data is needed, it must be located on disk, copied to main memory 
for processing, and then rewritten to the disk if the data is changed. The data stored on disk is 
organized as files of records. Each record is a collection of data values that can be interpreted as facts 
about entities, their attributes, and their relationships. Records should be stored on disk in a manner that 
makes it possible to locate them efficiently whenever they are needed.  

There are several primary file organizations, which determine how the records of a file are physically 
placed on the disk, and hence how the records can be accessed. A heap file (or unordered file) places 
the records on disk in no particular order by appending new records at the end of the file, whereas a 
sorted file (or sequential file) keeps the records ordered by the value of a particular field (called the sort 
key). A hashed file uses a hash function applied to a particular field (called the hash key) to determine 
a record’s placement on disk. Other primary file organizations, such as B-trees, use tree structures. We 
discuss primary file organizations in Section 5.7 through Section 5.10. A secondary organization or 
auxiliary access structure allows efficient access to the records of a file based on alternate fields than 
those that have been used for the primary file organization. Most of these exist as indexes and will be 
discussed in Chapter 6.  

 
 

5.2 Secondary Storage Devices 

5.2.1 Hardware Description of Disk Devices 
5.2.2 Magnetic Tape Storage Devices

In this section we describe some characteristics of magnetic disk and magnetic tape storage devices. 
Readers who have studied these devices already may just browse through this section.  

 
 

5.2.1 Hardware Description of Disk Devices 

Magnetic disks are used for storing large amounts of data. The most basic unit of data on the disk is a 
single bit of information. By magnetizing an area on disk in certain ways, one can make it represent a 
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bit value of either 0 (zero) or 1 (one). To code information, bits are grouped into bytes (or characters). 
Byte sizes are typically 4 to 8 bits, depending on the computer and the device. We assume that one 
character is stored in a single byte, and we use the terms byte and character interchangeably. The 
capacity of a disk is the number of bytes it can store, which is usually very large. Small floppy disks 
used with microcomputers typically hold from 400 Kbytes to 1.5 Mbytes; hard disks for micros 
typically hold from several hundred Mbytes up to a few Gbytes; and large disk packs used with 
minicomputers and mainframes have capacities that range up to a few tens or hundreds of Gbytes. Disk 
capacities continue to grow as technology improves.  

Whatever their capacity, disks are all made of magnetic material shaped as a thin circular disk (Figure 
05.01a) and protected by a plastic or acrylic cover. A disk is single-sided if it stores information on 
only one of its surfaces and double-sided if both surfaces are used. To increase storage capacity, disks 
are assembled into a disk pack (Figure 05.01b), which may include many disks and hence many 
surfaces. Information is stored on a disk surface in concentric circles of small width, (Note 4) each 
having a distinct diameter. Each circle is called a track. For disk packs, the tracks with the same 
diameter on the various surfaces are called a cylinder because of the shape they would form if 
connected in space. The concept of a cylinder is important because data stored on one cylinder can be 
retrieved much faster than if it were distributed among different cylinders.  

 

 

 
 

The number of tracks on a disk ranges from a few hundred to a few thousand, and the capacity of each 
track typically ranges from tens of Kbytes to 150 Kbytes. Because a track usually contains a large 
amount of information, it is divided into smaller blocks or sectors. The division of a track into sectors 
is hard-coded on the disk surface and cannot be changed. One type of sector organization calls a 
portion of a track that subtends a fixed angle at the center as a sector (Figure 05.02a). Several other 
sector organizations are possible, one of which is to have the sectors subtend smaller angles at the 
center as one moves away, thus maintaining a uniform density of recording (Figure 05.02b). Not all 
disks have their tracks divided into sectors.  

 

 

 
 

The division of a track into equal-sized disk blocks (or pages) is set by the operating system during 
disk formatting (or initialization). Block size is fixed during initialization and cannot be changed 
dynamically. Typical disk block sizes range from 512 to 4096 bytes. A disk with hard-coded sectors 
often has the sectors subdivided into blocks during initialization. Blocks are separated by fixed-size 
interblock gaps, which include specially coded control information written during disk initialization. 
This information is used to determine which block on the track follows each interblock gap. Table 5.1 
represents specifications of a typical disk.  

 

Table 5.1  Specification of Typical High-end Cheetah Disks from Seagate  

 
 

      Description

1 Page 104 of 893



www.manaraa.com

Model number      

      

    

      

      

      

      

    

    

    

    

      

      

      

      

      

      

    

     

    

    

    

ST136403LC ST318203LC

Model name Cheetah 36 Cheetah 18LP

Form Factor (width)  3.5-inch 3.5-inch

Weight 1.04 Kg 0.59 Kg

Capacity/Interface

Formatted capacity 36.4 Gbytes, formatted 18.2 Gbytes, formatted

Interface type 80-pin Ultra-2 SCSI 80-pin Ultra-2 SCSI

Configuration

Number of Discs (physical)  12 6

Number of heads (physical)  24 12

Total cylinders (SCSI only) 9,772 9,801  

Total tracks (SCSI only) N/A 117,612

Bytes per sector 512 512

Track Density (TPI) N/A tracks/inch 12,580 tracks/inch

Recording Density (BPI, max) N/A bits/inch 258,048 bits/inch

Performance

Transfer Rates

Internal Transfer Rate (min)  193 Mbits/sec 193 Mbits/sec

Internal Transfer Rate (max) 308 Mbits/sec 308 Mbits/sec

Formatted Int transfer rate (min)  18 Mbits/sec 18 Mbits/sec

Formatted Int transfer rate (max)  28 Mbits/sec 28 Mbits/sec

External (I/O) Transfer Rate (max)  80 Mbits/sec 80 Mbits/sec

Seek Times      

Average seek time, read  5.7 msec typical  5.2 msec typical  

Average seek time, write  6.5 msec typical  6 msec typical  

Track-to-track seek, read  0.6 msec typical  0.6 msec typical  

Track-to-track seek, write  0.9 msec typical  0.9 msec typical  

Full disc seek, read  12 msec typical  12 msec typical  

Full disc seek, write  13 msec typical  13 msec typical  

Average Latency  2.99 msec  2.99 msec  

Other      
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Default buffer (cache) size  1,024 Kbytes  1,024 Kbytes  

Spindle Speed  10,000 RPM  10,016 RPM  

Nonrecoverable error rate  1 per bits read  1 per bits read  

Seek errors (SCSI)  1 per bits read  1 per bits read  

Courtesy Seagate Technology © 1999.    

 
 

There is a continuous improvement in the storage capacity and transfer rates associated with disks; they 
are also progressively getting cheaper—currently costing only a fraction of a dollar per megabyte of 
disk storage. Costs are going down so rapidly that costs as low as one cent per megabyte or $10K per 
terabyte by the year 2001 are being forecast.  

A disk is a random access addressable device. Transfer of data between main memory and disk takes 
place in units of disk blocks. The hardware address of a block—a combination of a surface number, 
track number (within the surface), and block number (within the track)—is supplied to the disk 
input/output (I/O) hardware. The address of a buffer—a contiguous reserved area in main storage that 
holds one block—is also provided. For a read command, the block from disk is copied into the buffer; 
whereas for a write command, the contents of the buffer are copied into the disk block. Sometimes 
several contiguous blocks, called a cluster, may be transferred as a unit. In this case the buffer size is 
adjusted to match the number of bytes in the cluster.  

The actual hardware mechanism that reads or writes a block is the disk read/write head, which is part 
of a system called a disk drive. A disk or disk pack is mounted in the disk drive, which includes a 
motor that rotates the disks. A read/write head includes an electronic component attached to a 
mechanical arm. Disk packs with multiple surfaces are controlled by several read/write heads—one 
for each surface (see Figure 05.01b). All arms are connected to an actuator attached to another 
electrical motor, which moves the read/write heads in unison and positions them precisely over the 
cylinder of tracks specified in a block address.  

Disk drives for hard disks rotate the disk pack continuously at a constant speed (typically ranging 
between 3600 and 7200 rpm). For a floppy disk, the disk drive begins to rotate the disk whenever a 
particular read or write request is initiated and ceases rotation soon after the data transfer is completed. 
Once the read/write head is positioned on the right track and the block specified in the block address 
moves under the read/write head, the electronic component of the read/write head is activated to 
transfer the data. Some disk units have fixed read/write heads, with as many heads as there are tracks. 
These are called fixed-head disks, whereas disk units with an actuator are called movable-head disks. 
For fixed-head disks, a track or cylinder is selected by electronically switching to the appropriate 
read/write head rather than by actual mechanical movement; consequently, it is much faster. However, 
the cost of the additional read/write heads is quite high, so fixed-head disks are not commonly used.  

A disk controller, typically embedded in the disk drive, controls the disk drive and interfaces it to the 
computer system. One of the standard interfaces used today for disk drives on PC and workstations is 
called SCSI (Small Computer Storage Interface). The controller accepts high-level I/O commands and 
takes appropriate action to position the arm and causes the read/write action to take place. To transfer a 
disk block, given its address, the disk controller must first mechanically position the read/write head on 
the correct track. The time required to do this is called the seek time. Typical seek times are 12 to 14 
msec on desktops and 8 or 9 msecs on servers. Following that, there is another delay—called the 
rotational delay or latency—while the beginning of the desired block rotates into position under the 
read/write head. Finally, some additional time is needed to transfer the data; this is called the block 
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transfer time. Hence, the total time needed to locate and transfer an arbitrary block, given its address, 
is the sum of the seek time, rotational delay, and block transfer time. The seek time and rotational delay 
are usually much larger than the block transfer time. To make the transfer of multiple blocks more 
efficient, it is common to transfer several consecutive blocks on the same track or cylinder. This 
eliminates the seek time and rotational delay for all but the first block and can result in a substantial 
saving of time when numerous contiguous blocks are transferred. Usually, the disk manufacturer 
provides a bulk transfer rate for calculating the time required to transfer consecutive blocks. 
Appendix B contains a discussion of these and other disk parameters.  

The time needed to locate and transfer a disk block is in the order of milliseconds, usually ranging from 
12 to 60 msec. For contiguous blocks, locating the first block takes from 12 to 60 msec, but transferring 
subsequent blocks may take only 1 to 2 msec each. Many search techniques take advantage of 
consecutive retrieval of blocks when searching for data on disk. In any case, a transfer time in the order 
of milliseconds is considered quite high compared with the time required to process data in main 
memory by current CPUs. Hence, locating data on disk is a major bottleneck in database applications. 
The file structures we discuss here and in Chapter 6 attempt to minimize the number of block transfers 
needed to locate and transfer the required data from disk to main memory.  

 
 

5.2.2 Magnetic Tape Storage Devices 

Disks are random access secondary storage devices, because an arbitrary disk block may be accessed 
"at random" once we specify its address. Magnetic tapes are sequential access devices; to access the 
nth block on tape, we must first scan over the preceding n - 1 blocks. Data is stored on reels of high-
capacity magnetic tape, somewhat similar to audio or video tapes. A tape drive is required to read the 
data from or to write the data to a tape reel. Usually, each group of bits that forms a byte is stored 
across the tape, and the bytes themselves are stored consecutively on the tape.  

A read/write head is used to read or write data on tape. Data records on tape are also stored in blocks—
although the blocks may be substantially larger than those for disks, and interblock gaps are also quite 
large. With typical tape densities of 1600 to 6250 bytes per inch, a typical interblock gap (Note 5) of 
0.6 inches corresponds to 960 to 3750 bytes of wasted storage space. For better space utilization it is 
customary to group many records together in one block.  

The main characteristic of a tape is its requirement that we access the data blocks in sequential order. 
To get to a block in the middle of a reel of tape, the tape is mounted and then scanned until the required 
block gets under the read/write head. For this reason, tape access can be slow and tapes are not used to 
store on-line data, except for some specialized applications. However, tapes serve a very important 
function—that of backing up the database. One reason for backup is to keep copies of disk files in case 
the data is lost because of a disk crash, which can happen if the disk read/write head touches the disk 
surface because of mechanical malfunction. For this reason, disk files are copied periodically to tape. 
Tapes can also be used to store excessively large database files. Finally, database files that are seldom 
used or outdated but are required for historical record keeping can be archived on tape. Recently, 
smaller 8-mm magnetic tapes (similar to those used in camcorders) that can store up to 50 Gbytes, as 
well as 4-mm helical scan data cartridges and CD-ROMs (compact disks–read only memory) have 
become popular media for backing up data files from workstations and personal computers. They are 
also used for storing images and system libraries. In the next Section we review the recent development 
in disk storage technology called RAID.  

 
 

5.3 Parallelizing Disk Access Using RAID Technology 

 
5.3.1 Improving Reliability with RAID 
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5.3.2 Improving Performance with RAID 
5.3.3 RAID Organizations and Levels

With the exponential growth in the performance and capacity of semiconductor devices and memories, 
faster microprocessors with larger and larger primary memories are continually becoming available. To 
match this growth, it is natural to expect that secondary storage technology must also take steps to keep 
up in performance and reliability with processor technology.  

A major advance in secondary storage technology is represented by the development of RAID, which 
originally stood for Redundant Arrays of Inexpensive Disks. Lately, the "I" in RAID is said to stand 
for Independent. The RAID idea received a very positive endorsement by industry and has been 
developed into an elaborate set of alternative RAID architectures (RAID levels 0 through 6). We 
highlight the main features of the technology below.  

The main goal of RAID is to even out the widely different rates of performance improvement of disks 
against those in memory and microprocessors (Note 6). While RAM capacities have quadrupled every 
two to three years, disk access times are improving at less than 10 percent per year, and disk transfer 
rates are improving at roughly 20 percent per year. Disk capacities are indeed improving at more than 
50 percent per year, but the speed and access time improvements are of a much smaller magnitude. 
Table 5.2 shows trends in disk technology in terms of 1993 parameter values and rates of improvement.  

 

Table 5.2  Trends in Disk Technology  

 
 

  
1993 Parameter 
Values* 

Historical Rate of 
Improvement per 
Year (%)* 

Expected 1999 
Values** 

 
 

Areal density  50–150 Mbits/sq. inch  27  2–3 GB/sq. inch  

Linear density  40,000–60,000 bits/inch 13  238 Kbits/inch  

Inter-track density  1,500–3,000 tracks/inch 10  11550 tracks/inch  

Capacity(3.5" form 
factor)  

100–2000 MB  27  36 GB  

Transfer rate  3–4 MB/s  22  17–28 MB/sec  

Seek time  7–20 ms  8  5–7 msec  

 

*Source: From Chen, Lee, Gibson, Katz and Patterson (1994), ACM Computing Surveys, Vol. 26, No. 
2 (June 1994). Reproduced by permission.  

**Source: IBM Ultrastar 36XP and 18ZX hard disk drives.  

 
 

A second qualitative disparity exists between the ability of special microprocessors that cater to new 
applications involving processing of video, audio, image, and spatial data (see Chapter 23 and Chapter 
27 for details of these applications), with corresponding lack of fast access to large, shared data sets.  
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The natural solution is a large array of small independent disks acting as a single higher-performance 
logical disk. A concept called data striping is used, which utilizes parallelism to improve disk 
performance. Data striping distributes data transparently over multiple disks to make them appear as a 
single large, fast disk. Figure 05.03 shows a file distributed or striped over four disks. Striping 
improves overall I/O performance by allowing multiple I/Os to be serviced in parallel, thus providing 
high overall transfer rates. Data striping also accomplishes load balancing among disks. Moreover, by 
storing redundant information on disks using parity or some other error correction code, reliability can 
be improved. In Section 5.3.1 and Section 5.3.2, we discuss how RAID achieves the two important 
objectives of improved reliability and higher performance. Section 5.3.3 discusses RAID organizations.  

 

 

 
 

5.3.1 Improving Reliability with RAID 

For an array of n disks, the likelihood of failure is n times as much as that for one disk. Hence, if the 
MTTF (Mean Time To Failure) of a disk drive is assumed to be 200,000 hours or about 22.8 years 
(typical times range up to 1 million hours), that of a bank of 100 disk drives becomes only 2000 hours 
or 83.3 days. Keeping a single copy of data in such an array of disks will cause a significant loss of 
reliability. An obvious solution is to employ redundancy of data so that disk failures can be tolerated. 
The disadvantages are many: additional I/O operations for write, extra computation to maintain 
redundancy and to do recovery from errors, and additional disk capacity to store redundant 
information.  

One technique for introducing redundancy is called mirroring or shadowing. Data is written 
redundantly to two identical physical disks that are treated as one logical disk. When data is read, it can 
be retrieved from the disk with shorter queuing, seek, and rotational delays. If a disk fails, the other 
disk is used until the first is repaired. Suppose the mean time to repair is 24 hours, then the mean time 
to data loss of a mirrored disk system using 100 disks with MTTF of 200,000 hours each is 
(200,000)2/(2 * 24) = 8.33 * 108 hours, which is 95,028 years (Note 7). Disk mirroring also doubles the 
rate at which read requests are handled, since a read can go to either disk. The transfer rate of each 
read, however, remains the same as that for a single disk.  

Another solution to the problem of reliability is to store extra information that is not normally needed 
but that can be used to reconstruct the lost information in case of disk failure. The incorporation of 
redundancy must consider two problems: (1) selecting a technique for computing the redundant 
information, and (2) selecting a method of distributing the redundant information across the disk array. 
The first problem is addressed by using error correcting codes involving parity bits, or specialized 
codes such as Hamming codes. Under the parity scheme, a redundant disk may be considered as having 
the sum of all the data in the other disks. When a disk fails, the missing information can be constructed 
by a process similar to subtraction.  

For the second problem, the two major approaches are either to store the redundant information on a 
small number of disks or to distribute it uniformly across all disks. The latter results in better load 
balancing. The different levels of RAID choose a combination of these options to implement 
redundancy, and hence to improve reliability.  

 
 

5.3.2 Improving Performance with RAID 

The disk arrays employ the technique of data striping to achieve higher transfer rates. Note that data 
can be read or written only one block at a time, so a typical transfer contains 512 bytes. Disk striping 
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may be applied at a finer granularity by breaking up a byte of data into bits and spreading the bits to 
different disks. Thus, bit-level data striping consists of splitting a byte of data and writing bit j to the 
disk. With 8-bit bytes, eight physical disks may be considered as one logical disk with an eightfold 
increase in the data transfer rate. Each disk participates in each I/O request and the total amount of data 
read per request is eight times as much. Bit-level striping can be generalized to a number of disks that 
is either a multiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk which is (n mod 
4).  

The granularity of data interleaving can be higher than a bit; for example, blocks of a file can be striped 
across disks, giving rise to block-level striping. Figure 05.03 shows block-level data striping assuming 
the data file contained four blocks. With block-level striping, multiple independent requests that access 
single blocks (small requests) can be serviced in parallel by separate disks, thus decreasing the queuing 
time of I/O requests. Requests that access multiple blocks (large requests) can be parallelized, thus 
reducing their response time. In general, the more the number of disks in an array, the larger the 
potential performance benefit. However, assuming independent failures, the disk array of 100 disks 
collectively has a 1/100th the reliability of a single disk. Thus, redundancy via error-correcting codes 
and disk mirroring is necessary to provide reliability along with high performance.  

 
 

5.3.3 RAID Organizations and Levels 

Different RAID organizations were defined based on different combinations of the two factors of 
granularity of data interleaving (striping) and pattern used to compute redundant information. In the 
initial proposal, levels 1 through 5 of RAID were proposed, and two additional levels—0 and 6—were 
added later.  

RAID level 0 has no redundant data and hence has the best write performance since updates do not 
have to be duplicated. However, its read performance is not as good as RAID level 1, which uses 
mirrored disks. In the latter, performance improvement is possible by scheduling a read request to the 
disk with shortest expected seek and rotational delay. RAID level 2 uses memory-style redundancy by 
using Hamming codes, which contain parity bits for distinct overlapping subsets of components. Thus, 
in one particular version of this level, three redundant disks suffice for four original disks whereas, 
with mirroring—as in level 1—four would be required. Level 2 includes both error detection and 
correction, although detection is generally not required because broken disks identify themselves.  

RAID level 3 uses a single parity disk relying on the disk controller to figure out which disk has failed. 
Levels 4 and 5 use block-level data striping, with level 5 distributing data and parity information across 
all disks. Finally, RAID level 6 applies the so-called P + Q redundancy scheme using Reed-Soloman 
codes to protect against up to two disk failures by using just two redundant disks. The seven RAID 
levels (0 through 6) are illustrated in Figure 05.04 schematically.  

 

 

 
 

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require the reconstruction of 
a failed disk by reading multiple disks. Level 1 is used for critical applications such as storing logs of 
transactions. Levels 3 and 5 are preferred for large volume storage, with level 3 providing higher 
transfer rates. Designers of a RAID setup for a given application mix have to confront many design 
decisions such as the level of RAID, the number of disks, the choice of parity schemes, and grouping of 
disks for block-level striping. Detailed performance studies on small reads and writes (referring to I/O 
requests for one striping unit) and large reads and writes (referring to I/O requests for one stripe unit 
from each disk in an error-correction group) have been performed.  
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5.4 Buffering of Blocks 

When several blocks need to be transferred from disk to main memory and all the block addresses are 
known, several buffers can be reserved in main memory to speed up the transfer. While one buffer is 
being read or written, the CPU can process data in the other buffer. This is possible because an 
independent disk I/O processor (controller) exists that, once started, can proceed to transfer a data 
block between memory and disk independent of and in parallel to CPU processing.  

Figure 05.05 illustrates how two processes can proceed in parallel. Processes A and B are running 
concurrently in an interleaved fashion, whereas processes C and D are running concurrently in a 
parallel fashion. When a single CPU controls multiple processes, parallel execution is not possible. 
However, the processes can still run concurrently in an interleaved way. Buffering is most useful when 
processes can run concurrently in a parallel fashion, either because a separate disk I/O processor is 
available or because multiple CPU processors exist.  

 

 

 
 

Figure 05.06 illustrates how reading and processing can proceed in parallel when the time required to 
process a disk block in memory is less than the time required to read the next block and fill a buffer. 
The CPU can start processing a block once its transfer to main memory is completed; at the same time 
the disk I/O processor can be reading and transferring the next block into a different buffer. This 
technique is called double buffering and can also be used to write a continuous stream of blocks from 
memory to the disk. Double buffering permits continuous reading or writing of data on consecutive 
disk blocks, which eliminates the seek time and rotational delay for all but the first block transfer. 
Moreover, data is kept ready for processing, thus reducing the waiting time in the programs.  

 

 

 
 

5.5 Placing File Records on Disk 

5.5.1 Records and Record Types 
5.5.2 Files, Fixed-Length Records, and Variable-Length Records 
5.5.3 Record Blocking and Spanned Versus Unspanned Records 
5.5.4 Allocating File Blocks on Disk 
5.5.5 File Headers

In this section we define the concepts of records, record types, and files. We then discuss techniques 
for placing file records on disk.  

 
 

5.5.1 Records and Record Types 
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Data is usually stored in the form of records. Each record consists of a collection of related data values 
or items, where each value is formed of one or more bytes and corresponds to a particular field of the 
record. Records usually describe entities and their attributes. For example, an EMPLOYEE record 
represents an employee entity, and each field value in the record specifies some attribute of that 
employee, such as NAME, BIRTHDATE, SALARY, or SUPERVISOR. A collection of field names and their 
corresponding data types constitutes a record type or record format definition. A data type, 
associated with each field, specifies the type of values a field can take.  

The data type of a field is usually one of the standard data types used in programming. These include 
numeric (integer, long integer, or floating point), string of characters (fixed-length or varying), Boolean 
(having 0 and 1 or TRUE and FALSE values only), and sometimes specially coded date and time data 
types. The number of bytes required for each data type is fixed for a given computer system. An integer 
may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte, a date 10 bytes 
(assuming a format of YYYY-MM-DD), and a fixed-length string of k characters k bytes. Variable-
length strings may require as many bytes as there are characters in each field value. For example, an 
EMPLOYEE record type may be defined—using the C programming language notation—as the following 
structure:  

 
 

struct employee{  

char name[30];  

char ssn[9];  

int salary;  

int jobcode;  

char department[20];  

};  

 
 

In recent database applications, the need may arise for storing data items that consist of large 
unstructured objects, which represent images, digitized video or audio streams, or free text. These are 
referred to as BLOBs (Binary Large Objects). A BLOB data item is typically stored separately from its 
record in a pool of disk blocks, and a pointer to the BLOB is included in the record.  

 
 

5.5.2 Files, Fixed-Length Records, and Variable-Length Records 

A file is a sequence of records. In many cases, all records in a file are of the same record type. If every 
record in the file has exactly the same size (in bytes), the file is said to be made up of fixed-length 
records. If different records in the file have different sizes, the file is said to be made up of variable-
length records. A file may have variable-length records for several reasons:  

• The file records are of the same record type, but one or more of the fields are of varying size 
(variable-length fields). For example, the NAME field of EMPLOYEE can be a variable-length 
field.  
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• The file records are of the same record type, but one or more of the fields may have multiple 
values for individual records; such a field is called a repeating field and a group of values for 
the field is often called a repeating group.  

• The file records are of the same record type, but one or more of the fields are optional; that is, 
they may have values for some but not all of the file records (optional fields).  

• The file contains records of different record types and hence of varying size (mixed file). This 
would occur if related records of different types were clustered (placed together) on disk 
blocks; for example, the GRADE_REPORT records of a particular student may be placed 
following that STUDENT’s record.  

The fixed-length EMPLOYEE records in Figure 05.07(a) have a record size of 71 bytes. Every record has 
the same fields, and field lengths are fixed, so the system can identify the starting byte position of each 
field relative to the starting position of the record. This facilitates locating field values by programs that 
access such files. Notice that it is possible to represent a file that logically should have variable-length 
records as a fixed-length records file. For example, in the case of optional fields we could have every 
field included in every file record but store a special null value if no value exists for that field. For a 
repeating field, we could allocate as many spaces in each record as the maximum number of values that 
the field can take. In either case, space is wasted when certain records do not have values for all the 
physical spaces provided in each record. We now consider other options for formatting records of a file 
of variable-length records.  

 

 

 
 

For variable-length fields, each record has a value for each field, but we do not know the exact length 
of some field values. To determine the bytes within a particular record that represent each field, we can 
use special separator characters (such as ? or % or $)—which do not appear in any field value—to 
terminate variable-length fields (Figure 05.07b), or we can store the length in bytes of the field in the 
record, preceding the field value.  

A file of records with optional fields can be formatted in different ways. If the total number of fields 
for the record type is large but the number of fields that actually appear in a typical record is small, we 
can include in each record a sequence of <field-name, field-value> pairs rather than just the field 
values. Three types of separator characters are used in Figure 05.07(c), although we could use the same 
separator character for the first two purposes—separating the field name from the field value and 
separating one field from the next field. A more practical option is to assign a short field type code—
say, an integer number—to each field and include in each record a sequence of <field-type, field-
value> pairs rather than <field-name, field-value> pairs.  

A repeating field needs one separator character to separate the repeating values of the field and another 
separator character to indicate termination of the field. Finally, for a file that includes records of 
different types, each record is preceded by a record type indicator. Understandably, programs that 
process files of variable-length records—which are usually part of the file system and hence hidden 
from the typical programmers—need to be more complex than those for fixed-length records, where 
the starting position and size of each field are known and fixed (Note 8).  

 
 

5.5.3 Record Blocking and Spanned Versus Unspanned Records 

The records of a file must be allocated to disk blocks because a block is the unit of data transfer 
between disk and memory. When the block size is larger than the record size, each block will contain 
numerous records, although some files may have unusually large records that cannot fit in one block. 
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Suppose that the block size is B bytes. For a file of fixed-length records of size R bytes, with B R, we 
can fit bfr = B/R records per block, where the (x) (floor function) rounds down the number x to an 
integer. The value bfr is called the blocking factor for the file. In general, R may not divide B exactly, 
so we have some unused space in each block equal to  

 
 

B - (bfr * R) bytes  

 
 

To utilize this unused space, we can store part of a record on one block and the rest on another. A 
pointer at the end of the first block points to the block containing the remainder of the record in case it 
is not the next consecutive block on disk. This organization is called spanned, because records can 
span more than one block. Whenever a record is larger than a block, we must use a spanned 
organization. If records are not allowed to cross block boundaries, the organization is called 
unspanned. This is used with fixed-length records having B > R because it makes each record start at a 
known location in the block, simplifying record processing. For variable-length records, either a 
spanned or an unspanned organization can be used. If the average record is large, it is advantageous to 
use spanning to reduce the lost space in each block. Figure 05.08 illustrates spanned versus unspanned 
organization.  

 

 

 
 

For variable-length records using spanned organization, each block may store a different number of 
records. In this case, the blocking factor bfr represents the average number of records per block for the 
file. We can use bfr to calculate the number of blocks b needed for a file of r records:  

 
 

b = (r/bfr) blocks  

 
 

where the (x) (ceiling function) rounds the value x up to the next integer.  

 
 

5.5.4 Allocating File Blocks on Disk 

There are several standard techniques for allocating the blocks of a file on disk. In contiguous 
allocation the file blocks are allocated to consecutive disk blocks. This makes reading the whole file 
very fast using double buffering, but it makes expanding the file difficult. In linked allocation each file 
block contains a pointer to the next file block. This makes it easy to expand the file but makes it slow 
to read the whole file. A combination of the two allocates clusters of consecutive disk blocks, and the 
clusters are linked. Clusters are sometimes called file segments or extents. Another possibility is to use 
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indexed allocation, where one or more index blocks contain pointers to the actual file blocks. It is also 
common to use combinations of these techniques.  

 
 

5.5.5 File Headers 

A file header or file descriptor contains information about a file that is needed by the system 
programs that access the file records. The header includes information to determine the disk addresses 
of the file blocks as well as to record format descriptions, which may include field lengths and order of 
fields within a record for fixed-length unspanned records and field type codes, separator characters, and 
record type codes for variable-length records.  

To search for a record on disk, one or more blocks are copied into main memory buffers. Programs 
then search for the desired record or records within the buffers, using the information in the file header. 
If the address of the block that contains the desired record is not known, the search programs must do a 
linear search through the file blocks. Each file block is copied into a buffer and searched either until 
the record is located or all the file blocks have been searched unsuccessfully. This can be very time-
consuming for a large file. The goal of a good file organization is to locate the block that contains a 
desired record with a minimal number of block transfers.  

 
 

5.6 Operations on Files 

Operations on files are usually grouped into retrieval operations and update operations. The former 
do not change any data in the file, but only locate certain records so that their field values can be 
examined and processed. The latter change the file by insertion or deletion of records or by 
modification of field values. In either case, we may have to select one or more records for retrieval, 
deletion, or modification based on a selection condition (or filtering condition), which specifies 
criteria that the desired record or records must satisfy.  

Consider an EMPLOYEE file with fields NAME, SSN, SALARY, JOBCODE, and DEPARTMENT. A simple 
selection condition may involve an equality comparison on some field value—for example, (SSN = 
‘123456789’) or (DEPARTMENT = ‘Research’). More complex conditions can involve other types of 
comparison operators, such as > or ; an example is (SALARY 30000). The general case is to have an 
arbitrary Boolean expression on the fields of the file as the selection condition.  

Search operations on files are generally based on simple selection conditions. A complex condition 
must be decomposed by the DBMS (or the programmer) to extract a simple condition that can be used 
to locate the records on disk. Each located record is then checked to determine whether it satisfies the 
full selection condition. For example, we may extract the simple condition (DEPARTMENT = ‘Research’) 
from the complex condition ((SALARY 30000) AND (DEPARTMENT = ‘Research’)); each record 
satisfying (DEPARTMENT = ‘Research’) is located and then tested to see if it also satisfies (SALARY 
30000).  

When several file records satisfy a search condition, the first record—with respect to the physical 
sequence of file records—is initially located and designated the current record. Subsequent search 
operations commence from this record and locate the next record in the file that satisfies the condition.  

Actual operations for locating and accessing file records vary from system to system. Below, we 
present a set of representative operations. Typically, high-level programs, such as DBMS software 
programs, access the records by using these commands, so we sometimes refer to program variables 
in the following descriptions:  
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• Open: Prepares the file for reading or writing. Allocates appropriate buffers (typically at least 
two) to hold file blocks from disk, and retrieves the file header. Sets the file pointer to the 
beginning of the file.  

• Reset: Sets the file pointer of an open file to the beginning of the file.  
• Find (or Locate): Searches for the first record that satisfies a search condition. Transfers the 

block containing that record into a main memory buffer (if it is not already there). The file 
pointer points to the record in the buffer and it becomes the current record. Sometimes, 
different verbs are used to indicate whether the located record is to be retrieved or updated.  

• Read (or Get): Copies the current record from the buffer to a program variable in the user 
program. This command may also advance the current record pointer to the next record in the 
file, which may necessitate reading the next file block from disk.  

• FindNext: Searches for the next record in the file that satisfies the search condition. Transfers 
the block containing that record into a main memory buffer (if it is not already there). The 
record is located in the buffer and becomes the current record.  

• Delete: Deletes the current record and (eventually) updates the file on disk to reflect the 
deletion.  

• Modify: Modifies some field values for the current record and (eventually) updates the file on 
disk to reflect the modification.  

• Insert: Inserts a new record in the file by locating the block where the record is to be inserted, 
transferring that block into a main memory buffer (if it is not already there), writing the record 
into the buffer, and (eventually) writing the buffer to disk to reflect the insertion.  

• Close: Completes the file access by releasing the buffers and performing any other needed 
cleanup operations.  

The preceding (except for Open and Close) are called record-at-a-time operations, because each 
operation applies to a single record. It is possible to streamline the operations Find, FindNext, and Read 
into a single operation, Scan, whose description is as follows:  

• Scan: If the file has just been opened or reset, Scan returns the first record; otherwise it returns 
the next record. If a condition is specified with the operation, the returned record is the first or 
next record satisfying the condition.  

In database systems, additional set-at-a-time higher-level operations may be applied to a file. 
Examples of these are as follows:  

• FindAll: Locates all the records in the file that satisfy a search condition.  
• FindOrdered: Retrieves all the records in the file in some specified order.  
• Reorganize: Starts the reorganization process. As we shall see, some file organizations require 

periodic reorganization. An example is to reorder the file records by sorting them on a 
specified field.  

At this point, it is worthwhile to note the difference between the terms file organization and access 
method. A file organization refers to the organization of the data of a file into records, blocks, and 
access structures; this includes the way records and blocks are placed on the storage medium and 
interlinked. An access method, on the other hand, provides a group of operations—such as those listed 
earlier—that can be applied to a file. In general, it is possible to apply several access methods to a file 
organization. Some access methods, though, can be applied only to files organized in certain ways. For 
example, we cannot apply an indexed access method to a file without an index (see Chapter 6).  

Usually, we expect to use some search conditions more than others. Some files may be static, meaning 
that update operations are rarely performed; other, more dynamic files may change frequently, so 
update operations are constantly applied to them. A successful file organization should perform as 
efficiently as possible the operations we expect to apply frequently to the file. For example, consider 
the EMPLOYEE file (Figure 05.07a), which stores the records for current employees in a company. We 
expect to insert records (when employees are hired), delete records (when employees leave the 
company), and modify records (say, when an employee’s salary or job is changed). Deleting or 
modifying a record requires a selection condition to identify a particular record or set of records. 
Retrieving one or more records also requires a selection condition.  
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If users expect mainly to apply a search condition based on SSN, the designer must choose a file 
organization that facilitates locating a record given its SSN value. This may involve physically ordering 
the records by SSN value or defining an index on SSN (see Chapter 6). Suppose that a second 
application uses the file to generate employees’ paychecks and requires that paychecks be grouped by 
department. For this application, it is best to store all employee records having the same department 
value contiguously, clustering them into blocks and perhaps ordering them by name within each 
department. However, this arrangement conflicts with ordering the records by SSN values. If both 
applications are important, the designer should choose an organization that allows both operations to be 
done efficiently. Unfortunately, in many cases there may not be an organization that allows all needed 
operations on a file to be implemented efficiently. In such cases a compromise must be chosen that 
takes into account the expected importance and mix of retrieval and update operations.  

In the following sections and in Chapter 6, we discuss methods for organizing records of a file on disk. 
Several general techniques, such as ordering, hashing, and indexing, are used to create access methods. 
In addition, various general techniques for handling insertions and deletions work with many file 
organizations.  

 
 

5.7 Files of Unordered Records (Heap Files) 

In this simplest and most basic type of organization, records are placed in the file in the order in which 
they are inserted, so new records are inserted at the end of the file. Such an organization is called a 
heap or pile file (Note 9). This organization is often used with additional access paths, such as the 
secondary indexes discussed in Chapter 6. It is also used to collect and store data records for future use.  

Inserting a new record is very efficient: the last disk block of the file is copied into a buffer; the new 
record is added; and the block is then rewritten back to disk. The address of the last file block is kept 
in the file header. However, searching for a record using any search condition involves a linear search 
through the file block by block—an expensive procedure. If only one record satisfies the search 
condition, then, on the average, a program will read into memory and search half the file blocks before 
it finds the record. For a file of b blocks, this requires searching (b/2) blocks, on average. If no records 
or several records satisfy the search condition, the program must read and search all b blocks in the file.  

To delete a record, a program must first find its block, copy the block into a buffer, then delete the 
record from the buffer, and finally rewrite the block back to the disk. This leaves unused space in the 
disk block. Deleting a large number of records in this way results in wasted storage space. Another 
technique used for record deletion is to have an extra byte or bit, called a deletion marker, stored with 
each record. A record is deleted by setting the deletion marker to a certain value. A different value of 
the marker indicates a valid (not deleted) record. Search programs consider only valid records in a 
block when conducting their search. Both of these deletion techniques require periodic reorganization 
of the file to reclaim the unused space of deleted records. During reorganization, the file blocks are 
accessed consecutively, and records are packed by removing deleted records. After such a 
reorganization, the blocks are filled to capacity once more. Another possibility is to use the space of 
deleted records when inserting new records, although this requires extra bookkeeping to keep track of 
empty locations.  

We can use either spanned or unspanned organization for an unordered file, and it may be used with 
either fixed-length or variable-length records. Modifying a variable-length record may require deleting 
the old record and inserting a modified record, because the modified record may not fit in its old space 
on disk.  

To read all records in order of the values of some field, we create a sorted copy of the file. Sorting is an 
expensive operation for a large disk file, and special techniques for external sorting are used (see 
Chapter 18).  

1 Page 117 of 893



www.manaraa.com

For a file of unordered fixed-length records using unspanned blocks and contiguous allocation, it is 
straightforward to access any record by its position in the file. If the file records are numbered 0, 1, 2, . 
. . , r - 1 and the records in each block are numbered 0, 1, . . . , bfr - 1, where bfr is the blocking factor, 
then the record of the file is located in block (i/bfr) and is the (i mod bfr)th record in that block. Such a 
file is often called a relative or direct file because records can easily be accessed directly by their 
relative positions. Accessing a record by its position does not help locate a record based on a search 
condition; however, it facilitates the construction of access paths on the file, such as the indexes 
discussed in Chapter 6.  

 
 

5.8 Files of Ordered Records (Sorted Files) 

We can physically order the records of a file on disk based on the values of one of their fields—called 
the ordering field. This leads to an ordered or sequential file (Note 10). If the ordering field is also a 
key field of the file—a field guaranteed to have a unique value in each record—then the field is called 
the ordering key for the file. Figure 05.09 shows an ordered file with NAME as the ordering key field 
(assuming that employees have distinct names).  

 

 

 
 

Ordered records have some advantages over unordered files. First, reading the records in order of the 
ordering key values becomes extremely efficient, because no sorting is required. Second, finding the 
next record from the current one in order of the ordering key usually requires no additional block 
accesses, because the next record is in the same block as the current one (unless the current record is 
the last one in the block). Third, using a search condition based on the value of an ordering key field 
results in faster access when the binary search technique is used, which constitutes an improvement 
over linear searches, although it is not often used for disk files.  

A binary search for disk files can be done on the blocks rather than on the records. Suppose that the 
file has b blocks numbered 1, 2, . . . , b; the records are ordered by ascending value of their ordering 
key field; and we are searching for a record whose ordering key field value is K. Assuming that disk 
addresses of the file blocks are available in the file header, the binary search can be described by 
Algorithm 5.1. A binary search usually accesses log2(b) blocks, whether the record is found or not—an 
improvement over linear searches, where, on the average, (b/2) blocks are accessed when the record is 
found and b blocks are accessed when the record is not found.  

 
 

ALGORITHM 5.1  Binary search on an ordering key of a disk file.  

 
 

l ã 1; u ã b; (* b is the number of file blocks*)  

while (u l) do  

begin i ã (l + u) div 2;  
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read block i of the file into the buffer;  

if K < (ordering key field value of the first record in block i)  

then u ã i - 1  

else if K > (ordering key field value of the last record in block i)  

then l ã i + 1  

else if the record with ordering key field value = K is in the buffer  

then goto found  

else goto notfound;  

end;  

goto notfound;  

 
 

A search criterion involving the conditions >, <, and 1 on the ordering field is quite efficient, since the 
physical ordering of records means that all records satisfying the condition are contiguous in the file. 
For example, referring to Figure 05.09, if the search criterion is (NAME < ‘G’)—where < means 
alphabetically before—the records satisfying the search criterion are those from the beginning of the 
file up to the first record that has a NAME value starting with the letter G.  

Ordering does not provide any advantages for random or ordered access of the records based on values 
of the other nonordering fields of the file. In these cases we do a linear search for random access. To 
access the records in order based on a nonordering field, it is necessary to create another sorted copy—
in a different order—of the file.  

Inserting and deleting records are expensive operations for an ordered file because the records must 
remain physically ordered. To insert a record, we must find its correct position in the file, based on its 
ordering field value, and then make space in the file to insert the record in that position. For a large file 
this can be very time-consuming because, on the average, half the records of the file must be moved to 
make space for the new record. This means that half the file blocks must be read and rewritten after 
records are moved among them. For record deletion, the problem is less severe if deletion markers and 
periodic reorganization are used.  

One option for making insertion more efficient is to keep some unused space in each block for new 
records. However, once this space is used up, the original problem resurfaces. Another frequently used 
method is to create a temporary unordered file called an overflow or transaction file. With this 
technique, the actual ordered file is called the main or master file. New records are inserted at the end 
of the overflow file rather than in their correct position in the main file. Periodically, the overflow file 
is sorted and merged with the master file during file reorganization. Insertion becomes very efficient, 
but at the cost of increased complexity in the search algorithm. The overflow file must be searched 
using a linear search if, after the binary search, the record is not found in the main file. For applications 
that do not require the most up-to-date information, overflow records can be ignored during a search.  

Modifying a field value of a record depends on two factors: (1) the search condition to locate the record 
and (2) the field to be modified. If the search condition involves the ordering key field, we can locate 
the record using a binary search; otherwise we must do a linear search. A nonordering field can be 
modified by changing the record and rewriting it in the same physical location on disk—assuming 
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fixed-length records. Modifying the ordering field means that the record can change its position in the 
file, which requires deletion of the old record followed by insertion of the modified record.  

Reading the file records in order of the ordering field is quite efficient if we ignore the records in 
overflow, since the blocks can be read consecutively using double buffering. To include the records in 
overflow, we must merge them in their correct positions; in this case, we can first reorganize the file, 
and then read its blocks sequentially. To reorganize the file, first sort the records in the overflow file, 
and then merge them with the master file. The records marked for deletion are removed during the 
reorganization.  

Ordered files are rarely used in database applications unless an additional access path, called a 
primary index, is used; this results in an indexed-sequential file. This further improves the random 
access time on the ordering key field. We discuss indexes in Chapter 6.  

 
 

5.9 Hashing Techniques 

5.9.1 Internal Hashing 
5.9.2 External Hashing for Disk Files 
5.9.3 Hashing Techniques That Allow Dynamic File Expansion

Another type of primary file organization is based on hashing, which provides very fast access to 
records on certain search conditions. This organization is usually called a hash file (Note 11). The 
search condition must be an equality condition on a single field, called the hash field of the file. In 
most cases, the hash field is also a key field of the file, in which case it is called the hash key. The idea 
behind hashing is to provide a function h, called a hash function or randomizing function, that is 
applied to the hash field value of a record and yields the address of the disk block in which the record 
is stored. A search for the record within the block can be carried out in a main memory buffer. For 
most records, we need only a single-block access to retrieve that record.  

Hashing is also used as an internal search structure within a program whenever a group of records is 
accessed exclusively by using the value of one field. We describe the use of hashing for internal files in 
Section 5.9.1; then we show how it is modified to store external files on disk in Section 5.9.2. In 
Section 5.9.3 we discuss techniques for extending hashing to dynamically growing files.  

 
 

5.9.1 Internal Hashing 

For internal files, hashing is typically implemented as a hash table through the use of an array of 
records. Suppose that the array index range is from 0 to M - 1 (Figure 05.10a); then we have M slots 
whose addresses correspond to the array indexes. We choose a hash function that transforms the hash 
field value into an integer between 0 and M - 1. One common hash function is the h(K) = K mod M 
function, which returns the remainder of an integer hash field value K after division by M; this value is 
then used for the record address.  
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Noninteger hash field values can be transformed into integers before the mod function is applied. For 
character strings, the numeric (ASCII) codes associated with characters can be used in the 
transformation—for example, by multiplying those code values. For a hash field whose data type is a 
string of 20 characters, Algorithm 5.2(a) can be used to calculate the hash address. We assume that the 
code function returns the numeric code of a character and that we are given a hash field value K of type 
K: array [1..20] of char (in PASCAL) or char K[20] (in C).  

 
 

ALGORITHM 5.2  Two simple hashing algorithms. (a) Applying the mod hash function to a character 
string K. (b) Collision resolution by open addressing.  

 
 

(a) temp ã 1;  

for i ã 1 to 20 do temp ã temp * code(K[i]) mod M;  

hash_address ã temp mod M;  

(b) i ã hash_address(K); a ã i;  

if location i is occupied  

then begin i ã (i + 1) mod M;  

while (i # a) and location i is occupied  

do i ã (i + 1) mod M;  

if (i = a) then all positions are full  

else new_hash_address ã i;  

end;  

 
 

Other hashing functions can be used. One technique, called folding, involves applying an arithmetic 
function such as addition or a logical function such as exclusive or to different portions of the hash 
field value to calculate the hash address. Another technique involves picking some digits of the hash 
field value—for example, the third, fifth, and eighth digits—to form the hash address (Note 12). The 
problem with most hashing functions is that they do not guarantee that distinct values will hash to 
distinct addresses, because the hash field space—the number of possible values a hash field can take—
is usually much larger than the address space—the number of available addresses for records. The 
hashing function maps the hash field space to the address space.  

A collision occurs when the hash field value of a record that is being inserted hashes to an address that 
already contains a different record. In this situation, we must insert the new record in some other 
position, since its hash address is occupied. The process of finding another position is called collision 
resolution. There are numerous methods for collision resolution, including the following:  
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• Open addressing: Proceeding from the occupied position specified by the hash address, the 
program checks the subsequent positions in order until an unused (empty) position is found. 
Algorithm 5.2(b) may be used for this purpose. 

• Chaining: For this method, various overflow locations are kept, usually by extending the array 
with a number of overflow positions. In addition, a pointer field is added to each record 
location. A collision is resolved by placing the new record in an unused overflow location and 
setting the pointer of the occupied hash address location to the address of that overflow 
location. A linked list of overflow records for each hash address is thus maintained, as shown 
in Figure 05.10(b).  

• Multiple hashing: The program applies a second hash function if the first results in a collision. 
If another collision results, the program uses open addressing or applies a third hash function 
and then uses open addressing if necessary.  

Each collision resolution method requires its own algorithms for insertion, retrieval, and deletion of 
records. The algorithms for chaining are the simplest. Deletion algorithms for open addressing are 
rather tricky. Data structures textbooks discuss internal hashing algorithms in more detail.  

The goal of a good hashing function is to distribute the records uniformly over the address space so as 
to minimize collisions while not leaving many unused locations. Simulation and analysis studies have 
shown that it is usually best to keep a hash table between 70 and 90 percent full so that the number of 
collisions remains low and we do not waste too much space. Hence, if we expect to have r records to 
store in the table, we should choose M locations for the address space such that (r/M) is between 0.7 
and 0.9. It may also be useful to choose a prime number for M, since it has been demonstrated that this 
distributes the hash addresses better over the address space when the mod hashing function is used. 
Other hash functions may require M to be a power of 2.  

 
 

5.9.2 External Hashing for Disk Files 

Hashing for disk files is called external hashing. To suit the characteristics of disk storage, the target 
address space is made of buckets, each of which holds multiple records. A bucket is either one disk 
block or a cluster of contiguous blocks. The hashing function maps a key into a relative bucket number, 
rather than assign an absolute block address to the bucket. A table maintained in the file header 
converts the bucket number into the corresponding disk block address, as illustrated in Figure 05.11.  

 

 

 
 

The collision problem is less severe with buckets, because as many records as will fit in a bucket can 
hash to the same bucket without causing problems. However, we must make provisions for the case 
where a bucket is filled to capacity and a new record being inserted hashes to that bucket. We can use a 
variation of chaining in which a pointer is maintained in each bucket to a linked list of overflow 
records for the bucket, as shown in Figure 05.12. The pointers in the linked list should be record 
pointers, which include both a block address and a relative record position within the block.  
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Hashing provides the fastest possible access for retrieving an arbitrary record given the value of its 
hash field. Although most good hash functions do not maintain records in order of hash field values, 
some functions—called order preserving—do. A simple example of an order preserving hash function 
is to take the leftmost three digits of an invoice number field as the hash address and keep the records 
sorted by invoice number within each bucket. Another example is to use an integer hash key directly as 
an index to a relative file, if the hash key values fill up a particular interval; for example, if employee 
numbers in a company are assigned as 1, 2, 3, . . . up to the total number of employees, we can use the 
identity hash function that maintains order. Unfortunately, this only works if keys are generated in 
order by some application.  

The hashing scheme described is called static hashing because a fixed number of buckets M is 
allocated. This can be a serious drawback for dynamic files. Suppose that we allocate M buckets for the 
address space and let m be the maximum number of records that can fit in one bucket; then at most (m 
* M) records will fit in the allocated space. If the number of records turns out to be substantially fewer 
than (m * M), we are left with a lot of unused space. On the other hand, if the number of records 
increases to substantially more than (m * M), numerous collisions will result and retrieval will be 
slowed down because of the long lists of overflow records. In either case, we may have to change the 
number of blocks M allocated and then use a new hashing function (based on the new value of M) to 
redistribute the records. These reorganizations can be quite time consuming for large files. Newer 
dynamic file organizations based on hashing allow the number of buckets to vary dynamically with 
only localized reorganization (see Section 5.9.3).  

When using external hashing, searching for a record given a value of some field other than the hash 
field is as expensive as in the case of an unordered file. Record deletion can be implemented by 
removing the record from its bucket. If the bucket has an overflow chain, we can move one of the 
overflow records into the bucket to replace the deleted record. If the record to be deleted is already in 
overflow, we simply remove it from the linked list. Notice that removing an overflow record implies 
that we should keep track of empty positions in overflow. This is done easily by maintaining a linked 
list of unused overflow locations.  

Modifying a record’s field value depends on two factors: (1) the search condition to locate the record 
and (2) the field to be modified. If the search condition is an equality comparison on the hash field, we 
can locate the record efficiently by using the hashing function; otherwise, we must do a linear search. A 
nonhash field can be modified by changing the record and rewriting it in the same bucket. Modifying 
the hash field means that the record can move to another bucket, which requires deletion of the old 
record followed by insertion of the modified record.  

 
 

5.9.3 Hashing Techniques That Allow Dynamic File Expansion 

Extendible Hashing 
Linear Hashing

A major drawback of the static hashing scheme just discussed is that the hash address space is fixed. 
Hence, it is difficult to expand or shrink the file dynamically. The schemes described in this section 
attempt to remedy this situation. The first scheme—extendible hashing—stores an access structure in 
addition to the file, and hence is somewhat similar to indexing (Chapter 6). The main difference is that 
the access structure is based on the values that result after application of the hash function to the search 
field. In indexing, the access structure is based on the values of the search field itself. The second 
technique, called linear hashing, does not require additional access structures.  

These hashing schemes take advantage of the fact that the result of applying a hashing function is a 
nonnegative integer and hence can be represented as a binary number. The access structure is built on 
the binary representation of the hashing function result, which is a string of bits. We call this the 
hash value of a record. Records are distributed among buckets based on the values of the leading bits 
in their hash values.  
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Extendible Hashing 

In extendible hashing, a type of directory—an array of 2d bucket addresses—is maintained, where d is 
called the global depth of the directory. The integer value corresponding to the first (high-order) d bits 
of a hash value is used as an index to the array to determine a directory entry, and the address in that 
entry determines the bucket in which the corresponding records are stored. However, there does not 
have to be a distinct bucket for each of the 2d directory locations. Several directory locations with the 
same first d’ bits for their hash values may contain the same bucket address if all the records that hash 
to these locations fit in a single bucket. A local depth d’—stored with each bucket—specifies the 
number of bits on which the bucket contents are based. Figure 05.13 shows a directory with global 
depth d = 3.  

 

 

 
 

The value of d can be increased or decreased by one at a time, thus doubling or halving the number of 
entries in the directory array. Doubling is needed if a bucket, whose local depth d’ is equal to the global 
depth d, overflows. Halving occurs if d > d’ for all the buckets after some deletions occur. Most record 
retrievals require two block accesses—one to the directory and the other to the bucket.  

To illustrate bucket splitting, suppose that a new inserted record causes overflow in the bucket whose 
hash values start with 01—the third bucket in Figure 05.13. The records will be distributed between 
two buckets: the first contains all records whose hash values start with 010, and the second all those 
whose hash values start with 011. Now the two directory locations for 010 and 011 point to the two 
new distinct buckets. Before the split, they pointed to the same bucket. The local depth d’ of the two 
new buckets is 3, which is one more than the local depth of the old bucket.  

If a bucket that overflows and is split used to have a local depth d’ equal to the global depth d of the 
directory, then the size of the directory must now be doubled so that we can use an extra bit to 
distinguish the two new buckets. For example, if the bucket for records whose hash values start with 
111 in Figure 05.13 overflows, the two new buckets need a directory with global depth d = 4, because 
the two buckets are now labeled 1110 and 1111, and hence their local depths are both 4. The directory 
size is hence doubled, and each of the other original locations in the directory is also split into two 
locations, both of which have the same pointer value as did the original location.  

The main advantage of extendible hashing that makes it attractive is that the performance of the file 
does not degrade as the file grows, as opposed to static external hashing where collisions increase and 
the corresponding chaining causes additional accesses. In addition, no space is allocated in extendible 
hashing for future growth, but additional buckets can be allocated dynamically as needed. The space 
overhead for the directory table is negligible. The maximum directory size is 2k, where k is the number 
of bits in the hash value. Another advantage is that splitting causes minor reorganization in most cases, 
since only the records in one bucket are redistributed to the two new buckets. The only time a 
reorganization is more expensive is when the directory has to be doubled (or halved). A disadvantage is 
that the directory must be searched before accessing the buckets themselves, resulting in two block 
accesses instead of one in static hashing. This performance penalty is considered minor and hence the 
scheme is considered quite desirable for dynamic files.  

 
 

Linear Hashing 
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The idea behind linear hashing is to allow a hash file to expand and shrink its number of buckets 
dynamically without needing a directory. Suppose that the file starts with M buckets numbered 0, 1, . . . 
, M - 1 and uses the mod hash function h(K) = K mod M; this hash function is called the initial hash 
function . Overflow because of collisions is still needed and can be handled by maintaining individual 
overflow chains for each bucket. However, when a collision leads to an overflow record in any file 
bucket, the first bucket in the file—bucket 0—is split into two buckets: the original bucket 0 and a new 
bucket M at the end of the file. The records originally in bucket 0 are distributed between the two 
buckets based on a different hashing function (K) = K mod 2M. A key property of the two hash 
functions and is that any records that hashed to bucket 0 based on will hash to either bucket 0 or bucket 
M based on ; this is necessary for linear hashing to work.  

As further collisions lead to overflow records, additional buckets are split in the linear order 1, 2, 3, . . . 
. If enough overflows occur, all the original file buckets 0, 1, . . . , M - 1 will have been split, so the file 
now has 2M instead of M buckets, and all buckets use the hash function . Hence, the records in 
overflow are eventually redistributed into regular buckets, using the function via a delayed split of their 
buckets. There is no directory; only a value n—which is initially set to 0 and is incremented by 1 
whenever a split occurs—is needed to determine which buckets have been split. To retrieve a record 
with hash key value K, first apply the function to K; if (K) < n, then apply the function on K because 
the bucket is already split. Initially, n = 0, indicating that the function applies to all buckets; n grows 
linearly as buckets are split.  

When n = M after being incremented, this signifies that all the original buckets have been split and the 
hash function applies to all records in the file. At this point, n is reset to 0 (zero), and any new 
collisions that cause overflow lead to the use of a new hashing function (K) = K mod 4M. In general, a 
sequence of hashing functions (K) = K mod (2jM) is used, where j = 0, 1, 2, . . . ; a new hashing 
function is needed whenever all the buckets 0, 1, . . . , (2jM) - 1 have been split and n is reset to 0. The 
search for a record with hash key value K is given by Algorithm 5.3.  

Splitting can be controlled by monitoring the file load factor instead of by splitting whenever an 
overflow occurs. In general, the file load factor l can be defined as l = r/(bfr * N), where r is the 
current number of file records, bfr is the maximum number of records that can fit in a bucket, and N is 
the current number of file buckets. Buckets that have been split can also be recombined if the load of 
the file falls below a certain threshold. Blocks are combined linearly, and N is decremented 
appropriately. The file load can be used to trigger both splits and combinations; in this manner the file 
load can be kept within a desired range. Splits can be triggered when the load exceeds a certain 
threshold—say, 0.9—and combinations can be triggered when the load falls below another threshold—
say, 0.7.  

 
 

ALGORITHM 5.3  The search procedure for linear hashing.  

 
 

if n = 0  

then m ã (K) (* m is the hash value of record with hash key K *)  

else begin  

m ã (K);  

if m < n then m ã (K)  

end;  
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search the bucket whose hash value is m (and its oveflow, if any);  

 
 

5.10 Other Primary File Organizations 

5.10.1 Files of Mixed Records 
5.10.2 B-Trees and Other Data Structures

5.10.1 Files of Mixed Records 

The file organizations we have studied so far assume that all records of a particular file are of the same 
record type. The records could be of EMPLOYEEs, PROJECTs, STUDENTs, or DEPARTMENTs, but each file 
contains records of only one type. In most database applications, we encounter situations in which 
numerous types of entities are interrelated in various ways, as we saw in Chapter 3. Relationships 
among records in various files can be represented by connecting fields (Note 13). For example, a 
STUDENT record can have a connecting field MAJORDEPT whose value gives the name of the 
DEPARTMENT in which the student is majoring. This MAJORDEPT field refers to a DEPARTMENT entity, 
which should be represented by a record of its own in the DEPARTMENT file. If we want to retrieve field 
values from two related records, we must retrieve one of the records first. Then we can use its 
connecting field value to retrieve the related record in the other file. Hence, relationships are 
implemented by logical field references among the records in distinct files.  

File organizations in object DBMSs, as well as legacy systems such as hierarchical and network 
DBMSs, often implement relationships among records as physical relationships realized by physical 
contiguity (or clustering) of related records or by physical pointers. These file organizations typically 
assign an area of the disk to hold records of more than one type so that records of different types can 
be physically clustered on disk. If a particular relationship is expected to be used very frequently, 
implementing the relationship physically can increase the system’s efficiency at retrieving related 
records. For example, if the query to retrieve a DEPARTMENT record and all records for STUDENTs 
majoring in that department is very frequent, it would be desirable to place each DEPARTMENT record 
and its cluster of STUDENT records contiguously on disk in a mixed file. The concept of physical 
clustering of object types is used in object DBMSs to store related objects together in a mixed file.  

To distinguish the records in a mixed file, each record has—in addition to its field values—a record 
type field, which specifies the type of record. This is typically the first field in each record and is used 
by the system software to determine the type of record it is about to process. Using the catalog 
information, the DBMS can determine the fields of that record type and their sizes, in order to interpret 
the data values in the record.  

 
 

5.10.2 B-Trees and Other Data Structures 

Other data structures can be used for primary file organizations. For example, if both the record size 
and the number of records in a file are small, some DBMSs offer the option of a B-tree data structure as 
the primary file organization. We will describe B-trees in Section 6.3.1, when we discuss the use of the 
B-tree data structure for indexing. In general, any data structure that can be adapted to the 
characteristics of disk devices can be used as a primary file organization for record placement on disk.  

 
 

5.11 Summary 
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We began this chapter by discussing the characteristics of memory hierarchies and then concentrated 
on secondary storage devices. In particular, we focused on magnetic disks because they are used most 
often to store on-line database files. We reviewed the recent advances in disk technology represented 
by RAID (Redundant Arrays of Inexpensive [Independent] Disks).  

Data on disk is stored in blocks; accessing a disk block is expensive because of the seek time, rotational 
delay, and block transfer time. Double buffering can be used when accessing consecutive disk blocks, 
to reduce the average block access time. Other disk parameters are discussed in Appendix B. We 
presented different ways of storing records of a file on disk. Records of a file are grouped into disk 
blocks and can be of fixed length or variable length, spanned or unspanned, and of the same record 
type or mixed-types. We discussed the file header, which describes the record formats and keeps track 
of the disk addresses of the file blocks. Information in the file header is used by system software 
accessing the file records.  

We then presented a set of typical commands for accessing individual file records and discussed the 
concept of the current record of a file. We discussed how complex record search conditions are 
transformed into simple search conditions that are used to locate records in the file.  

Three primary file organizations were then discussed: unordered, ordered, and hashed. Unordered files 
require a linear search to locate records, but record insertion is very simple. We discussed the deletion 
problem and the use of deletion markers.  

Ordered files shorten the time required to read records in order of the ordering field. The time required 
to search for an arbitrary record, given the value of its ordering key field, is also reduced if a binary 
search is used. However, maintaining the records in order makes insertion very expensive; thus the 
technique of using an unordered overflow file to reduce the cost of record insertion was discussed. 
Overflow records are merged with the master file periodically during file reorganization.  

Hashing provides very fast access to an arbitrary record of a file, given the value of its hash key. The 
most suitable method for external hashing is the bucket technique, with one or more contiguous blocks 
corresponding to each bucket. Collisions causing bucket overflow are handled by chaining. Access on 
any nonhash field is slow, and so is ordered access of the records on any field. We then discussed two 
hashing techniques for files that grow and shrink in the number of records dynamically—namely, 
extendible and linear hashing.  

Finally, we briefly discussed other possibilities for primary file organizations, such as B-trees, and files 
of mixed records, which implement relationships among records of different types physically as part of 
the storage structure.  

 
 

Review Questions 

  5.1.  What is the difference between primary and secondary storage? 

  5.2.  Why are disks, not tapes, used to store on-line database files? 

  5.3.  Define the following terms: disk, disk pack, track, block, cylinder, sector, interblock gap, 
read/write head.  

  5.4.  Discuss the process of disk initialization.  

  5.5.  Discuss the mechanism used to read data from or write data to the disk.  

  5.6.  What are the components of a disk block address?  

  5.7.  Why is accessing a disk block expensive? Discuss the time components involved in accessing a 
disk block. 
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  5.8.  Describe the mismatch between processor and disk technologies. 

  5.9.  What are the main goals of the RAID technology? How does it achieve them? 

5.10.  How does disk mirroring help improve reliability? Give a quantitative example. 

5.11.  What are the techniques used to improve performance of disks in RAID?  

5.12.  What characterizes the levels in RAID organization?  

5.13.  How does double buffering improve block access time?  

5.14.  What are the reasons for having variable-length records? What types of separator characters are 
needed for each?  

5.15.  Discuss the techniques for allocating file blocks on disk.  

5.16.  What is the difference between a file organization and an access method?  

5.17.  What is the difference between static and dynamic files?  

5.18.  What are the typical record-at-a-time operations for accessing a file? Which of these depend on 
the current record of a file?  

5.19.  Discuss the techniques for record deletion.  

5.20.  Discuss the advantages and disadvantages of using (a) an unordered file, (b) an ordered file, and 
(c) a static hash file with buckets and chaining. Which operations can be performed efficiently 
on each of these organizations, and which operations are expensive? 

5.21.  Discuss the techniques for allowing a hash file to expand and shrink dynamically. What are the 
advantages and disadvantages of each?  

5.22.  What are mixed files used for? What are other types of primary file organizations?  

 
 

Exercises 

5.23. Consider a disk with the following characteristics (these are not parameters of any particular 
disk unit): block size B = 512 bytes; interblock gap size G = 128 bytes; number of blocks per 
track = 20; number of tracks per surface = 400. A disk pack consists of 15 double-sided disks.  

a. What is the total capacity of a track, and what is its useful capacity (excluding 
interblock gaps)?  

b. How many cylinders are there?  
c. What are the total capacity and the useful capacity of a cylinder?  
d. What are the total capacity and the useful capacity of a disk pack?  
e. Suppose that the disk drive rotates the disk pack at a speed of 2400 rpm (revolutions 

per minute); what are the transfer rate (tr) in bytes/msec and the block transfer time 
(btt) in msec? What is the average rotational delay (rd) in msec? What is the bulk 
transfer rate? (See Appendix B.)  

f. Suppose that the average seek time is 30 msec. How much time does it take (on the 
average) in msec to locate and transfer a single block, given its block address?  

g. Calculate the average time it would take to transfer 20 random blocks, and compare 
this with the time it would take to transfer 20 consecutive blocks using double 
buffering to save seek time and rotational delay.  

5.24. A file has r = 20,000 STUDENT records of fixed length. Each record has the following fields: 
NAME (30 bytes), SSN (9 bytes), ADDRESS (40 bytes), PHONE (9 bytes), BIRTHDATE (8 bytes), SEX 
(1 byte), MAJORDEPTCODE (4 bytes), MINORDEPTCODE (4 bytes), CLASSCODE (4 bytes, integer), 
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and DEGREEPROGRAM (3 bytes). An additional byte is used as a deletion marker. The file is 
stored on the disk whose parameters are given in Exercise 5.23.  

a. Calculate the record size R in bytes.  
b. Calculate the blocking factor bfr and the number of file blocks b, assuming an 

unspanned organization.  
c. Calculate the average time it takes to find a record by doing a linear search on the file if 

(i) the file blocks are stored contiguously, and double buffering is used; (ii) the file 
blocks are not stored contiguously.  

d. Assume that the file is ordered by SSN; calculate the time it takes to search for a record 
given its SSN value, by doing a binary search.  

5.25. Suppose that only 80 percent of the STUDENT records from Exercise 5.24 have a value for 
PHONE, 85 percent for MAJORDEPTCODE, 15 percent for MINORDEPTCODE, and 90 percent for 
DEGREEPROGRAM; and suppose that we use a variable-length record file. Each record has a 1-
byte field type for each field in the record, plus the 1-byte deletion marker and a 1-byte end-of-
record marker. Suppose that we use a spanned record organization, where each block has a 5-
byte pointer to the next block (this space is not used for record storage).  

a. Calculate the average record length R in bytes.  
b. Calculate the number of blocks needed for the file.  

5.26. Suppose that a disk unit has the following parameters: seek time s = 20 msec; rotational delay rd 
= 10 msec; block transfer time btt = 1 msec; block size B = 2400 bytes; interblock gap size G = 
600 bytes. An EMPLOYEE file has the following fields: SSN, 9 bytes; LASTNAME, 20 bytes; 
FIRSTNAME, 20 bytes; MIDDLE INIT, 1 byte; BIRTHDATE, 10 bytes; ADDRESS, 35 bytes; PHONE, 12 
bytes; SUPERVISORSSN, 9 bytes; DEPARTMENT, 4 bytes; JOBCODE, 4 bytes; deletion marker, 1 
byte. The EMPLOYEE file has r = 30,000 records, fixed-length format, and unspanned blocking. 
Write appropriate formulas and calculate the following values for the above EMPLOYEE file:  

a. The record size R (including the deletion marker), the blocking factor bfr, and the 
number of disk blocks b.  

b. Calculate the wasted space in each disk block because of the unspanned organization.  
c. Calculate the transfer rate tr and the bulk transfer rate btr for this disk unit (see 

Appendix B for definitions of tr and btr).  
d. Calculate the average number of block accesses needed to search for an arbitrary record 

in the file, using linear search.  
e. Calculate in msec the average time needed to search for an arbitrary record in the file, 

using linear search, if the file blocks are stored on consecutive disk blocks and double 
buffering is used.  

f. Calculate in msec the average time needed to search for an arbitrary record in the file, 
using linear search, if the file blocks are not stored on consecutive disk blocks.  

g. Assume that the records are ordered via some key field. Calculate the average number 
of block accesses and the average time needed to search for an arbitrary record in the 
file, using binary search.  

5.27. A PARTS file with Part# as hash key includes records with the following Part# values: 2369, 
3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 3943, 4750, 6975, 4981, 9208. The file 
uses eight buckets, numbered 0 to 7. Each bucket is one disk block and holds two records. Load 
these records into the file in the given order, using the hash function h(K) = K mod 8. Calculate 
the average number of block accesses for a random retrieval on Part#.  

5.28. Load the records of Exercise 5.27 into expandable hash files based on extendible hashing. Show 
the structure of the directory at each step, and the global and local depths. Use the hash function 
h(K) = K mod 128.  

5.29. Load the records of Exercise 5.27 into an expandable hash file, using linear hashing. Start with a 
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single disk block, using the hash function , and show how the file grows and how the hash 
functions change as the records are inserted. Assume that blocks are split whenever an overflow 
occurs, and show the value of n at each stage.  

5.30. Compare the file commands listed in Section 5.6 to those available on a file access method you 
are familiar with.  

5.31. Suppose that we have an unordered file of fixed-length records that uses an unspanned record 
organization. Outline algorithms for insertion, deletion, and modification of a file record. State 
any assumptions you make.  

5.32. Suppose that we have an ordered file of fixed-length records and an unordered overflow file to 
handle insertion. Both files use unspanned records. Outline algorithms for insertion, deletion, 
and modification of a file record and for reorganizing the file. State any assumptions you make.  

5.33. Can you think of techniques other than an unordered overflow file that can be used to make 
insertions in an ordered file more efficient?  

5.34. Suppose that we have a hash file of fixed-length records, and suppose that overflow is handled 
by chaining. Outline algorithms for insertion, deletion, and modification of a file record. State 
any assumptions you make.  

5.35. Can you think of techniques other than chaining to handle bucket overflow in external hashing?  

5.36. Write pseudocode for the insertion algorithms for linear hashing and for extendible hashing.  

5.37. Write program code to access individual fields of records under each of the following 
circumstances. For each case, state the assumptions you make concerning pointers, separator 
characters, and so forth. Determine the type of information needed in the file header in order for 
your code to be general in each case.  

a. Fixed-length records with unspanned blocking.  
b. Fixed-length records with spanned blocking.  
c. Variable-length records with variable-length fields and spanned blocking.  
d. Variable-length records with repeating groups and spanned blocking.  
e. Variable-length records with optional fields and spanned blocking.  
f. Variable-length records that allow all three cases in parts c, d, and e.  

5.38. Suppose that a file initially contains r = 120,000 records of R = 200 bytes each in an unsorted 
(heap) file. The block size B = 2400 bytes, the average seek time s = 16 ms, the average 
rotational latency rd = 8.3 ms and the block transfer time btt = 0.8 ms. Assume that 1 record is 
deleted for every 2 records added until the total number of active records is 240,000.  

a. How many block transfers are needed to reorganize the file?  
b. How long does it take to find a record right before reorganization?  
c. How long does it take to find a record right after reorganization?  

5.39. Suppose we have a sequential (ordered) file of 100,000 records where each record is 240 bytes. 
Assume that B = 2400 bytes, s = 16 ms, rd = 8.3 ms, and btt = 0.8 ms. Suppose we want to make 
X independent random record reads from the file. We could make X random block reads or we 
could perform one exhaustive read of the entire file looking for those X records. The question is 
to decide when it would be more efficient to perform one exhaustive read of the entire file than 
to perform X individual random reads. That is, what is the value for X when an exhaustive read 
of the file is more efficient than random X reads? Develop this as a function of X.  

5.40. Suppose that a static hash file initially has 600 buckets in the primary area and that records are 
inserted that create an overflow area of 600 buckets. If we reorganize the hash file, we can 
assume that the overflow is eliminated. If the cost of reorganizing the file is the cost of the 
bucket transfers (reading and writing all of the buckets) and the only periodic file operation is 
the fetch operation, then how many times would we have to perform a fetch (successfully) to 
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make the reorganization cost-effective? That is, the reorganization cost and subsequent search 
cost are less than the search cost before reorganization. Support your answer. Assume s = 16 ms, 
rd = 8.3 ms, btt = 1 ms.  

5.41. Suppose we want to create a linear hash file with a file load factor of 0.7 and a blocking factor 
of 20 records per bucket, which is to contain 112,000 records initially.  

a. How many buckets should we allocate in the primary area?  
b. What should be the number of bits used for bucket addresses?  
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Note 1 

Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile memory 
does not.  

 
 

Note 2 

For example, the INTEL DD28F032SA is a 32-megabit capacity flash memory with 70-nanosecond 
access speed, and 430 KB/second write transfer rate.  

 
 

Note 3 

Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transfer rates 
(around 100 to 200 KB per second).  

 
 

Note 4 

In some disks, the circles are now connected into a kind of continuous spiral.  

 
 

Note 5 

Called interrecord gaps in tape terminology.  

 
 

Note 6 

This was predicted by Gordon Bell to be about 40 percent every year between 1974 and 1984 and is 
now supposed to exceed 50 percent per year.  

 
 

Note 7 

The formulas for MTTF calculations appear in Chen et al. (1994).  

 
 

Note 8 
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Other schemes are also possible for representing variable-length records.  

 
 

Note 9 

Sometimes this organization is called a sequential file.  

 
 

Note 10 

The term sequential file has also been used to refer to unordered files.  

 
 

Note 11 

A hash file has also been called a direct file.  

 
 

Note 12 

A detailed discussion of hashing functions is outside the scope of our presentation.  

 
 

Note 13 

The concept of foreign keys in the relational model (Chapter 7) and references among objects in object-
oriented models (Chapter 11) are examples of connecting fields.  
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In this chapter, we assume that a file already exists with some primary organization such as the 
unordered, ordered, or a hashed organizations that were described in Chapter 5. We will describe 
additional auxiliary access structures called indexes, which are used to speed up the retrieval of 
records in response to certain search conditions. The index structures typically provide secondary 
access paths, which provide alternative ways of accessing the records without affecting the physical 
placement of records on disk. They enable efficient access to records based on the indexing fields that 
are used to construct the index. Basically, any field of the file can be used to create an index and 
multiple indexes on different fields can be constructed on the same file. A variety of indexes are 
possible; each of them uses a particular data structure to speed up the search. To find a record or 
records in the file based on a certain selection criterion on an indexing field, one has to initially access 
the index, which points to one or more blocks in the file where the required records are located. The 
most prevalent types of indexes are based on ordered files (single-level indexes) and tree data 
structures (multilevel indexes, B+-trees). Indexes can also be constructed based on hashing or other 
search data structures.  

We describe different types of single-level ordered indexes—primary, secondary, and clustering—in 
Section 6.1. By viewing a single-level index as an ordered file, one can develop additional indexes for 
it, giving rise to the concept of multilevel indexes. A popular indexing scheme called ISAM (Indexed 
Sequential Access Method) is based on this idea. We discuss multilevel indexes in Section 6.2. In 
Section 6.3 we describe B-trees and B+-trees, which are data structures that are commonly used in 
DBMSs to implement dynamically changing multilevel indexes. B+-trees have become a commonly 
accepted default structure for generating indexes on demand in most relational DBMSs. Section 6.4 is 
devoted to the alternative ways of accessing data based on a combination of multiple keys. In Section 
6.5, we discuss how other data structures—such as hashing—can be used to construct indexes. We also 
briefly introduce the concept of logical indexes, which give an additional level of indirection from 
physical indexes, allowing for the physical index to be flexible and extensible in its organization. 
Section 6.6 summarizes the chapter.  

 
 

6.1 Types of Single-Level Ordered Indexes 

6.1.1 Primary Indexes 
6.1.2 Clustering Indexes 
6.1.3 Secondary Indexes 
6.1.4 Summary

The idea behind an ordered index access structure is similar to that behind the index used in a textbook, 
which lists important terms at the end of the book in alphabetical order along with a list of page 
numbers where the term appears in the book. We can search an index to find a list of addresses—page 
numbers in this case—and use these addresses to locate a term in the textbook by searching the 
specified pages. The alternative, if no other guidance is given, would be to sift slowly through the 
whole textbook word by word to find the term we are interested in; this corresponds to doing a linear 
search on a file. Of course, most books do have additional information, such as chapter and section 
titles, that can help us find a term without having to search through the whole book. However, the 
index is the only exact indication of where each term occurs in the book.  

For a file with a given record structure consisting of several fields (or attributes), an index access 
structure is usually defined on a single field of a file, called an indexing field (or indexing attribute) 
(Note 1). The index typically stores each value of the index field along with a list of pointers to all disk 
blocks that contain records with that field value. The values in the index are ordered so that we can do 
a binary search on the index. The index file is much smaller than the data file, so searching the index 
using a binary search is reasonably efficient. Multilevel indexing (see Section 6.2) does away with the 
need for a binary search at the expense of creating indexes to the index itself.  

There are several types of ordered indexes. A primary index is specified on the ordering key field of 
an ordered file of records. Recall from Section 5.8 that an ordering key field is used to physically order 
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the file records on disk, and every record has a unique value for that field. If the ordering field is not a 
key field—that is, if numerous records in the file can have the same value for the ordering field—
another type of index, called a clustering index, can be used. Notice that a file can have at most one 
physical ordering field, so it can have at most one primary index or one clustering index, but not both. 
A third type of index, called a secondary index, can be specified on any nonordering field of a file. A 
file can have several secondary indexes in addition to its primary access method. In Section 6.1.1, 
Section 6.1.2 and Section 6.1.3 we discuss these three types of single-level indexes.  

 
 

6.1.1 Primary Indexes 

A primary index is an ordered file whose records are of fixed length with two fields. The first field is 
of the same data type as the ordering key field—called the primary key—of the data file, and the 
second field is a pointer to a disk block (a block address). There is one index entry (or index record) 
in the index file for each block in the data file. Each index entry has the value of the primary key field 
for the first record in a block and a pointer to that block as its two field values. We will refer to the two 
field values of index entry i as <K(i), P(i)>.  

To create a primary index on the ordered file shown in Figure 05.09, we use the NAME field as primary 
key, because that is the ordering key field of the file (assuming that each value of NAME is unique). 
Each entry in the index has a NAME value and a pointer. The first three index entries are as follows:  

 
 

<K(1) = (Aaron,Ed), P(1) = address of block 1>  

<K(2) = (Adams,John), P(2) = address of block 2>  

<K(3) = (Alexander,Ed), P(3) = address of block 3>  

 
 

Figure 06.01 illustrates this primary index. The total number of entries in the index is the same as the 
number of disk blocks in the ordered data file. The first record in each block of the data file is called the 
anchor record of the block, or simply the block anchor (Note 2). 

 

 

 
 

Indexes can also be characterized as dense or sparse. A dense index has an index entry for every 
search key value (and hence every record) in the data file. A sparse (or nondense) index, on the other 
hand, has index entries for only some of the search values. A primary index is hence a nondense 
(sparse) index, since it includes an entry for each disk block of the data file rather than for every search 
value (or every record). 

The index file for a primary index needs substantially fewer blocks than does the data file, for two 
reasons. First, there are fewer index entries than there are records in the data file. Second, each index 
entry is typically smaller in size than a data record because it has only two fields; consequently, more 
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index entries than data records can fit in one block. A binary search on the index file hence requires 
fewer block accesses than a binary search on the data file.  

A record whose primary key value is K lies in the block whose address is P(i), where K(i) 1 K < K(i + 
1). The ith block in the data file contains all such records because of the physical ordering of the file 
records on the primary key field. To retrieve a record, given the value K of its primary key field, we do 
a binary search on the index file to find the appropriate index entry i, and then retrieve the data file 
block whose address is P(i) (Note 3). Example 1 illustrates the saving in block accesses that is 
attainable when a primary index is used to search for a record.  

 
 

EXAMPLE 1: Suppose that we have an ordered file with r = 30,000 records stored on a disk with 
block size B = 1024 bytes. File records are of fixed size and are unspanned, with record length R = 100 
bytes. The blocking factor for the file would be bfr = (B/R) = (1024/100) = 10 records per block. The 
number of blocks needed for the file is b = (r/bfr) = (30,000/10) = 3000 blocks. A binary search on the 
data file would need approximately log2b = (log23000) = 12 block accesses.  

Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointer is P = 6 bytes 
long, and we have constructed a primary index for the file. The size of each index entry is Ri = (9 + 6) = 
15 bytes, so the blocking factor for the index is bfri = (B/Ri) = (1024/15) = 68 entries per block. The 
total number of index entries ri is equal to the number of blocks in the data file, which is 3000. The 
number of index blocks is hence bi = (ri/bfri) = (3000/68) = 45 blocks. To perform a binary search on 
the index file would need (log2bi) = (log245) = 6 block accesses. To search for a record using the index, 
we need one additional block access to the data file for a total of 6 + 1 = 7 block accesses—an 
improvement over binary search on the data file, which required 12 block accesses.  

 
 

A major problem with a primary index—as with any ordered file—is insertion and deletion of records. 
With a primary index, the problem is compounded because, if we attempt to insert a record in its 
correct position in the data file, we have to not only move records to make space for the new record but 
also change some index entries, since moving records will change the anchor records of some blocks. 
Using an unordered overflow file, as discussed in Section 5.8, can reduce this problem. Another 
possibility is to use a linked list of overflow records for each block in the data file. This is similar to the 
method of dealing with overflow records described with hashing in Section 5.9.2. Records within each 
block and its overflow linked list can be sorted to improve retrieval time. Record deletion is handled 
using deletion markers.  

 
 

6.1.2 Clustering Indexes 

If records of a file are physically ordered on a nonkey field—which does not have a distinct value for 
each record—that field is called the clustering field. We can create a different type of index, called a 
clustering index, to speed up retrieval of records that have the same value for the clustering field. This 
differs from a primary index, which requires that the ordering field of the data file have a distinct value 
for each record.  

A clustering index is also an ordered file with two fields; the first field is of the same type as the 
clustering field of the data file, and the second field is a block pointer. There is one entry in the 
clustering index for each distinct value of the clustering field, containing the value and a pointer to the 
first block in the data file that has a record with that value for its clustering field. Figure 06.02 shows an 
example. Notice that record insertion and deletion still cause problems, because the data records are 
physically ordered. To alleviate the problem of insertion, it is common to reserve a whole block (or a 
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cluster of contiguous blocks) for each value of the clustering field; all records with that value are 
placed in the block (or block cluster). This makes insertion and deletion relatively straightforward. 
Figure 06.03 shows this scheme.  

 

 

 

 

 
 

A clustering index is another example of a nondense index, because it has an entry for every distinct 
value of the indexing field rather than for every record in the file. There is some similarity between 
Figure 06.01, Figure 06.02 and Figure 06.03, on the one hand, and Figure 05.13, on the other. An index 
is somewhat similar to the directory structures used for extendible hashing, described in Section 5.9.3. 
Both are searched to find a pointer to the data block containing the desired record. A main difference is 
that an index search uses the values of the search field itself, whereas a hash directory search uses the 
hash value that is calculated by applying the hash function to the search field.  

 
 

6.1.3 Secondary Indexes 

A secondary index is also an ordered file with two fields. The first field is of the same data type as 
some nonordering field of the data file that is an indexing field. The second field is either a block 
pointer or a record pointer. There can be many secondary indexes (and hence, indexing fields) for the 
same file. 

We first consider a secondary index access structure on a key field that has a distinct value for every 
record. Such a field is sometimes called a secondary key. In this case there is one index entry for each 
record in the data file, which contains the value of the secondary key for the record and a pointer either 
to the block in which the record is stored or to the record itself. Hence, such an index is dense.  

We again refer to the two field values of index entry i as <K(i), P(i)>. The entries are ordered by value 
of K(i), so we can perform a binary search. Because the records of the data file are not physically 
ordered by values of the secondary key field, we cannot use block anchors. That is why an index entry 
is created for each record in the data file, rather than for each block, as in the case of a primary index. 
Figure 06.04 illustrates a secondary index in which the pointers P(i) in the index entries are block 
pointers, not record pointers. Once the appropriate block is transferred to main memory, a search for 
the desired record within the block can be carried out.  

 

 

 
 

A secondary index usually needs more storage space and longer search time than does a primary index, 
because of its larger number of entries. However, the improvement in search time for an arbitrary 
record is much greater for a secondary index than for a primary index, since we would have to do a 
linear search on the data file if the secondary index did not exist. For a primary index, we could still 
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use a binary search on the main file, even if the index did not exist. Example 2 illustrates the 
improvement in number of blocks accessed.  

 
 

EXAMPLE 2: Consider the file of Example 1 with r = 30,000 fixed-length records of size R = 100 
bytes stored on a disk with block size B = 1024 bytes. The file has b = 3000 blocks, as calculated in 
Example 1. To do a linear search on the file, we would require b/2 = 3000/2 = 1500 block accesses on 
the average. Suppose that we construct a secondary index on a nonordering key field of the file that is 
V = 9 bytes long. As in Example 1, a block pointer is P = 6 bytes long, so each index entry is Ri = (9 + 
6) = 15 bytes, and the blocking factor for the index is bfri = (B/Ri) = (1024/15) = 68 entries per block. 
In a dense secondary index such as this, the total number of index entries ri is equal to the number of 
records in the data file, which is 30,000. The number of blocks needed for the index is hence bi = 
(ri/bfri) = (30,000/68) = 442 blocks.  

 
 

A binary search on this secondary index needs (log2bi) = (log2442) = 9 block accesses. To search for a 
record using the index, we need an additional block access to the data file for a total of 9 + 1 = 10 block 
accesses—a vast improvement over the 1500 block accesses needed on the average for a linear search, 
but slightly worse than the seven block accesses required for the primary index.  

We can also create a secondary index on a nonkey field of a file. In this case, numerous records in the 
data file can have the same value for the indexing field. There are several options for implementing 
such an index:  

• Option 1 is to include several index entries with the same K(i) value—one for each record. 
This would be a dense index.  

• Option 2 is to have variable-length records for the index entries, with a repeating field for the 
pointer. We keep a list of pointers <P(i,1), ..., P(i,k)> in the index entry for K(i)—one pointer 
to each block that contains a record whose indexing field value equals K(i). In either option 1 
or option 2, the binary search algorithm on the index must be modified appropriately.  

• Option 3, which is more commonly used, is to keep the index entries themselves at a fixed 
length and have a single entry for each index field value but to create an extra level of 
indirection to handle the multiple pointers. In this nondense scheme, the pointer P(i) in index 
entry <K(i), P(i)> points to a block of record pointers; each record pointer in that block points 
to one of the data file records with value K(i) for the indexing field. If some value K(i) occurs 
in too many records, so that their record pointers cannot fit in a single disk block, a cluster or 
linked list of blocks is used. This technique is illustrated in Figure 06.05. Retrieval via the 
index requires one or more additional block access because of the extra level, but the 
algorithms for searching the index and (more importantly) for inserting of new records in the 
data file are straightforward. In addition, retrievals on complex selection conditions may be 
handled by referring to the record pointers, without having to retrieve many unnecessary file 
records (see Exercise 6.19).  

 

 
 

Notice that a secondary index provides a logical ordering on the records by the indexing field. If we 
access the records in order of the entries in the secondary index, we get them in order of the indexing 
field.  
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6.1.4 Summary 

To conclude this section, we summarize the discussion on index types in two tables. Table 6.1 shows 
the index field characteristics of each type of ordered single-level index discussed—primary, 
clustering, and secondary. Table 6.2 summarizes the properties of each type of index by comparing the 
number of index entries and specifying which indexes are dense and which use block anchors of the 
data file. 

 

Table 6.1  Types of Indexes  

 
 

  Ordering Field  Nonordering field 

 
 

Key field  Primary index  Secondary index (key)  

Nonkey field  Clustering index  Secondary index (nonkey)  

 

Table 6.2  Properties of Index Types  

 
 

    Number of (First-level) Index 
Entries  

Dense or 
Nondense  

Block Anchoring 
on the Data File 

   
 

Primary  Number of blocks in data file  Nondense  Yes  

Clustering Number of distinct index field values  Nondense  Yes/no (Note a) 

Secondary 
(key)  

Number of records in data file  Dense  No  
Type 

of 
Index  

Secondary 
(nonkey)  

Number of records (Note b) or Number 
of distinct index field values (Note c) 

Dense or 
Nondense  

No  

 
 

Note a: Yes if every distinct value of the ordering field starts a new block; no otherwise.  

Note b: For option 1.  

Note c: For options 2 and 3.  

 
 

6.2 Multilevel Indexes 
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The indexing schemes we have described thus far involve an ordered index file. A binary search is 
applied to the index to locate pointers to a disk block or to a record (or records) in the file having a 
specific index field value. A binary search requires approximately (log2bi) block accesses for an index 
with bi blocks, because each step of the algorithm reduces the part of the index file that we continue to 
search by a factor of 2. This is why we take the log function to the base 2. The idea behind a multilevel 
index is to reduce the part of the index that we continue to search by bfri, the blocking factor for the 
index, which is larger than 2. Hence, the search space is reduced much faster. The value bfri is called 
the fan-out of the multilevel index, and we will refer to it by the symbol fo. Searching a multilevel 
index requires approximately (logfobi) block accesses, which is a smaller number than for binary search 
if the fan-out is larger than 2.  

A multilevel index considers the index file, which we will now refer to as the first (or base) level of a 
multilevel index, as an ordered file with a distinct value for each K(i). Hence we can create a primary 
index for the first level; this index to the first level is called the second level of the multilevel index. 
Because the second level is a primary index, we can use block anchors so that the second level has one 
entry for each block of the first level. The blocking factor bfri for the second level—and for all 
subsequent levels—is the same as that for the first-level index, because all index entries are the same 
size; each has one field value and one block address. If the first level has r1 entries, and the blocking 
factor—which is also the fan-out—for the index is bfri = fo, then the first level needs (r1/fo) blocks, 
which is therefore the number of entries r2 needed at the second level of the index.  

We can repeat this process for the second level. The third level, which is a primary index for the 
second level, has an entry for each second-level block, so the number of third-level entries is r3 = 
(r2/fo). Notice that we require a second level only if the first level needs more than one block of disk 
storage, and, similarly, we require a third level only if the second level needs more than one block. We 
can repeat the preceding process until all the entries of some index level t fit in a single block. This 
block at the tth level is called the top index level (Note 4). Each level reduces the number of entries at 
the previous level by a factor of fo—the index fan-out—so we can use the formula 1 1 (r1/((fo)t)) to 
calculate t. Hence, a multilevel index with r1 first-level entries will have approximately t levels, where t 
= (logfo(r1)). 

The multilevel scheme described here can be used on any type of index, whether it is primary, 
clustering, or secondary—as long as the first-level index has distinct values for K(i) and fixed-length 
entries. Figure 06.06 shows a multilevel index built over a primary index. Example 3 illustrates the 
improvement in number of blocks accessed when a multilevel index is used to search for a record.  

 

 

 
 

EXAMPLE 3: Suppose that the dense secondary index of Example 2 is converted into a multilevel 
index. We calculated the index blocking factor bfri = 68 index entries per block, which is also the fan-
out fo for the multilevel index; the number of first-level blocks b1 = 442 blocks was also calculated. 
The number of second-level blocks will be b2 = (b1/fo) = (442/68) = 7 blocks, and the number of third-
level blocks will be b3 = (b2/fo) = (7/68) = 1 block. Hence, the third level is the top level of the index, 
and t = 3. To access a record by searching the multilevel index, we must access one block at each level 
plus one block from the data file, so we need t + 1 = 3 + 1 = 4 block accesses. Compare this to Example 
2, where 10 block accesses were needed when a single-level index and binary search were used.  

 
 

Notice that we could also have a multilevel primary index, which would be nondense. Exercise 6.14(c) 
illustrates this case, where we must access the data block from the file before we can determine 
whether the record being searched for is in the file. For a dense index, this can be determined by 
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accessing the first index level (without having to access a data block), since there is an index entry for 
every record in the file.  

A common file organization used in business data processing is an ordered file with a multilevel 
primary index on its ordering key field. Such an organization is called an indexed sequential file and 
was used in a large number of early IBM systems. Insertion is handled by some form of overflow file 
that is merged periodically with the data file. The index is re-created during file reorganization. IBM’s 
ISAM organization incorporates a two-level index that is closely related to the organization of the disk. 
The first level is a cylinder index, which has the key value of an anchor record for each cylinder of a 
disk pack and a pointer to the track index for the cylinder. The track index has the key value of an 
anchor record for each track in the cylinder and a pointer to the track. The track can then be searched 
sequentially for the desired record or block.  

Algorithm 6.1 outlines the search procedure for a record in a data file that uses a nondense multilevel 
primary index with t levels. We refer to entry i at level j of the index as <Kj(i), Pj(i)>, and we search for 
a record whose primary key value is K. We assume that any overflow records are ignored. If the record 
is in the file, there must be some entry at level 1 with K1(i) 1 K < K1(i + 1) and the record will be in 
the block of the data file whose address is P1(i). Exercise 6.19 discusses modifying the search 
algorithm for other types of indexes.  

 
 

ALGORITHM 6.1 Searching a nondense multilevel primary index with t levels.  

 
 

p ã address of top level block of index;  

for j ã t step - 1 to 1 do  

begin  

read the index block (at index level) whose address is p;  

search block p for entry i such that (i) 1 K < (i + 1) (if (i)  

is the last entry in the block, it is sufficient to satisfy (i)  

1 K);  

p ã (i) (* picks appropriate pointer at index level *)  

end;  

read the data file block whose address is p;  

search block p for record with key = K;  

 
 

As we have seen, a multilevel index reduces the number of blocks accessed when searching for a 
record, given its indexing field value. We are still faced with the problems of dealing with index 
insertions and deletions, because all index levels are physically ordered files. To retain the benefits of 
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using multilevel indexing while reducing index insertion and deletion problems, designers adopted a 
multilevel index that leaves some space in each of its blocks for inserting new entries. This is called a 
dynamic multilevel index and is often implemented by using data structures called B-trees and B+-
trees, which we describe in the next section.  

 
 

6.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees 

 
6.3.1 Search Trees and B-Trees 
6.3.2 B+-Trees

B-trees and B+-trees are special cases of the well-known tree data structure. We introduce very briefly 
the terminology used in discussing tree data structures. A tree is formed of nodes. Each node in the 
tree, except for a special node called the root, has one parent node and several—zero or more—child 
nodes. The root node has no parent. A node that does not have any child nodes is called a leaf node; a 
nonleaf node is called an internal node. The level of a node is always one more than the level of its 
parent, with the level of the root node being zero (Note 5). A subtree of a node consists of that node 
and all its descendant nodes—its child nodes, the child nodes of its child nodes, and so on. A precise 
recursive definition of a subtree is that it consists of a node n and the subtrees of all the child nodes of 
n. Figure 06.07 illustrates a tree data structure. In this figure the root node is A, and its child nodes are 
B, C, and D. Nodes E, J, C, G, H, and K are leaf nodes.  

 

 

 
 

Usually, we display a tree with the root node at the top, as shown in Figure 06.07. One way to 
implement a tree is to have as many pointers in each node as there are child nodes of that node. In some 
cases, a parent pointer is also stored in each node. In addition to pointers, a node usually contains some 
kind of stored information. When a multilevel index is implemented as a tree structure, this information 
includes the values of the file’s indexing field that are used to guide the search for a particular record.  

In Section 6.3.1, we introduce search trees and then discuss B-trees, which can be used as dynamic 
multilevel indexes to guide the search for records in a data file. B-tree nodes are kept between 50 and 
100 percent full, and pointers to the data blocks are stored in both internal nodes and leaf nodes of the 
B-tree structure. In Section 6.3.2 we discuss B+-trees, a variation of B-trees in which pointers to the 
data blocks of a file are stored only in leaf nodes; this can lead to fewer levels and higher-capacity 
indexes.  

 
 

6.3.1 Search Trees and B-Trees 

Search Trees 
B-Trees

A search tree is a special type of tree that is used to guide the search for a record, given the value of 
one of the record's fields. The multilevel indexes discussed in Section 6.2 can be thought of as a 
variation of a search tree; each node in the multilevel index can have as many as fo pointers and fo key 
values, where fo is the index fan-out. The index field values in each node guide us to the next node, 
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until we reach the data file block that contains the required records. By following a pointer, we restrict 
our search at each level to a subtree of the search tree and ignore all nodes not in this subtree.  

 
 

Search Trees 

A search tree is slightly different from a multilevel index. A search tree of order p is a tree such that 
each node contains at most p - 1 search values and p pointers in the order < P1, K1, P2, K2, ..., Pq-1, Kq-1, 
Pq >, where q 1 p; each Pi is a pointer to a child node (or a null pointer); and each Ki is a search value 
from some ordered set of values. All search values are assumed to be unique (Note 6). Figure 06.08 
illustrates a node in a search tree. Two constraints must hold at all times on the search tree:  

1. Within each node, K1 < K2 < ... < Kq-1.  
2. For all values X in the subtree pointed at by Pi, we have Ki-1 < X < Ki for 1 < i < q; X < Ki for i 

= 1; and Ki-1 < X for i = q (see Figure 06.08).  

 

 
 

Whenever we search for a value X, we follow the appropriate pointer Pi according to the formulas in 
condition 2 above. Figure 06.09 illustrates a search tree of order p = 3 and integer search values. Notice 
that some of the pointers Pi in a node may be null pointers.  

 

 

 
 

We can use a search tree as a mechanism to search for records stored in a disk file. The values in the 
tree can be the values of one of the fields of the file, called the search field (which is the same as the 
index field if a multilevel index guides the search). Each key value in the tree is associated with a 
pointer to the record in the data file having that value. Alternatively, the pointer could be to the disk 
block containing that record. The search tree itself can be stored on disk by assigning each tree node to 
a disk block. When a new record is inserted, we must update the search tree by inserting an entry in the 
tree containing the search field value of the new record and a pointer to the new record.  

Algorithms are necessary for inserting and deleting search values into and from the search tree while 
maintaining the preceding two constraints. In general, these algorithms do not guarantee that a search 
tree is balanced, meaning that all of its leaf nodes are at the same level (Note 7). The tree in Figure 
06.07 is not balanced because it has leaf nodes at levels 1, 2, and 3. Keeping a search tree balanced is 
important because it guarantees that no nodes will be at very high levels and hence require many block 
accesses during a tree search. Another problem with search trees is that record deletion may leave some 
nodes in the tree nearly empty, thus wasting storage space and increasing the number of levels. The B-
tree addresses both of these problems by specifying additional constraints on the search tree.  

 
 

B-Trees 
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The B-tree has additional constraints that ensure that the tree is always balanced and that the space 
wasted by deletion, if any, never becomes excessive. The algorithms for insertion and deletion, though, 
become more complex in order to maintain these constraints. Nonetheless, most insertions and 
deletions are simple processes; they become complicated only under special circumstances—namely, 
whenever we attempt an insertion into a node that is already full or a deletion from a node that makes it 
less than half full. More formally, a B-tree of order p, when used as an access structure on a key field 
to search for records in a data file, can be defined as follows:  

1. Each internal node in the B-tree (Figure 06.10a) is of the form 

<P1, <K1, Pr1> , P2, <K2, Pr2> , ..., <Kq-1,Prq-1> , Pq>  

 
 

where q 1 p. Each Pi is a tree pointer—a pointer to another node in the B-tree. Each Pri is a data 
pointer (Note 8)—a pointer to the record whose search key field value is equal to Ki (or to the data file 
block containing that record).  

2. Within each node, K1 <K2 < ... < Kq-1.  
3. For all search key field values X in the subtree pointed at by Pi (the ith subtree, see Figure 

06.10a), we have:  

Ki-1 < X < Ki for 1 < i < q; X < Ki for i = 1; and Ki-1 < X for i = q.  

4. Each node has at most p tree pointers.  
5. Each node, except the root and leaf nodes, has at least (p/2) tree pointers. The root node has at 

least two tree pointers unless it is the only node in the tree.  
6. A node with q tree pointers, q 1 p, has q - 1 search key field values (and hence has q - 1 data 

pointers).  
7. All leaf nodes are at the same level. Leaf nodes have the same structure as internal nodes 

except that all of their tree pointers Pi are null.  

 

 
 

Figure 06.10(b) illustrates a B-tree of order p = 3. Notice that all search values K in the B-tree are 
unique because we assumed that the tree is used as an access structure on a key field. If we use a B-tree 
on a nonkey field, we must change the definition of the file pointers Pri to point to a block—or cluster 
of blocks—that contain the pointers to the file records. This extra level of indirection is similar to 
Option 3, discussed in Section 6.1.3, for secondary indexes.  

A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero). Once the root node 
is full with p - 1 search key values and we attempt to insert another entry in the tree, the root node splits 
into two nodes at level 1. Only the middle value is kept in the root node, and the rest of the values are 
split evenly between the other two nodes. When a nonroot node is full and a new entry is inserted into 
it, that node is split into two nodes at the same level, and the middle entry is moved to the parent node 
along with two pointers to the new split nodes. If the parent node is full, it is also split. Splitting can 
propagate all the way to the root node, creating a new level if the root is split. We do not discuss 
algorithms for B-trees in detail here; rather, we outline search and insertion procedures for B+-trees in 
the next section.  

If deletion of a value causes a node to be less than half full, it is combined with its neighboring nodes, 
and this can also propagate all the way to the root. Hence, deletion can reduce the number of tree 
levels. It has been shown by analysis and simulation that, after numerous random insertions and 
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deletions on a B-tree, the nodes are approximately 69 percent full when the number of values in the tree 
stabilizes. This is also true of B+-trees. If this happens, node splitting and combining will occur only 
rarely, so insertion and deletion become quite efficient. If the number of values grows, the tree will 
expand without a problem—although splitting of nodes may occur, so some insertions will take more 
time. Example 4 illustrates how we calculate the order p of a B-tree stored on disk.  

 
 

EXAMPLE 4: Suppose the search field is V = 9 bytes long, the disk block size is B = 512 bytes, a 
record (data) pointer is Pr = 7 bytes, and a block pointer is P = 6 bytes. Each B-tree node can have at 
most p tree pointers, p - 1 data pointers, and p - 1 search key field values (see Figure 06.10a). These 
must fit into a single disk block if each B-tree node is to correspond to a disk block. Hence, we must 
have:  

 
 

(p * P) + ((p - 1) * (Pr + V)) 1 B  

(p * 6) + ((p - 1) * (7 + 9)) 1 512  

(22 * p) 1 528  

 
 

We can choose p to be a large value that satisfies the above inequality, which gives p = 23 (p = 24 is 
not chosen because of the reasons given next).  

In general, a B-tree node may contain additional information needed by the algorithms that manipulate 
the tree, such as the number of entries q in the node and a pointer to the parent node. Hence, before we 
do the preceding calculation for p, we should reduce the block size by the amount of space needed for 
all such information. Next, we illustrate how to calculate the number of blocks and levels for a B-tree.  

 
 

EXAMPLE 5: Suppose that the search field of Example 4 is a nonordering key field, and we construct 
a B-tree on this field. Assume that each node of the B-tree is 69 percent full. Each node, on the 
average, will have p * 0.69 = 23 * 0.69 or approximately 16 pointers and, hence, 15 search key field 
values. The average fan-out fo =16. We can start at the root and see how many values and pointers can 
exist, on the average, at each subsequent level:  

 

Root:  1 node  15 entries  16 pointers  

Level 1:  16 nodes  240 entries  256 pointers  

Level 2:  256 nodes  3840 entries  4096 pointers  

Level 3:  4096 nodes  61,440 entries    

 
 

At each level, we calculated the number of entries by multiplying the total number of pointers at the 
previous level by 15, the average number of entries in each node. Hence, for the given block size, 
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pointer size, and search key field size, a two-level B-tree holds 3840 + 240 + 15 = 4095 entries on the 
average; a three-level B-tree holds 65,535 entries on the average.  

B-trees are sometimes used as primary file organizations. In this case, whole records are stored within 
the B-tree nodes rather than just the <search key, record pointer> entries. This works well for files with 
a relatively small number of records, and a small record size. Otherwise, the fan-out and the number of 
levels become too great to permit efficient access.  

In summary, B-trees provide a multilevel access structure that is a balanced tree structure in which each 
node is at least half full. Each node in a B-tree of order p can have at most p-1 search values.  

 
 

6.3.2 B+-Trees 

 
Search, Insertion, and Deletion with B+-Trees 
Variations of B-Trees and B+-Trees

Most implementations of a dynamic multilevel index use a variation of the B-tree data structure called 
a B+-tree. In a B-tree, every value of the search field appears once at some level in the tree, along with 
a data pointer. In a B+-tree, data pointers are stored only at the leaf nodes of the tree; hence, the 
structure of leaf nodes differs from the structure of internal nodes. The leaf nodes have an entry for 
every value of the search field, along with a data pointer to the record (or to the block that contains this 
record) if the search field is a key field. For a nonkey search field, the pointer points to a block 
containing pointers to the data file records, creating an extra level of indirection.  

The leaf nodes of the B+-tree are usually linked together to provide ordered access on the search field to 
the records. These leaf nodes are similar to the first (base) level of an index. Internal nodes of the B+-
tree correspond to the other levels of a multilevel index. Some search field values from the leaf nodes 
are repeated in the internal nodes of the B+ -tree to guide the search. The structure of the internal 
nodes of a B+-tree of order p (Figure 06.11a) is as follows:  

1. Each internal node is of the form  

<P1, K1, P2, K2, ..., Pq-1, Kq-1, Pq>  

 
 

where q 1 p and each Pi is a tree pointer.  

2. Within each internal node, K1 < K2 < ... <Kq-1.  
3. For all search field values X in the subtree pointed at by Pi, we have Ki-1 < X 1 Ki for 1 < i < 

q; X 1 Ki for i = 1; and Ki-1 < X for i = q (see Figure 06.11a) (Note 9).  
4. Each internal node has at most p tree pointers.  
5. Each internal node, except the root, has at least (p/2) tree pointers. The root node has at least 

two tree pointers if it is an internal node.  
6. An internal node with q pointers, q 1 p, has q - 1 search field values.  

The structure of the leaf nodes of a B+-tree of order p (Figure 06.11b) is as follows:  

1. Each leaf node is of the form  

<<K1, Pr1> , <K2, Pr2>, ..., <Kq-1, Prq-1>, Pnext>  
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where q 1 p, each Pri is a data pointer, and Pnext points to the next leaf node of the B+-tree.  

2. Within each leaf node, K1 < K2 < ... < Kq-1, q 1 p.  
3. Each Pri is a data pointer that points to the record whose search field value is Ki or to a file 

block containing the record (or to a block of record pointers that point to records whose search 
field value is Ki if the search field is not a key).  

4. Each leaf node has at least (p/2) values.  
5. All leaf nodes are at the same level.  

 

 
 

The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereas the pointers in 
leaf nodes are data pointers to the data file records or blocks—except for the Pnext pointer, which is a 
tree pointer to the next leaf node. By starting at the leftmost leaf node, it is possible to traverse leaf 
nodes as a linked list, using the Pnext pointers. This provides ordered access to the data records on the 
indexing field. A Pprevious pointer can also be included. For a B+-tree on a nonkey field, an extra level of 
indirection is needed similar to the one shown in Figure 06.05, so the Pr pointers are block pointers to 
blocks that contain a set of record pointers to the actual records in the data file, as discussed in Option 3 
of Section 6.1.3.  

Because entries in the internal nodes of a B+-tree include search values and tree pointers without any 
data pointers, more entries can be packed into an internal node of a B+-tree than for a similar B-tree. 
Thus, for the same block (node) size, the order p will be larger for the B+-tree than for the B-tree, as we 
illustrate in Example 6. This can lead to fewer B+-tree levels, improving search time. Because the 
structures for internal and for leaf nodes of a B+-tree are different, the order p can be different. We will 
use p to denote the order for internal nodes and pleaf to denote the order for leaf nodes, which we define 
as being the maximum number of data pointers in a leaf node.  

 
 

EXAMPLE 6: To calculate the order p of a B+-tree, suppose that the search key field is V = 9 bytes 
long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes, and a block pointer is P = 6 bytes, 
as in Example 4. An internal node of the B+-tree can have up to p tree pointers and p - 1 search field 
values; these must fit into a single block. Hence, we have:  

 
 

(p * P) + ((p - 1) * V) 1 B  

(p * 6) + ((p - 1) * 9) 1 512  

(15 * p) 1 521  

 
 

We can choose p to be the largest value satisfying the above inequality, which gives p = 34. This is 
larger than the value of 23 for the B-tree, resulting in a larger fan-out and more entries in each internal 
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node of a B+-tree than in the corresponding B-tree. The leaf nodes of the B+-tree will have the same 
number of values and pointers, except that the pointers are data pointers and a next pointer. Hence, the 
order pleaf for the leaf nodes can be calculated as follows:  

 
 

(pleaf * (Pr + V)) + P 1 B  

(pleaf * (7 + 9)) + 6 1 512  

(16 * pleaf) 1 506  

 
 

It follows that each leaf node can hold up to pleaf = 31 key value/data pointer combinations, assuming 
that the data pointers are record pointers.  

 
 

As with the B-tree, we may need additional information—to implement the insertion and deletion 
algorithms—in each node. This information can include the type of node (internal or leaf), the number 
of current entries q in the node, and pointers to the parent and sibling nodes. Hence, before we do the 
above calculations for p and pleaf, we should reduce the block size by the amount of space needed for all 
such information. The next example illustrates how we can calculate the number of entries in a B+-tree.  

 
 

EXAMPLE 7: Suppose that we construct a B+-tree on the field of Example 6. To calculate the 
approximate number of entries of the B+-tree, we assume that each node is 69 percent full. On the 
average, each internal node will have 34 * 0.69 or approximately 23 pointers, and hence 22 values. 
Each leaf node, on the average, will hold 0.69 * pleaf = 0.69 * 31 or approximately 21 data record 
pointers. A B+-tree will have the following average number of entries at each level:  

 

Root:  1 node  22 entries  23 pointers  

Level 1:  23 nodes  506 entries  529 pointers  

Level 2:  529 nodes  11,638 entries  12,167 pointers  

Leaf level:  12,167 nodes  255,507 record pointers    

 
 

For the block size, pointer size, and search field size given above, a three-level B+-tree holds up to 
255,507 record pointers, on the average. Compare this to the 65,535 entries for the corresponding B-
tree in Example 5.  

 
 

Search, Insertion, and Deletion with B+-Trees 
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Algorithm 6.2 outlines the procedure using the B+-tree as access structure to search for a record. 
Algorithm 6.3 illustrates the procedure for inserting a record in a file with a B+-tree access structure. 
These algorithms assume the existence of a key search field, and they must be modified appropriately 
for the case of a B+-tree on a nonkey field. We now illustrate insertion and deletion with an example.  

 
 

ALGORITHM 6.2 Searching for a record with search key field value K, using a B+ -tree.  

 
 

n ã block containing root node of B+-tree; 

read block n;  

while (n is not a leaf node of the B+-tree) do  

begin  

q ã number of tree pointers in node n;  

if K 1 n.K1 (*n.Ki refers to the ith search field value in node n*)  

then n ã n.P1 (*n.Pi refers to the ith tree pointer in node n*)  

else if K > n.Kq-1  

then n ã n.Pq  

else begin  

search node n for an entry i such that n.Ki-1 < K 1 n.Ki;  

n ã n.Pi  

end;  

read block n  

end;  

search block n for entry (Ki,Pri) with K = Ki; (* search leaf node *)  

if found  

then read data file block with address Pri and retrieve record  

else record with search field value K is not in the data file;  
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ALGORITHM 6.3 Inserting a record with search key field value K in a B+ -tree of order p.  

 
 

n ã block containing root node of B+-tree;  

read block n; set stack S to empty;  

while (n is not a leaf node of the B+-tree) do  

begin  

push address of n on stack S;  

(*stack S holds parent nodes that are needed in case of split*)  

q ã number of tree pointers in node n;  

if K 1 n.K1 (*n.Ki refers to the ith search field value in node n*)  

then n ã n.P1 (*n.Pi refers to the ith tree pointer in node n*)  

else if K > n.Kq-1  

then n ã n.Pq  

else begin  

search node n for an entry i such that n.Ki-1 < K 1 n.Ki;  

n ã n.Pi  

end;  

read block n  

end;  

search block n for entry (Ki, Pri) with K = Ki; (*search leaf node n*)  

if found  

then record already in file-cannot insert  

else (*insert entry in B+-tree to point to record*)  

begin  

create entry (K, Pr) where Pr points to the new record;  

if leaf node n is not full  

then insert entry (K, Pr) in correct position in leaf node n  
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else  

begin (*leaf node n is full with pleaf record pointers-is split*)  

copy n to temp (*temp is an oversize leaf node to hold extra entry*);  

insert entry (K, Pr) in temp in correct position;  

(*temp now holds pleaf + 1 entries of the form (Ki, Pri)*)  

new ã a new empty leaf node for the tree; new.Pnext ã n.Pnext;  

j ã (pleaf + 1)/2;  

n ã first j entries in temp (up to entry (Kj,Prj)); n.Pnext ã new;  

new ã remaining entries in temp; K ã Kj;  

(*now we must move (K,new) and insert in parent internal node  

-however, if parent is full, split may propagate*)  

finished ã false;  

repeat  

if stack S is empty  

then (*no parent node-new root node is created for the tree*)  

begin  

root ã a new empty internal node for the tree;  

root ã <n, K, new>; finished ã true;  

end  

else  

begin  

n ã pop stack S;  

if internal node n is not full  

then  

begin (*parent node not full-no split*)  

insert (K, new) in correct position in internal node n;  

finished ã true  
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end  

else  

begin (*internal node n is full with p tree pointers-is split*)  

copy n to temp (*temp is an oversize internal node*);  

insert (K,new) in temp in correct position;  

(*temp now has p+1 tree pointers*)  

new ã a new empty internal node for the tree;  

j ã ((p + 1)/2);  

n ã entries up to tree pointer Pj in temp;  

(*n contains <P1, K1, P2, K2, ..., Pj-1, Kj-1, Pj >*)  

new ã entries from tree pointer Pj+1 in temp;  

(*new contains < Pj+1, Kj+1, ..., Kp-1, Pp, Kp, Pp+1 >*)  

K ã Kj  

(*now we must move (K,new) and insert in parent internal node*)  

end  

end  

until finished  

end;  

end;  

 
 

Figure 06.12 illustrates insertion of records in a B+-tree of order p = 3 and pleaf = 2. First, we observe 
that the root is the only node in the tree, so it is also a leaf node. As soon as more than one level is 
created, the tree is divided into internal nodes and leaf nodes. Notice that every key value must exist at 
the leaf level, because all data pointers are at the leaf level. However, only some values exist in internal 
nodes to guide the search. Notice also that every value appearing in an internal node also appears as the 
rightmost value in the leaf level of the subtree pointed at by the tree pointer to the left of the value.  
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When a leaf node is full and a new entry is inserted there, the node overflows and must be split. The 
first j = ((pleaf + 1)/2) entries in the original node are kept there, and the remaining entries are moved to 
a new leaf node. The jth search value is replicated in the parent internal node, and an extra pointer to the 
new node is created in the parent. These must be inserted in the parent node in their correct sequence. If 
the parent internal node is full, the new value will cause it to overflow also, so it must be split. The 
entries in the internal node up to Pj—the jth tree pointer after inserting the new value and pointer, where 
j = ((p + 1)/2)—are kept, while the jth search value is moved to the parent, not replicated. A new 
internal node will hold the entries from Pj+1 to the end of the entries in the node (see Algorithm 6.3). 
This splitting can propagate all the way up to create a new root node and hence a new level for the B+-
tree.  

Figure 06.13 illustrates deletion from a B+-tree. When an entry is deleted, it is always removed from 
the leaf level. If it happens to occur in an internal node, it must also be removed from there. In the latter 
case, the value to its left in the leaf node must replace it in the internal node, because that value is now 
the rightmost entry in the subtree. Deletion may cause underflow by reducing the number of entries in 
the leaf node to below the minimum required. In this case we try to find a sibling leaf node—a leaf 
node directly to the left or to the right of the node with underflow—and redistribute the entries among 
the node and its sibling so that both are at least half full; otherwise, the node is merged with its siblings 
and the number of leaf nodes is reduced. A common method is to try redistributing entries with the left 
sibling; if this is not possible, an attempt to redistribute with the right sibling is made. If this is not 
possible either, the three nodes are merged into two leaf nodes. In such a case, underflow may 
propagate to internal nodes because one fewer tree pointer and search value are needed. This can 
propagate and reduce the tree levels.  

 

 

 
 

Notice that implementing the insertion and deletion algorithms may require parent and sibling pointers 
for each node, or the use of a stack as in Algorithm 6.3. Each node should also include the number of 
entries in it and its type (leaf or internal). Another alternative is to implement insertion and deletion as 
recursive procedures.  

 
 

Variations of B-Trees and B+-Trees 

To conclude this section, we briefly mention some variations of B-trees and B+-trees. In some cases, 
constraint 5 on the B-tree (or B+-tree), which requires each node to be at least half full, can be changed 
to require each node to be at least two-thirds full. In this case the B-tree has been called a B*-tree. In 
general, some systems allow the user to choose a fill factor between 0.5 and 1.0, where the latter 
means that the B-tree (index) nodes are to be completely full. It is also possible to specify two fill 
factors for a B+-tree: one for the leaf level and one for the internal nodes of the tree. When the index is 
first constructed, each node is filled up to approximately the fill factors specified. Recently, 
investigators have suggested relaxing the requirement that a node be half full, and instead allow a node 
to become completely empty before merging, to simplify the deletion algorithm. Simulation studies 
show that this does not waste too much additional space under randomly distributed insertions and 
deletions.  

 
 

6.4 Indexes on Multiple Keys 
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6.4.1 Ordered Index on Multiple Attributes 
6.4.2 Partitioned Hashing 
6.4.3 Grid Files

In our discussion so far, we assumed that the primary or secondary keys on which files were accessed 
were single attributes (fields). In many retrieval and update requests, multiple attributes are involved. If 
a certain combination of attributes is used very frequently, it is advantageous to set up an access 
structure to provide efficient access by a key value that is a combination of those attributes.  

For example, consider an EMPLOYEE file containing attributes DNO (department number), AGE, STREET, 
CITY, ZIPCODE, SALARY and SKILL_CODE, with the key of SSN (social security number). Consider the 
query: "List the employees in department number 4 whose age is 59." Note that both DNO and AGE are 
nonkey attributes, which means that a search value for either of these will point to multiple records. 
The following alternative search strategies may be considered:  

1. Assuming DNO has an index, but AGE does not, access the records having DNO = 4 using the 
index then select from among them those records that satisfy AGE = 59.  

2. Alternately, if AGE is indexed but DNO is not, access the records having AGE = 59 using the 
index then select from among them those records that satisfy DNO = 4.  

3. If indexes have been created on both DNO and AGE, both indexes may be used; each gives a set 
of records or a set of pointers (to blocks or records). An intersection of these sets of records or 
pointers yields those records that satisfy both conditions.  

All of these alternatives eventually give the correct result. However, if the set of records that meet each 
condition (DNO = 4 or AGE = 59) individually are large, yet only a few records satisfy the combined 
condition, then none of the above is a very efficient technique for the given search request. A number 
of possibilities exist that would treat the combination <DNO, AGE>, or <AGE, DNO> as a search key made 
up of multiple attributes. We briefly outline these techniques below. We will refer to keys containing 
multiple attributes as composite keys.  

 
 

6.4.1 Ordered Index on Multiple Attributes 

All the discussion in this chapter so far applies if we create an index on a search key field that is a 
combination of <DNO, AGE>. The search key is a pair of values <4, 59> in the above example. In 
general, if an index is created on attributes <A1, A2, ....., An>, the search key values are tuples with n 
values: <v1, v2,......., vn>.  

A lexicographic ordering of these tuple values establishes an order on this composite search key. For 
our example, all of department keys for department number 3 precede those for department 4. Thus <3, 
n> precedes <4, m> for any values of m and n. The ascending key order for keys with DNO = 4 would 
be <4, 18>, <4, 19>, <4, 20>, and so on. Lexicographic ordering works similarly to ordering of 
character strings. An index on a composite key of n attributes works similarly to any index discussed in 
this chapter so far.  

 
 

6.4.2 Partitioned Hashing 

Partitioned hashing is an extension of static external hashing (Section 5.9.2) that allows access on 
multiple keys. It is suitable only for equality comparisons; range queries are not supported. In 
partitioned hashing, for a key consisting of n components, the hash function is designed to produce a 
result with n separate hash addresses. The bucket address is a concatenation of these n addresses. It is 
then possible to search for the required composite search key by looking up the appropriate buckets 
that match the parts of the address in which we are interested.  
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For example, consider the composite search key <DNO, AGE>. If DNO and AGE are hashed into a 3-bit 
and 5-bit address respectively, we get an 8-bit bucket address. Suppose that DNO = 4 has a hash address 
"100" and AGE = 59 has hash address "10101". Then to search for the combined search value, DNO = 4 
and AGE = 59, one goes to bucket address 100 10101; just to search for all employees with AGE = 59, all 
buckets (eight of them) will be searched whose addresses are "000 10101", "001 10101", ... etc. An 
advantage of partitioned hashing is that it can be easily extended to any number of attributes. The 
bucket addresses can be designed so that high order bits in the addresses correspond to more frequently 
accessed attributes. Additionally, no separate access structure needs to be maintained for the individual 
attributes. The main drawback of partitioned hashing is that it cannot handle range queries on any of 
the component attributes.  

 
 

6.4.3 Grid Files 

Another alternative is to organize the EMPLOYEE file as a grid file. If we want to access a file on two 
keys, say DNO and AGE as in our example, we can construct a grid array with one linear scale (or 
dimension) for each of the search attributes. Figure 06.14 shows a grid array for the EMPLOYEE file with 
one linear scale for DNO and another for the AGE attribute. The scales are made in a way as to achieve a 
uniform distribution of that attribute. Thus, in our example, we show that the linear scale for DNO has 
DNO = 1, 2 combined as one value 0 on the scale, while DNO = 5 corresponds to the value 2 on that 
scale. Similarly, AGE is divided into its scale of 0 to 5 by grouping ages so as to distribute the 
employees uniformly by age. The grid array shown for this file has a total of 36 cells. Each cell points 
to some bucket address where the records corresponding to that cell are stored. Figure 06.14 also shows 
assignment of cells to buckets (only partially).  

 

 

 
 

Thus our request for DNO = 4 and AGE = 59 maps into the cell (1, 5) corresponding to the grid array. 
The records for this combination will be found in the corresponding bucket. This method is particularly 
useful for range queries that would map into a set of cells corresponding to a group of values along the 
linear scales. Conceptually, the grid file concept may be applied to any number of search keys. For n 
search keys, the grid array would have n dimensions. The grid array thus allows a partitioning of the 
file along the dimensions of the search key attributes and provides an access by combinations of values 
along those dimensions. Grid files perform well in terms of reduction in time for multiple key access. 
However, they represent a space overhead in terms of the grid array structure. Moreover, with dynamic 
files, a frequent reorganization of the file adds to the maintenance cost (Note 10). 

 
 

6.5 Other Types of Indexes 

6.5.1 Using Hashing and Other Data Structures as Indexes 
6.5.2 Logical versus Physical Indexes 
6.5.3 Discussion

6.5.1 Using Hashing and Other Data Structures as Indexes 

It is also possible to create access structures similar to indexes that are based on hashing. The index 
entries <K, Pr> (or <K, P>) can be organized as a dynamically expandable hash file, using one of the 
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techniques described in Section 5.9.3; searching for an entry uses the hash search algorithm on K. Once 
an entry is found, the pointer Pr (or P) is used to locate the corresponding record in the data file. Other 
search structures can also be used as indexes.  

 
 

6.5.2 Logical versus Physical Indexes 

So far, we have assumed that the index entries <K, Pr> (or <K, P>) always include a physical pointer 
Pr (or P) that specifies the physical record address on disk as a block number and offset. This is 
sometimes called a physical index, and it has the disadvantage that the pointer must be changed if the 
record is moved to another disk location. For example, suppose that a primary file organization is based 
on linear hashing or extendible hashing; then, each time a bucket is split, some records are allocated to 
new buckets and hence have new physical addresses. If there was a secondary index on the file, the 
pointers to those records would have to be found and updated—a difficult task.  

To remedy this situation, we can use a structure called a logical index, whose index entries are of the 
form <K, Kp>. Each entry has one value K for the secondary indexing field matched with the value Kp 
of the field used for the primary file organization. By searching the secondary index on the value of K, 
a program can locate the corresponding value of Kp and use this to access the record through the 
primary file organization. Logical indexes thus introduce an additional level of indirection between the 
access structure and the data. They are used when physical record addresses are expected to change 
frequently. The cost of this indirection is the extra search based on the primary file organization.  

 
 

6.5.3 Discussion 

In many systems, an index is not an integral part of the data file but can be created and discarded 
dynamically. That is why it is often called an access structure. Whenever we expect to access a file 
frequently based on some search condition involving a particular field, we can request the DBMS to 
create an index on that field. Usually, a secondary index is created to avoid physical ordering of the 
records in the data file on disk.  

The main advantage of secondary indexes is that—theoretically, at least—they can be created in 
conjunction with virtually any primary record organization. Hence, a secondary index could be used to 
complement other primary access methods such as ordering or hashing, or it could even be used with 
mixed files. To create a B+-tree secondary index on some field of a file, we must go through all records 
in the file to create the entries at the leaf level of the tree. These entries are then sorted and filled 
according to the specified fill factor; simultaneously, the other index levels are created. It is more 
expensive and much harder to create primary indexes and clustering indexes dynamically, because the 
records of the data file must be physically sorted on disk in order of the indexing field. However, some 
systems allow users to create these indexes dynamically on their files by sorting the file during index 
creation.  

It is common to use an index to enforce a key constraint on an attribute. While searching the index to 
insert a new record, it is straightforward to check at the same time whether another record in the file—
and hence in the index tree—has the same key attribute value as the new record. If so, the insertion can 
be rejected.  

A file that has a secondary index on every one of its fields is often called a fully inverted file. Because 
all indexes are secondary, new records are inserted at the end of the file; therefore, the data file itself is 
an unordered (heap) file. The indexes are usually implemented as B+-trees, so they are updated 
dynamically to reflect insertion or deletion of records. Some commercial DBMSs, such as ADABAS of 
Software-AG, use this method extensively.  
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We referred to the popular IBM file organization called ISAM in Section 6.2. Another IBM method, 
the virtual storage access method (VSAM), is somewhat similar to the B+-tree access structure.  

 
 

6.6 Summary 

In this chapter we presented file organizations that involve additional access structures, called indexes, 
to improve the efficiency of retrieval of records from a data file. These access structures may be used in 
conjunction with the primary file organizations discussed in Chapter 5, which are used to organize the 
file records themselves on disk.  

Three types of ordered single-level indexes were introduced: (1) primary, (2) clustering, and (3) 
secondary. Each index is specified on a field of the file. Primary and clustering indexes are constructed 
on the physical ordering field of a file, whereas secondary indexes are specified on non-ordering fields. 
The field for a primary index must also be a key of the file, whereas it is a non-key field for a clustering 
index. A single-level index is an ordered file and is searched using a binary search. We showed how 
multilevel indexes can be constructed to improve the efficiency of searching an index.  

We then showed how multilevel indexes can be implemented as B-trees and B+-trees, which are 
dynamic structures that allow an index to expand and shrink dynamically. The nodes (blocks) of these 
index structures are kept between half full and completely full by the insertion and deletion algorithms. 
Nodes eventually stabilize at an average occupancy of 69 percent full, allowing space for insertions 
without requiring reorganization of the index for the majority of insertions. B+-trees can generally hold 
more entries in their internal nodes than can B-trees, so they may have fewer levels or hold more 
entries than does a corresponding B-tree.  

We gave an overview of multiple key access methods, and showed how an index can be constructed 
based on hash data structures. We then introduced the concept of a logical index, and compared it with 
the physical indexes we described before. Finally, we discussed how combinations of the above 
organizations can be used. For example, secondary indexes are often used with mixed files, as well as 
with unordered and ordered files. Secondary indexes can also be created for hash files and dynamic 
hash files.  

 
 

Review Questions 

  6.1. Define the following terms: indexing field, primary key field, clustering field, secondary key 
field, block anchor, dense index, and non-dense (sparse) index.  

  6.2. What are the differences among primary, secondary, and clustering indexes? How do these 
differences affect the ways in which these indexes are implemented? Which of the indexes are 
dense, and which are not?  

  6.3. Why can we have at most one primary or clustering index on a file, but several secondary 
indexes?  

  6.4. How does multilevel indexing improve the efficiency of searching an index file?  

  6.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.  

  6.6. What is the order p of a -tree? Describe the structure of both internal and leaf nodes of a -tree. 

  6.7. How does a B-tree differ from a -tree? Why is a -tree usually preferred as an access structure to 
a data file? 
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  6.8. Explain what alternative choices exist for accessing a file based on multiple search keys.  

  6.9. What is partitioned hashing? How does it work? What are its limitations?  

6.10. What is a grid file? What are its advantages and disadvantages?  

6.11. Show an example of constructing a grid array on two attributes on some file.  

6.12. What is a fully inverted file? What is an indexed sequential file?  

6.13. How can hashing be used to construct an index? What is the difference between a logical index 
and a physical index?  

 
 

Exercises 

6.14. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes long, and a record 
pointer is = 7 bytes long. A file has r = 30,000 EMPLOYEE records of fixed length. Each record 
has the following fields: NAME (30 bytes), SSN (9 bytes), DEPARTMENTCODE (9 bytes), ADDRESS 
(40 bytes), PHONE (9 bytes), BIRTHDATE (8 bytes), SEX (1 byte), JOBCODE (4 bytes), SALARY (4 
bytes, real number). An additional byte is used as a deletion marker.  

a. Calculate the record size R in bytes.  
b. Calculate the blocking factor bfr and the number of file blocks b, assuming an 

unspanned organization.  
c. Suppose that the file is ordered by the key field SSN and we want to construct a 

primary index on SSN. Calculate (i) the index blocking factor (which is also the index 
fan-out fo); (ii) the number of first-level index entries and the number of first-level 
index blocks; (iii) the number of levels needed if we make it into a multilevel index; 
(iv) the total number of blocks required by the multilevel index; and (v) the number of 
block accesses needed to search for and retrieve a record from the file—given its SSN 
value—using the primary index.  

d. Suppose that the file is not ordered by the key field SSN and we want to construct a 
secondary index on SSN. Repeat the previous exercise (part c) for the secondary index 
and compare with the primary index.  

e. Suppose that the file is not ordered by the nonkey field DEPARTMENTCODE and we want 
to construct a secondary index on DEPARTMENTCODE, using option 3 of Section 6.1.3, 
with an extra level of indirection that stores record pointers. Assume there are 1000 
distinct values of DEPARTMENTCODE and that the EMPLOYEE records are evenly 
distributed among these values. Calculate (i) the index blocking factor (which is also 
the index fan-out fo); (ii) the number of blocks needed by the level of indirection that 
stores record pointers; (iii) the number of first-level index entries and the number of 
first-level index blocks; (iv) the number of levels needed if we make it into a multilevel 
index; (v) the total number of blocks required by the multilevel index and the blocks 
used in the extra level of indirection; and (vi) the approximate number of block 
accesses needed to search for and retrieve all records in the file that have a specific 
DEPARTMENTCODE value, using the index.  

f. Suppose that the file is ordered by the nonkey field DEPARTMENTCODE and we want to 
construct a clustering index on DEPARTMENTCODE that uses block anchors (every new 
value of DEPARTMENTCODE starts at the beginning of a new block). Assume there are 
1000 distinct values of DEPARTMENTCODE and that the EMPLOYEE records are evenly 
distributed among these values. Calculate (i) the index blocking factor (which is also 
the index fan-out fo); (ii) the number of first-level index entries and the number of first-
level index blocks; (iii) the number of levels needed if we make it into a multilevel 
index; (iv) the total number of blocks required by the multilevel index; and (v) the 
number of block accesses needed to search for and retrieve all records in the file that 
have a specific DEPARTMENTCODE value, using the clustering index (assume that 
multiple blocks in a cluster are contiguous).  
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g. Suppose that the file is not ordered by the key field SSN and we want to construct a -
tree access structure (index) on SSN. Calculate (i) the orders p and of the -tree; (ii) the 
number of leaf-level blocks needed if blocks are approximately 69 percent full 
(rounded up for convenience); (iii) the number of levels needed if internal nodes are 
also 69 percent full (rounded up for convenience); (iv) the total number of blocks 
required by the -tree; and (v) the number of block accesses needed to search for and 
retrieve a record from the file—given its SSN value—using the -tree.  

h. Repeat part g, but for a B-tree rather than for a -tree. Compare your results for the B-
tree and for the -tree.  

6.15. A PARTS file with Part# as key field includes records with the following Part# values: 23, 65, 
37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20, 24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 
33, 38. Suppose that the search field values are inserted in the given order in a -tree of order p = 
4 and = 3; show how the tree will expand and what the final tree will look like.  

6.16. Repeat Exercise 6.15, but use a B-tree of order p = 4 instead of a -tree.  

6.17. Suppose that the following search field values are deleted, in the given order, from the -tree of 
Exercise 6.15; show how the tree will shrink and show the final tree. The deleted values are 65, 
75, 43, 18, 20, 92, 59, 37.  

6.18. Repeat Exercise 6.17, but for the B-tree of Exercise 6.16. 

6.19. Algorithm 6.1 outlines the procedure for searching a nondense multilevel primary index to 
retrieve a file record. Adapt the algorithm for each of the following cases:  

a. A multilevel secondary index on a nonkey nonordering field of a file. Assume that 
option 3 of Section 6.1.3 is used, where an extra level of indirection stores pointers to 
the individual records with the corresponding index field value.  

b. A multilevel secondary index on a nonordering key field of a file. 
c. A multilevel clustering index on a nonkey ordering field of a file. 

6.20. Suppose that several secondary indexes exist on nonkey fields of a file, implemented using 
option 3 of Section 6.1.3; for example, we could have secondary indexes on the fields 
DEPARTMENTCODE, JOBCODE, and SALARY of the EMPLOYEE file of Exercise 6.14. Describe an 
efficient way to search for and retrieve records satisfying a complex selection condition on these 
fields, such as (DEPARTMENTCODE = 5 AND JOBCODE = 12 AND SALARY = 50,000), using the 
record pointers in the indirection level.  

6.21. Adapt Algorithms 6.2 and 6.3, which outline search and insertion procedures for a -tree, to a B-
tree.  

6.22. It is possible to modify the -tree insertion algorithm to delay the case where a new level is 
produced by checking for a possible redistribution of values among the leaf nodes. Figure 06.15 
illustrates how this could be done for our example in Figure 06.12; rather than splitting the 
leftmost leaf node when 12 is inserted, we do a left redistribution by moving 7 to the leaf node 
to its left (if there is space in this node). Figure 06.15 shows how the tree would look when 
redistribution is considered. It is also possible to consider right redistribution. Try to modify the 
-tree insertion algorithm to take redistribution into account.  

6.23. Outline an algorithm for deletion from a -tree.  

6.24. Repeat Exercise 6.23 for a B-tree.  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10

Note 1 

We will use the terms field and attribute interchangeably in this chapter.  

 
 

Note 2 

We can use a scheme similar to the one described here, with the last record in each block (rather than 
the first) as the block anchor. This slightly improves the efficiency of the search algorithm.  

 
 

Note 3 

Notice that the above formula would not be correct if the data file were ordered on a nonkey field; in 
that case the same index value in the block anchor could be repeated in the last records of the previous 
block.  
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Note 4 

The numbering scheme for index levels used here is the reverse of the way levels are commonly 
defined for tree data structures. In tree data structures, t is referred to as level 0 (zero), t - 1 is level 1, 
etc.  

 
 

Note 5 

This standard definition of the level of a tree node, which we use throughout Section 6.3, is different 
from the one we gave for multilevel indexes in Section 6.2.  

 
 

Note 6 

This restriction can be relaxed, but then the formulas that follow must be modified. 

 
 

Note 7 

The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.  

 
 

Note 8 

A data pointer is either a block address, or a record address; the latter is essentially a block address and 
a record offset within the block.  

 
 

Note 9 

Our definition follows Knuth (1973). One can define a B+-tree differently by exchanging the < and 1 
symbols (Ki-1 1 X < Ki; X < K1; Kq-1 1 X), but the principles remain the same.  

 
 

Note 10 

Insertion/deletion algorithms for grid files may be found in Nievergelt [1984].  
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This chapter opens Part II of the book on relational databases. The relational model was first 
introduced by Ted Codd of IBM Research in 1970 in a classic paper [Codd 1970], and attracted 
immediate attention due to its simplicity and mathematical foundations. The model uses the concept of 
a mathematical relation—which looks somewhat like a table of values—as its basic building block, 
and has its theoretical basis in set theory and first order predicate logic. In this chapter we discuss the 
basic characteristics of the model, its constraints, and the relational algebra, which is a set of operations 
for the relational model. The model has been implemented in a large number of commercial systems 
over the last twenty or so years.  

Because of the amount of material related to the relational model, we have devoted the whole of Part II 
of this textbook to it. In Chapter 8, we will describe the SQL query language, which is the standard for 
commercial relational DBMSs. Chapter 9 presents additional topics concerning relational databases. 
Section 9.1 and Section 9.2 present algorithms for designing a relational database schema by mapping a 
conceptual schema in the ER or EER model (see Chapter 3 and Chapter 4) into a relational 
representation. These mappings are incorporated into many database design and CASE (Note 1) tools. 
The remainder of Chapter 9 presents some other relational languages. Chapter 10 presents an overview 
of two commercial relational DBMSs—ORACLE and Microsoft ACCESS. Chapter 14 and Chapter 15 

1 Page 163 of 893



www.manaraa.com

in Part IV of the book present another aspect of the relational model, namely the formal constraints of 
functional and multivalued dependencies; these dependencies are used to develop a relational database 
design theory based on the concept known as normalization.  

Data models that preceded the relational model include the hierarchical and network models. They 
were proposed in the sixties and were implemented in early DBMSs during the seventies and eighties. 
Because of their historical importance and the large existing user base for these DBMSs, we have 
included a summary of the highlights of these models in Appendix C and Appendix D. These models 
and systems will be with us for many years and are today being called legacy systems.  

In this chapter, we will concentrate on describing the basic principles of the relational model of data. 
We begin by defining the modeling concepts and notation of the relational model in Section 7.1. 
Section 7.2 is devoted to a discussion of relational constraints that are now considered an important 
part of the relational model and are automatically enforced in most relational DBMSs. Section 7.3 
defines the update operations of the relational model and discusses how violations of integrity 
constraints are handled.  

In Section 7.4 we present a detailed discussion of the relational algebra, which is a collection of 
operations for manipulating relations and specifying queries. The relational algebra is an integral part 
of the relational data model. Section 7.5 defines additional relational operations that were added to the 
basic relational algebra because of their importance to many database applications. We give examples 
of specifying queries that use relational operations in Section 7.6. The same queries are used in 
subsequent chapters to illustrate various languages. Section 7.7 summarizes the chapter.  

For the reader who is interested in a less detailed introduction to relational concepts, Section 7.1.2, 
Section 7.4.7, and Section 7.5 may be skipped.  

 
 

7.1 Relational Model Concepts 

7.1.1 Domains, Attributes, Tuples, and Relations 
7.1.2 Characteristics of Relations 
7.1.3 Relational Model Notation

The relational model represents the database as a collection of relations. Informally, each relation 
resembles a table of values or, to some extent, a "flat" file of records. For example, the database of files 
that was shown in Figure 01.02 is considered to be in the relational model. However, there are 
important differences between relations and files, as we shall soon see.  

When a relation is thought of as a table of values, each row in the table represents a collection of 
related data values. We introduced entity types and relationship types as concepts for modeling real-
world data in Chapter 3. In the relational model, each row in the table represents a fact that typically 
corresponds to a real-world entity or relationship. The table name and column names are used to help 
in interpreting the meaning of the values in each row. For example, the first table of Figure 01.02 is 
called STUDENT because each row represents facts about a particular student entity. The column 
names—Name, StudentNumber, Class, Major—specify how to interpret the data values in each row, 
based on the column each value is in. All values in a column are of the same data type.  

In the formal relational model terminology, a row is called a tuple, a column header is called an 
attribute, and the table is called a relation. The data type describing the types of values that can appear 
in each column is called a domain. We now define these terms—domain, tuple, attribute, and 
relation—more precisely.  
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7.1.1 Domains, Attributes, Tuples, and Relations 

A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible 
as far as the relational model is concerned. A common method of specifying a domain is to specify a 
data type from which the data values forming the domain are drawn. It is also useful to specify a name 
for the domain, to help in interpreting its values. Some examples of domains follow:  

• USA_phone_numbers: The set of 10-digit phone numbers valid in the United States.  
• Local_phone_numbers: The set of 7-digit phone numbers valid within a particular area code in 

the United States.  
• Social_security_numbers: The set of valid 9-digit social security numbers.  
• Names: The set of names of persons.  
• Grade_point_averages: Possible values of computed grade point averages; each must be a real 

(floating point) number between 0 and 4.  
• Employee_ages: Possible ages of employees of a company; each must be a value between 15 

and 80 years old.  
• Academic_department_names: The set of academic department names, such as Computer 

Science, Economics, and Physics, in a university.  
• Academic_department_codes: The set of academic department codes, such as CS, ECON, and 

PHYS, in a university.  

The preceding are called logical definitions of domains. A data type or format is also specified for 
each domain. For example, the data type for the domain USA_phone_numbers can be declared as a 
character string of the form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first 
three digits form a valid telephone area code. The data type for Employee_ages is an integer number 
between 15 and 80. For Academic_department_names, the data type is the set of all character strings 
that represent valid department names. A domain is thus given a name, data type, and format. 
Additional information for interpreting the values of a domain can also be given; for example, a 
numeric domain such as Person_weights should have the units of measurement—pounds or kilograms.  

A relation schema R, denoted by R(A1, A2, . . ., An), is made up of a relation name R and a list of 
attributes A1, A2, . . ., An. Each attribute Ai is the name of a role played by some domain D in the 
relation schema R. D is called the domain of Ai and is denoted by dom(Ai). A relation schema is used 
to describe a relation; R is called the name of this relation. The degree of a relation is the number of 
attributes n of its relation schema.  

An example of a relation schema for a relation of degree 7, which describes university students, is the 
following:  

 
 

STUDENT(Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)  

 
 

For this relation schema, STUDENT is the name of the relation, which has seven attributes. We can 
specify the following previously defined domains for some of the attributes of the STUDENT relation: 
dom(Name) = Names; dom(SSN) = Social_security_numbers; dom(HomePhone) = 
Local_phone_numbers, dom(OfficePhone) = Local_phone_numbers, and dom(GPA) = 
Grade_point_averages.  

A relation (or relation state) (Note 2) r of the relation schema R(A1, A2, . . ., An), also denoted by 
r(R), is a set of n-tuples r = {t1, t2, . . ., tm}. Each n-tuple t is an ordered list of n values t = <v1, v2, . . ., 
vn>, where each value vi, 1 1 i 1 n, is an element of dom(Ai) or is a special null value. The ith value in 
tuple t, which corresponds to the attribute Ai, is referred to as t[Ai]. The terms relation intension for the 
schema R and relation extension for a relation state r(R) are also commonly used.  

1 Page 165 of 893



www.manaraa.com

Figure 07.01 shows an example of a STUDENT relation, which corresponds to the STUDENT schema 
specified above. Each tuple in the relation represents a particular student entity. We display the relation 
as a table, where each tuple is shown as a row and each attribute corresponds to a column header 
indicating a role or interpretation of the values in that column. Null values represent attributes whose 
values are unknown or do not exist for some individual STUDENT tuples.  

 

 

 
 

The above definition of a relation can be restated as follows. A relation r(R) is a mathematical 
relation of degree n on the domains dom (A1), dom(A2), . . ., dom(An), which is a subset of the 
Cartesian product of the domains that define R:  

 
 

r(R) (dom (A1) x dom(A2) x . . . x dom(An))  

 
 

The Cartesian product specifies all possible combinations of values from the underlying domains. 
Hence, if we denote the number of values or cardinality of a domain D by | D |, and assume that all 
domains are finite, the total number of tuples in the Cartesian product is:  

 
 

| dom(A1) | * | dom(A2) | * . . . * | dom(An) |  

 
 

Out of all these possible combinations, a relation state at a given time—the current relation state—
reflects only the valid tuples that represent a particular state of the real world. In general, as the state of 
the real world changes, so does the relation, by being transformed into another relation state. However, 
the schema R is relatively static and does not change except very infrequently—for example, as a result 
of adding an attribute to represent new information that was not originally stored in the relation.  

It is possible for several attributes to have the same domain. The attributes indicate different roles, or 
interpretations, for the domain. For example, in the STUDENT relation, the same domain 
Local_phone_numbers plays the role of HomePhone, referring to the "home phone of a student," and 
the role of OfficePhone, referring to the "office phone of the student."  

 
 

7.1.2 Characteristics of Relations 

Ordering of Tuples in a Relation 
Ordering of Values within a Tuple, and an Alternative Definition of a Relation 
Values in the Tuples 
Interpretation of a Relation
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The earlier definition of relations implies certain characteristics that make a relation different from a 
file or a table. We now discuss some of these characteristics.  

 
 

Ordering of Tuples in a Relation 

A relation is defined as a set of tuples. Mathematically, elements of a set have no order among them; 
hence tuples in a relation do not have any particular order. However, in a file, records are physically 
stored on disk so there always is an order among the records. This ordering indicates first, second, ith, 
and last records in the file. Similarly, when we display a relation as a table, the rows are displayed in a 
certain order.  

Tuple ordering is not part of a relation definition, because a relation attempts to represent facts at a 
logical or abstract level. Many logical orders can be specified on a relation; for example, tuples in the 
STUDENT relation in Figure 07.01 could be logically ordered by values of Name, SSN, Age, or some 
other attribute. The definition of a relation does not specify any order: there is no preference for one 
logical ordering over another. Hence, the relation displayed in Figure 07.02 is considered identical to 
the one shown in Figure 07.01. When a relation is implemented as a file, a physical ordering may be 
specified on the records of the file.  

 

 

 
 

Ordering of Values within a Tuple, and an Alternative Definition of a Relation 

According to the preceding definition of a relation, an n-tuple is an ordered list of n values, so the 
ordering of values in a tuple—and hence of attributes in a relation schema definition—is important. 
However, at a logical level, the order of attributes and their values are not really important as long as 
the correspondence between attributes and values is maintained.  

An alternative definition of a relation can be given, making the ordering of values in a tuple 
unnecessary. In this definition, a relation schema R = {A1, A2, . . ., An} is a set of attributes, and a 
relation r(R) is a finite set of mappings r = {t1, t2, . . ., tm}, where each tuple ti is a mapping from R to 
D, and D is the union of the attribute domains; that is, D = dom(A1) D dom(A2) D. . .D dom(An). In this 
definition, t[Ai] must be in dom(Ai) for 1 1 i 1 n for each mapping t in r. Each mapping ti is called a 
tuple.  

According to this definition, a tuple can be considered as a set of (<attribute>, <value>) pairs, where 
each pair gives the value of the mapping from an attribute Ai to a value vi from dom(Ai). The ordering 
of attributes is not important, because the attribute name appears with its value. By this definition, the 
two tuples shown in Figure 07.03 are identical. This makes sense at an abstract or logical level, since 
there really is no reason to prefer having one attribute value appear before another in a tuple.  
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When a relation is implemented as a file, the attributes are physically ordered as fields within a record. 
We will use the first definition of relation, where the attributes and the values within tuples are 
ordered, because it simplifies much of the notation. However, the alternative definition given here is 
more general.  

 
 

Values in the Tuples 

Each value in a tuple is an atomic value; that is, it is not divisible into components within the 
framework of the basic relational model. Hence, composite and multivalued attributes (see Chapter 3) 
are not allowed. Much of the theory behind the relational model was developed with this assumption in 
mind, which is called the first normal form assumption (Note 3). Multivalued attributes must be 
represented by separate relations, and composite attributes are represented only by their simple 
component attributes. Recent research in the relational model attempts to remove these restrictions by 
using the concept of nonfirst normal form or nested relations (see Chapter 13).  

The values of some attributes within a particular tuple may be unknown or may not apply to that tuple. 
A special value, called null, is used for these cases. For example, in Figure 07.01, some student tuples 
have null for their office phones because they do not have an office (that is, office phone does not 
apply to these students). Another student has a null for home phone, presumably because either he does 
not have a home phone or he has one but we do not know it (value is unknown). In general, we can 
have several types of null values, such as "value unknown," "value exists but not available," or 
"attribute does not apply to this tuple." It is possible to devise different codes for different types of null 
values. Incorporating different types of null values into relational model operations has proved 
difficult, and a full discussion is outside the scope of this book.  

 
 

Interpretation of a Relation 

The relation schema can be interpreted as a declaration or a type of assertion. For example, the schema 
of the STUDENT relation of Figure 07.01 asserts that, in general, a student entity has a Name, SSN, 
HomePhone, Address, OfficePhone, Age, and GPA. Each tuple in the relation can then be interpreted as 
a fact or a particular instance of the assertion. For example, the first tuple in Figure 07.01 asserts the 
fact that there is a STUDENT whose name is Benjamin Bayer, SSN is 305-61-2435, Age is 19, and so on.  

Notice that some relations may represent facts about entities, whereas other relations may represent 
facts about relationships. For example, a relation schema MAJORS (StudentSSN, DepartmentCode) 
asserts that students major in academic departments; a tuple in this relation relates a student to his or 
her major department. Hence, the relational model represents facts about both entities and relationships 
uniformly as relations.  

An alternative interpretation of a relation schema is as a predicate; in this case, the values in each tuple 
are interpreted as values that satisfy the predicate. This interpretation is quite useful in the context of 
logic programming languages, such as PROLOG, because it allows the relational model to be used 
within these languages. This is further discussed in Chapter 25 when we discuss deductive databases.  

 
 

7.1.3 Relational Model Notation 

We will use the following notation in our presentation:  
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• A relation schema R of degree n is denoted by R(A1, A2, . . ., An).  
• An n-tuple t in a relation r(R) is denoted by t = <v1, v2, . . ., vn>, where vi is the value 

corresponding to attribute Ai. The following notation refers to component values of tuples:  
o Both t[Ai] and t.Ai refer to the value vi in t for attribute Ai.  
o Both t[Au, Aw, . . ., Az] and t.(Au, Aw, . . ., Az), where Au, Aw, . . ., Az is a list of 

attributes from R, refer to the subtuple of values <vu, vw, . . ., vz> from t 
corresponding to the attributes specified in the list.  

• The letters Q, R, S denote relation names.  
• The letters q, r, s denote relation states.  
• The letters t, u, v denote tuples.  
• In general, the name of a relation schema such as STUDENT also indicates the current set of 

tuples in that relation—the current relation state—whereas STUDENT(Name, SSN, . . .) refers 
only to the relation schema.  

• An attribute A can be qualified with the relation name R to which it belongs by using the dot 
notation R.A—for example, STUDENT.Name or STUDENT.Age. This is because the same name 
may be used for two attributes in different relations. However, all attribute names in a 
particular relation must be distinct.  

 
 

As an example, consider the tuple t = <‘Barbara Benson’, ‘533-69-1238’, ‘839-8461’, ‘7384 Fontana 
Lane’, null, 19, 3.25> from the STUDENT relation in Figure 07.01; we have t[Name] = <‘Barbara 
Benson’>, and t[SSN, GPA, Age] = <‘533-69-1238’, 3.25, 19>.  

 
 

7.2 Relational Constraints and Relational Database Schemas 

7.2.1 Domain Constraints 
7.2.2 Key Constraints and Constraints on Null 
7.2.3 Relational Databases and Relational Database Schemas 
7.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

In this section, we discuss the various restrictions on data that can be specified on a relational database 
schema in the form of constraints. These include domain constraints, key constraints, entity integrity, 
and referential integrity constraints. Other types of constraints, called data dependencies (which 
include functional dependencies and multivalued dependencies ), are used mainly for database design 
by normalization and will be discussed in Chapter 14 and Chapter 15.  

 
 

7.2.1 Domain Constraints 

Domain constraints specify that the value of each attribute A must be an atomic value from the domain 
dom(A). We have already discussed the ways in which domains can be specified in Section 7.1.1. The 
data types associated with domains typically include standard numeric data types for integers (such as 
short-integer, integer, long-integer) and real numbers (float and double-precision float). Characters, 
fixed-length strings, and variable-length strings are also available, as are date, time, timestamp, and 
money data types. Other possible domains may be described by a subrange of values from a data type 
or as an enumerated data type where all possible values are explicitly listed. Rather than describe these 
in detail here, we discuss the data types offered by the SQL2 relational standard in Section 8.1.2.  
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7.2.2 Key Constraints and Constraints on Null 

A relation is defined as a set of tuples. By definition, all elements of a set are distinct; hence, all tuples 
in a relation must also be distinct. This means that no two tuples can have the same combination of 
values for all their attributes. Usually, there are other subsets of attributes of a relation schema R with 
the property that no two tuples in any relation state r of R should have the same combination of values 
for these attributes. Suppose that we denote one such subset of attributes by SK; then for any two 
distinct tuples t1 and t2 in a relation state r of R, we have the constraint that  

 
 

t1[SK] t2[SK]  

 
 

Any such set of attributes SK is called a superkey of the relation schema R. A superkey SK specifies a 
uniqueness constraint that no two distinct tuples in a state r of R can have the same value for SK. Every 
relation has at least one default superkey—the set of all its attributes. A superkey can have redundant 
attributes, however, so a more useful concept is that of a key, which has no redundancy. A key K of a 
relation schema R is a superkey of R with the additional property that removing any attribute A from K 
leaves a set of attributes K’ that is not a superkey of R. Hence, a key is a minimal superkey—that is, a 
superkey from which we cannot remove any attributes and still have the uniqueness constraint hold.  

For example, consider the STUDENT relation of Figure 07.01. The attribute set {SSN} is a key of 
STUDENT because no two student tuples can have the same value for SSN (Note 4). Any set of attributes 
that includes SSN—for example, {SSN, Name, Age}—is a superkey. However, the superkey {SSN, 
Name, Age} is not a key of STUDENT, because removing Name or Age or both from the set still leaves 
us with a superkey.  

The value of a key attribute can be used to identify uniquely each tuple in the relation. For example, the 
SSN value 305-61-2435 identifies uniquely the tuple corresponding to Benjamin Bayer in the STUDENT 
relation. Notice that a set of attributes constituting a key is a property of the relation schema; it is a 
constraint that should hold on every relation state of the schema. A key is determined from the meaning 
of the attributes, and the property is time-invariant; it must continue to hold when we insert new tuples 
in the relation. For example, we cannot and should not designate the Name attribute of the STUDENT 
relation in Figure 07.01 as a key, because there is no guarantee that two students with identical names 
will never exist (Note 5).  

In general, a relation schema may have more than one key. In this case, each of the keys is called a 
candidate key. For example, the CAR relation in Figure 07.04 has two candidate keys: LicenseNumber 
and EngineSerialNumber. It is common to designate one of the candidate keys as the primary key of 
the relation. This is the candidate key whose values are used to identify tuples in the relation. We use 
the convention that the attributes that form the primary key of a relation schema are underlined, as 
shown in Figure 07.04. Notice that, when a relation schema has several candidate keys, the choice of 
one to become primary key is arbitrary; however, it is usually better to choose a primary key with a 
single attribute or a small number of attributes.  
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Another constraint on attributes specifies whether null values are or are not permitted. For example, if 
every STUDENT tuple must have a valid, non-null value for the Name attribute, then Name of STUDENT 
is constrained to be NOT NULL.  

 
 

7.2.3 Relational Databases and Relational Database Schemas 

So far, we have discussed single relations and single relation schemas. A relational database usually 
contains many relations, with tuples in relations that are related in various ways. In this section we 
define a relational database and a relational database schema. A relational database schema S is a set 
of relation schemas S = {R1, R2, . . ., Rm} and a set of integrity constraints IC. A relational database 
state (Note 6) DB of S is a set of relation states DB = {r1, r2, . . ., rm} such that each ri is a state of Ri 
and such that the ri relation states satisfy the integrity constraints specified in IC. Figure 07.05 shows a 
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, 
PROJECT, WORKS_ON, DEPENDENT}. Figure 07.06 shows a relational database state corresponding to the 
COMPANY schema. We will use this schema and database state in this chapter and in Chapter 8, Chapter 
9 and Chapter 10 for developing example queries in different relational languages. When we refer to a 
relational database, we implicitly include both its schema and its current state.  

 

 

 

 

 
 

In Figure 07.05, the DNUMBER attribute in both DEPARTMENT and DEPT_LOCATIONS stands for the same 
real-world concept—the number given to a department. That same concept is called DNO in EMPLOYEE 
and DNUM in PROJECT. Attributes that represent the same real-world concept may or may not have 
identical names in different relations. Alternatively, attributes that represent different concepts may 
have the same name in different relations. For example, we could have used the attribute name NAME 
for both PNAME of PROJECT and DNAME of DEPARTMENT; in this case, we would have two attributes that 
share the same name but represent different real-world concepts—project names and department 
names.  

In some early versions of the relational model, an assumption was made that the same real-world 
concept, when represented by an attribute, would have identical attribute names in all relations. This 
creates problems when the same real-world concept is used in different roles (meanings) in the same 
relation. For example, the concept of social security number appears twice in the EMPLOYEE relation of 
Figure 07.05: once in the role of the employee’s social security number, and once in the role of the 
supervisor’s social security number. We gave them distinct attribute names—SSN and SUPERSSN, 
respectively—in order to distinguish their meaning.  

Each relational DBMS must have a Data Definition Language (DDL) for defining a relational database 
schema. Current relational DBMSs are mostly using SQL for this purpose. We present the SQL DDL 
in Section 8.1.  

Integrity constraints are specified on a database schema and are expected to hold on every database 
state of that schema. In addition to domain and key constraints, two other types of constraints are 
considered part of the relational model: entity integrity and referential integrity.  
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7.2.4 Entity Integrity, Referential Integrity, and Foreign Keys 

The entity integrity constraint states that no primary key value can be null. This is because the 
primary key value is used to identify individual tuples in a relation; having null values for the primary 
key implies that we cannot identify some tuples. For example, if two or more tuples had null for their 
primary keys, we might not be able to distinguish them.  

Key constraints and entity integrity constraints are specified on individual relations. The referential 
integrity constraint is specified between two relations and is used to maintain the consistency among 
tuples of the two relations. Informally, the referential integrity constraint states that a tuple in one 
relation that refers to another relation must refer to an existing tuple in that relation. For example, in 
Figure 07.06, the attribute DNO of EMPLOYEE gives the department number for which each employee 
works; hence, its value in every EMPLOYEE tuple must match the DNUMBER value of some tuple in the 
DEPARTMENT relation.  

To define referential integrity more formally, we first define the concept of a foreign key. The 
conditions for a foreign key, given below, specify a referential integrity constraint between the two 
relation schemas R1 and R2. A set of attributes FK in relation schema R1 is a foreign key of R1 that 
references relation R2 if it satisfies the following two rules:  

1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2; the 
attributes FK are said to reference or refer to the relation R2.  

2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for some 
tuple t2 in the current state r2(R2) or is null. In the former case, we have t1[FK] = t2[PK], and 
we say that the tuple t1 references or refers to the tuple t2. R1 is called the referencing 
relation and R2 is the referenced relation.  

In a database of many relations, there are usually many referential integrity constraints. To specify 
these constraints, we must first have a clear understanding of the meaning or role that each set of 
attributes plays in the various relation schemas of the database. Referential integrity constraints 
typically arise from the relationships among the entities represented by the relation schemas. For 
example, consider the database shown in Figure 07.06. In the EMPLOYEE relation, the attribute DNO 
refers to the department for which an employee works; hence, we designate DNO to be a foreign key of 
EMPLOYEE, referring to the DEPARTMENT relation. This means that a value of DNO in any tuple t1 of the 
EMPLOYEE relation must match a value of the primary key of DEPARTMENT—the DNUMBER attribute—in 
some tuple t2 of the DEPARTMENT relation, or the value of DNO can be null if the employee does not 
belong to a department. In Figure 07.06 the tuple for employee ‘John Smith’ references the tuple for 
the ‘Research’ department, indicating that ‘John Smith’ works for this department.  

Notice that a foreign key can refer to its own relation. For example, the attribute SUPERSSN in 
EMPLOYEE refers to the supervisor of an employee; this is another employee, represented by a tuple in 
the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that references the EMPLOYEE relation itself. 
In Figure 07.06 the tuple for employee ‘John Smith’ references the tuple for employee ‘Franklin 
Wong,’ indicating that ‘Franklin Wong’ is the supervisor of ‘John Smith.’  

We can diagrammatically display referential integrity constraints by drawing a directed arc from each 
foreign key to the relation it references. For clarity, the arrowhead may point to the primary key of the 
referenced relation. Figure 07.07 shows the schema in Figure 07.05 with the referential integrity 
constraints displayed in this manner.  
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All integrity constraints should be specified on the relational database schema if we want to enforce 
these constraints on the database states. Hence, the DDL includes provisions for specifying the various 
types of constraints so that the DBMS can automatically enforce them. Most relational DBMSs support 
key and entity integrity constraints, and make provisions to support referential integrity. These 
constraints are specified as a part of data definition.  

The preceding integrity constraints do not include a large class of general constraints, sometimes called 
semantic integrity constraints, that may have to be specified and enforced on a relational database. 
Examples of such constraints are "the salary of an employee should not exceed the salary of the 
employee’s supervisor" and "the maximum number of hours an employee can work on all projects per 
week is 56." Such constraints can be specified and enforced by using a general purpose constraint 
specification language. Mechanisms called triggers and assertions can be used. In SQL2, a CREATE 
ASSERTION statement is used for this purpose (see Chapter 8 and Chapter 23).  

The types of constraints we discussed above may be termed as state constraints, because they define 
the constraints that a valid state of the database must satisfy. Another type of constraints, called 
transition constraints, can be defined to deal with state changes in the database (Note 7). An example 
of a transition constraint is: "the salary of an employee can only increase." Such constraints are 
typically specified using active rules and triggers, as we shall discuss in Chapter 23.  

 
 

7.3 Update Operations and Dealing with Constraint Violations 

7.3.1 The Insert Operation 
7.3.2 The Delete Operation 
7.3.3 The Update Operation

The operations of the relational model can be categorized into retrievals and updates. The relational 
algebra operations, which can be used to specify retrievals, are discussed in detail in Section 7.4. In this 
section, we concentrate on the update operations. There are three basic update operations on relations: 
(1) insert, (2) delete, and (3) modify. Insert is used to insert a new tuple or tuples in a relation; Delete 
is used to delete tuples; and Update (or Modify) is used to change the values of some attributes in 
existing tuples. Whenever update operations are applied, the integrity constraints specified on the 
relational database schema should not be violated. In this section we discuss the types of constraints 
that may be violated by each update operation and the types of actions that may be taken if an update 
does cause a violation. We use the database shown in Figure 07.06 for examples and discuss only key 
constraints, entity integrity constraints, and the referential integrity constraints shown in Figure 07.07. 
For each type of update, we give some example operations and discuss any constraints that each 
operation may violate.  

 
 

7.3.1 The Insert Operation 

The Insert operation provides a list of attribute values for a new tuple t that is to be inserted into a 
relation R. Insert can violate any of the four types of constraints discussed in the previous section. 
Domain constraints can be violated if an attribute value is given that does not appear in the 
corresponding domain. Key constraints can be violated if a key value in the new tuple t already exists 
in another tuple in the relation r(R). Entity integrity can be violated if the primary key of the new tuple 
t is null. Referential integrity can be violated if the value of any foreign key in t refers to a tuple that 
does not exist in the referenced relation. Here are some examples to illustrate this discussion.  
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1. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, null, ‘1960-04-05’, ‘6357 Windy Lane, Katy, TX’, F, 
28000, null, 4> into EMPLOYEE.  

o This insertion violates the entity integrity constraint (null for the primary key SSN), 
so it is rejected.  

2. Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane, Katy, TX’, F, 
28000, ‘987654321’, 4> into EMPLOYEE.  

o This insertion violates the key constraint because another tuple with the same SSN 
value already exists in the EMPLOYEE relation, and so it is rejected.  

3. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windswept, Katy, TX’, 
F, 28000, ‘987654321’, 7> into EMPLOYEE.  

o This insertion violates the referential integrity constraint specified on DNO because no 
DEPARTMENT tuple exists with DNUMBER = 7.  

4. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy Lane, Katy, TX’, 
F, 28000, null, 4> into EMPLOYEE.  

o This insertion satisfies all constraints, so it is acceptable.  

 
 

If an insertion violates one or more constraints, the default option is to reject the insertion. In this case, 
it would be useful if the DBMS could explain to the user why the insertion was rejected. Another 
option is to attempt to correct the reason for rejecting the insertion, but this is typically not used for 
violations caused by Insert; rather, it is used more often in correcting violations for Delete and Update. 
The following examples illustrate how this option may be used for Insert violations. In operation 1 
above, the DBMS could ask the user to provide a value for SSN and could accept the insertion if a valid 
SSN value were provided. In operation 3, the DBMS could either ask the user to change the value of 
DNO to some valid value (or set it to null), or it could ask the user to insert a DEPARTMENT tuple with 
DNUMBER = 7 and could accept the insertion only after such an operation was accepted. Notice that in 
the latter case the insertion can cascade back to the EMPLOYEE relation if the user attempts to insert a 
tuple for department 7 with a value for MGRSSN that does not exist in the EMPLOYEE relation.  

 
 

7.3.2 The Delete Operation 

The Delete operation can violate only referential integrity, if the tuple being deleted is referenced by 
the foreign keys from other tuples in the database. To specify deletion, a condition on the attributes of 
the relation selects the tuple (or tuples) to be deleted. Here are some examples.  

 

1. Delete the WORKS_ON tuple with ESSN = ‘999887777’ and PNO = 10.  
o This deletion is acceptable.  

2. Delete the EMPLOYEE tuple with SSN = ‘999887777’.  
o This deletion is not acceptable, because tuples in WORKS_ON refer to this tuple. 

Hence, if the tuple is deleted, referential integrity violations will result.  

3. Delete the EMPLOYEE tuple with SSN = ‘333445555’.  

1 Page 174 of 893



www.manaraa.com

o This deletion will result in even worse referential integrity violations, because the 
tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT, WORKS_ON, 
and DEPENDENT relations.  

 
 

Three options are available if a deletion operation causes a violation. The first option is to reject the 
deletion. The second option is to attempt to cascade (or propagate) the deletion by deleting tuples that 
reference the tuple that is being deleted. For example, in operation 2, the DBMS could automatically 
delete the offending tuples from WORKS_ON with ESSN = ‘999887777’. A third option is to modify the 
referencing attribute values that cause the violation; each such value is either set to null or changed to 
reference another valid tuple. Notice that, if a referencing attribute that causes a violation is part of the 
primary key, it cannot be set to null; otherwise, it would violate entity integrity.  

Combinations of these three options are also possible. For example, to avoid having operation 3 cause a 
violation, the DBMS may automatically delete all tuples from WORKS_ON and DEPENDENT with ESSN = 
‘333445555’. Tuples in EMPLOYEE with SUPERSSN = ‘333445555’ and the tuple in DEPARTMENT with 
MGRSSN = ‘333445555’ can have their SUPERSSN and MGRSSN values changed to other valid values or 
to null. Although it may make sense to delete automatically the WORKS_ON and DEPENDENT tuples that 
refer to an EMPLOYEE tuple, it may not make sense to delete other EMPLOYEE tuples or a DEPARTMENT 
tuple. In general, when a referential integrity constraint is specified, the DBMS should allow the user to 
specify which of the three options applies in case of a violation of the constraint. We discuss how to 
specify these options in SQL2 DDL in Chapter 8.  

 
 

7.3.3 The Update Operation 

The Update operation is used to change the values of one or more attributes in a tuple (or tuples) of 
some relation R. It is necessary to specify a condition on the attributes of the relation to select the tuple 
(or tuples) to be modified. Here are some examples.  

 

1. Update the SALARY of the EMPLOYEE tuple with SSN = ‘999887777’ to 28000.  
o Acceptable.  

2. Update the DNO of the EMPLOYEE tuple with SSN = ‘999887777’ to 1.  
o Acceptable.  

3. Update the DNO of the EMPLOYEE tuple with SSN = ‘999887777’ to 7.  
o Unacceptable, because it violates referential integrity.  

4. Update the SSN of the EMPLOYEE tuple with SSN = ‘999887777’ to ‘987654321’.  
o Unacceptable, because it violates primary key and referential integrity constraints.  

 
 

Updating an attribute that is neither a primary key nor a foreign key usually causes no problems; the 
DBMS need only check to confirm that the new value is of the correct data type and domain. 
Modifying a primary key value is similar to deleting one tuple and inserting another in its place, 
because we use the primary key to identify tuples. Hence, the issues discussed earlier under both Insert 
and Delete come into play. If a foreign key attribute is modified, the DBMS must make sure that the 
new value refers to an existing tuple in the referenced relation (or is null).  
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7.4 Basic Relational Algebra Operations 

7.4.1 The SELECT Operation 
7.4.2 The PROJECT Operation 
7.4.3 Sequences of Operations and the RENAME Operation 
7.4.4 Set Theoretic Operations 
7.4.5 The JOIN Operation 
7.4.6 A Complete Set of Relational Algebra Operations 
7.4.7 The DIVISION Operation

In addition to defining the database structure and constraints, a data model must include a set of 
operations to manipulate the data. A basic set of relational model operations constitute the relational 
algebra. These operations enable the user to specify basic retrieval requests. The result of a retrieval is 
a new relation, which may have been formed from one or more relations. The algebra operations thus 
produce new relations, which can be further manipulated using operations of the same algebra. A 
sequence of relational algebra operations forms a relational algebra expression, whose result will also 
be a relation.  

The relational algebra operations are usually divided into two groups. One group includes set 
operations from mathematical set theory; these are applicable because each relation is defined to be a 
set of tuples. Set operations include UNION, INTERSECTION, SET DIFFERENCE, and 
CARTESIAN PRODUCT. The other group consists of operations developed specifically for relational 
databases; these include SELECT, PROJECT, and JOIN, among others. The SELECT and PROJECT 
operations are discussed first, because they are the simplest. Then we discuss set operations. Finally, 
we discuss JOIN and other complex operations. The relational database shown in Figure 07.06 is used 
for our examples.  

Some common database requests cannot be performed with the basic relational algebra operations, so 
additional operations are needed to express these requests. Some of these additional operations are 
described in Section 7.5.  

 
 

7.4.1 The SELECT Operation 

The SELECT operation is used to select a subset of the tuples from a relation that satisfy a selection 
condition. One can consider the SELECT operation to be a filter that keeps only those tuples that 
satisfy a qualifying condition. For example, to select the EMPLOYEE tuples whose department is 4, or 
those whose salary is greater than $30,000, we can individually specify each of these two conditions 
with a SELECT operation as follows:  

 
 

sDNO=4(EMPLOYEE)  

sSALARY>30000(EMPLOYEE)  

 
 

In general, the SELECT operation is denoted by  
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s<selection condition>(R)  

 
 

where the symbol s (sigma) is used to denote the SELECT operator, and the selection condition is a 
Boolean expression specified on the attributes of relation R. Notice that R is generally a relational 
algebra expression whose result is a relation; the simplest expression is just the name of a database 
relation. The relation resulting from the SELECT operation has the same attributes as R. The Boolean 
expression specified in <selection condition> is made up of a number of clauses of the form  

 
 

<attribute name> <comparison op> <constant value>, or  

<attribute name> <comparison op> <attribute name>  

 
 

where <attribute name> is the name of an attribute of R, <comparison op> is normally one of the 
operators {=, <, 1, >, , }, and <constant value> is a constant value from the attribute domain. Clauses 
can be arbitrarily connected by the Boolean operators AND, OR, and NOT to form a general selection 
condition. For example, to select the tuples for all employees who either work in department 4 and 
make over $25,000 per year, or work in department 5 and make over $30,000, we can specify the 
following SELECT operation:  

 
 

s(DNO=4 AND SALARY>25000) OR (DNO=5 AND SALARY>30000)(EMPLOYEE)  

 
 

The result is shown in Figure 07.08(a). Notice that the comparison operators in the set {=, <, 1, >, , } 
apply to attributes whose domains are ordered values, such as numeric or date domains. Domains of 
strings of characters are considered ordered based on the collating sequence of the characters. If the 
domain of an attribute is a set of unordered values, then only the comparison operators in the set {=, } 
can be used. An example of an unordered domain is the domain Color = {red, blue, green, white, 
yellow, . . .} where no order is specified among the various colors. Some domains allow additional 
types of comparison operators; for example, a domain of character strings may allow the comparison 
operator SUBSTRING_OF.  

 

 

 
 

In general, the result of a SELECT operation can be determined as follows. The <selection condition> 
is applied independently to each tuple t in R. This is done by substituting each occurrence of an 
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attribute Ai in the selection condition with its value in the tuple t[Ai]. If the condition evaluates to true, 
then tuple t is selected. All the selected tuples appear in the result of the SELECT operation. The 
Boolean conditions AND, OR, and NOT have their normal interpretation as follows:  

• (cond1 AND cond2) is true if both (cond1) and (cond2) are true; otherwise, it is false.  
• (cond1 OR cond2) is true if either (cond1) or (cond2) or both are true; otherwise, it is false.  
• (NOT cond) is true if cond is false; otherwise, it is false.  

The SELECT operator is unary; that is, it is applied to a single relation. Moreover, the selection 
operation is applied to each tuple individually; hence, selection conditions cannot involve more than 
one tuple. The degree of the relation resulting from a SELECT operation is the same as that of R. The 
number of tuples in the resulting relation is always less than or equal to the number of tuples in R. That 
is, | sc (R) | 1 | R | for any condition C. The fraction of tuples selected by a selection condition is 
referred to as the selectivity of the condition.  

Notice that the SELECT operation is commutative; that is,  

 
 

s<cond1>(s<cond2>(R)) = s<cond2>(s<cond1>(R))  

 
 

Hence, a sequence of SELECTs can be applied in any order. In addition, we can always combine a 
cascade of SELECT operations into a single SELECT operation with a conjunctive (AND) condition; 
that is:  

 
 

s<cond1>(s<cond2>(. . .(s<condn> (R)) . . .)) = s<cond1> AND <cond2> AND . . . AND <condn>(R)  

 
 

7.4.2 The PROJECT Operation 

If we think of a relation as a table, the SELECT operation selects some of the rows from the table while 
discarding other rows. The PROJECT operation, on the other hand, selects certain columns from the 
table and discards the other columns. If we are interested in only certain attributes of a relation, we use 
the PROJECT operation to project the relation over these attributes only. For example, to list each 
employee’s first and last name and salary, we can use the PROJECT operation as follows:  

 
 

pLNAME, FNAME, SALARY(EMPLOYEE)  

 
 

The resulting relation is shown in Figure 07.08(b). The general form of the PROJECT operation is  
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p<attribute list>(R)  

 
 

where p (pi) is the symbol used to represent the PROJECT operation and <attribute list> is a list of 
attributes from the attributes of relation R. Again, notice that R is, in general, a relational algebra 
expression whose result is a relation, which in the simplest case is just the name of a database relation. 
The result of the PROJECT operation has only the attributes specified in <attribute list> and in the 
same order as they appear in the list. Hence, its degree is equal to the number of attributes in 
<attribute list>.  

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to occur; the 
PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is a set of 
tuples and hence a valid relation (Note 8). This is known as duplicate elimination. For example, 
consider the following PROJECT operation:  

 
 

pSEX, SALARY(EMPLOYEE)  

 
 

The result is shown in Figure 07.08(c). Notice that the tuple <F, 25000> appears only once in Figure 
07.08(c), even though this combination of values appears twice in the EMPLOYEE relation.  

The number of tuples in a relation resulting from a PROJECT operation is always less than or equal to 
the number of tuples in R. If the projection list is a superkey of R—that is, it includes some key of R—
the resulting relation has the same number of tuples as R. Moreover,  

 
 

p<list1> (p<list2>(R)) = p<list1>(R)  

 
 

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is an incorrect 
expression. It is also noteworthy that commutativity does not hold on PROJECT.  

 
 

7.4.3 Sequences of Operations and the RENAME Operation 

The relations shown in Figure 07.08 do not have any names. In general, we may want to apply several 
relational algebra operations one after the other. Either we can write the operations as a single 
relational algebra expression by nesting the operations, or we can apply one operation at a time and 
create intermediate result relations. In the latter case, we must name the relations that hold the 
intermediate results. For example, to retrieve the first name, last name, and salary of all employees who 
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work in department number 5, we must apply a SELECT and a PROJECT operation. We can write a 
single relational algebra expression as follows:  

 
 

pFNAME, LNAME, SALARY(sDNO= 5(EMPLOYEE))  

 
 

Figure 07.09(a) shows the result of this relational algebra expression. Alternatively, we can explicitly 
show the sequence of operations, giving a name to each intermediate relation:  

 
 

DEP5_EMPSãsDNO=5(EMPLOYEE)  

RESULTãpFNAME, LNAME, SALARY(DEP5_EMPS)  

 
 

It is often simpler to break down a complex sequence of operations by specifying intermediate result 
relations than to write a single relational algebra expression. We can also use this technique to rename 
the attributes in the intermediate and result relations. This can be useful in connection with more 
complex operations such as UNION and JOIN, as we shall see. To rename the attributes in a relation, 
we simply list the new attribute names in parentheses, as in the following example:  

 
 

TEMPãsDNO=5(EMPLOYEE)  

R(FIRSTNAME, LASTNAME, SALARY)ãpFNAME, LNAME, SALARY(TEMP)  

 
 

The above two operations are illustrated in Figure 07.09(b). If no renaming is applied, the names of the 
attributes in the resulting relation of a SELECT operation are the same as those in the original relation 
and in the same order. For a PROJECT operation with no renaming, the resulting relation has the same 
attribute names as those in the projection list and in the same order in which they appear in the list.  

We can also define a RENAME operation—which can rename either the relation name, or the attribute 
names, or both—in a manner similar to the way we defined SELECT and PROJECT. The general 
RENAME operation when applied to a relation R of degree n is denoted by  

 
 

qS(B1, B2, ..., Bn)(R) or qS(R) or q(B1, B2, ..., Bn)(R)  
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where the symbol q (rho) is used to denote the RENAME operator, S is the new relation name, and B1, 
BBB2, . . ., Bn are the new attribute names. The first expression renames both the relation and its attributes; 
the second renames the relation only; and the third renames the attributes only. If the attributes of R are 
(A1, A2, . . ., An) in that order, then each Ai is renamed as Bi.  

 

 

 
 

7.4.4 Set Theoretic Operations 

The next group of relational algebra operations are the standard mathematical operations on sets. For 
example, to retrieve the social security numbers of all employees who either work in department 5 or 
directly supervise an employee who works in department 5, we can use the UNION operation as 
follows:  

 
 

DEP5_EMPSãsDNO=5(EMPLOYEE)  

RESULT1ãpSSN(DEP5_EMPS)  

RESULT2(SSN)ãpSUPERSSN(DEP5_EMPS)  

RESULTã RESULT1 D RESULT2  

 
 

The relation RESULT1 has the social security numbers of all employees who work in department 5, 
whereas RESULT2 has the social security numbers of all employees who directly supervise an employee 
who works in department 5. The UNION operation produces the tuples that are in either RESULT1 or 
RESULT2 or both (see Figure 07.10).  

 

 

 
 

Several set theoretic operations are used to merge the elements of two sets in various ways, including 
UNION, INTERSECTION, and SET DIFFERENCE. These are binary operations; that is, each is 
applied to two sets. When these operations are adapted to relational databases, the two relations on 
which any of the above three operations are applied must have the same type of tuples; this condition 
is called union compatibility. Two relations R(A1, A2, . . ., An) and S(BBB1, B2, . . ., Bn) are said to be 
union compatible if they have the same degree n, and if dom(Ai) = dom(BBBi) for 1 1 i 1 n. This means 
that the two relations have the same number of attributes and that each pair of corresponding attributes 
have the same domain.  

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE on two union-
compatible relations R and S as follows:  
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• UNION: The result of this operation, denoted by R D S, is a relation that includes all tuples 
that are either in R or in S or in both R and S. Duplicate tuples are eliminated.  

• INTERSECTION: The result of this operation, denoted by R C S, is a relation that includes 
all tuples that are in both R and S.  

• SET DIFFERENCE: The result of this operation, denoted by R - S, is a relation that includes 
all tuples that are in R but not in S.  

We will adopt the convention that the resulting relation has the same attribute names as the first 
relation R. Figure 07.11 illustrates the three operations. The relations STUDENT and INSTRUCTOR in 
Figure 07.11(a) are union compatible, and their tuples represent the names of students and instructors, 
respectively. The result of the UNION operation in Figure 07.11(b) shows the names of all students 
and instructors. Note that duplicate tuples appear only once in the result. The result of the 
INTERSECTION operation (Figure 07.11c) includes only those who are both students and instructors. 
Notice that both UNION and INTERSECTION are commutative operations; that is  

 
 

R D S = S D R, and R C S = S C R  

 
 

Both union and intersection can be treated as n-ary operations applicable to any number of relations as 
both are associative operations; that is  

 
 

R D (S D T) = (R D S) D T, and (R C S) C T = R C (S C T)  

 
 

The DIFFERENCE operation is not commutative; that is, in general  

 
 

R - S S - R  

 
 

Figure 07.11(d) shows the names of students who are not instructors, and Figure 07.11(e) shows the 
names of instructors who are not students.  

 

 

 
 

Next we discuss the CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or 
CROSS JOIN—denoted by x, which is also a binary set operation, but the relations on which it is 
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applied do not have to be union compatible. This operation is used to combine tuples from two 
relations in a combinatorial fashion. In general, the result of R(A1, A2, . . ., An) x S(BBB1, B2, . . ., Bm) is a 
relation Q with n + m attributes Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order. The resulting relation 
Q has one tuple for each combination of tuples—one from R and one from S. Hence, if R has nR tuples 
and S has nS tuples, then R x S will have nR * nS tuples. The operation applied by itself is generally 
meaningless. It is useful when followed by a selection that matches values of attributes coming from 
the component relations. For example, suppose that we want to retrieve for each female employee a list 
of the names of her dependents; we can do this as follows:  

 
 

FEMALE_EMPSãsSEX=’F’(EMPLOYEE)  

EMPNAMESãpFNAME, LNAME, SSN(FEMALE_EMPS)  

EMP_DEPENDENTSã EMPNAMES x DEPENDENT  

ACTUAL_DEPENDENTSãsSSN=ESSN(EMP_DEPENDENTS)  

RESULTãpFNAME, LNAME, DEPENDENT_NAME(ACTUAL_DEPENDENTS)  

 
 

The resulting relations from the above sequence of operations are shown in Figure 07.12. The 
EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT operation to 
EMPNAMES from Figure 07.12 with DEPENDENT from Figure 07.06. In EMP_DEPENDENTS, every tuple 
from EMPNAMES is combined with every tuple from DEPENDENT, giving a result that is not very 
meaningful. We only want to combine a female employee tuple with her dependents—namely, the 
DEPENDENT tuples whose ESSN values match the SSN value of the EMPLOYEE tuple. The 
ACTUAL_DEPENDENTS relation accomplishes this.  

 

 

 
 

The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations. We can 
then SELECT only related tuples from the two relations by specifying an appropriate selection 
condition, as we did in the preceding example. Because this sequence of CARTESIAN PRODUCT 
followed by SELECT is used quite commonly to identify and select related tuples from two relations, a 
special operation, called JOIN, was created to specify this sequence as a single operation. We discuss 
the JOIN operation next.  

 
 

7.4.5 The JOIN Operation 

The JOIN operation, denoted by , is used to combine related tuples from two relations into single 
tuples. This operation is very important for any relational database with more than a single relation, 
because it allows us to process relationships among relations. To illustrate join, suppose that we want 
to retrieve the name of the manager of each department. To get the manager’s name, we need to 
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combine each department tuple with the employee tuple whose SSN value matches the MGRSSN value in 
the department tuple. We do this by using the JOIN operation, and then projecting the result over the 
necessary attributes, as follows:  

 
 

DEPT_MGR ã DEPARTMENTMGRSSN=SSN EMPLOYEE  

RESULTãpDNAME, LNAME, FNAME(DEPT_MGR)  

 
 

The first operation is illustrated in Figure 07.13. Note that MGRSSN is a foreign key and that the 
referential integrity constraint plays a role in having matching tuples in the referenced relation 
EMPLOYEE. The example we gave earlier to illustrate the CARTESIAN PRODUCT operation can be 
specified, using the JOIN operation, by replacing the two operations:  

 
 

EMP_DEPENDENTS ã EMPNAMES x DEPENDENT  

ACTUAL_DEPENDENTS ãsSSN=ESSN(EMP_DEPENDENTS)  

 
 

with a single JOIN operation:  

 
 

ACTUAL_DEPENDENTS ã EMPNAMESSSN=ESSN DEPENDENT  

 
 

The general form of a JOIN operation on two relations (Note 9) R(A1, A2, . . ., An) and S(BBB1, B2, . . ., 
BBBm) is:  

 
 

R<join condition>S  
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The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, . . ., An, B1, B2, . . ., Bm) in that 
order; Q has one tuple for each combination of tuples—one from R and one from S—whenever the 
combination satisfies the join condition. This is the main difference between CARTESIAN PRODUCT 
and JOIN: in JOIN, only combinations of tuples satisfying the join condition appear in the result, 
whereas in the CARTESIAN PRODUCT all combinations of tuples are included in the result. The join 
condition is specified on attributes from the two relations R and S and is evaluated for each 
combination of tuples. Each tuple combination for which the join condition evaluates to true is 
included in the resulting relation Q as a single combined tuple.  

A general join condition is of the form:  

 
 

<condition> AND <condition> AND . . . AND <condition>  

 
 

where each condition is of the form Ai h Bj, Ai is an attribute of R, Bj is an attribute of S, Ai and Bj have 
the same domain, and h (theta) is one of the comparison operators {=, <, 1, >, , }. A JOIN operation 
with such a general join condition is called a THETA JOIN. Tuples whose join attributes are null do 
not appear in the result. In that sense, the join operation does not necessarily preserve all of the 
information in the participating relations.  

The most common JOIN involves join conditions with equality comparisons only. Such a JOIN, where 
the only comparison operator used is =, is called an EQUIJOIN. Both examples we have considered 
were EQUIJOINs. Notice that in the result of an EQUIJOIN we always have one or more pairs of 
attributes that have identical values in every tuple. For example, in Figure 07.13, the values of the 
attributes MGRSSN and SSN are identical in every tuple of DEPT_MGR because of the equality join 
condition specified on these two attributes. Because one of each pair of attributes with identical values 
is superfluous, a new operation called NATURAL JOIN—denoted by *—was created to get rid of the 
second (superfluous) attribute in an EQUIJOIN condition (Note 10). The standard definition of 
NATURAL JOIN requires that the two join attributes (or each pair of join attributes) have the same 
name in both relations. If this is not the case, a renaming operation is applied first. In the following 
example, we first rename the DNUMBER attribute of DEPARTMENT to DNUM—so that it has the same name 
as the DNUM attribute in PROJECT—then apply NATURAL JOIN:  

 
 

PROJ_DEPT ã PROJECT * q(DNAME, DNUM,MGRSSN,MGRSTARTDATE)(DEPARTMENT)  

 
 

The attribute DNUM is called the join attribute. The resulting relation is illustrated in Figure 07.14(a). 
In the PROJ_DEPT relation, each tuple combines a PROJECT tuple with the DEPARTMENT tuple for the 
department that controls the project, but only one join attribute is kept.  
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If the attributes on which the natural join is specified have the same names in both relations, renaming 
is unnecessary. For example, to apply a natural join on the DNUMBER attributes of DEPARTMENT and 
DEPT_LOCATIONS, it is sufficient to write:  

 
 

DEPT_LOCS ã DEPARTMENT * DEPT_LOCATIONS  

 
 

The resulting relation is shown in Figure 07.14(b), which combines each department with its locations 
and has one tuple for each location. In general, NATURAL JOIN is performed by equating all attribute 
pairs that have the same name in the two relations. There can be a list of join attributes from each 
relation, and each corresponding pair must have the same name.  

A more general but non-standard definition for NATURAL JOIN is  

 
 

Q ã R *(<list1>),(<list2>)S  

 
 

In this case, <list1> specifies a list of i attributes from R, and <list2> specifies a list of i attributes from 
S. The lists are used to form equality comparison conditions between pairs of corresponding attributes; 
the conditions are then ANDed together. Only the list corresponding to attributes of the first relation 
R—<list 1>—is kept in the result Q.  

Notice that if no combination of tuples satisfies the join condition, the result of a JOIN is an empty 
relation with zero tuples. In general, if R has nR tuples and S has nS tuples, the result of a JOIN 
operation R<join condition>S will have between zero and nR * nS tuples. The expected size of the join result 
divided by the maximum size nR * nS leads to a ratio called join selectivity, which is a property of each 
join condition. If there is no join condition, all combinations of tuples qualify and the JOIN becomes a 
CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.  

The join operation is used to combine data from multiple relations so that related information can be 
presented in a single table. Note that sometimes a join may be specified between a relation and itself, as 
we shall illustrate in Section 7.5.2. The natural join or equijoin operation can also be specified among 
multiple tables, leading to an n-way join. For example, consider the following three-way join:  

 
 

((PROJECTDNUM=DNUMBER DEPARTMENT)MGRSSN=SSN EMPLOYEE)  

 
 

This links each project to its controlling department, and then relates the department to its manager 
employee. The net result is a consolidated relation where each tuple contains this project-department-
manager information.  
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7.4.6 A Complete Set of Relational Algebra Operations 

It has been shown that the set of relational algebra operations {s, p, D, -, x} is a complete set; that is, 
any of the other relational algebra operations can be expressed as a sequence of operations from this 
set. For example, the INTERSECTION operation can be expressed by using UNION and 
DIFFERENCE as follows:  

 
 

R C S M (R D S) - ((R - S) D (S - R))  

 
 

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to specify this complex 
expression every time we wish to specify an intersection. As another example, a JOIN operation can be 
specified as a CARTESIAN PRODUCT followed by a SELECT operation, as we discussed:  

 
 

R<condition>S M s<condition> (R x S)  

 
 

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by RENAME 
and followed by SELECT and PROJECT operations. Hence, the various JOIN operations are also not 
strictly necessary for the expressive power of the relational algebra; however, they are very important 
because they are convenient to use and are very commonly applied in database applications. Other 
operations have been included in the relational algebra for convenience rather than necessity. We 
discuss one of these—the DIVISION operation—in the next section.  

 
 

7.4.7 The DIVISION Operation 

The DIVISION operation is useful for a special kind of query that sometimes occurs in database 
applications. An example is "Retrieve the names of employees who work on all the projects that ‘John 
Smith’ works on." To express this query using the DIVISION operation, proceed as follows. First, 
retrieve the list of project numbers that ‘John Smith’ works on in the intermediate relation SMITH_PNOS:  

 
 

SMITH ã sFNAME=’John’ AND LNAME=’Smith’(EMPLOYEE)  

SMITH_PNOS ã pPNO(WORKS_ONESSN=SSN SMITH)  
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Next, create a relation that includes a tuple <PNO, ESSN> whenever the employee whose social security 
number is ESSN works on the project whose number is PNO in the intermediate relation SSN_PNOS:  

 
 

SSN_PNOS ã pESSN,PNO (WORKS_ON)  

 
 

Finally, apply the DIVISION operation to the two relations, which gives the desired employees’ social 
security numbers:  

 
 

SSNS(SSN) ã SSN_PNOS ÷ SMITH_PNOS  

RESULT ã pFNAME, LNAME(SSNS * EMPLOYEE)  

 
 

The previous operations are shown in Figure 07.15(a). In general, the DIVISION operation is applied 
to two relations R(Z) ÷ S(X), where X Z. Let Y = Z - X (and hence Z = X D Y); that is, let Y be the set 
of attributes of R that are not attributes of S. The result of DIVISION is a relation T(Y) that includes a 
tuple t if tuples tR appear in R with tR[Y] = t, and with tR[X] = tS for every tuple tS in S. This means that, 
for a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination 
with every tuple in S.  

 

 

 
 

Figure 07.15(b) illustrates a DIVISION operator where X = {A}, Y = {B}, and Z = {A, B}. Notice that 
the tuples (values) b1 and b4 appear in R in combination with all three tuples in S; that is why they 
appear in the resulting relation T. All other values of B in R do not appear with all the tuples in S and 
are not selected: b2 does not appear with a2 and b3 does not appear with a1.  

The DIVISION operator can be expressed as a sequence of p, x, and - operations as follows:  

 
 

T1 ã pY(R)  

T2 ã pY((S x T1) - R)  

T ã T1 - T2  
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7.5 Additional Relational Operations 

7.5.1 Aggregate Functions and Grouping 
7.5.2 Recursive Closure Operations 
7.5.3 OUTER JOIN and OUTER UNION Operations

Some common database requests—which are needed in commercial query languages for relational 
DBMSs—cannot be performed with the basic relational algebra operations described in Section 7.4. In 
this section we define additional operations to express these requests. These operations enhance the 
expressive power of the relational algebra.  

 
 

7.5.1 Aggregate Functions and Grouping 

The first type of request that cannot be expressed in the basic relational algebra is to specify 
mathematical aggregate functions on collections of values from the database. Examples of such 
functions include retrieving the average or total salary of all employees or the number of employee 
tuples. Common functions applied to collections of numeric values include SUM, AVERAGE, 
MAXIMUM, and MINIMUM. The COUNT function is used for counting tuples or values.  

Another common type of request involves grouping the tuples in a relation by the value of some of 
their attributes and then applying an aggregate function independently to each group. An example 
would be to group employee tuples by DNO, so that each group includes the tuples for employees 
working in the same department. We can then list each DNO value along with, say, the average salary 
of employees within the department.  

We can define an AGGREGATE FUNCTION operation, using the symbol (pronounced "script F") 
(Note 11), to specify these types of requests as follows:  

 
 

<grouping attributes> <function list> (R)  

 
 

where <grouping attributes> is a list of attributes of the relation specified in R, and <function list> is a 
list of (<function> <attribute>) pairs. In each such pair, <function> is one of the allowed functions—
such as SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT—and <attribute> is an attribute of the 
relation specified by R. The resulting relation has the grouping attributes plus one attribute for each 
element in the function list. For example, to retrieve each department number, the number of 
employees in the department, and their average salary, while renaming the resulting attributes as 
indicated below, we write:  

 
 

qR(DNO, NO_OF_EMPLOYEES, AVERAGE_SAL) (DNO COUNT SSN, AVERAGE SALARY (EMPLOYEE))  
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The result of this operation is shown in Figure 07.16(a).  

 

 

 
 

In the above example, we specified a list of attribute names—between parentheses in the rename 
operation—for the resulting relation R. If no renaming is applied, then the attributes of the resulting 
relation that correspond to the function list will each be the concatenation of the function name with the 
attribute name in the form <function>_<attribute>. For example, Figure 07.16(b) shows the result of 
the following operation:  

 
 

DNO COUNT SSN, AVERAGE SALARY(EMPLOYEE)  

 
 

If no grouping attributes are specified, the functions are applied to the attribute values of all the tuples 
in the relation, so the resulting relation has a single tuple only. For example, Figure 07.16(c) shows the 
result of the following operation:  

 
 

COUNT SSN, AVERAGE SALARY(EMPLOYEE)  

 
 

It is important to note that, in general, duplicates are not eliminated when an aggregate function is 
applied; this way, the normal interpretation of functions such as SUM and AVERAGE is computed 
(Note 12). It is worth emphasizing that the result of applying an aggregate function is a relation, not a 
scalar number—even if it has a single value.  

 
 

7.5.2 Recursive Closure Operations 

Another type of operation that, in general, cannot be specified in the basic relational algebra is 
recursive closure. This operation is applied to a recursive relationship between tuples of the same 
type, such as the relationship between an employee and a supervisor. This relationship is described by 
the foreign key SUPERSSN of the EMPLOYEE relation in Figure 07.06 and Figure 07.07, which relates 
each employee tuple (in the role of supervisee) to another employee tuple (in the role of supervisor). 
An example of a recursive operation is to retrieve all supervisees of an employee e at all levels—that is, 
all employees e directly supervised by e; all employees e directly supervised by each employee e; all 
employees e directly supervised by each employee e; and so on. Although it is straightforward in the 
relational algebra to specify all employees supervised by e at a specific level, it is difficult to specify all 
supervisees at all levels. For example, to specify the SSNs of all employees e directly supervised—at 
level one—by the employee e whose name is ‘James Borg’ (see Figure 07.06), we can apply the 
following operation:  
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BORG_SSN ã pSSN(sFNAME=’James’ AND LNAME=’Borg’(EMPLOYEE))  

SUPERVISION(SSN1, SSN2) ã pSSN, SUPERSSN(EMPLOYEE)  

RESULT1(SSN) ã pSSN1(SUPERVISIONSSN2=SSN BORG_SSN)  

 
 

To retrieve all employees supervised by Borg at level 2—that is, all employees e supervised by some 
employee e who is directly supervised by Borg—we can apply another JOIN to the result of the first 
query, as follows:  

 
 

RESULT2(SSN) ã pSSN1(SUPERVISIONSSN2=SSN RESULT1)  

 
 

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg,’ we can apply the UNION 
operation to the two results, as follows:  

 
 

RESULT ã RESULT2 D RESULT1  

 
 

The results of these queries are illustrated in Figure 07.17. Although it is possible to retrieve employees 
at each level and then take their UNION, we cannot, in general, specify a query such as "retrieve the 
supervisees of ‘James Borg’ at all levels" without utilizing a looping mechanism (Note 13). An 
operation called the transitive closure of relations has been proposed to compute the recursive 
relationship as far as the recursion proceeds.  

 

 

 
 

7.5.3 OUTER JOIN and OUTER UNION Operations 

Finally, we discuss some extensions of the JOIN and UNION operations. The JOIN operations 
described earlier match tuples that satisfy the join condition. For example, for a NATURAL JOIN 
operation R * S, only tuples from R that have matching tuples in S—and vice versa—appear in the 
result. Hence, tuples without a matching (or related) tuple are eliminated from the JOIN result. Tuples 
with null in the join attributes are also eliminated. A set of operations, called OUTER JOINs, can be 
used when we want to keep all the tuples in R, or those in S, or those in both relations in the result of 
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the JOIN, whether or not they have matching tuples in the other relation. This satisfies the need of 
queries where tuples from two tables are to be combined by matching corresponding rows, but some 
tuples are liable to be lost for lack of matching values. In such cases an operation is desirable that 
would preserve all the tuples whether or not they produce a match.  

For example, suppose that we want a list of all employee names and also the name of the departments 
they manage if they happen to manage a department; we can apply an operation LEFT OUTER 
JOIN, denoted by , to retrieve the result as follows:  

 
 

TEMP ã (EMPLOYEESSN=MGRSSN DEPARTMENT)  

RESULT ã pFNAME, MINIT, LNAME, DNAME(TEMP)  

 
 

The LEFT OUTER JOIN operation keeps every tuple in the first or left relation R in R S; if no 
matching tuple is found in S, then the attributes of S in the join result are filled or "padded" with null 
values. The result of these operations is shown in Figure 07.18.  

A similar operation, RIGHT OUTER JOIN, denoted by , keeps every tuple in the second or right 
relation S in the result of R S. A third operation, FULL OUTER JOIN, denoted by , keeps all tuples in 
both the left and the right relations when no matching tuples are found, padding them with null values 
as needed. The three outer join operations are part of the SQL2 standard (see Chapter 8).  

The OUTER UNION operation was developed to take the union of tuples from two relations if the 
relations are not union compatible. This operation will take the UNION of tuples in two relations that 
are partially compatible, meaning that only some of their attributes are union compatible. It is 
expected that the list of compatible attributes includes a key for both relations. Tuples from the 
component relations with the same key are represented only once in the result and have values for all 
attributes in the result. The attributes that are not union compatible from either relation are kept in the 
result, and tuples that have no values for these attributes are padded with null values. For example, an 
OUTER UNION can be applied to two relations whose schemas are STUDENT(Name, SSN, Department, 
Advisor) and FACULTY(Name, SSN, Department, Rank). The resulting relation schema is R(Name, SSN, 
Department, Advisor, Rank), and all the tuples from both relations are included in the result. Student 
tuples will have a null for the Rank attribute, whereas faculty tuples will have a null for the Advisor 
attribute. A tuple that exists in both will have values for all its attributes (Note 14).  

 

 

 
 

Another capability that exists in most commercial languages (but not in the basic relational algebra) is 
that of specifying operations on values after they are extracted from the database. For example, 
arithmetic operations such as +, -, and * can be applied to numeric values.  

 
 

7.6 Examples of Queries in Relational Algebra 
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We now give additional examples to illustrate the use of the relational algebra operations. All examples 
refer to the database of Figure 07.06. In general, the same query can be stated in numerous ways using 
the various operations. We will state each query in one way and leave it to the reader to come up with 
equivalent formulations.  

 
 

QUERY 1 

 
 

Retrieve the name and address of all employees who work for the ‘Research’ department.  

 
 

RESEARCH_DEPT ã sDNAME=’Research’(DEPARTMENT)  

RESEARCH_EMPS ã (RESEARCH_DEPTDNUMBER=DNOEMPLOYEE)  

RESULT ã pFNAME, LNAME, ADDRESS(RESEARCH_EMPS)  

 
 

This query could be specified in other ways; for example, the order of the JOIN and SELECT 
operations could be reversed, or the JOIN could be replaced by a NATURAL JOIN (after renaming).  

 
 

QUERY 2  

For every project located in ‘Stafford’, list the project number, the controlling department number, and 
the department manager’s last name, address, and birthdate.  

 
 

STAFFORD_PROJS ã sPLOCATION=’Stafford’(PROJECT)  

CONTR_DEPT ã (STAFFORD_PROJSDNUM=DNUMBER DEPARTMENT)  

PROJ_DEPT_MGR ã (CONTR_DEPTMGRSSN=SSN EMPLOYEE)  

RESULT ã pPNUMBER, DNUM, LNAME, ADDRESS, BDATE(PROJ_DEPT_MGR)  

 
 

QUERY 3  
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Find the names of employees who work on all the projects controlled by department number 5.  

 
 

DEPT5_PROJS(PNO) ã pPNUMBER(sDNUM= 5(PROJECT))  

EMP_PRJO(SSN, PNO) ãpESSN, PNO(WORKS_ON)  

RESULT_EMP_SSNS ã EMP_PRJO ÷ DEPT5_PROJS  

RESULT ã pLNAME, FNAME(RESULT_EMP_SSNS * EMPLOYEE)  

 
 

QUERY 4  

 
 

Make a list of project numbers for projects that involve an employee whose last name is ‘Smith’, either 
as a worker or as a manager of the department that controls the project.  

 
 

SMITHS(ESSN) ã pSSN(sLNAME=’Smith’(EMPLOYEE))  

SMITH_WORKER_PROJ ã pPNO(WORKS_ON * SMITHS)  

MGRS ã pLNAME, DNUMBER(EMPLOYEESSN=MGRSSN DEPARTMENT)  

SMITH_MANAGED_DEPTS (DNUM) ã pDNUMBER(sLNAME= ’Smith’(MGRS))  

SMITH_MGR_PROJS(PNO) ã pPNUMBER(SMITH_MANAGED_DEPTS * PROJECT)  

RESULT ã (SMITH_WORKER_PROJS D SMITH_MGR_PROJS)  

 
 

QUERY 5  

 
 

List the names of all employees with two or more dependents.  
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Strictly speaking, this query cannot be done in the basic relational algebra. We have to use the 
AGGREGATE FUNCTION operation with the COUNT aggregate function. We assume that 
dependents of the same employee have distinct DEPENDENT_NAME values.  

 
 

T1(SSN, NO_OF_DEPTS) ã ESSN COUNT DEPENDENT_NAME(DEPENDENT)  

T2 ã sNO_OF_DEPS2(T1)  

RESULT ã pLNAME, FNAME(T2 * EMPLOYEE)  

 
 

QUERY 6  

 
 

Retrieve the names of employees who have no dependents.  

 
 

ALL_EMPS ã pSSN(EMPLOYEE)  

EMPS_WITH_DEPS(SSN) ã pESSN(DEPENDENT)  

EMPS_WITHOUT_DEPS ã (ALL_EMPS - EMPS_WITH_DEPS)  

RESULT ã pLNAME, FNAME(EMPS_WITHOUT_DEPS * EMPLOYEE)  

 
 

QUERY 7  

 
 

List the names of managers who have at least one dependent.  

MGRS(SSN) ã pMGRSSN(DEPARTMENT)  

EMPS_WITH_DEPS(SSN) ã pESSN(DEPENDENT)  

MGRS_WITH_DEPS ã (MGRS C EMPS_WITH_DEPS)  

RESULT ã pLNAME, FNAME(MGRS_WITH_DEPS * EMPLOYEE)  
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As we mentioned earlier, the same query can in general be specified in many different ways. For 
example, the operations can often be applied in various sequences. In addition, some operations can be 
used to replace others; for example, the INTERSECTION operation in Query 7 can be replaced by a 
NATURAL JOIN. As an exercise, try to do each of the above example queries using different 
operations (Note 15). In Chapter 8 and Chapter 9 we will show how these queries are written in other 
relational languages.  

 
 

7.7 Summary 

In this chapter we presented the modeling concepts provided by the relational model of data. We also 
discussed the relational algebra and additional operations that can be used to manipulate relations. We 
started by introducing the concepts of domains, attributes, and tuples. We then defined a relation 
schema as a list of attributes that describe the structure of a relation. A relation, or relation state, is a set 
of tuples that conform to the schema.  

Several characteristics differentiate relations from ordinary tables or files. The first is that tuples in a 
relation are not ordered. The second involves the ordering of attributes in a relation schema and the 
corresponding ordering of values within a tuple. We gave an alternative definition of relation that does 
not require these two orderings, but we continued to use the first definition, which requires attributes 
and tuple values to be ordered, for convenience. We then discussed values in tuples and introduced null 
values to represent missing or unknown information.  

We then discussed the relational model constraints, starting with domain constraints, then key 
constraints, including the concepts of superkey, candidate key, and primary key, and the NOT NULL 
constraint on attributes. We then defined relational databases and relational database schemas. 
Additional relational constraints include the entity integrity constraint, which prohibits primary key 
attributes from being null. The interrelation constraint of referential integrity was then described, which 
is used to maintain consistency of references among tuples from different relations.  

The modification operations on the relational model are Insert, Delete, and Update. Each operation may 
violate certain types of constraints. Whenever an operation is applied, the database state after the 
operation is executed must be checked to ensure that no constraints are violated.  

We then described the basic relational algebra, which is a set of operations for manipulating relations 
that can be used to specify queries. We presented the various operations and illustrated the types of 
queries for which each is used. Table 7.1 lists the various relational algebra operations we discussed. 
The unary relational operators SELECT and PROJECT, as well as the RENAME operation, were 
discussed first. Then we discussed binary set theoretic operations requiring that relations on which they 
are applied be union compatible; these include UNION, INTERSECTION, and SET DIFFERENCE. 
The CARTESIAN PRODUCT operation is another set operation that can be used to combine tuples 
from two relations, producing all possible combinations. We showed how CARTESIAN PRODUCT 
followed by SELECT can identify related tuples from two relations. The JOIN operations can directly 
identify and combine related tuples. Join operations include THETA JOIN, EQUIJOIN, and 
NATURAL JOIN.  

 

Table 7.1  Operations of Relational Algebra  

 
 

Operation  Purpose  Notation  

SELECT  Selects all tuples that satisfy the selection condition 
from a relation R.   
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PROJECT  Produces a new relation with only some of the 
attributes of R, and removes duplicate tuples.   

THETA JOIN  Produces all combinations of tuples from and that 
satisfy the join condition.   

EQUIJOIN  Produces all the combinations of tuples from and that 
satisfy a join condition with only equality 
comparisons.  

 

NATURAL 
JOIN  

Same as EQUIJOIN except that the join attributes of 
are not included in the resulting relation; if the join 
attributes have the same names, they do not have to 
be specified at all.  

 

UNION  Produces a relation that includes all the tuples in or 
or both and ; and must be union compatible.   

INTERSECTION  Produces a relation that includes all the tuples in 
both and ; and must be union compatible.   

DIFFERENCE  Produces a relation that includes all the tuples in that 
are not in ; and must be union compatible.   

CARTESIAN 
PRODUCT  

Produces a relation that has the attributes of and and 
includes as tuples all possible combinations of tuples 
from and .  

 

DIVISION  Produces a relation R(X) that includes all tuples t[X] 
in (Z) that appear in in combination with every tuple 
from (Y), where Z = X D Y.  

 

 
 

We then discussed some important types of queries that cannot be stated with the basic relational 
algebra operations. We introduced the AGGREGATE FUNCTION operation to deal with aggregate 
types of requests. We discussed recursive queries and showed how some types of recursive queries can 
be specified. We then presented the OUTER JOIN and OUTER UNION operations, which extend 
JOIN and UNION.  

 
 

Review Questions 

  7.1. Define the following terms: domain, attribute, n-tuple, relation schema, relation state, degree of 
a relation, relational database schema, relational database state.  

  7.2.  Why are tuples in a relation not ordered?  

  7.3.  Why are duplicate tuples not allowed in a relation?  

  7.4.  What is the difference between a key and a superkey?  

  7.5. Why do we designate one of the candidate keys of a relation to be the primary key?  

  7.6.  Discuss the characteristics of relations that make them different from ordinary tables and files.  

  7.7.  Discuss the various reasons that lead to the occurrence of null values in relations.  

  7.8.  Discuss the entity integrity and referential integrity constraints. Why is each considered 
important?  
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  7.9.  Define foreign key. What is this concept used for? How does it play a role in the join operation?  

7.10. Discuss the various update operations on relations and the types of integrity constraints that 
must be checked for each update operation.  

7.11.  List the operations of relational algebra and the purpose of each.  

7.12.  What is union compatibility? Why do the UNION, INTERSECTION, and DIFFERENCE 
operations require that the relations on which they are applied be union compatible?  

7.13. Discuss some types of queries for which renaming of attributes is necessary in order to specify 
the query unambiguously.  

7.14.  Discuss the various types of JOIN operations. Why is theta join required?  

7.15. What is the FUNCTION operation? What is it used for?  

7.16.  How are the OUTER JOIN operations different from the (inner) JOIN operations? How is the 
OUTER UNION operation different from UNION?  

 
 

Exercises 

7.17.  Show the result of each of the example queries in Section 7.6 as it would apply to the database 
of Figure 07.06.  

7.18.  Specify the following queries on the database schema shown in Figure 07.05, using the 
relational operators discussed in this chapter. Also show the result of each query as it would 
apply to the database of Figure 07.06.  

a. Retrieve the names of all employees in department 5 who work more than 10 hours per 
week on the ‘ProductX’ project.  

b. List the names of all employees who have a dependent with the same first name as 
themselves.  

c. Find the names of all employees who are directly supervised by ‘Franklin Wong’.  
d. For each project, list the project name and the total hours per week (by all employees) 

spent on that project.  
e. Retrieve the names of all employees who work on every project.  
f. Retrieve the names of all employees who do not work on any project.  
g. For each department, retrieve the department name and the average salary of all 

employees working in that department.  
h. Retrieve the average salary of all female employees.  
i. Find the names and addresses of all employees who work on at least one project 

located in Houston but whose department has no location in Houston.  
j. List the last names of all department managers who have no dependents.  

7.19.  Suppose that each of the following update operations is applied directly to the database of 
Figure 07.07. Discuss all integrity constraints violated by each operation, if any, and the 
different ways of enforcing these constraints.  

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1952-06-21’, ‘2365 Newcastle Rd, 
Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.  

b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.  
c. Insert <‘Production’, 4, ‘943775543’, ‘1998-10-01’> into DEPARTMENT.  
d. Insert <‘677678989’, null, ‘40.0’> into WORKS_ON.  
e. Insert <‘453453453’, ‘John’, M, ‘1970-12-12’, ‘SPOUSE’> into DEPENDENT.  
f. Delete the WORKS_ON tuples with ESSN = ‘333445555’.  
g. Delete the EMPLOYEE tuple with SSN = ‘987654321’.  
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h. Delete the PROJECT tuple with PNAME = ‘ProductX’.  
i. Modify the MGRSSN and MGRSTARTDATE of the DEPARTMENT tuple with DNUMBER = 5 to 

‘123456789’ and ‘1999-10-01’, respectively.  
j. Modify the SUPERSSN attribute of the EMPLOYEE tuple with SSN = ‘999887777’ to 

‘943775543’.  
k. Modify the HOURS attribute of the WORKS_ON tuple with ESSN = ‘999887777’ and PNO 

= 10 to ‘5.0’.  

 
 

7.20.  Consider the AIRLINE relational database schema shown in Figure 07.19, which describes a 
database for airline flight information. Each FLIGHT is identified by a flight NUMBER, and consists 
of one or more FLIGHT_LEGS with LEG_NUMBERs 1, 2, 3, etc. Each leg has scheduled arrival and 
departure times and airports and has many LEG_INSTANCES—one for each DATE on which the 
flight travels. FARES are kept for each flight. For each leg instance, SEAT_RESERVATIONS are 
kept, as are the AIRPLANE used on the leg and the actual arrival and departure times and airports. 
An AIRPLANE is identified by an AIRPLANE_ID and is of a particular AIRPLANE_TYPE. CAN_LAND 
relates AIRPLANE_TYPEs to the AIRPORTs in which they can land. An AIRPORT is identified by an 
AIRPORT_CODE. Specify the following queries in relational algebra:  

a. For each flight, list the flight number, the departure airport for the first leg of the flight, 
and the arrival airport for the last leg of the flight.  

b. List the flight numbers and weekdays of all flights or flight legs that depart from 
Houston Intercontinental Airport (airport code ‘IAH’) and arrive in Los Angeles 
International Airport (airport code ‘LAX’).  

c. List the flight number, departure airport code, scheduled departure time, arrival airport 
code, scheduled arrival time, and weekdays of all flights or flight legs that depart from 
some airport in the city of Houston and arrive at some airport in the city of Los 
Angeles.  

d. List all fare information for flight number ‘CO197’.  
e. Retrieve the number of available seats for flight number ‘CO197’ on ‘1999-10-09’.  

7.21.  Consider an update for the AIRLINE database to enter a reservation on a particular flight or flight 
leg on a given date.  

a. Give the operations for this update.  
b. What types of constraints would you expect to check?  
c. Which of these constraints are key, entity integrity, and referential integrity constraints, 

and which are not?  
d. Specify all the referential integrity constraints on Figure 07.19.  

7.22.  Consider the relation  

 
 

CLASS(Course#, Univ_Section#, InstructorName, Semester, BuildingCode, Room#, TimePeriod, 
Weekdays, CreditHours).  

 
 

This represents classes taught in a university, with unique Univ_Section#. Identify what you 
think should be various candidate keys, and write in your own words the constraints under 
which each candidate key would be valid.  
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7.23.  Consider the LIBRARY relational schema shown in Figure 07.20, which is used to keep track of 
books, borrowers, and book loans. Referential integrity constraints are shown as directed arcs in 
Figure 07.20, as in the notation of Figure 07.07. Write down relational expressions for the 
following queries on the LIBRARY database:  

a. How many copies of the book titled The Lost Tribe are owned by the library branch 
whose name is ‘Sharpstown’?  

b. How many copies of the book titled The Lost Tribe are owned by each library branch?  
c. Retrieve the names of all borrowers who do not have any books checked out.  
d. For each book that is loaned out from the ‘Sharpstown’ branch and whose DueDate is 

today, retrieve the book title, the borrower’s name, and the borrower’s address.  
e. For each library branch, retrieve the branch name and the total number of books loaned 

out from that branch.  
f. Retrieve the names, addresses, and number of books checked out for all borrowers who 

have more than five books checked out.  
g. For each book authored (or coauthored) by ‘Stephen King,’ retrieve the title and the 

number of copies owned by the library branch whose name is ‘Central.’  

 
 

7.24.  Consider the following six relations for an order processing database application in a company:  

 
 

CUSTOMER(Cust#, Cname, City)  

ORDER(Order#, Odate, Cust#, Ord_Amt)  

ORDER_ITEM(Order#, Item#, Qty)  

ITEM(Item#, Unit_price)  

SHIPMENT(Order#, Warehouse#, Ship_date)  

WAREHOUSE(Warehouse#, City)  

 
 

Here, Ord_Amt refers to total dollar amount of an order; Odate is the date the order was placed; 
Ship_date is the date an order is shipped from the warehouse. Assume that an order can be 
shipped from several warehouses. Specify the foreign keys for the above schema, stating any 
assumptions you make. Then specify the following queries in relational algebra:  

a. List the Order# and Ship_date for all orders shipped from Warehouse number ‘W2’.  
b. List the Warehouse information from which the Customer named ‘Jose Lopez’ was 

supplied his orders. Produce a listing: Order#, Warehouse#.  
c. Produce a listing: CUSTNAME, #OFORDERS, AVG_ORDER_AMT, where the middle column 

is the total number of orders by the customer and the last column is the average order 
amount for that customer.  

d. List the orders that were not shipped within 30 days of ordering.  
e. List the Order# for orders that were shipped from all warehouses that the company has 

in New York.  
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7.25.  Consider the following relations for a database that keeps track of business trips of salespersons 
in a sales office:  

 
 

SALESPERSON(SSN, Name, Start_Year, Dept_No)  

TRIP(SSN, From_City, To_City, Departure_Date, Return_Date, Trip_ID)  

EXPENSE(Trip_ID, Account#, Amount)  

 
 

Specify the foreign keys for the above schema, stating any assumptions you make. Then specify 
the following queries in relational algebra:  

a. Give the details (all attributes of TRIP relation) for trips that exceeded $2000 in 
expenses.  

b. Print the SSN of salesman who took trips to ‘Honolulu’.  
c. Print the total trip expenses incurred by the salesman with SSN = ‘234-56-7890’.  

7.26.  Consider the following relations for a database that keeps track of student enrollment in courses 
and the books adopted for each course:  

 
 

STUDENT(SSN, Name, Major, Bdate)  

COURSE(Course#, Cname, Dept)  

ENROLL(SSN, Course#, Quarter, Grade)  

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)  

TEXT(Book_ISBN, Book_Title, Publisher, Author)  

Specify the foreign keys for the above schema, stating any assumptions you make. Then specify 
the following queries in relational algebra:  

a. List the number of courses taken by all students named ‘John Smith’ in Winter 1999 
(i.e., Quarter = ‘W99’).  

b. Produce a list of textbooks (include Course#, Book_ISBN, Book_Title) for courses 
offered by the ‘CS’ department that have used more than two books.  

c. List any department that has all its adopted books published by ‘BC Publishing’.  

7.27.  Consider the two tables T1 and T2 shown in Figure 07.21. Show the results of the following 
operations:  

a.  
b.  
c.  
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d.  
e.  
f.  

 
 

7.28.  Consider the following relations for a database that keeps track of auto sales in a car dealership 
(Option refers to some optional equipment installed on an auto):  

 
 

CAR(Serial-No, Model, Manufacturer, Price)  

OPTIONS(Serial-No, Option-Name, Price)  

SALES(Salesperson-id, Serial-No, Date, Sale-price)  

SALESPERSON(Salesperson-id, Name, Phone)  

 
 

First, specify the foreign keys for the above schema, stating any assumptions you make. Next, 
populate the relations with a few example tuples, and then show an example of an insertion in 
the SALES and SALESPERSON relations that violates the referential integrity constraints and 
another insertion that does not. Then specify the following queries in relational algebra:  

a. For the salesperson named ‘Jane Doe’, list the following information for all the cars she 
sold: Serial#, Manufacturer, Sale-price.  

b. List the Serial# and Model of cars that have no options.  
c. Consider the natural join operation between SALESPERSON and SALES. What is the 

meaning of a left outer join for these tables (do not change the order of relations). 
Explain with an example.  

d. Write a query in relational algebra involving selection and one set operation and say in 
words what the query does.  

 
 

Selected Bibliography 

The relational model was introduced by Codd (1970) in a classic paper. Codd also introduced relational 
algebra and laid the theoretical foundations for the relational model in a series of papers (Codd 1971, 
1972, 1972a, 1974); he was later given the Turing award, the highest honor of the ACM, for his work 
on the relational model. In a later paper, Codd (1979) discussed extending the relational model to 
incorporate more meta-data and semantics about the relations; he also proposed a three-valued logic to 
deal with uncertainty in relations and incorporating NULLs in the relational algebra. The resulting 
model is known as RM/T. Childs (1968) had earlier used set theory to model databases. More recently, 
Codd (1990) published a book examining over 300 features of the relational data model and database 
systems.  

Since Codd’s pioneering work, much research has been conducted on various aspects of the relational 
model. Todd (1976) describes an experimental DBMS called PRTV that directly implements the 
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relational algebra operations. Date (1983a) discusses outer joins. Schmidt and Swenson (1975) 
introduces additional semantics into the relational model by classifying different types of relations. 
Chen’s (1976) Entity Relationship model, which was discussed in Chapter 3, was a means to 
communicate the real-world semantics of a relational database at the conceptual level. Wiederhold and 
Elmasri (1979) introduces various types of connections between relations to enhance its constraints. 
Work on extending relational operations is discussed by Carlis (1986) and Ozsoyoglu et al. (1985). 
Cammarata et al. (1989) extends the relational model integrity constraints and joins. Extensions of the 
relational model are discussed in Chapter 13. Additional bibliographic notes for other aspects of the 
relational model and its languages, systems, extensions, and theory are given in Chapter 8, Chapter 9, 
Chapter 10, Chapter 13, Chapter 14, Chapter 15, Chapter 18, Chapter 22, Chapter 23, and Chapter 24.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15

Note 1 

CASE stands for Computer Aided Software Engineering.  

 
 

Note 2 

This has also been called a relation instance. We will not use this term because instance is also used to 
refer to a single tuple or row.  

 
 

Note 3 

We discuss this assumption in more detail in Chapter 14.  

 
 

Note 4 

Note that SSN is also a superkey.  
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Note 5 

Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—
must be used to distinguish between identical names.  

 
 

Note 6 

A relational database state is also called a relational database instance.  

 
 

Note 7 

State constraints are also called static constraints, and transition constraints are called dynamic 
constraints.  

 
 

Note 8 

If duplicates are not eliminated, the result would be a multiset or bag of tuples rather than a set. As we 
shall see in Chapter 8, the SQL language allows the user to specify whether duplicates should be 
eliminated or not.  

 
 

Note 9 

Again, notice that R and S can be the relations that result from general relational algebra expressions.  

 
 

Note 10 

NATURAL JOIN is basically an EQUIJOIN followed by removal of the superfluous attributes.  

 
 

Note 11 

There is no single agreed-upon notation for specifying aggregate functions. In some cases a "script A" 
is used.  
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Note 12 

In SQL, the option of eliminating duplicates before applying the aggregate function is available by 
including the keyword DISTINCT (see Chapter 8).  

 
 

Note 13 

We will discuss recursive queries further in Chapter 25 when we give an overview of deductive 
databases. Also, the SQL3 standard includes syntax for recursive closure.  

 
 

Note 14 

Notice that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the 
common attributes of the two relations.  

 
 

Note 15 

When queries are optimized (see Chapter 18), the system will choose a particular sequence of 
operations that corresponds to an execution strategy that can be executed efficiently.  

 
 

Chapter 8: SQL - The Relational Database Standard 
8.1 Data Definition, Constraints, and Schema Changes in SQL2 
8.2 Basic Queries in SQL 
8.3 More Complex SQL Queries 
8.4 Insert, Delete, and Update Statements in SQL 
8.5 Views (Virtual Tables) in SQL 
8.6 Specifying General Constraints as Assertions 
8.7 Additional Features of SQL 
8.8 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

The SQL language may be considered one of the major reasons for the success of relational databases 
in the commercial world. Because it became a standard for relational databases, users were less 
concerned about migrating their database applications from other types of database systems—for 
example, network or hierarchical systems—to relational systems. The reason is that even if the user 
became dissatisfied with the particular relational DBMS product they chose to use, converting to 
another relational DBMS would not be expected to be too expensive and time consuming, since both 
systems would follow the same language standards. In practice, of course, there are many differences 
between various commercial relational DBMS packages. However, if the user is diligent in using only 
those features that are part of the standard, and if both relational systems faithfully support the 
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standard, then conversion between the two systems should be much simplified. Another advantage of 
having such a standard is that users may write statements in a database application program that can 
access data stored in two or more relational DBMSs without having to change the database sub-
language (SQL) if both relational DBMSs support standard SQL.  

This chapter presents the main features of the SQL standard for commercial relational DBMSs, 
whereas Chapter 7 presented the most important formalisms underlying the relational data model. In 
Chapter 7 we discussed the relational algebra operations; these operations are very important for 
understanding the types of requests that may be specified on a relational database. They are also 
important for query processing and optimization in a relational DBMS, as we shall see in Chapter 18. 
However, the relational algebra operations are considered to be too technical for most commercial 
DBMS users. One reason is because a query in relational algebra is written as a sequence of operations 
that, when executed, produce the required result. Hence, the user must specify how—that is, in what 
order—to execute the query operations. On the other hand, the SQL language provides a high-level 
declarative language interface, so the user only specifies what the result is to be, leaving the actual 
optimization and decisions on how to execute the query to the DBMS. SQL includes some features 
from relational algebra, but it is based to a greater extent on the tuple relational calculus, which is 
another formal query language for relational databases that we shall describe in Section 9.3. The SQL 
syntax is more user-friendly than either of the two formal languages.  

The name SQL is derived from Structured Query Language. Originally, SQL was called SEQUEL (for 
Structured English QUEry Language) and was designed and implemented at IBM Research as the 
interface for an experimental relational database system called SYSTEM R. SQL is now the standard 
language for commercial relational DBMSs. A joint effort by ANSI (the American National Standards 
Institute) and ISO (the International Standards Organization) has led to a standard version of SQL 
(ANSI 1986), called SQL-86 or SQL1. A revised and much expanded standard called SQL2 (also 
referred to as SQL-92) has subsequently been developed. Plans are already well underway for SQL3, 
which will further extend SQL with object-oriented and other recent database concepts.  

SQL is a comprehensive database language; it has statements for data definition, query, and update. 
Hence, it is both a DDL and a DML. In addition, it has facilities for defining views on the database, for 
specifying security and authorization, for defining integrity constraints, and for specifying transaction 
controls. It also has rules for embedding SQL statements into a general-purpose programming language 
such as C or PASCAL (Note 1). We will discuss most of these topics in the following subsections. In 
our discussion, we will mostly follow SQL2. Features of SQL3 are overviewed in Section 13.4.  

Section 8.1 describes the SQL2 DDL commands for creating and modifying schemas, tables, and 
constraints. Section 8.2 describes the basic SQL constructs for specifying retrieval queries and Section 
8.3 goes over more complex features. Section 8.4 describes the SQL commands for inserting, deleting 
and updating, and Section 8.5 discusses the concept of views (virtual tables). Section 8.6 shows how 
general constraints may be specified as assertions or triggers. Section 8.7 lists some SQL features that 
are presented in other chapters of the book; these include embedded SQL in Chapter 10, transaction 
control in Chapter 19, and security/authorization in Chapter 22. Section 8.8 summarizes the chapter.  

For the reader who desires a less comprehensive introduction to SQL, parts or all of the following 
sections may be skipped: Section 8.2.5, Section 8.3, Section 8.5, Section 8.6, and Section 8.7.  

 
 

8.1 Data Definition, Constraints, and Schema Changes in SQL2 

8.1.1 Schema and Catalog Concepts in SQL2 
8.1.2 The CREATE TABLE Command and SQL2 Data Types and Constraints 
8.1.3 The DROP SCHEMA and DROP TABLE Commands 
8.1.4 The ALTER TABLE Command
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SQL uses the terms table, row, and column for relation, tuple, and attribute, respectively. We will use 
the corresponding terms interchangeably. The SQL2 commands for data definition are CREATE, 
ALTER, and DROP; these are discussed in Section 8.1.2, Section 8.1.3 and Section 8.1.4. First, 
however, we discuss schema and catalog concepts in Section 8.1.1. Section 8.1.2 describes how tables 
are created, the available data types for attributes, and how constraints are specified. Section 8.1.3 and 
Section 8.1.4 describe the schema evolution commands available in SQL2, which can be used to alter 
the schema by adding or dropping tables, attributes, and constraints. We only give an overview of the 
most important features. Details can be found in the SQL2 document.  

 
 

8.1.1 Schema and Catalog Concepts in SQL2 

Early versions of SQL did not include the concept of a relational database schema; all tables (relations) 
were considered part of the same schema. The concept of an SQL schema was incorporated into SQL2 
in order to group together tables and other constructs that belong to the same database application. An 
SQL schema is identified by a schema name, and includes an authorization identifier to indicate the 
user or account who owns the schema, as well as descriptors for each element in the schema. Schema 
elements include the tables, constraints, views, domains, and other constructs (such as authorization 
grants) that describe the schema. A schema is created via the CREATE SCHEMA statement, which can 
include all the schema elements’ definitions. Alternatively, the schema can be assigned a name and 
authorization identifier, and the elements can be defined later. For example, the following statement 
creates a schema called COMPANY, owned by the user with authorization identifier JSMITH:  

 
 

CREATE SCHEMA COMPANY AUTHORIZATION JSMITH;  

 
 

In addition to the concept of schema, SQL2 uses the concept of catalog—a named collection of 
schemas in an SQL environment. A catalog always contains a special schema called 
INFORMATION_SCHEMA, which provides information on all the element descriptors of all the 
schemas in the catalog to authorized users. Integrity constraints such as referential integrity can be 
defined between relations only if they exist in schemas within the same catalog. Schemas within the 
same catalog can also share certain elements, such as domain definitions.  

 
 

8.1.2 The CREATE TABLE Command and SQL2 Data Types and Constraints 

 
Data Types and Domains in SQL2 
Specifying Constraints and Default Values in SQL2

The CREATE TABLE command is used to specify a new relation by giving it a name and specifying 
its attributes and constraints. The attributes are specified first, and each attribute is given a name, a data 
type to specify its domain of values, and any attribute constraints such as NOT NULL. The key, entity 
integrity, and referential integrity constraints can be specified—within the CREATE TABLE 
statement—after the attributes are declared, or they can be added later using the ALTER TABLE 
command (see Section 8.1.4). Figure 08.01(a) shows sample data definition statements in SQL for the 
relational database schema shown in Figure 07.07. Typically, the SQL schema in which the relations 
are declared is implicitly specified in the environment in which the CREATE TABLE statements are 
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executed. Alternatively, we can explicitly attach the schema name to the relation name, separated by a 
period. For example, by writing:  

 
 

CREATE TABLE COMPANY.EMPLOYEE ...  

 
 

rather than  

 
 

CREATE TABLE EMPLOYEE ...  

 
 

as in Figure 08.01(a), we can explicitly (rather than implicitly) make the EMPLOYEE table part of the 
COMPANY schema.  

 

 

 
 

Data Types and Domains in SQL2 

The data types available for attributes include numeric, character-string, bit-string, date, and time. 
Numeric data types include integer numbers of various sizes (INTEGER or INT, and SMALLINT), 
and real numbers of various precision (FLOAT, REAL, DOUBLE PRECISION). Formatted numbers 
can be declared by using DECIMAL(i,j)—or DEC(i,j) or NUMERIC(i,j)—where i, the precision, is the 
total number of decimal digits and j, the scale, is the number of digits after the decimal point. The 
default for scale is zero, and the default for precision is implementation-defined.  

Character-string data types are either fixed-length—CHAR(n) or CHARACTER(n), where n is the 
number of characters—or varying-length—VARCHAR(n) or CHAR VARYING(n) or CHARACTER 
VARYING(n), where n is the maximum number of characters. Bit-string data types are either of fixed 
length n—BIT(n)—or varying length—BIT VARYING(n), where n is the maximum number of bits. 
The default for n, the length of a character string or bit string, is one.  

There are new data types for date and time in SQL2. The DATE data type has ten positions, and its 
components are YEAR, MONTH, and DAY typically in the form YYYY-MM-DD. The TIME data 
type has at least eight positions, with the components HOUR, MINUTE, and SECOND, typically in the 
form HH:MM:SS. Only valid dates and times should be allowed by the SQL implementation. In 
addition, a data type TIME(i), where i is called time fractional seconds precision, specifies i + 1 
additional positions for TIME—one position for an additional separator character, and i positions for 
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type includes an additional 
six positions for specifying the displacement from the standard universal time zone, which is in the 
range + 13:00 to - 12:59 in units of HOURS:MINUTES. If WITH TIME ZONE is not included, the 
default is the local time zone for the SQL session. Finally, a timestamp data type (TIMESTAMP) 
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includes both the DATE and TIME fields, plus a minimum of six positions for fractions of seconds and 
an optional WITH TIME ZONE qualifier.  

Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type. This 
specifies an interval—a relative value that can be used to increment or decrement an absolute value of 
a date, time, or timestamp. Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME 
intervals.  

In SQL2, it is possible to specify the data type of each attribute directly, as in Figure 08.01(a); 
alternatively, a domain can be declared, and the domain name used. This makes it easier to change the 
data type for a domain that is used by numerous attributes in a schema, and improves schema 
readability. For example, we can create a domain SSN_TYPE by the following statement:  

 
 

CREATE DOMAIN SSN_TYPE AS CHAR(9);  

 
 

We can use SSN_TYPE in place of CHAR(9) in Figure 08.01(a) for the attributes SSN and SUPERSSN of 
EMPLOYEE, MGRSSN of DEPARTMENT, ESSN of WORKS_ON, and ESSN of DEPENDENT. A domain can also 
have an optional default specification via a DEFAULT clause, as we will discuss later for attributes.  

 
 

Specifying Constraints and Default Values in SQL2 

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if NULL is 
not permitted for a particular attribute. This should always be specified for the primary key attributes of 
each relation, as well as for any other attributes whose values are required not to be NULL, as shown in 
Figure 08.01(a). It is also possible to define a default value for an attribute by appending the clause 
DEFAULT <value> to an attribute definition. The default value is included in any new tuple if an 
explicit value is not provided for that attribute. Figure 08.01(b) illustrates an example of specifying a 
default manager for a new department and a default department for a new employee. If no default 
clause is specified, the default default value (!) is NULL.  

Following the attribute (or column) specifications, additional table constraints can be specified on a 
table, including keys and referential integrity, as illustrated in Figure 08.01(a) (Note 2). The 
PRIMARY KEY clause specifies one or more attributes that make up the primary key of a relation. 
The UNIQUE clause specifies alternate (or secondary) keys. Referential integrity is specified via the 
FOREIGN KEY clause.  

As we discussed in Section 7.2.4, a referential integrity constraint can be violated when tuples are 
inserted or deleted or when a foreign key attribute value is modified. In SQL2, the schema designer can 
specify the action to be taken if a referential integrity constraint is violated upon deletion of a 
referenced tuple or upon modification of a referenced primary key value, by attaching a referential 
triggered action clause to any foreign key constraint. The options include SET NULL, CASCADE, 
and SET DEFAULT. An option must be qualified with either ON DELETE or ON UPDATE. We 
illustrate this with the example shown in Figure 08.01(b). Here, the database designer chooses SET 
NULL ON DELETE and CASCADE ON UPDATE for the foreign key SUPERSSN of EMPLOYEE. This 
means that if the tuple for a supervising employee is deleted, the value of SUPERSSN is automatically 
set to NULL for all employee tuples that were referencing the deleted employee tuple. On the other 
hand, if the SSN value for a supervising employee is updated (say, because it was entered incorrectly), 
the new value is cascaded to SUPERSSN for all employee tuples referencing the updated employee 
tuple.  
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In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON 
DELETE or ON UPDATE; the value of the affected referencing attributes is changed to NULL for 
SET NULL, and to the specified default value for SET DEFAULT. The action for CASCADE ON 
DELETE is to delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to 
change the value of the foreign key to the updated (new) primary key value for all referencing tuples. It 
is the responsibility of the database designer to choose the appropriate action and to specify it in the 
DDL. As a general rule, the CASCADE option is suitable for "relationship" relations such as 
WORKS_ON, for relations that represent multivalued attributes such as DEPT_LOCATIONS, and for 
relations that represent weak entity types such as DEPENDENT.  

Figure 08.01(b) also illustrates how a constraint may be given a name, following the keyword 
CONSTRAINT. The names of all constraints within a particular schema must be unique. A constraint 
name is used to identify a particular constraint in case the constraint must be dropped later and replaced 
with another constraint, as we shall discuss in Section 8.1.4. Giving names to constraints is optional.  

The relations declared through CREATE TABLE statements are called base tables (or base relations); 
this means that the relation and its tuples are actually created and stored as a file by the DBMS. Base 
relations are distinguished from virtual relations, created through the CREATE VIEW statement (see 
Section 8.5), which may or may not correspond to an actual physical file. In SQL the attributes in a 
base table are considered to be ordered in the sequence in which they are specified in the CREATE 
TABLE statement. However, rows (tuples) are not considered to be ordered within a relation.  

 
 

8.1.3 The DROP SCHEMA and DROP TABLE Commands 

If a whole schema is not needed any more, the DROP SCHEMA command can be used. There are two 
drop behavior options: CASCADE and RESTRICT. For example, to remove the COMPANY database 
schema and all its tables, domains, and other elements, the CASCADE option is used as follows:  

 
 

DROP SCHEMA COMPANY CASCADE;  

 
 

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no 
elements in it; otherwise, the DROP command will not be executed.  

If a base relation within a schema is not needed any longer, the relation and its definition can be deleted 
by using the DROP TABLE command. For example, if we no longer wish to keep track of dependents 
of employees in the COMPANY database of Figure 07.06, we can get rid of the DEPENDENT relation by 
issuing the command:  

 
 

DROP TABLE DEPENDENT CASCADE;  

 
 

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not referenced 
in any constraints (for example, by foreign key definitions in another relation) or views (see Section 
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8.5). With the CASCADE option, all such constraints and views that reference the table are dropped 
automatically from the schema, along with the table itself.  

 
 

8.1.4 The ALTER TABLE Command 

The definition of a base table can be changed by using the ALTER TABLE command, which is a 
schema evolution command. The possible alter table actions include adding or dropping a column 
(attribute), changing a column definition, and adding or dropping table constraints. For example, to add 
an attribute for keeping track of jobs of employees to the EMPLOYEE base relations in the COMPANY 
schema, we can use the command:  

 
 

ALTER TABLE COMPANY.EMPLOYEE ADD JOB VARCHAR(12);  

 
 

We must still enter a value for the new attribute JOB for each individual EMPLOYEE tuple. This can be 
done either by specifying a default clause or by using the UPDATE command (see Section 8.4). If no 
default clause is specified, the new attribute will have NULLs in all the tuples of the relation 
immediately after the command is executed; hence, the NOT NULL constraint is not allowed in this 
case.  

To drop a column, we must choose either CASCADE or RESTRICT for drop behavior. If CASCADE 
is chosen, all constraints and views that reference the column are dropped automatically from the 
schema, along with the column. If RESTRICT is chosen, the command is successful only if no views 
or constraints reference the column. For example, the following command removes the attribute 
ADDRESS from the EMPLOYEE base table:  

 
 

ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS CASCADE;  

 
 

It is also possible to alter a column definition by dropping an existing default clause or by defining a 
new default clause. The following examples illustrate this clause:  

 
 

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN DROP DEFAULT;  

ALTER TABLE COMPANY.DEPARTMENT ALTER MGRSSN SET DEFAULT "333445555";  
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Finally, one can change the constraints specified on a table by adding or dropping a constraint. To be 
dropped, a constraint must have been given a name when it was specified. For example, to drop the 
constraint named EMPSUPERFK in Figure 08.01(b) from the EMPLOYEE relation, we write  

 
 

ALTER TABLE COMPANY.EMPLOYEE  

DROP CONSTRAINT EMPSUPERFK CASCADE;  

 
 

Once this is done, we can redefine a replacement constraint by adding a new constraint to the relation, 
if needed. This is specified by using the ADD keyword followed by the new constraint, which can be 
named or unnamed and can be of any of the table constraint types discussed in Section 8.1.2.  

The preceding subsections gave an overview of the data definition and schema evolution commands of 
SQL2. There are many other details and options, and we refer the interested reader to the SQL and 
SQL2 documents listed in the bibliographical notes. Section 8.2 and Section 8.3 discuss the querying 
capabilities of SQL.  

 
 

8.2 Basic Queries in SQL 

8.2.1 The SELECT-FROM-WHERE Structure of SQL Queries 
8.2.2 Dealing with Ambiguous Attribute Names and Renaming (Aliasing) 
8.2.3 Unspecified WHERE-Clause and Use of Asterisk (*) 
8.2.4 Tables as Sets in SQL 
8.2.5 Substring Comparisons, Arithmetic Operators, and Ordering

SQL has one basic statement for retrieving information from a database: the SELECT statement. The 
SELECT statement has no relationship to the SELECT operation of relational algebra, which was 
discussed in Chapter 7. There are many options and flavors to the SELECT statement in SQL, so we 
will introduce its features gradually. We will use example queries specified on the schema of Figure 
07.05 and will refer to the sample database state shown in Figure 07.06 to show the results of some of 
the example queries.  

Before proceeding, we must point out an important distinction between SQL and the formal relational 
model discussed in Chapter 7: SQL allows a table (relation) to have two or more tuples that are 
identical in all their attribute values. Hence, in general, an SQL table is not a set of tuples, because a 
set does not allow two identical members; rather it is a multiset (sometimes called a bag) of tuples. 
Some SQL relations are constrained to be sets because a key constraint has been declared or because 
the DISTINCT option has been used with the SELECT statement (described later in this section). We 
should be aware of this distinction as we discuss the examples.  

 
 

8.2.1 The SELECT-FROM-WHERE Structure of SQL Queries 

The basic form of the SELECT statement, sometimes called a mapping or a select-from-where block, 
is formed of the three clauses SELECT, FROM, and WHERE and has the following form:  
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  SELECT <attribute list>  
  FROM  <table list>  
  WHERE  <condition>;  

 
 

where:  

• <attribute list> is a list of attribute names whose values are to be retrieved by the query.  
• <table list> is a list of the relation names required to process the query.  
• <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by 

the query.  

We now illustrate the basic SELECT statement with some example queries. We will label the queries 
here with the same query numbers that appear in Chapter 7 and Chapter 9 for easy cross reference.  

 
 

QUERY 0  

Retrieve the birthdate and address of the employee(s) whose name is ‘John B. Smith’ (Note 3) 

 

  Q0:  SELECT  BDATE, ADDRESS  

    FROM  EMPLOYEE  

    WHERE  FNAME=‘John’ AND MINIT=‘B’ AND LNAME=‘Smith’;  

 
 

This query involves only the EMPLOYEE relation listed in the FROM-clause. The query selects the 
EMPLOYEE tuples that satisfy the condition of the WHERE-clause, then projects the result on the BDATE 
and ADDRESS attributes listed in the SELECT-clause. Q0 is similar to the following relational algebra 
expression—except that duplicates, if any, would not be eliminated:  

 
 

pBDATE,ADDRESS (sFNAME=‘John’ AND MINIT=‘B’ AND LNAME=‘Smith’ (EMPLOYEE))  

 
 

Hence, a simple SQL query with a single relation name in the FROM-clause is similar to a SELECT-
PROJECT pair of relational algebra operations. The SELECT-clause of SQL specifies the projection 
attributes, and the WHERE-clause specifies the selection condition. The only difference is that in the 
SQL query we may get duplicate tuples in the result of the query, because the constraint that a relation 
is a set is not enforced. Figure 08.02(a) shows the result of query Q0 on the database of Figure 07.06.  
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QUERY 1  

Retrieve the name and address of all employees who work for the ‘Research’ department.  

 

  Q1:  SELECT  FNAME, LNAME, ADDRESS  

    FROM  EMPLOYEE, DEPARTMENT  

    WHERE  DNAME=‘Research’ AND DNUMBER=DNO;  

 
 

Query Q1 is similar to a SELECT–PROJECT–JOIN sequence of relational algebra operations. Such 
queries are often called select–project–join queries. In the WHERE-clause of Q1, the condition 
DNAME = ‘Research’ is a selection condition and corresponds to a SELECT operation in the relational 
algebra. The condition DNUMBER = DNO is a join condition, which corresponds to a JOIN condition in 
the relational algebra. The result of query Q1 is shown in Figure 08.02(b). In general, any number of 
select and join conditions may be specified in a single SQL query. The next example is a select–
project–join query with two join conditions.  

 
 

QUERY 2  

For every project located in ‘Stafford’, list the project number, the controlling department number, and 
the department manager’s last name, address, and birthdate.  

 

  Q2:  SELECT  PNUMBER, DNUM, LNAME, ADDRESS, BDATE  

    FROM  PROJECT, DEPARTMENT, EMPLOYEE  

    WHERE  DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION=‘Stafford’;  

 
 

The join condition DNUM = DNUMBER relates a project to its controlling department, whereas the join 
condition MGRSSN = SSN relates the controlling department to the employee who manages that 
department. The result of query Q2 is shown in Figure 08.02(c).  

 
 

8.2.2 Dealing with Ambiguous Attribute Names and Renaming (Aliasing) 

In SQL the same name can be used for two (or more) attributes as long as the attributes are in different 
relations. If this is the case, and a query refers to two or more attributes with the same name, we must 
qualify the attribute name with the relation name, to prevent ambiguity. This is done by prefixing the 
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relation name to the attribute name and separating the two by a period. To illustrate this, suppose that 
in Figure 07.05 and Figure 07.06 the DNO and LNAME attributes of the EMPLOYEE relation were called 
DNUMBER and NAME and the DNAME attribute of DEPARTMENT was also called NAME; then, to prevent 
ambiguity, query Q1 would be rephrased as shown in Q1A. We must prefix the attributes NAME and 
DNUMBER in Q1A to specify which ones we are referring to, because the attribute names are used in 
both relations:  

 

  Q1A: SELECT FNAME, EMPLOYEE.NAME, ADDRESS 

    FROM EMPLOYEE, DEPARTMENT 

    WHERE  DEPARTMENT.NAME=‘Research’ AND 
DEPARTMENT.DNUMBER=EMPLOYEE.DNUMBER;  

 
 

Ambiguity also arises in the case of queries that refer to the same relation twice, as in the following 
example.  

 
 

QUERY 8  

For each employee, retrieve the employee’s first and last name and the first and last name of his or her 
immediate supervisor (Note 4). 

 

  Q8:  SELECT  E.FNAME, E.LNAME, S.FNAME, S.LNAME  

    FROM  EMPLOYEE AS E, EMPLOYEE AS S  

    WHERE  E.SUPERSSN=S.SSN;  

 
 

In this case, we are allowed to declare alternative relation names E and S, called aliases or tuple 
variables, for the EMPLOYEE relation. An alias can follow the keyword AS, as shown above in Q8, or it 
can directly follow the relation name—for example, by writing EMPLOYEE E, EMPLOYEE S in the 
WHERE-clause of Q8. It is also possible to rename the relation attributes within the query in SQL2 by 
giving them aliases; for example, if we write  

 
 

EMPLOYEE AS E(FN, MI, LN, SSN, BD, ADDR, SEX, SAL, SSSN, DNO)  

 
 

in the FROM-clause, FN becomes an alias for FNAME, MI for MINIT, LN for LNAME, and so on. In Q8, we 
can think of E and S as two different copies of the EMPLOYEE relation; the first, E, represents employees 
in the role of supervisees; and the second, S, represents employees in the role of supervisors. We can 
now join the two copies. Of course, in reality there is only one EMPLOYEE relation, and the join 
condition is meant to join the relation with itself by matching the tuples that satisfy the join condition 
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E.SUPERSSN = S.SSN. Notice that this is an example of a one-level recursive query, as we discussed in 
Section 7.5.2. As in relational algebra, we cannot specify a general recursive query, with an unknown 
number of levels, in a single SQL2 statement (Note 5). 

The result of query Q8 is shown in Figure 08.02(d). Whenever one or more aliases are given to a 
relation, we can use these names to represent different references to that relation. This permits multiple 
references to the same relation within a query. Notice that, if we want to, we can use this alias-naming 
mechanism in any SQL query, whether or not the same relation needs to be referenced more than once. 
For example, we could specify query Q1A as in Q1B just for convenience to shorten the relation names 
that prefix the attributes:  

 

  Q1B:  SELECT  E.FNAME, E.NAME, E.ADDRESS  

    FROM  EMPLOYEE E, DEPARTMENT D  

    WHERE  D.NAME=‘Research’ AND D.DNUMBER=E.DNUMBER;  

 
 

8.2.3 Unspecified WHERE-Clause and Use of Asterisk (*) 

We discuss two more features of SQL here. A missing WHERE-clause indicates no condition on tuple 
selection; hence, all tuples of the relation specified in the FROM-clause qualify and are selected for the 
query result (Note 6). If more than one relation is specified in the FROM-clause and there is no 
WHERE-clause, then the CROSS PRODUCT—all possible tuple combinations—of these relations is 
selected. For example, Query 9 selects all EMPLOYEE SSNs (Figure 08.02e), and Query 10 selects all 
combinations of an EMPLOYEE SSN and a DEPARTMENT DNAME (Figure 08.02f).  

 
 

QUERIES 9 and 10  

Select all EMPLOYEE SSNs (Q9), and all combinations of EMPLOYEE SSN and DEPARTMENT DNAME (Q10) 
in the database.  

 

  Q9:  SELECT  SSN  

    FROM  EMPLOYEE;  

  Q10:  SELECT  SSN, DNAME  

    FROM  EMPLOYEE, DEPARTMENT;  

 
 

It is extremely important to specify every selection and join condition in the WHERE-clause; if any 
such condition is overlooked, incorrect and very large relations may result. Notice that Q10 is similar 
to a CROSS PRODUCT operation followed by a PROJECT operation in relational algebra. If we 
specify all the attributes of EMPLOYEE and DEPARTMENT in Q10, we get the CROSS PRODUCT.  

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names 
explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes. For example, 
query Q1C retrieves all the attribute values of EMPLOYEE tuples who work in DEPARTMENT number 5 

1 Page 216 of 893



www.manaraa.com

(Figure 08.02g); query Q1D retrieves all the attributes of an EMPLOYEE and the attributes of the 
DEPARTMENT he or she works in for every employee of the ‘Research’ department; and Q10A specifies 
the CROSS PRODUCT of the EMPLOYEE and DEPARTMENT relations.  

 

  Q1C:  SELECT *  

    FROM  EMPLOYEE  

    WHERE DNO=5;  

  Q1D:  SELECT *  

    FROM  EMPLOYEE, DEPARTMENT  

    WHERE DNAME=‘Research’ AND DNO=DNUMBER;  

  Q10A:  SELECT * 

    FROM  EMPLOYEE, DEPARTMENT;  

 
 

8.2.4 Tables as Sets in SQL 

As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset; duplicate 
tuples can appear more than once in a table, and in the result of a query. SQL does not automatically 
eliminate duplicate tuples in the results of queries, for the following reasons:  

• Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples 
first and then eliminate duplicates.  

• The user may want to see duplicate tuples in the result of a query.  
• When an aggregate function (see Section 8.3.5) is applied to tuples, in most cases we do not 

want to eliminate duplicates.  

An SQL table with a key is restricted to being a set, since the key value must be distinct in each tuple 
(Note 7). If we do want to eliminate duplicate tuples from the result of an SQL query, we use the 
keyword DISTINCT in the SELECT-clause, meaning that only distinct tuples should remain in the 
result. In general, a query with SELECT DISTINCT eliminates duplicates whereas a query with 
SELECT ALL does not (specifying SELECT with neither ALL nor DISTINCT is equivalent to 
SELECT ALL). For example, Query 11 retrieves the salary of every employee; if several employees 
have the same salary, that salary value will appear as many times in the result of the query, as shown in 
Figure 08.03(a). If we are interested only in distinct salary values, we want each value to appear only 
once, regardless of how many employees earn that salary. By using the keyword DISTINCT as in 
Q11A we accomplish this, as shown in Figure 08.03(b).  

 
 

QUERY 11  

Retrieve the salary of every employee (Q11) and all distinct salary values (Q11A).  
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  Q11:  SELECT ALL  SALARY  

    FROM  EMPLOYEE;  

  Q11A:  SELECT DISTINCT  SALARY  

    FROM  EMPLOYEE;  

 

 

 
 

SQL has directly incorporated some of the set operations of relational algebra. There is a set union 
operation (UNION), and in SQL2 there are also set difference (EXCEPT) and set intersection 
(INTERSECT) operations (Note 8). The relations resulting from these set operations are sets of tuples; 
that is, duplicate tuples are eliminated from the result. Because these set operations apply only to 
union-compatible relations, we must make sure that the two relations on which we apply the operation 
have the same attributes and that the attributes appear in the same order in both relations. The next 
example illustrates the use of UNION.  

 
 

QUERY 4  

Make a list of all project numbers for projects that involve an employee whose last name is ‘Smith’, 
either as a worker or as a manager of the department that controls the project.  

 

  Q4:  (SELECT  DISTINCT PNUMBER  

    FROM  PROJECT, DEPARTMENT, EMPLOYEE  

    WHERE  DNUM=DNUMBER AND MGRSSN=SSN AND LNAME=‘Smith’)  

    UNION    

    (SELECT  DISTINCT PNUMBER  

    FROM  PROJECT, WORKS_ON, EMPLOYEE  

    WHERE  PNUMBER=PNO AND ESSN=SSN AND LNAME=‘Smith’);  

 
 

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of the department that 
controls the project, and the second retrieves the projects that involve a ‘Smith’ as a worker on the 
project. Notice that, if several employees have the last name ‘Smith’, the project names involving any 
of them will be retrieved. Applying the UNION operation to the two SELECT queries gives the desired 
result.  

 
 

8.2.5 Substring Comparisons, Arithmetic Operators, and Ordering 
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In this section we discuss several more features of SQL. The first feature allows comparison conditions 
on only parts of a character string, using the LIKE comparison operator. Partial strings are specified by 
using two reserved characters: ‘%’ replaces an arbitrary number of characters, and the underscore ( _ ) 
replaces a single character. For example, consider the following query.  

 
 

QUERY 12  

Retrieve all employees whose address is in Houston, Texas.  

 

  Q12:  SELECT  FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE  ADDRESS LIKE ‘%Houston,TX%’;  

 
 

To retrieve all employees who were born during the 1950s, we can use Query 26. Here, ‘5’ must be the 
third character of the string (according to our format for date), so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, 
with each underscore (Note 9) serving as a placeholder for an arbitrary character.  

 
 

QUERY 12A  

Find all employees who were born during the 1950s.  

 

  Q12A:  SELECT FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE BDATE LIKE’_ _ 5 _ _ _ _ _ _ _’;  

 
 

Another feature allows the use of arithmetic in queries. The standard arithmetic operators for addition 
(+), subtraction (-), multiplication (*), and division (/) can be applied to numeric values or attributes 
with numeric domains. For example, suppose that we want to see the effect of giving all employees 
who work on the ‘ProductX’ project a 10 percent raise; we can issue Query 13 to see what their salaries 
would become.  

 
 

QUERY 13  

Show the resulting salaries if every employee working on the ‘ProductX’ project is given a 10 percent 
raise.  
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  Q13:  SELECT  FNAME, LNAME, 1.1*SALARY  

    FROM  EMPLOYEE, WORKS_ON, PROJECT  

    WHERE  SSN=ESSN AND PNO=PNUMBER AND PNAME=‘ProductX’;  

 
 

For string data types, the concatenate operator ‘| |’ can be used in a query to append two string values. 
For date, time, timestamp, and interval data types, operators include incrementing (‘+’) or 
decrementing (‘-’) a date, time, or timestamp by a type-compatible interval. In addition, an interval 
value can be specified as the difference between two date, time, or timestamp values. Another 
comparison operator that can be used for convenience is BETWEEN, which is illustrated in Query 14 
(Note 10). 

 
 

QUERY 14  

Retrieve all employees in department 5 whose salary is between $30,000 and $40,000.  

 

  Q14:  SELECT  *  

    FROM  EMPLOYEE  

    WHERE  (SALARY BETWEEN 30000 AND 40000) AND DNO = 5;  

 
 

SQL allows the user to order the tuples in the result of a query by the values of one or more attributes, 
using the ORDER BY-clause. This is illustrated by Query 15.  

 
 

QUERY 15  

Retrieve a list of employees and the projects they are working on, ordered by department and, within 
each department, ordered alphabetically by last name, first name.  

 
 

  Q15:  SELECT  DNAME, LNAME, FNAME, PNAME  

    FROM  DEPARTMENT, EMPLOYEE, WORKS_ON, 
PROJECT  

    WHERE  DNUMBER=DNO AND SSN=ESSN AND 
PNO=PNUMBER  

    ORDER BY  DNAME, LNAME, FNAME;  
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The default order is in ascending order of values. We can specify the keyword DESC if we want a 
descending order of values. The keyword ASC can be used to specify ascending order explicitly. If we 
want descending order on DNAME and ascending order on LNAME, FNAME, the ORDER BY-clause of 
Q15 becomes  

 
 

ORDER BY   DNAME DESC, LNAME ASC, FNAME ASC  

 
 

8.3 More Complex SQL Queries 

8.3.1 Nested Queries and Set Comparisons 
8.3.2 The EXISTS and UNIQUE Functions in SQL 
8.3.3 Explicit Sets and NULLS in SQL 
8.3.4 Renaming Attributes and Joined Tables 
8.3.5 Aggregate Functions and Grouping 
8.3.6 Discussion and Summary of SQL Queries

In the previous section, we described the basic types of queries in SQL. Because of the generality and 
expressive power of the language, there are many additional features that allow users to specify more 
complex queries. We discuss several of these features in this section.  

 
 

8.3.1 Nested Queries and Set Comparisons 

Correlated Nested Queries

Some queries require that existing values in the database be fetched and then used in a comparison 
condition. Such queries can be conveniently formulated by using nested queries, which are complete 
SELECT . . . FROM . . . WHERE . . . blocks within the WHERE-clause of another query. That other 
query is called the outer query. Query 4 is formulated in Q4 without a nested query, but it can be 
rephrased to use nested queries as shown in Q4A:  

 
 

  Q4A: SELECT DISTINCT PNUMBER  
    FROM  PROJECT  
    WHERE  PNUMBER IN  (SELECT PNUMBER  
        FROM  PROJECT, DEPARTMENT, 

EMPLOYEE  
        WHERE DNUM=DNUMBER AND 

MGRSSN=SSN AND 
LNAME=‘Smith’)  

      OR  
      PNUMBER IN  (SELECT PNO  
        FROM  WORKS_ON, EMPLOYEE  
        WHERE ESSN=SSN AND 

LNAME=‘Smith’);  
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The first nested query selects the project numbers of projects that have a ‘Smith’ involved as manager, 
while the second selects the project numbers of projects that have a ‘Smith’ involved as worker. In the 
outer query, we select a PROJECT tuple if the PNUMBER value of that tuple is in the result of either 
nested query. The comparison operator IN compares a value v with a set (or multiset) of values V and 
evaluates to TRUE if v is one of the elements in V.  

The IN operator can also compare a tuple of values in parentheses with a set or multiset of union-
compatible tuples. For example, the query:  

 
 

  SELECT  DISTINCT ESSN  

  FROM  WORKS_ON  

  WHERE  (PNO, HOURS) IN  (SELECT PNO, HOURS FROM 
WORKS_ON WHERE 
SSN=‘123456789’);  

 
 

will select the social security numbers of all employees who work the same (project, hours) 
combination on some project that employee ‘John Smith’ (whose SSN = ‘123456789’) works on.  

In addition to the IN operator, a number of other comparison operators can be used to compare a single 
value v (typically an attribute name) to a set or multiset V (typically a nested query). The = ANY (or = 
SOME) operator returns TRUE if the value v is equal to some value in the set V and is hence 
equivalent to IN. The keywords ANY and SOME have the same meaning. Other operators that can be 
combined with ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be 
combined with each of these operators. For example, the comparison condition (v > ALL V) returns 
TRUE if the value v is greater than all the values in the set V. An example is the following query, 
which returns the names of employees whose salary is greater than the salary of all the employees in 
department 5:  

 

  SELECT  LNAME, FNAME  

  FROM  EMPLOYEE  

  WHERE  SALARY > ALL (SELECT SALARY FROM EMPLOYEE WHERE DNO=5);  

 
 

In general, we can have several levels of nested queries. We can once again be faced with possible 
ambiguity among attribute names if attributes of the same name exist—once in a relation in the FROM-
clause of the outer query, and the other in a relation in the FROM-clause of the nested query. The rule 
is that a reference to an unqualified attribute refers to the relation declared in the innermost nested 
query. For example, in the SELECT-clause and WHERE-clause of the first nested query of Q4A, a 
reference to any unqualified attribute of the PROJECT relation refers to the PROJECT relation specified in 
the FROM-clause of the nested query. To refer to an attribute of the PROJECT relation specified in the 
outer query, we can specify and refer to an alias for that relation. These rules are similar to scope rules 
for program variables in a programming language such as PASCAL, which allows nested procedures 
and functions. To illustrate the potential ambiguity of attribute names in nested queries, consider Query 
16, whose result is shown in Figure 08.03(c).  
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QUERY 16  

Retrieve the name of each employee who has a dependent with the same first name and same sex as the 
employee.  

 
 

  Q16:  SELECT  E.FNAME, E.LNAME  

    FROM  EMPLOYEE AS E  

    WHERE  E.SSN IN  (SELECT ESSN  

        FROM  DEPENDENT  

        WHERE  E.FNAME= 
DEPENDENT_NAME AND 
E.SEX=SEX);  

 
 

In the nested query of Q16, we must qualify E.SEX because it refers to the SEX attribute of EMPLOYEE 
from the outer query, and DEPENDENT also has an attribute called SEX. All unqualified references to SEX 
in the nested query refer to SEX of DEPENDENT. However, we do not have to qualify FNAME and SSN 
because the DEPENDENT relation does not have attributes called FNAME and SSN, so there is no 
ambiguity.  

 
 

Correlated Nested Queries 

Whenever a condition in the WHERE-clause of a nested query references some attribute of a relation 
declared in the outer query, the two queries are said to be correlated. We can understand a correlated 
query better by considering that the nested query is evaluated once for each tuple (or combination of 
tuples) in the outer query. For example, we can think of Q16 as follows: for each EMPLOYEE tuple, 
evaluate the nested query, which retrieves the ESSN values for all DEPENDENT tuples with the same sex 
and name as the EMPLOYEE tuple; if the SSN value of the EMPLOYEE tuple is in the result of the nested 
query, then select that EMPLOYEE tuple.  

In general, a query written with nested SELECT . . . FROM . . . WHERE . . . blocks and using the = or 
IN comparison operators can always be expressed as a single block query. For example, Q16 may be 
written as in Q16A:  

 

  Q16A:  SELECT E.FNAME, E.LNAME  

    FROM  EMPLOYEE AS E, DEPENDENT AS D  

    WHERE E.SSN=D.ESSN AND E.SEX=D.SEX AND 
E.FNAME=D.DEPENDENT_NAME;  
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The original SQL implementation on SYSTEM R also had a CONTAINS comparison operator, which 
is used to compare two sets or multisets. This operator was subsequently dropped from the language, 
possibly because of the difficulty in implementing it efficiently. Most commercial implementations of 
SQL do not have this operator. The CONTAINS operator compares two sets of values and returns 
TRUE if one set contains all values in the other set. Query 3 illustrates the use of the CONTAINS 
operator.  

 
 

QUERY 3  

Retrieve the name of each employee who works on all the projects controlled by department number 5.  

 
 

  Q3:  SELECT  FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE  ( (SELECT  PNO  

       FROM  WORKS_ON  

       WHERE  SSN=ESSN)  

       CONTAINS    

       (SELECT  PNUMBER  

       FROM  PROJECT  

       WHERE  DNUM=5) );  

 
 

In Q3, the second nested query (which is not correlated with the outer query) retrieves the project 
numbers of all projects controlled by department 5. For each employee tuple, the first nested query 
(which is correlated) retrieves the project numbers on which the employee works; if these contain all 
projects controlled by department 5, the employee tuple is selected and the name of that employee is 
retrieved. Notice that the CONTAINS comparison operator is similar in function to the DIVISION 
operation of the relational algebra, described in Section 7.4.7. Because the CONTAINS operation is not 
part of SQL, we use the EXISTS function to specify these types of queries, as will be shown in Section 
8.3.2.  

 
 

8.3.2 The EXISTS and UNIQUE Functions in SQL 

The EXISTS function in SQL is used to check whether the result of a correlated nested query is empty 
(contains no tuples) or not. We illustrate the use of EXISTS—and also NOT EXISTS—with some 
examples. First, we formulate Query 16 in an alternative form that uses EXISTS. This is shown as 
Q16B:  
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  Q16B:  SELECT E.FNAME, E.LNAME  

    FROM  EMPLOYEE AS E  

    WHERE EXISTS  (SELECT * 

        FROM  DEPENDENT  

        WHERE  E.SSN=ESSN AND E.SEX=SEX 
AND 
E.FNAME=DEPENDENT_NAME);  

 
 

EXISTS and NOT EXISTS are usually used in conjunction with a correlated nested query. In Q16B, 
the nested query references the SSN, FNAME, and SEX attributes of the EMPLOYEE relation from the outer 
query. We can think of Q16B as follows: for each EMPLOYEE tuple, evaluate the nested query, which 
retrieves all DEPENDENT tuples with the same social security number, sex, and name as the EMPLOYEE 
tuple; if at least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE tuple. In 
general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of query Q, and it returns 
FALSE otherwise. On the other hand, NOT EXISTS(Q) returns TRUE if there are no tuples in the 
result of query Q, and it returns FALSE otherwise. Next, we illustrate the use of NOT EXISTS.  

 
 

QUERY 6  

Retrieve the names of employees who have no dependents.  

 
 

  Q6:  SELECT  FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE  NOT EXISTS  (SELECT * 

        FROM  DEPENDENT  

        WHERE  SSN=ESSN);  

 
 

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to an EMPLOYEE tuple. If none 
exist, the EMPLOYEE tuple is selected. We can explain Q6 as follows: for each EMPLOYEE tuple, the 
correlated nested query selects all DEPENDENT tuples whose ESSN value matches the EMPLOYEE SSN; if 
the result is empty, no dependents are related to the employee, so we select that EMPLOYEE tuple and 
retrieve its FNAME and LNAME. There is another SQL function UNIQUE(Q) that returns TRUE if there 
are no duplicate tuples in the result of query Q; otherwise, it returns FALSE.  

 
 

QUERY 7  

List the names of managers who have at least one dependent.  
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  Q7:  SELECT FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE EXISTS  (SELECT * 

        FROM  DEPENDENT  

        WHERE  SSN=ESSN)  

      AND      

      EXISTS  (SELECT * 

        FROM  DEPARTMENT  

        WHERE  SSN=MGRSSN);  

 
 

One way to write this query is shown in Q7, where we specify two nested correlated queries; the first 
selects all DEPENDENT tuples related to an EMPLOYEE, and the second selects all DEPARTMENT tuples 
managed by the EMPLOYEE. If at least one of the first and at least one of the second exist, we select the 
EMPLOYEE tuple. Can you rewrite this query using only a single nested query or no nested queries?  

Query 3, which we used to illustrate the CONTAINS comparison operator, can be stated using EXISTS 
and NOT EXISTS in SQL systems. There are two options. The first is to use the well known set theory 
transformation that (S1 CONTAINS S2) is logically equivalent to (S2 EXCEPT S1) is empty (Note 11); 
this is shown as Q3A.  

 

  Q3A:  SELECT  FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE  NOT EXISTS  

      ( (SELECT  PNUMBER  

        FROM  PROJECT  

        WHERE  DNUM=5)  

        EXCEPT    

        (SELECT  PNO  

        FROM  WORKS_ON  

        WHERE  SSN=ESSN));  

 
 

The second option is shown as Q3B below. Notice that we need two-level nesting in Q3B and that this 
formulation is quite a bit more complex than Q3, which used the CONTAINS comparison operator, 
and Q3A, which uses NOT EXISTS and EXCEPT. However, CONTAINS is not part of SQL, and not 
all relational systems have the EXCEPT operator even though it is part of SQL2:  
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  Q3B:  SELECT LNAME, FNAME  

    FROM  EMPLOYEE  

    WHERE NOT EXISTS  

      (SELECT * 

      FROM  WORKS_ON B  

      WHERE  (B.PNO IN  (SELECT PNUMBER  

          FROM  PROJECT  

          WHERE  DNUM=5))  

        AND    

        NOT EXISTS  (SELECT *  

          FROM  WORKS_ON C  

          WHERE  C.ESSN=SSN  

AND  

C.PNO=B.PNO));  

 
 

In Q3B, the outer nested query selects any WORKS_ON (B) tuples whose PNO is of a project controlled 
by department 5, if there is not a WORKS_ON (C) tuple with the same PNO and the same SSN as that of 
the EMPLOYEE tuple under consideration in the outer query. If no such tuple exists, we select the 
EMPLOYEE tuple. The form of Q3B matches the following rephrasing of Query 3: select each employee 
such that there does not exist a project controlled by department 5 that the employee does not work on.  

Notice that Query 3 is typically stated in relational algebra by using the DIVISION operation. 
Moreover, Query 3 requires a type of quantifier called a universal quantifier in the relational calculus 
(see Section 9.3.5). The negated existential quantifier NOT EXISTS can be used to express a 
universally quantified query, as we shall discuss in Chapter 9.  

 
 

8.3.3 Explicit Sets and NULLS in SQL 

We have seen several queries with a nested query in the WHERE-clause. It is also possible to use an 
explicit set of values in the WHERE-clause, rather than a nested query. Such a set is enclosed in 
parentheses in SQL.  

 
 

QUERY 17  

 
 

Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.  
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  Q17:  SELECT  DISTINCT ESSN  

    FROM  WORKS_ON  

    WHERE  PNO IN (1, 2, 3);  

 
 

SQL allows queries that check whether a value is NULL—missing or undefined or not applicable. 
However, rather than using = or to compare an attribute to NULL, SQL uses IS or IS NOT. This is 
because SQL considers each null value as being distinct from every other null value, so equality 
comparison is not appropriate. It follows that, when a join condition is specified, tuples with null values 
for the join attributes are not included in the result (unless it is an OUTER JOIN; see Section 8.3.4). 
Query 18 illustrates this; its result is shown in Figure 08.03(d).  

 
 

QUERY 18  

 
 

Retrieve the names of all employees who do not have supervisors.  

 

  Q18:  SELECT FNAME, LNAME  

    FROM  EMPLOYEE  

    WHERE SUPERSSN IS NULL;  

 
 

8.3.4 Renaming Attributes and Joined Tables 

It is possible to rename any attribute that appears in the result of a query by adding the qualifier AS 
followed by the desired new name. Hence, the AS construct can be used to alias both attribute and 
relation names, and it can be used in both the SELECT and FROM clauses. For example, Q8A below 
shows how query Q8 can be slightly changed to retrieve the last name of each employee and his or her 
supervisor, while renaming the resulting attribute names as EMPLOYEE_NAME and SUPERVISOR_NAME. 
The new names will appear as column headers in the query result:  

 

  Q8A:  SELECT  E.LNAME AS EMPLOYEE_NAME, S.LNAME AS SUPERVISOR_NAME  

    FROM  EMPLOYEE AS E, EMPLOYEE AS S  

    WHERE  E.SUPERSSN=S.SSN;  

 
 

The concept of a joined table (or joined relation) was incorporated into SQL2 to permit users to 
specify a table resulting from a join operation in the FROM-clause of a query. This construct may be 
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easier to comprehend than mixing together all the select and join conditions in the WHERE-clause. For 
example, consider query Q1, which retrieves the name and address of every employee who works for 
the ‘Research’ department. It may be easier first to specify the join of the EMPLOYEE and DEPARTMENT 
relations, and then to select the desired tuples and attributes. This can be written in SQL2 as in Q1A:  

 

  Q1A:  SELECT  FNAME, LNAME, ADDRESS  

    FROM  (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)  

    WHERE  DNAME=‘Research’;  

 
 

The FROM-clause in Q1A contains a single joined table. The attributes of such a table are all the 
attributes of the first table, EMPLOYEE, followed by all the attributes of the second table, DEPARTMENT. 
The concept of a joined table also allows the user to specify different types of join, such as NATURAL 
JOIN and various types of OUTER JOIN. In a NATURAL JOIN on two relations R and S, no join 
condition is specified; an implicit equi-join condition for each pair of attributes with the same name 
from R and S is created. Each such pair of attributes is included only once in the resulting relation (see 
Section 7.4.5.)  

If the names of the join attributes are not the same in the base relations, it is possible to rename the 
attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can be 
used to rename a relation and all its attributes in the FROM clause. This is illustrated in Q1B, where the 
DEPARTMENT relation is renamed as DEPT and its attributes are renamed as DNAME, DNO (to match the 
name of the desired join attribute DNO in EMPLOYEE), MSSN, and MSDATE. The implied join condition for 
this NATURAL JOIN is EMPLOYEE.DNO = DEPT.DNO, because this is the only pair of attributes with the 
same name after renaming:  

 

  Q1B:  SELECT FNAME, LNAME, ADDRESS  

    FROM  (EMPLOYEE NATURAL JOIN (DEPARTMENT AS DEPT (DNAME, DNO, 
MSSN, MSDATE)))  

    WHERE  DNAME=‘Research;  

 
 

The default type of join in a joined table is an inner join, where a tuple is included in the result only if 
a matching tuple exists in the other relation. For example, in query Q8A, only employees that have a 
supervisor are included in the result; an EMPLOYEE tuple whose value for SUPERSSN is NULL is 
excluded. If the user requires that all employees be included, an outer join must be used explicitly (see 
Section 7.5.3 for a definition of OUTER JOIN). In SQL2, this is handled by explicitly specifying the 
OUTER JOIN in a joined table, as illustrated in Q8B:  

 

  Q8B:  SELECT  E.LNAME AS EMPLOYEE_NAME, S.LNAME AS SUPERVISOR_NAME  

    FROM  (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S ON 
E.SUPERSSN=S.SSN);  
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The options available for specifying joined tables in SQL2 include INNER JOIN (same as JOIN), 
LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. In the latter three, the keyword 
OUTER may be omitted. It is also possible to nest join specifications; that is, one of the tables in a join 
may itself be a joined table. This is illustrated by Q2A, which is a different way of specifying query 
Q2, using the concept of a joined table:  

 

  Q2A:  SELECT  PNUMBER, DNUM, LNAME, ADDRESS, BDATE  

    FROM  ((PROJECT JOIN DEPARTMENT ON DNUM= DNUMBER) JOIN 
EMPLOYEE ON MGRSSN=SSN)  

    WHERE  PLOCATION=‘Stafford’;  

 
 

8.3.5 Aggregate Functions and Grouping 

In Section 7.5.1, we introduced the concept of an aggregate function as a relational operation. Because 
grouping and aggregation are required in many database applications, SQL has features that 
incorporate these concepts. The first of these is a number of built-in functions: COUNT, SUM, MAX, 
MIN, and AVG. The COUNT function returns the number of tuples or values as specified in a query. 
The functions SUM, MAX, MIN, and AVG are applied to a set or multiset of numeric values and 
return, respectively, the sum, maximum value, minimum value, and average (mean) of those values. 
These functions can be used in the SELECT-clause or in a HAVING-clause (which we will introduce 
later). The functions MAX and MIN can also be used with attributes that have nonnumeric domains if 
the domain values have a total ordering among one another (Note 12). We illustrate the use of these 
functions with example queries.  

 
 

QUERY 19  

Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the 
average salary.  

 

  Q19:  SELECT  SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)  

    FROM  EMPLOYEE;  

 
 

If we want to get the preceding function values for employees of a specific department—say the 
‘Research’ department—we can write Query 20, where the EMPLOYEE tuples are restricted by the 
WHERE-clause to those employees who work for the ‘Research’ department.  

 
 

QUERY 20  

Find the sum of the salaries of all employees of the ‘Research’ department, as well as the maximum 
salary, the minimum salary, and the average salary in this department.  
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  Q20:  SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)  

    FROM  EMPLOYEE, DEPARTMENT  

    WHERE  DNO=DNUMBER AND DNAME=‘Research’;  

 
 

QUERIES 21 and 22  

Retrieve the total number of employees in the company (Q21) and the number of employees in the 
‘Research’ department (Q22).  

 

  Q21:  SELECT  COUNT (*)  

    FROM  EMPLOYEE;  

  Q22:  SELECT  COUNT (*)  

    FROM  EMPLOYEE, DEPARTMENT  

    WHERE  DNO=DNUMBER AND DNAME=‘Research’;  

 
 

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of rows in the result 
of the query. We may also use the COUNT function to count values in a column rather than tuples, as 
in the next example.  

 
 

QUERY 23  

Count the number of distinct salary values in the database.  

 

  Q23:  SELECT  COUNT (DISTINCT SALARY)  

    FROM  EMPLOYEE;  

 
 

Notice that, if we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, we get 
the same result as COUNT(*) because duplicate values will not be eliminated, and so the number of 
values will be the same as the number of tuples (Note 13). The preceding examples show how 
functions are applied to retrieve a summary value from the database. In some cases we may need to use 
functions to select particular tuples. In such cases we specify a correlated nested query with the desired 
function, and we use that nested query in the WHERE-clause of an outer query. For example, to 
retrieve the names of all employees who have two or more dependents (Query 5), we can write:  
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  Q5:  SELECT  LNAME, FNAME  

    FROM  EMPLOYEE  

    WHERE  (SELECT  COUNT (*)  

      FROM  DEPENDENT  

      WHERE  SSN=ESSN) >= 2;  

 
 

The correlated nested query counts the number of dependents that each employee has; if this is greater 
than or equal to 2, the employee tuple is selected.  

In many cases we want to apply the aggregate functions to subgroups of tuples in a relation, based on 
some attribute values. For example, we may want to find the average salary of employees in each 
department or the number of employees who work on each project. In these cases we need to group the 
tuples that have the same value of some attribute(s), called the grouping attribute(s), and we need to 
apply the function to each such group independently. SQL has a GROUP BY-clause for this purpose. 
The GROUP BY-clause specifies the grouping attributes, which should also appear in the SELECT-
clause, so that the value resulting from applying each function to a group of tuples appears along with 
the value of the grouping attribute(s).  

 
 

QUERY 24  

For each department, retrieve the department number, the number of employees in the department, and 
their average salary.  

 
 

  Q24:  SELECT  DNO, COUNT (*), AVG (SALARY)  

    FROM  EMPLOYEE  

    GROUP BY  DNO;  

 
 

In Q24, the EMPLOYEE tuples are divided into groups—each group having the same value for the 
grouping attribute DNO. The COUNT and AVG functions are applied to each such group of tuples. 
Notice that the SELECT-clause includes only the grouping attribute and the functions to be applied on 
each group of tuples. Figure 08.04(a) illustrates how grouping works on Q24, and it also shows the 
result of Q24.  

 

 

 
 

QUERY 25  
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For each project, retrieve the project number, the project name, and the number of employees who 
work on that project.  

 
 

  Q25:  SELECT  PNUMBER, PNAME, COUNT (*)  

    FROM  PROJECT, WORKS_ON  

    WHERE  PNUMBER=PNO  

    GROUP BY  PNUMBER, PNAME;  

 
 

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this case, the grouping 
and functions are applied after the joining of the two relations. Sometimes we want to retrieve the 
values of these functions only for groups that satisfy certain conditions. For example, suppose that we 
want to modify Query 25 so that only projects with more than two employees appear in the result. SQL 
provides a HAVING-clause, which can appear in conjunction with a GROUP BY-clause, for this 
purpose. HAVING provides a condition on the group of tuples associated with each value of the 
grouping attributes; and only the groups that satisfy the condition are retrieved in the result of the 
query. This is illustrated by Query 26.  

 
 

QUERY 26  

For each project on which more than two employees work, retrieve the project number, the project 
name, and the number of employees who work on the project.  

 
 

  Q26:  SELECT  PNUMBER, PNAME, COUNT (*)  

    FROM  PROJECT, WORKS_ON  

    WHERE  PNUMBER=PNO  

    GROUP BY  PNUMBER, PNAME  

    HAVING  COUNT (*) > 2;  

 
 

Notice that, while selection conditions in the WHERE-clause limit the tuples to which functions are 
applied, the HAVING-clause serves to choose whole groups. Figure 08.04(b) illustrates the use of 
HAVING and displays the result of Q26.  

 
 

QUERY 27  

For each project, retrieve the project number, the project name, and the number of employees from 
department 5 who work on the project.  
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  Q27:  SELECT  PNUMBER, PNAME, COUNT (*)  

    FROM  PROJECT, WORKS_ON, EMPLOYEE  

    WHERE  PNUMBER=PNO AND SSN=ESSN AND DNO=5  

    GROUP BY  PNUMBER, PNAME;  

 
 

Here we restrict the tuples in the relation (and hence the tuples in each group) to those that satisfy the 
condition specified in the WHERE-clause—namely, that they work in department number 5. Notice 
that we must be extra careful when two different conditions apply (one to the function in the SELECT-
clause and another to the function in the HAVING-clause). For example, suppose that we want to count 
the total number of employees whose salaries exceed $40,000 in each department, but only for 
departments where more than five employees work. Here, the condition (SALARY > 40000) applies only 
to the COUNT function in the SELECT-clause. Suppose that we write the following incorrect query:  

 

  SELECT  DNAME, COUNT (*)  

  FROM  DEPARTMENT, EMPLOYEE  

  WHERE  DNUMBER=DNO AND SALARY>40000  

  GROUP BY  DNAME  

  HAVING  COUNT (*) > 5;  

 
 

This is incorrect because it will select only departments that have more than five employees who each 
earn more than $40,000. The rule is that the WHERE-clause is executed first, to select individual 
tuples; the HAVING-clause is applied later, to select individual groups of tuples. Hence, the tuples are 
already restricted to employees who earn more than $40,000, before the function in the HAVING-
clause is applied. One way to write the query correctly is to use a nested query, as shown in Query 28.  

 
 

QUERY 28  

For each department that has more than five employees, retrieve the department number and the 
number of its employees who are making more than $40,000.  

 

  Q28:  SELECT  DNUMBER, COUNT (*)  

    FROM  DEPARTMENT, EMPLOYEE  

    WHERE  DNUMBER=DNO AND SALARY>40000 AND 

      DNO IN  (SELECT  DNO  

        FROM  EMPLOYEE  

        GROUP BY  DNO  
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        HAVING  COUNT (*) > 5)  

    GROUP BY  DNUMBER;  

 
 

8.3.6 Discussion and Summary of SQL Queries 

A query in SQL can consist of up to six clauses, but only the first two—SELECT and FROM—are 
mandatory. The clauses are specified in the following order, with the clauses between square brackets [ 
. . . ] being optional:  

 
 

SELECT <attribute and function list>  

FROM <table list>  

[WHERE <condition>]  

[GROUP BY <grouping attribute(s)>]  

[HAVING <group condition>]  

[ORDER BY <attribute list>];  

 
 

The SELECT-clause lists the attributes or functions to be retrieved. The FROM-clause specifies all 
relations (tables) needed in the query, including joined relations, but not those in nested queries. The 
WHERE-clause specifies the conditions for selection of tuples from these relations, including join 
conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a 
condition on the groups being selected rather than on the individual tuples. The built-in aggregate 
functions COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they can 
also be applied to all the selected tuples in a query without a GROUP BY clause. Finally, ORDER BY 
specifies an order for displaying the result of a query.  

A query is evaluated conceptually by applying first the FROM-clause (to identify all tables involved in 
the query or to materialize any joined tables), followed by the WHERE-clause, and then GROUP BY 
and HAVING. Conceptually, ORDER BY is applied at the end to sort the query result. If none of the 
last three clauses (GROUP BY, HAVING, ORDER BY) are specified, we can think conceptually of a 
query as being executed as follows: for each combination of tuples—one from each of the relations 
specified in the FROM-clause—evaluate the WHERE-clause; if it evaluates to TRUE, place the values 
of the attributes specified in the SELECT-clause from this tuple combination in the result of the query. 
Of course, this is not an efficient way to implement the query in a real system, and each DBMS has 
special query optimization routines to decide on an execution plan that is efficient. We discuss query 
processing and optimization in Chapter 18.  

In general, there are numerous ways to specify the same query in SQL. This flexibility in specifying 
queries has advantages and disadvantages. The main advantage is that users can choose the technique 
they are most comfortable with when specifying a query. For example, many queries may be specified 
with join conditions in the WHERE-clause, or by using joined relations in the FROM-clause, or with 
some form of nested queries and the IN comparison operator. Some users may be more comfortable 
with one approach, whereas others may be more comfortable with another. From the programmer’s and 
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the system’s query optimization point of view, it is generally preferable to write a query with as little 
nesting and implied ordering as possible.  

The disadvantage of having numerous ways of specifying the same query is that this may confuse the 
user, who may not know which technique to use to specify particular types of queries. Another problem 
is that it may be more efficient to execute a query specified in one way than the same query specified in 
an alternative way. Ideally, this should not be the case: the DBMS should process the same query in the 
same way, regardless of how the query is specified. But this is quite difficult in practice, as each 
DBMS has different methods for processing queries specified in different ways. Thus, an additional 
burden on the user is to determine which of the alternative specifications is the most efficient. Ideally, 
the user should worry only about specifying the query correctly. It is the responsibility of the DBMS to 
execute the query efficiently. In practice, however, it helps if the user is aware of which types of 
constructs in a query are more expensive to process than others.  

 
 

8.4 Insert, Delete, and Update Statements in SQL 

8.4.1 The INSERT Command 
8.4.2 The DELETE Command 
8.4.3 The UPDATE Command

In SQL three commands can be used to modify the database: INSERT, DELETE, and UPDATE. We 
discuss each of these in turn.  

 
 

8.4.1 The INSERT Command 

In its simplest form, INSERT is used to add a single tuple to a relation. We must specify the relation 
name and a list of values for the tuple. The values should be listed in the same order in which the 
corresponding attributes were specified in the CREATE TABLE command. For example, to add a new 
tuple to the EMPLOYEE relation shown in Figure 07.05 and specified in the CREATE TABLE EMPLOYEE 
. . . command in Figure 08.01, we can use U1:  

 
 

  U1:  INSERT INTO  EMPLOYEE  
    VALUES  (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-

30’,‘98 Oak Forest,Katy,TX’,‘M’, 37000, 
‘987654321’, 4);  

 
 

A second form of the INSERT statement allows the user to specify explicit attribute names that 
correspond to the values provided in the INSERT command. This is useful if a relation has many 
attributes, but only a few of those attributes are assigned values in the new tuple. These attributes must 
include all attributes with NOT NULL specification and no default value; attributes with NULL 
allowed or DEFAULT values are the ones that can be left out. For example, to enter a tuple for a new 
EMPLOYEE for whom we know only the FNAME, LNAME, DNO, and SSN attributes, we can use U1A:  
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  U1A: INSERT INTO  EMPLOYEE (FNAME, LNAME, DNO, SSN)  
    VALUES  (‘Richard’, ‘Marini’, 4, ‘653298653’);  

 
 

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values are listed in the 
same order as the attributes are listed in the INSERT command itself. It is also possible to insert into a 
relation multiple tuples separated by commas in a single INSERT command. The attribute values 
forming each tuple are enclosed in parentheses.  

A DBMS that fully implements SQL2 should support and enforce all the integrity constraints that can 
be specified in the DDL. However, some DBMSs do not incorporate all the constraints, in order to 
maintain the efficiency of the DBMS and because of the complexity of enforcing all constraints. If a 
system does not support some constraint—say, referential integrity—the users or programmers must 
enforce the constraint. For example, if we issue the command in U2 on the database shown in Figure 
07.06, a DBMS not supporting referential integrity will do the insertion even though no DEPARTMENT 
tuple exists in the database with DNUMBER = 2. It is the responsibility of the user to check that any such 
constraints whose checks are not implemented by the DBMS are not violated. However, the DBMS 
must implement checks to enforce all the SQL integrity constraints it supports. A DBMS enforcing 
NOT NULL will reject an INSERT command in which an attribute declared to be NOT NULL does 
not have a value; for example, U2A would be rejected because no SSN value is provided.  

 
 

  U2:  INSERT INTO  EMPLOYEE (FNAME, LNAME, SSN, DNO)  
    VALUES  (‘Robert’, ‘Hatcher’, ‘980760540’, 2);  
    (* U2 is rejected if referential integrity checking is provided by DBMS *)  
  U2A: INSERT INTO  EMPLOYEE (FNAME, LNAME, DNO)  
    VALUES  (‘Robert’, ‘Hatcher’, 5);  
    (* U2A is rejected if NOT NULL checking is provided by DBMS *)  

 
 

A variation of the INSERT command inserts multiple tuples into a relation in conjunction with creating 
the relation and loading it with the result of a query. For example, to create a temporary table that has 
the name, number of employees, and total salaries for each department, we can write the statements in 
U3A and U3B:  

 
 

  U3A: CREATE TABLE  DEPTS_INFO  
    (DEPT_NAME  VARCHAR(15),  
    NO_OF_EMPS  INTEGER,  
    TOTAL_SAL  INTEGER);  
  U3B: INSERT INTO  DEPTS_INFO (DEPT_NAME, NO_OF_EMPS, 

TOTAL_SAL)  
    SELECT  DNAME, COUNT (*), SUM (SALARY)  
    FROM  (DEPARTMENT JOIN EMPLOYEE ON 

DNUMBER=DNO)  
    GROUP BY  DNAME;  
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A table DEPTS_INFO is created by U3A and is loaded with the summary information retrieved from 
the database by the query in U3B. We can now query DEPTS_INFO as we could any other relation; and 
when we do not need it any more, we can remove it by using the DROP TABLE command. Notice that 
the DEPTS_INFO table may not be up to date; that is, if we update either the DEPARTMENT or the 
EMPLOYEE relations after issuing U3B, the information in DEPTS_INFO becomes outdated. We have to 
create a view (see Section 8.5) to keep such a table up to date.  

 
 

8.4.2 The DELETE Command 

The DELETE command removes tuples from a relation. It includes a WHERE-clause, similar to that 
used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one 
table at a time. However, the deletion may propagate to tuples in other relations if referential triggered 
actions are specified in the referential integrity constraints of the DDL (see Section 8.1.2). Depending 
on the number of tuples selected by the condition in the WHERE-clause, zero, one, or several tuples 
can be deleted by a single DELETE command. A missing WHERE-clause specifies that all tuples in 
the relation are to be deleted; however, the table remains in the database as an empty table (Note 14). 
The DELETE commands in U4A to U4D, if applied independently to the database of Figure 07.06, will 
delete zero, one, four, and all tuples, respectively, from the EMPLOYEE relation:  

 
 

  U4A: DELETE FROM  EMPLOYEE  
    WHERE  LNAME=‘Brown’;  
  U4B: DELETE FROM  EMPLOYEE  
    WHERE  SSN=‘123456789’;  
  U4C: DELETE FROM  EMPLOYEE  
    WHERE  DNO IN  (SELECT  DNUMBER  
        FROM  DEPARTMENT  
        WHERE  DNAME=‘Research’); 
  U4D: DELETE FROM  EMPLOYEE;  

 
 

8.4.3 The UPDATE Command 

The UPDATE command is used to modify attribute values of one or more selected tuples. As in the 
DELETE command, a WHERE-clause in the UPDATE command selects the tuples to be modified 
from a single relation. However, updating a primary key value may propagate to the foreign key values 
of tuples in other relations if such a referential triggered action is specified in the referential integrity 
constraints of the DDL (see Section 8.1.2). An additional SET-clause specifies the attributes to be 
modified and their new values. For example, to change the location and controlling department number 
of project number 10 to ‘Bellaire’ and 5, respectively, we use U5:  

 

  U5:  UPDATE  PROJECT  

    SET  PLOCATION = ‘Bellaire’, DNUM = 5  

    WHERE  PNUMBER=10;  
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Several tuples can be modified with a single UPDATE command. An example is to give all employees 
in the ‘Research’ department a 10 percent raise in salary, as shown in U6. In this request, the modified 
SALARY value depends on the original SALARY value in each tuple, so two references to the SALARY 
attribute are needed. In the SET-clause, the reference to the SALARY attribute on the right refers to the 
old SALARY value before modification, and the one on the left refers to the new SALARY value after 
modification:  

 

  U6:  UPDATE  EMPLOYEE  

    SET  SALARY = SALARY *1.1  

    WHERE  DNO IN  (SELECT DNUMBER  

        FROM  DEPARTMENT  

        WHERE  DNAME=‘Research’);  

 
 

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that each 
UPDATE command explicitly specifies a single relation only. To modify multiple relations, we must 
issue several UPDATE commands. These (and other SQL commands) could be embedded in a general-
purpose program, as we shall discuss in Chapter 10.  

 
 

8.5 Views (Virtual Tables) in SQL 

8.5.1 Concept of a View in SQL 
8.5.2 Specification of Views in SQL 
8.5.3 View Implementation and View Update

In this section we introduce the concept of a view in SQL. We then show how views are specified, and 
we discuss the problem of updating a view, and how a view can be implemented by the DBMS.  

 
 

8.5.1 Concept of a View in SQL 

A view in SQL terminology is a single table that is derived from other tables (Note 15). These other 
tables could be base tables or previously defined views. A view does not necessarily exist in physical 
form; it is considered a virtual table, in contrast to base tables whose tuples are actually stored in the 
database. This limits the possible update operations that can be applied to views, but it does not provide 
any limitations on querying a view.  

We can think of a view as a way of specifying a table that we need to reference frequently, even though 
it may not exist physically. For example, in Figure 07.05 we may frequently issue queries that retrieve 
the employee name and the project names that the employee works on. Rather than having to specify 
the join of the EMPLOYEE, WORKS_ON, and PROJECT tables every time we issue that query, we can 
define a view that is a result of these joins. We can then issue queries on the view, which are specified 
as single-table retrievals rather than as retrievals involving two joins on three tables. We call the tables 
EMPLOYEE, WORKS_ON, and PROJECT the defining tables of the view.  
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8.5.2 Specification of Views in SQL 

The command to specify a view is CREATE VIEW. The view is given a (virtual) table name (or view 
name), a list of attribute names, and a query to specify the contents of the view. If none of the view 
attributes result from applying functions or arithmetic operations, we do not have to specify attribute 
names for the view, as they would be the same as the names of the attributes of the defining tables in 
the default case. The views in V1 and V2 create virtual tables whose schemas are illustrated in Figure 
08.05 when applied to the database schema of Figure 07.05.  

 

 

 

  V1:  CREATE VIEW  WORKS_ON1  

    AS  SELECT  FNAME, LNAME, PNAME, HOURS  

      FROM  EMPLOYEE, PROJECT, WORKS_ON  

      WHERE  SSN=ESSN AND PNO=PNUMBER;  

  V2:  CREATE VIEW  DEPT_INFO(DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)  

    AS  SELECT  DNAME, COUNT (*), SUM (SALARY)  

      FROM  DEPARTMENT, EMPLOYEE  

      WHERE  DNUMBER=DNO  

      GROUP BY  DNAME;  

 
 

In V1, we did not specify any new attribute names for the view WORKS_ON1 (although we could have); 
in this case, WORKS_ON1 inherits the names of the view attributes from the defining tables EMPLOYEE, 
PROJECT, and WORKS_ON. View V2 explicitly specifies new attribute names for the view DEPT_INFO, 
using a one-to-one correspondence between the attributes specified in the CREATE VIEW clause and 
those specified in the SELECT-clause of the query that defines the view. We can now specify SQL 
queries on a view—or virtual table—in the same way we specify queries involving base tables. For 
example, to retrieve the last name and first name of all employees who work on ‘ProjectX’, we can 
utilize the WORKS_ON1 view and specify the query as in QV1:  

 

  QV1:  SELECT  FNAME, LNAME  

    FROM  WORKS_ON1  

    WHERE  PNAME=‘ProjectX’;  

 
 

The same query would require the specification of two joins if specified on the base relations; one of 
the main advantages of a view is to simplify the specification of certain queries. Views are also used as 
a security and authorization mechanism (see Chapter 22).  
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A view is always up to date; if we modify the tuples in the base tables on which the view is defined, 
the view must automatically reflect these changes. Hence, the view is not realized at the time of view 
definition but rather at the time we specify a query on the view. It is the responsibility of the DBMS 
and not the user to make sure that the view is up to date.  

If we do not need a view any more, we can use the DROP VIEW command to dispose of it. For 
example, to get rid of the view V1, we can use the SQL statements in V1A:  

 
 

V1A:  DROP VIEW  WORKS_ON1;  

 
 

8.5.3 View Implementation and View Update 

The problem of efficiently implementing a view for querying is complex. Two main approaches have 
been suggested. One strategy, called query modification, involves modifying the view query into a 
query on the underlying base tables. The disadvantage of this approach is that it is inefficient for views 
defined via complex queries that are time-consuming to execute, especially if multiple queries are 
applied to the view within a short period of time. The other strategy, called view materialization, 
involves physically creating a temporary view table when the view is first queried and keeping that 
table on the assumption that other queries on the view will follow. In this case, an efficient strategy for 
automatically updating the view table when the base tables are updated must be developed in order to 
keep the view up to date. Techniques using the concept of incremental update have been developed 
for this purpose, where it is determined what new tuples must be inserted, deleted, or modified in a 
materialized view table when a change is applied to one of the defining base tables. The view is 
generally kept as long as it is being queried. If the view is not queried for a certain period of time, the 
system may then automatically remove the physical view table and recompute it from scratch when 
future queries reference the view.  

Updating of views is complicated and can be ambiguous. In general, an update on a view defined on a 
single table without any aggregate functions can be mapped to an update on the underlying base table. 
For a view involving joins, an update operation may be mapped to update operations on the underlying 
base relations in multiple ways. To illustrate potential problems with updating a view defined on 
multiple tables, consider the WORKS_ON1 view, and suppose that we issue the command to update the 
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:  

 

  UV1:  UPDATE  WORKS_ON1  

    SET  PNAME = ‘ProductY’  

    WHERE  LNAME=‘Smith’ AND FNAME=‘John’ AND PNAME=‘ProductX’;  

 
 

This query can be mapped into several updates on the base relations to give the desired update effect on 
the view. Two possible updates (a) and (b) on the base relations corresponding to UV1 are shown here:  
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  (a): UPDATE WORKS_ON  
    SET  PNO =  (SELECT PNUMBER FROM PROJECT 

WHERE PNAME=‘ProductY’)  
    WHERE  ESSN IN  (SELECT SSN FROM EMPLOYEE WHERE 

LNAME=‘Smith’ AND FNAME=‘John’)  
      AND    
      PNO IN  (SELECT PNUMBER FROM PROJECT 

WHERE PNAME=‘ProductX’);  
  (b): UPDATE PROJECT  
    SET  PNAME = ‘ProductY’  
    WHERE  PNAME = ‘ProductX’;  

 
 

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple in place of the ‘ProductX’ PROJECT 
tuple and is the most likely desired update. However, (b) would also give the desired update effect on 
the view, but it accomplishes this by changing the name of the ‘ProductX’ tuple in the PROJECT relation 
to ‘ProductY’. It is quite unlikely that the user who specified the view update UV1 wants the update to 
be interpreted as in (b), since it also has the effect of changing all the view tuples with PNAME = 
‘ProductX’.  

Some view updates may not make much sense; for example, modifying the TOTAL_SAL attribute of the 
DEPT_INFO view does not make sense because TOTAL_SAL is defined to be the sum of the individual 
employee salaries. This request is shown as UV2:  

 

  UV2:  UPDATE  DEPT_INFO  

    SET  TOTAL_SAL=100000  

    WHERE  DNAME=‘Research’;  

 
 

A large number of updates on the underlying base relations can satisfy this view update.  

A view update is feasible when only one possible update on the base relations can accomplish the 
desired update effect on the view. Whenever an update on the view can be mapped to more than one 
update on the underlying base relations, we must have a certain procedure to choose the desired update. 
Some researchers have developed methods for choosing the most likely update, while other researchers 
prefer to have the user choose the desired update mapping during view definition. 

In summary, we can make the following observations:  

• A view with a single defining table is updatable if the view attributes contain the primary key 
(or possibly some other candidate key) of the base relation, because this maps each (virtual) 
view tuple to a single base tuple.  

• Views defined on multiple tables using joins are generally not updatable.  
• Views defined using grouping and aggregate functions are not updatable.  

In SQL2, the clause WITH CHECK OPTION must be added at the end of the view definition if a view 
is to be updated. This allows the system to check for view updatability and to plan an execution 
strategy for view updates.  
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8.6 Specifying General Constraints as Assertions 

In SQL2, users can specify more general constraints—those that do not fall into any of the categories 
described in Section 8.1.2—via declarative assertions, using the CREATE ASSERTION statement 
of the DDL. Each assertion is given a constraint name and is specified via a condition similar to the 
WHERE-clause of an SQL query. For example, to specify the constraint that "the salary of an 
employee must not be greater than the salary of the manager of the department that the employee works 
for" in SQL2, we can write the following assertion:  

 
 

  CREATE ASSERTION SALARY_CONSTRAINT 
  CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, 

EMPLOYEE M, 
DEPARTMENT D 

 

    WHERE E.SALARY>M.SALARY AND  

      E.DNO=D.DNUMBER AND  

      D.MGRSSN=M.SSN));  

 
 

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, which is followed by a 
condition in parentheses that must hold true on every database state for the assertion to be satisfied. 
The constraint name can be used later to refer to the constraint or to modify or drop it. The DBMS is 
responsible for ensuring that the condition is not violated. Any WHERE-clause condition can be used, 
but many constraints can be specified using the EXISTS and NOT EXISTS style of conditions. 
Whenever some tuples in the database cause the condition of an ASSERTION statement to evaluate to 
FALSE, the constraint is violated. The constraint is satisfied by a database state if no combination of 
tuples in that database state violates the constraint.  

Note that the CHECK clause and constraint condition can also be used in conjunction with the 
CREATE DOMAIN statement (see Section 8.1.2) to specify constraints on a particular domain, such as 
restricting the values of a domain to a subrange of the data type for the domain. For example, to restrict 
the values of department numbers to an integer number between 1 and 20, we can write the following 
statement:  

 
 

CREATE DOMAIN D_NUM AS INTEGER  

CHECK (D_NUM > 0 AND D_NUM < 21);  

 
 

Earlier versions of SQL had two types of statements to declare constraints: ASSERT and TRIGGER. 
The ASSERT statement is somewhat similar to CREATE ASSERTION of SQL2 with a different 
syntax. The TRIGGER statement is used in a different way. In many cases it is convenient to specify 
the type of action to be taken in case of a constraint violation. Rather than offering users only the 
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option of aborting the transaction that causes a violation, the DBMS should make other options 
available. For example, it may be useful to specify a constraint that, if violated, causes some user to be 
informed of the violation. A manager may want to be informed if an employee’s travel expenses 
exceed a certain limit by receiving a message whenever this occurs. The action that the DBMS must 
take in this case is to send an appropriate message to that user, and the constraint is thus used to 
monitor the database. Other actions may be specified, such as executing a specific procedure or 
triggering other updates. A mechanism called a trigger has been proposed to implement such actions in 
earlier versions of SQL. A trigger specifies a condition and an action to be taken in case that 
condition is satisfied. The condition is usually specified as an assertion that invokes or "triggers" the 
action when it becomes TRUE. We will discuss triggers in more detail in Chapter 23 when we describe 
active databases.  

 
 

8.7 Additional Features of SQL 

There are a number of additional features of SQL that we have not described in this chapter, but will 
discuss elsewhere in the book. These are as follows:  

• SQL has language constructs for specifying the granting and revoking of privileges to users. 
Privileges typically correspond to the right to use certain SQL commands to access certain 
relations. Each relation is assigned an owner, and either the owner or the DBA staff can grant 
to selected users the privilege to use an SQL statement—such as SELECT, INSERT, 
DELETE, or UPDATE—to access the relation. In addition, the DBA staff can grant the 
privileges to create schemas, tables, or views to certain users. These SQL commands—called 
GRANT and REVOKE—are discussed in Chapter 22 where we discuss database security 
and authorization.  

• SQL has a methodology for embedding SQL statements in a general purpose programming 
language, such as C, C++, COBOL, or PASCAL. SQL also has language bindings to various 
programming languages that specify the correspondence of SQL data types to the data types 
of each of the programming languages. Embedded SQL is based on the concept of a cursor 
that can range over the query result one tuple at a time. We will discuss embedded SQL, and 
give examples of how it is used in relational database programming, in Chapter 10.  

• SQL has transaction control commands. These are used to specify units of database processing 
for concurrency control and recovery purposes. We will discuss these commands in Chapter 
19.  

• Each commercial DBMS will have, in addition to the SQL commands, a set of commands for 
specifying physical database design parameters, file structures for relations, and access paths 
such as indexes. We called these commands a storage definition language (SDL) in Chapter 2. 
Earlier versions of SQL had commands for creating indexes, but these were removed from 
the language because they were not at the conceptual schema level (see Chapter 2). We will 
discuss these commands for a specific commercial relational DBMS in Chapter 10.  

 
 

8.8 Summary 

In this chapter we presented the SQL database language. This language or variations of it have been 
implemented as interfaces to many commercial relational DBMSs, including IBM’s DB2 and SQL/DS, 
ORACLE, INGRES, INFORMIX, and SYBASE. The original version of SQL was implemented in the 
experimental DBMS called SYSTEM R, which was developed at IBM Research. SQL is designed to be 
a comprehensive language that includes statements for data definition, queries, updates, view 
definition, and constraint specification. We discussed each of these in separate sections of this chapter. 
In the final section we discussed additional features that are described elsewhere in the book. Our 
emphasis was on the SQL2 standard. The next version of the standard, called SQL3, is well underway. 
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It will incorporate object-oriented and other advanced database features into the standard. We discuss 
some of the proposed features of SQL3 in Chapter 13.  

Table 8.1 shows a summary of the syntax (or structure) of various SQL statements. This summary is 
not meant to be comprehensive nor to describe every possible SQL construct; rather, it is meant to 
serve as a quick reference to the major types of constructs available in SQL. We use BNF notation, 
where nonterminal symbols are shown in angled brackets < . . . >, optional parts are shown in square 
brackets [ . . . ], repetitions are shown in braces { . . . }, and alternatives are shown in parentheses ( . . . | 
. . . | . . . ) (Note 16). 

 
 

Table 8.1  Summary of SQL Syntax  

 

  

CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]  

{, <column name> <column type> [<attribute constraints>] }  

[<table constraint> {,<table constraint>}])  

 
 

DROP TABLE <table name>  

 
 

ALTER TABLE <table name> ADD <column name> <column type>  

 
 

SELECT [DISTINCT] <attribute list>  

FROM (<table name> { <alias>} | <joined table>) {, (<table name> { <alias>} | <joined table>) }  

[WHERE <condition>]  

[GROUP BY <grouping attributes> [HAVING <group selection condition> ] ]  

[ORDER BY <column name> [<order>] {, <column name> [<order>] } ]  

 
 

<attribute list>::= (*| ( <column name> | <function>(([DISTINCT]<column name> | *)))  

{,( <column name> | <function>(([DISTINCT] <column name> | *)) } ) )  
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<grouping attributes>::= <column name> { , <column name>} 

<order>::= (ASC | DESC)  

 
 

INSERT INTO <table name> [( <column name>{, <column name>} ) ]  

(VALUES ( <constant value> , { <constant value>} ){,(<constant value>{,<constant value>})}  

| <select statement>)  

 
 

DELETE FROM <table name>  

[WHERE <selection condition>]  

 
 

UPDATE <table name>  

SET <column name>=<value expression> { , <column name>=<value expression> }  

[WHERE <selection condition>]  

 
 

CREATE [UNIQUE] INDEX <index name>*  

ON <table name> ( <column name> [ <order> ] { , <column name> [ <order> ] } )  

[CLUSTER]  

 
 

DROP INDEX <index name>  

 
 

CREATE VIEW <view name> [ ( <column name> { , <column name> } ) ]  

AS <select statement>  

 
 

DROP VIEW <view name>  
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*These last two commands are not part of standard SQL2. 

 
 

Review Questions 

  8.1. How do the relations (tables) in SQL differ from the relations defined formally in Chapter 7? 
Discuss the other differences in terminology. Why does SQL allow duplicate tuples in a table or 
in a query result?  

  8.2. List the data types that are allowed for SQL2 attributes.  

  8.3. How does SQL allow implementation of the entity integrity and referential integrity constraints 
described in Chapter 7? What about general integrity constraints? 

  8.4. What is a view in SQL, and how is it defined? Discuss the problems that may arise when one 
attempts to update a view. How are views typically implemented?  

  8.5. Describe the six clauses in the syntax of an SQL query, and show what type of constructs can be 
specified in each of the six clauses. Which of the six clauses are required and which are 
optional?  

  8.6. Describe conceptually how an SQL query will be executed by specifying the conceptual order of 
executing each of the six clauses.  

 
 

Exercises 

  8.7. Consider the database shown in Figure 01.02, whose schema is shown in Figure 02.01. What are 
the referential integrity constraints that should hold on the schema? Write appropriate SQL DDL 
statements to define the database.  

  8.8. Repeat Exercise 8.7, but use the AIRLINE database schema of Figure 07.19.  

  8.9. Consider the LIBRARY relational database schema of Figure 07.20. Choose the appropriate action 
(reject, cascade, set to null, set to default) for each referential integrity constraint, both for delete 
of a referenced tuple, and for update of a primary key attribute value in a referenced tuple. 
Justify your choices.  

8.10. Write appropriate SQL DDL statements for declaring the LIBRARY relational database schema of 
Figure 07.20. Use the referential actions chosen in Exercise 8.9.  

8.11. Write SQL queries for the LIBRARY database queries given in Exercise 7.23.  

8.12. How can the key and foreign key constraints be enforced by the DBMS? Is the enforcement 
technique you suggest difficult to implement? Can the constraint checks be executed efficiently 
when updates are applied to the database?  

8.13. Specify the queries of Exercise 7.18 in SQL. Show the result of each query if it is applied to the 
COMPANY database of Figure 07.06.  

8.14. Specify the following additional queries on the database of Figure 07.05 in SQL. Show the 
query results if each query is applied to the database of Figure 07.06.  

  a. For each department whose average employee salary is more than $30,000, retrieve the 
department name and the number of employees working for that department.  
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b. Suppose that we want the number of male employees in each department rather than all 
employees (as in Exercise 08.14a). Can we specify this query in SQL? Why or why 
not?  

8.15. Specify the updates of Exercise 7.19, using the SQL update commands.  

8.16. Specify the following queries in SQL on the database schema of Figure 01.02.  

  a. Retrieve the names of all senior students majoring in ‘CS’ (computer science).  
b. Retrieve the names of all courses taught by Professor King in 1998 and 1999.  
c. For each section taught by Professor King, retrieve the course number, semester, year, 

and number of students who took the section.  
d. Retrieve the name and transcript of each senior student (Class = 5) majoring in CS. A 

transcript includes course name, course number, credit hours, semester, year, and grade 
for each course completed by the student.  

e. Retrieve the names and major departments of all straight-A students (students who 
have a grade of A in all their courses).  

f. Retrieve the names and major departments of all students who do not have a grade of A 
in any of their courses.  

8.17. Write SQL update statements to do the following on the database schema shown in Figure 
01.02.  

  a. Insert a new student <‘Johnson’, 25, 1, ‘MATH’> in the database.  
b. Change the class of student ‘Smith’ to 2.  
c. Insert a new course <‘Knowledge Engineering’,’CS4390’, 3,’CS’>.  
d. Delete the record for the student whose name is ‘Smith’ and whose student number is 

17.  

8.18. Specify the following views in SQL on the COMPANY database schema shown in Figure 07.05.  

  a. A view that has the department name, manager name, and manager salary for every 
department.  

b. A view that has the employee name, supervisor name, and employee salary for each 
employee who works in the ‘Research’ department.  

c. A view that has project name, controlling department name, number of employees, and 
total hours worked per week on the project for each project.  

d. A view that has project name, controlling department name, number of employees, and 
total hours worked per week on the project for each project with more than one 
employee working on it.  

8.19. Consider the following view DEPT_SUMMARY, defined on the COMPANY database of Figure 07.06: 

 

CREATE VIEW  DEPT_SUMMARY (D, C, TOTAL_S, AVERAGE_S)  
AS SELECT  DNO, COUNT (*), SUM (SALARY), AVG (SALARY)  
  FROM EMPLOYEE  
  GROUP BY  DNO;  

 
 

State which of the following queries and updates would be allowed on the view. If a query or 
update would be allowed, show what the corresponding query or update on the base relations 
would look like, and give its result when applied to the database of Figure 07.06.  
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  a. SELECT  * 
    FROM  DEPT_SUMMARY;  
  b. SELECT  D, C 
    FROM  DEPT_SUMMARY  
    WHERE  TOTAL_S > 100000;  
  c. SELECT  D, AVERAGE_S 
    FROM  DEPT_SUMMARY  
    WHERE  C > (SELECT C FROM DEPT_SUMMARY WHERE D=4);  
  d. UPDATE DEPT_SUMMARY  
    SET  D=3  
    WHERE  D=4;  
  e. DELETE FROM DEPT_SUMMARY  
     WHERE  C > 4;  

8.20. Consider the relation schema CONTAINS(Parent_part#, Sub_part#); a tuple in CONTAINS means 
that part contains part as a direct component. Suppose that we choose a part that contains no 
other parts, and we want to find the part numbers of all parts that contain , directly or indirectly 
at any level; this is a recursive query that requires computing the transitive closure of 
CONTAINS. Show that this query cannot be directly specified as a single SQL query. Can you 
suggest extensions to SQL to allow the specification of such queries?  

8.21. Specify the queries and updates of Exercises 7.20 and 7.21, which refer to the AIRLINE database, 
in SQL.  

8.22. Choose some database application that you are familiar with.  

a. Design a relational database schema for your database application.  
b. Declare your relations, using the SQL DDL.  
c. Specify a number of queries in SQL that are needed by your database application.  
d. Based on your expected use of the database, choose some attributes that should have 

indexes specified on them.  
e. Implement your database, if you have a DBMS that supports SQL.  

8.23. Specify the answers to Exercises 7.24 through 7.28 in SQL.  
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The SQL language, originally named SEQUEL, was based on the language SQUARE (Specifying 
Queries as Relational Expressions), described by Boyce et al. (1975). The syntax of SQUARE was 
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San Jose, California.  
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standard. Various vendor manuals describe the characteristics of SQL as implemented on DB2, 
SQL/DS, ORACLE, INGRES, INFORMIX, and other commercial DBMS products. Melton and Simon 
(1993) is a comprehensive treatment of SQL2. Horowitz (1992) discusses some of the problems related 
to referential integrity and propagation of updates in SQL2.  
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(1990), among others. View implementation is discussed in Blakeley et al. (1989). Negri et al. (1991) 
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16

Note 1 

Originally, SQL had statements for creating and dropping indexes on the files that represent relations, 
but these have been dropped from the current SQL2 standard.  

 
 

Note 2 

Key and referential integrity constraints were not included in earlier versions of SQL. In some earlier 
implementations, keys were specified implicitly at the internal level via the CREATE INDEX 
command.  

 
 

Note 3 

This is a new query that did not appear in Chapter 7.  

 
 

Note 4 

This query did not appear in Chapter 7; hence it is given the number 8 to distinguish it from queries 1 
through 7 of Section 7.6.  
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Note 5 

A construct for specifying recursive queries is planned for SQL3.  

 
 

Note 6 

This is equivalent to the condition WHERE TRUE, which means every row in the table is selected.  

 
 

Note 7 

In general, an SQL table is not required to have a key although in most cases there will be one.  

 
 

Note 8 

SQL2 also has corresponding multiset operations, which are followed by the keyword ALL (UNION 
ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets.  

 
 

Note 9 

If underscore or % are literal characters in the string, they should be preceded with an escape 
character, which is specified after the string; for example, ‘AB\_CD\%EF’ ESC ‘\’ represents the 
literal string ‘AB_CD%EF’.  

 
 

Note 10 

The condition (SALARY BETWEEN 30000 AND 40000) is equivalent to ((SALARY 30000) AND 
(SALARY 1 40000)).  

 
 

Note 11 

Recall that EXCEPT is the set difference operator.  

 
 

Note 12 
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Total order means that for any two values in the domain, it can be determined that one appears before 
the other in the defined order; for example, DATE, TIME and TIMESTAMP domains have total 
orderings on their values, as do alphabetic strings.  

 
 

Note 13 

Unless some tuples have NULL for SALARY, in which case they are not counted.  

 
 

Note 14 

We must use the DROP TABLE command to remove the table completely.  

 
 

Note 15 

As used here, the term view is more limited than the term user views discussed in Chapter 1 and 
Chapter 2, since a user view would possibly include many relations.  

 
 

Note 16 

The full syntax of SQL2 is described in a document of over 500 pages.  

 
 

Chapter 9: ER- and EER-to-Relational Mapping, and 
Other Relational Languages 
9.1 Relational Database Design Using ER-to-Relational Mapping 
9.2 Mapping EER Model Concepts to Relations 
9.3 The Tuple Relational Calculus 
9.4 The Domain Relational Calculus 
9.5 Overview of the QBE Language 
9.6 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

This chapter discusses two topics that are not directly related but serve to round out our presentation of 
the relational data model. The first topic focuses on designing a relational database schema based on 
a conceptual schema design. This is the logical database design (or data model mapping) step discussed 
in Section 3.1 (see Figure 03.01). This relates the concepts of the Entity-Relationship (ER) and 
Enhanced-ER (EER) models, presented in Chapter 3 and Chapter 4, to the concepts of the relational 
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model, presented in Chapter 7. In Section 9.1 and Section 9.2, we show how a relational database 
schema can be created from a conceptual schema developed using the ER or EER models. Many CASE 
(Computer-Aided Software Engineering) tools are based on the ER or EER or other similar models, as 
we have discussed in Chapter 3 and Chapter 4. These computerized tools are used interactively by 
database designers to develop an ER or EER schema for a database application. Many tools use ER 
diagrams or variations to develop the schema graphically, and then automatically convert it into a 
relational database schema in the DDL of a specific relational DBMS.  

The second topic introduces some other relational languages that are important. These are presented 
in Section 9.3, Section 9.4 and Section 9.5. We first describe another formal language for relational 
databases, the relational calculus. There are two variations of relational calculus: the tuple relational 
calculus is described in Section 9.3, and the domain relational calculus is described in Section 9.4. 
Some of the SQL query language constructs discussed in Chapter 8 are based on the tuple relational 
calculus. The relational calculus is a formal language, based on the branch of mathematical logic called 
predicate calculus (Note 1). In tuple relational calculus, variables range over tuples; whereas in domain 
relational calculus, variables range over the domains (values) of attributes. Finally, in Section 9.5, we 
give an overview of the QBE (Query-By-Example) language, which is a graphical user-friendly 
relational language based on domain relational calculus. Section 9.6 summarizes the chapter.  

Section 9.1 and Section 9.2 on relational database design assume that the reader is familiar with the 
material in Chapter 3 and Chapter 4, respectively.  

 
 

9.1 Relational Database Design Using ER-to-Relational Mapping 

9.1.1 ER-to-Relational Mapping Algorithm 
9.1.2 Summary of Mapping for Model Constructs and Constraints

Section 9.1.1 provides an outline of an algorithm that can map an ER schema into the corresponding 
relational database schema. Section 9.1.2 summarizes the correspondences between ER and relational 
model constructs. Section 9.2 discusses the options for mapping the EER model constructs—such as 
generalization/specialization and categories—into relations.  

 
 

9.1.1 ER-to-Relational Mapping Algorithm 

We now describe the steps of an algorithm for ER-to-relational mapping. We will use the COMPANY 
relational database schema, shown in Figure 07.05, to illustrate the mapping steps.  

 
 

STEP 1: For each regular (strong) entity type E in the ER schema, create a relation R that includes all 
the simple attributes of E. Include only the simple component attributes of a composite attribute. 
Choose one of the key attributes of E as primary key for R. If the chosen key of E is composite, the set 
of simple attributes that form it will together form the primary key of R.  

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in Figure 07.05 to 
correspond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJECT from Figure 03.02 (Note 
2). The foreign key and relationship attributes, if any, are not included yet; they will be added during 
subsequent steps. These include the attributes SUPERSSN and DNO of EMPLOYEE; MGRSSN and 
MGRSTARTDATE of DEPARTMENT; and DNUM of PROJECT. In our example, we choose SSN, DNUMBER, and 
PNUMBER as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT, respectively.  
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STEP 2: For each weak entity type W in the ER schema with owner entity type E, create a relation R, 
and include all simple attributes (or simple components of composite attributes) of W as attributes of R. 
In addition, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that 
correspond to the owner entity type(s); this takes care of the identifying relationship type of W. The 
primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the 
weak entity type W, if any.  

In our example, we create the relation DEPENDENT in this step to correspond to the weak entity type 
DEPENDENT. We include the primary key SSN of the EMPLOYEE relation—which corresponds to the 
owner entity type—as a foreign key attribute of DEPENDENT; we renamed it ESSN, although this is not 
necessary. The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} 
because DEPENDENT_NAME is the partial key of DEPENDENT.  

It is common to choose the propagate (CASCADE) option for the referential triggered action (see 
Section 8.1) on the foreign key in the relation corresponding to the weak entity type, since a weak 
entity has an existence dependency on its owner entity. This can be used for both ON UPDATE and 
ON DELETE.  

 
 

STEP 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that 
correspond to the entity types participating in R. Choose one of the relations—S, say—and include as 
foreign key in S the primary key of T. It is better to choose an entity type with total participation in R 
in the role of S. Include all the simple attributes (or simple components of composite attributes) of the 
1:1 relationship type R as attributes of S.  

In our example, we map the 1:1 relationship type MANAGES from Figure 03.02 by choosing the 
participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES 
relationship type is total (every department has a manager). We include the primary key of the 
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename it MGRSSN. We also include 
the simple attribute Start-Date of the MANAGES relationship type in the DEPARTMENT relation and 
rename it MGRSTARTDATE.  

Notice that an alternative mapping of a 1:1 relationship type is possible by merging the two entity types 
and the relationship into a single relation. This is appropriate when both participations are total.  

 
 

STEP 4: For each regular binary 1:N relationship type R, identify the relation S that represents the 
participating entity type at the N-side of the relationship type. Include as foreign key in S the primary 
key of the relation T that represents the other entity type participating in R; this is because each entity 
instance on the N-side is related to at most one entity instance on the 1-side of the relationship type. 
Include any simple attributes (or simple components of composite attributes) of the 1:N relationship 
type as attributes of S.  

In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION from 
Figure 03.02. For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as 
foreign key in the EMPLOYEE relation and call it DNO. For SUPERVISION we include the primary key of 
the EMPLOYEE relation as foreign key in the EMPLOYEE relation itself—because the relationship is 
recursive—and call it SUPERSSN. The CONTROLS relationship is mapped to the foreign key attribute 
DNUM of PROJECT, which references the primary key DNUMBER of the DEPARTMENT relation.  
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STEP 5: For each binary M:N relationship type R, create a new relation S to represent R. Include as 
foreign key attributes in S the primary keys of the relations that represent the participating entity types; 
their combination will form the primary key of S. Also include any simple attributes of the M:N 
relationship type (or simple components of composite attributes) as attributes of S. Notice that we 
cannot represent an M:N relationship type by a single foreign key attribute in one of the participating 
relations—as we did for 1:1 or 1:N relationship types—because of the M:N cardinality ratio.  

In our example, we map the M:N relationship type WORKS_ON from Figure 03.02 by creating the 
relation WORKS_ON in Figure 07.05 (Note 3). We include the primary keys of the PROJECT and 
EMPLOYEE relations as foreign keys in WORKS_ON and rename them PNO and ESSN, respectively. We 
also include an attribute HOURS in WORKS_ON to represent the Hours attribute of the relationship type. 
The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, 
PNO}.  

The propagate (CASCADE) option for the referential triggered action (see Section 8.1) should be 
specified on the foreign keys in the relation corresponding to the relationship R, since each relationship 
instance has an existence dependency on each of the entities it relates. This can be used for both ON 
UPDATE and ON DELETE.  

 
 

Notice that we can always map 1:1 or 1:N relationships in a manner similar to M:N relationships. This 
alternative is particularly useful when few relationship instances exist, in order to avoid null values in 
foreign keys. In this case, the primary key of the "relationship" relation will be only one of the foreign 
keys that reference the participating "entity" relations. For a 1:N relationship, this will be the foreign 
key that references the entity relation on the N-side. For a 1:1 relationship, the foreign key that 
references the entity relation with total participation (if any) is chosen as primary key.  

 
 

STEP 6: For each multivalued attribute A, create a new relation R. This relation R will include an 
attribute corresponding to A, plus the primary key attribute K—as a foreign key in R—of the relation 
that represents the entity type or relationship type that has A as an attribute. The primary key of R is the 
combination of A and K. If the multivalued attribute is composite, we include its simple components 
(Note 4).  

In our example, we create a relation DEPT_LOCATIONS. The attribute DLOCATION represents the 
multivalued attribute Locations of DEPARTMENT, while DNUMBER—as foreign key—represents the 
primary key of the DEPARTMENT relation. The primary key of DEPT_ LOCATIONS is the combination of 
{DNUMBER, DLOCATION}. A separate tuple will exist in DEPT_LOCATIONS for each location that a 
department has.  

The propagate (CASCADE) option for the referential triggered action (see Section 8.1) should be 
specified on the foreign key in the relation corresponding to the multivalued attribute for both ON 
UPDATE and ON DELETE.  

 
 

Figure 07.05 (and Figure 07.07) shows the relational database schema obtained through the preceding 
steps, and Figure 07.06 shows a sample database state. Notice that we did not discuss the mapping of n-
ary relationship types (n > 2), because none exist in Figure 03.02; these are mapped in a similar way to 
M:N relationship types by including the following additional step in the mapping algorithm.  
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STEP 7: For each n-ary relationship type R, where n > 2, create a new relation S to represent R. 
Include as foreign key attributes in S the primary keys of the relations that represent the participating 
entity types. Also include any simple attributes of the n-ary relationship type (or simple components of 
composite attributes) as attributes of S. The primary key of S is usually a combination of all the foreign 
keys that reference the relations representing the participating entity types. However, if the cardinality 
constraints on any of the entity types E participating in R is 1, then the primary key of S should not 
include the foreign key attribute that references the relation E’ corresponding to E (see Section 4.7). 
This concludes the mapping procedure.  

 
 

For example, consider the relationship type SUPPLY of Figure 04.13(a). This can be mapped to the 
relation SUPPLY shown in Figure 09.01, whose primary key is the combination of foreign keys {SNAME, 
PARTNO, PROJNAME}.  

 

 

 
 

The main point to note in a relational schema, in contrast to an ER schema, is that relationship types are 
not represented explicitly; instead, they are represented by having two attributes A and B, one a 
primary key and the other a foreign key—over the same domain—included in two relations S and T. 
Two tuples in S and T are related when they have the same value for A and B. By using the EQUIJOIN 
(or NATURAL JOIN) operation over S.A and T.B, we can combine all pairs of related tuples from S 
and T and materialize the relationship. When a binary 1:1 or 1:N relationship type is involved, a single 
join operation is usually needed. For a binary M:N relationship type, two join operations are needed, 
whereas for n-ary relationship types, n joins are needed.  

For example, to form a relation that includes the employee name, project name, and hours that the 
employee works on each project, we need to connect each EMPLOYEE tuple to the related PROJECT 
tuples via the WORKS_ON relation of Figure 07.05. Hence, we must apply the EQUIJOIN operation to 
the EMPLOYEE and WORKS_ON relations with the join condition SSN = ESSN, and then apply another 
EQUIJOIN operation to the resulting relation and the PROJECT relation with join condition PNO = 
PNUMBER. In general, when multiple relationships need to be traversed, numerous join operations must 
be specified. A relational database user must always be aware of the foreign key attributes in order to 
use them correctly in combining related tuples from two or more relations. If an equijoin is performed 
among attributes of two relations that do not represent a foreign key/primary key relationship, the result 
can often be meaningless and may lead to spurious (invalid) data. For example, the reader can try 
joining PROJECT and DEPT_LOCATIONS relations on the condition DLOCATION = PLOCATION and examine 
the result (see also Chapter 14).  

Another point to note in the relational schema is that we create a separate relation for each multivalued 
attribute. For a particular entity with a set of values for the multivalued attribute, the key attribute value 
of the entity is repeated once for each value of the multivalued attribute in a separate tuple. This is 
because the basic relational model does not allow multiple values (a list, or a set of values) for an 
attribute in a single tuple. For example, because department 5 has three locations, three tuples exist in 
the DEPT_LOCATIONS relation of Figure 07.06; each tuple specifies one of the locations. In our example, 
we apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the DNUMBER attribute to get the values 
of all locations along with other DEPARTMENT attributes. In the resulting relation, the values of the other 
department attributes are repeated in separate tuples for every location that a department has.  
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The basic relational algebra does not have a NEST or COMPRESS operation that would produce from 
the DEPT_LOCATIONS relation of Figure 07.06 a set of tuples of the form {<1, Houston>, <4, Stafford>, 
<5, {Bellaire, Sugarland, Houston}>}. This is a serious drawback of the basic normalized or "flat" 
version of the relational model. On this score, the object-oriented, hierarchical, and network models 
have better facilities than does the relational model. The nested relational model (see Section 13.6) 
attempts to remedy this.  

 
 

9.1.2 Summary of Mapping for Model Constructs and Constraints 

We now summarize the correspondences between ER and relational model constructs and constraints 
in Table 9.1.  

 
 

Table 9.1 Correspondence between ER and Relational Models  

 
 

ER Model  Relational Model  

Entity type  "Entity" relation  

1:1 or 1:N relationship type  Foreign key (or "relationship" relation)  

M:N relationship type  "Relationship" relation and two foreign keys  

n-ary relationship type  "Relationship" relation and n foreign keys  

Simple attribute  Attribute  

Composite attribute  Set of simple component attributes  

Multivalued attribute  Relation and foreign key  

Value set  Domain  

Key attribute  Primary (or secondary) key  

 
 

9.2 Mapping EER Model Concepts to Relations 

9.2.1 Superclass/Subclass Relationships and Specialization (or Generalization) 
9.2.2 Mapping of Shared Subclasses 
9.2.3 Mapping of Categories

We now discuss the mapping of EER model concepts to relations by extending the ER-to-relational 
mapping algorithm that was presented in Section 9.1.  

 
 

9.2.1 Superclass/Subclass Relationships and Specialization (or Generalization) 
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There are several options for mapping a number of subclasses that together form a specialization (or 
alternatively, that are generalized into a superclass), such as the {SECRETARY, TECHNICIAN, ENGINEER} 
subclasses of EMPLOYEE in Figure 04.04. We can add a further step to our ER-to-relational mapping 
algorithm from Section 9.1, which has seven steps, to handle the mapping of specialization. Step 8, 
which follows, gives the most common options; other mappings are also possible. We then discuss the 
conditions under which each option should be used. We use Attrs(R) to denote the attributes of relation 
R and PK(R) to denote the primary key of R.  

 
 

STEP 8: Convert each specialization with m subclasses {S1, S2, . . ., Sm} and (generalized) superclass 
C, where the attributes of C are {k, a1, . . ., an} and k is the (primary) key, into relation schemas using 
one of the four following options:  

Option 8A: Create a relation L for C with attributes Attrs(L) = {k, a1, . . ., an} and PK(L) = k. Create a 
relation Li for each subclass Si, 1 1 i 1 m, with the attributes Attrs(Li) = {k}D {attributes of Si} and 
PK(Li) = k.  

Option 8B: Create a relation Li for each subclass Si, 1 1 i 1 m, with the attributes Attrs(Li) = 
{attributes of Si}D {k, a1, . . ., an} and PK(Li) = k.  

Option 8C: Create a single relation L with attributes Attrs(L) = {k, a1, . . ., an} D {attributes of S1} D . . 
. D {attributes of Sm} D {t} and PK(L) = k. This option is for a specialization whose subclasses are 
disjoint, and t is a type (or discriminating) attribute that indicates the subclass to which each tuple 
belongs, if any. This option has the potential for generating a large number of null values.  

Option 8D: Create a single relation schema L with attributes Attrs(L) = {k, a1, . . ., an} D {attributes of 
S1} D . . . D {attributes of Sm} D {t1, t2, . . ., tm} and PK(L) = k. This option is for a specialization 
whose subclasses are overlapping (but will also work for a disjoint specialization), and each ti, 1 1 i 1 
m, is a Boolean attribute indicating whether a tuple belongs to subclass Si.  

 
 

Options 8A and 8B can be called the multiple relation options, whereas options 8C and 8D can be 
called the single relation options. Option 8A creates a relation L for the superclass C and its attributes, 
plus a relation Li for each subclass Si; each Li includes the specific (or local) attributes of Si, plus the 
primary key of the superclass C, which is propagated to Li and becomes its primary key. An EQUIJOIN 
operation on the primary key between any Li and L produces all the specific and inherited attributes of 
the entities in Si. This option is illustrated in Figure 09.02(a) for the EER schema in Figure 04.04. 
Option 8A works for any constraints on the specialization: disjoint or overlapping, total or partial. 
Notice that the constraint  

 
 

p<K>(Li) p<k>(L)  

 
 

must hold for each Li. This specifies an inclusion dependency Li.k<L.k (see Section 15.4).  
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In option 8B, the EQUIJOIN operation is built into the schema and the relation L is done away with, as 
illustrated in Figure 09.02(b) for the EER specialization in Figure 04.03(b). This option works well 
only when both the disjoint and total constraints hold. If the specialization is not total, an entity that 
does not belong to any of the subclasses Si is lost. If the specialization is not disjoint, an entity 
belonging to more than one subclass will have its inherited attributes from the superclass C stored 
redundantly in more than one Li. With option 8B, no relation holds all the entities in the superclass C; 
consequently, we must apply an OUTER UNION (or FULL OUTER JOIN) operation to the Li relations 
to retrieve all the entities in C. The result of the outer union will be similar to the relations under 
options 8C and 8D except that the type fields will be missing. Whenever we search for an arbitrary 
entity in C, we must search all the m relations Li.  

Options 8C and 8D create a single relation to represent the superclass C and all its subclasses. An entity 
that does not belong to some of the subclasses will have null values for the specific attributes of these 
subclasses. These options are hence not recommended if many specific attributes are defined for the 
subclasses. If few specific subclass attributes exist, however, these mappings are preferable to options 
8A and 8B because they do away with the need to specify EQUIJOIN and OUTER UNION operations 
and hence can yield a more efficient implementation. Option 8C is used to handle disjoint subclasses 
by including a single type (or image or discriminating) attribute t to indicate the subclass to which 
each tuple belongs; hence, the domain of t could be {1, 2, . . ., m}. If the specialization is partial, t can 
have null values in tuples that do not belong to any subclass. If the specialization is attribute-defined, 
that attribute serves the purpose of t and t is not needed; this option is illustrated in Figure 09.02(c) for 
the EER specialization in Figure 04.04. Option 8D is used to handle overlapping subclasses by 
including m Boolean type fields, one for each subclass. It can also be used for disjoint classes. Each 
type field ti can have a domain {yes, no}, where a value of yes indicates that the tuple is a member of 
subclass Si. This option is illustrated in Figure 09.02(d) for the EER specialization in Figure 04.05, 
where Mflag and Pflag are the type fields. Notice that it is also possible to create a single type of m bits 
instead of the m type fields.  

When we have a multilevel specialization (or generalization) hierarchy or lattice, we do not have to 
follow the same mapping option for all the specializations. Instead, we can use one mapping option for 
part of the hierarchy or lattice and other options for other parts. Figure 09.03 shows one possible 
mapping into relations for the lattice of Figure 04.07. Here we used option 8A for PERSON/ {EMPLOYEE, 
ALUMNUS, STUDENT}, option 8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT}, and option 8D 
for both STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT}, 
STUDENT/STUDENT_ASSISTANT (in STUDENT), and STUDENT/{GRADUATE_STUDENT, 
UNDERGRADUATE_STUDENT}. In Figure 09.03, all attributes whose names end with ‘Type’ or ‘Flag’ are 
type fields.  

 

 

 
 

9.2.2 Mapping of Shared Subclasses 

A shared subclass, such as ENGINEERING_MANAGER of Figure 04.06, is a subclass of several 
superclasses. These classes must all have the same key attribute; otherwise, the shared subclass would 
be modeled as a category. We can apply any of the options discussed in step 8 to a shared subclass, 
although usually option 8A is used. In Figure 09.03, options 8C and 8D are used for the shared subclass 
STUDENT_ASSISTANT in EMPLOYEE and STUDENT, respectively.  
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9.2.3 Mapping of Categories 

A category is a subclass of the union of two or more superclasses that can have different keys because 
they can be of different entity types. An example is the OWNER category shown in Figure 04.08, which 
is a subset of the union of three entity types PERSON, BANK, and COMPANY. The other category in that 
figure, REGISTERED_VEHICLE, has two superclasses that have the same key attribute.  

For mapping a category whose defining superclasses have different keys, it is customary to specify a 
new key attribute, called a surrogate key, when creating a relation to correspond to the category. This 
is because the keys of the defining classes are different, so we cannot use any one of them exclusively 
to identify all entities in the category. We can now create a relation schema OWNER to correspond to the 
OWNER category, as illustrated in Figure 09.04, and include any attributes of the category in this 
relation. The primary key of OWNER is the surrogate key OwnerId. We also add the surrogate key 
attribute OwnerId as foreign key to each relation corresponding to a superclass of the category, to 
specify the correspondence in values between the surrogate key and the key of each superclass.  

For a category whose superclasses have the same key, such as VEHICLE in Figure 04.08, there is no need 
for a surrogate key. The mapping of the REGISTERED_VEHICLE category, which illustrates this case, is 
also shown in Figure 09.04.  

 

 

 
 

Section 9.3, Section 9.4 and Section 9.5 discuss some relational query languages that are important 
both theoretically and in practice.  

 
 

9.3 The Tuple Relational Calculus 

9.3.1 Tuple Variables and Range Relations 
9.3.2 Expressions and Formulas in Tuple Relational Calculus 
9.3.3 The Existential and Universal Quantifiers 
9.3.4 Example Queries Using the Existential Quantifier 
9.3.5 Transforming the Universal and Existential Quantifiers 
9.3.6 Using the Universal Quantifier 
9.3.7 Safe Expressions 
9.3.8 Quantifiers in SQL

Relational calculus is a formal query language where we write one declarative expression to specify a 
retrieval request and hence there is no description of how to evaluate a query; a calculus expression 
specifies what is to be retrieved rather than how to retrieve it. Therefore, the relational calculus is 
considered to be a nonprocedural language. This differs from relational algebra, where we must write 
a sequence of operations to specify a retrieval request; hence it can be considered as a procedural way 
of stating a query. It is possible to nest algebra operations to form a single expression; however, a 
certain order among the operations is always explicitly specified in a relational algebra expression. This 
order also influences the strategy for evaluating the query.  
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It has been shown that any retrieval that can be specified in the relational algebra can also be specified 
in the relational calculus, and vice versa; in other words, the expressive power of the two languages is 
identical. This has led to the definition of the concept of a relationally complete language. A relational 
query language L is considered relationally complete if we can express in L any query that can be 
expressed in relational calculus. Relational completeness has become an important basis for comparing 
the expressive power of high-level query languages. However, as we saw in Section 7.5, certain 
frequently required queries in database applications cannot be expressed in relational algebra or 
calculus. Most relational query languages are relationally complete but have more expressive power 
than relational algebra or relational calculus because of additional operations such as aggregate 
functions, grouping, and ordering. All our examples will again refer to the database shown in Figure 
07.05 and Figure 07.06. The queries are the same as those we presented in relational algebra in Chapter 
7.  

 
 

9.3.1 Tuple Variables and Range Relations 

The tuple relational calculus is based on specifying a number of tuple variables. Each tuple variable 
usually ranges over a particular database relation, meaning that the variable may take as its value any 
individual tuple from that relation. A simple tuple relational calculus query is of the form  

 
 

{t | COND(t)}  

 
 

where t is a tuple variable and COND(t) is a conditional expression involving t. The result of such a 
query is the set of all tuples t that satisfy COND(t). For example, to find all employees whose salary is 
above $50,000, we can write the following tuple calculus expression:  

 
 

{t | EMPLOYEE(t) and t.SALARY>50000}  

 
 

The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is EMPLOYEE. Each 
EMPLOYEE tuple t that satisfies the condition t.SALARY>50000 will be retrieved. Notice that t.SALARY 
references attribute SALARY of tuple variable t; this notation resembles how attribute names are 
qualified with relation names or aliases in SQL. In the notation of Chapter 7, t.SALARY is the same as 
writing t[SALARY].  

The above query retrieves all attribute values for each selected EMPLOYEE tuple t. To retrieve only some 
of the attributes—say, the first and last names—we write  

 
 

{t.FNAME, t.LNAME | EMPLOYEE(t) and t.SALARY>50000}  
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This is equivalent to the following SQL query:  

 

   SELECT T.FNAME, T.LNAME 
  FROM EMPLOYEE AS T 
  WHERE T.SALARY>50000; 

 
 

Informally, we need to specify the following information in a tuple calculus expression:  

1. For each tuple variable t, the range relation R of t. This value is specified by a condition of 
the form R(t).  

2. A condition to select particular combinations of tuples. As tuple variables range over their 
respective range relations, the condition is evaluated for every possible combination of tuples 
to identify the selected combinations for which the condition evaluates to TRUE.  

3. A set of attributes to be retrieved, the requested attributes. The values of these attributes are 
retrieved for each selected combination of tuples.  

Observe the correspondence of the preceding items to a simple SQL query: item 1 corresponds to the 
FROM-clause relation names; item 2 corresponds to the WHERE-clause condition; and item 3 
corresponds to the SELECT-clause attribute list. Before we discuss the formal syntax of tuple relational 
calculus, consider another query we have seen before.  

 
 

QUERY 0  

Retrieve the birthdate and address of the employee (or employees) whose name is ‘John B. Smith’.  

 
 

Q0 : {t.BDATE, t.ADDRESS | EMPLOYEE(t) and t.FNAME=‘John’ and t.MINIT=‘B’ and 
t.LNAME=‘Smith’}  

 
 

In tuple relational calculus, we first specify the requested attributes t.BDATE and t.ADDRESS for each 
selected tuple t. Then we specify the condition for selecting a tuple following the bar ( | )—namely, that 
t be a tuple of the EMPLOYEE relation whose FNAME, MINIT, and LNAME attribute values are ‘John’, ‘B’, 
and ‘Smith’, respectively.  

 
 

9.3.2 Expressions and Formulas in Tuple Relational Calculus 

A general expression of the tuple relational calculus is of the form  
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{t1.A1, t2.A2, . . ., tn.An | COND(t1, t2, . . ., tn, tn+1, tn+2, . . ., tn+m)}  

 
 

where t1, t2, . . ., tn, tn+1, . . ., tn+m are tuple variables, each Ai is an attribute of the relation on which ti 
ranges, and COND is a condition or formula (Note 5) of the tuple relational calculus. A formula is 
made up of predicate calculus atoms, which can be one of the following:  

1. An atom of the form R(ti), where R is a relation name and ti is a tuple variable. This atom 
identifies the range of the tuple variable ti as the relation whose name is R.  

2. An atom of the form ti.A op tj.B, where op is one of the comparison operators in the set {=, >, 
, <, 1, }, ti and tj are tuple variables, A is an attribute of the relation on which ti ranges, and B 
is an attribute of the relation on which tj ranges.  

3. An atom of the form ti.A op c or c op tj.B, where op is one of the comparison operators in the 
set {=, >, , <, 1, }, ti and tj are tuple variables, A is an attribute of the relation on which ti 
ranges, B is an attribute of the relation on which tj ranges, and c is a constant value.  

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combination of tuples; 
this is called the truth value of an atom. In general, a tuple variable ranges over all possible tuples "in 
the universe." For atoms of type 1, if the tuple variable is assigned a tuple that is a member of the 
specified relation R, the atom is TRUE; otherwise it is FALSE. In atoms of types 2 and 3, if the tuple 
variables are assigned to tuples such that the values of the specified attributes of the tuples satisfy the 
condition, then the atom is TRUE.  

A formula (condition) is made up of one or more atoms connected via the logical operators and, or, 
and not and is defined recursively as follows:  

1. Every atom is a formula.  
2. If F1 and F2 are formulas, then so are (F1 and F2), (F1 or F2), not (F1), and not (F2). The truth 

values of these four formulas are derived from their component formulas F1 and F2 as follows:  
a. (F1 and F2) is TRUE if both F1 and F2 are TRUE; otherwise, it is FALSE.  
b. (F1 or F2) is FALSE if both F1 and F2 are FALSE; otherwise it is TRUE.  
c. not(F1) is TRUE if F1 is FALSE; it is FALSE if F1 is TRUE.  
d. not(F2) is TRUE if F2 is FALSE; it is FALSE if F2 is TRUE.  

 
 

9.3.3 The Existential and Universal Quantifiers 

In addition, two special symbols called quantifiers can appear in formulas; these are the universal 
quantifier () and the existential quantifier (). Truth values for formulas with quantifiers are described 
in 3 and 4 below; first, however, we need to define the concepts of free and bound tuple variables in a 
formula. Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an ( t) or ( 
t) clause; otherwise, it is free. Formally, we define a tuple variable in a formula as free or bound 
according to the following rules:  

• An occurrence of a tuple variable in a formula F that is an atom is free in F.  
• An occurrence of a tuple variable t is free or bound in a formula made up of logical 

connectives—(F1 and F2), (F1 or F2), not(F1), and not(F2)—depending on whether it is free or 
bound in F1 or F2 (if it occurs in either). Notice that in a formula of the form F = (F1 and F2) or 
F = (F1 or F2), a tuple variable may be free in F1 and bound in F2, or vice versa. In this case, 
one occurrence of the tuple variable is bound and the other is free in F.  
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• All free occurrences of a tuple variable t in F are bound in a formula F’ of the form F’ = ( 
t)(F) or F’ = ( t)(F). The tuple variable is bound to the quantifier specified in F’. For example, 
consider the formulas:  

F1 : d.DNAME=‘Research’  

F2 : ( t)(d.DNUMBER= t.DNO)  

F3 : (d)(d.MGRSSN=‘333445555’)  

 
 

The tuple variable d is free in both F1 and F2, whereas it is bound to the universal quantifier in F3. 
Variable t is bound to the () quantifier in F2.  

 
 

We can now give rules 3 and 4 for the definition of a formula we started earlier:  

3. If F is a formula, then so is ( t)(F), where t is a tuple variable. The formula ( t)(F) is TRUE if 
the formula F evaluates to TRUE for some (at least one) tuple assigned to free occurrences of t 
in F; otherwise ( t)(F) is FALSE.  

4. If F is a formula, then so is ( t)(F), where t is a tuple variable. The formula ( t)(F) is TRUE if 
the formula F evaluates to TRUE for every tuple (in the universe) assigned to free occurrences 
of t in F; otherwise ( t)(F) is FALSE.  

The () quantifier is called an existential quantifier because a formula ( t)(F) is true if "there exists" 
some tuple that makes F TRUE. For the universal quantifier, ( t)(F) is TRUE if every possible tuple 
that can be assigned to free occurrences of t in F is substituted for t, and F is TRUE for every such 
substitution. It is called the universal (or for all) quantifier because every tuple in "the universe of" 
tuples must make F TRUE to make the quantified formula TRUE.  

 
 

9.3.4 Example Queries Using the Existential Quantifier 

We will use some of the same queries shown in Chapter 7 to give a flavor of how the same queries are 
specified in relational algebra and in relational calculus. Notice that some queries are easier to specify 
in the relational algebra than in the relational calculus, and vice versa.  

 
 

QUERY 1  

Retrieve the name and address of all employees who work for the ‘Research’ department.  

 
 

Q1 : {t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) and ( d)  

(DEPARTMENT(d) and d.DNAME=‘Research’ and d.DNUMBER= t.DNO) }  
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The only free tuple variables in a relational calculus expression should be those that appear to the left 
of the bar ( | ). In Q1, t is the only free variable; it is then bound successively to each tuple. If a tuple 
satisfies the conditions specified in Q1, the attributes FNAME, LNAME, and ADDRESS are retrieved for 
each such tuple. The conditions EMPLOYEE(t) and DEPARTMENT(d) specify the range relations for t and 
d. The condition d.DNAME = ‘Research’ is a selection condition and corresponds to a SELECT 
operation in the relational algebra, whereas the condition d.DNUMBER = t.DNO is a join condition and 
serves a similar purpose to the JOIN operation (see Chapter 7).  

 
 

QUERY 2  

For every project located in ‘Stafford’, list the project number, the controlling department number, and 
the department manager’s last name, birthdate, and address.  

 
 

Q2 : {p.PNUMBER, p.DNUM, m.LNAME, m.BDATE, m.ADDRESS | PROJECT(p) and  

EMPLOYEE(m) and p.PLOCATION=’Stafford’ and  

( ( d)(DEPARTMENT(d) and p.DNUM=d.DNUMBER and  

d.MGRSSN=m.SSN) ) }  

 
 

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the existential quantifier. 
The query condition is evaluated for every combination of tuples assigned to p and m; and out of all 
possible combinations of tuples to which p and m are bound, only the combinations that satisfy the 
condition are selected.  

Several tuple variables in a query can range over the same relation. For example, to specify the query 
Q8—for each employee, retrieve the employee’s first and last name and the first and last name of his or 
her immediate supervisor—we specify two tuple variables e and s that both range over the EMPLOYEE 
relation:  

 
 

Q8 : {e.FNAME, e.LNAME, s.FNAME, s.LNAME | EMPLOYEE(e) and EMPLOYEE(s) and 
e.SUPERSSN=s.SSN}  

 
 

QUERY 3'  
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Find the name of each employee who works on some project controlled by department number 5. This 
is a variation of query 3 in which "all" is changed to "some." In this case we need two join conditions 
and two existential quantifiers.  

 
 

Q3’ : {e.LNAME, e.FNAME | EMPLOYEE(e) and (( x)( w)  

(PROJECT(x) and WORKS_ON(w) and x.DNUM=5 and w.ESSN=e.SSN and  

x.PNUMBER=w.PNO) ) }  

 
 

QUERY 4  

Make a list of project numbers for projects that involve an employee whose last name is ‘Smith’, either 
as a worker or as manager of the controlling department for the project.  

 
 

Q4 : {p.PNUMBER | PROJECT(p) and  

( ( ( e)( w)(EMPLOYEE(e) and WORKS_ON(w) and  

w.PNO=p.PNUMBER and e.LNAME=‘Smith’ and e.SSN=w.ESSN) )  

 
 

or  

 
 

( ( m)( d)(EMPLOYEE(m) and DEPARTMENT(d) and  

p.DNUM=d.DNUMBER and d.MGRSSN=m.SSN and m.LNAME=‘Smith’) ) ) }  

 
 

Compare this with the relational algebra version of this query in Chapter 7. The UNION operation in 
relational algebra can usually be substituted with an or connective in relational calculus. In the next 
section we discuss the relationship between the universal and existential quantifiers and show how one 
can be transformed into the other.  

 
 

9.3.5 Transforming the Universal and Existential Quantifiers 
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We now introduce some well-known transformations from mathematical logic that relate the universal 
and existential quantifiers. It is possible to transform a universal quantifier into an existential 
quantifier, and vice versa, and to get an equivalent expression. One general transformation can be 
described informally as follows: transform one type of quantifier into the other with negation (preceded 
by not); and and or replace one another; a negated formula becomes unnegated; and an unnegated 
formula becomes negated. Some special cases of this transformation can be stated as follows:  

 
 

( x) (P(x)) M not ( x) (not (P(x)))  

( x) (P(x)) M not ( x) (not (P(x)))  

( x) (P(x) and Q(x)) M not ( x) (not (P(x)) or not (Q(x)))  

( x) (P(x) or Q(x)) M not ( x) (not (P(x)) and not (Q(x)))  

( x) (P(x)) or Q(x)) M not ( x) (not (P(x)) and not (Q(x)))  

( x) (P(x) and Q(x)) M not ( x) (not (P(x)) or not (Q(x)))  

 
 

Notice also that the following is true, where the symbol stands for implies:  

 
 

( x) (P(x)) ( x) (P(x))  

not ( x) (P(x)) not ( x) (P(x))  

 
 

9.3.6 Using the Universal Quantifier 

Whenever we use a universal quantifier, it is quite judicious to follow a few rules to ensure that our 
expression makes sense. We discuss these rules with respect to Query 3.  

 
 

QUERY 3  

Find the names of employees who work on all the projects controlled by department number 5. One 
way of specifying this query is by using the universal quantifier as shown.  

 
 

Q3 : {e.LNAME, e.FNAME | EMPLOYEE(e) and ( ( x)(not(PROJECT(x)) or not(x.DNUM=5)  
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or ( ( w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO) ) ) ) }  

 
 

We can break up Q3 into its basic components as follows:  

 
 

Q3 : {e.LNAME, e.FNAME | EMPLOYEE(e) and F’}  

F’ = ( ( x)(not(PROJECT(x)) or F1) ) 

F1 = not (x.DNUM=5) or F2  

F2 = ( ( w)(WORKS_ON(w) and w.ESSN = e.SSN and x.PNUMBER=w.PNO) )  

 
 

We want to make sure that a selected employee e works on all the projects controlled by department 5, 
but the definition of universal quantifier says that to make the quantified formula true, the inner 
formula must be true for all tuples in the universe. The trick is to exclude from the universal 
quantification all tuples that we are not interested in by making the condition TRUE for all such tuples. 
This is necessary because a universally quantified tuple variable, such as x in Q3, must evaluate to 
TRUE for every possible tuple assigned to it to make the quantified formula TRUE. The first tuples to 
exclude are those that are not in the relation R of interest. Then we exclude the tuples we are not 
interested in from R itself. Finally, we specify a condition F2 that must hold on all the remaining tuples 
in R. Hence, we can explain Q3 as follows:  

1. For the formula F’ = ( x)(F) to be TRUE, we must have the formula F be TRUE for all tuples 
in the universe that can be assigned to x. However, in Q3 we are only interested in F being 
TRUE for all tuples of the PROJECT relation that are controlled by department 5. Hence, the 
formula F is of the form (not(PROJECT(x)) or F1). The ‘not(PROJECT(x)) or . . .’ condition is 
TRUE for all tuples not in the PROJECT relation and has the effect of eliminating these tuples 
from consideration in the truth value of F1. For every tuple in the project relation, F1 must be 
TRUE if F’ is to be TRUE.  

2. Using the same line of reasoning, we do not want to consider tuples in the PROJECT relation 
that are not controlled by department number 5, since we are only interested in PROJECT tuples 
whose DNUM = 5. We can therefore write:  

if (x.DNUM=5) then F2  

 
 

which is equivalent to  

 
 

(not (x.DNUM=5) or F2)  
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Formula F1, hence, is of the form not(x.DNUM=5) or F2. In the context of Q3, this means that, for a 
tuple x in the PROJECT relation, either its DNUM 5 or it must satisfy F2.  

3. Finally, F2 gives the condition that we want to hold for a selected EMPLOYEE tuple: that the 
employee works on every PROJECT tuple that has not been excluded yet. Such employee tuples 
are selected by the query.  

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e: for every tuple x in the 
PROJECT relation with x.DNUM = 5, there must exist a tuple w in WORKS_ON such that w.ESSN = e.SSN 
and w.PNO = x.PNUMBER. This is equivalent to saying that EMPLOYEE e works on every PROJECT x in 
DEPARTMENT number 5. (Whew!)  

Using the general transformation from universal to existential quantifiers given in Section 9.3.5, we can 
rephrase the query in Q3 as shown in Q3A:  

 
 

Q3A : {e.LNAME, e.FNAME | EMPLOYEE(e) and (not ( x) (PROJECT(x) and (x.DNUM=5) and  

(not ( w)(WORKS_ON(w) and w.ESSN=e.SSN and x.PNUMBER=w.PNO))))}  

 
 

We now give some additional examples of queries that use quantifiers.  

 
 

QUERY 6  

Find the names of employees who have no dependents.  

 
 

Q6 : {e.FNAME, e.LNAME | EMPLOYEE(e) and (not ( d)(DEPENDENT(d) and 
e.SSN=d.ESSN))}  

 
 

Using the general transformation rule, we can rephrase Q6 as follows:  

 
 

Q6A : {e.FNAME, e.LNAME | EMPLOYEE(e) and (( d) (not (DEPENDENT(d)) or not 
(e.SSN=d.ESSN)))}  

 
 

QUERY 7  
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List the names of managers who have at least one dependent.  

 
 

Q7 : {e.FNAME, e.LNAME | EMPLOYEE(e) and (( d) ( p) (DEPARTMENT(d) and 
DEPENDENT(p) and e.SSN=d.MGRSSN and p.ESSN=e.SSN))}  

 
 

The above query is handled by interpreting "managers who have at least one dependent" as "managers 
for whom there exists some dependent."  

 
 

9.3.7 Safe Expressions 

Whenever we use universal quantifiers, existential quantifiers, or negation of predicates in a calculus 
expression, we must make sure that the resulting expression makes sense. A safe expression in 
relational calculus is one that is guaranteed to yield a finite number of tuples as its result; otherwise, the 
expression is called unsafe. For example, the expression  

 
 

{t | not (EMPLOYEE(t))}  

 
 

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples, which are infinitely 
numerous. If we follow the rules for Q3 discussed earlier, we will get a safe expression when using 
universal quantifiers. We can define safe expressions more precisely by introducing the concept of the 
domain of a tuple relational calculus expression: This is the set of all values that either appear as 
constant values in the expression or exist in any tuple of the relations referenced in the expression. The 
domain of {t | not(EMPLOYEE(t))} is the set of all attribute values appearing in some tuple of the 
EMPLOYEE relation (for any attribute). The domain of the expression Q3A would include all values 
appearing in EMPLOYEE, PROJECT, and WORKS_ON (unioned with the value 5 appearing in the query 
itself).  

An expression is said to be safe if all values in its result are from the domain of the expression. Notice 
that the result of {t | not(EMPLOYEE(t))} is unsafe, since it will, in general, include tuples (and hence 
values) from outside the EMPLOYEE relation; such values are not in the domain of the expression. All of 
our other examples are safe expressions.  

 
 

9.3.8 Quantifiers in SQL 

The EXISTS function in SQL is similar to the existential quantifier of the relational calculus. When we 
write:  

 

1 Page 270 of 893



www.manaraa.com

 
   SELECT . . .      

   FROM . . .      

   WHERE EXISTS  (SELECT  *  

     FROM  R AS X  

     WHERE  P(X) )  

 
 

in SQL, it is equivalent to saying that a tuple variable X ranging over the relation R is existentially 
quantified. The nested query on which the EXISTS function is applied is normally correlated with the 
outer query; that is, the condition P(X) includes some attribute from the outer query relations. The 
WHERE condition of the outer query evaluates to TRUE if the nested query returns a nonempty result 
that contains one or more tuples.  

SQL does not include a universal quantifier. Use of a negated existential quantifier not ( x) by writing 
NOT EXISTS is how SQL supports universal quantification, as illustrated by Q3 in Chapter 8.  

 
 

9.4 The Domain Relational Calculus 

There is another type of relational calculus called the domain relational calculus, or simply, domain 
calculus. The language QBE that is related to domain calculus was developed almost concurrently with 
SQL at IBM Research, Yorktown Heights. The formal specification of the domain calculus was 
proposed after the development of the QBE system.  

The domain calculus differs from the tuple calculus in the type of variables used in formulas: rather 
than having variables range over tuples, the variables range over single values from domains of 
attributes. To form a relation of degree n for a query result, we must have n of these domain 
variables—one for each attribute. An expression of the domain calculus is of the form  

 
 

{x1, x2, . . ., xn | COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}  

 
 

where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain variables that range over domains (of attributes) 
and COND is a condition or formula of the domain relational calculus. A formula is made up of 
atoms. The atoms of a formula are slightly different from those for the tuple calculus and can be one of 
the following:  

1. An atom of the form R(x1, x2, . . ., xj), where R is the name of a relation of degree j and each 
xi, 1 1 i 1 j, is a domain variable. This atom states that a list of values of <x1, x2, . . ., xj> 
must be a tuple in the relation whose name is R, where xi is the value of the ith attribute value 
of the tuple. To make a domain calculus expression more concise, we drop the commas in a 
list of variables; thus we write  

{x1, x2, . . ., xn | R(x1 x2 x3) and . . .}  
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instead of:  

 
 

{x1, x2, . . ., xn | R(x1, x2, x3) and . . .}  

2. An atom of the form xi op xj, where op is one of the comparison operators in the set {=, >, , <, 
1, } and xi and xj are domain variables.  

3. An atom of the form xi op c or c op xj, where op is one of the comparison operators in the set 
{=, >, , <, 1, }, xi and xj are domain variables, and c is a constant value.  

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of values, called the 
truth values of the atoms. In case 1, if the domain variables are assigned values corresponding to a 
tuple of the specified relation R, then the atom is TRUE. In cases 2 and 3, if the domain variables are 
assigned values that satisfy the condition, then the atom is TRUE.  

In a similar way to the tuple relational calculus, formulas are made up of atoms, variables, and 
quantifiers, so we will not repeat the specifications for formulas here. Some examples of queries 
specified in the domain calculus follow. We will use lowercase letters l, m, n, . . ., x, y, z for domain 
variables.  

 
 

QUERY 0  

Retrieve the birthdate and address of the employee whose name is ‘John B. Smith’.  

 
 

Q0 : {uv | ( q) ( r) ( s) ( t) ( w) ( x) ( y) ( z)  

(EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and s=’Smith’)}  

 
 

We need ten variables for the EMPLOYEE relation, one to range over the domain of each attribute in 
order. Of the ten variables q, r, s, . . ., z, only u and v are free. We first specify the requested attributes, 
BDATE and ADDRESS, by the domain variables u for BDATE and v for ADDRESS. Then we specify the 
condition for selecting a tuple following the bar ( | )—namely, that the sequence of values assigned to 
the variables qrstuvwxyz be a tuple of the EMPLOYEE relation and that the values for q (FNAME), r 
(MINIT), and s (LNAME) be ‘John’, ‘B’, and ‘Smith’, respectively. For convenience, we will quantify only 
those variables actually appearing in a condition (these would be q, r, and s in Q0) in the rest of our 
examples.  

An alternative notation for writing this query is to assign the constants ‘John’, ‘B’, and ‘Smith’ directly 
as shown in Q0A, where all variables are free:  
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Q0A : {uv | EMPLOYEE(‘John’,‘B’,‘Smith’,t,u,v,w,x,y,z) } 

 
 

QUERY 1  

Retrieve the name and address of all employees who work for the ‘Research’ department.  

 
 

Q1 : {qsv | ( z) ( l) ( m) (EMPLOYEE(qrstuvwxyz) and 

DEPARTMENT(lmno) and l=‘Research’ and m=z)}  

 
 

A condition relating two domain variables that range over attributes from two relations, such as m = z 
in Q1, is a join condition; whereas a condition that relates a domain variable to a constant, such as l = 
‘Research’, is a selection condition.  

 
 

QUERY 2  

For every project located in ‘Stafford’, list the project number, the controlling department number, and 
the department manager’s last name, birthdate, and address.  

 
 

Q2 : {iksuv | ( j) ( m)( n) ( t)(PROJECT(hijk) and EMPLOYEE(qrstuvwxyz) and 
DEPARTMENT(lmno) and k=m and n=t and j=‘Stafford’)}  

 
 

QUERY 6  

Find the names of employees who have no dependents.  

 
 

Q6 : {qs | ( t) (EMPLOYEE(qrstuvwxyz) and (not( l) (DEPENDENT(lmnop) and t=l)))}  

 
 

Query 6 can be restated using universal quantifiers instead of the existential quantifiers, as shown in 
Q6A:  
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Q6A : {qs | ( t) (EMPLOYEE(qrstuvwxyz) and (( l) (not(DEPENDENT(lmnop)) or not(t=l))))}  

 
 

QUERY 7  

List the names of managers who have at least one dependent.  

 
 

Q7 : {sq | ( t) ( j) ( l)(EMPLOYEE(qrstuvwxyz) and DEPARTMENT(hijk) and 
DEPENDENT(lmnop) and t=j and l=t)}  

 
 

As we mentioned earlier, it can be shown that any query that can be expressed in the relational algebra 
can also be expressed in the domain or tuple relational calculus. Also, any safe expression in the 
domain or tuple relational calculus can be expressed in the relational algebra.  

 
 

9.5 Overview of the QBE Language 

 
9.5.1 Basic Retrievals in QBE 
9.5.2 Grouping, Aggregation, and Database Modification in QBE

The Query-By-Example (QBE) language is important because it is one of the first graphical query 
languages with minimum syntax developed for database systems. It was developed at IBM Research 
and is available as an IBM commercial product as part of the QMF (Query Management Facility) 
interface option to DB2. The language was also implemented in the PARADOX DBMS, and is related 
to a point-and-click type interface in the ACCESS DBMS (see Chapter 10). It differs from SQL in that 
the user does not have to specify a structured query explicitly; rather, the query is formulated by filling 
in templates of relations that are displayed on a monitor screen. Figure 09.05 shows how these 
templates may look for the database of Figure 07.06. The user does not have to remember the names of 
attributes or relations, because they are displayed as part of these templates. In addition, the user does 
not have to follow any rigid syntax rules for query specification; rather, constants and variables are 
entered in the columns of the templates to construct an example related to the retrieval or update 
request. QBE is related to the domain relational calculus, as we shall see, and its original specification 
has been shown to be relationally complete.  
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9.5.1 Basic Retrievals in QBE 

In QBE, retrieval queries are specified by filling in one or more rows in the templates of the tables. For 
a single relation query, we enter either constants or example elements (a QBE term) in the columns of 
the template of that relation. An example element stands for a domain variable and is specified as an 
example value preceded by the underscore character ( _ ). Additionally, a P. prefix (called the P dot 
operator) is entered in certain columns to indicate that we would like to print (or display) values in 
those columns for our result. The constants specify values that must be exactly matched in those 
columns.  

For example, consider the query QO: "Retrieve the birthdate and address of John B. Smith." We show 
in Figure 09.06(a) through Figure 09.06(d) how this query can be specified in a progressively more 
terse form in QBE. In Figure 09.06(a) an example of an employee is presented as the type of row that 
we are interested in. By leaving John B. Smith as constants in the FNAME, MINIT, and LNAME columns, 
we are specifying an exact match in those columns. All the rest of the columns are preceded by an 
underscore indicating that they are domain variables (example elements). The P. prefix is placed in the 
BDATE and ADDRESS columns to indicate that we would like to output value(s) in those columns.  

 

 

 
 

Q0 can be abbreviated as shown in Figure 09.06(b). There is no need to specify example values for 
columns in which we are not interested. Moreover, because example values are completely arbitrary, 
we can just specify variable names for them, as shown in Figure 09.06(c). Finally, we can also leave 
out the example values entirely, as shown in Figure 09.06(d), and just specify a P. under the columns to 
be retrieved.  

To see how retrieval queries in QBE are similar to the domain relational calculus, compare Figure 
09.06(d) with Q0 (simplified) in domain calculus, which is as follows:  

 
 

Q0 : {uv | EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and s=‘Smith’}  

 
 

We can think of each column in a QBE template as an implicit domain variable; hence, FNAME 
corresponds to the domain variable q, MINIT corresponds to r, . . ., and DNO corresponds to z. In the QBE 
query, the columns with P. correspond to variables specified to the left of the bar in domain calculus, 
whereas the columns with constant values correspond to tuple variables with equality selection 
conditions on them. The condition EMPLOYEE(qrstuvwxyz) and the existential quantifiers are implicit in 
the QBE query because the template corresponding to the EMPLOYEE relation is used.  

In QBE, the user interface first allows the user to choose the tables (relations) needed to formulate a 
query by displaying a list of all relation names. The templates for the chosen relations are then 
displayed. The user moves to the appropriate columns in the templates and specifies the query. Special 
function keys were provided to move among templates and perform certain functions.  

We now give examples to illustrate basic facilities of QBE. Comparison operators other than = (such as 
> or ) may be entered in a column before typing a constant value. For example, the query Q0A: "List 
the social security numbers of employees who work more than 20 hours per week on project number 
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1," can be specified as shown in Figure 09.07(a). For more complex conditions, the user can ask for a 
condition box, which is created by pressing a particular function key. The user can then type the 
complex condition (Note 6). For example, the query Q0B—"List the social security numbers of 
employees who work more than 20 hours per week on either project 1 or project 2"—can be specified 
as shown in Figure 09.07(b).  

 

 

 
 

Some complex conditions can be specified without a condition box. The rule is that all conditions 
specified on the same row of a relation template are connected by the and logical connective (all must 
be satisfied by a selected tuple), whereas conditions specified on distinct rows are connected by or (at 
least one must be satisfied). Hence, Q0B can also be specified, as shown in Figure 09.07(c), by 
entering two distinct rows in the template.  

Now consider query Q0C: "List the social security numbers of employees who work on both project 1 
and project 2"; this cannot be specified as in Figure 09.08(a), which lists those who work on either 
project 1 or project 2. The example variable _ES will bind itself to ESSN values in <-, 1, -> tuples as 
well as to those in <-, 2, -> tuples. Figure 09.08(b) shows how to specify Q0C correctly, where the 
condition (_EX = _EY) in the box makes the _EX and _EY variables bind only to identical ESSN 
values.  

 

 

 
 

In general, once a query is specified, the resulting values are displayed in the template under the 
appropriate columns. If the result contains more rows than can be displayed on the screen, most QBE 
implementations have function keys to allow scrolling up and down the rows. Similarly, if a template 
or several templates are too wide to appear on the screen, it is possible to scroll sideways to examine all 
the templates.  

A join operation is specified in QBE by using the same variable (Note 7) in the columns to be joined. 
For example, the query Q1: "List the name and address of all employees who work for the ‘Research’ 
department," can be specified as shown in Figure 09.09(a). Any number of joins can be specified in a 
single query. We can also specify a result table to display the result of the join query, as shown in 
Figure 09.09(a); this is needed if the result includes attributes from two or more relations. If no result 
table is specified, the system provides the query result in the columns of the various relations, which 
may make it difficult to interpret. Figure 09.09(a) also illustrates the feature of QBE for specifying that 
all attributes of a relation should be retrieved, by placing the P. operator under the relation name in the 
relation template.  
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To join a table with itself, we specify different variables to represent the different references to the 
table. For example, query Q8—"For each employee retrieve the employee’s first and last name as well 
as the first and last name of his or her immediate supervisor"—can be specified as shown in Figure 
09.09(b), where the variables starting with E refer to an employee and those starting with S refer to a 
supervisor.  

 
 

9.5.2 Grouping, Aggregation, and Database Modification in QBE 

Next, consider the types of queries that require grouping or aggregate functions. A grouping operator 
G. can be specified in a column to indicate that tuples should be grouped by the value of that column. 
Common functions can be specified, such as AVG., SUM., CNT. (count), MAX., and MIN. In QBE 
the functions AVG., SUM., and CNT. are applied to distinct values within a group in the default case. 
If we want these functions to apply to all values, we must use the prefix ALL (Note 8). This convention 
is different in SQL, where the default is to apply a function to all values.  

Figure 09.10(a) shows query Q23, which counts the number of distinct salary values in the EMPLOYEE 
relation. Query Q23A (Figure 09.10b) counts all salary values, which is the same as counting the 
number of employees. Figure 09.10(c) shows Q24, which retrieves each department number and the 
number of employees and average salary within each department; hence, the DNO column is used for 
grouping as indicated by the G. function. Several of the operators G., P., and ALL can be specified in a 
single column. Figure 09.10(d) shows query Q26, which displays each project name and the number of 
employees working on it for projects on which more than two employees work.  

 

 

 
 

QBE has a negation symbol, ¬, which is used in a manner similar to the NOT EXISTS function in 
SQL. Figure 09.11 shows query Q6, which lists the names of employees who have no dependents. The 
negation symbol ¬ says that we will select values of the _SX variable from the EMPLOYEE relation only 
if they do not occur in the DEPENDENT relation. The same effect can be produced by placing a ¬ _SX in 
the ESSN column.  

 

 

 
 

Although the QBE language as originally proposed was shown to support the equivalent of the EXISTS 
and NOT EXISTS functions of SQL, the QBE implementation in QMF (under the DB2 system) does 
not provide this support. Hence, the QMF version of QBE, which we discuss here, is not relationally 
complete. Queries such as Q3—"Find employees who work on all projects controlled by department 
5"—cannot be specified.  

There are three QBE operators for modifying the database: I. for insert, D. for delete, and U. for 
update. The insert and delete operators are specified in the template column under the relation name, 
whereas the update operator is specified under the columns to be updated. Figure 09.12(a) shows how 
to insert a new EMPLOYEE tuple. For deletion, we first enter the D. operator and then specify the tuples 
to be deleted by a condition (Figure 09.12b). To update a tuple, we specify the U. operator under the 
attribute name, followed by the new value of the attribute. We should also select the tuple or tuples to 
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be updated in the usual way. Figure 09.12(c) shows an update request to increase the salary of ‘John 
Smith’ by 10 percent and also to reassign him to department number 4.  

 

 

 
 

QBE also has data definition capabilities. The tables of a database can be specified interactively, and a 
table definition can also be updated by adding, renaming, or removing a column. We can also specify 
various characteristics for each column, such as whether it is a key of the relation, what its data type is, 
and whether an index should be created on that field. QBE also has facilities for view definition, 
authorization, storing query definitions for later use, and so on.  

QBE does not use the "linear" style of SQL; rather, it is a "two-dimensional" language, because users 
specify a query moving around the full area of the screen. Tests on users have shown that QBE is easier 
to learn than SQL, especially for nonspecialists. In this sense, QBE was the first user-friendly "visual" 
relational database language.  

More recently, numerous other user-friendly interfaces have been developed for commercial database 
systems. The use of menus, graphics, and forms is now becoming quite common. Visual query 
languages, which are still not so common, are likely to be offered with commercial relational databases 
in the future.  

 
 

9.6 Summary 

This chapter covered two topics that are not directly related: relational schema design by ER-to-
relational mapping and other relational languages. The reason they were grouped in one chapter is to 
conclude our conceptual coverage of the relational model. In Section 9.1, we showed how a conceptual 
schema design in the ER model can be mapped to a relational database schema. An algorithm for ER-
to-relational mapping was given and illustrated by examples from the COMPANY database. Table 9.1 
summarized the correspondences between the ER and relational model constructs and constraints. We 
then showed additional steps for mapping the constructs from the EER model into the relational model.  

We then presented the basic concepts behind relational calculus, a declarative formal query language 
for the relational model, which is based on the branch of mathematical logic called predicate calculus. 
There are two types of relational calculi: (1) the tuple relational calculus, which uses tuple variables 
that range over tuples (rows) of relations, and (2) the domain relational calculus, which uses domain 
variables that range over domains (columns of relations).  

In relational calculus, a query is specified in a single declarative statement, without specifying any 
order or method for retrieving the query result. In contrast, a relational algebra expression implicitly 
specifies a sequence of operations with an ordering to retrieve the result of a query. Hence, relational 
calculus is often considered to be a higher-level language than the relational algebra because a 
relational calculus expression states what we want to retrieve regardless of how the query may be 
executed.  

We discussed the syntax of relational calculus queries using both tuple and domain variables. We also 
discussed the existential quantifier () and the universal quantifier (). We saw that relational calculus 
variables are bound by these quantifiers. We saw in detail how queries with universal quantification are 
written, and we discussed the problem of specifying safe queries whose results are finite. We also 
discussed rules for transforming universal into existential quantifiers, and vice versa. It is the 
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quantifiers that give expressive power to the relational calculus, making it equivalent to relational 
algebra.  

The SQL language, described in Chapter 8, has its roots in the tuple relational calculus. A SELECT–
PROJECT–JOIN query in SQL is similar to a tuple relational calculus expression, if we consider each 
relation name in the FROM clause of the SQL query to be a tuple variable with an implicit existential 
quantifier. The EXISTS function in SQL is equivalent to the existential quantifier and can be used in its 
negated form (NOT EXISTS) to specify universal quantification. There is no explicit equivalent of a 
universal quantifier in SQL. There is no analog to grouping and aggregation functions in relational 
calculus.  

We then gave an overview of the QBE language, which is the first graphical query language with 
minimal syntax and is based on the domain relational calculus. We discussed it with several examples.  

 
 

Review Questions 

  9.1.  Discuss the correspondences between the ER model constructs and the relational model 
constructs. Show how each ER model construct can be mapped to the relational model, and 
discuss any alternative mappings. Discuss the options for mapping EER model constructs.  

  9.2.  In what sense does relational calculus differ from relational algebra, and in what sense are they 
similar?  

  9.3.  How does tuple relational calculus differ from domain relational calculus?  

  9.4.  Discuss the meanings of the existential quantifier () and the universal quantifier ().  

  9.5.  Define the following terms with respect to the tuple calculus: tuple variable, range relation, 
atom, formula, expression.  

  9.6.  Define the following terms with respect to the domain calculus: domain variable, range 
relation, atom, formula, expression.  

  9.7.  What is meant by a safe expression in relational calculus?  

  9.8.  When is a query language called relationally complete?  

  9.9.  Why must the insert I. and delete D. operators of QBE appear under the relation name in a 
relation template, not under a column name?  

9.10.  Why must the update U. operators of QBE appear under a column name in a relation template, 
not under the relation name?  

 
 

Exercises 

9.11.  Try to map the relational schema of Figure 07.20 into an ER schema. This is part of a process 
known as reverse engineering, where a conceptual schema is created for an existing 
implemented database. State any assumption you make.  

9.12.  Figure 09.13 shows an ER schema for a database that may be used to keep track of transport 
ships and their locations for maritime authorities. Map this schema into a relational schema, and 
specify all primary keys and foreign keys.  
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9.13.  Map the BANK ER schema of Exercise 3.23 (shown in Figure 03.17) into a relational schema. 
Specify all primary keys and foreign keys. Repeat for the AIRLINE schema (Figure 03.16) of 
Exercise 3.19 and for the other schemas for Exercises 3.16 through 3.24.  

9.14.  Specify queries a, b, c, e, f, i, and j of Exercise 7.18 in both the tuple relational calculus and the 
domain relational calculus.  

9.15.  Specify queries a, b, c, and d of Exercise 7.20 in both the tuple relational calculus and the 
domain relational calculus.  

9.16.  Specify queries of Exercise 8.16 in both the tuple relational calculus and the domain relational 
calculus. Also specify these queries in the relational algebra.  

9.17.  In a tuple relational calculus query with n tuple variables, what would be the typical minimum 
number of join conditions? Why? What is the effect of having a smaller number of join 
conditions?  

9.18.  Rewrite the domain relational calculus queries that followed Q0 in Section 9.5 in the style of the 
abbreviated notation of Q0A, where the objective is to minimize the number of domain variables 
by writing constants in place of variables wherever possible.  

9.19.  Consider this query: Retrieve the SSNs of employees who work on at least those projects on 
which the employee with SSN = 123456789 works. This may be stated as (FORALL x) (IF P 
THEN Q), where  

• x is a tuple variable that ranges over the PROJECT relation.  
• P M employee with SSN = 123456789 works on project x.  
• Q M employee e works on project x.  

Express the query in tuple relational calculus, using the rules  

• ( x)(P(x)) M not( x)(not(P(x))).  
• (IF P THEN Q) M (not(P) or Q).  

9.20.  Show how you may specify the following relational algebra operations in both tuple and domain 
relational calculus.  

 
 

9.21.  Suggest extensions to the relational calculus so that it may express the following types of 
operations discussed in Section 6.6: (a) aggregate functions and grouping; (b) OUTER JOIN 
operations; (c) recursive closure queries.  

9.22.  Specify some of the queries of Exercises 7.18 and 8.14 in QBE.  

9.23.  Specify the updates of Exercise 7.19 in QBE.  

9.24.  Specify the queries of Exercise 8.16 in QBE.  

9.25.  Specify the updates of Exercise 8.17 in QBE.  

9.26.  Specify the queries and updates of Exercises 7.23 and 7.24 in QBE.  

9.27.  Map the EER diagrams in Figure 04.10 and Figure 04.17 into relational schemas. Justify your 
choice of mapping options.  
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Codd (1971) introduced the language ALPHA, which is based on concepts of tuple relational calculus. 
ALPHA also includes the notion of aggregate functions, which goes beyond relational calculus. The 
original formal definition of relational calculus was given by Codd (1972), which also provided an 
algorithm that transforms any tuple relational calculus expression to relational algebra. Codd defined 
relational completeness of a query language to mean at least as powerful as relational calculus. Ullman 
(1988) describes a formal proof of the equivalence of relational algebra with the safe expressions of 
tuple and domain relational calculus. Abiteboul et al. (1995) and Atzeni and deAntonellis (1993) give a 
detailed treatment of formal relational languages.  

Although ideas of domain relational calculus were initially proposed in the QBE language (Zloof 
1975), the concept was formally defined by Lacroix and Pirotte (1977). The experimental version of 
the Query-By-Example system is described in (Zloof 1977). The ILL language (Lacroix and Pirotte 
1977a) is based on domain relational calculus. Whang et al. (1990) extends QBE with universal 
quantifiers. The QUEL language (Stonebraker et al. 1976) is based on tuple relational calculus, with 
implicit existential quantifiers but no universal quantifiers, and was implemented in the INGRES 
system. Thomas and Gould (1975) report the results of experiments comparing the ease of use of QBE 
to SQL. The commercial QBE functions are described in an IBM manual (1978), and a quick reference 
card is available (IBM 1978a). Appropriate DB2 reference manuals discuss the QBE implementation 
for that system. Visual query languages of which QBE is an example are being proposed as a means of 
querying databases; conferences such as the Visual Database Systems Workshop (e.g., Spaccapietra 
and Jain 1995) have a number of proposals for such languages.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8

Note 1 

In this chapter no familiarity with first-order predicate calculus, which deals with quantified variables 
and values, is assumed.  

 
 

Note 2 

These are sometimes called entity relations because each tuple (row) represents an entity instance.  

 
 

Note 3 

These are sometimes called relationship relations because each tuple (row) corresponds to a 
relationship instance.  
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Note 4 

In some cases when a multivalued attribute is composite, only some of the component attributes are 
required in the key of R; these attributes are similar to a partial key of a weak entity type that 
corresponds to the multivalued attribute.  

 
 

Note 5 

Also called a well-formed formula or wff in mathematical logic.  

 
 

Note 6 

Negation with the ¬ symbol is not allowed in a condition box.  

 
 

Note 7 

A variable is called an example element in QBE manuals.  

 
 

Note 8 

ALL in QBE is unrelated to the universal quantifier.  
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In this chapter we turn our attention to the implementation of the relational data model in commercial 
systems. Because the relational database management system (RDBMS) family encompasses such a 
large number of products, we cannot within the scope of this book compare the features or evaluate all 
of them; rather, we focus in depth on two representative systems: Oracle, which is representative of the 
larger products that originated from mainframe computers, and Microsoft Access, a product that is 
appealing to the PC platform user. Our goal here will be to show how these products have a similar set 
of RDBMS features and functionality yet have different ways of packaging and offering them.  

Section 10.1 presents a historical overview of the development of RDBMSs, and Section 10.2 through 
Section 10.5 describe the Oracle RDBMS. Section 10.2 describes the architecture and main functions 
of the Oracle system. The data modeling in terms of schema objects, the languages, and the facilities of 
methods and triggers are presented in Section 10.3. Section 10.4 describes how Oracle organizes 
storage in the system. Section 10.5 presents some examples of programming in Oracle. Section 10.6 
presents an overview of the tools available in Oracle for database design and application development. 
Later in the book we will discuss the distributed version of Oracle (Section 24.6) and in Chapter 13 we 
will highlight the object-relational features in Oracle 8, which extend Oracle with object-oriented 
features.  

The Microsoft Access product presently comes bundled with Office 97 to be used on Windows and 
Windows NT machines. In Section 10.7 we give an overview of Microsoft Access including data 
definition and manipulation, and its graphic interactive facilities for ease of querying. Section 10.8 
gives a summary of the features and functionality of Access related to forms, reports, and macros and 
briefly discusses some additional facilities available in Access.  

 
 

10.1 Relational Database Management Systems: A Historical 
Perspective 

After the relational model was introduced in 1970, there was a flurry of experimentation with relational 
ideas. A major research and development effort was initiated at IBM’s San Jose (now called Almaden) 
Research Center. It led to the announcement of two commercial relational DBMS products by IBM in 
the 1980s: SQL/DS for DOS/VSE (disk operating system/virtual storage extended) and for VM/CMS 
(virtual machine/conversational monitoring system) environments, introduced in 1981; and DB2 for the 
MVS operating system, introduced in 1983. Another relational DBMS, INGRES, was developed at the 
University of California, Berkeley, in the early 1970s and commercialized by Relational Technology, 
Inc., in the late 1970s. INGRES became a commercial RDBMS marketed by Ingres, Inc., a subsidiary 
of ASK, Inc., and is presently marketed by Computer Associates. Other popular commercial RDBMSs 
include Oracle of Oracle, Inc.; Sybase of Sybase, Inc.; RDB of Digital Equipment Corp, now owned by 
Compaq; INFORMIX of Informix, Inc.; and UNIFY of Unify, Inc.  

Besides the RDBMSs mentioned above, many implementations of the relational data model appeared 
on the personal computer (PC) platform in the 1980s. These include RIM, RBASE 5000, PARADOX, 
OS/2 Database Manager, DBase IV, XDB, WATCOM SQL, SQL Server (of Sybase, Inc.), SQL Server 
(of Microsoft), and most recently Access (also of Microsoft, Inc.). They were initially single-user 
systems, but more recently they have started offering the client/server database architecture (see 
Chapter 17 and Chapter 24) and are becoming compliant with Microsoft’s Open Database Connectivity 
(ODBC), a standard that permits the use of many front-end tools with these systems.  

The word relational is also used somewhat inappropriately by several vendors to refer to their products 
as a marketing gimmick. To qualify as a genuine relational DBMS, a system must have at least the 
following properties (Note 1):  

1. It must store data as relations such that each column is independently identified by its column 
name and the ordering of rows is immaterial.  
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2. The operations available to the user, as well as those used internally by the system, should be 
true relational operations; that is, they should be able to generate new relations from old 
relations.  

3. The system must support at least one variant of the JOIN operation.  

Although we could add to the above list, we propose these criteria as a very minimal set for testing 
whether a system is relational. It is easy to see that some of the so-called relational DBMSs do not 
satisfy these criteria.  

We begin with a description of Oracle, currently one of the more widely used RDBMSs. Because some 
concepts in the discussion may not have been introduced yet, we will give references to later chapters 
in the book when necessary. Those interested in getting a deeper understanding may review the 
appropriate concepts in those sections and should refer to the system manuals.  

 
 

10.2 The Basic Structure of the Oracle System 

10.2.1 Oracle Database Structure 
10.2.2 Oracle Processes 
10.2.3 Oracle Startup and Shutdown

Traditionally, RDBMS vendors have chosen to use their own terminology in describing products in 
their documentation. In this section we will thus describe the organization of the Oracle system in its 
own nomenclature. We will try to relate this terminology to our own wherever possible. It is interesting 
to see how the RDBMS vendors have designed software packages that basically follow the relational 
model yet offer a whole variety of features needed to accomplish the design and implementation of 
large databases and their applications.  

An Oracle server consists of an Oracle database—the collection of stored data, including log and 
control files—and the Oracle Instance—the processes, including Oracle (system) processes and user 
processes taken together, created for a specific instance of the database operation. Oracle server 
supports SQL to define and manipulate data. In addition, it has a procedural language—called 
PL/SQL—to control the flow of SQL, to use variables, and to provide error-handling procedures. 
Oracle can also be accessed through general purpose programming languages such as C or JAVA.  

 
 

10.2.1 Oracle Database Structure 

Oracle Instance

The Oracle database has two primary structures: (1) a physical structure—referring to the actual stored 
data—and (2) a logical structure—corresponding to an abstract representation of the stored data, which 
roughly corresponds to the conceptual schema of the database (Note 2). The database contains the 
following types of files:  

• One or more data files; these contain the actual data.  
• Two or more log files called redo log files (see Chapter 21 on database recovery); these record 

all changes made to data and are used in the process of recovering, if certain changes do not 
get written to permanent storage.  

• One or more control files; these contain control information such as database name, file names 
and locations, and a database creation timestamp. This file is also needed for recovery 
purposes.  
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• Trace files and an alert log; background processes have a trace file associated with them and 
the alert log maintains major database events (see Chapter 23 on active databases).  

Both the log file and control files may be multiplexed—that is, multiple copies may be written to 
multiple devices.  

The structure of an Oracle database consists of the definition of the database in terms of schema 
objects and one or more tablespaces. The schema objects contain definitions of tables, views, 
sequences, stored procedures, indexes, clusters, and database links. Tablespaces, segments, and extents 
are the terms used to describe physical storage structures; they govern how the physical space of the 
database is used (see Section 10.4).  

 
 

Oracle Instance 

As we described earlier, the set of processes that constitute an instance of the server’s operation is 
called an Oracle Instance, which consists of a System Global Area and a set of background processes. 
Figure 10.01 is a standard architecture diagram for Oracle, showing a number of user processes in the 
foreground and an Oracle process in the background. It has the following components:  

• System global area (SGA): This area of memory is used for database information shared by 
users. Oracle assigns an SGA area when an instance starts. For optimal performance, the SGA 
is generally made as large as possible, while still fitting in real memory. The SGA in turn is 
divided into several types of memory structures:  

1. Database buffer cache: This keeps the most recently accessed data blocks from the 
database. By keeping most frequently accessed data blocks in this cache, the disk I/O 
activity can be significantly reduced.  

2. Redo log buffer, which is the buffer for the redo log file and is used for recovery 
purposes.  

3. Shared pool, which contains shared memory constructs; these include shared SQL 
areas, which contain parse trees of SQL queries and execution plans for executing 
SQL statements (see Chapter 18).  

• User processes: Each user process corresponds to the execution of some application (for 
example, an Oracle Forms application) or some tool.  

• Program global area (PGA) (not shown in Figure 10.01): This is a memory buffer that 
contains data and control information for a server process. A PGA is created by Oracle when a 
server process is started.  

• Oracle processes: A process (sometimes called a job or task) is a "thread of control" or a 
mechanism in an operating system that can execute a series of steps. A process has its own 
private memory area where it runs. Oracle processes are divided into server processes and 
background processes. We review the types of Oracle processes and their specific functions 
next.  

 

 
 

10.2.2 Oracle Processes 

Oracle creates server processes to handle requests from connected user processes. In a dedicated 
server configuration, a server process handles requests for a single user process. A more efficient 
alternative is a multithreaded server configuration, in which many user processes share a small number 
of server processes.  
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The background processes are created for each instance of Oracle; they perform I/O asynchronously 
and provide parallelism for better performance and reliability. Since we have not discussed the 
internals of DBMSs, which we will do in Chapters 17 onward, we can only briefly describe what these 
background processes do; references to the appropriate chapters are included.  

• Database Writer (DBWR): Writes the modified blocks from the buffer cache to the data files 
on disk. Since Oracle uses write-ahead logging (see Chapter 21), DBWR does not need to 
write blocks when a transaction commits (see Chapter 19 for definition of commit). Instead, it 
performs batched writes whenever buffers need to be freed up.  

• Log writer (LGWR): Writes from the log buffer area to the on-line disk log file.  
• Checkpoint (CKPT): Refers to an event at which all modified buffers in the SGA since the last 

checkpoint are written to the data files (see Chapter 19). The CKPT process works with 
DBWR to execute a checkpointing operation.  

• System monitor (SMON): Performs instance recovery, manages storage areas by making the 
space contiguous, and recovers transactions skipped during recovery.  

• Process monitor (PMON): Performs process recovery when a user process fails. It is also 
responsible for managing the cache and other resources used by a user process.  

• Archiver (ARCH): Archives on-line log files to archival storage (for example, tape) if 
configured to do so.  

• Recoverer process (RECO): Resolves distributed transactions that are pending due to a 
network or systems failure in a distributed database (see Chapter 24).  

• Dispatchers (Dnnn): In multithreaded server configurations, route requests from connected 
user processes to available shared server processes. There is one dispatcher per standard 
communication protocol supported.  

• Lock processes (LCKn): Used for inter-instance locking when Oracle runs in a parallel server 
mode.  

 
 

10.2.3 Oracle Startup and Shutdown 

An Oracle database is not available to users until the Oracle server has been started up and the database 
has been opened. Starting a database and making it available system wide requires the following steps:  

1. Starting an instance of the database: The SGA is allocated and background processes are 
created in this step. A parameter file controlling the size of the SGA, the name of the database 
to which the instance can connect, etc., are set up to govern the initialization of the instance.  

2. Mounting a database: This associates a previously started Oracle instance with a database. 
Until then it is available only to administrators. Multiple instances of Oracle may mount the 
same database concurrently. The database administrator chooses whether to run the database 
in exclusive or parallel mode. When an Oracle instance mounts a database in an exclusive 
mode, only that instance can access the database. On the other hand, if the instance is started 
in a parallel or shared mode, other instances that are started in parallel mode can also mount 
the database.  

3. Opening a database: This is a database administration activity. Opening a mounted database 
makes it available for normal database operations by having Oracle open the on-line data files 
and log files.  

The reverse of the above operations will shut down an Oracle instance as follows:  

1. Close the database.  
2. Dismount the database.  
3. Shut down the Oracle instance.  

The parameter file that governs the creation of an Oracle instance contains parameters of the following 
types:  
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• Parameters that name things (for example, name of database, name and location of database’s 
control files, names of private rollback segments (Note 3)).  

• Parameters that set limits such as maximums (for example, maximum allowable size for SGA, 
maximum buffer size).  

• Parameters that affect capacity, called variable parameters (for example, the 
DB_BLOCK_BUFFERS parameter sets the number of data blocks to allocate in the SGA).  

The database administrator may vary the parameters as part of continuous database monitoring and 
maintenance.  

 
 

10.3 Database Structure and Its Manipulation in Oracle 

10.3.1 Schema Objects 
10.3.2 Oracle Data Dictionary 
10.3.3 SQL in Oracle 
10.3.4 Methods in Oracle 8 
10.3.5 Triggers

Oracle was designed originally as a relational database management system (RDBMS). Starting with 
version 8 of the product, Oracle is being positioned as an object-relational database management 
system (ORDBMS). Our goal here is to review the features of Oracle including its relational and 
object-relational modeling facilities (Note 4). The main differences between Oracle 8 and the previous 
versions of Oracle are highlighted in Section 10.6.  

 
 

10.3.1 Schema Objects 

In Oracle, the term schema refers to a collection of data definition objects. Schema objects are the 
individual objects that describe tables, views, etc. There is a distinction between the logical schema 
objects and the physical storage components called tablespaces. The following schema objects are 
supported in Oracle. Notice that Oracle uses its own terminology that goes beyond the basic definitions 
of the relational model.  

• Tables: Basic units of data that conform to the relational model discussed in Chapter 7 and 
Chapter 8. Each column (attribute) has a column name, datatype, and width (which depends 
on the type and precision).  

• Views (see Chapter 8): Virtual tables that may be defined on base tables or on other views. If 
the key of the result of the join in a join view—that is, a view whose defining query includes a 
join operation—matches the key of a base table, that base table is considered key preserved 
in that view. Updating of a join view is allowed if the update applies to attributes of a base 
table that is key preserved. For example, consider a join of the EMPLOYEE and DEPARTMENT 
tables in our COMPANY database (from Figure 07.05) to yield a join view EMP_DEPT. This join 
table has key SSN, which matches the key of EMPLOYEE but does not match the key of 
DEPARTMENT. Hence, the EMPLOYEE base table is considered to be key preserved, but 
DEPARTMENT is not. The update on the view  

UPDATE    EMP_DEPT 

SET       Salary = Salary * 1.07 

WHERE     DNO = 5; 
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is acceptable because it modifies the salary attribute from the key preserved EMPLOYEE table, but the 
update  

 
 

UPDATE    EMP_DEPT 

SET       Mgrssn = ‘987654321’ 

WHERE     Dname = ‘Research’; 

 
 

fails with an error code because DEPARTMENT is not key preserved.  

• Synonyms: Direct references to objects (Note 5). They are used to provide public access to an 
object, mask the real name or owner of an object, etc. A user may create a private synonym 
that is available to only that user.  

• Program units: A function, stored procedure, or package. Procedures or functions are written 
in SQL or PL/SQL, which is a procedural language extension to SQL in Oracle. The term 
stored procedure is commonly used to refer to a procedure that is considered to be a part of 
the data definition and implements some integrity rule or business rule or a policy when it is 
invoked. Functions return single values. Packages provide a method of encapsulating and 
storing related procedures for easier management and control.  

• Sequence: A special provision of a data type in Oracle for attribute value generation. An 
attribute may derive its value from a sequence, which is an automatically generated internal 
number. The same sequence may be used for one or more tables. As an example, an attribute 
EMPID for the EMPLOYEE table may be internally generated as a sequence.  

• Indexes (see Chapter 6): An index can be generated on one or more columns of a table as 
requested via SQL.  

• Cluster: A group of records from one or more tables physically stored in a mixed file (see 
Chapter 5). Related rows from multiple tables are physically stored together on disk blocks to 
improve performance (Note 6). By creating an index cluster (Note 7), the EMPLOYEE and 
DEPARTMENT tables may be clustered by the cluster key DNUMBER and the data is grouped so 
that the row for the DEPARTMENT with DNUMBER = 1 from the DEPARTMENT table is followed 
by the rows from EMPLOYEE table for all employees in that department. Hash clusters also 
group records; however, the cluster key value is hashed first, and all rows belonging to this 
hash value (from the different tables being clustered) are stored under the same hash bucket 
address.  

• Database links: Named objects in Oracle that establish paths from one database to another. 
These are used in distributed databases (see Chapter 24).  

 
 

10.3.2 Oracle Data Dictionary 

The Oracle data dictionary is a read-only set of tables that keeps the metadata—that is, the schema 
description—for a database. It is composed of base tables that contain encrypted data stored by the 
system. User-accessible views of the dictionary decode, summarize, and conveniently display the 
information for users. Users are rarely given access to base tables. The special prefixes USER, ALL, 
and DBA are used respectively to refer to the user’s view (schema objects that the user owns), 
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expanded user view objects (objects that a user has authorization to access), and a complete set of 
information (for the DBA’s use). We will be discussing system catalogs in detail in Chapter 17. Oracle 
dictionary, which is a system catalog, has the following type of information:  

• Names of users.  
• Security information (privileges and roles) about which users have access to what data (see 

Chapter 22).  
• Schema objects information.  
• Integrity constraints.  
• Space allocation and utilization of the database objects.  
• Statistics on attributes, tables, and predicates.  
• Access audit trail information.  

It is possible to query the data dictionary using SQL. For example, the query:  

 
 

SELECT object_name, object_type FROM user-objects;  

 
 

returns the information about schema objects owned by the user. 

 
 

SELECT owner, object_name, object_type FROM all-objects;  

 
 

returns information on all objects to which the user has access.  

In addition to the above dictionary information, Oracle constantly monitors database activity and 
records it in tables called dynamic performance tables. The DBA has access to those tables to 
monitor system performance and may grant access to views over these tables to some users.  

 
 

10.3.3 SQL in Oracle 

The SQL implemented in Oracle is compliant with the SQL ANSI/ISO standard. It is similar to the 
SQL facilities discussed in Chapter 8 with some variations. All operations on a database in Oracle are 
performed using SQL statements—that is, any string of SQL language given to Oracle for execution. 
A complete SQL query is referred to as an SQL sentence. The following SQL statements are handled 
(see Chapter 8):  

• DDL statements: Define schema objects discussed in Section 10.2.1, and also grant and 
revoke privileges (see Chapter 22).  

• DML statements: Specify querying, insert, delete, and update operations. In addition, locking 
a table or view (see Chapter 20) or examining the execution plan of a query (see Chapter 18) 
are also DML operations.  
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• Transaction control statements: Specify units of work. A transaction is a logical unit of work 
(we will discuss transactions in detail in Chapter 19) that begins with an executable statement 
and ends when the changes made to the database are either committed (written to permanent 
storage) or rolled back (aborted). Transaction control statements in SQL include COMMIT 
(WORK), SAVEPOINT, and ROLLBACK.  

• Session control statements: Allow users to control the properties of their current session by 
enabling or disabling roles of users and changing language settings. Examples: ALTER 
SESSION, CREATE ROLE.  

• System control statements: Allow the administrator to change settings such as the minimum 
number of shared servers, or to kill a session. The only statement of this type is ALTER 
SYSTEM.  

• Embedded SQL statements: Allow SQL statements to be embedded in a procedural 
programming language, such as PL/SQL of Oracle or the C language. In the latter case, Oracle 
uses the PRO*C precompiler to process SQL statements in the C program. Statements include 
cursor management operations like OPEN, FETCH, CLOSE, and other operations like 
EXECUTE.  

The PL/SQL language is Oracle’s procedural language extension that adds procedural functionality to 
SQL. By compiling and storing PL/SQL code in a database as a stored procedure, network traffic 
between applications and the database is reduced. PL/SQL blocks can also be sent by an application to 
a database for performing complex operations without excessive network traffic.  

 
 

10.3.4 Methods in Oracle 8 

Methods (operations) have been added to Oracle 8 as a part of the object-relational extension. A 
method is a procedure or function that is part of the definition of a user-defined abstract data type. 
Methods are written in PL/SQL and stored in the database or written in a language like C and stored 
externally (Note 8). Methods differ from stored procedures in the following ways:  

• A program invokes a method by referring to an object of its associated type.  
• An Oracle method has complete access to the attributes of its associated object and to the 

information about its type. Note that this is not true in general for object data models.  

Every (abstract) data type has a system-defined constructor method, which is a method that constructs 
a new object according to the data type’s specification. The name of the constructor method is identical 
to the name of the user-defined type; it behaves as a function and returns the new object as its value. 
Oracle supports certain special kinds of methods:  

• Comparison methods define an order relationship among objects of a given data type.  
• Map methods are functions defined on built-in types to compare them. For example, a map 

method called area may be used to compare rectangles based on their areas.  
• Order methods use their own logic to return a value that encodes the ordering among two 

objects of the same type. For example, for an object type insurance_policy, two different order 
methods may be defined: one that orders policies by (issue_date, lastname, firstname) and 
another by policy_number.  

 
 

10.3.5 Triggers 

In Oracle, active rule capability is provided by a database trigger—stored procedure (or rule) that is 
implicitly executed (or fired) when the table with which it is associated has an insert, delete, or update 
performed on it (Note 9). Triggers can be used to enforce additional constraints or to automatically 
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perform additional actions that are required by business rules or policies that go beyond the standard 
key, entity integrity, and referential integrity constraints imposed by the system.  

 
 

10.4 Storage Organization in Oracle 

 
10.4.1 Data Blocks 
10.4.2 Extents 
10.4.3 Segments

A database is divided into logical storage units called tablespaces, with the following characteristics:  

• Each database is divided into one or more tablespaces.  
• There is system tablespace and users tablespace.  
• One or more datafiles (which correspond to stored base tables) are created in each tablespace. 

A datafile can be associated with only one database. When requested data is not available in 
the memory cache for the database, it is read from the appropriate datafile. To reduce the total 
disk access activity, data is pooled in memory and written to datafiles all at once under the 
control of the DBWR background process.  

• The combined storage capacity of a database’s tablespace is the total storage capacity of the 
database.  

Every Oracle database contains a tablespace named SYSTEM (to hold the data dictionary’s objects), 
which Oracle creates automatically when the database is created. At least one user tablespace is needed 
to reduce contention between the system’s internal dictionary objects and schema objects.  

Physical storage is organized in terms of data blocks, extents, and segments. The finest level of 
granularity of storage is a data block (also called logical block, page, or Oracle block), which is a 
fixed number of bytes. An extent is a specific number of contiguous data blocks. A segment is a set of 
extents allocated to a specific data structure. For a given table, the data may be stored in a data 
segment and the index may be stored in an index segment. The relationships among these terms are 
shown in Figure 10.02.  

 

 

 
 

10.4.1 Data Blocks 

For an Oracle database, the data block—not an operating system block—represents the smallest unit of 
I/O. Its size would typically be a multiple of the operating system block size. A data block has the 
following components:  

• Header: Contains general block information such as block address and type of segment.  
• Table directory: Contains information about tables that have data in the data block.  
• Row directory: Contains information about the actual rows. Oracle reuses the space on 

insertion of rows but does not reclaim it when rows are deleted.  
• Row data: Uses the bulk of the space in the data block. A row can span blocks (that is, occupy 

multiple blocks).  
• Free space: Space allocated for row updates and new rows.  
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Two space management parameters PCTFREE and PCTUSED enable the DBA/designer to control the 
use of free space in data blocks. PCTFREE sets the minimum percentage of a data block to be 
preserved as free space for possible updates to rows. For example:  

 
 

PCTFREE 30  

 
 

states that 30 percent of each data block will be kept as free space. After a data block is filled to 70 
percent, Oracle would consider it unavailable for the insertion of new rows. The PCTUSED parameter 
sets the minimum percentage of a block’s space that must be reached—due to DELETE and UPDATE 
statements that reduce the size of data—before new rows can be added to the block. For example, if in 
the CREATE TABLE statement, we set  

 
 

PCTUSED 50  

 
 

a data block used for this table’s data segment—which has already reached 70 percent of its storage 
space as determined by PCTFREE—is considered unavailable for the insertion of new rows until the 
amount of used space in the block falls below 50 percent (Note 10). This way, 30 percent of the block 
remains open for updates of existing rows; new rows can be inserted only when the amount of used 
space falls below 50 percent, and then insertions can proceed until 70 percent of the space is utilized.  

When using Oracle data types such as LONG or LONG RAW, or in some other situations of using 
large objects, a row may not fit in a data block. In such a case, Oracle stores the data for the row in a 
chain of data blocks reserved for that segment. This is called row chaining. If a row originally fits in 
one block but is updated so that it does not fit any longer, Oracle uses migration—moving an entire 
row to a new data block and trying to fit it there. The original row leaves a pointer to the new data 
block. With row chaining and migration, multiple data blocks are required to be accessed and as a 
result performance degrades.  

 
 

10.4.2 Extents 

When a table is created, Oracle allocates it an initial extent. Incremental extents are automatically 
allocated when the initial extent becomes full. The STORAGE clause of CREATE TABLE is used to 
define for every type of segment how much space to allocate initially as well as the maximum amount 
of space and the number of extents (Note 11). All extents allocated in index segments remain allocated 
as long as the index exists. When an index associated with a table or cluster is dropped, Oracle reclaims 
the space.  

 
 

10.4.3 Segments 
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A segment is made up of a number of extents and belongs to a tablespace. Oracle uses the following 
four types of segments:  

• Data segments: Each nonclustered table and each cluster has a single data segment to hold all 
its data. Oracle creates the data segment when the application creates the table or cluster with 
the CREATE command. Storage parameters can be set and altered with appropriate CREATE 
and ALTER commands.  

• Index segments: Each index in an Oracle database has a single index segment, which is 
created with the CREATE INDEX command. The statement names the tablespace and 
specifies storage parameters for the segment.  

• Temporary segments: Temporary segments are created by Oracle for use by SQL statements 
that need a temporary work area. When the statement completes execution, the statement’s 
extents are returned to the system for future use. The statements that require a temporary 
segment are CREATE INDEX, SELECT . . . {ORDER BY | GROUP BY}, SELECT 
DISTINCT, and (SELECT . . .) {UNION | MINUS (Note 12) | INTERSECT} (SELECT . . .). 
Some unindexed joins and correlated subqueries may also require temporary segments. 
Queries with ORDER BY, GROUP BY, or DISTINCT clauses, which require a sort 
operation, may be helped by using the SORT_AREA_SIZE parameter.  

• Rollback segments: Each database must contain one or more rollback segments, which are 
used for "undoing" transactions. A rollback segment records old values of data (whether or not 
it commits) that are used to provide read consistency (when using multiversion control) to roll 
back a transaction and for recovering a database (Note 13). Oracle creates an initial rollback 
segment called SYSTEM whenever a database is created. This segment is in the SYSTEM 
tablespace and uses that tablespace’s default storage parameters.  

 
 

10.5 Programming Oracle Applications 

10.5.1 Programming in PL/SQL 
10.5.2 Cursors in PL/SQL 
10.5.3 An Example in PRO*C

Programming in Oracle is done in several ways:  

• Writing interactive SQL queries in the SQL query mode.  
• Writing programs in a host language like COBOL, C, or PASCAL, and embedding SQL 

within the program. A precompiler such as PRO*COBOL or PRO*C is used to link the 
application to Oracle.  

• Writing in PL/SQL, which is Oracle’s own procedural language.  
• Using Oracle Call Interface (OCI) and the Oracle runtime library SQLLIB.  

 
 

10.5.1 Programming in PL/SQL 

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL offers software engineering 
features such as data encapsulation, information hiding, overloading, and exception handling to the 
developers. It is the most heavily used technique for application development in Oracle.  

PL/SQL is a block-structured language. That is, the basic units—procedures, functions and anonymous 
blocks—that make up a PL/SQL program are logical blocks, which can contain any number of nested 
subblocks. A block or subblock groups logically related declarations and statements. The declarations 
are local to the block and cease to exist when the block completes. As illustrated below, a PL/SQL 
block has three parts: (1) a declaration part where variables and objects are declared, (2) an 
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executable part where these variables are manipulated, and (3) an exception part where exceptions or 
errors raised during execution can be handled.  

 
 

[DECLARE  

---declarations]  

BEGIN  

---statements  

[EXCEPTION  

---handlers]  

END;  

 
 

In the declaration part—which is optional—variables are declared. Variables can have any SQL data 
type as well as additional PL/SQL data types. Variables can also be assigned values in this section. 
Objects are manipulated in the executable part, which is the only required part. Here data can be 
processed using conditional, iterative, and sequential flow-of-control statements such as IF-THEN-
ELSE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and GO-TO. The exception part handles any error 
conditions raised in the executable part. The exception could be user-defined errors or database errors 
or exceptions. When an error or exception occurs, an exception is raised and the normal execution 
stops and control transfers to the exception-handling part of the PL/SQL block or subprogram.  

Suppose we want to write PL/SQL programs to process the database of Figure 07.05. As a first 
example, E1, we write a program segment that prints out some information about an employee who has 
the highest salary as follows:  

 
 

E1:  

DECLARE  

v_fname    employee.fname%TYPE;  

v_minit    employee.minit%TYPE;  

v_lname    employee.lname%TYPE;  

v_address  employee.address%TYPE;  

v_salary   employee.salary%TYPE;  
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BEGIN  

SELECT   fname, minit, lname, address, salary  

INTO     v_fname, v_minit, v_lname, v_address, v_salary  

FROM     EMPLOYEE  

WHERE    salary = (select max (salary) from employee);  

 
 

DBMS_OUTPUT.PUT_LINE (v_fname, v_minit, v_lname, v_address, v_salary);  

 
 

EXCEPTION  

WHEN OTHERS  

DBMS_OUTPUT.PUT_LINE (‘Error Detected’);  

END;  

 
 

In E1, we need to declare program variables to match the types of the database attributes that the 
program will process. These program variables may or may not have names that are identical to their 
corresponding attributes. The %TYPE in each variable declaration means that that variable is of the 
same type as the corresponding column in the table. DBMS_OUTPUT.PUT_LINE is PL/SQL’s print 
function. The error handling part prints out an error message if Oracle detects an error—in this case, if 
more than one employee is selected—while executing the SQL. The program needs an INTO clause, 
which specifies the program variables into which attribute values from the database are retrieved.  

In the next example, E2, we write a simple program to increase the salary of employees whose salaries 
are less than the average salary by 10 percent. The program recomputes and prints out the average 
salary if it exceeds 50000 after the above update.  

 
 

E2:  

DECLARE  

avg_salary NUMBER;  

 
 

BEGIN  

SELECT avg(salary) INTO avg_salary  
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FROM employee;  

 
 

UPDATE employee  

SET salary = salary*1.1  

WHERE salary < avg_salary;  

 
 

SELECT avg(salary) INTO avg_salary  

FROM employee;  

 
 

IF avg_salary > 50000 THEN  

dbms_output.put_line (‘Average Salary is ‘ | | avg_salary);  

END IF;  

 
 

COMMIT;  

 
 

EXCEPTION  

WHEN OTHERS THEN  

dbms_output.put_line (‘Error in Salary update ‘)  

ROLLBACK;  

 
 

END;  

 
 

In E2, avg_salary is defined as a variable and it gets the value of the average of the employees’ 
salary from the first SELECT statement and this value is used to choose which of the employees will 
have their salaries updated. The EXCEPTION part rolls back the whole transaction (that is, removes 
any effect of the transaction on the database) if an error of any type occurs during execution.  
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10.5.2 Cursors in PL/SQL 

The set of rows returned by a query can consist of zero, one, or multiple rows, depending on how many 
rows meet the search criteria. When a query returns multiple rows, it is necessary to explicitly declare a 
cursor to process the rows. A cursor is similar to a file variable or file pointer, which points to a single 
row (tuple) from the result of a query. Cursors should be declared in the declarative part and are 
controlled by three commands: OPEN, FETCH, and CLOSE. The cursor is initialized with the OPEN 
statement, which executes the query, retrieves the resulting set of rows, and sets the cursor to a position 
before the first row in the result of the query. This becomes the current row for the cursor. The FETCH 
statement, when executed for the first time, retrieves the first row into the program variables and sets 
the cursor to point to that row. Subsequent executions of FETCH advance the cursor to the next row in 
the result set, and retrieve that row into the program variables. This is similar to the traditional record-
at-a-time file processing. When the last row has been processed, the cursor is released with the CLOSE 
statement. Example E3 displays the SSN of employees whose salary is greater than their supervisor’s 
salary.  

 
 

E3:  

DECLARE  

emp_salary NUMBER;  

emp_super_salary NUMBER;  

emp_ssn CHAR (9);  

emp_superssn CHAR (9);  

CURSOR salary_cursor IS  

SELECT ssn, salary, superssn FROM employee;  

BEGIN  

OPEN salary_cursor;  

 
 

LOOP  

FETCH salary_cursor INTO emp_ssn, emp_salary, emp_superssn;  

EXIT WHEN salary_cursor%NOTFOUND;  

 
 

IF emp_superssn is NOT NULL THEN  
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SELECT salary INTO emp_super_salary  

FROM employee  

WHERE ssn = emp_superssn;  

 
 

IF emp_salary > emp_super_salary THEN  

dbms_output.put_line(emp_ssn);  

END IF;  

END IF;  

END LOOP;  

IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;  

 
 

EXCEPTION  

WHEN NO_DATA_FOUND THEN  

dbms_output.put_line (‘Errors with ssn ‘ | | emp_ssn);  

IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;  

 
 

END;  

 
 

In the above example, the SALARY_CURSOR loops through the entire employee table until the cursor 
fetches no further rows. The exception part handles the situation where an incorrect supervisor ssn 
may be assigned to an employee. The %NOTFOUND is one of the four cursor attributes, which are the 
following:  

• %ISOPEN returns TRUE if the cursor is already open.  
• %FOUND returns TRUE if the last FETCH returned a row, and returns FALSE if the last 

FETCH failed to return a row.  
• %NOTFOUND is the logical opposite of %FOUND.  
• %ROWCOUNT yields the number of rows fetched.  

As a final example, E4 shows a program segment that gets a list of all the employees, increments each 
employee’s salary by 10 percent, and displays the old and the new salary.  
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E4:  

DECLARE  

v_fname    employee.fname%TYPE;  

v_minit    employee.minit%TYPE;  

v_lname    employee.lname%TYPE;  

v_address  employee.address%TYPE;  

v_salary   employee.salary%TYPE;  

 
 

CURSOR EMP IS  

SELECT ssn, fname, minit, lname, salary  

FROM employee;  

 
 

BEGIN  

OPEN EMP;  

 
 

LOOP  

FETCH EMP INTO v_ssn, v_fname, v_minit, v_lname, v_salary;  

EXIT WHEN EMP%NOTFOUND;  

 
 

dbms_output.putline(‘SSN:’ | | v_ssn | | ‘Old salary :’ | | v_salary);  

 
 

UPDATE employee  

SET salary = salary*1.1  

WHERE ssn = v_ssn;  
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COMMIT;  

dbms_output.putline(‘SSN:’ | | v_ssn | | ‘New salary :’ | | v_salary*1.1);  

 
 

END LOOP;  

CLOSE EMP;  

 
 

EXCEPTION  

WHEN OTHERS  

dbms_output.put_line (‘Error Detected’);  

END:  

 
 

10.5.3 An Example in PRO*C 

An Oracle precompiler is a programming tool that allows the programmer to embed SQL statements in 
a source program of some programming language. The precompiler accepts the source program as 
input, translates the embedded SQL statements into standard Oracle runtime library calls, and generates 
a modified source program that can be compiled, linked, and executed. The languages that Oracle 
provides precompilers for include C, C++, and COBOL, among others. Here, we will discuss an 
application programming example using PRO*C, the precompiler for the C language.  

Using PRO*C provides automatic conversion between Oracle and C language data types. Both SQL 
statements and PL/SQL blocks can be embedded in a C host program. This combines the power of the 
C language with the convenience of using SQL for database access. To write a PRO*C program to 
process the database of Figure 07.05, we need to declare program variables to match the types of the 
database attributes that the program will process. The error-handling function SQL_ERROR prints out 
an error message if Oracle detects an error while executing the SQL. The first PRO*C example E5 
(same as E1 in PL/SQL) is a program segment that prints out some information about an employee who 
has the highest salary (assuming only one employee is selected). Here VARCHAR is an Oracle-
supplied structure. The program connects to the database as the user "Scott" with a password of 
"TIGER".  

 
 

E5:  

#include <stdio.h>  

#include <string.h>  
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VARCHAR username[30]; 

VARCHAR password[10]; 

VARCHAR v_fname[15]; 

VARCHAR v_minit[1]; 

VARCHAR v_lname[15]; 

VARCHAR v_address[30]; 

char   v_ssn[9]; 

float   f_salary; 

 
 

main ()  

{  

strcpy (username.arr, "Scott");  

username.len = strlen(username.arr);  

strcpy(password.arr,"TIGER");  

password.len = strlen(password.arr);  

 
 

EXEC SQL WHENEVER SQLERROR DO sql_error();  

EXEC SQL CONNECT :username IDENTIFIED BY :password;  

EXEC SQL SELECT fname, minit, lname, address, salary  

INTO :v_fname, :v_minit, :v_lname, :v_address, :f_salary  

FROM EMPLOYEE  

WHERE salary = (select max (salary) from employee);  

 
 

printf (" Employee first name, Middle Initial, Last Name, Address, Salary \n");  

printf ("%s %s %s %s %f \n ", v_fname.arr, v_minit.arr, v_lname.arr, v_address.arr, f_salary);  

}  
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sql_error()  

{  

EXEC SQL WHENEVER SQLERROR CONTINUE;  

printf(" Error detected \n");  

}  

 
 

Cursors are used in PRO*C in a manner similar to their use in PL/SQL (see Section 10.5.2). Example 
E6 (same as E4 in PL/SQL) illustrates their use, where the EMP cursor is explicitly declared. The 
program segment in E6 gets a list of all the employees, increments the salaries by 10 percent, and 
displays the old and new salary. Implicit cursor attributes return information about the execution of an 
INSERT, UPDATE, DELETE, or SELECT INTO statement. The values of these cursor attributes 
always refer to the most recently executed SQL statement. In E6, the NOTFOUND cursor attribute is 
an implicit variable that returns TRUE if the SQL statement returned no rows.  

 
 

E6:  

. . . /* same include statements and variable declarations as E5  

 
 

main ()  

{  

strcpy (username.arr, "Scott");  

username.len= strlen(username.arr);  

strcpy(password.arr,"TIGER");  

password.len = strlen(password.arr);  

 
 

EXEC SQL WHENEVER SQLERROR DO sql_error();  

EXEC SQL CONNECT :username IDENTIFIED BY :password;  

EXEC SQL DECLARE EMP CURSOR FOR  
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SELECT ssn, fname, minit, lname, salary  

FROM employee;  

 
 

EXEC SQL OPEN EMP;  

EXEC SQL WHENEVER NOTFOUND DO BREAK;  

 
 

for (;;)  

{  

EXEC SQL FETCH EMP INTO :v_ssn, :v_fname, :v_minit, :v_lname, :f_salary;  

printf ("Social Security Number : %d, Old Salary : %f ", v_ssn, f_salary);  

 
 

EXEC SQL UPDATE employee  

SET salary = salary*1.1  

WHERE ssn = :v_ssn;  

EXEC SQL COMMIT;  

printf ("Social Security Number : %d New Salary : %f ", v_ssn, f_salary*1.1);  

}  

}  

 
 

sql_error()  

{  

EXEC SQL WHENEVER SQLERROR CONTINUE;  

printf(" Error detected \n");  

}  
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10.6 Oracle Tools 

Various tools have been offered to develop applications and to design databases in RDBMSs (Note 14). 
Many tools exist that take the designer through all phases of database design starting with conceptual 
modeling using variations of extended entity-relationship diagrams through physical design. Oracle 
offers its own tool called Designer 2000 for this purpose.  

Designer 2000 facilitates rapid model-based development and provides Entity-Relationship diagrams 
for data modeling, Function Hierarchy approach for process modeling, and Dataflow techniques to 
capture information flows within an information system (Note 15). The Entity-Relationship 
Diagrammer unit of Designer 2000 supports the creation, display, and manipulation of all entities and 
relationships. Each of these constructs are defined in terms of properties, including attributes. Various 
properties of attributes are displayed using default symbols for mandatory, optional, and uniquely 
identifying (key) attributes. The entities and relationships are displayed diagrammatically for better 
visual understanding.  

The Function Hierarchy Diagrammer unit represents the activities (processes) carried out by a business. 
It uses the technique of functional decomposition, whereby a high-level statement of an enterprise or 
departmental business function is broken down into progressively more detailed functions. This helps 
to identify candidate business functions for computerization and areas of commonality across the 
organization.  

The Matrix Diagrammer unit is a general-purpose cross-referencing tool that can be used to support 
project scoping, impact analysis, network planning, and quality control for a database application 
development project. It also provides information about the different network nodes where the database 
tables are residing and the modules using these tables.  

For developing applications, there are a number of prototyping tools available including Powerbuilder 
by Sybase. Oracle provides its own tool called Developer 2000, which lets the user design graphical 
user interfaces (GUIs), and enables the user to interactively develop actual programs with queries and 
transactions. The tool interacts with Oracle databases as the back end. Developer 2000 offers a set of 
builders for database-derived forms, reports, queries, objects, charts, and procedures that make it 
simpler for developers to build database-driven applications. Version 2.0 includes graphical wizards to 
automate application creation. A new object library lets developers reuse components by dragging 
them into their applications. Object partitioning lets developers move code from client to server to cut 
down on network traffic. Developer 2000 includes a project builder tool to manage team development, 
and a debugger that works across all tiers of the application. It integrates with Oracle’s Designer 2000, 
offers access to all major databases, and allows the embedding of ActiveX controls in applications.  

 
 

10.7 An Overview of Microsoft Access 

10.7.1 Architecture of Access 
10.7.2 Data Definition of Access Databases 
10.7.3 Defining Relationships and Referential Integrity Constraints 
10.7.4 Data Manipulation in Access

Access is one of the well-known implementations of the relational data model on the PC platform. It is 
considered as part of an integrated set of tools for creating and managing databases on the PC Windows 
platform. The database applications for Access may range from personal applications, such as 
maintaining an inventory of your personal audio and video collection, to small business applications, 
such as maintaining business-specific customer information. With compliance to the Microsoft Open 
Database Connectivity (ODBC) standard and the prevalence of today’s client-server architectures, PC 
relational databases may be used as a front-end to databases stored on non-PC platforms. For example, 
an end user can specify ad hoc queries graphically in Access over an Oracle database stored on a UNIX 
server.  
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Access provides a database engine and a graphical user interface (GUI) for data definition and 
manipulation, with the power of SQL. It also provides a programming language called Access Basic. 
Users can quickly develop forms and reports for input/output operations against the database through 
the use of Wizards, which are interactive programs that guide the user through a series of questions in 
a dialog mode. The definition of the forms and reports is interactively accomplished when the user 
designs the layout and links the different fields on the form or report to items in the database. Access 
97 (the latest release of Access at the time of this writing) also provides the database developer with 
hyperlinks as a native data type, extending the functionality of the database with the ability to share 
information on the Internet.  

 
 

10.7.1 Architecture of Access 

Access is an RDBMS that has several components. One component is the underlying database engine, 
called the Microsoft Jet engine (Note 16), which is responsible for managing the data. Another 
component is the user interface, which calls the engine to provide data services, such as storage and 
retrieval of data. The engine stores all the application data (tables, indexes, forms, reports, macros, and 
modules) in a single Microsoft database file (.mdb file). The engine also provides advanced 
capabilities, such as heterogeneous data access through ODBC, data validation, concurrency control 
using locks, and query optimization.  

Access works like a complete application development environment, with the internal engine serving to 
provide the user with RDBMS capabilities. The Access user interface provides Wizards and Builders to 
aid the user in designing a database application. Builders are interactive programs that help the user 
build syntactically correct expressions. The programming model used by Access is event-driven. The 
user builds a sequence of simple operations, called macros, to be performed in response to actions that 
occur during the use of the database application. While some applications can be written in their 
entirety using macros, others may require the extended capabilities of Access Basic, the programming 
language provided by Access.  

There are different ways in which an application with multiple components that includes Access can be 
integrated. A component (in Microsoft terminology) is an application or development tool that makes 
its objects available to other applications. Using automation in Visual Basic, it is possible to work 
with objects from other components to construct a seamless integrated application. Using the Object 
Linking and Embedding (OLE) technology, a user can include documents created in another 
component on a report or form within Access. Automation and OLE are distinct technologies, which 
are a part of the Component Object Model (COM), a standard proposed by Microsoft.  

 
 

10.7.2 Data Definition of Access Databases 

Although Access provides a programmatic approach to data definition through Access SQL, its dialect 
of SQL, the Access GUI provides a graphical approach to defining tables and relationships among 
them. A table can be created directly in a design view or it can be created interactively under the 
guidance of a table wizard. Table definition contains not only the structure of the table but also the 
formatting of the field layout and masks for field inputs, validation rules, captions, default values, 
indexing, and so on. The data types for fields include text, number, date/time, currency, Yes/no 
(boolean), hyperlink, and AutoNumber, which automatically generates sequential numbers for new 
records. Access also provides the capability to import data from external tables and to link to external 
tables.  

Figure 10.03 shows the EMPLOYEE table from the COMPANY relational database schema, when opened in 
the design view. The SSN field is selected (highlighted), so its properties are displayed in a Field 
Properties window at the bottom left of the screen. The format property provides for a default 
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display format, where SSN has hyphens located after the third and fifth positions as per convention. The 
input mask provides automatic formatting characters for display during data input in order to validate 
the input data. For example, the input mask for SSN displays the hyphen positions and indicates that the 
other characters are digits. The caption property specifies the name to be used on forms and reports 
for this field. A blank caption specifies the default, which is the field name itself. A default value can 
be specified if appropriate for a particular field. Field validation includes the specification of 
validation rules and validation text—the latter displayed when a validation rule is violated. For the 
SSN example, the input mask provides the necessary field validation rule. However, other fields may 
require additional validation rules—for example, the SALARY field may be required to be greater than a 
certain minimum. Other field properties include specifying whether the field is required—that is, 
NULL is not allowed—and whether textual fields allow zero length strings. Another field property 
includes the index specification, which allows for three possibilities: (1) no index, (2) an index with 
duplicates, or (3) an index without duplicates. Since SSN is the primary key of EMPLOYEE, the field is 
indexed with no duplicates allowed.  

 

 

 
 

In addition to the Field Properties window, Access also provides a Table Properties window. This is 
used to specify table validation rules, which are integrity constraints across multiple columns of a 
table or across tables. For example, the user can define a table validation rule on the EMPLOYEE table 
specifying that an employee cannot be his or her own supervisor.  

 
 

10.7.3 Defining Relationships and Referential Integrity Constraints 

Access allows interactive definition of relationships between tables—which can specify referential 
integrity constraints—via the Relationships window. To define a relationship, the user first adds the 
two tables involved to the window display and then selects the primary key of one table and drags it to 
where it appears as a foreign key in the other table. For example, to define the relationship between 
DNUMBER of DEPARTMENT and DNO of EMPLOYEE, the user selects 
DEPARTMENT.DNUMBER and drags it over to EMPLOYEE.DNO. This action pops up another 
window that prompts the user for further information regarding the establishment of the relationship, as 
shown in Figure 10.04. The user checks the "Enforce Referential Integrity" box if Access is to 
automatically enforce the referential integrity specified by the relationship. The user may also specify 
the automatic cascading of updates to related fields and deletions of related records by selecting the 
appropriate boxes. The "Relationship Type" is automatically determined by Access based on the 
definition of the related fields. If only one of the related fields is a primary key or has a unique index, 
then Access creates a one-to-many relationship, indicating that an instance (value) of the primary key 
can appear many times as an instance of the foreign key in the related table. This is the case in our 
example because DNUMBER is the primary key of DEPARTMENT and DNO is not the primary key 
of EMPLOYEE nor does it have a unique index defined on it. If both fields are either keys or have 
unique indexes, then Access creates a one-to-one relationship. For example, consider the definition of a 
relationship between EMPLOYEE.SSN and DEPARTMENT.MGRSSN. If the MGRSSN of 
DEPARTMENT is defined to have an index with no duplicates (a unique index) and SSN is the 
primary key of EMPLOYEE, then Access creates a one-to-one relationship.  
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Although specifying a relationship is the mechanism used to specify referential integrity between 
tables, the user need not choose the option to enforce referential integrity because relationships are also 
used to specify implicit join conditions for queries. For example, if no relationship is pre-specified 
during the graphical design of a query, then a default join of the related fields is performed if related 
tables are selected for that query, regardless of whether referential integrity is enforced or not (Note 
17). Access chooses an inner join as the default join type but the user may choose a right or left outer 
join by clicking on the "Join Type" box (see Figure 10.04) and selecting the appropriate join type.  

Figure 10.05 shows the Relationships window for the COMPANY database schema in Access. Note 
the similarity to Figure 07.07, which shows the eight referential integrity constraints of the COMPANY 
database. One difference is that Access displays the cardinality ratio associated with each relationship 
(Note 18). Another difference is the duplicate display of the EMPLOYEE relation, as EMPLOYEE 
and EMPLOYEE_1, in Figure 10.05. This duplication is needed when defining multiple relationships 
between two tables or a recursive relationship (between a table and itself). In Figure 10.05, in order to 
define the recursive relationship between the EMPLOYEE.SSN and EMPLOYEE.SUPERSSN, the 
user first adds another copy of the EMPLOYEE table to the Relationships window before dragging the 
primary key SSN to the foreign key SUPERSSN. Even if the recursive relationship did not exist in 
the COMPANY schema, we would need to duplicate EMPLOYEE (or, alternatively, 
DEPARTMENT) because two relationships exist between EMPLOYEE and DEPARTMENT: SSN 
to MGRSSN and DNUMBER to DNO.  

 

 

 
 
 

10.7.4 Data Manipulation in Access 

The data manipulation operations of the relational model are categorized into retrieval queries and 
updates (insert, delete, and modify operations). Access provides for query definition either graphically 
through a QBE interface or programmatically through Access SQL. The user has the ability to design a 
graphical query and then switch to the SQL view to examine the SQL query generated by Access. 
Access provides for update operations through forms that are built by the application programmer, by 
direct manipulation of the table data in Datasheet view, or through the Access Basic programming 
language.  

Retrieval operations are easily specified graphically in the Access QBE interface. Consider Query 1 
over the COMPANY database that retrieves the names and addresses of all employees who work for the 
"Research" department. Figure 10.06 shows the query both in QBE and SQL. To define the query in 
QBE, the user first adds the EMPLOYEE and DEPARTMENT tables to the query window. The 
default join between DEPARTMENT.DNUMBER and EMPLOYEE.DNO that was established via 
the Relationships window at data definition is automatically incorporated into the query definition as 
illustrated by the line shown between the related fields. If such a predefined join is not needed for a 
query, the user needs to highlight the link in the query window and hit the Delete key. To establish a 
join that had not been prespecified, the user selects the join attribute from one table and drags it over to 
the join attribute in the other table. To include an attribute in the query, the user drags it from the top 
window to the bottom window. For attributes to be displayed in the query result, the user checks the 
"Show" box. To specify a selection condition on an attribute, the user can type an expression directly in 
the "Criteria" grid or use the aid of an Expression Builder. To see the equivalent query in Access SQL, 
the user switches from the QBE Design View to the SQL View (Note 19).  
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The above example illustrates how a user builds a query using the Design View Query window. 
Multiple join queries beyond two tables can be developed in a similar way. Wizards are available to 
guide the user in defining queries—although the ease of use of Access QBE makes them unnecessary.  

Update operations on the database are typically guided by the use of forms that incorporate the 
business rules of the application. There is also a Datasheet view of a table that the sophisticated end 
user can use to insert, delete, or modify data directly by choosing "open table" from a database 
window. These updates are subject to the constraints specified through the data definition process, 
including data types, input masks, field and table validation rules, and relationships.  

 
 

10.8 Features and Functionality of Access 

10.8.1 Forms 
10.8.2 Reports 
10.8.3 Macros and Access Basic 
10.8.4 Additional Features

This section presents an overview of some of the other features of Access, including forms, reports, 
macros, and Access Basic.  

 
 

10.8.1 Forms 

Access provides Form Wizards to assist the database programmer with the development of forms. A 
typical scenario with a Form Wizard involves the following:  

• Choosing a table or query where the form’s data comes from.  
• Selecting the fields in the form.  
• Choosing the desired layout (for example, columnar, tabular, Datasheet, or justified).  
• Choosing a style for the headings.  
• Specifying a form title.  

Use of queries in the above process is equivalent to treating them as views. The Wizard then generates 
a form based on the above input. This form can then be opened in Design View for modification, if 
desired. Figure 10.07 shows a form, titled "Employee," which was created using a Form Wizard. This 
form chooses all the fields of the EMPLOYEE table. A justified layout was chosen with a standard 
style for headings. The form shown is essentially that provided by the Wizard with a few exceptions. 
The size of some of the fields were modified easily in Design View by selecting the box with the 
mouse and dragging it to the appropriate size. This simple form allows the user to view, insert, delete 
and modify EMPLOYEE records, subject to the defined constraints. The user views the data in the 
EMPLOYEE relation by repeatedly scrolling the page (using Page Down or > on the bottom line). The 
user can find a given employee record using the "Find" function in the Access "Edit" menu. Once an 
employee is found, the user can directly update the employee data or choose to delete the employee 
using the "Delete Record" function, which is also found on the "Edit" menu. To insert a new employee, 
the user inserts data into an empty record, which can be accessed by paging down (or using > on the 
bottom line) beyond the last record in the table.  
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The Access user interface provides a sophisticated Design View for creating more complicated forms. 
The form designer has a "Toolbox" that provides various controls for incorporation into a form—for 
example, buttons, check boxes, combo boxes, and subforms. Buttons and check boxes support the ease 
of use of choosing a built-in option on a form. A "Combo Box" provides a mechanism for the user to 
select an item from a list of possible values, ensuring the correctness of the entered data. For example, 
a combo box can be used to choose the department number for an employee. Subforms are forms 
within forms, allowing a form to include information from multiple tables. For example, on the Project 
form a subform can be used to display information about the employees that work on that project. 
There are "Control Wizards" that guide the form designer through the incorporation of the selected 
controls on the form.  

 
 

10.8.2 Reports 

Reports are integral components to any database system, providing various ways to group, sort, and 
summarize data for printing based on a user’s needs. Like forms, reports are bound to underlying tables 
or queries. Access provides Report Wizards to assist the database programmer with the development of 
reports. A typical scenario with a Report Wizard involves the following:  

• Choosing a table or query where the report’s data comes from.  
• Selecting the fields in the report.  
• Specifying the grouping levels within the report.  
• Indicating the sort order and summary information for the report.  
• Choosing a report layout and orientation.  
• Specifying a style for the report title.  

The Wizard then generates a report based on the above input. This report can then be opened in Design 
View for modification, if desired.  

Figure 10.08 shows a report, titled "Salaries by Department," which was created with Report Wizard by 
using data from the EMPLOYEE relation and choosing the fields in the order that they were to appear 
on the report: DNO, LNAME, FNAME, and SALARY. A grouping level on DNO was specified to 
group the salaries by department number (DNO). The sorting of the detailed record on LNAME was 
indicated, as was the summary for the grouping as a SUM of the SALARY field (shown in boldface). 
A default report layout, orientation, and style was chosen from the ones provided by Access. The report 
shown is essentially that provided by the Wizard with a few exceptions. The headings for the group 
footer and report footer were modified from the defaults with a point and click in Design View.  

 

 

 
 

The Access user interface also provides a sophisticated Design View for creating more complicated 
reports. Similar to the form designer’s toolbox, a toolbox is provided to the report designer with 
"Control Wizards" that guide the report designer through the incorporation of the selected controls on 
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the report. For example, a "Subreport" control combines multiple reports into one. This can be used, for 
example, to specify a report for departments that includes as a subreport the information on the projects 
controlled by that department.  

 
 

10.8.3 Macros and Access Basic 

The programming model of Access is event-driven. Access is responsible for recognizing various 
events and the user can specify how to respond to an event by writing a macro, which is a sequence of 
simple operations called actions. Examples of event categories include changes to data, performing 
actions on a window, typing on the keyboard, or a mouse action. Consider the example of coding a 
macro in response to the event of closing a window that uses the "OpenForm" action to open another 
window. Access provides various actions to the macro programmer for building a powerful database 
application.  

While some applications can be written in their entirety using macros, other applications may require 
the extended capabilities of Access Basic, the complete programming language provided by Access 
and a subset of Visual Basic. Access Basic provides the power of a programming language, allowing 
for the use of flow-of-control constructs, the ability to use and pass arguments to customized Access 
Basic procedures, and record-at-a-time manipulation of records versus the set-at-a-time manipulation 
provided by macros and queries. Modules on the main toolbar refer to preprogrammed Access Basic 
procedures.  

 
 

10.8.4 Additional Features 

Security 
Replication 
Multiuser Operation 
Developer's Edition

Access supports certain advanced queries, one of which is the crosstab query—a way of grouping the 
data by values in one column and performing aggregation functions within the group. Excel calls these 
queries as pivot tables.  

OLE (object linking and embedding) is a Microsoft standard for linking and embedding objects in 
documents. Access enables the user to exchange information between applications. Use of Active X 
controls in Access extends the use of an application with little or no new programming.  

 
 

Security 

Access has a user-level security model similar to Microsoft Windows-NT Server where users provide a 
login and password when they start Access and their userid and groupids determine privileges, which 
can be set using a Wizard. In addition, Access has the following methods to protect an application:  

• The startup option of Access application can be made to restrict access to the Database 
Window and special keys.  

• An application can be saved as an MDE file to remove Visual Basic source code and prevent 
changes to the design of forms, reports, and modules.  
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Replication 

Access also supports database replication. The tools menu provides for full or partial replication of a 
database. An Access database must be converted to a "Design Master" before the replication 
commands can be used. Two or more copies of the database called replicas can be created; each 
replica may also contain additional local objects. A Design Master is the replica for which changes can 
be made to the database design and objects. The Replication command available on the tools menu 
allows creation of a replica and the synchronization of the replica with another member of the replica 
set. Synchronization among replicas is available by a menu command or programmatically in Visual 
Basic. There is also a menu command for Resolving Conflicts. Additional software called replication 
manager is used to provide a visual interface for converting databases, making additional replicas, 
viewing relationships between replicas, setting their properties, etc. Replication manager also allows 
synchronization of data over the Internet or Intranet, an internal network in an organization.  

 
 

Multiuser Operation 

To make an application available for multiuser access, the application is made available on a network 
server. For concurrent updates, locking is provided. Locking can be done programmatically in Visual 
Basic, but it is done automatically by Access when bound forms are used, where a form is bound to a 
table. Access maintains an LDB file that contains the current locking information. The locking options 
are "No Locks," "All Records," and "Edited Record." The RecordLocks property can be set for a 
given form or for the entire database (from the Tools menu, choose the Options command and then the 
Advanced command).  

 
 

Developer's Edition 

An Access database can be saved as an MDE file, which compiles the Visual Basic source code. With 
the Developer’s Edition the MDE file allows the distribution of the application to multiple desktops 
without requiring a copy of Access at each desktop. It also provides for a setup capability. Without the 
developer’s edition, an MDE file is just a compiled and compacted version of the database application.  

 
 

10.9 Summary 

In this chapter we reviewed two representative and very popular relational database management 
system (RDBMS) products: Oracle and Microsoft Access. Our goal was to introduce the reader to the 
typical architecture and functionality of a high-end product like Oracle and a PC-based smaller 
RDBMS like Access. While we may call Oracle a full-fledged RDBMS, we may call Access a data 
management tool that is geared for the less sophisticated user. We gave a historical overview of the 
development of relational database management systems, then described the architecture and main 
functions of the Oracle system. We discussed how Oracle represents a database and manipulates it, and 
the storage organization in the system. We then gave examples of programming in Oracle using 
PL/SQL, which is Oracle’s own programming language with embedded SQL, and using PRO*C, 
which is a pre-compiler for the C language. We reviewed some of the tools available in Oracle for 
database design and application development. We then provided an overview of Microsoft Access, its 
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architecture, definition of data, defining relationships, and database manipulation using QBE and SQL. 
We reviewed some additional features and functionality of Access.  

 
 

Selected Bibliography 

Many manuals describe the Oracle system. Oracle (1997a) through (1997f) are particularly relevant to 
our coverage. Sunderraman (1999) is a good reference for programming in Oracle. Oracle press has 
published many books on different aspects of the system, and there is a publication called Oracle 
System Journal that reports on the constant development of the product. Access also has a number of 
manuals, and Microsoft (1996) is relevant to our coverage. Many popular books have been written on 
how to use the system.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19

Note 1 

Codd (1985) specified 12 rules for determining whether a DBMS is relational. Codd (1990) presents a 
treatise on extended relational models and systems, identifying more than 330 features of relational 
systems, divided into 18 categories.  

 
 

Note 2 

Some of the discussion in this section uses terms that have not been introduced yet. They are essential 
for a discussion of the complete architecture of Oracle. Readers may refer to the appropriate chapters 
where these terms are defined and explained. 
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Note 3 

For a discussion of rollback, see Chapter 21. 

 
 

Note 4 

We will discuss object databases in Chapter 11 and Chapter 12, and object-relational systems in 
Chapter 13. 

 
 

Note 5 

This is somewhat similar to naming in object databases (see Chapter 11 and Chapter 12). 

 
 

Note 6 

Clustering is also often used in object databases. 

 
 

Note 7 

This type of structure has also been called a join index, since the records to be joined together from the 
two files are clustered. 

 
 

Note 8 

We will discuss methods that define the behavioral specification of classes in object databases in 
Chapter 11 and Chapter 12. 

 
 

Note 9 

We discuss active database concepts in Chapter 23. 

 
 

Note 10 
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These statements are examples of what we called storage definition language in Chapter 2, which 
specify physical storage parameters. They are not part of the SQL standard. 

 
 

Note 11 

The details of the exact allocation and the deallocation algorithms for extents are described in Oracle 
(1997a). 

 
 

Note 12 

MINUS is the same as EXCEPT (see Chapter 8). 

 
 

Note 13 

See Chapter 20 and Chapter 21 for further details on these concepts. 

 
 

Note 14 

It is not our intention to survey these tools in detail here. 

 
 

Note 15 

For a better understanding of the information system design and the database design process, see 
Section 16.1 and Section 16.2. Features of design tools are discussed in Section 16.5. 

 
 

Note 16 

We will refer to this simply as the engine in the remainder of this discussion. 

 
 

Note 17 

Hence, specifying a relationship is similar to defining an implicit join condition for queries that involve 
the two tables, unless a different relationship (join condition) is established during query specification. 
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Note 18 

The cardinality ratios are similar to those used in ER diagrams (see Figure 03.02), but the infinity 
symbol is used in Access instead of N. 

 
 

Note 19 

Note that Access SQL allows join specifications in the FROM clause, which is supported in the SQL2 
standard. 
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Part 3: Object-Oriented and Extended 
Relational Database Technology 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Chapter 11: Concepts for Object-Oriented Databases 
Chapter 12: Object Database Standards, Languages, and Design 
Chapter 13: Object Relational and Extended Relational Database Systems

Chapter 11: Concepts for Object-Oriented Databases 
11.1 Overview of Object-Oriented Concepts 
11.2 Object Identity, Object Structure, and Type Constructors 
11.3 Encapsulation of Operations, Methods, and Persistence 
11.4 Type Hierarchies and Inheritance 
11.5 Complex Objects 
11.6 Other Objected-Oriented Concepts 
11.7 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

In this chapter and the next, we discuss object-oriented data models and database systems (Note 1). 
Traditional data models and systems, such as relational, network, and hierarchical, have been quite 
successful in developing the database technology required for many traditional business database 
applications. However, they have certain shortcomings when more complex database applications must 
be designed and implemented—for example, databases for engineering design and manufacturing 
(CAD/CAM and CIM (Note 2)), scientific experiments, telecommunications, geographic information 
systems, and multimedia (Note 3). These newer applications have requirements and characteristics that 
differ from those of traditional business applications, such as more complex structures for objects, 
longer-duration transactions, new data types for storing images or large textual items, and the need to 
define nonstandard application-specific operations. Object-oriented databases were proposed to meet 
the needs of these more complex applications. The object-oriented approach offers the flexibility to 
handle some of these requirements without being limited by the data types and query languages 
available in traditional database systems. A key feature of object-oriented databases is the power they 
give the designer to specify both the structure of complex objects and the operations that can be 
applied to these objects.  

Another reason for the creation of object-oriented databases is the increasing use of object-oriented 
programming languages in developing software applications. Databases are now becoming 
fundamental components in many software systems, and traditional databases are difficult to use when 
embedded in object-oriented software applications that are developed in an object-oriented 
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programming language such as C++, SMALLTALK, or JAVA. Object-oriented databases are designed 
so they can be directly—or seamlessly—integrated with software that is developed using object-
oriented programming languages.  

The need for additional data modeling features has also been recognized by relational DBMS vendors, 
and the newer versions of relational systems are incorporating many of the features that were proposed 
for object-oriented databases. This has led to systems that are characterized as object-relational or 
extended relational DBMSs (see Chapter 13). The next version of the SQL standard for relational 
DBMSs, SQL3, will include some of these features.  

In the past few years, many experimental prototypes and commercial object-oriented database systems 
have been created. The experimental prototypes include the ORION system developed at MCC (Note 
4), OPENOODB at Texas Instruments, the IRIS system at Hewlett-Packard laboratories, the ODE 
system at AT&T Bell Labs (Note 5), and the ENCORE/ObServer project at Brown University. 
Commercially available systems include GEMSTONE/OPAL of GemStone Systems, ONTOS of 
Ontos, Objectivity of Objectivity Inc., Versant of Versant Object Technology, ObjectStore of Object 
Design, ARDENT of ARDENT Software (Note 6), and POET of POET Software. These represent only 
a partial list of the experimental prototypes and the commercially available object-oriented database 
systems.  

As commercial object-oriented DBMSs became available, the need for a standard model and language 
was recognized. Because the formal procedure for approval of standards normally takes a number of 
years, a consortium of object-oriented DBMS vendors and users, called ODMG (Note 7), proposed a 
standard that is known as the ODMG-93 standard, which has since been revised with the latest version 
being ODMG version 2.0. We will describe many features of the ODMG standard in Chapter 12.  

Object-oriented databases have adopted many of the concepts that were developed originally for 
object-oriented programming languages (Note 8). In Section 11.1, we examine the origins of the 
object-oriented approach and discuss how it applies to database systems. Then, in Section 11.2 through 
Section 11.6, we describe the key concepts utilized in many object-oriented database systems. Section 
11.2 discusses object identity, object structure, and type constructors. Section 11.3 presents the 
concepts of encapsulation of operations and definition of methods as part of class declarations, and 
also discusses the mechanisms for storing objects in a database by making them persistent. Section 
11.4 describes type and class hierarchies and inheritance in object-oriented databases, and Section 
11.5 provides an overview of the issues that arise when complex objects need to be represented and 
stored. Section 11.6 discusses additional concepts, including polymorphism, operator overloading, 
dynamic binding, multiple and selective inheritance, and versioning and configuration of objects.  

This chapter presents the general concepts of object-oriented databases, whereas Chapter 12 will 
present specific examples of how these concepts are realized. The topics covered in Chapter 12 include 
the ODMG 2.0 standard; object-oriented database design; examples of two commercial Object 
Database Management Systems (ARDENT and ObjectStore); and an overview of the CORBA standard 
for distributed objects.  

The reader may skip Section 11.5 and Section 11.6 of this chapter if a less detailed introduction to the 
topic is desired.  

 
 

11.1 Overview of Object-Oriented Concepts 

This section gives a quick overview of the history and main concepts of object-oriented databases, or 
OODBs for short. The OODB concepts are then explained in more detail in Section 11.2 through 
Section 11.6. The term object-oriented—abbreviated by OO or O-O—has its origins in OO 
programming languages, or OOPLs. Today OO concepts are applied in the areas of databases, software 
engineering, knowledge bases, artificial intelligence, and computer systems in general. OOPLs have 
their roots in the SIMULA language, which was proposed in the late 1960s. In SIMULA, the concept 
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of a class groups together the internal data structure of an object in a class declaration. Subsequently, 
researchers proposed the concept of abstract data type, which hides the internal data structures and 
specifies all possible external operations that can be applied to an object, leading to the concept of 
encapsulation. The programming language SMALLTALK, developed at Xerox PARC (Note 9) in the 
1970s, was one of the first languages to explicitly incorporate additional OO concepts, such as message 
passing and inheritance. It is known as a pure OO programming language, meaning that it was 
explicitly designed to be object-oriented. This contrasts with hybrid OO programming languages, 
which incorporate OO concepts into an already existing language. An example of the latter is C++, 
which incorporates OO concepts into the popular C programming language.  

An object typically has two components: state (value) and behavior (operations). Hence, it is 
somewhat similar to a program variable in a programming language, except that it will typically have a 
complex data structure as well as specific operations defined by the programmer (Note 10). Objects in 
an OOPL exist only during program execution and are hence called transient objects. An OO database 
can extend the existence of objects so that they are stored permanently, and hence the objects persist 
beyond program termination and can be retrieved later and shared by other programs. In other words, 
OO databases store persistent objects permanently on secondary storage, and allow the sharing of these 
objects among multiple programs and applications. This requires the incorporation of other well-known 
features of database management systems, such as indexing mechanisms, concurrency control, and 
recovery. An OO database system interfaces with one or more OO programming languages to provide 
persistent and shared object capabilities.  

One goal of OO databases is to maintain a direct correspondence between real-world and database 
objects so that objects do not lose their integrity and identity and can easily be identified and operated 
upon. Hence, OO databases provide a unique system-generated object identifier (OID) for each object. 
We can compare this with the relational model where each relation must have a primary key attribute 
whose value identifies each tuple uniquely. In the relational model, if the value of the primary key is 
changed, the tuple will have a new identity, even though it may still represent the same real-world 
object. Alternatively, a real-world object may have different names for key attributes in different 
relations, making it difficult to ascertain that the keys represent the same object (for example, the 
object identifier may be represented as EMP_ID in one relation and as SSN in another).  

Another feature of OO databases is that objects may have an object structure of arbitrary complexity in 
order to contain all of the necessary information that describes the object. In contrast, in traditional 
database systems, information about a complex object is often scattered over many relations or records, 
leading to loss of direct correspondence between a real-world object and its database representation.  

The internal structure of an object in OOPLs includes the specification of instance variables, which 
hold the values that define the internal state of the object. Hence, an instance variable is similar to the 
concept of an attribute, except that instance variables may be encapsulated within the object and thus 
are not necessarily visible to external users. Instance variables may also be of arbitrarily complex data 
types. Object-oriented systems allow definition of the operations or functions (behavior) that can be 
applied to objects of a particular type. In fact, some OO models insist that all operations a user can 
apply to an object must be predefined. This forces a complete encapsulation of objects. This rigid 
approach has been relaxed in most OO data models for several reasons. First, the database user often 
needs to know the attribute names so they can specify selection conditions on the attributes to retrieve 
specific objects. Second, complete encapsulation implies that any simple retrieval requires a predefined 
operation, thus making ad hoc queries difficult to specify on the fly.  

To encourage encapsulation, an operation is defined in two parts. The first part, called the signature or 
interface of the operation, specifies the operation name and arguments (or parameters). The second 
part, called the method or body, specifies the implementation of the operation. Operations can be 
invoked by passing a message to an object, which includes the operation name and the parameters. The 
object then executes the method for that operation. This encapsulation permits modification of the 
internal structure of an object, as well as the implementation of its operations, without the need to 
disturb the external programs that invoke these operations. Hence, encapsulation provides a form of 
data and operation independence (see Chapter 2).  

1 Page 318 of 893



www.manaraa.com

Another key concept in OO systems is that of type and class hierarchies and inheritance. This permits 
specification of new types or classes that inherit much of their structure and operations from previously 
defined types or classes. Hence, specification of object types can proceed systematically. This makes it 
easier to develop the data types of a system incrementally, and to reuse existing type definitions when 
creating new types of objects.  

One problem in early OO database systems involved representing relationships among objects. The 
insistence on complete encapsulation in early OO data models led to the argument that relationships 
should not be explicitly represented, but should instead be described by defining appropriate methods 
that locate related objects. However, this approach does not work very well for complex databases with 
many relationships, because it is useful to identify these relationships and make them visible to users. 
The ODMG 2.0 standard has recognized this need and it explicitly represents binary relationships via a 
pair of inverse references—that is, by placing the OIDs of related objects within the objects 
themselves, and maintaining referential integrity, as we shall describe in Chapter 12.  

Some OO systems provide capabilities for dealing with multiple versions of the same object—a feature 
that is essential in design and engineering applications. For example, an old version of an object that 
represents a tested and verified design should be retained until the new version is tested and verified. A 
new version of a complex object may include only a few new versions of its component objects, 
whereas other components remain unchanged. In addition to permitting versioning, OO databases 
should also allow for schema evolution, which occurs when type declarations are changed or when new 
types or relationships are created. These two features are not specific to OODBs and should ideally be 
included in all types of DBMSs (Note 11). 

Another OO concept is operator polymorphism, which refers to an operation’s ability to be applied to 
different types of objects; in such a situation, an operation name may refer to several distinct 
implementations, depending on the type of objects it is applied to. This feature is also called operator 
overloading. For example, an operation to calculate the area of a geometric object may differ in its 
method (implementation), depending on whether the object is of type triangle, circle, or rectangle. This 
may require the use of late binding of the operation name to the appropriate method at run-time, when 
the type of object to which the operation is applied becomes known.  

This section provided an overview of the main concepts of OO databases. In Section 11.2 through 
Section 11.6, we discuss these concepts in more detail.  

 
 

11.2 Object Identity, Object Structure, and Type Constructors 

11.2.1 Object Identity 
11.2.2 Object Structure 
11.2.3 Type Constructors

In this section we first discuss the concept of object identity, and then we present the typical structuring 
operations for defining the structure of the state of an object. These structuring operations are often 
called type constructors. They define basic data-structuring operations that can be combined to form 
complex object structures.  

 
 

11.2.1 Object Identity 

An OO database system provides a unique identity to each independent object stored in the database. 
This unique identity is typically implemented via a unique, system-generated object identifier, or 
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OID. The value of an OID is not visible to the external user, but it is used internally by the system to 
identify each object uniquely and to create and manage inter-object references.  

The main property required of an OID is that it be immutable; that is, the OID value of a particular 
object should not change. This preserves the identity of the real-world object being represented. Hence, 
an OO database system must have some mechanism for generating OIDs and preserving the 
immutability property. It is also desirable that each OID be used only once; that is, even if an object is 
removed from the database, its OID should not be assigned to another object. These two properties 
imply that the OID should not depend on any attribute values of the object, since the value of an 
attribute may be changed or corrected. It is also generally considered inappropriate to base the OID on 
the physical address of the object in storage, since the physical address can change after a physical 
reorganization of the database. However, some systems do use the physical address as OID to increase 
the efficiency of object retrieval. If the physical address of the object changes, an indirect pointer can 
be placed at the former address, which gives the new physical location of the object. It is more 
common to use long integers as OIDs and then to use some form of hash table to map the OID value to 
the physical address of the object.  

Some early OO data models required that everything—from a simple value to a complex object—be 
represented as an object; hence, every basic value, such as an integer, string, or Boolean value, has an 
OID. This allows two basic values to have different OIDs, which can be useful in some cases. For 
example, the integer value 50 can be used sometimes to mean a weight in kilograms and at other times 
to mean the age of a person. Then, two basic objects with distinct OIDs could be created, but both 
objects would represent the integer value 50. Although useful as a theoretical model, this is not very 
practical, since it may lead to the generation of too many OIDs. Hence, most OO database systems 
allow for the representation of both objects and values. Every object must have an immutable OID, 
whereas a value has no OID and just stands for itself. Hence, a value is typically stored within an object 
and cannot be referenced from other objects. In some systems, complex structured values can also be 
created without having a corresponding OID if needed.  

 
 

11.2.2 Object Structure 

In OO databases, the state (current value) of a complex object may be constructed from other objects 
(or other values) by using certain type constructors. One formal way of representing such objects is to 
view each object as a triple (i, c, v), where i is a unique object identifier (the OID), c is a type 
constructor (Note 12) (that is, an indication of how the object state is constructed), and v is the object 
state (or current value). The data model will typically include several type constructors. The three most 
basic constructors are atom, tuple, and set. Other commonly used constructors include list, bag, and 
array. The atom constructor is used to represent all basic atomic values, such as integers, real numbers, 
character strings, Booleans, and any other basic data types that the system supports directly.  

The object state v of an object (i, c, v) is interpreted based on the constructor c. If c = atom, the state 
(value) v is an atomic value from the domain of basic values supported by the system. If c = set, the 
state v is a set of object identifiers , which are the OIDs for a set of objects that are typically of the 
same type. If c = tuple, the state v is a tuple of the form , where each is an attribute name (Note 13) and 
each is an OID. If c = list, the value v is an ordered list of OIDs of objects of the same type. A list is 
similar to a set except that the OIDs in a list are ordered, and hence we can refer to the first, second, or 
object in a list. For c = array, the state of the object is a single-dimensional array of object identifiers. 
The main difference between array and list is that a list can have an arbitrary number of elements 
whereas an array typically has a maximum size. The difference between set and bag (Note 14) is that 
all elements in a set must be distinct whereas a bag can have duplicate elements.  

This model of objects allows arbitrary nesting of the set, list, tuple, and other constructors. The state of 
an object that is not of type atom will refer to other objects by their object identifiers. Hence, the only 
case where an actual value appears is in the state of an object of type atom (Note 15). 
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The type constructors set, list, array, and bag are called collection types (or bulk types), to 
distinguish them from basic types and tuple types. The main characteristic of a collection type is that 
the state of the object will be a collection of objects that may be unordered (such as a set or a bag) or 
ordered (such as a list or an array). The tuple type constructor is often called a structured type, since 
it corresponds to the struct construct in the C and C++ programming languages.  

 
 

EXAMPLE 1: A Complex Object  

 
 

We now represent some objects from the relational database shown in Figure 07.06, using the 
preceding model, where an object is defined by a triple (OID, type constructor, state) and the available 
type constuctors are atom, set, and tuple. We use to stand for unique system-generated object 
identifiers. Consider the following objects:  

 

 

. . .  

 
 

The first six objects listed here represent atomic values. There will be many similar objects, one for 
each distinct constant atomic value in the database (Note 16). Object is a set-valued object that 
represents the set of locations for department 5; the set refers to the atomic objects with values 
{‘Houston’, ‘Bellaire’, ‘Sugarland’}. Object is a tuple-valued object that represents department 5 itself, 
and has the attributes DNAME, DNUMBER, MGR, LOCATIONS, and so on. The first two attributes DNAME and 
DNUMBER have atomic objects and as their values. The MGR attribute has a tuple object as its value, 
which in turn has two attributes. The value of the MANAGER attribute is the object whose OID is , which 
represents the employee ‘John B. Smith’ who manages the department, whereas the value of 
MANAGER_START_DATE is another atomic object whose value is a date. The value of the EMPLOYEES 
attribute of is a set object with OID = , whose value is the set of object identifiers for the employees 
who work for the DEPARTMENT (objects , plus and , which are not shown). Similarly, the value of the 
PROJECTS attribute of is a set object with OID = , whose value is the set of object identifiers for the 
projects that are controlled by department number 5 (objects , , and , which are not shown). The object 
whose OID = represents the employee ‘John B. Smith’ with all its atomic attributes (FNAME, MINIT, 
LNAME, SSN, . . ., SALARY, that are referencing the atomic objects , respectively (not shown)) plus 
SUPERVISOR which references the employee object with OID = (this represents ‘James E. Borg’ who 
supervises ‘John B. Smith’ but is not shown) and DEPT which references the department object with 
OID = (this represents department number 5 where ‘John B. Smith’ works). 

In this model, an object can be represented as a graph structure that can be constructed by recursively 
applying the type constructors. The graph representing an object can be constructed by first creating a 
node for the object itself. The node for is labeled with the OID and the object constructor c. We also 
create a node in the graph for each basic atomic value. If an object has an atomic value, we draw a 
directed arc from the node representing to the node representing its basic value. If the object value is 
constructed, we draw directed arcs from the object node to a node that represents the constructed value. 
Figure 11.01 shows the graph for the example DEPARTMENT object given earlier.  

The preceding model permits two types of definitions in a comparison of the states of two objects for 
equality. Two objects are said to have identical states (deep equality) if the graphs representing their 
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states are identical in every respect, including the OIDs at every level. Another, weaker definition of 
equality is when two objects have equal states (shallow equality). In this case, the graph structures 
must be the same, and all the corresponding atomic values in the graphs should also be the same. 
However, some corresponding internal nodes in the two graphs may have objects with different OIDs.  

 
 

EXAMPLE 2: Identical Versus Equal Objects  

 
 

A example can illustrate the difference between the two definitions for comparing object states for 
equality. Consider the following objects  

 

 

 
 

The objects and have equal states, since their states at the atomic level are the same but the values are 
reached through distinct objects and . However, the states of objects and are identical, even though the 
objects themselves are not because they have distinct OIDs. Similarly, although the states of and are 
identical, the actual objects and are equal but not identical, because they have distinct OIDs.  

 
 

11.2.3 Type Constructors 

An object definition language (ODL) (Note 17) that incorporates the preceding type constructors can 
be used to define the object types for a particular database application. In Chapter 12, we shall describe 
the standard ODL of ODMG, but we first introduce the concepts gradually in this section using a 
simpler notation. The type constructors can be used to define the data structures for an OO database 
schema. In Section 11.3 we will see how to incorporate the definition of operations (or methods) into 
the OO schema. Figure 11.02 shows how we may declare Employee and Department types 
corresponding to the object instances shown in Figure 11.01. In Figure 11.02, the Date type is defined 
as a tuple rather than an atomic value as in Figure 11.01. We use the keywords tuple, set, and list for 
the type constructors, and the available standard data types (integer, string, float, and so on) for atomic 
types.  

 

 

 

 

 
 

Attributes that refer to other objects—such as dept of Employee or projects of Department—are 
basically references to other objects and hence serve to represent relationships among the object types. 
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For example, the attribute dept of Employee is of type Department, and hence is used to refer to a 
specific Department object (where the Employee works). The value of such an attribute would be an 
OID for a specific Department object. A binary relationship can be represented in one direction, or it 
can have an inverse reference. The latter representation makes it easy to traverse the relationship in 
both directions. For example, the attribute employees of Department has as its value a set of references 
(that is, a set of OIDs) to objects of type Employee; these are the employees who work for the 
department. The inverse is the reference attribute dept of Employee. We will see in Chapter 12 how the 
ODMG 2.0 standard allows inverses to be explicitly declared as relationship attributes to ensure that 
inverse references are consistent.  

 
 

11.3 Encapsulation of Operations, Methods, and Persistence 

11.3.1 Specifying Object Behavior via Class Operations 
11.3.2 Specifying Object Persistence via Naming and Reachability

The concept of encapsulation is one of the main characteristics of OO languages and systems. It is also 
related to the concepts of abstract data types and information hiding in programming languages. In 
traditional database models and systems, this concept was not applied, since it is customary to make the 
structure of database objects visible to users and external programs. In these traditional models, a 
number of standard database operations are applicable to objects of all types. For example, in the 
relational model, the operations for selecting, inserting, deleting, and modifying tuples are generic and 
may be applied to any relation in the database. The relation and its attributes are visible to users and to 
external programs that access the relation by using these operations.  

 
 

11.3.1 Specifying Object Behavior via Class Operations 

The concepts of information hiding and encapsulation can be applied to database objects. The main 
idea is to define the behavior of a type of object based on the operations that can be externally applied 
to objects of that type. The internal structure of the object is hidden, and the object is accessible only 
through a number of predefined operations. Some operations may be used to create (insert) or destroy 
(delete) objects; other operations may update the object state; and others may be used to retrieve parts 
of the object state or to apply some calculations. Still other operations may perform a combination of 
retrieval, calculation, and update. In general, the implementation of an operation can be specified in a 
general-purpose programming language that provides flexibility and power in defining the operations.  

The external users of the object are only made aware of the interface of the object type, which defines 
the name and arguments (parameters) of each operation. The implementation is hidden from the 
external users; it includes the definition of the internal data structures of the object and the 
implementation of the operations that access these structures. In OO terminology, the interface part of 
each operation is called the signature, and the operation implementation is called a method. Typically, 
a method is invoked by sending a message to the object to execute the corresponding method. Notice 
that, as part of executing a method, a subsequent message to another object may be sent, and this 
mechanism may be used to return values from the objects to the external environment or to other 
objects.  

For database applications, the requirement that all objects be completely encapsulated is too stringent. 
One way of relaxing this requirement is to divide the structure of an object into visible and hidden 
attributes (instance variables). Visible attributes may be directly accessed for reading by external 
operators, or by a high-level query language. The hidden attributes of an object are completely 
encapsulated and can be accessed only through predefined operations. Most OODBMSs employ high-
level query languages for accessing visible attributes. In Chapter 12, we will describe the OQL query 
language that is proposed as a standard query language for OODBs. 
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In most cases, operations that update the state of an object are encapsulated. This is a way of defining 
the update semantics of the objects, given that in many OO data models, few integrity constraints are 
predefined in the schema. Each type of object has its integrity constraints programmed into the 
methods that create, delete, and update the objects by explicitly writing code to check for constraint 
violations and to handle exceptions. In such cases, all update operations are implemented by 
encapsulated operations. More recently, the ODL for the ODMG 2.0 standard allows the specification 
of some constraints such as keys and inverse relationships (referential integrity) so that the system can 
automatically enforce these constraints (see Chapter 12).  

The term class is often used to refer to an object type definition, along with the definitions of the 
operations for that type (Note 18). Figure 11.03 shows how the type definitions of Figure 11.02 may be 
extended with operations to define classes. A number of operations are declared for each class, and the 
signature (interface) of each operation is included in the class definition. A method (implementation) 
for each operation must be defined elsewhere, using a programming language. Typical operations 
include the object constructor operation, which is used to create a new object, and the destructor 
operation, which is used to destroy an object. A number of object modifier operations can also be 
declared to modify various attributes of an object. Additional operations can retrieve information 
about the object.  

 

 

 
 

An operation is typically applied to an object by using the dot notation. For example, if d is a 
reference to a department object, we can invoke an operation such as no_of_emps by writing 
d.no_of_emps. Similarly, by writing d.destroy_dept, the object referenced by d is destroyed (deleted). 
The only exception is the constructor operation, which returns a reference to a new Department object. 
Hence, it is customary to have a default name for the constructor operation that is the name of the class 
itself, although this was not used in Figure 11.03 (Note 19). The dot notation is also used to refer to 
attributes of an object—for example, by writing d.dnumber or d.mgr.startdate.  

 
 

11.3.2 Specifying Object Persistence via Naming and Reachability 

An OODBMS is often closely coupled with an OOPL. The OOPL is used to specify the method 
implementations as well as other application code. An object is typically created by some executing 
application program, by invoking the object constructor operation. Not all objects are meant to be 
stored permanently in the database. Transient objects exist in the executing program and disappear 
once the program terminates. Persistent objects are stored in the database and persist after program 
termination. The typical mechanisms for making an object persistent are naming and reachability.  

The naming mechanism involves giving an object a unique persistent name through which it can be 
retrieved by this and other programs. This persistent object name can be given via a specific statement 
or operation in the program, as illustrated in Figure 11.04. All such names given to objects must be 
unique within a particular database. Hence, the named persistent objects are used as entry points to the 
database through which users and applications can start their database access. Obviously, it is not 
practical to give names to all objects in a large database that includes thousands of objects, so most 
objects are made persistent by using the second mechanism, called reachability. The reachability 
mechanism works by making the object reachable from some persistent object. An object B is said to 
be reachable from an object A if a sequence of references in the object graph lead from object A to 
object B. For example, all the objects in Figure 11.01 are reachable from object ; hence, if is made 
persistent, all the other objects in Figure 11.01 also become persistent.  
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If we first create a named persistent object N, whose state is a set or list of objects of some class C, we 
can make objects of C persistent by adding them to the set or list, and thus making them reachable from 
N. Hence, N defines a persistent collection of objects of class C. For example, we can define a class 
DepartmentSet (see Figure 11.04) whose objects are of type set(Department) (Note 20). Suppose that 
an object of type DepartmentSet is created, and suppose that it is named AllDepartments and thus made 
persistent, as illustrated in Figure 11.04. Any Department object that is added to the set of 
AllDepartments by using the add_dept operation becomes persistent by virtue of its being reachable 
from AllDepartments. The AllDepartments object is often called the extent of the class Department, as 
it will hold all persistent objects of type Department. As we shall see in Chapter 12, the ODMG ODL 
standard gives the schema designer the option of naming an extent as part of class definition.  

Notice the difference between traditional database models and OO databases in this respect. In 
traditional database models, such as the relational model or the EER model, all objects are assumed to 
be persistent. Hence, when an entity type or class such as EMPLOYEE is defined in the EER model, it 
represents both the type declaration for EMPLOYEE and a persistent set of all EMPLOYEE objects. In the 
OO approach, a class declaration of EMPLOYEE specifies only the type and operations for a class of 
objects. The user must separately define a persistent object of type set(EMPLOYEE) or list(EMPLOYEE) 
whose value is the collection of references to all persistent EMPLOYEE objects, if this is desired, as 
illustrated in Figure 11.04 (Note 21). In fact, it is possible to define several persistent collections for the 
same class definition, if desired. This allows transient and persistent objects to follow the same type 
and class declarations of the ODL and the OOPL.  

 
 

11.4 Type Hierarchies and Inheritance 

11.4.1 Type Hierarchies and Inheritance 
11.4.2 Constraints on Extents Corresponding to a Type Hierarchy

Another main characteristic of OO database systems is that they allow type hierarchies and inheritance. 
Type hierarchies in databases usually imply a constraint on the extents corresponding to the types in 
the hierarchy. We first discuss type hierarchies (in Section 11.4.1), and then the constraints on the 
extents (in Section 11.4.2). We use a different OO model in this section—a model in which attributes 
and operations are treated uniformly—since both attributes and operations can be inherited.  

 
 

11.4.1 Type Hierarchies and Inheritance 

In most database applications, there are numerous objects of the same type or class. Hence, OO 
databases must provide a capability for classifying objects based on their type, as do other database 
systems. But in OO databases, a further requirement is that the system permit the definition of new 
types based on other predefined types, leading to a type (or class) hierarchy. 

Typically, a type is defined by assigning it a type name and then defining a number of attributes 
(instance variables) and operations (methods) for the type (Note 22). In some cases, the attributes and 
operations are together called functions, since attributes resemble functions with zero arguments. A 
function name can be used to refer to the value of an attribute or to refer to the resulting value of an 
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operation (method). In this section, we use the term function to refer to both attributes and operations 
of an object type, since they are treated similarly in a basic introduction to inheritance (Note 23). 

A type in its simplest form can be defined by giving it a type name and then listing the names of its 
visible (public) functions. When specifying a type in this section, we use the following format, which 
does not specify arguments of functions, to simplify the discussion:  

 
 

TYPE_NAME: function, function, . . . , function  

 
 

For example, a type that describes characteristics of a PERSON may be defined as follows:  

 
 

PERSON: Name, Address, Birthdate, Age, SSN  

 
 

In the PERSON type, the Name, Address, SSN, and Birthdate functions can be implemented as stored 
attributes, whereas the Age function can be implemented as a method that calculates the Age from the 
value of the Birthdate attribute and the current date.  

The concept of subtype is useful when the designer or user must create a new type that is similar but 
not identical to an already defined type. The subtype then inherits all the functions of the predefined 
type, which we shall call the supertype. For example, suppose that we want to define two new types 
EMPLOYEE and STUDENT as follows:  

 
 

EMPLOYEE: Name, Address, Birthdate, Age, SSN, Salary, HireDate, Seniority  

STUDENT: Name, Address, Birthdate, Age, SSN, Major, GPA  

 
 

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON plus some additional 
functions of their own, we can declare them to be subtypes of PERSON. Each will inherit the previously 
defined functions of PERSON—namely, Name, Address, Birthdate, Age, and SSN. For STUDENT, it is 
only necessary to define the new (local) functions Major and GPA, which are not inherited. Presumably, 
Major can be defined as a stored attribute, whereas GPA may be implemented as a method that 
calculates the student’s grade point average by accessing the Grade values that are internally stored 
(hidden) within each STUDENT object as private attributes. For EMPLOYEE, the Salary and HireDate 
functions may be stored attributes, whereas Seniority may be a method that calculates Seniority from 
the value of HireDate.  

The idea of defining a type involves defining all of its functions and implementing them either as 
attributes or as methods. When a subtype is defined, it can then inherit all of these functions and their 
implementations. Only functions that are specific or local to the subtype, and hence are not 
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implemented in the supertype, need to be defined and implemented. Therefore, we can declare 
EMPLOYEE and STUDENT as follows:  

 
 

EMPLOYEE subtype-of PERSON: Salary, HireDate, Seniority  

STUDENT subtype-of PERSON: Major, GPA  

 
 

In general, a subtype includes all of the functions that are defined for its supertype plus some additional 
functions that are specific only to the subtype. Hence, it is possible to generate a type hierarchy to 
show the supertype/subtype relationships among all the types declared in the system.  

As another example, consider a type that describes objects in plane geometry, which may be defined as 
follows:  

 
 

GEOMETRY_OBJECT: Shape, Area, ReferencePoint  

 
 

For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domain can be an 
enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and Area is a method that is 
applied to calculate the area. Now suppose that we want to define a number of subtypes for the 
GEOMETRY_OBJECT type, as follows: 

 
 

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height  

TRIANGLE subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle  

CIRCLE subtype-of GEOMETRY_OBJECT: Radius  

 
 

Notice that the Area operation may be implemented by a different method for each subtype, since the 
procedure for area calculation is different for rectangles, triangles, and circles. Similarly, the attribute 
ReferencePoint may have a different meaning for each subtype; it might be the center point for 
RECTANGLE and CIRCLE objects, and the vertex point between the two given sides for a TRIANGLE object. 
Some OO database systems allow the renaming of inherited functions in different subtypes to reflect 
the meaning more closely.  

An alternative way of declaring these three subtypes is to specify the value of the Shape attribute as a 
condition that must be satisfied for objects of each subtype: 
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RECTANGLE subtype-of GEOMETRY_OBJECT (Shape=‘rectangle’): Width, Height  

TRIANGLE subtype-of GEOMETRY_OBJECT (Shape=‘triangle’): Side1, Side2, Angle  

CIRCLE subtype-of GEOMETRY_OBJECT (Shape=‘circle’): Radius  

 
 

Here, only GEOMETRY_OBJECT objects whose Shape=‘rectangle’ are of the subtype RECTANGLE, and 
similarly for the other two subtypes. In this case, all functions of the GEOMETRY_OBJECT supertype are 
inherited by each of the three subtypes, but the value of the Shape attribute is restricted to a specific 
value for each. 

Notice that type definitions describe objects but do not generate objects on their own. They are just 
declarations of certain types; and as part of that declaration, the implementation of the functions of 
each type is specified. In a database application, there are many objects of each type. When an object is 
created, it typically belongs to one or more of these types that have been declared. For example, a circle 
object is of type CIRCLE and GEOMETRY_OBJECT (by inheritance). Each object also becomes a member 
of one or more persistent collections of objects (or extents), which are used to group together 
collections of objects that are meaningful to the database application.  

 
 

11.4.2 Constraints on Extents Corresponding to a Type Hierarchy 

(Note 24) 

 
 

In most OO databases, the collection of objects in an extent has the same type or class. However, this is 
not a necessary condition. For example, SMALLTALK, a so-called typeless OO language, allows a 
collection of objects to contain objects of different types. This can also be the case when other non-
object-oriented typeless languages, such as LISP, are extended with OO concepts. However, since the 
majority of OO databases support types, we will assume that extents are collections of objects of the 
same type for the remainder of this section.  

It is common in database applications that each type or subtype will have an extent associated with it, 
which holds the collection of all persistent objects of that type or subtype. In this case, the constraint is 
that every object in an extent that corresponds to a subtype must also be a member of the extent that 
corresponds to its supertype. Some OO database systems have a predefined system type (called the 
ROOT class or the OBJECT class) whose extent contains all the objects in the system (Note 25). 
Classification then proceeds by assigning objects into additional subtypes that are meaningful to the 
application, creating a type hierarchy or class hierarchy for the system. All extents for system- and 
user-defined classes are subsets of the extent corresponding to the class OBJECT, directly or indirectly. 
In the ODMG model (see Chapter 12), the user may or may not specify an extent for each class (type), 
depending on the application.  

In most OO systems, a distinction is made between persistent and transient objects and collections. A 
persistent collection holds a collection of objects that is stored permanently in the database and hence 
can be accessed and shared by multiple programs. A transient collection exists temporarily during the 
execution of a program but is not kept when the program terminates. For example, a transient 
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collection may be created in a program to hold the result of a query that selects some objects from a 
persistent collection and copies those objects into the transient collection. The transient collection holds 
the same type of objects as the persistent collection. The program can then manipulate the objects in 
the transient collection, and once the program terminates, the transient collection ceases to exist. In 
general, numerous collections—transient or persistent—may contain objects of the same type.  

Notice that the type constructors discussed in Section 11.2 permit the state of one object to be a 
collection of objects. Hence, collection objects whose types are based on the set constructor can define 
a number of collections—one corresponding to each object. The set-valued objects themselves are 
members of another collection. This allows for multilevel classification schemes, where an object in 
one collection has as its state a collection of objects of a different class.  

As we shall see in Chapter 12, the ODMG 2.0 model distinguishes between type inheritance—called 
interface inheritance and denoted by the ":" symbol—and the extent inheritance constraint—denoted by 
the keyword EXTEND.  

 
 

11.5 Complex Objects 

11.5.1 Unstructured Complex Objects and Type Extensibility 
11.5.2 Structured Complex Objects

A principal motivation that led to the development of OO systems was the desire to represent complex 
objects. There are two main types of complex objects: structured and unstructured. A structured 
complex object is made up of components and is defined by applying the available type constructors 
recursively at various levels. An unstructured complex object typically is a data type that requires a 
large amount of storage, such as a data type that represents an image or a large textual object.  

 
 

11.5.1 Unstructured Complex Objects and Type Extensibility 

An unstructured complex object facility provided by a DBMS permits the storage and retrieval of 
large objects that are needed by the database application. Typical examples of such objects are bitmap 
images and long text strings (such as documents); they are also known as binary large objects, or 
BLOBs for short. These objects are unstructured in the sense that the DBMS does not know what their 
structure is—only the application that uses them can interpret their meaning. For example, the 
application may have functions to display an image or to search for certain keywords in a long text 
string. The objects are considered complex because they require a large area of storage and are not part 
of the standard data types provided by traditional DBMSs. Because the object size is quite large, a 
DBMS may retrieve a portion of the object and provide it to the application program before the whole 
object is retrieved. The DBMS may also use buffering and caching techniques to prefetch portions of 
the object before the application program needs to access them.  

The DBMS software does not have the capability to directly process selection conditions and other 
operations based on values of these objects, unless the application provides the code to do the 
comparison operations needed for the selection. In an OODBMS, this can be accomplished by defining 
a new abstract data type for the uninterpreted objects and by providing the methods for selecting, 
comparing, and displaying such objects. For example, consider objects that are two-dimensional bitmap 
images. Suppose that the application needs to select from a collection of such objects only those that 
include a certain pattern. In this case, the user must provide the pattern recognition program as a 
method on objects of the bitmap type. The OODBMS then retrieves an object from the database and 
runs the method for pattern recognition on it to determine whether the object includes the required 
pattern. 
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Because an OODBMS allows users to create new types, and because a type includes both structure and 
operations, we can view an OODBMS as having an extensible type system. We can create libraries of 
new types by defining their structure and operations, including complex types. Applications can then 
use or modify these types, in the latter case by creating subtypes of the types provided in the libraries. 
However, the DBMS internals must provide the underlying storage and retrieval capabilities for objects 
that require large amounts of storage so that the operations may be applied efficiently. Many 
OODBMSs provide for the storage and retrieval of large unstructured objects such as character strings 
or bit strings, which can be passed "as is" to the application program for interpretation. Recently, 
relational and extended relational DBMSs have also been able to provide such capabilities.  

 
 

11.5.2 Structured Complex Objects 

A structured complex object differs from an unstructured complex object in that the object’s structure 
is defined by repeated application of the type constructors provided by the OODBMS. Hence, the 
object structure is defined and known to the OODBMS. As an example, consider the DEPARTMENT 
object shown in Figure 11.01. At the first level, the object has a tuple structure with six attributes: 
DNAME, DNUMBER, MGR, LOCATIONS, EMPLOYEES, and PROJECTS. However, only two of these 
attributes—namely, DNAME and DNUMBER—have basic values; the other four have complex values and 
hence build the second level of the complex object structure. One of these four (MGR) has a tuple 
structure, and the other three (LOCATIONS, EMPLOYEES, PROJECTS) have set structures. At the third 
level, for a MGR tuple value, we have one basic attribute (MANAGERSTARTDATE) and one attribute 
(MANAGER) that refers to an employee object, which has a tuple structure. For a LOCATIONS set, we have 
a set of basic values, but for both the EMPLOYEES and the PROJECTS sets, we have sets of tuple-
structured objects.  

Two types of reference semantics exist between a complex object and its components at each level. The 
first type, which we can call ownership semantics, applies when the sub-objects of a complex object 
are encapsulated within the complex object and are hence considered part of the complex object. The 
second type, which we can call reference semantics, applies when the components of the complex 
object are themselves independent objects but may be referenced from the complex object. For 
example, we may consider the DNAME, DNUMBER, MGR, and LOCATIONS attributes to be owned by a 
DEPARTMENT, whereas EMPLOYEES and PROJECTS are references because they reference independent 
objects. The first type is also referred to as the is-part-of or is-component-of relationship; and the 
second type is called the is-associated-with relationship, since it describes an equal association between 
two independent objects. The is-part-of relationship (ownership semantics) for constructing complex 
objects has the property that the component objects are encapsulated within the complex object and are 
considered part of the internal object state. They need not have object identifiers and can only be 
accessed by methods of that object. They are deleted if the object itself is deleted. On the other hand, a 
complex object whose components are referenced is considered to consist of independent objects that 
can have their own identity and methods. When a complex object needs to access its referenced 
components, it must do so by invoking the appropriate methods of the components, since they are not 
encapsulated within the complex object. Hence, reference semantics represents relationships among 
independent objects. In addition, a referenced component object may be referenced by more than one 
complex object and hence is not automatically deleted when the complex object is deleted.  

An OODBMS should provide storage options for clustering the component objects of a complex 
object together on secondary storage in order to increase the efficiency of operations that access the 
complex object. In many cases, the object structure is stored on disk pages in an uninterpreted fashion. 
When a disk page that includes an object is retrieved into memory, the OODBMS can build up the 
structured complex object from the information on the disk pages, which may refer to additional disk 
pages that must be retrieved. This is known as complex object assembly.  
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11.6 Other Objected-Oriented Concepts 

11.6.1 Polymorphism (Operator Overloading) 
11.6.2 Multiple Inheritance and Selective Inheritance 
11.6.3 Versions and Configurations

In this section we give an overview of some additional OO concepts, including polymorphism 
(operator overloading), multiple inheritance, selective inheritance, versioning, and configurations.  

 
 

11.6.1 Polymorphism (Operator Overloading) 

Another characteristic of OO systems is that they provide for polymorphism of operations, which is 
also sometimes referred to as operator overloading. This concept allows the same operator name or 
symbol to be bound to two or more different implementations of the operator, depending on the type of 
objects to which the operator is applied. A simple example from programming languages can illustrate 
this concept. In some languages, the operator symbol "+" can mean different things when applied to 
operands (objects) of different types. If the operands of "+" are of type integer, the operation invoked is 
integer addition. If the operands of "+" are of type floating point, the operation invoked is floating point 
addition. If the operands of "+" are of type set, the operation invoked is set union. The compiler can 
determine which operation to execute based on the types of operands supplied.  

In OO databases, a similar situation may occur. We can use the GEOMETRY_OBJECT example discussed 
in Section 11.4 to illustrate polymorphism (Note 26) in OO databases. Suppose that we declare 
GEOMETRY_OBJECT and its subtypes as follows:  

 
 

GEOMETRY_OBJECT: Shape, Area, ReferencePoint  

RECTANGLE subtype-of GEOMETRY_OBJECT (Shape=‘rectangle’): Width, Height  

TRIANGLE subtype-of GEOMETRY_OBJECT (Shape=‘triangle’): Side1, Side2, Angle  

CIRCLE subtype-of GEOMETRY_OBJECT (Shape=‘circle’): Radius  

 
 

Here, the function Area is declared for all objects of type GEOMETRY_OBJECT. However, the 
implementation of the method for Area may differ for each subtype of GEOMETRY_OBJECT. One 
possibility is to have a general implementation for calculating the area of a generalized 
GEOMETRY_OBJECT (for example, by writing a general algorithm to calculate the area of a polygon) and 
then to rewrite more efficient algorithms to calculate the areas of specific types of geometric objects, 
such as a circle, a rectangle, a triangle, and so on. In this case, the Area function is overloaded by 
different implementations.  

The OODBMS must now select the appropriate method for the Area function based on the type of 
geometric object to which it is applied. In strongly typed systems, this can be done at compile time, 
since the object types must be known. This is termed early (or static) binding. However, in systems 
with weak typing or no typing (such as SMALLTALK and LISP), the type of the object to which a 
function is applied may not be known until run-time. In this case, the function must check the type of 
object at run-time and then invoke the appropriate method. This is often referred to as late (or 
dynamic) binding.  
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11.6.2 Multiple Inheritance and Selective Inheritance 

Multiple inheritance in a type hierarchy occurs when a certain subtype T is a subtype of two (or more) 
types and hence inherits the functions (attributes and methods) of both supertypes. For example, we 
may create a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and ENGINEER. This 
leads to the creation of a type lattice rather than a type hierarchy. One problem that can occur with 
multiple inheritance is that the supertypes from which the subtype inherits may have distinct functions 
of the same name, creating an ambiguity. For example, both MANAGER and ENGINEER may have a 
function called Salary. If the Salary function is implemented by different methods in the MANAGER and 
ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by the subtype 
ENGINEERING_MANAGER. It is possible, however, that both ENGINEER and MANAGER inherit Salary from 
the same supertype (such as EMPLOYEE) higher up in the lattice. The general rule is that if a function is 
inherited from some common supertype, then it is inherited only once. In such a case, there is no 
ambiguity; the problem only arises if the functions are distinct in the two supertypes.  

There are several techniques for dealing with ambiguity in multiple inheritance. One solution is to have 
the system check for ambiguity when the subtype is created, and to let the user explicitly choose which 
function is to be inherited at this time. Another solution is to use some system default. A third solution 
is to disallow multiple inheritance altogether if name ambiguity occurs, instead forcing the user to 
change the name of one of the functions in one of the supertypes. Indeed, some OO systems do not 
permit multiple inheritance at all.  

Selective inheritance occurs when a subtype inherits only some of the functions of a supertype. Other 
functions are not inherited. In this case, an EXCEPT clause may be used to list the functions in a 
supertype that are not to be inherited by the subtype. The mechanism of selective inheritance is not 
typically provided in OO database systems, but it is used more frequently in artificial intelligence 
applications (Note 27). 

 
 

11.6.3 Versions and Configurations 

Many database applications that use OO systems require the existence of several versions of the same 
object (Note 28). For example, consider a database application for a software engineering environment 
that stores various software artifacts, such as design modules, source code modules, and configuration 
information to describe which modules should be linked together to form a complex program, and test 
cases for testing the system. Commonly, maintenance activities are applied to a software system as its 
requirements evolve. Maintenance usually involves changing some of the design and implementation 
modules. If the system is already operational, and if one or more of the modules must be changed, the 
designer should create a new version of each of these modules to implement the changes. Similarly, 
new versions of the test cases may have to be generated to test the new versions of the modules. 
However, the existing versions should not be discarded until the new versions have been thoroughly 
tested and approved; only then should the new versions replace the older ones.  

Notice that there may be more than two versions of an object. For example, consider two programmers 
working to update the same software module concurrently. In this case, two versions, in addition to the 
original module, are needed. The programmers can update their own versions of the same software 
module concurrently. This is often referred to as concurrent engineering. However, it eventually 
becomes necessary to merge these two versions together so that the new (hybrid) version can include 
the changes made by both programmers. During merging, it is also necessary to make sure that their 
changes are compatible. This necessitates creating yet another version of the object: one that is the 
result of merging the two independently updated versions.  
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As can be seen from the preceding discussion, an OODBMS should be able to store and manage 
multiple versions of the same conceptual object. Several systems do provide this capability, by 
allowing the application to maintain multiple versions of an object and to refer explicitly to particular 
versions as needed. However, the problem of merging and reconciling changes made to two different 
versions is typically left to the application developers, who know the semantics of the application. 
Some DBMSs have certain facilities that can compare the two versions with the original object and 
determine whether any changes made are incompatible, in order to assist with the merging process. 
Other systems maintain a version graph that shows the relationships among versions. Whenever a 
version originates by copying another version v, a directed arc can be drawn from v to . Similarly, if 
two versions and are merged to create a new version , directed arcs are drawn from and to . The version 
graph can help users understand the relationships among the various versions and can be used 
internally by the system to manage the creation and deletion of versions.  

When versioning is applied to complex objects, further issues arise that must be resolved. A complex 
object, such as a software system, may consist of many modules. When versioning is allowed, each of 
these modules may have a number of different versions and a version graph. A configuration of the 
complex object is a collection consisting of one version of each module arranged in such a way that the 
module versions in the configuration are compatible and together form a valid version of the complex 
object. A new version or configuration of the complex object does not have to include new versions for 
every module. Hence, certain module versions that have not been changed may belong to more than 
one configuration of the complex object. Notice that a configuration is a collection of versions of 
different objects that together make up a complex object, whereas the version graph describes versions 
of the same object. A configuration should follow the type structure of a complex object; multiple 
configurations of the same complex object are analogous to multiple versions of a component object.  

 
 

11.7 Summary 

In this chapter we discussed the concepts of the object-oriented approach to database systems, which 
was proposed to meet the needs of complex database applications and to add database functionality to 
object-oriented programming languages such as C++. We first discussed the main concepts used in OO 
databases, which include the following:  

• Object identity: Objects have unique identities that are independent of their attribute values.  
• Type constructors: Complex object structures can be constructed by recursively applying a set 

of basic constructors, such as tuple, set, list, and bag.  
• Encapsulation of operations: Both the object structure and the operations that can be applied 

to objects are included in the object class definitions.  
• Programming language compatibility: Both persistent and transient objects are handled 

uniformly. Objects are made persistent by being attached to a persistent collection.  
• Type hierarchies and inheritance: Object types can be specified by using a type hierarchy, 

which allows the inheritance of both attributes and methods of previously defined types.  
• Extents: All persistent objects of a particular type can be stored in an extent. Extents 

corresponding to a type hierarchy have set/subset constraints enforced on them.  
• Support for complex objects: Both structured and unstructured complex objects can be stored 

and manipulated.  
• Polymorphism and operator overloading: Operations and method names can be overloaded to 

apply to different object types with different implementations.  
• Versioning: Some OO systems provide support for maintaining several versions of the same 

object.  

In the next chapter, we show how some of these concepts are realized in the ODMG standard and give 
examples of specific OODBMSs. We also discuss object-oriented database design and a standard for 
distributed objects called CORBA.  
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Review Questions 

  11.1. What are the origins of the object-oriented approach? 

  11.2. What primary characteristics should an OID possess?  

  11.3. Discuss the various type constructors. How are they used to create complex object structures?  

  11.4. Discuss the concept of encapsulation, and tell how it is used to create abstract data types. 

  11.5. Explain what the following terms mean in object-oriented database terminology: method, 
signature, message, collection, extent. 

  11.6. What is the relationship between a type and its subtype in a type hierarchy? What is the 
constraint that is enforced on extents corresponding to types in the type hierarchy?  

  11.7. What is the difference between persistent and transient objects? How is persistence handled in 
typical OO database systems?  

  11.8. How do regular inheritance, multiple inheritance, and selective inheritance differ?  

  11.9. Discuss the concept of polymorphism/operator overloading.  

11.10. What is the difference between structured and unstructured complex objects? 

11.11. What is the difference between ownership semantics and reference semantics in structured 
complex objects?  

11.12. What is versioning? Why is it important? What is the difference between versions and 
configurations?  

 
 

Exercises 

11.13. Convert the example of GEOMETRY_OBJECTs given in Section 11.4.1 from the functional 
notation to the notation given in Figure 11.03 that distinguishes between attributes and 
operations. Use the keyword INHERIT to show that one class inherits from another class.  

11.14. Compare inheritance in the EER model (see Chapter 4) to inheritance in the OO model 
described in Section 11.4.  

11.15. Consider the UNIVERSITY EER schema of Figure 04.10. Think of what operations are needed for 
the entity types/classes in the schema. Do not consider constructor and destructor operations.  

11.16. Consider the COMPANY ER schema of Figure 03.02. Think of what operations are needed for 
the entity types/classes in the schema. Do not consider constructor and destructor operations.  

 
 

Selected Bibliography 

Object-oriented database concepts are an amalgam of concepts from OO programming languages and 
from database systems and conceptual data models. A number of textbooks describe OO programming 
languages—for example, Stroustrup (1986) and Pohl (1991) for C++, and Goldberg (1989) for 
SMALLTALK. Recent books by Cattell (1994) and Lausen and Vossen (1997) describes OO database 
concepts.  
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There is a vast bibliography on OO databases, so we can only provide a representative sample here. 
The October 1991 issue of CACM and the December 1990 issue of IEEE Computer describe object-
oriented database concepts and systems. Dittrich (1986) and Zaniolo et al. (1986) survey the basic 
concepts of object-oriented data models. An early paper on object-oriented databases is Baroody and 
DeWitt (1981). Su et al. (1988) presents an object-oriented data model that is being used in CAD/CAM 
applications. Mitschang (1989) extends the relational algebra to cover complex objects. Query 
languages and graphical user interfaces for OO are described in Gyssens et al. (1990), Kim (1989), 
Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), and Cruz (1992).  

Polymorphism in databases and object-oriented programming languages is discussed in Osborn (1989), 
Atkinson and Buneman (1987), and Danforth and Tomlinson (1988). Object identity is discussed in 
Abiteboul and Kanellakis (1989). OO programming languages for databases are discussed in Kent 
(1991). Object constraints are discussed in Delcambre et al. (1991) and Elmasri et al. (1993). 
Authorization and security in OO databases are examined in Rabitti et al. (1991) and Bertino (1992).  

Additional references will be given at the end of Chapter 12.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20 
Note 21 
Note 22 
Note 23 
Note 24 
Note 25 
Note 26 
Note 27 
Note 28

Note 1 

These databases are often referred to as Object Databases and the systems are referred to as Object 
Database Management Systems (ODBMS). However, because this chapter discusses many general 
object-oriented concepts, we will use the term object-oriented instead of just object. 
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Note 2 

Computer-Aided Design/Computer-Aided Manufacturing and Computer-Integrated Manufacturing. 

 
 

Note 3 

Multimedia databases must store various types of multimedia objects, such as video, audio, images, 
graphics, documents (see Chapter 23). 

 
 

Note 4 

Microelectronics and Computer Technology Corporation, Austin, Texas.  

 
 

Note 5 

Now called Lucent Technologies.  

 
 

Note 6 

Formerly O2 of O2 Technology.  

 
 

Note 7 

Object Database Management Group.  

 
 

Note 8 

Similar concepts were also developed in the fields of semantic data modeling and knowledge 
representation.  

 
 

Note 9 
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Palo Alto Research Center, Palo Alto, California. 

 
 

Note 10 

Objects have many other characteristics, as we discuss in this chapter. 

 
 

Note 11 

Several schema evolution operations, such as ALTER TABLE, are already defined in the relational 
SQL2 standard (see Section 8.1).  

 
 

Note 12 

This is different from the constructor operation that is used in C++ and other OOPLs.  

 
 

Note 13 

Also called an instance variable name in OO terminology. 

 
 

Note 14 

Also called a multiset. 

 
 

Note 15 

As we noted earlier, it is not practical to generate a unique system identifier for every value, so real 
systems allow for both OIDs and structured value, which can be structured by using the same type 
constructors as objects, except that a value does not have an OID.  

 
 

Note 16 

These atomic objects are the ones that may cause a problem, due to the use of too many object 
identifiers, if this model is implemented directly. 
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Note 17 

This would correspond to the DDL (Data Definition Language) of the database system (see Chapter 2).  

 
 

Note 18 

This definition of class is similar to how it is used in the popular C++ programming language. The 
ODMG standard uses the word interface in addition to class (see Chapter 12). In the EER model, the 
term class was used to refer to an object type, along with the set of all objects of that type (see Chapter 
4).  

 
 

Note 19 

Default names for the constructor and destructor operations exist in the C++ programming language. 
For example, for class Employee, the default constructor name is Employee and the default constructor 
name is ~Employee. It is also common to use the new operation to create new objects.  

 
 

Note 20 

As we shall see in Chapter 12, the ODMG ODL syntax uses set<Department> instead of 
set(Department). 

 
 

Note 21 

Some systems, such as POET, automatically create the extent for a class.  

 
 

Note 22 

In this section, we will use the terms type and class as meaning the same thing—namely, the attributes 
and operations of some type of object. 

 
 

Note 23 

We will see in Chapter 12 that types with functions are similar to the interfaces used in ODMG ODL.  
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Note 24 

In the second edition of this book, we used the title Class Hierarchies to describe these extent 
constraints. Because the word class has too many different meanings, extent is used in this edition. This 
is also more consistent with ODMG 2.0 terminology (see Chapter 12).  

 
 

Note 25 

This is called OBJECT in the ODMG model (see Chapter 12). 

 
 

Note 26 

In programming languages, there are several kinds of polymorphism. The interested reader is referred 
to the bibliographic notes for works that include a more thorough discussion.  

 
 

Note 27 

In the ODMG 2.0 model, type inheritance refers to inheritance of operations only, not attributes (see 
Chapter 12).  

 
 

Note 28 

Versioning is not a problem that is unique to OODBs but can be applied to relational or other types of 
DBMSs.  

 
 

Chapter 12: Object Database Standards, Languages, 
and Design 
12.1 Overview of the Object Model of ODMG 
12.2 The Object Definition Language 
12.3 The Object Query Language 
12.4 Overview of the C++ Language Binding 
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As we discussed at the beginning of Chapter 8, having a standard for a particular type of database 
system is very important, because it provides support for portability of database applications. 
Portability is generally defined as the capability to execute a particular application program on 
different systems with minimal modifications to the program itself. In the object database field (Note 
1), portability would allow a program written to access one Object Database Management System 
(ODBMS) package, say ObjectStore, to access another ODBMS package, say O2 (now called 
ARDENT), as long as both the ObjectStore and O2 systems support the standard faithfully. This is 
important to database users because they are generally wary of investing in a new technology if the 
different vendors do not adhere to a standard. To illustrate why portability is important, suppose that a 
particular user invests thousands of dollars in creating an application that runs on a particular vendor’s 
product and is then dissatisfied with that product for some reason—say the performance does not meet 
their requirements. If the application was written using the standard language constructs, it is possible 
for the user to convert the application to a different vendor’s product—which adheres to the same 
language standards but may have better performance for that user’s application—without having to do 
major modifications that require time and a major monetary investment.  

A second potential advantage of having and adhering to standards is that it helps in achieving 
interoperability, which generally refers to the ability of an application to access multiple distinct 
systems. In database terms, this means that the same application program may access some data stored 
under one ODBMS package, and other data stored under another package. There are different levels of 
interoperability. For example, the DBMSs could be two distinct DBMS packages of the same type—for 
example, two object database systems—or they could be two DBMS packages of different types—say 
one relational DBMS and one object DBMS. A third advantage of standards is that it allows customers 
to compare commercial products more easily by determining which parts of the standard are supported 
by each product. 

As we discussed in the introduction to Chapter 8, one of the reasons for the success of commercial 
relational DBMSs is the SQL standard. The lack of a standard for ODBMSs until recently may have 
caused some potential users to shy away from converting to this new technology. A consortium of 
ODBMS vendors, called ODMG (Object Data Management Group), proposed a standard that is known 
as the ODMG-93 or ODMG 1.0 standard. This was revised into ODMG 2.0, which we will describe in 
this chapter. The standard is made up of several parts: the object model, the object definition 
language (ODL), the object query language (OQL), and the bindings to object-oriented 
programming languages. Language bindings have been specified for three object-oriented 
programming languages—namely, C++, SMALLTALK, and JAVA. Some vendors only offer specific 
language bindings, without offering the full capabilities of ODL and OQL. We will describe the 
ODMG object model in Section 12.1, ODL in Section 12.2, OQL in Section 12.3, and the C++ 
language binding in Section 12.4. Examples of how to use ODL, OQL, and the C++ language binding 
will use the UNIVERSITY database example introduced in Chapter 4. In our description, we will 
follow the ODMG 2.0 object model as described in Cattell et al. (1997) (Note 2). It is important to note 
that many of the ideas embodied in the ODMG object model are based on two decades of research into 
conceptual modeling and object-oriented databases by many researchers.  

Following the description of the ODMG model, we will describe a technique for object database 
conceptual design in Section 12.5. We will discuss how object-oriented databases differ from relational 
databases and show how to map a conceptual database design in the EER model to the ODL statements 
of the ODMG model. Then in Section 12.6, we give overviews of two commercial ODBMSs—namely, 
O2 and ObjectStore. Finally, in Section 12.7, we will give an overview of the CORBA (Common 
Object Request Broker Architecture) standard for supporting interoperability among distributed object 
systems.  

The reader may skip Section 12.3 through Section 12.7 if a less detailed introduction to the topic is 
desired.  
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12.1 Overview of the Object Model of ODMG 

12.1.1 Objects and Literals 
12.1.2 Built-in Interfaces for Collection Objects 
12.1.3 Atomic (User-Defined) Objects 
12.1.4 Interfaces, Classes, and Inheritance 
12.1.5 Extents, Keys, and Factory Objects

The ODMG object model is the data model upon which the object definition language (ODL) and 
object query language (OQL) are based. In fact, this object model provides the data types, type 
constructors, and other concepts that can be utilized in the ODL to specify object database schemas. 
Hence, it is meant to provide a standard data model for object-oriented databases, just as the SQL 
report describes a standard data model for relational databases. It also provides a standard terminology 
in a field where the same terms were sometimes used to describe different concepts. We will try to 
adhere to the ODMG terminology in this chapter. Many of the concepts in the ODMG model have 
already been discussed in Chapter 11, and we assume the reader has already gone through Section 11.1 
through Section 11.5. We will point out whenever the ODMG terminology differs from that used in 
Chapter 11.  

 
 

12.1.1 Objects and Literals 

Objects and literals are the basic building blocks of the object model. The main difference between the 
two is that an object has both an object identifier and a state (or current value), whereas a literal has 
only a value but no object identifier (Note 3). In either case, the value can have a complex structure. 
The object state can change over time by modifying the object value. A literal is basically a constant 
value, possibly having a complex structure, that does not change.  

An object is described by four characteristics: (1) identifier, (2) name, (3) lifetime, and (4) structure. 
The object identifier is a unique system-wide identifier (or Object_Id) (Note 4). Every object must 
have an object identifier. In addition to the Object_Id, some objects may optionally be given a 
unique name within a particular database—this name can be used to refer to the object in a program, 
and the system should be able to locate the object given that name (Note 5). Obviously, not all 
individual objects will have unique names. Typically, a few objects, mainly those that hold collections 
of objects of a particular object type—such as extents—will have a name. These names are used as 
entry points to the database; that is, by locating these objects by their unique name, the user can then 
locate other objects that are referenced from these objects. Other important objects in the application 
may also have unique names. All such names within a particular database must be unique. The lifetime 
of an object specifies whether it is a persistent object (that is, a database object) or transient object (that 
is, an object in an executing program that disappears after the program terminates). Finally, the 
structure of an object specifies how the object is constructed by using the type constructors. The 
structure specifies whether an object is atomic or a collection object (Note 6). The term atomic object is 
different than the way we defined the atom constructor in Section 11.2.2, and it is quite different from 
an atomic literal (see Note 6). In the ODMG model, an atomic object is any object that is not a 
collection, so this also covers structured objects created using the struct constructor (Note 7). We will 
discuss collection objects in Section 12.1.2 and atomic objects in Section 12.1.3. First, we define the 
concept of a literal.  

In the object model, a literal is a value that does not have an object identifier. However, the value may 
have a simple or complex structure. There are three types of literals: (1) atomic, (2) collection, and (3) 
structured. Atomic literals (Note 8) correspond to the values of basic data types and are predefined. 
The basic data types of the object model include long, short, and unsigned integer numbers (these are 
specified by the keywords Long, Short, Unsigned Long, Unsigned Short in ODL), regular and double 
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precision floating point numbers (Float, Double), boolean values (Boolean), single characters (Char), 
character strings (String), and enumeration types (Enum), among others. Structured literals 
correspond roughly to values that are constructed using the tuple constructor described in Section 
11.2.2. They include Date, Interval, Time, and Timestamp as built-in structures (see Figure 12.01b), as 
well as any additional user-defined type structures as needed by each application (Note 9). User-
defined structures are created using the Struct keyword in ODL, as in the C and C++ programming 
languages. Collection literals specify a value that is a collection of objects or values but the collection 
itself does not have an Object_Id. The collections in the object model are Set<t>, Bag<t>, 
List<t>, and Array<t>, where t is the type of objects or values in the collection (Note 10). 
Another collection type is Dictionary <k,v>, which is a collection of associations <k,v> where each 
k is a key (a unique search value) associated with a value v; this can be used to create an index on a 
collection of values.  

 

 

 
 

Figure 12.01 gives a simplified view of the basic components of the object model. The notation of 
ODMG uses the keyword interface where we had used the keywords type and class in Chapter 11. In 
fact, interface is a more appropriate term, since it describes the interface of types of objects—namely, 
their visible attributes, relationships, and operations (Note 11). These interfaces are typically 
noninstantiable (that is, no objects are created for an interface) but they serve to define operations that 
can be inherited by the user-defined objects for a particular application. The keyword class in the 
object model is reserved for user-specified class declarations that form a database schema and are used 
for creating application objects. Figure 12.01 is a simplified version of the object model. For the full 
specifications, see Cattell et al. (1997). We will describe the constructs shown in Figure 12.01 as we 
describe the object model.  

In the object model, all objects inherit the basic interface of Object, shown in Figure 12.01(a). Hence, 
the basic operations that are inherited by all objects (from the Object interface) are copy (creates a 
new copy of the object), delete (deletes the object), and same_as (compares the object’s identity to 
another object) (Note 12). In general, operations are applied to objects using the dot notation. For 
example, given an object o, to compare it with another object p, we write  

 
 

o.same_as(p) 

 
 

The result returned by this expression is Boolean and would be true if the identity of p is the same as 
that of o, and false otherwise. Similarly, to create a copy p of object o, we write  

 
 

p = o.copy()  

 
 

An alternative to the dot notation is the arrow notation: o->same_as(p) or o->copy().  
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Type inheritance, which is used to define type/subtype relationships, is specified in the object model 
using the colon (:) notation, as in the C++ programming language. Hence, in Figure 12.01, we can see 
that all interfaces, such as Collection, Date, and Time, inherit the basic Object interface. In the object 
model, there are two main types of objects: (1) collection objects, described in Section 12.1.2, and (2) 
atomic (and structured) objects, described in Section 12.1.3.  

 
 

12.1.2 Built-in Interfaces for Collection Objects 

Any collection object inherits the basic Collection interface shown in Figure 12.01(c), which shows 
the operations for all collection objects. Given a collection object o, the o.cardinality() 
operation returns the number of elements in the collection. The operation o.is_empty() returns true 
if the collection o is empty, and false otherwise. The operations o.insert_element(e) and 
o.remove_element(e) insert or remove an element e from the collection o. Finally, the operation 
o.contains_element(e) returns true if the collection o includes element e, and returns false 
otherwise. The operation i = o.create_iterator() creates an iterator object i for the 
collection object o, which can iterate over each element in the collection. The interface for iterator 
objects is also shown in Figure 12.01(c). The i.reset() operation sets the iterator at the first 
element in a collection (for an unordered collection, this would be some arbitrary element), and 
i.next_position() sets the iterator to the next element. The i.get_element() retrieves the 
current element, which is the element at which the iterator is currently positioned.  

The ODMG object model uses exceptions for reporting errors or particular conditions. For example, 
the ElementNotFound exception in the Collection interface would be raised by the 
o.remove_element(e) operation if e is not an element in the collection o. The 
NoMoreElements exception in the iterator interface would be raised by the 
i.next_position() operation if the iterator is currently positioned at the last element in the 
collection, and hence no more elements exist for the iterator to point to.  

Collection objects are further specialized into Set, List, Bag, Array, and Dictionary, which 
inherit the operations of the Collection interface. A Set<t> object type can be used to create 
objects such that the value of object o is a set whose elements are of type t. The Set interface includes 
the additional operation p = o.create_union(s) (see Figure 12.01c), which returns a new 
object p of type Set<t> that is the union of the two sets o and s. Other operations similar to 
create_union (not shown in Figure 12.01c) are create_intersection(s) and 
create_difference(s). Operations for set comparison include the o.is_subset_of(s) 
operation, which returns true if the set object o is a subset of some other set object s, and returns false 
otherwise. Similar operations (not shown in Figure 12.01c) are is_proper_subset_of(s), 
is_superset_of(s), and is_proper_superset_of(s). The Bag<t> object type allows 
duplicate elements in the collection and also inherits the Collection interface. It has three 
operations—create_union(b), create_intersection(b), and 
create_difference(b)—that all return a new object of type Bag<t>. For example, p = 
o.create_union(b) returns a Bag object p that is the union of o and b (keeping duplicates). The 
o.occurrences_of(e) operation returns the number of duplicate occurrences of element e in bag 
o.  

A List<t> object type inherits the Collection operations and can be used to create collections 
where the order of the elements is important. The value of each such object o is an ordered list whose 
elements are of type t. Hence, we can refer to the first, last, and ith element in the list. Also, when we 
add an element to the list, we must specify the position in the list where the element is inserted. Some 
of the List operations are shown in Figure 12.01(c). If o is an object of type List<t>, the operation 
o.insert_element_first(e) (see Figure 12.01c) inserts the element e before the first element 
in the list o, so that e becomes the first element in the list. A similar operation (not shown) is 
o.insert_element_last(e). The operation o.insert_element_after(e,i) in Figure 
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12.01(c) inserts the element e after the ith element in the list o and will raise the exception 
InvalidIndex if no ith element exists in o. A similar operation (not shown) is 
o.insert_element_before(e,i). To remove elements from the list, the operations are e = 
o.remove_first_element(), e = o.remove_last_element(), and e = 
o.remove_element_at(i); these operations remove the indicated element from the list and 
return the element as the operation’s result. Other operations retrieve an element without removing it 
from the list. These are e = o.retrieve_first_element(), e = 
o.retrieve_last_element(), and e = o.retrieve_element_at(i). Finally, two 
operations to manipulate lists are defined. These are p = o.concat(l), which creates a new list p 
that is the concatenation of lists o and l (the elements in list o followed by those in list l), and 
o.append(l), which appends the elements of list l to the end of list o (without creating a new list 
object).  

The Array<t> object type also inherits the Collection operations. It is similar to a list except that 
an array has a fixed number of elements. The specific operations for an Array object o are 
o.replace_element_at(i,e), which replaces the array element at position i with element e; e 
= o.remove_element_at(i), which retrieves the ith element and replaces it with a null value; 
and e = o.retrieve_element_at(i), which simply retrieves the ith element of the array. Any 
of these operations can raise the exception InvalidIndex if i is greater than the array’s size. The 
operation o.resize(n) changes the number of array elements to n.  

The last type of collection objects are of type Dictionary<k, v>. This allows the creation of a 
collection of association pairs <k, v>, where all k (key) values are unique. This allows for 
associative retrieval of a particular pair given its key value (similar to an index). If o is a collection 
object of type Dictionary<k,v>, then o.bind(k,v) binds value v to the key k as an association 
<k,v> in the collection, whereas o.unbind(k) removes the association with key k from o, and v 
= o.lookup(k) returns the value v associated with key k in o. The latter two operations can raise 
the exception KeyNotFound. Finally, o.contains_key(k) returns true if key k exists in o, and 
returns false –otherwise.  

Figure 12.02 is a diagram that illustrates the inheritance hierarchy of the built-in constructs of the 
object model. Operations are inherited from the supertype to the subtype. The collection object 
interfaces described above are not directly instantiable; that is, one cannot directly create objects based 
on these interfaces. Rather, the interfaces can be used to specify user-defined collection objects—of 
type Set, Bag, List, Array, or Dictionary—for a particular database application. When a user designs a 
database schema, they will declare their own object interfaces and classes that are relevant to the 
database application. If an interface or class is one of the collection objects, say a Set, then it will 
inherit the operations of the Set interface. For example, in a UNIVERSITY database application, the user 
can specify a class for Set<Student>, whose objects would be sets of Student objects. The 
programmer can then use the operations for Set<t> to manipulate an object of type 
Set<Student>. Creating application classes is typically done by utilizing the object definition 
language ODL (see Section 12.2).  

 

 

 
 

It is important to note that all objects in a particular collection must be of the same type. Hence, 
although the keyword any appears in the specifications of collection interfaces in Figure 12.01(c), this 
does not mean that objects of any type can be intermixed within the same collection. Rather, it means 
that any type can be used when specifying the type of elements for a particular collection (including 
other collection types!).  
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12.1.3 Atomic (User-Defined) Objects 

The previous section described the built-in collection types of the object model. We now discuss how 
object types for atomic objects can be constructed. These are specified using the keyword class in 
ODL. In the object model, any user-defined object that is not a collection object is called an atomic 
object (Note 13). For example, in a UNIVERSITY database application, the user can specify an object 
type (class) for Student objects. Most such objects will be structured objects; for example, a Student 
object will have a complex structure, with many attributes, relationships, and operations, but it is still 
considered atomic because it is not a collection. Such a user-defined atomic object type is defined as a 
class by specifying its properties and operations. The properties define the state of the object and are 
further distinguished into attributes and relationships. In this subsection, we elaborate on the three 
types of components—attributes, relationships, and operations—that a user-defined object type for 
atomic (structured) objects can include. We illustrate our discussion with the two classes Employee 
and Department shown in Figure 12.03.  

 

 

 
 

An attribute is a property that describes some aspect of an object. Attributes have values, which are 
typically literals having a simple or complex structure, that are stored within the object. However, 
attribute values can also be Object_Ids of other objects. Attribute values can even be specified via 
methods that are used to calculate the attribute value. In Figure 12.03 (Note 14), the attributes for 
Employee are name, ssn, birthdate, sex, and age, and those for Department are dname, 
dnumber, mgr, locations, and projs. The mgr and projs attributes of Department have 
complex structure and are defined via struct, which corresponds to the tuple constructor of Chapter 11. 
Hence, the value of mgr in each Department object will have two components: manager, whose 
value is an Object_Id that references the Employee object that manages the Department, and 
startdate, whose value is a date. The locations attribute of Department is defined via the set 
constructor, since each Department object can have a set of locations.  

A relationship is a property that specifies that two objects in the database are related together. In the 
object model of ODMG, only binary relationships (see Chapter 3) are explicitly represented, and each 
binary relationship is represented by a pair of inverse references specified via the keyword relationship. 
In Figure 12.03, one relationship exists that relates each Employee to the Department in which he 
or she works—the works_for relationship of Employee. In the inverse direction, each 
Department is related to the set of Employees that work in the Department—the has_emps 
relationship of Department. The keyword inverse specifies that these two properties specify a 
single conceptual relationship in inverse directions (Note 15). By specifying inverses, the database 
system can maintain the referential integrity of the relationship automatically. That is, if the value of 
works_for for a particular Employee e refers to Department d, then the value of has_emps 
for Department d must include a reference to e in its set of Employee references. If the database 
designer desires to have a relationship to be represented in only one direction, then it has to be modeled 
as an attribute (or operation). An example is the manager component of the mgr attribute in 
Department.  

In addition to attributes and relationships, the designer can include operations in object type (class) 
specifications. Each object type can have a number of operation signatures, which specify the 
operation name, its argument types, and its returned value, if applicable. Operation names are unique 
within each object type, but they can be overloaded by having the same operation name appear in 
distinct object types. The operation signature can also specify the names of exceptions that can occur 
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during operation execution. The implementation of the operation will include the code to raise these 
exceptions. In Figure 12.03, the Employee class has one operation, reassign_emp, and the 
Department class has two operations, add_emp and change_manager.  

 
 

12.1.4 Interfaces, Classes, and Inheritance 

In the ODMG 2.0 object model, two concepts exist for specifying object types: interfaces and classes. 
In addition, two types of inheritance relationships exist. In this section, we discuss the differences and 
similarities among these concepts. Following the ODMG 2.0 terminology, we use the word behavior 
to refer to operations, and state to refer to properties (attributes and relationships).  

An interface is a specification of the abstract behavior of an object type, which specifies the operation 
signatures. Although an interface may have state properties (attributes and relationships) as part of its 
specifications, these cannot be inherited from the interface, as we shall see. An interface also is 
noninstantiable—that is, one cannot create objects that correspond to an interface definition (Note 16).  

A class is a specification of both the abstract behavior and abstract state of an object type, and is 
instantiable—that is, one can create individual object instances corresponding to a class definition. 
Because interfaces are noninstantiable, they are mainly used to specify abstract operations that can be 
inherited by classes or by other interfaces. This is called behavior inheritance and is specified by the 
":" symbol (Note 17). Hence, in the ODMG 2.0 object model, behavior inheritance requires the 
supertype to be an interface, whereas the subtype could be either a class or another interface.  

Another inheritance relationship, called EXTENDS and specified by the extends keyword, is used to 
inherit both state and behavior strictly among classes. In an EXTENDS inheritance, both the supertype 
and the subtype must be classes. Multiple inheritance via EXTENDS is not permitted. However, 
multiple inheritance is allowed for behavior inheritance via ":". Hence, an interface may inherit 
behavior from several other interfaces. A class may also inherit behavior from several interfaces via 
":", in addition to inheriting behavior and state from at most one other class via EXTENDS. We will 
give examples in Section 12.2 of how these two inheritance relationships—":" and EXTENDS—may 
be used.  

 
 

12.1.5 Extents, Keys, and Factory Objects 

In the ODMG 2.0 object model, the database designer can declare an extent for any object type that is 
defined via a class declaration. The extent is given a name, and it will contain all persistent objects of 
that class. Hence, the extent behaves as a set object that holds all persistent objects of the class. In 
Figure 12.03, the Employee and Department classes have extents called all_employees and 
all_departments, respectively. This is similar to creating two objects—one of type 
Set<Employee> and the second of type Set<Department>—and making them persistent by 
naming them all_employees and all_departments. Extents are also used to automatically 
enforce the set/subset relationship between the extents of a supertype and its subtype. If two classes A 
and B have extents all_A and all_B, and class B is a subtype of class A (that is, class B EXTENDS 
class A), then the collection of objects in all_B must be a subset of those in all_A at any point in 
time. This constraint is automatically enforced by the database system.  

A class with an extent can have one or more keys. A key consists of one or more properties (attributes 
or relationships) whose values are constrained to be unique for each object in the extent. For example, 
in Figure 12.03, the Employee class has the ssn attribute as key (each Employee object in the 
extent must have a unique ssn value), and the Department class has two distinct keys: dname and 
dnumber (each Department must have a unique dname and a unique dnumber). For a composite 
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key (Note 18) that is made of several properties, the properties that form the key are contained in 
parentheses. For example, if a class Vehicle with an extent all_vehicles has a key made up of a 
combination of two attributes state and license_number, they would be placed in parentheses as 
(state, license_number) in the key declaration.  

Next, we present the concept of factory object—an object that can be used to generate or create 
individual objects via its operations. Some of the interfaces of factory objects that are part of the 
ODMG 2.0 object model are shown in Figure 12.04. The interface ObjectFactory has a single 
operation, new(), which returns a new object with an Object_Id. By inheriting this interface, users 
can create their own factory interfaces for each user-defined (atomic) object type, and the programmer 
can implement the operation new differently for each type of object. Figure 12.04 also shows a 
DateFactory interface, which has additional operations for creating a new calendar_date, and 
for creating an object whose value is the current_date, among other operations (not shown in 
Figure 12.04). As we can see, a factory object basically provides the constructor operations for new 
objects.  

 

 

 
 

Finally, we discuss the concept of a database. Because a ODBMS can create many different databases, 
each with its own schema, the ODMG 2.0 object model has interfaces for DatabaseFactory and 
Database objects, as shown in Figure 12.04. Each database has its own database name, and the bind 
operation can be used to assign individual unique names to persistent objects in a particular database. 
The lookup operation returns an object from the database that has the specified object_name, and 
the unbind operation removes the name of a persistent named object from the database.  

 
 

12.2 The Object Definition Language 

After our overview of the ODMG 2.0 object model in the previous section, we now show how these 
concepts can be utilized to create an object database schema using the object definition language ODL 
(Note 19). The ODL is designed to support the semantic constructs of the ODMG 2.0 object model and 
is independent of any particular programming language. Its main use is to create object 
specifications—that is, classes and interfaces. Hence, ODL is not a full programming language. A user 
can specify a database schema in ODL independently of any programming language, then use the 
specific language bindings to specify how ODL constructs can be mapped to constructs in specific 
programming languages, such as C++, SMALLTALK, and JAVA. We will give an overview of the 
C++ binding in Section 12.4.  

Figure 12.05(b) shows a possible object schema for part of the UNIVERSITY database, which was 
presented in Chapter 4. We will describe the concepts of ODL using this example, and the one in 
Figure 12.07. The graphical notation for Figure 12.05(b) is described in Figure 12.05(a) and can be 
considered as a variation of EER diagrams (see Chapter 4) with the added concept of interface 
inheritance but without several EER concepts, such as categories (union types) and attributes of 
relationships.  
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Figure 12.06 shows one possible set of ODL class definitions for the UNIVERSITY database. In general, 
there may be several possible mappings from an object schema diagram (or EER schema diagram) into 
ODL classes. We will discuss these options further in Section 12.5.  

 

 

 
 

Figure 12.06 shows the straightforward way of mapping part of the UNIVERSITY database from Chapter 
4. Entity types are mapped into ODL classes, and inheritance is done using EXTENDS. However, there 
is no direct way to map categories (union types) or to do multiple inheritance. In Figure 12.06, the 
classes Person, Faculty, Student, and GradStudent have the extents persons, faculty, 
students, and grad_students, respectively. Both Faculty and Student EXTENDS 
Person, and GradStudent EXTENDS Student. Hence, the collection of students (and the 
collection of faculty) will be constrained to be a subset of the collection of persons at any point 
in time. Similarly, the collection of grad_students will be a subset of students. At the same 
time, individual Student and Faculty objects will inherit the properties (attributes and 
relationships) and operations of Person, and individual GradStudent objects will inherit those of 
Student.  

The classes Department, Course, Section, and CurrSection in Figure 12.06 are 
straightforward mappings of the corresponding entity types in Figure 12.05(b). However, the class 
Grade requires some explanation. The Grade class corresponds to the M:N relationship between 
Student and Section in Figure 12.05(b). The reason it was made into a separate class (rather than 
as a pair of inverse relationships) is because it includes the relationship attribute grade (Note 20). 
Hence, the M:N relationship is mapped to the class Grade, and a pair of 1:N relationships, one 
between Student and Grade and the other between Section and Grade (Note 21). These two 
relationships are represented by the following relationship properties: completed_sections of 
Student; section and student of Grade; and students of Section (see Figure 12.06). 
Finally, the class Degree is used to represent the composite, multivalued attribute degrees of 
GradStudent (see Figure 04.10).  

Because the previous example did not include any interfaces, only classes, we now utilize a different 
example to illustrate interfaces and interface (behavior) inheritance. Figure 12.07 is part of a database 
schema for storing geometric objects. An interface GeometryObject is specified, with operations to 
calculate the perimeter and area of a geometric object, plus operations to translate (move) 
and rotate an object. Several classes (Rectangle, Triangle, Circle, . . .) inherit the 
GeometryObject interface. Since GeometryObject is an interface, it is noninstantiable—that is, 
no objects can be created based on this interface directly. However, objects of type Rectangle, 
Triangle, Circle, . . . can be created, and these objects inherit all the operations of the 
GeometryObject interface. Note that with interface inheritance, only operations are inherited, not 
properties (attributes, relationships). Hence, if a property is needed in the inheriting class, it must be 
repeated in the class definition, as with the reference_point attribute in Figure 12.07. Notice that 
the inherited operations can have different implementations in each class. For example, the 
implementations of the area and perimeter operations may be different for Rectangle, 
Triangle, and Circle.  
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Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of interfaces by 
another interface. However, with the EXTENDS (class) inheritance, multiple inheritance is not 
permitted. Hence, a class can inherit via EXTENDS from at most one class (in addition to inheriting 
from zero or more interfaces).  

 
 

12.3 The Object Query Language 

12.3.1 Simple OQL Queries, Database Entry Points, and Iterator Variables 
12.3.2 Query Results and Path Expressions 
12.3.3 Other Features of OQL

The object query language (OQL) is the query language proposed for the ODMG object model. It is 
designed to work closely with the programming languages for which an ODMG binding is defined, 
such as C++, SMALLTALK, and JAVA. Hence, an OQL query embedded into one of these 
programming languages can return objects that match the type system of that language. In addition, the 
implementations of class operations in an ODMG schema can have their code written in these 
programming languages. The OQL syntax for queries is similar to the syntax of the relational standard 
query language SQL, with additional features for ODMG concepts, such as object identity, complex 
objects, operations, inheritance, polymorphism, and relationships.  

We will first discuss the syntax of simple OQL queries and the concept of using named objects or 
extents as database entry points in Section 12.3.1. Then in Section 12.3.2, we discuss the structure of 
query results and the use of path expressions to traverse relationships among objects. Other OQL 
features for handling object identity, inheritance, polymorphism, and other object oriented concepts are 
discussed in Section 12.3.3. The examples to illustrate OQL queries are based on the UNIVERSITY 
database schema given in Figure 12.06.  

 
 

12.3.1 Simple OQL Queries, Database Entry Points, and Iterator Variables 

The basic OQL syntax is a select . . . from . . . where . . . structure, as for SQL. For example, the query 
to retrieve the names of all departments in the college of ‘Engineering’ can be written as follows:  

 

  Q0:  SELECT d.dname  
    FROM  d in departments  
    WHERE  d.college = ‘Engineering’;  

 
 

In general, an entry point to the database is needed for each query, which can be any named persistent 
object. For many queries, the entry point is the name of the extent of a class. Recall that the extent 
name is considered to be the name of a persistent object whose type is a collection (in most cases, a set) 
of objects from the class. Looking at the extent names in Figure 12.06, the named object 
departments is of type set<Department>; persons is of type set<Person>; faculty is 
of type set<Faculty>; and so on.  
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The use of an extent name—departments in Q0—as an entry point refers to a persistent collection 
of objects. Whenever a collection is referenced in an OQL query, we should define an iterator 
variable (Note 22)—d in Q0—that ranges over each object in the collection. In many cases, as in Q0, 
the query will select certain objects from the collection, based on the conditions specified in the where-
clause. In Q0, only persistent objects d in the collection of departments that satisfy the condition 
d.college = ‘Engineering’ are selected for the query result. For each selected object d, the 
value of d.dname is retrieved in the query result. Hence, the type of the result for Q0 is 
bag<string>, because the type of each dname value is string (even though the actual result is a set 
because dname is a key attribute). In general, the result of a query would be of type bag for select . 
. . from . . . and of type set for select distinct . . . from . . ., as in SQL (adding the keyword 
distinct eliminates duplicates).  

Using the example in Q0, there are three syntactic options for specifying iterator variables:  

 
 

d in departments  

departments d  

departments as d  

 
 

We will use the first construct in our examples (Note 23).  

The named objects used as database entry points for OQL queries are not limited to the names of 
extents. Any named persistent object, whether it refers to an atomic (single) object or to a collection 
object can be used as a database entry point.  

 
 

12.3.2 Query Results and Path Expressions 

The result of a query can in general be of any type that can be expressed in the ODMG object model. A 
query does not have to follow the select . . . from . . . where . . . structure; in the simplest case, 
any persistent name on its own is a query, whose result is a reference to that persistent object. For 
example, the query  

 
 

Q1: departments; 

 
 

returns a reference to the collection of all persistent department objects, whose type is 
set<Department>. Similarly, suppose we had given (via the database bind operation, see Figure 
12.04) a persistent name csdepartment to a single department object (the computer science 
department); then, the query:  
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Q1a: csdepartment; 

 
 

returns a reference to that individual object of type Department. Once an entry point is specified, the 
concept of a path expression can be used to specify a path to related attributes and objects. A path 
expression typically starts at a persistent object name, or at the iterator variable that ranges over 
individual objects in a collection. This name will be followed by zero or more relationship names or 
attribute names connected using the dot notation. For example, referring to the UNIVERSITY database of 
Figure 12.06, the following are examples of path expressions, which are also valid queries in OQL:  

 
 

Q2:  csdepartment.chair; 

Q2a: csdepartment.chair.rank;  

Q2b: csdepartment.has_faculty; 

 
 

The first expression Q2 returns an object of type Faculty, because that is the type of the attribute 
chair of the Department class. This will be a reference to the Faculty object that is related to 
the department object whose persistent name is csdepartment via the attribute chair; that is, a 
reference to the Faculty object who is chairperson of the computer science department. The second 
expression Q2a is similar, except that it returns the rank of this Faculty object (the computer 
science chair) rather than the object reference; hence, the type returned by Q2a is string, which is the 
data type for the rank attribute of the Faculty class.  

Path expressions Q2 and Q2a return single values, because the attributes chair (of Department) 
and rank (of Faculty) are both single-valued and they are applied to a single object. The third 
expression Q2b is different; it returns an object of type set<Faculty> even when applied to a single 
object, because that is the type of the relationship has_faculty of the Department class. The 
collection returned will include references to all Faculty objects that are related to the department 
object whose persistent name is csdepartment via the relationship has_faculty; that is, 
references to all Faculty objects who are working in the computer science department. Now, to 
return the ranks of computer science faculty, we cannot write  

 
 

Q3’: csdepartment.has_faculty.rank;  

 
 

This is because it is not clear whether the object returned would be of type set<string> or 
bag<string> (the latter being more likely, since multiple faculty may share the same rank). Because 
of this type of ambiguity problem, OQL does not allow expressions such as Q3’. Rather, one must use 
an iterator variable over these collections, as in Q3a or Q3b below:  
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  Q3a: select f.rank 
    from f in csdepartment.has_faculty; 
  Q3b: select distinct f.rank 
    from f in csdepartment.has_faculty; 

 
 

Here, Q3a returns bag<string> (duplicate rank values appear in the result), whereas Q3b returns 
set<string> (duplicates are eliminated via the distinct keyword). Both Q3a and Q3b illustrate 
how an iterator variable can be defined in the from-clause to range over a restricted collection 
specified in the query. The variable f in Q3a and Q3b ranges over the elements of the collection 
csdepartment.has_faculty, which is of type set<Faculty>, and includes only those 
faculty that are members of the computer science department.  

In general, an OQL query can return a result with a complex structure specified in the query itself by 
utilizing the struct keyword. Consider the following two examples:  

 
 

Q4: csdepartment.chair.advises; 

Q4a: select struct (name:struct(last_name: s.name.lname,  

first_name: s.name.fname),  

degrees:(select struct (deg: d.degree,  

yr: d.year,  

college: d.college)  

from d in s.degrees)  

from s in csdepartment.chair.advises;  

 
 

Here, Q4 is straightforward, returning an object of type set<GradStudent> as its result; this is the 
collection of graduate students that are advised by the chair of the computer science department. Now, 
suppose that a query is needed to retrieve the last and first names of these graduate students, plus the 
list of previous degrees of each. This can be written as in Q4a, where the variable s ranges over the 
collection of graduate students advised by the chairperson, and the variable d ranges over the degrees 
of each such student s. The type of the result of Q4a is a collection of (first-level) structs where 
each struct has two components: name and degrees (Note 24). The name component is a further 
struct made up of last_name and first_name, each being a single string. The degrees component 
is defined by an embedded query and is itself a collection of further (second level) structs, each with 
three string components: deg, yr, and college.  

Note that OQL is orthogonal with respect to specifying path expressions. That is, attributes, 
relationships, and operation names (methods) can be used interchangeably within the path expressions, 
as long as the type system of OQL is not compromised. For example, one can write the following 
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queries to retrieve the grade point average of all senior students majoring in computer science, with the 
result ordered by gpa, and within that by last and first name:  

 

  Q5a: select struct (last_name: s.name.lname, first_name:  

s.name.fname, gpa: s.gpa)  
  from s in csdepartment.has_majors  
  where s.class = ‘senior’  
  order by gpa desc, last_name asc, first_name asc;  
  Q5b: select struct (last_name: s.name.lname, first_name:  

s.name.fname, gpa: s.gpa)  
  from s in students  
  where s.majors_in.dname = ‘Computer Science’ and  

s.class = ‘senior’  
  order by gpa desc, last_name asc, first_name asc;  

 
 

Q5a used the named entry point csdepartment to directly locate the reference to the computer 
science department and then locate the students via the relationship has_majors, whereas Q5b 
searches the students extent to locate all students majoring in that department. Notice how attribute 
names, relationship names, and operation (method) names are all used interchangeably (in an 
orthogonal manner) in the path expressions: gpa is an operation; majors_in and has_majors are 
relationships; and class, name, dname, lname, and fname are attributes. The implementation of 
the gpa operation computes the grade point average and returns its value as a float type for each 
selected student.  

The order by clause is similar to the corresponding SQL construct, and specifies in which order the 
query result is to be displayed. Hence, the collection returned by a query with an order by clause is of 
type list.  

 
 

12.3.3 Other Features of OQL 

Specifying Views as Named Queries 
Extracting Single Elements from Singleton Collections 
Collection Operators (Aggregate Functions, Quantifiers) 
Ordered (Indexed) Collection Expressions 
The Grouping Operator

Specifying Views as Named Queries 

The view mechanism in OQL uses the concept of a named query. The define keyword is used to 
specify an identifier of the named query, which must be a unique name among all named objects, class 
names, method names, or function names in the schema. If the identifier has the same name as an 
existing named query, then the new definition replaces the previous definition. Once defined, a query 
definition is persistent until it is redefined or deleted. A view can also have parameters (arguments) in 
its definition.  
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For example, the following view V1 defines a named query has_minors to retrieve the set of objects 
for students minoring in a given department:  

 
 

V1: define has_minors(deptname) as  

select s  

from s in students  

where s.minors_in.dname = deptname;  

 
 

Because the ODL schema in Figure 12.06 only provided a unidirectional minors_in attribute for a 
Student, we can use the above view to represent its inverse without having to explicitly define a 
relationship. This type of view can be used to represent inverse relationships that are not expected to be 
used frequently. The user can now utilize the above view to write queries such as  

 
 

has_minors(‘Computer Science’);  

 
 

which would return a bag of students minoring in the Computer Science department. Note that in 
Figure 12.06, we did define has_majors as an explicit relationship, presumably because it is 
expected to be used more often.  

 
 

Extracting Single Elements from Singleton Collections 

An OQL query will, in general, return a collection as its result, such as a bag, set (if distinct is 
specified), or list (if the order by clause is used). If the user requires that a query only return a single 
element, there is an element operator in OQL that is guaranteed to return a single element e from a 
singleton collection c that contains only one element. If c contains more than one element or if c is 
empty, then the element operator raises an exception. For example, Q6 returns the single object 
reference to the computer science department:  

 
 

  Q6: element (select d 
    from d in departments  
    where d.dname = ‘Computer Science’); 
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Since a department name is unique across all departments, the result should be one department. The 
type of the result is d:Department.  

 
 

Collection Operators (Aggregate Functions, Quantifiers) 

Because many query expressions specify collections as their result, a number of operators have been 
defined that are applied to such collections. These include aggregate operators as well as membership 
and quantification (universal and existential) over a collection.  

The aggregate operators (min, max, count, sum, and avg) operate over a collection (Note 25). The 
operator count returns an integer type. The remaining aggregate operators (min, max, sum, avg) 
return the same type as the type of the operand collection. Two examples follow. The query Q7 returns 
the number of students minoring in ‘Computer Science,’ while Q8 returns the average gpa of all 
seniors majoring in computer science.  

 
 

Q7: count (s in has_minors(‘Computer Science’));  

Q8: avg (select s.gpa  

from s in students  

where s.majors_in.dname = ‘Computer Science’ and  

    s.class = ‘senior’);  

 
 

Notice that aggregate operations can be applied to any collection of the appropriate type and can be 
used in any part of a query. For example, the query to retrieve all department names that have more that 
100 majors can be written as in Q9:  

 
 

Q9: select d.dname  

from d in departments  

where count (d.has_majors) > 100;  

 
 

The membership and quantification expressions return a boolean type—that is, true or false. Let v be a 
variable, c a collection expression, b an expression of type boolean (that is, a boolean condition), and 
e an element of the type of elements in collection c. Then:  
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(e in c) returns true if element e is a member of collection c.  

(for all v in c: b) returns true if all the elements of collection c satisfy b.  

(exists v in c: b) returns true if there is at least one element in c satisfying b.  

 
 

To illustrate the membership condition, suppose we want to retrieve the names of all students who 
completed the course called ‘Database Systems I’. This can be written as in Q10, where the nested 
query returns the collection of course names that each student s has completed, and the membership 
condition returns true if ‘Database Systems I’ is in the collection for a particular student s:  

 
 

Q10: select s.name.lname, s.name.fname  

from s in students  

where ‘Database Systems I’ in  

    (select c.cname from c in 

     s.completed_sections.section.of_course); 

 
 

Q10 also illustrates a simpler way to specify the select clause of queries that return a collection of 
structs; the type returned by Q10 is bag<struct(string, string)>.  

One can also write queries that return true/false results. As an example, let us assume that there is a 
named object called Jeremy of type Student. Then, query Q11 answers the following question: "Is 
Jeremy a computer science minor?" Similarly, Q12 answers the question "Are all computer science 
graduate students advised by computer science faculty?". Both Q11 and Q12 return true or false, which 
are interpreted as yes or no answers to the above questions:  

 
 

Q11: Jeremy in has_minors(‘Computer Science’);  

Q12: for all g in  

(select s  

from s in grad_students  

where s.majors_in.dname = ‘Computer Science’)  
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: g.advisor in csdepartment.has_faculty;  

 
 

Note that query Q12 also illustrates how attribute, relationship, and operation inheritance applies to 
queries. Although s is an iterator that ranges over the extent grad_students, we can write 
s.majors_in because the majors_in relationship is inherited by GradStudent from 
Student via EXTENDS (see Figure 12.06). Finally, to illustrate the exists quantifier, query Q13 
answers the following question: "Does any graduate computer science major have a 4.0 gpa?" Here, 
again, the operation gpa is inherited by GradStudent from Student via EXTENDS.  

 
 

Q13: exists g in  

(select s  

from s in grad_students  

where s.majors_in.dname = ‘Computer Science’)  

: g.gpa = 4;  

 
 
 

Ordered (Indexed) Collection Expressions 

As we discussed in Section 12.1.2, collections that are lists and arrays have additional operations, such 
as retrieving the ith, first and last elements. In addition, operations exist for extracting a subcollection 
and concatenating two lists. Hence, query expressions that involve lists or arrays can invoke these 
operations. We will illustrate a few of these operations using example queries. Q14 retrieves the last 
name of the faculty member who earns the highest salary:  

 

  Q14:  first (select struct(faculty: f.name.lname, salary:  

f.salary)  
  from f in faculty 
  order by f.salary desc); 

 
 

Q14 illustrates the use of the first operator on a list collection that contains the salaries of faculty 
members sorted in descending order on salary. Thus the first element in this sorted list contains the 
faculty member with the highest salary. This query assumes that only one faculty member earns the 
maximum salary. The next query, Q15, retrieves the top three computer science majors based on gpa.  
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Q15: (select struct(last_name: s.name.lname, first_name:  

            s.name.fname, gpa: s.gpa)  

from s in csdepartment.has_majors  

order by gpa desc) [0:2];  

 
 

The select-from-order-by query returns a list of computer science students ordered by gpa in 
descending order. The first element of an ordered collection has an index position of 0, so the 
expression [0:2] returns a list containing the first, second and third elements of the select-from-
order-by result.  

 
 

The Grouping Operator 

The group by clause in OQL, although similar to the corresponding clause in SQL, provides explicit 
reference to the collection of objects within each group or partition. First we give an example, then 
describe the general form of these queries.  

Q16 retrieves the number of majors in each department. In this query, the students are grouped into the 
same partition (group) if they have the same major; that is, the same value for 
s.majors_in.dname:  

 

  Q16:  select  struct(deptname, number_of_majors:  

count (partition))  
  from  s in students  
  group by  deptname: s.majors_in.dname;  

 
 

The result of the grouping specification is of type set<struct(deptname: string, 
partition: bag<struct(s:Student)>)>, which contains a struct for each group 
(partition) that has two components: the grouping attribute value (deptname) and the bag of the 
student objects in the group (partition). The select clause returns the grouping attribute (name 
of the department), and a count of the number of elements in each partition (that is, the number of 
students in each department), where partition is the keyword used to refer to each partition. The result 
type of the select clause is set<struct(deptname: string, number_of_majors: 
integer)>. In general, the syntax for the group by clause is  

 
 

group by f1: e1, f2: e2, ... , fk: ek  
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where f1: e1, f2: e2, ... , fk: ek is a list of partitioning (grouping) attributes and each 
partitioning attribute specification fi:ei defines an attribute (field) name fi and an expression ei. 
The result of applying the grouping (specified in the group by clause) is a set of structures:  

 
 

set<struct(f1: t1, f2: t2, . . ., fk: tk, partition: bag<B>)>  

 
 

where ti is the type returned by the expression ei, partition is a distinguished field name (a 
keyword), and B is a structure whose fields are the iterator variables (s in Q16) declared in the from 
clause having the appropriate type.  

Just as in SQL, a having clause can be used to filter the partitioned sets (that is, select only some of the 
groups based on group conditions). In Q17, the previous query is modified to illustrate the having 
clause (and also shows the simplified syntax for the select clause). Q17 retrieves for each department 
having more than 100 majors, the average gpa of its majors. The having clause in Q17 selects only 
those partitions (groups) that have more than 100 elements (that is, departments with more than 100 
students).  

 

  Q17:  select  deptname, avg_gpa: avg (select p.s.gpa from p in partition)  
  from  s in students  
  group by  deptname: s.majors_in.dname  
  having  count (partition) > 100;  

 
 

Note that the select clause of Q17 returns the average gpa of the students in the partition. The 
expression  

 
 

select p.s.gpa from p in partition  

 
 

returns a bag of student gpas for that partition. The from clause declares an iterator variable p over the 
partition collection, which is of type bag<struct(s: Student)>. Then the path expression 
p.s.gpa is used to access the gpa of each student in the partition.  

 
 

12.4 Overview of the C++ Language Binding 

The C++ language binding specifies how ODL constructs are mapped to C++ constructs. This is done 
via a C++ class library that provides classes and operations that implement the ODL constructs. An 
Object Manipulation Language (OML) is needed to specify how database objects are retrieved and 
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manipulated within a C++ program, and this is based on the C++ programming language syntax and 
semantics. In addition to the ODL/OML bindings, a set of constructs called physical pragmas are 
defined to allow the programmer some control over physical storage issues, such as clustering of 
objects, utilizing indices, and memory management.  

The class library added to C++ for the ODMG standard uses the prefix d_ for class declarations that 
deal with database concepts (Note 26). The goal is that the programmer should think that only one 
language is being used, not two separate languages. For the programmer to refer to database objects in 
a program, a class d_Ref<T> is defined for each database class T in the schema. Hence, program 
variables of type d_Ref<T> can refer to both persistent and transient objects of class T.  

In order to utilize the various built-in types in the ODMG Object Model such as collection types, 
various template classes are specified in the library. For example, an abstract class d_Object<T> 
specifies the operations to be inherited by all objects. Similarly, an abstract class d_Collection<T> 
specifies the operations of collections. These classes are not instantiable, but only specify the 
operations that can be inherited by all objects and by collection objects, respectively. A template class 
is specified for each type of collection; these include d_Set<T>, d_List<T>, d_Bag<T>, 
d_Varray<T>, and d_Dictionary<T>, and correspond to the collection types in the Object 
Model (see Section 12.1). Hence, the programmer can create classes of types such as 
d_Set<d_Ref<Student>> whose instances would be sets of references to Student objects, or 
d_Set<String> whose instances would be sets of Strings. In addition, a class d_Iterator 
corresponds to the Iterator class of the Object Model.  

The C++ ODL allows a user to specify the classes of a database schema using the constructs of C++ as 
well as the constructs provided by the object database library. For specifying the data types of attributes 
(Note 27), basic types such as d_Short (short integer), d_UShort (unsigned short integer), 
d_Long (long integer), and d_Float (floating point number) are provided. In addition to the basic 
data types, several structured literal types are provided to correspond to the structured literal types of 
the ODMG Object Model. These include d_String, d_Interval, d_Date, d_Time, and 
d_Timestamp (see Figure 12.01b).  

To specify relationships, the keyword Rel_ is used within the prefix of type names; for example, by 
writing  

 
 

d_Rel_Ref<Department, _has_majors> majors_in;  

 
 

in the Student class, and  

 
 

d_Rel_Set<Student, _majors_in> has_majors;  

 
 

in the Department class, we are declaring that majors_in and has_majors are relationship 
properties that are inverses of one another and hence represent a 1:N binary relationship between 
Department and Student.  
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For the OML, the binding overloads the operation new so that it can be used to create either persistent 
or transient objects. To create persistent objects, one must provide the database name and the persistent 
name of the object. For example, by writing  

 
 

d_Ref<Student> s = new(DB1, ‘John_Smith’) Student;  

 
 

the programmer creates a named persistent object of type Student in database DB1 with persistent name 
John_Smith. Another operation, delete_object() can be used to delete objects. Object 
modification is done by the operations (methods) defined in each class by the programmer.  

The C++ binding also allows the creation of extents by using the library class d_Extent. For 
example, by writing  

 
 

d_Extent<Person> AllPersons(DB1);  

 
 

the programmer would create a named collection object AllPersons—whose type would be 
d_Set<Person>—in the database DB1 that would hold persistent objects of type Person. 
However, key constraints are not supported in the C++ binding, and any key checks must be 
programmed in the class methods (Note 28). Also, the C++ binding does not support persistence via 
reachability; the object must be statically declared to be persistent at the time it is created.  

 
 

12.5 Object Database Conceptual Design 

12.5.1 Differences Between Conceptual Design of ODB and RDB 
12.5.2 Mapping an EER Schema to an ODB Schema

Section 12.5.1 discusses how Object Database (ODB) design differs from Relational Database (RDB) 
design. Section 12.5.2 outlines a mapping algorithm that can be used to create an ODB schema, made 
of ODMG ODL class definitions, from a conceptual EER schema.  

 
 

12.5.1 Differences Between Conceptual Design of ODB and RDB 

One of the main differences between ODB and RDB design is how relationships are handled. In ODB, 
relationships are typically handled by having relationship properties or reference attributes that include 
OID(s) of the related objects. These can be considered as OID references to the related objects. Both 
single references and collections of references are allowed. References for a binary relationship can be 
declared in a single direction, or in both directions, depending on the types of access expected. If 
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declared in both directions, they may be specified as inverses of one another, thus enforcing the ODB 
equivalent of the relational referential integrity constraint.  

In RDB, relationships among tuples (records) are specified by attributes with matching values. These 
can be considered as value references and are specified via foreign keys, which are values of primary 
key attributes repeated in tuples of the referencing relation. These are limited to being single-valued in 
each record because multivalued attributes are not permitted in the basic relational model. Thus, M:N 
relationships must be represented not directly but as a separate relation (table), as discussed in Section 
9.1.  

Mapping binary relationships that contain attributes is not straightforward in ODBs, since the designer 
must choose in which direction the attributes should be included. If the attributes are included in both 
directions, then redundancy in storage will exist and may lead to inconsistent data. Hence, it is 
sometimes preferable to use the relational approach of creating a separate table by creating a separate 
class to represent the relationship. This approach can also be used for n-ary relationships, with degree n 
> 2.  

Another major area of difference between ODB and RDB design is how inheritance is handled. In 
ODB, these structures are built into the model, so the mapping is achieved by using the inheritance 
constructs, such as derived (:) and EXTENDS. In relational design, as we discussed in Section 9.2, there 
are several options to choose from since no built-in construct exists for inheritance in the basic 
relational model. It is important to note, though, that object-relational and extended-relational systems 
are adding features to directly model these constructs as well as to include operation specifications in 
abstract data types (see Chapter 13).  

The third major difference is that in ODB design, it is necessary to specify the operations early on in 
the design since they are part of the class specifications. Although it is important to specify operations 
during the design phase for all types of databases, it may be delayed in RDB design as it is not strictly 
required until the implementation phase.  

 
 

12.5.2 Mapping an EER Schema to an ODB Schema 

It is relatively straightforward to design the type declarations of object classes for an ODBMS from an 
EER schema that contains neither categories nor n-ary relationships with n > 2. However, the 
operations of classes are not specified in the EER diagram and must be added to the class declarations 
after the structural mapping is completed. The outline of the mapping from EER to ODL is as follows:  

 
 

Step 1: Create an ODL class for each EER entity type or subclass. The type of the ODL class should 
include all the attributes of the EER class (Note 29). Multivalued attributes are declared by using the 
set, bag, or list constructors (Note 30). If the values of the multivalued attribute for an object should be 
ordered, the list constructor is chosen; if duplicates are allowed, the bag constructor should be chosen; 
otherwise, the set constructor is chosen. Composite attributes are mapped into a tuple constructor (by 
using a struct declaration in ODL).  

Declare an extent for each class, and specify any key attributes as keys of the extent. (This is possible 
only if an extent facility and key constraint declarations are available in the ODBMS.)  

 
 

Step 2: Add relationship properties or reference attributes for each binary relationship into the ODL 
classes that participate in the relationship. These may be created in one or both directions. If a binary 
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relationship is represented by references in both directions, declare the references to be relationship 
properties that are inverses of one another, if such a facility exists (Note 31). If a binary relationship is 
represented by a reference in only one direction, declare the reference to be an attribute in the 
referencing class whose type is the referenced class name.  

Depending on the cardinality ratio of the binary relationship, the relationship properties or reference 
attributes may be single-valued or collection types. They will be single-valued for binary relationships 
in the 1:1 or N:1 directions; they are collection types (set-valued or list-valued (Note 32)) for 
relationships in the 1:N or M:N direction. An alternative way for mapping binary M:N relationships is 
discussed in Step 7 below.  

If relationship attributes exist, a tuple constructor (struct) can be used to create a structure of the form 
<reference, relationship attributes>, which may be included instead of the reference 
attribute. However, this does not allow the use of the inverse constraint. In addition, if this choice is 
represented in both directions, the attribute values will be represented twice, creating redundancy.  

 
 

Step 3: Include appropriate operations for each class. These are not available from the EER schema 
and must be added to the database design by referring to the original requirements. A constructor 
method should include program code that checks any constraints that must hold when a new object is 
created. A destructor method should check any constraints that may be violated when an object is 
deleted. Other methods should include any further constraint checks that are relevant.  

 
 

Step 4: An ODL class that corresponds to a subclass in the EER schema inherits (via EXTENDS) the 
type and methods of its superclass in the ODL schema. Its specific (non-inherited) attributes, 
relationship references, and operations are specified, as discussed in Steps 1, 2, and 3. 

 
 

Step 5: Weak entity types can be mapped in the same way as regular entity types. An alternative 
mapping is possible for weak entity types that do not participate in any relationships except their 
identifying relationship; these can be mapped as though they were composite multivalued attributes of 
the owner entity type, by using the set<struct<...>> or list<struct<...>> constructors. 
The attributes of the weak entity are included in the struct<. .> construct, which corresponds 
to a tuple constructor. Attributes are mapped as discussed in Steps 1 and 2.  

 
 

Step 6: Categories (union types) in an EER schema are difficult to map to ODL. It is possible to create 
a mapping similar to the EER-to-relational mapping (see Section 9.2) by declaring a class to represent 
the category and defining 1:1 relationships between the category and each of its superclasses. Another 
option is to use a union type, if it is available.  

 
 

Step 7: An n-ary relationship with degree n > 2 can be mapped into a separate class, with appropriate 
references to each participating class. These references are based on mapping a 1:N relationship from 
each class that represents a participating entity type to the class that represents the n-ary relationship. 
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An M:N binary relationship, especially if it contains relationship attributes, may also use this mapping 
option, if desired.  

 
 

The mapping has been applied to a subset of the UNIVERSITY database schema of Figure 04.10 in the 
context of the ODMG object database standard. The mapped object schema using the ODL notation is 
shown in Figure 12.06.  

 
 

12.6 Examples of ODBMSs 

12.6.1 Overview of the O2 System 
12.6.2 Overview of the ObjectStore System

We now illustrate the concepts discussed in this and the previous chapter by examining two ODBMSs. 
Section 12.6.1 presents an overview of the O2 system (now called Ardent) by Ardent Software, and 
Section 12.6.2 gives an overview of the ObjectStore system produced by Object Design Inc. As we 
mentioned at the beginning of this chapter, there are many other commercial and prototype ODBMSs; 
we use these two as examples to illustrate specific systems.  

 
 

12.6.1 Overview of the O2 System 

Data Definition in O2 
Data Manipulation in O2 
Overview of the O2 System Architecture

In our overview of the O2 system, we first illustrate data definition and then consider examples of data 
manipulation in O2. Following that, we give a brief discussion of the system architecture of O2.  

 
 

Data Definition in O2 

In O2, the schema definition uses the C++ or JAVA language bindings for ODL as defined by ODMG. 
Section 12.4 provided an overview of the ODMG C++ language binding. Figure 12.08(a) shows 
example definitions in the C++ O2 binding for part of the UNIVERSITY database given in ODL in Figure 
12.06. Note that the C++ O2 binding for defining relationships has chosen to be compliant with the 
simpler syntax of ODMG 1.1 for defining inverse relationships rather than the ODMG 2.0 described in 
Section 12.2.  

 

 

 
 

Data Manipulation in O2 
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Applications for O2 can be developed using the C++ (or JAVA) O2 binding, which provides an 
ODMG-compliant native language binding to the O2 database. The binding enhances the programming 
language by providing the following: persistent pointers; generic collections; persistent named objects; 
relationships; queries; and database system support for sessions, databases, and transactions.  

We now illustrate the use of the C++ O2 binding for writing methods for classes. Figure 12.08(b) 
shows example definitions for the implementation of the schema related to the Faculty class, including 
the constructor and the member functions (operations) to give a raise and to promote a faculty member. 
The default constructor for Faculty automatically maintains the extent. The programmer-specified 
constructor for Faculty shown in Figure 12.08(b) adds the new faculty object to its extent. Both 
member functions (operations) give_raise and promote modify attributes of persistent faculty 
objects. Although the ODMG C++ language binding indicates that a mark_modified member 
function of d_Object is to be called before the object is modified, the C++ O2 binding provides this 
functionality automatically.  

In the C++ ODMG model, persistence is declared when creating the object. Persistence is an 
immutable property; a transient object cannot become persistent. Referential integrity is not 
guaranteed; if subobjects of a persistent object are not persistent, the application will fail traversal of 
references. Also, if an object is deleted, references to it will fail when traversing them.  

By comparison, the O2 ODBMS supports persistence by reachability, which simplifies application 
programming and enforces referential integrity. When an object or value becomes persistent, so do all 
of its subobjects, freeing the programmer from performing this task explicitly. At any time, an object 
can switch from persistent to transient and back again. During object creation, the programmer does not 
need to decide whether the object will be persistent. Objects are made persistent when instantiated and 
continue to retain their identity. Objects no longer referenced are garbage-collected automatically.  

O2 also supports the object query language (OQL) as both an ad hoc interactive query language and as 
an embedded function in a programming language. Section 12.3 discussed the OQL standard in depth. 
When mapped into the C++ programming language, there are two alternatives for using OQL queries. 
The first approach is the use of a query member function (operation) on a collection; in this case, a 
selection predicate is specified, with the syntax of the where clause of OQL, to filter the collection by 
selecting the tuples satisfying the where condition. For example, suppose that the class Department 
has an extent departments; the following operation then uses the predicate specified as the second 
argument to filter the collection of departments and assigns the result to the first argument 
engineering_depts.  

 
 

d_Bag<d_Ref<Department>> engineering_depts;  

departments->query(engineering_depts, "this.college =  

\"Engineering\" ");  

 
 

In the example, the keyword this refers to the object to which the operation is applied (the 
departments collection in this case). The condition (college="Engineering") filters the 
collection, returning a bag of references to departments in the college of "Engineering" (Note 33).  

The second approach provides complete functionality of OQL from a C++ program through the use of 
the d_oql_execute function, which executes a constructed query of type d_OQL_Query as given 
in its first argument and returns the result into the C++ collection specified in its second argument. The 
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following embedded OQL example is identical to Q0, returning the names of departments in the 
college of Engineering into the C++ collection engineering_dept_names.  

 
 

d_Bag<d_String> engineering_dept_names;  

d_OQL_Query     q0( 

"select d.dname from d in departments where d.college =  

\"Engineering\"");  

d_oql_execute(q0, engineering_dept_names);  

 
 

Queries may contain parameters, specified by the syntax $i, where i is a number referring to the ith 
operand in the query. The << operator is used to pass parameters to the query, before calling the 
d_oql_execute function.  

 
 

Overview of the O2 System Architecture 

In this section, we give a brief overview of the O2 system architecture. The kernel of the O2 system, 
called O2Engine, is responsible for much of the ODBMS functionality. This includes providing support 
for storing, retrieving, and updating persistently stored objects that may be shared by multiple 
programs. O2Engine implements the concurrency control, recovery, and security mechanisms that are 
typical in database systems. In addition, O2Engine implements a transaction management model, 
schema evolution mechanisms, versioning, notification management as well as a replication 
mechanism.  

The implementation of O2Engine at the system level is based on a client/server architecture to 
accommodate the current trend toward networked and distributed computer systems (see Chapter 17 
and Chapter 24). The server component, which can be a file server machine, is responsible for 
retrieving data efficiently when requested by a client and to maintain the appropriate concurrency 
control and recovery information. In O2, concurrency control uses locking, and recovery is based on a 
write-ahead logging technique (see Chapter 21). O2 provides adaptive locking. By default, locking is at 
the page level but is moved down to the object level when a conflict occurs on the page. The server 
also does a certain amount of page caching to reduce disk I/O, and it is accessed via a remote procedure 
call (RPC) interface from the clients. A client is typically a workstation or PC and most of the O2 
functionality is provided at the client level.  

At the functional level, O2Engine has three main components: (1) the storage component, (2) the object 
manager, and (3) the schema manager. The storage component is at the lowest level. The 
implementation of this layer is split between the client and the server. The server process provides disk 
management, page storage and retrieval, concurrency control, and recovery. The client process caches 
pages and locks that have been provided by the server and makes them available to the higher-level 
functional modules of the O2 client.  

The next functional component, called the object manager, deals with structuring objects and values, 
clustering related objects on disk pages, indexing objects, maintaining object identity, performing 
operations on objects, and so on. Object identifiers were implemented in O2 as the physical disk 
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address of an object, to avoid the overhead of logical-to-physical OID mapping. The OID includes a 
disk volume identifier, a page number within the volume, and a slot number within the page. O2 also 
provides a logical permanent identifier for any persistent object or collection to allow external 
applications or databases to keep object identifiers that will always be valid even if the objects are 
moved. External identifiers are never reused. The system manages a special B-tree to store external 
identifiers, therefore accessing an object using its external ID is done in constant time. Structured 
complex objects are broken down into record components, and indexes are used to access set-structured 
or list-structured components of an object.  

The top functional level of O2Engine is called the schema manager. It keeps track of class, type, and 
method definitions; provides the inheritance mechanisms; checks the consistency of class declarations; 
and provides for schema evolution, which includes the creation, modification, and deletion of class 
declarations incrementally. When an application accesses an object whose class has changed, the object 
manager automatically adapts its structure to the current definition of the class, without introducing any 
new overhead for up-to-date objects. For the interested reader, references to material that discusses 
various aspects of the O2 system are given in the selected bibliography at the end of this chapter.  

 
 

12.6.2 Overview of the ObjectStore System 

Data Definition in ObjectStore 
Data Manipulation in ObjectStore

In this section, we give an overview of the ObjectStore ODBMS. First we illustrate data definition in 
ObjectStore, and then we give examples of queries and data manipulation.  

 
 

Data Definition in ObjectStore 

The ObjectStore system has different packages that can be acquired separately. One package provides 
persistent storage for the JAVA programming language and another for the C++ programming 
language. We will describe only the C++ package, which is closely integrated with the C++ language 
and provides persistent storage capabilities for C++ objects. ObjectStore uses C++ class declarations as 
its data definition language, with an extended C++ syntax that includes additional constructs 
specifically useful in database applications. Objects of a class can be transient in the program, or they 
can be persistently stored by ObjectStore. Persistent objects can be shared by multiple programs. A 
pointer to an object has the same syntax regardless of whether the object is persistent or transient, so 
persistence is somewhat transparent to the programmers and users.  

Figure 12.09 shows possible ObjectStore C++ class declarations for a portion of the UNIVERSITY 
database, whose EER schema was given in Figure 04.10. ObjectStore’s extended C++ compiler 
supports inverse relationship declarations and additional functions (Note 34). In C++, an asterisk (*) 
specifies a reference (pointer), and the type of field (attribute) is listed before the attribute name. For 
example, the declaration  

 
 

Faculty *advisor  
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in the Grad_Student class specifies that the attribute advisor has the type pointer to a Faculty 
object. The basic types in C++ include character (char), integer (int), and real number (float). A 
character string can be declared to be of type char* (a pointer to an array of characters).  

 

 

 
 

In C++, a derived class E’ inherits the description of a base class E by including the name of E in the 
definition of E’ following a colon (:) and either the keyword public or the keyword private (Note 35). 
For example, in Figure 12.09, both the Faculty and the Student classes are derived from the Person 
class, and both inherit the fields (attributes) and the functions (methods) declared in the description of 
Person. Functions are distinguished from attributes by including parameters between parentheses after 
the function name. If a function has no parameters, we just include the parentheses (). A function that 
does not return a value has the type void. ObjectStore adds its own set constructor to C++ by using 
the keyword os_Set (for ObjectStore set). For example, the declaration  

 
 

os_Set<Transcript*> transcript  

 
 

within the Student class specifies that the value of the attribute transcript in each Student 
object is a set of pointers to objects of type Transcript. The tuple constructor is implict in C++ 
declarations whenever various attributes are declared in a class. ObjectStore also has bag and list 
constructors, called os_Bag and os_List, respectively.  

The class declarations in Figure 12.09 include reference attributes in both directions for the 
relationships from Figure 04.10. ObjectStore includes a relationship facility permitting the 
specification of inverse attributes that represent a binary relationship. Figure 12.10 illustrates the syntax 
of this facility.  

 

 

 
 

Figure 12.10 also illustrates another C++ feature: the constructor function for a class. A class can have 
a function with the same name as the class name, which is used to create new objects of the class. In 
Figure 12.10, the constructor for Faculty supplies only the ssn value for a Faculty object (ssn is 
inherited from Person), and the constructor for Department supplies only the dname value. The 
values of other attributes can be added to the objects later, although in a real system the constructor 
function would include more parameters to construct a more complete object. We discuss how 
constructors can be used to create persistent objects next.  
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Data Manipulation in ObjectStore 

The ObjectStore collection types os_Set, os_Bag, and os_List can have additional functions 
applied to them. These include the functions insert(e), remove(e), and create, which can be 
used to insert an element e into a collection, to remove an element e from a collection, and to create a 
new collection, respectively. In addition, a for programming construct creates a cursor iterator c to 
loop over each element c in a collection. These functions are illustrated in Figure 12.11(a), which 
shows how a few of the methods declared in Figure 12.09 may be specified in ObjectStore. The 
function add_major adds a (pointer to a) student to the set attribute majors of the Department class, 
by invoking the insert function via the statement majors–>insert. Similarly, the remove_major 
function removes a student pointer from the same set. Here, we assume that the appropriate 
declarations of relationships have been made, so any inverse attributes are automatically maintained by 
the system. In the grade_point_average function, the for loop is used to iterate over the set of 
transcript records within a Student object to calculate the GPA.  

 

 

 
 

In C++, functional reference to components within an object o uses the arrow notation when a pointer 
to o is provided, and uses the dot notation when a variable whose value is the object o itself is 
provided. These references can be used to refer to both attributes and functions of an object. For 
example, the references d.year and t–>ngrade in the age and grade_point_average 
functions refer to component attributes, whereas the reference to majors+>remove in 
remove_major invokes the remove function of ObjectStore on the majors set.  

To create persistent objects and collections in ObjectStore, the programmer or user must assign a 
name, which is also called a persistent variable. The persistent variable can be viewed as a shorthand 
reference to the object, and it is permanently "remembered" by ObjectStore. For example, in Figure 
12.11(b), we created two persistent set-valued objects all_faculty and all_depts and made 
them persistent in the database called univ_db. These objects are used by the application to hold 
pointers to all persistent objects of type faculty and department, respectively. An object that is a 
member of a defined class may be created by invoking the object constructor function for that class, 
with the keyword new. For example, in Figure 12.11(b), we created a Faculty object and a 
Department object, and then related them by invoking the method add_faculty. Finally, we 
added them to the all_faculty and all_dept sets to make them persistent.  

ObjectStore also has a query facility, which can be used to select a set of objects from a collection by 
specifying a selection condition. The result of a query is a collection of pointers to the objects that 
satisfy the query. Queries can be embedded within a C++ program and can be considered a means of 
associative high-level access to select objects that avoids the need to create an explicit looping 
construct. Figure 12.12 illustrates a few queries, each of which returns a subset of objects from the 
all_faculty collection that satisfy a particular condition. The first query in Figure 12.12 selects all 
Faculty objects from the all_faculty collection whose rank is Assistant Professor. The 
second query retrieves professors whose salary is greater than $5,000.00. The third query retrieves 
department chairs, and the fourth query retrieves computer science faculty.  
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12.7 Overview of the CORBA Standard for Distributed Objects 

A guiding principle of the ODMG 2.0 object database standard was to be compatible with the Common 
Object Request Broker Architecture (CORBA) standards of the Object Management Group (OMG). 
CORBA is an object management standard that allows objects to communicate in a distributed, 
heterogeneous environment, providing transparency across network, operating system, and 
programming language boundaries. Since the OMG object model is a common model for object-
oriented systems, including ODBMS, the ODMG has defined its object model to be a superset of the 
OMG object model. Although the OMG has not yet standardized the use of an ODBMS within 
CORBA, the ODMG has addressed this issue in a position statement, defining an architecture within 
the OMG environment for the use of ODBMS. This section includes a brief overview of CORBA to 
facilitate a discussion on the relationship of the ODMG 2.0 object database standard to the OMG 
CORBA standard.  

CORBA uses objects as a unifying paradigm for distributed components written in different 
programming languages and running on various operating systems and networks. CORBA objects can 
reside anywhere on the network. It is the responsibility of an Object Request Broker (ORB) to provide 
the transparency across network, operating system, and programming language boundaries by receiving 
method invocations from one object, called the client, and delivering them to the appropriate target 
object, called the server. The client object is only aware of the server object’s interface, which is 
specified in a standard definition language.  

The OMG’s Interface Definition Language (IDL) is a programming language independent specification 
of the public interface of a CORBA object. IDL is part of the CORBA specification and describes only 
the functionality, not the implementation, of an object. Therefore, IDL provides programming language 
interoperability by specifying only the attributes and operations belonging to an interface. The methods 
specified in an interface definition can be implemented in and invoked from a programming language 
that provides CORBA bindings, such as C, C++, ADA, SMALLTALK, and JAVA.  

An interface definition in IDL strongly resembles an interface definition in ODL, since ODL was 
designed with IDL compatibility as a guiding principle. ODL, however, extends IDL with relationships 
and class definitions. IDL cannot declare member variables. The attribute declarations in an IDL 
interface definition do not indicate storage, but they are mapped to get and set methods to retrieve and 
modify the attribute value. This is why ODL classes that inherit behavior only from an interface must 
duplicate the inherited attribute declarations since attribute specifications in classes define member 
variables. IDL method specifications must include the name and mode (input, output) of parameters 
and the return type of the method. IDL method specifications do not include the specification of 
constructors or destructors, and operation name overloading is not allowed.  

The IDL specification is compiled to verify the interface definition and to map the IDL interface into 
the target programming language of the compiler. An IDL compiler generates three files: (1) a header 
file, (2) a client source file, and (3) a server source file. The header file defines the programming 
language specific view of the IDL interface definition, which is included in both the server and its 
clients. The client source file, called the stub code, is included in the source code of the client to 
transmit requests to the server for the interfaces defined in the compiled IDL file. The server source 
file, called the skeleton code, is included in the source code of the server to accept requests from a 
client. Since the same programmer does not in general write the client and server implementations at 
the same time in the same programming language, not all of the generated files are necessarily used. 
The programmer writing the client implementation uses the header and stub code. The programmer 
writing the server implementation uses the header and skeleton code.  

The above compilation scenario illustrates static definitions of method invocations at compile time, 
providing strong type checking. CORBA also provides the flexibility of dynamic method invocations at 
run time. The CORBA Interface Repository contains the metadata or descriptions of the registered 
component interfaces. The capability to retrieve, store, and modify metadata information is provided by 
the Interface Repository Application Program Interfaces (APIs). The Dynamic Invocation Interface 
(DII) allows the client at run-time to discover objects and their interfaces, to construct and invoke these 
methods, and to receive the results from these dynamic invocations. The Dynamic Skeleton Interface 
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(DSI) allows the ORB to deliver requests to registered objects that do not have a static skeleton 
defined. This extensive use of metadata makes CORBA a self-describing system.  

Figure 12.13 shows the structure of a CORBA 2.0 ORB. Most of the components of the diagram have 
already been explained in our discussion thus far, except for the Object Adapter, the Implementation 
Repository (not shown in figure), and the ORB Interface.  

 

 

 
 

The Object Adapter (OA) acts as a liaison between the ORB and object implementations, which 
provide the state and behavior of an object. An object adapter is responsible for the following: 
registering object implementations; generating and mapping object references; registering activation 
and deactivation of object implementations; and invoking methods, either statically or dynamically. 
The CORBA standard requires that an ORB support a standard adapter known as the Basic Object 
Adapter (BOA). The ORB may support other object adapters. Two other object adapters have been 
proposed but not standardized: a Library Object Adapter and an Object-Oriented Database Adapter.  

The Object Adapter registers the object implementations in an Implementation Repository. This 
registration typically includes a mapping from the name of the server object to the name of the 
executable code of the object implementation.  

The ORB Interface provides operations on object references. There are two types of object references: 
(1) an invocable reference that is valid within the session it is obtained, and (2) a stringified reference 
that is valid across session boundaries (Note 36). The ORB Interface provides operations to convert 
between these forms of object references.  

The Object Management Architecture (OMA), shown in Figure 12.14, is built on top of the core 
CORBA infrastructure. The OMA provides optional CORBAservices and CORBAfacilities for 
support of distributed applications through a collection of interfaces specified in IDL. 
CORBAservices provide system-level services to objects, such as naming and event services. 
CORBAfacilities provide higher-level services for application objects. The CORBAfacilities 
are categorized as either horizontal or vertical. Horizontal facilities span application domains—for 
example, services that facilitate user interface programming for any application domain. Vertical 
facilities are specific to an application domain—for example, specific services needed in the 
telecommunications application domain.  

 

 

 
 

Some of the CORBAservices are database related, such as concurrency and query services, and thus 
overlap with the facilities of a DBMS. The OMG has not yet standardized the use of an ODBMS within 
CORBA. The ODMG has addressed this issue in a position statement, indicating that the integration of 
an ODBMS in an OMG ORB environment must respect the goals of distribution and heterogeneity 
while allowing the ODBMS to be responsible for its multiple objects. The relationship between the 
ORB and the ODBMS should be reciprocal; the ORB should be able to use the ODBMS as a repository 
and the ODBMS should be able to use the services provided by the ORB.  
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It is unrealistic to expect every object within an ODBMS to be individually registered with the ORB 
since the overhead would be prohibitive. The ODMG proposes the use of an alternative adapter, called 
an Object Database Adapter (ODA), to provide the desired flexibility and performance. The ODBMS 
should have the capability to manage both ORB registered and unregistered objects, to register 
subspaces of object identifiers within the ORB, and to allow direct access to the objects managed by 
the ODBMS. To access objects in the database that are not registered with the ORB, an ORB request is 
made to the database object, making the objects in the database directly accessible to the application. 
From the client’s view, access to objects in the database that are registered with the ORB should not be 
different than any other ORB-accessible object.  

 
 

12.8 Summary 

In this chapter we discussed the proposed standard for object-oriented databases. We started by 
describing the various constructs of the ODMG object model. The various built-in types, such as 
Object, Collection, Iterator, Set, List, and so on were described by their interfaces, which specify the 
built-in operations of each type. These built-in types are the foundation upon which the object 
definition language (ODL) and object query language (OQL) are based. We also described the 
difference between objects, which have an ObjectId, and literals, which are values with no OID. Users 
can declare classes for their application that inherit operations from the appropriate built-in interfaces. 
Two types of properties can be specified in a user-defined class—attributes and relationships—in 
addition to the operations that can be applied to objects of the class. The ODL allows users to specify 
both interfaces and classes, and permits two different types of inheritance—interface inheritance via ":" 
and class inheritance via EXTENDS. A class can have an extent and keys.  

A description of ODL then followed, and an example database schema for the UNIVERSITY database 
was used to illustrate the ODL constructs. We then presented an overview of the object query language 
(OQL). The OQL follows the concept of orthogonality in constructing queries, meaning that an 
operation can be applied to the result of another operation as long as the type of the result is of the 
correct input type for the operation. The OQL syntax follows many of the constructs of SQL but 
includes additional concepts such as path expressions, inheritance, methods, relationships, and 
collections. Examples of how to use OQL over the UNIVERSITY database were given.  

We then gave an overview of the C++ language binding, which extends C++ class declarations with the 
ODL type constructors but permits seamless integration of C++ with the ODBMS.  

Following the description of the ODMG model, we described a general technique for designing object-
oriented database schemas. We discussed how object-oriented databases differ from relational 
databases in three main areas: references to represent relationships, inclusion of operations, and 
inheritance. We showed how to map a conceptual database design in the EER model to the constructs 
of object databases. We then gave overviews of two ODBMSs, O2 and Object Store. Finally, we gave 
an overview of the CORBA (Common Object Request Broker Architecture) standard for supporting 
interoperability among distributed object systems, and how it relates to the object database standard.  

 
 

Review Questions 

  12.1.  What are the differences and similarities between objects and literals in the ODMG Object 
Model?  

  12.2.  List the basic operations of the following built-in interfaces of the ODMG Object Model: 
Object, Collection, Iterator, Set, List, Bag, Array, and Dictionary.  

  12.3.  Describe the built-in structured literals of the ODMG Object Model and the operations of each. 
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  12.4.  What are the differences and similarities of attribute and relationship properties of a user-
defined (atomic) class?  

  12.5.  What are the differences and similarities of EXTENDS and interface ":" inheritance?  

  12.6.  Discuss how persistence is specified in the ODMG Object Model in the C++ binding.  

  12.7.  Why are the concepts of extents and keys important in database applications?  

  12.8.  Describe the following OQL concepts: database entry points, path expressions, iterator 
variables, named queries (views), aggregate functions, grouping, and quantifiers.  

  12.9.  What is meant by the type orthogonality of OQL?  

12.10.  Discuss the general principles behind the C++ binding of the ODMG standard.  

12.11.  What are the main differences between designing a relational database and an object database?  

12.12.  Describe the steps of the algorithm for object database design by EER-to-OO mapping.  

12.13.  What is the objective of CORBA? Why is it relevant to the ODMG standard?  

12.14.  Describe the following CORBA concepts: IDL, stub code, skeleton code, DII (Dynamic 
Invocation Interface), and DSI (Dynamic Skeleton Interface).  

 
 

Exercises 

12.15.  Design an OO schema for a database application that you are interested in. First construct an 
EER schema for the application; then create the corresponding classes in ODL. Specify a 
number of methods for each class, and then specify queries in OQL for your database 
application.  

12.16.  Consider the AIRPORT database described in Exercise 4.21. Specify a number of 
operations/methods that you think should be applicable to that application. Specify the ODL 
classes and methods for the database.  

12.17.  Map the COMPANY ER schema of Figure 03.02 into ODL classes. Include appropriate methods 
for each class.  

12.18.  Specify in OQL the queries in the exercises to Chapter 7 and Chapter 8 that apply to the 
COMPANY database.  

 
 

Selected Bibliography 

Cattell et al. (1997) describes the ODMG 2.0 standard and Cattell et al. (1993) describes the earlier 
versions of the standard. Several books describe the CORBA architecture—for example, Baker (1996). 
Other general references to object-oriented databases were given in the bibliographic notes to Chapter 
11.  

The O2 system is described in Deux et al. (1991) and Bancilhon et al. (1992) includes a list of 
references to other publications describing various aspects of O2. The O2 model was formalized in 
Velez et al. (1989). The ObjectStore system is described in Lamb et al. (1991). Fishman et al. (1987) 
and Wilkinson et al. (1990) discuss IRIS, an object-oriented DBMS developed at Hewlett-Packard 
laboratories. Maier et al. (1986) and Butterworth et al. (1991) describe the design of GEMSTONE. An 
OO system supporting open architecture developed at Texas Instruments is described in Thompson et 
al. (1993). The ODE system developed at ATT Bell Labs is described in Agrawal and Gehani (1989). 
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The ORION system developed at MCC is described in Kim et al. (1990). Morsi et al. (1992) describes 
an OO testbed.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20 
Note 21 
Note 22 
Note 23 
Note 24 
Note 25 
Note 26 
Note 27 
Note 28 
Note 29 
Note 30 
Note 31 
Note 32 
Note 33 
Note 34 
Note 35 
Note 36

Note 1 

In this chapter, we will use object database instead of object-oriented database (as in the previous 
chapter), since this is now more commonly accepted terminology for standards.  

 
 

Note 2 

The earlier version of the object model was published in 1993.  
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Note 3 

We will use the terms value and state interchangeably here.  

 
 

Note 4 

Corresponds to the OID of Chapter 11.  

 
 

Note 5 

This corresponds to the naming mechanism described in Section 11.3.  

 
 

Note 6 

In the ODMG model, atomic objects do not correspond to objects whose values are basic data types. 
All basic values (integers, reals, etc.) are considered to be literals.  

 
 

Note 7 

The struct construct corresponds to the tuple constructor of Chapter 11.  

 
 

Note 8 

The use of the word atomic in atomic literal does correspond to the way we used atom constructor in 
Section 11.2.2.  

 
 

Note 9 

The structures for Date, Interval, Time, and Timestamp can be used to create either literal values or 
objects with identifiers.  
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Note 10 

These are similar to the corresponding type constructors described in Section 11.2.2.  

 
 

Note 11 

Interface is also the keyword used in the CORBA standard (see Section 12.5) and the JAVA 
programming language.  

 
 

Note 12 

Additional operations are defined on objects for locking purposes, which are not shown in Figure 
12.01. We discuss locking concepts for databases in Chapter 20.  

 
 

Note 13 

As mentioned earlier, this definition of atomic object in the ODMG object model is different from the 
definition of atom constructor given in Chapter 11, which is the definition used in much of the object-
oriented database literature.  

 
 

Note 14 

We are using the Object Definition Language (ODL) notation in Figure 12.03, which will be discussed 
in more detail in Section 12.2.  

 
 

Note 15 

Chapter 3 discussed how a relationship can be represented by two attributes in inverse directions.  

 
 

Note 16 

This is somewhat similar to the concept of abstract class in the C++ programming language.  

 
 

Note 17 
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The ODMG 2.0 report also calls interface inheritance as type/subtype, is-a, and 
generalization/specialization relationships, although, in the literature, these terms have been used to 
describe inheritance of both state and operations (see Chapter 4 and Chapter 11).  

 
 

Note 18 

A composite key is called a compound key in the ODMG 2.0 report.  

 
 

Note 19 

The ODL syntax and data types are meant to be compatible with the Interface Definition Language 
(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships 
and other database concepts.  

 
 

Note 20 

We will discuss alternative mappings for attributes of relationships in Section 12.5.  

 
 

Note 21 

This is similar to how an M:N relationship is mapped in the relational model (see Chapter 9) and in the 
legacy network model (see Appendix C).  

 
 

Note 22 

This is similar to the tuple variables that range over tuples in SQL queries.  

 
 

Note 23 

Note that the latter two options are similar to the syntax for specifying tuple variables in SQL queries.  

 
 

Note 24 

As mentioned earlier, struct corresponds to the tuple constructor discussed in Chapter 11.  
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Note 25 

These correspond to aggregate functions in SQL.  

 
 

Note 26 

Presumably, d_ stands for database classes.  

 
 

Note 27 

That is, member variables in object-oriented programming terminology.  

 
 

Note 28 

We have only provided a brief overview of the C++ binding. For full details, see Cattell et al. (1997), 
Chapter 5.  

 
 

Note 29 

This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tuple 
constructor is not explicitly shown in the ODL class declarations.  

 
 

Note 30 

Further analysis of the application domain is needed to decide on which constructor to use because this 
information is not available from the EER schema.  

 
 

Note 31 

The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS products 
may not provide this support; in such a case, the programmers must maintain every relationship 
explicitly by coding the methods that update the objects appropriately.  
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Note 32 

The decision whether to use set or list is not available from the EER schema and must be determined 
from the requirements.  

 
 

Note 33 

Note that because the condition itself is a string specified between quotation marks ". . .", we must 
place \" if a quote character appears literally within that string.  

 
 

Note 34 

ObjectStore can also be used with other C++ compilers, by including ObjectStore’s C++ library 
interface.  

 
 

Note 35 

C++ has two types of derivations: public and private. We will consider only public derivations here.  

 
 

Note 36 

A stringified reference is a reference (pointer, ObjectId) that has been converted to a string so it can be 
passed among heterogeneous systems. The ORB will convert it back to a reference when required.  

 
 

Chapter 13: Object Relational and Extended 
Relational Database Systems 
13.1 Evolution and Current Trends of Database Technology 
13.2 The Informix Universal Server 
13.3 Object-Relational Features of Oracle 8 
13.4 An Overview of SQL3 
13.5 Implementation and Related Issues for Extended Type Systems 
13.6 The Nested Relational Data Model 
13.7 Summary 
Selected Bibliography 
Footnotes

In the preceding chapters we have primarily discussed three data models—the Entity-Relationship 
(ER) model and its enhanced version, the EER model, in Chapter 3 and Chapter 4; the relational data 
model and its languages and systems in Chapter 7 through Chapter 10; and the object-oriented data 
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model and object database languages and standards in Chapter 11 and Chapter 12. We discussed how 
all these data models have been thoroughly developed in terms of the following features:  

• Modeling constructs for developing schemas for database applications.  
• Constraints facilities for expressing certain types of relationships and constraints on the data 

as determined by application semantics.  
• Operations and language facilities to manipulate the database.  

Out of these three models, the ER model has been primarily employed in CASE tools that are used for 
database and software design, whereas the other two models have been used as the basis for 
commercial DBMSs. This chapter discusses the emerging class of commercial DBMSs that are called 
object-relational or enhanced relational systems, and some of the conceptual foundations for these 
systems. These systems—which are often called object-relational DBMSs (ORDBMSs)—emerged as a 
way of enhancing the capabilities of relational DBMSs (RDBMSs) with some of the features that 
appeared in object DBMSs (ODBMSs).  

We start in Section 13.1 by giving a historical perspective of database technology evolution and current 
trends to understand why these systems emerged. Section 13.2 gives an overview of the Informix 
database server as an example of a commercial extended ORDBMS. Section 13.3 discusses the object-
relational and extended features of Oracle, which was described in Chapter 10 as an example of a 
commercial RDBMS. We then turn our attention to the issue of standards in Section 13.4 by giving an 
overview of the SQL3 standard, which provides extended and object capabilities to the SQL standard 
for RDBMS. Section 13.5 discusses some issues related to the implementation of extended relational 
systems and Section 13.6 presents an overview of the nested relational model, which provides some of 
the theoretical foundations behind extending the relational model with complex objects. Section 13.7 is 
a summary.  

Readers interested in typical features of ORDBMS may read Section 13.1, Section 13.2 and Section 
13.3 and be familiar with features of SQL3 from Section 13.4. Those interested in the trends for the 
SQL standard may read only Section 13.4. Other sections may be skipped in an introductory course.  

 
 

13.1 Evolution and Current Trends of Database Technology 

13.1.1 The Evolution of Database Systems Technology 
13.1.2 The Current Drivers of Database Systems Technology

Section 13.1.1 gives a historical overview of the evolution of database systems technology, while 
Section 13.1.2 gives an overview of current trends.  

 
 

13.1.1 The Evolution of Database Systems Technology 

In the commercial world today, there are several families of DBMS products available. Two of the 
most dominant ones are RDBMS and ODBMS, which subscribe to the relational and the object data 
models respectively. Two other major types of DBMS products—hierarchical and network—are now 
being referred to as legacy DBMSs; these are based on the hierarchical and the network data models, 
both of which were introduced in the mid-1960s. The hierarchical family primarily has one dominant 
product—IMS of IBM, whereas the network family includes a large number of DBMSs, such as IDS II 
(Honeywell), IDMS (Computer Associates), IMAGE (Hewlett Packard), VAX-DBMS (Digital), and 
TOTAL/SUPRA (Cincom), to name a few. The hierarchical and network data models are summarized 
in Appendix C and Appendix D (Note 1). 
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As database technology evolves, the legacy DBMSs will be gradually replaced by newer offerings. In 
the interim, we must face the major problem of interoperability—the interoperation of a number of 
databases belonging to all of the disparate families of DBMSs—as well as to legacy file management 
systems. A whole series of new systems and tools to deal with this problem are emerging as well. 
Chapter 12 outlined standards like ODMG and CORBA, which are bringing interoperability and 
portability to applications involving databases from different models and systems.  

 
 

13.1.2 The Current Drivers of Database Systems Technology 

The main forces behind the development of extended ORDBMSs stem from the inability of the legacy 
DBMSs and the basic relational data model as well as the earlier RDBMSs to meet the challenges of 
new applications (Note 2). These are primarily in areas that involve a variety of types of data—for 
example, text in computer-aided desktop publishing; images in satellite imaging or weather forecasting; 
complex nonconventional data in engineering designs, in the biological genome information, and in 
architectural drawings; time series data in history of stock market transactions or sales histories; and 
spatial and geographic data in maps, air/water pollution data, and traffic data. Hence there is a clear 
need to design databases that can develop, manipulate, and maintain the complex objects arising from 
such applications. Furthermore, it is becoming necessary to handle digitized information that represents 
audio and video data streams (partitioned into individual frames) requiring the storage of BLOBs 
(binary large objects) in DBMSs.  

The popularity of the relational model is helped by a very robust infrastructure in terms of the 
commercial DBMSs that have been designed to support it. However, the basic relational model and 
earlier versions of its SQL language proved inadequate to meet the above challenges. Legacy data 
models like the network data model have a facility to model relationships explicitly, but they suffer 
from a heavy use of pointers in the implementation and have no concepts like object identity, 
inheritance, encapsulation, or the support for multiple data types and complex objects. The hierarchical 
model fits well with some naturally occurring hierarchies in nature and in organizations, but it is too 
limited and rigid in terms of built-in hierarchical paths in the data. Hence, a trend was started to 
combine the best features of the object data model and languages into the relational data model so that 
it can be extended to deal with the challenging applications of today.  

In most of this chapter we highlight the features of two representative DBMSs that exemplify the 
ORDBMS approach: Informix Universal Server and Oracle 8 (Note 3). We then discuss features of the 
SQL3 language—the next version of the SQL standard—which extends SQL2 (or SQL-92) by 
incorporating object database and other features such as extended data types. We conclude by briefly 
discussing the nested relational model, which has its origin in a series of research proposals and 
prototype implementations; this provides a means of embedding hierarchically structured complex 
objects within the relational framework.  

 
 

13.2 The Informix Universal Server 

How Informix Universal Server Extends the Relational Data Model 
13.2.1 Extensible Data Types 
13.2.2 Support for User-Defined Routines 
13.2.3 Support for Inheritance 
13.2.4 Support for Indexing Extensions 
13.2.5 Support for External Data Source 
13.2.6 Support for Data Blades Application Programming Interface

(Note 4) 
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The Informix Universal Server is an ORDBMS that combines relational and object database 
technologies from two previously existing products: Informix and Illustra. The latter system originated 
from the POSTGRES DBMS, which was a research project at the University of California at Berkeley 
that was commercialized as the Montage DBMS and went through the name Miro before being named 
Illustra. Illustra was then acquired by Informix, integrated into its RDBMS, and introduced as the 
Informix Universal Server—an ORDBMS.  

To see why ORDBMSs emerged, we start by focusing on one way of classifying DBMS applications 
according to two dimensions or axes: (1) complexity of data—the X-dimension—and (2) complexity of 
querying—the Y-dimension. We can arrange these axes into a simple 0-1 space having four quadrants:  

 
 

Quadrant 1 (X = 0, Y = 0): Simple data, simple querying  

Quadrant 2 (X = 0, Y = 1): Simple data, complex querying  

Quadrant 3 (X = 1, Y = 0): Complex data, simple querying  

Quadrant 4 (X = 1, Y = 1): Complex data, complex querying  

 
 

Traditional RDBMSs belong to Quadrant 2. Although they support complex ad hoc queries and updates 
(as well as transaction processing), they can deal only with simple data that can be modeled as a set of 
rows in a table. Many object databases (ODBMSs) fall in Quadrant 3, since they concentrate on 
managing complex data but have somewhat limited querying capabilities based on navigation (Note 5). 
In order to move into the fourth quadrant to support both complex data and querying, RDBMSs have 
been incorporating more complex data objects (as we shall describe here) while ODBMSs have been 
incorporating more complex querying (for example, the OQL high-level query language, discussed in 
Chapter 12). The Informix Universal Server belongs to Quadrant 4 because it has extended its basic 
relational model by incorporating a variety of features that make it object-relational.  

Other current ORDBMSs that evolved from RDBMSs include Oracle 8 from Oracle Corporation, 
Universal DB (UDB) from IBM, Odapter by Hewlett Packard (HP) (which extends Oracle’s DBMS), 
and Open ODB from HP (which extends HP’s own Allbase/SQL product). The more successful 
products seem to be those that maintain the option of working as an RDBMS while introducing the 
additional functionality. Another system, UniSQL from UniSQL Inc., was developed from scratch as 
an ORDBMS product. Our intent here is not to provide a comparative analysis of these products but 
only to give an overview of two representative systems.  

 
 

How Informix Universal Server Extends the Relational Data Model 

The extensions to the relational data model provided by Illustra and incorporated into Informix 
Universal Server fall into the following categories:  

• Support for additional or extensible data types.  
• Support for user-defined routines (procedures or functions).  
• Implicit notion of inheritance.  
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• Support for indexing extensions.  
• Data Blades Application Programming Interface (API) (Note 6). 

We give an overview of each of these features in the following sections. We have already introduced in 
a general way the concepts of data types, type constructors, complex objects, and inheritance in the 
context of object-oriented models (see Chapter 11).  

 
 

13.2.1 Extensible Data Types 

Opaque Type 
Distinct Type 
Row Type 
Collection Type

The architecture of Informix Universal Server comprises the basic DBMS plus a number of Data 
Blade modules. The idea is to treat the DBMS as a razor into which a particular blade is inserted for 
the support of a specific data type. A number of data types have been provided, including two-
dimensional geometric objects (such as points, lines, circles, and ellipses), images, time series, text, and 
Web pages. When Informix announced the Universal Server, 29 Data Blades were already available 
(Note 7). It is also possible for an application to create its own types, thus making the data type notion 
fully extendible. In addition to the built-in types, Informix Universal Server provides the user with the 
following four constructs to declare additional types (Note 8): 

1. Opaque type.  
2. Distinct type.  
3. Row type.  
4. Collection type.  

When creating a type based on one of the first three options, the user has to provide functions and 
routines for manipulation and conversion, including built-in, aggregate, and operator functions as well 
as any additional user-defined functions and routines. The details of these four types are presented in 
the following sections.  

 
 

Opaque Type 

The opaque type has its internal representation hidden, so it is used for encapsulating a type. The user 
has to provide casting functions to convert an opaque object between its hidden representation in the 
server (database) and its visible representation as seen by the client (calling program). The user 
functions send/receive are needed to convert to/from the server internal representation from/to the 
client representation. Similarly, import/export functions are used to convert to/from an external 
representation for bulk copy from/to the internal representation. Several other functions may be defined 
for processing the opaque types, including assign(), destroy(), and compare().  

The specification of an opaque type includes its name, internal length if fixed, maximum internal 
length if it is variable length, alignment (which is the byte boundary), as well as whether or not it is 
hashable (for creating a hash access structure). If we write  

 
 

CREATE OPAQUE TYPE fixed_opaque_udt (INTERNALLENGTH = 8,  
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ALIGNMENT = 4, CANNOTHASH);  

CREATE OPAQUE TYPE var_opaque_udt (INTERNALLENGTH = variable,  

MAXLEN=1024, ALIGNMENT = 8);  

 
 

then the first statement creates a fixed-length user-defined opaque type, named 
fixed_opaque_udt, and the second statement creates a variable length one, named 
var_opaque_udt. Both are described in an implementation with internal parameters that are not 
visible to the client.  

 
 

Distinct Type 

The distinct data type is used to extend an existing type through inheritance. The newly defined type 
inherits the functions/routines of its base type, if they are not overridden. For example, the statement  

 
 

CREATE DISTINCT TYPE hiring_date AS DATE;  

 
 

creates a new user-defined type, hiring_date, which can be used like any other built-in type.  

 
 

Row Type 

The row type, which represents a composite attribute, is analogous to a struct type in the C 
programming language (Note 9). It is a composite type that contains one or more fields. Row type is 
also used to support inheritance by using the keyword UNDER, but the type system supports single 
inheritance only. By creating tables whose tuples are of a particular row type, it is possible to treat a 
relation as part of an object-oriented schema and establish inheritance relationships among the 
relations. In the following row type declarations, employee_t and student_t inherit (or are 
declared under) person_t:  

 
 

CREATE ROW TYPE person_t(name VARCHAR(60), social_security  

NUMERIC(9), birth_date DATE);  

CREATE ROW TYPE employee_t(salary NUMERIC(10,2), hired_on  

hiring_date) UNDER person_t;  
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CREATE ROW TYPE student_t(gpa NUMERIC(4,2), address  

VARCHAR(200)) UNDER person_t;  

 
 

Collection Type 

Informix Universal Server collections include lists, sets, and multisets (bags) of built-in types as well as 
user-defined types (Note 10). A collection can be the type of either a field in a row type or a column in 
a table. The elements of a set collection cannot contain duplicate values, and have no specific order. 
The list may contain duplicate elements, and order is significant. Finally, the multiset may include 
duplicates and has no specific order. Consider the following example:  

 
 

CREATE TABLE employee (name VARCHAR(50) NOT NULL, commission  

MULTISET (MONEY));  

 
 

Here, the employee table contains the commission column, which is of type multiset.  

 
 

13.2.2 Support for User-Defined Routines 

Informix Universal Server supports user-defined functions and routines to manipulate the user defined 
types. The implementation of these functions can be in either Stored Procedure Language (SPL), or in 
the C or JAVA programming languages. User-defined functions enable the user to define operator 
functions such as plus( ), minus( ), times( ), divide( ), positive( ), and negate( ), built-in functions such 
as cos( ) and sin( ), aggregate functions such as sum( ) and avg( ), and user-defined routines. This 
enables Informix Universal Server to handle user-defined types as a built-in type whenever the required 
functions are defined. The following example specifies an equal function to compare two objects of the 
fixed_opaque_udt type declared earlier:  

 
 

CREATE FUNCTION equal (arg1 fixed_opaque_udt, arg2  

fixed_opaque_udt) RETURNING BOOLEAN;  

EXTERNAL NAME "/usr/lib/informix/libopaque.so  

(fixed_opaque_udt_equal)" LANGUAGE C;  

END FUNCTION;  
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Informix Universal Server also supports cast—a function that converts objects from a source type to a 
target type. There are two types of user-defined casts: (1) implicit and (2) explicit. Implicit casts are 
invoked automatically, whereas explicit casts are invoked only when the cast operator is specified 
explicitly by using "::" or CAST AS. If the source and target types have the same internal structure 
(such as when using the distinct types specification), no user-defined functions are needed.  

Consider the following example to illustrate explicit casting, where the employee table has a col1 
column of type var_opaque_udt and a col2 column of type fixed_opaque_udt.  

 
 

SELECT col1 FROM employee WHERE fixed_opaque_udt::col1 = col2;  

 
 

In order to compare col1 with col2, the cast operator is applied to col1 to convert it from 
var_opaque_udt to fixed_opaque_udt.  

 
 

13.2.3 Support for Inheritance 

Data Inheritance 
Function Inheritance

Inheritance is addressed at two levels in Informix Universal Server: (1) data inheritance and (2) 
function inheritance. 

 
 

Data Inheritance 

To create subtypes under existing row types, we use the UNDER keyword as discussed earlier. 
Consider the following example:  

 
 

CREATE ROW TYPE employee_type (  

ename VARCHAR(25),  

ssn CHAR(9),  

salary INT);  

CREATE ROW TYPE engineer_type (  

degree VARCHAR(10),  

license VARCHAR(20))  
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UNDER employee_type;  

CREATE ROW TYPE engr_mgr_type (  

manager_start_date VARCHAR(10),  

dept_managed VARCHAR(20))  

UNDER engineer_type;  

 
 

The above statements create an employee_type and a subtype called engineer_type, which 
represents employees who are engineers and hence inherits all attributes of employees and has 
additional properties of degree and license. Another type called engr_mgr_type is a subtype 
under engineer_type, and hence inherits from engineer_type and implicitly from 
employee_type as well. Informix Universal Server does not support multiple inheritance. We can 
now create tables called employee, engineer, and engr_mgr based on these row types.  

Note that storage options for storing type hierarchies in tables vary. Informix Universal Server provides 
the option to store instances in different combinations—for example, one instance (record) at each level 
or one instance that consolidates all levels—these correspond to the mapping options in Section 9.2. 
The inherited attributes are either represented repeatedly in the tables at lower levels or are represented 
with a reference to the object of the supertype. The processing of SQL commands is appropriately 
modified based on the type hierarchy. For example, the query  

 
 

SELECT *  

FROM employee  

WHERE salary > 100000;  

 
 

returns the employee information from all tables where each selected employee is represented. Thus 
the scope of the employee table extends to all tuples under employee. As a default, queries on the 
supertable return columns from the supertable as well as those from the subtables that inherit from that 
supertable. In contrast, the query  

 
 

SELECT *  

FROM ONLY (employee)  

WHERE salary > 100000;  
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returns instances from only the employee table because of the keyword ONLY.  

It is possible to query a supertable using a correlation variable so that the result contains not only 
supertable_type columns of the subtables but also subtype-specific columns of the subtables. Such a 
query returns rows of different sizes; the result is called a jagged row result. Retrieving all 
information about an employee from all levels in a "jagged form" is accomplished by  

 
 

SELECT e  

FROM employee e;  

 
 

For each employee, depending on whether he or she is an engineer or some other subtype(s), it will 
return additional sets of attributes from the appropriate subtype tables.  

Views defined over supertables cannot be updated because placement of inserted rows is ambiguous.  

 
 

Function Inheritance 

In the same way that data is inherited among tables along a type hierarchy, functions can also be 
inherited in an ORDBMS. For example, a function overpaid may be defined on employee_type to 
select those employees making a higher salary than Bill Brown as follows:  

 
 

CREATE FUNCTION overpaid (employee_type)   

RETURNS BOOLEAN AS    

RETURN $1.salary > (SELECT salary   

  FROM employee   

  WHERE ename = ‘Bill Brown’);   

 
 

The tables under the employee table automatically inherit this function. However, the same function 
may be redefined for the engr_mgr_type as those employees making a higher salary than Jack 
Jones as follows:  
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CREATE FUNCTION overpaid (engr_mgr_type)    

RETURNS BOOLEAN AS    

RETURN $1.salary > (SELECT salary   

  FROM employee   

  WHERE ename = ‘Jack Jones’);   

 
 

For example, consider the query  

SELECT e.ename  

FROM ONLY (employee) e  

WHERE overpaid (e);  

 
 

which is evaluated with the first definition of overpaid. The query  

 
 

SELECT g.ename  

FROM engineer g  

WHERE overpaid (g);  

 
 

also uses the first definition of overpaid (because it was not redefined for engineer), whereas  

 
 

SELECT gm.ename  

FROM engr_mgr gm  

WHERE overpaid (gm);  
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uses the second definition of overpaid, which overrides the first. This is called operation (or function) 
overloading, as was discussed in Section 11.6 under polymorphism. Note that overpaid—and other 
functions—can also be treated as virtual attributes; hence overpaid may be referenced as 
employee.overpaid or engr_mgr.overpaid in a query.  

 
 

13.2.4 Support for Indexing Extensions 

Informix Universal Server supports indexing on user-defined routines on either a single table or a table 
hierarchy. For example,  

 
 

CREATE INDEX empl_city ON employee (city (address));  

 
 

creates an index on the table employee using the value of the city function.  

In order to support user-defined indexes, Informix Universal Server supports operator classes, which 
are used to support user-defined data types in the generic B-tree as well as other secondary access 
methods such as R-trees.  

 
 

13.2.5 Support for External Data Source 

Informix Universal Server supports external data sources (such as data stored in a file system) that are 
mapped to a table in the database called the virtual table interface. This interface enables the user to 
define operations that can be used as proxies for the other operations, which are needed to access and 
manipulate the row or rows associated with the underlying data source. These operations include 
open, close, fetch, insert, and delete. Informix Universal Server also supports a set of 
functions that enables calling SQL statements within a user-defined routine without the overhead of 
going through a client interface.  

 
 

13.2.6 Support for Data Blades Application Programming Interface 

Two-Dimensional Data Types 
Image Data Types 
Time Series Data Type 
Text Data Type 
Summary of Data Blades

The Data Blades Application Programming Interface (API) of Informix Universal Server provides new 
data types and functions for specific types of applications. We will review the extensible data types for 
two-dimensional operations (required in GIS or CAD applications) (Note 11), the data types related to 
image storage and management, the time series data type, and a few features of the text data type. The 
strength of ORDBMSs to deal with the new unconventional applications is largely attributed to these 
special data types and the tailored functionality that they provide.  
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Two-Dimensional Data Types 

For a two-dimensional application, the relevant data types would include the following:  

• A point defined by (X, Y) coordinates.  
• A line defined by its two end points.  
• A polygon defined by an ordered list of n points that form its vertices.  
• A path defined by a sequence (ordered list) of points.  
• A circle defined by its center point and radius.  

Given the above as data types, a function such as distance may be defined between two points, a point 
and a line, a line and a circle, and so on, by implementing the appropriate mathematical expressions for 
distance in a programming language. Similarly, a Boolean cross function—which returns true or false 
depending on whether two geometric objects cross (or intersect)—can be defined between a line and a 
polygon, a path and a polygon, a line and a circle, and so on. Other relevant Boolean functions for GIS 
applications would be overlap (polygon, polygon), contains (polygon, polygon), contains (point, 
polygon), and so on. Note that the concept of overloading (operation polymorphism) applies when the 
same function name is used with different argument types.  

 
 

Image Data Types 

Images are stored in a variety of standard formats—such as TIFF, GIF, JPEG, photoCD, GROUP 4, 
and FAX—so one may define a data type for each of these formats and use appropriate library 
functions to input images from other media or to render images for display. Alternately, IMAGE can be 
regarded as a single data type with a large number of options for storage of data. The latter option 
would allow a column in a table to be of type IMAGE and yet accept images in a variety of different 
formats. The following are some possible functions (operations) on images:  

 
 

rotate (image, angle) returns image.  

crop (image, polygon) returns image.  

enhance (image) returns image.  

 
 

The crop function extracts the portion of an image that intersects with a polygon. The enhance function 
improves the quality of an image by performing contrast enhancement. Multiple images may be 
supplied as parameters to the following functions:  

 
 

common (image1, image2) returns image.  

union (image1, image2) returns image.  
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similarity (image1, image2) returns number.  

 
 

The similarity function typically takes into account the distance between two vectors with components 
<color, shape, texture, edge> that describe the content of the two images. The VIR Data Blade 
in Informix Universal Server can be used to accomplish a search on images by content based on the 
above similarity measure (Note 12). 

 
 

Time Series Data Type 

Informix Universal Server supports a time series data type that makes the handling of time series data 
much more simplified than storing it in multiple tables. For example, consider storing the closing stock 
price on the New York Stock Exchange for more than 3,000 stocks for each workday when the market 
is open. Such a table can be defined as follows:  

 
 

CREATE TABLE stockprices (  

company-name VARCHAR(30),  

symbol VARCHAR(5),  

prices TIME_SERIES OF FLOAT);  

 
 

Regarding the stock price data for all 3,000 companies over an entire period of, say, several years, only 
one relation is adequate thanks to the time series data type for the prices attribute. Without this data 
type, each company would need one table. For example, a table for the coca_cola company (symbol 
KO) may be declared as follows:  

 
 

CREATE TABLE coca_cola (  

recording_date DATE,  

price FLOAT);  

 
 

In this table, there would be approximately 260 tuples per year—one for each business day. The time 
series data type takes into account the calendar, starting time, recording interval (for example, daily, 
weekly, monthly), and so on. Functions such as extracting a subset of the time series (for example, 
closing prices during January 1999), summarizing at a coarser granularity (for example, average 
weekly closing price from the daily closing prices), and constructing moving averages are appropriate.  
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A query on the stockprices table that gives the moving average for 30 days starting at June 1, 1999 for 
the coca_cola stock can use the MOVING-AVG function as follows:  

 
 

SELECT MOVING-AVG(prices, 30, ‘1999-06-01’)  

FROM stockprices  

WHERE symbol = "KO";  

 
 

The same query in SQL on the table coca_cola would be much more complicated to write and 
would access numerous tuples, whereas the above query on the stockprices table deals with a single 
row in the table corresponding to this company. It is claimed that using the time series data type 
provides an order of magnitude performance gain in processing such queries.  

 
 

Text Data Type 

The text DataBlade supports storage, search, and retrieval for text objects. It defines a single data type 
called doc, whose instances are stored as large objects that belong to the built-in data type large-
text. We will briefly discuss a few important features of this data type.  

The underlying storage for large-text is the same as that for the large-object data type. 
References to a single large object are recorded in the ‘refcount’ system table, which stores 
information such as number of rows referring to the large object, its OID, its storage manager, its last 
modification time, and its archive storage manager. Automatic conversion between large-text and 
text data types enables any functions with text arguments to be applied to large-text objects. 
Thus concatenation of large-text objects as strings as well as extraction of substrings from a 
large-text object are possible.  

The Text DataBlade parameters include format for which the default is ASCII, with other possibilities 
such as postscript, dvipostscript, nroff, troff, and text. A Text Conversion 
DataBlade, which is separate from the Text DataBlade, is needed to convert documents among the 
various formats. An External File parameter instructs the internal representation of doc to store a 
pointer to an external file rather than copying it to a large object (Note 13). 

For manipulation of doc objects, functions such as the following are used:  

 
 

Import_doc (doc, text) returns doc.  

Export_doc (doc, text) returns text.  

Assign (doc) returns doc.  

Destroy (doc) returns void.  
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The Assign and Destroy functions already exist for the built-in large-object and large-
text data types, but they must be redefined by the user for objects of type doc. The following 
statement creates a table called legaldocuments, where each row has a title of the document in one 
column and the document itself as the other column:  

 
 

CREATE TABLE legaldocuments(  

title TEXT,  

document DOC);  

 
 

To insert a new row into this table of a document called ‘lease.contract,’ the following 
statement can be used:  

 
 

INSERT INTO legaldocuments (title, document)  

VALUES (‘lease.contract’, ‘format {troff}:/user/local/ 

documents/lease’);  

 
 

The second value in the values clause is the path name specifying the file location of this document; the 
format specification signifies that it is a troff document. To search the text, an index must be 
created, as in the following statement:  

 
 

CREATE INDEX legalindex  

ON legaldocuments  

USING dtree(document text_ops);  

 
 

In the above, text_ops is an op-class (operator class) applicable to an access structure called a 
dtree index, which is a special index structure for documents. When a document of the doc data type 
is inserted into a table, the text is parsed into individual words. The Text DataBlade is case insensitive; 
hence, Housenumber, HouseNumber, or housenumber are all considered the same word. Words 
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are stemmed according to the WORDNET thesaurus. For example, houses or housing would be 
stemmed to house, quickly to quick, and talked to talk. A stopword file is kept, which 
contains insignificant words such as articles or prepositions that are ignored in the searches. Examples 
of stopwords include is, not, a, the, but, for, and, if, and so on.  

Informix Universal Server provides two sets of routines—the contains routines and text-string 
functions—to enable applications to determine which documents contain a certain word or words and 
which documents are similar. When these functions are used in a search condition, the data is returned 
in descending order of how well the condition matches the documents, with the best match showing 
first. There is WeightContains(index to use, tuple-id of the document, input 
string) function and a similar WeightContainsWords function that returns a precision number 
between 0 and 1 indicating the closeness of the match between the input string or input words and the 
specific document for that tuple-id. To illustrate the use of these functions, consider the following 
query: Find the titles of legal documents that contain the top ten terms in the document titled ‘lease 
contract’, which can be specified as follows:  

 
 

SELECT d.title  

FROM legaldocuments d, legaldocuments l  

WHERE contains (d.doc, AndTerms (TopNTerms(l,document,10))) AND  

l.title = ‘lease.contract’ AND d.title <> ‘lease.contract’;  

 
 

This query illustrates how SQL can be enhanced with these data type specific functions to yield a very 
powerful capability of handing text-related functions. In this query, variable d refers to the entire legal 
corpus whereas l refers to the specific document whose title is ‘lease.contract’. TopNTerms 
extracts the top ten terms from the ‘lease.contract’ document (l); AndTerms combines these 
terms into a list; and contains compares the terms in that list with the stemwords in every other 
document (d) in the table legaldocuments.  

 
 

Summary of Data Blades 

As we can see, Data Blades enhance an RDBMS by providing various constructors for abstract data 
types (ADTs) that allow a user to operate on the data as if it were stored in an ODBMS using the ADTs 
as classes. This makes the relational system behave as an ODBMS, and drastically cuts down the 
programming effort needed when compared with achieving the same functionality with just SQL 
embedded in a programming language.  

 
 

13.3 Object-Relational Features of Oracle 8 

13.3.1 Some Examples of Object-Relational Features of Oracle 
13.3.2 Managing Large Objects and Other Storage Features
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In this section we will review a number of features related to the version of the Oracle DBMS product 
called Release 8.X, which has been enhanced to incorporate object-relational features. At the same 
time, the robust underlying relational framework, data model, schema features, and storage 
organization described in Chapter 10 have been retained and continue as a strength of this system. A 
number of additional data types with related manipulation facilities called cartridges have been added 
(Note 14). For example, the spatial cartridge allows map-based and geographic information to be 
handled (Note 15). Management of multimedia data has been facilitated with new data types (Note 16). 
Here we highlight the differences between the release 8.X of Oracle (as available at the time of this 
writing) from the preceding version in terms of the new object-oriented features and data types as well 
as some storage options. Portions of the language SQL3, which we will introduce in Section 13.4, will 
be applicable to Oracle. We do not discuss these SQL3 features here.  

 
 

13.3.1 Some Examples of Object-Relational Features of Oracle 

Representing Multivalued Attributes Using VARRAY 
Using Nested Tables to Represent Complex Objects 
Object Views

As an ORDBMS, Oracle 8 continues to provide the capabilities of an RDBMS and additionally 
supports object-oriented concepts. This provides higher levels of abstraction so that application 
developers can manipulate application objects as opposed to constructing the objects from relational 
data. The complex information about an object can be hidden, but the properties (attributes, 
relationships) and methods (operations) of the object can be identified in the data model. Moreover, 
object type declarations can be reused via inheritance, thereby reducing application development time 
and effort. To facilitate object modeling, Oracle introduced the following features (as well as some of 
the SQL3 features in Section 13.4).  

 
 

Representing Multivalued Attributes Using VARRAY 

Some attributes of an object/entity could be multivalued. In the relational model, the multivalued 
attributes would have to be handled by forming a new table (see Section 9.1 and Section 14.3.2 on first 
normal form). If ten attributes of a large table were multivalued, we would have eleven tables 
generated from a single table after normalization. To get the data back, the developer would have to do 
ten joins across these tables. This does not happen in an object model since all the attributes of an 
object—including multivalued ones—are encapsulated within the object. Oracle 8 achieves this by 
using a varying length array (VARRAY) data type, which has the following properties:  

1. COUNT: Current number of elements.  
2. LIMIT: Maximum number of elements the VARRAY can contain. This is user defined.  

Consider the example of a customer VARRAY entity with attributes name and phone_numbers, 
where phone_numbers is multivalued. First, we need to define an object type representing a 
phone_number as follows:  

 
 

CREATE TYPE phone_num_type AS OBJECT (phone_number CHAR(10));  
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Then we define a VARRAY whose elements would be objects of type phone_num_type:  

 
 

CREATE TYPE phone_list_type as VARRAY (5) OF phone_num_type;  

 
 

Now we can create the customer_type data type as an object with attributes customer_name 
and phone_numbers:  

 

CREATE TYPE customer_type AS  
OBJECT (customer_name VARCHAR(20), 
  phone_numbers phone_list_type);  

 
 

It is now possible to create the customer table as  

 
 

CREATE TABLE customer OF customer_type;  

 
 

To retrieve a list of all customers and their phone numbers, we can issue a simple query without any 
joins:  

 
 

SELECT customer_name, phone_numbers  

FROM customers;  

 
 

Using Nested Tables to Represent Complex Objects 

In object modeling, some attributes of an object could be objects themselves. Oracle 8 accomplishes 
this by having nested tables (see Section 13.6). Here, columns (equivalent to object attributes) can be 
declared as tables. In the above example let us assume that we have a description attached to every 
phone number (for example, home, office, cellular). This could be modeled using a nested table by first 
redefining phone_num_type as follows:  

 
 

1 Page 397 of 893



www.manaraa.com

CREATE TYPE phone_num_type AS  

OBJECT (phone_number CHAR(10), description CHAR(30));  

 
 

We next redefine phone_list_type as a table of phone_number_type as follows:  

 
 

CREATE TYPE phone_list_type AS TABLE OF phone_number_type;  

 
 

We can then create the type customer_type and the customer table as before. The only 
difference is that phone_list_type is now a nested table instead of a VARRAY. Both structures 
have similar functions with a few differences. Nested tables do not have an upper bound on the number 
of items whereas VARRAYs do have a limit. Individual items can be retrieved from the nested tables, 
but this is not possible with VARRAYs. Additional indexes can also be built on nested tables for faster 
data access.  

 
 

Object Views 

Object views can be used to build virtual objects from relational data, thereby enabling programmers to 
evolve existing schemas to support objects. This allows relational and object applications to coexist on 
the same database. In our example, let us say that we had modeled our customer database using a 
relational model, but management decided to do all future applications in the object model. Moving 
over to the object view of the same existing relational data would thus facilitate the transition.  

 
 

13.3.2 Managing Large Objects and Other Storage Features 

Index Only Tables 
Partitioned Tables and Indexes

Oracle can now store extremely large objects like video, audio, and text documents. New data types 
have been introduced for this purpose. These include the following:  

• BLOB (binary large object).  
• CLOB (character large object).  
• BFILE (binary file stored outside the database).  
• NCLOB (fixed-width multibyte CLOB).  

All of the above except for BFILE, which is stored outside the database, are stored inside the database 
along with other data. Only the directory name for a BFILE is stored in the database.  
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Index Only Tables 

Standard Oracle 7.X involves keeping indexes as a B+-tree that contains pointers to data blocks (see 
Chapter 6). This gives good performance in most situations. However, both the index and the data 
block must be accessed to read the data. Moreover, key values are stored twice—in the table and in the 
index—increasing the storage costs. Oracle 8 supports both the standard indexing scheme and also 
index only tables, where the data records and index are kept together in a B-tree structure (see Chapter 
6). This allows faster data retrieval and requires less storage space for small-to medium-sized files 
where the record size is not too large.  

 
 

Partitioned Tables and Indexes 

Large tables and indexes can be broken down into smaller partitions. The table now becomes a logical 
structure and the partitions become the actual physical structures that hold the data. This gives the 
following advantages:  

• Continued data availability in the event of partial failures of some partitions.  
• Scalable performance allowing substantial growth in data volumes.  
• Overall performance improvement in query and transaction processing.  

 
 

13.4 An Overview of SQL3 

13.4.1 The SQL3 Standard and Its Components 
13.4.2 Some New Operations and Features in SQL3 
13.4.3 Object-Relational Support in SQL3

We introduced SQL as the standard language for RDBMSs in Chapter 8. As we discussed, SQL was 
first specified in the 1970s and underwent enhancements in 1989 and 1992. Chapter 8 covered the 
syntax and facilities of SQL-92, also known as SQL2. The language is continuing its evolution toward 
a new standard called SQL3, which adds object-oriented and other features. We already illustrated 
through various examples in Informix Universal Server and Oracle 8 how SQL can be extended to deal 
simultaneously with tables from the relational model and classes and objects from the object model. 
This section highlights some of the features of SQL3 with a particular emphasis on the object-relational 
concepts.  

 
 

13.4.1 The SQL3 Standard and Its Components 

We will briefly point out what each part of the SQL3 standard deals with, then describe some SQL3 
features that are relevant to the object extensions to SQL. The SQL3 standard includes the following 
parts (Note 17):  

• SQL/Framework, SQL/Foundation, SQL/Bindings, SQL/Object.  
• New parts addressing temporal, transaction aspects of SQL.  
• SQL/CLI (Call Level Interface).  
• SQL/PSM (Persistent Stored Modules).  
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SQL/Foundation deals with new data types, new predicates, relational operations, cursors, rules and 
triggers, user-defined types, transaction capabilities, and stored routines. SQL/CLI (Call Level 
Interface) provides rules that allow execution of application code without providing source code and 
avoids the need for preprocessing. It provides a new type of language binding and is analogous to 
dynamic SQL in SQL-92. Based on Microsoft ODBC (Open Database Connectivity) and SQL Access 
Group’s standard, it contains about 50 routines for tasks such as connection to the SQL server, 
allocating and deallocating resources, obtaining diagnostic and implementation information, and 
controlling termination of transactions. SQL/PSM (Persistent Stored Modules) specifies facilities for 
partitioning an application between a client and a server. The goal is to enhance performance by 
minimizing network traffic. SQL/Bindings includes Embedded SQL and Direct Invocation as in SQL-
92. Embedded SQL has been enhanced to include additional exception declarations. SQL/Temporal 
deals with historical data, time series data, and other temporal extensions, and it is being proposed by 
the TSQL2 committee (Note 18). SQL/Transaction specification formalizes the XA interface for use by 
SQL implementors.  

 
 

13.4.2 Some New Operations and Features in SQL3 

New types of operations have been added to SQL3. These include SIMILAR, which allows the use of 
regular expressions to match character strings. Boolean values have been extended with UNKNOWN 
when a comparison yields neither true nor false because some values may be null. A major new 
operation is linear recursion for specifying recursive queries (see Section 7.6). To illustrate this, 
suppose we have a table called PART_TABLE(Part1, Part2), which contains a tuple <p1, p2> 
whenever part p1 contains part p2 as a component. A query to produce the bill of materials for some 
part p1 (that is, all component parts needed to produce p1) is written as a recursive query as follows:  

 
 

WITH RECURSIVE  

BILL_MATERIAL (Part1, Part2) AS  

(SELECT Part1, Part2  

FROM PART_TABLE  

WHERE Part1 = ‘p1’  

UNION ALL  

SELECT PART_TABLE(Part1), PART_TABLE(Part2)  

FROM BILL_MATERIAL, PART_TABLE  

WHERE PART_TABLE.Part1 = BILL_MATERIAL(Part2))  

SELECT * FROM BILL_MATERIAL  

ORDER BY Part1, Part2;  
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The final result is contained in BILL_MATERIAL(Part1, Part2). The UNION ALL operation is 
evaluated by taking a union of all tuples generated by the inner block until no new tuples can be 
generated. Because SQL2 lacks recursion, it was left to the programmer to accomplish it by appropriate 
iteration. We discuss recursion in relational queries in more detail in Chapter 25.  

For security in SQL3, the concept of role is introduced, which is similar to a "job description" and is 
subject to authorization of privileges. The actual persons (user accounts) that are assigned to a role may 
change, but the role authorization itself does not have to be changed. SQL3 also includes syntax for the 
specification and use of triggers (see Chapter 23) as active rules. Triggering events include the 
INSERT, DELETE, and UPDATE operations on a table. The trigger can be specified to be considered 
BEFORE or AFTER the triggering event. This feature is present in both of the ORDBMS systems we 
discussed. The concept of trigger granularity is included in SQL3, which allows the specification of 
both row-level triggers (the trigger is considered for each affected row) or statement-level trigger (the 
trigger is considered only once for each triggering event) (Note 19). For distributed (client-server) 
databases (see Chapter 24), the concept of a client module is included in SQL3. A client module may 
contain externally invoked procedures, cursors, and temporary tables, which can be specified using 
SQL3 syntax.  

SQL3 also is being extended with programming language facilities. Routines written in 
computationally complete SQL with full matching of data types and an integrated environment are 
referred to as SQL routines. To make the language computationally complete, the following 
programming control structures are included in the SQL3 syntax: CALL/RETURN, BEGIN/END, 
FOR/END_FOR, IF/THEN/ELSE/END_IF, CASE/END_CASE, LOOP/END_LOOP, 
WHILE/END_WHILE, REPEAT/UNTIL/END_REPEAT, and LEAVE. Variables are declared using 
DECLARE, and assignments are specified using SET. External routines refer to programs written in a 
host language (ADA, C, COBOL, PASCAL, etc.), possibly containing embedded SQL and having 
possible type mismatches. The advantage of external routines is that there are existing libraries of such 
routines that are broadly used, which can cut down a lot of implementation effort for applications. On 
the other hand, SQL routines are more "pure," but they have not been in wide use. SQL routines can be 
used for server routines (schema-level routines or modules) or as client modules, and they may be 
procedures or functions that return values.  

A number of built-in functions enhance the capability of SQL3. They are used to manage handles, 
which in turn are classified into environment handles that refer to capabilities, connection handles 
that are connections to servers, and statement handles that manage SQL statements and cursors. There 
are also functions to manage descriptors and diagnostics as well as help functions.  

 
 

13.4.3 Object-Relational Support in SQL3 

Objects in SQL3 
Abstract Data Types in SQL3

The SQL/Object specification extends SQL-92 to include object-oriented capabilities. New data types 
include Boolean, character, and binary large objects (LOBs), and large object locators. We saw in 
Section 13.3 how large objects are used in Oracle 8.  

SQL3 proposes LOB manipulation within the DBMS without having to use external files (Note 20). 
Certain operators do not apply to LOB-valued attributes—for example, arithmetic comparisons, group 
by, and order by. On the other hand, retrieval of partial value, LIKE comparison, concatenation, 
substring, position, and length are operations that can be applied to LOBs.  

 
 

Objects in SQL3 
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Under SQL/Foundation and SQL/Object Specification, SQL allows user-defined data types, type 
constructors, collection types, user-defined functions and procedures, support for large objects, and 
triggers. Objects in SQL3 are of two types:  

• Row or tuple types whose instances are tuples in tables.  
• Abstract Data Types (shortened as ADT or value ADT), which are any general types used as 

components of tuples.  

A row type may be defined using the syntax  

 
 

CREATE ROW TYPE row_type_name (<component declarations>);  

 
 

An example is  

 
 

CREATE ROW TYPE Emp_row_type (  

name VARCHAR (35),  

age INTEGER  

);  

CREATE ROW TYPE Comp_row_type (  

compname VARCHAR (20),  

location VARCHAR (20)  

);  

 
 

A table can then be created based on the row type declaration as follows:  

 
 

CREATE TABLE Employee OF TYPE Emp_row_type;  

CREATE TABLE Company OF TYPE Comp_row_type;  
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A component attribute of one tuple may be a reference (specified using the keyword REF) to a tuple of 
another (or possibly the same) relation. Thus we can define  

 
 

CREATE ROW TYPE Employment_row_type (  

employee REF (Emp_row_type),  

company REF (Comp_row_type)  

);  

CREATE TABLE Employment OF TYPE Employment_row_type;  

 
 

SQL3 uses a double dot notation to build path expressions that refer to the components of tuples. For 
example, the query below retrieves employees working in New York from the Employment table.  

 
 

SELECT Employment..employee..name  

FROM Employment  

WHERE Employment..company..location = ‘New York’;  

 
 

In SQL3, â is used for dereferencing and has the same meaning assigned to it in C. Thus if r is a 
reference to a tuple and a is a component attribute in that tuple, r â a is the value of attribute a in that 
tuple. Object identifiers can be explicitly declared and accessed. For example, the definition of 
Emp_row_type may be changed as follows:  

 
 

CREATE ROW TYPE Emp_row_type (  

name CHAR (35),  

age INTEGER,  

emp_id REF (Emp_row_type)  

);  
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In the above example, the emp_id values may be system generated by using  

 
 

CREATE TABLE Employee OF TYPE Emp_row_type  

VALUES FOR emp_id ARE SYSTEM GENERATED;  

 
 

If several relations of the same row type exist, SQL3 provides a mechanism by which a reference 
attribute may be made to point to a specific table of that type by using  

 
 

SCOPE FOR <attribute> IS <relation>  

 
 

Although the row types discussed above provide the functionality of objects and eventually allow 
construction of complex object types by combining row types, they do not provide for encapsulation as 
discussed in Section 11.3, which is an essential feature of object modeling. Encapsulation is provided 
through abstract data types in SQL3.  

 
 

Abstract Data Types in SQL3 

In SQL3 a construct similar to class definition is provided whereby the user can create a named user-
defined type with its own behavioral specification and internal structure; it is known as an Abstract 
Data Type (ADT). The general form of an ADT specification is:  

 
 

CREATE TYPE <type-name> (  

list of component attributes with individual types  

declaration of EQUAL and LESS THAN functions  

declaration of other functions (methods)  

);  

 
 

SQL3 provides certain built-in functions for ADTs. For an ADT called Type_T, the constructor 
function Type_T() returns a new object of that type. In the new ADT object, every attribute is 
initialized to its default value. An observer function A is implicitly created for each attribute A to read 
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its value. Hence, A(X) returns the value of attribute A of Type_T if X is of type Type_T. A mutator 
function for updating an attribute sets the value of the attribute to a new value. SQL3 allows these 
functions to be blocked from public use; an EXECUTE privilege is needed to have access to these 
functions.  

An ADT has a number of user-defined functions associated with it. The syntax is  

 
 

FUNCTION <name> (<argument_list>) RETURNS <type>;  

 
 

Two types of functions can be defined: internal SQL3 and external. Internal functions are written in the 
extended (computationally complete) version of SQL. External functions are written in a host language, 
with only their signature (interface) appearing in the ADT definition. The form of an external function 
definition is  

 
 

DECLARE EXTERNAL <function_name> <signature>  

LANGUAGE <language_name>;  

 
 

Many ORBDMSs have taken the approach of defining a set of ADTs and associated functions for 
specific application domains, and packaging them together. For example, the Data Blades in Informix 
Universal Server and the cartridges in Oracle can be considered as such packages or libraries of ADTs 
for specific application domains.  

ADTs can be used as the types for attributes in SQL3 and the parameter types in a function or 
procedure, and as a source type in a distinct type. Type Equivalence is defined in SQL3 at two levels. 
Two types are name equivalent if and only if they have the same name. Two types are structurally 
equivalent if and only if they have the same number of components and the components are pairwise 
type equivalent. Under SQL-92, the definition of UNION-compatibility among two tables is based on 
the tables being structurally equivalent. Operations on columns, however, are based on name 
equivalence. Thus the operation  

 
 

UPDATE table_t  

SET c1 = c2  

WHERE <condition>  
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would be acceptable if the types of c1 and c2 are name equivalent (or are implicitly convertible). 
Attributes and functions in ADTs are divided into three categories:  

 

• PUBLIC (visible at the ADT interface).  
• PRIVATE (not visible at the ADT interface).  
• PROTECTED (visible only to subtypes).  

It is also possible to define virtual attributes as part of ADTs, which are computed and updated using 
functions. SQL3 has rules for dealing with inheritance (specified via the UNDER keyword), 
overloading, and resolution of functions. They can be summarized as follows:  

 
 

Inheritance  

• All attributes are inherited.  
• The order of supertypes in the UNDER clause determines the inheritance hierarchy.  
• An instance of a subtype can be used in every context in which a supertype instance is used.  

Overloading  

• A subtype can redefine any function that is defined in its supertype, with the restriction that 
the signature be the same.  

Resolution of Functions  

• When a function is called, the best match is selected based on the types of all arguments.  
• For dynamic linking, the runtime types of parameters is considered.  

SQL3 supports constructors for collection types, which can be used for creating nested structures for 
complex objects. List, set, and multiset are supported as built-in type constructors. Arguments for these 
type constructors can be any other type, including row types, ADTs, and other collection types. 
Instances of these types can be treated as tables for query purposes. Collections can be unnested by 
correlating derived tables in SQL3 (Note 21). For example, to return the elements of the set hobbies for 
employee John Smith, we first define an attribute in the table employee as follows:  

 

hobbies SET (VARCHAR(20))  

 

We can then write  

 
 

  THE (SELECT e.hobbies  
    FROM employee e  
    WHERE e.name = "John Smith")  
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Another facility in SQL3 is the supertable/subtable facility, which is not equivalent to super and 
subtypes and no substitutability is assumed. However, a subtable inherits every column from its 
supertable; every row of a subtable corresponds to one and only one row in the supertable; every row in 
the supertable corresponds to at most one row in a subtable. INSERT, DELETE, and UPDATE 
operations are appropriately propagated. For example, consider the real_estate_info table 
defined as follows:  

 
 

CREATE TABLE real_estate_info (  

property real_estate,  

owner CHAR(25),  

price MONEY,  

);  

 
 

The following subtables can be defined:  

 
 

CREATE TABLE american_real_estate UNDER real_estate_info;  

CREATE TABLE georgia_real_estate UNDER american_real_estate;  

CREATE TABLE atlanta_real_estate UNDER georgia_real_estate;  

 
 

We have given an overview of the proposed facilities in SQL3. At this time, both the SQL/Foundations 
and SQL/Object specification have reached the third step of the standardization process called the 
Committee Draft status. It is evident that the facilities that make SQL3 object-oriented closely follow 
what has been implemented in commercial ORDBMSs. The next two steps of standardization are 
called Draft International Standard and International Standard, respectively. SQL/MM (multimedia) is 
being proposed as a separate standard for multimedia database management with multiple parts: 
framework, full text, spatial, general purpose facilities, and still image. It is being pursued by a separate 
committee. We already saw the use of the two-dimensional data types and the image and text 
Datablades in Informix Universal Server that have considered issues relevant to this standard.  

 
 

13.5 Implementation and Related Issues for Extended Type Systems 

Other Issues Concerning Object-Relational Systems

There are various implementation issues regarding the support of an extended type system with 
associated functions (operations). We briefly summarize them here (Note 22).  
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• The ORDBMS must dynamically link a user-defined function in its address space only when 
it is required. As we saw in the case of the two ORDBMSs, numerous functions are required 
to operate on two-or three-dimensional spatial data, images, text, and so on. With a static 
linking of all function libraries, the DBMS address space may increase by an order of 
magnitude. Dynamic linking is available in the two ORDBMSs that we studied. 

• Client-server issues deal with the placement and activation of functions (Note 23). If the 
server needs to perform a function, it is best to do so in the DBMS address space rather than 
remotely, due to the large amount of overhead. If the function demands computation that is 
too intensive or if the server is attending to a very large number of clients, the server may ship 
the function to a separate client machine. For security reasons, it is better to run functions at 
the client using the user ID of the client. In the future functions are likely to be written in 
interpreted languages like JAVA.  

• It should be possible to run queries inside functions. A function must operate the same way 
whether it is used from an application using the application program interface (API), or 
whether it is invoked by the DBMS as a part of executing SQL with the function embedded in 
an SQL statement. Systems should support a nesting of these "callbacks."  

• Because of the variety in the data types in an ORDBMS and associated operators, efficient 
storage and access of the data is important. For spatial data or multidimensional data, new 
storage structures such as R-trees, quad trees, or Grid files may be used. The ORDBMS must 
allow new types to be defined with new access structures. Dealing with large text strings or 
binary files also opens up a number of storage and search options. It should be possible to 
explore such new options by defining new data types within the ORDBMS.  

 
 

Other Issues Concerning Object-Relational Systems 

In the above discussion of Informix Universal Server and Oracle 8, we have concentrated on how an 
ORDBMS extends the relational model. We discussed the features and facilities it provides to operate 
on relational data stored as tables as if it were an object database. There are other obvious problems to 
consider in the context of an ORDBMS:  

• Object-relational database design: We described a procedure for designing object schemas in 
Section 12.5. Object-relational design is more complicated because we have to consider not 
only the underlying design considerations of application semantics and dependencies in the 
relational data model (which will be discussed in Chapter 14 and Chapter 15) but also the 
object-oriented nature of the extended features that we have just discussed.  

• Query processing and optimization: By extending SQL with functions and rules, this problem 
is further compounded beyond the query optimization overview that we will discuss for the 
relational model in Chapter 18.  

• Interaction of rules with transactions: Rule processing as implied in SQL3 covers more than 
just the update-update rules (see Section 23.1), which are implemented in RDBMSs as 
triggers. Moreover, RDBMSs currently implement only immediate execution of triggers. A 
deferred execution of triggers involves additional processing.  

 
 

13.6 The Nested Relational Data Model 

To complete this discussion, we summarize in this section an approach that proposes the use of nested 
tables, also known as nonnormal form relations. No commercial DBMS has chosen to implement this 
concept in its original form. The nested relational model removes the restriction of first normal form 
(1NF, see Chapter 14) from the basic relational model, and thus is also known as the Non-1NF or Non-
First Normal Form (NFNF) or NF2 relational model. In the basic relational model—also called the 
flat relational model—attributes are required to be single-valued and to have atomic domains. The 
nested relational model allows composite and multivalued attributes, thus leading to complex tuples 
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with a hierarchical structure. This is useful for representing objects that are naturally hierarchically 
structured. In Figure 13.01, part (a) shows a nested relation schema DEPT based on part of the COMPANY 
database, and part (b) gives an example of a Non-1NF tuple in DEPT.  

 

 

 
 

To define the DEPT schema as a nested structure, we can write the following:  

 
 

DEPT = (DNO, DNAME, MANAGER, EMPLOYEES, PROJECTS, LOCATIONS)  

EMPLOYEES = (ENAME, DEPENDENTS)  

PROJECTS = (PNAME, PLOC)  

LOCATIONS = (DLOC)  

DEPENDENTS = (DNAME, AGE)  

 
 

First, all attributes of the DEPT relation are defined. Next, any nested attributes of DEPT—namely, 
EMPLOYEES, PROJECTS, and LOCATIONS—are themselves defined. Next, any second-level nested 
attributes, such as DEPENDENTS of EMPLOYEES, are defined, and so on. All attribute names must be 
distinct in the nested relation definition. Notice that a nested attribute is typically a multivalued 
composite attribute, thus leading to a "nested relation" within each tuple. For example, the value of 
the PROJECTS attribute within each DEPT tuple is a relation with two attributes (PNAME, PLOC). In the 
DEPT tuple of Figure 13.01(b), the PROJECTS attribute contains three tuples as its value. Other nested 
attributes may be multivalued simple attributes, such as LOCATIONS of DEPT. It is also possible to 
have a nested attribute that is single-valued and composite, although most nested relational models 
treat such an attribute as though it were multivalued.  

When a nested relational database schema is defined, it consists of a number of external relation 
schemas; these define the top level of the individual nested relations. In addition, nested attributes are 
called internal relation schemas, since they define relational structures that are nested inside another 
relation. In our example, DEPT is the only external relation. All the others—EMPLOYEES, PROJECTS, 
LOCATIONS, and DEPENDENTS—are internal relations. Finally, simple attributes appear at the leaf level 
and are not nested. We can represent each relation schema by means of a tree structure, as shown in 
Figure 13.01(c), where the root is an external relation schema, the leaves are simple attributes, and the 
internal nodes are internal relation schemas. Notice the similarity between this representation and a 
hierarchical schema (see Appendix D).  

It is important to be aware that the three first-level nested relations in DEPT represent independent 
information. Hence, EMPLOYEES represents the employees working for the department, PROJECTS 
represents the projects controlled by the department, and LOCATIONS represents the various department 
locations. The relationship between EMPLOYEES and PROJECTS is not represented in the schema; this is 
an M:N relationship, which is difficult to represent in a hierarchical structure.  
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Extensions to the relational algebra and to the relational calculus, as well as to SQL, have been 
proposed for nested relations. The interested reader is referred to the selected bibliography at the end of 
this chapter for details. Here, we illustrate two operations, NEST and UNNEST, that can be used to 
augment standard relational algebra operations for converting between nested and flat relations. 
Consider the flat EMP_PROJ relation of Figure 14.04, and suppose that we project it over the attributes 
SSN, PNUMBER, HOURS, ENAME as follows:  

 
 

EMP_PROJ_FLATã pSSN, ENAME, PNUMBER, HOURS(EMP_PROJ)  

 
 

To create a nested version of this relation, where one tuple exists for each employee and the (PNUMBER, 
HOURS) are nested, we use the NEST operation as follows:  

 
 

EMP_PROJ_NESTEDã NESTPROJS = (PNUMBER, HOURS)(EMP_PROJ_FLAT)  

 
 

The effect of this operation is to create an internal nested relation PROJS = (PNUMBER, HOURS) within 
the external relation EMP_PROJ_NESTED. Hence, NEST groups together the tuples with the same value 
for the attributes that are not specified in the NEST operation; these are the SSN and ENAME attributes in 
our example. For each such group, which represents one employee in our example, a single nested 
tuple is created with an internal nested relation PROJS = (PNUMBER, HOURS). Hence, the 
EMP_PROJ_NESTED relation looks like the EMP_PROJ relation shown in Figure 14.09(a) and Figure 
14.09(b).  

Notice the similarity between nesting and grouping for aggregate functions. In the former, each group 
of tuples becomes a single nested tuple; in the latter, each group becomes a single summary tuple after 
an aggregate function is applied to the group.  

The UNNEST operation is the inverse of NEST. We can reconvert EMP_PROJ_NESTED to 
EMP_PROJ_FLAT as follows:  

 
 

EMP_PROJ_FLATã UNNESTPROJS = (PNUMBER, HOURS)(EMP_PROJ_NESTED)  

 
 

Here, the PROJS nested attribute is flattened into its components PNUMBER, HOURS.  

We saw in our SQL3 discussion above that nest and unnest facilities are proposed to create these nested 
relations. Nested tuples resemble complex objects, with a strictly hierarchical structure.  
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13.7 Summary 

In this chapter, we first gave an overview of the history and current trends in database management 
systems that led to the development of object-relational DBMSs (ORDBMSs). We then focused on 
some of the features of Informix Universal Server and of Oracle 8 in order to illustrate how commercial 
RDBMSs are being extended with object features. Other commercial RDBMSs are providing similar 
extensions. We saw that these systems also provide Data Blades (Informix) or Cartridges (Oracle) that 
provide specific type extensions for newer application domains, such as spatial, time series, or 
text/document databases. Because of the extendibility of ORDBMSs, these packages can be included as 
abstract data type (ADT) libraries whenever the users need to implement the types of applications they 
support. Users can also implement their own extensions as needed by using the ADT facilities of these 
systems.  

We then looked at some of the features that have been added to the SQL standard in SQL3 to provide 
object database features and abstract data types. We briefly discussed some implementation issues for 
ADTs. Finally, we gave an overview of the nested relational model, which extends the flat relational 
model with hierarchically structured complex objects.  

 
 

Selected Bibliography 

The references provided for the object-oriented database approach in Chapter 11 and Chapter 12 are 
also relevant for object-relational systems. Stonebraker and Moore (1996) provides a comprehensive 
reference for object-relational DBMSs. The discussion about concepts related to Illustra in that book 
are mostly applicable to the current Informix Universal Server. Kim (1995) discusses many issues 
related to modern database systems that include object orientation. For the most current information on 
Informix and Oracle, consult their Web sites: www.informix.com and www.oracle.com, respectively.  

The SQL3 standard is described in various publications of the ISO WG3 (Working Group 3) reports; 
for example, see Kulkarni et al. (1995) and Melton et al. (1991). An excellent tutorial on SQL3 was 
given at the Very Large Data Bases Conference by Melton and Mattos (1996). Ullman and Widom 
(1997) have a good discussion of SQL3 with examples.  

For issues related to rules and triggers, Widom and Ceri (1995) have a collection of chapters on active 
databases. Some comparative studies—for example, Ketabchi et al. (1990)—compare relational 
DBMSs with object DBMSs; their conclusion shows the superiority of the object-oriented approach for 
nonconventional applications. The nested relational model is discussed in Schek and Scholl (1985), 
Jaeshke and Schek (1982), Chen and Kambayashi (1991), and Makinouchi (1977), among others. 
Algebras and query languages for nested relations are presented in Paredaens and VanGucht (1992), 
Pistor and Andersen (1986), Roth et al. (1988), and Ozsoyoglu et al. (1987), among others. 
Implementation of prototype nested relational systems is described in Dadam et al. (1986), Deshpande 
and VanGucht (1988), and Schek and Scholl (1989).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
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Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20 
Note 21 
Note 22 
Note 23

Note 1 

Those chapters devoted to the Network Data Model and the Hierarchical Data Model are available at 
http://cseng.aw.com/book/0,,0805317554,00.html.  

 
 

Note 2 

In Chapter 26 and Chapter 27, we summarize the latest trends in decision support and other emerging 
applications, and the corresponding challenges they pose to database technology.  

 
 

Note 3 

An ORDBMS called Illustra was acquired by Informix and integrated into Informix’s Universal 
Database Server; the IBM DB2 Universal Server—called UDB— has similar ORDBMS features, as do 
other systems, but we do not discuss these due to space limitations.  

 
 

Note 4 

The discussion in this section is primarily based on the book Object-Relational DBMSs by Michael 
Stonebraker and Dorothy Moore (1996), and on the input provided by Magdi Morsi of Informix, Inc.  

 
 

Note 5 

Quadrant 1 includes any software packages that deal with data handling without sophisticated data 
retrieval and manipulation features. These include spreadsheets like EXCEL, word processors like 
Microsoft Word, or any file management software.  
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Note 6 

Data Blades provides extensions to the basic system, as we shall discuss later in Section 13.2.6.  

 
 

Note 7 

For more information on the Data Blades for Informix Universal Server, consult the Web site 
http://www.informix.com/informix/.  

 
 

Note 8 

These roughly correspond to type constructors (see Chapter 11).  

 
 

Note 9 

This is similar to the tuple constructor discussed in Chapter 11.  

 
 

Note 10 

These are similar to the collection types discussed in Chapter 11 and Chapter 12.  

 
 

Note 11 

Recall that GIS stands for Geographic Information Systems and CAD for Computer Aided Design.  

 
 

Note 12 

Another product of this variety is QBIC (Query By Image Content), supplied with IBM’s DB2/6000.  

 
 

Note 13 
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As we will see in Section 13.4, SQL3 is trying to go away from the notion of external files and would 
like to incorporate LOBs (large objects) as an integral part of the database managed by the DBMS.  

 
 

Note 14 

Cartridges in Oracle are somewhat similar to Data Blades in Informix.  

 
 

Note 15 

See the Section 23.3 for a brief discussion of spatial data modeling and Section 27.4 on Geographic 
Information Systems.  

 
 

Note 16 

We will review multimedia databases in Section 23.3 and Section 27.2. 

 
 

Note 17 

The discussion about the standard is largely based on Melton and Mattos (1996).  

 
 

Note 18 

The full proposal appears in Snodgrass and Jensen (1996). We discuss temporal modeling and 
introduce TSQL2 in Chapter 23. 

 
 

Note 19 

These concepts are discussed in more detail in Chapter 23.  

 
 

Note 20 

Note that external files for storing LOB data are allowed in current systems.  
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Note 21 

We will discuss nesting and unnesting of tables when we discuss the nested relational model in Section 
13.6.  

 
 

Note 22 

This discussion is derived largely from Stonebraker and Moore (1996).  

 
 

Note 23 

We discuss the client-server approach in Chapter 17 and Chapter 24.  
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Part 4: Database Design Theory and 
Methodology 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Chapter 14: Functional Dependencies and Normalization for Relational Databases 
Chapter 15: Relational Database Design Algorithms and Further Dependencies 
Chapter 16: Practical Database Design and Tuning

Chapter 14: Functional Dependencies and 
Normalization for Relational Databases 
14.1 Informal Design Guidelines for Relation Schemas 
14.2 Functional Dependencies 
14.3 Normal Forms Based on Primary Keys 
14.4 General Definitions of Second and Third Normal Forms 
14.5 Boyce-Codd Normal Form 
14.6 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

In Chapter 7 through Chapter 10, we presented various aspects of the relational model. Each relation 
schema consists of a number of attributes and the relational database schema consists of a number of 
relation schemas. So far, we have assumed that attributes are grouped to form a relation schema by 
using the common sense of the database designer or by mapping a schema specified in the Entity-
Relationship (ER) or Enhanced-ER (EER) model (or some other similar conceptual data model) into a 
relational schema. The EER model makes the designer identify entity types and relationship types and 
their respective attributes, which leads to a natural and logical grouping of the attributes into relations 
when the mapping procedures in Section 9.1 and Section 9.2 are followed. However, we still need 
some formal measure of why one grouping of attributes into a relation schema may be better than 
another. So far in our discussion of conceptual design in Chapter 3 and Chapter 4 and its mapping into 
the relational model in Chapter 9, we have not developed any measure of the appropriateness, 
"goodness," or quality of the design, other than the intuition of the designer.  

In this chapter we discuss some of the theory that has been developed in an attempt to choose "good" 
relation schemas—that is, to measure formally why one set of groupings of attributes into relation 
schemas is better than another. There are two levels at which we can discuss the "goodness" of relation 
schemas. The first is the logical (or conceptual) level—how users interpret the relation schemas and 
the meaning of their attributes. Having good relation schemas at this level enables users to understand 
clearly the meaning of the data in the relations, and hence to formulate their queries correctly. The 
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second is the implementation (or storage) level—how the tuples in a base relation are stored and 
updated. This level applies only to schemas of base relations—which will be physically stored as 
files—whereas at the logical level we are interested in schemas of both base relations and views 
(virtual relations). The relational database design theory developed in this chapter applies mainly to 
base relations, although some criteria of appropriateness also apply to views, as will be shown in 
Section 14.1.  

Moreover, as with any design problem, database design may be performed using two approaches: (1) 
bottom-up or (2) top-down. A bottom-up design methodology would consider the basic relationships 
among individual attributes as the starting point, and it would use those to build up relations. Other 
than the binary relational model (Note 1), this approach is not very popular in practice and suffers from 
the problem of collecting a large number of binary attribute relationships as the starting point. This 
approach is also called design by synthesis. In contrast, a top-down design methodology would start 
with a number of groupings of attributes into relations that have already been obtained from conceptual 
design and mapping activities. Design by analysis is then applied to the relations individually and 
collectively, leading to further decomposition until all desirable properties are met.  

The theory described in this chapter is applicable to both the top-down and bottom-up approaches, but 
it is more practical when applied to the top-down approach. We start in Section 14.1 by informally 
discussing some criteria for good and bad relation schemas. Section 14.2 then defines the concept of 
functional dependency, a formal constraint among attributes that is the main tool for formally 
measuring the appropriateness of attribute groupings into relation schemas. Properties of functional 
dependencies are also studied and analyzed. In Section 14.3 we show how functional dependencies can 
be used to group attributes into relation schemas that are in a normal form. A relation schema is in a 
normal form when it satisfies certain desirable properties. The process of normalization consists of 
analyzing relations to meet increasingly more stringent requirements leading to progressively better 
groupings, or higher normal forms. We show how the functional dependencies—which are identified 
by the database designer—can be used to analyze a relation with a designated primary key to determine 
what normal form it is in and how it should be further decomposed to achieve the next higher normal 
form. In Section 14.4 we discuss more general definitions of normal forms that do not require step-by-
step analysis and normalization.  

Chapter 15 will continue the development of the theory related to the design of good relational 
schemas. Whereas in Chapter 14 we concentrate on the normal forms for single relation schemas, in 
Chapter 15 we discuss measures of appropriateness for a whole set of relation schemas that together 
form a relational database schema. We specify two such properties—the nonadditive (lossless) join 
property and the dependency preservation property—and discuss algorithms for relational database 
design that are based on functional dependencies, normal forms, and the aforementioned properties. In 
Chapter 15 we also define additional types of dependencies and advanced normal forms that further 
enhance the "goodness" of relation schemas.  

For the reader interested in only an informal introduction to normalization, Section 14.2.3, Section 
14.2.4 and Section 14.5 may be skipped.  

 
 

14.1 Informal Design Guidelines for Relation Schemas 

14.1.1 Semantics of the Relation Attributes 
14.1.2 Redundant Information in Tuples and Update Anomalies 
14.1.3 Null Values in Tuples 
14.1.4 Generation of Spurious Tuples 
14.1.5 Summary and Discussion of Design Guidelines

We discuss four informal measures of quality for relation schema design in this section:  

1. Semantics of the attributes.  
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2. Reducing the redundant values in tuples.  
3. Reducing the null values in tuples.  
4. Disallowing the possibility of generating spurious tuples.  

These measures are not always independent of one another, as we shall see.  

 
 

14.1.1 Semantics of the Relation Attributes 

Whenever we group attributes to form a relation schema, we assume that a certain meaning is 
associated with the attributes. In Chapter 7 we discussed how each relation can be interpreted as a set 
of facts or statements. This meaning, or semantics, specifies how to interpret the attribute values stored 
in a tuple of the relation—in other words, how the attribute values in a tuple relate to one another. If the 
conceptual design is done carefully, followed by a mapping into relations, most of the semantics would 
have been accounted for and the resulting design should have a clear meaning.  

In general, the easier it is to explain the semantics of the relation, the better the relation schema design 
will be. To illustrate this, consider Figure 14.01, a simplified version of the COMPANY relational 
database schema of Figure 07.05, and Figure 14.02, which presents an example of populated relations 
of this schema. The meaning of the EMPLOYEE relation schema is quite simple: each tuple represents an 
employee, with values for the employee’s name (ENAME), social security number (SSN), birthdate 
(BDATE), and address (ADDRESS), and the number of the department that the employee works for 
(DNUMBER). The DNUMBER attribute is a foreign key that represents an implicit relationship between 
EMPLOYEE and DEPARTMENT. The semantics of the DEPARTMENT and PROJECT schemas are also 
straightforward; each DEPARTMENT tuple represents a department entity, and each PROJECT tuple 
represents a project entity. The attribute DMGRSSN of DEPARTMENT relates a department to the employee 
who is its manager, while DNUM of PROJECT relates a project to its controlling department; both are 
foreign key attributes.  

 

 

 

 

 
 

The semantics of the other two relation schemas in Figure 14.01 are slightly more complex. Each tuple 
in DEPT_LOCATIONS gives a department number (DNUMBER) and one of the locations of the department 
(DLOCATION). Each tuple in WORKS_ON gives an employee social security number (SSN), the project 
number of one of the projects that the employee works on (PNUMBER), and the number of hours per 
week that the employee works on that project (HOURS). However, both schemas have a well-defined 
and unambiguous interpretation. The schema DEPT_LOCATIONS represents a multivalued attribute of 
DEPARTMENT, whereas WORKS_ ON represents an M:N relationship between EMPLOYEE and PROJECT. 
Hence, all the relation schemas in Figure 14.01 may be considered good from the standpoint of having 
clear semantics. The following informal guideline further elaborates the relation schema design.  

 
 

GUIDELINE 1:  Design a relation schema so that it is easy to explain its meaning. Do not combine 
attributes from multiple entity types and relationship types into a single relation. Intuitively, if a 
relation schema corresponds to one entity type or one relationship type, the meaning tends to be clear. 
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Otherwise, the relation corresponds to a mixture of multiple entities and relationships and hence 
becomes semantically unclear.  

 
 

The relation schemas in Figure 14.03(a) and Figure 14.03(b) also have clear semantics. (The reader 
should ignore the lines under the relations for now, as they are used to illustrate functional dependency 
notation in Section 14.2.) A tuple in the EMP_DEPT relation schema of Figure 14.03(a) represents a 
single employee but includes additional information—namely, the name (DNAME) of the department for 
which the employee works and the social security number (DMGRSSN) of the department manager. For 
the EMP_PROJ relation of Figure 14.03(b), each tuple relates an employee to a project but also includes 
the employee name (ENAME), project name (PNAME), and project location (PLOCATION). Although there 
is nothing wrong logically with these two relations, they are considered poor designs because they 
violate Guideline 1 by mixing attributes from distinct real-world entities; EMP_DEPT mixes attributes of 
employees and departments, and EMP_PROJ mixes attributes of employees and projects. They may be 
used as views, but they cause problems when used as base relations, as we shall discuss in the 
following section.  

 

 

 
 

14.1.2 Redundant Information in Tuples and Update Anomalies 

 
Insertion Anomalies 
Deletion Anomalies 
Modification Anomalies

One goal of schema design is to minimize the storage space that the base relations (files) occupy. 
Grouping attributes into relation schemas has a significant effect on storage space. For example, 
compare the space used by the two base relations EMPLOYEE and DEPARTMENT in Figure 14.02 with the 
space for an EMP_DEPT base relation in Figure 14.04, which is the result of applying the NATURAL 
JOIN operation to EMPLOYEE and DEPARTMENT. In EMP_DEPT, the attribute values pertaining to a 
particular department (DNUMBER, DNAME, DMGRSSN) are repeated for every employee who works for 
that department. In contrast, each department’s information appears only once in the DEPARTMENT 
relation in Figure 14.02. Only the department number (DNUMBER) is repeated in the EMPLOYEE relation 
for each employee who works in that department. Similar comments apply to the EMP_PROJ relation 
(Figure 14.04), which augments the WORKS_ON relation with additional attributes from EMPLOYEE and 
PROJECT.  

Another serious problem with using the relations in Figure 14.04 as base relations is the problem of 
update anomalies. These can be classified into insertion anomalies, deletion anomalies, and 
modification anomalies (Note 2).  

 

 

 
 

Insertion Anomalies 
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These can be differentiated into two types, illustrated by the following examples based on the 
EMP_DEPT relation:  

• To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for 
the department that the employee works for, or nulls (if the employee does not work for a 
department as yet). For example, to insert a new tuple for an employee who works in 
department number 5, we must enter the attribute values of department 5 correctly so that they 
are consistent with values for department 5 in other tuples in EMP_DEPT. In the design of 
Figure 14.02 we do not have to worry about this consistency problem because we enter only 
the department number in the employee tuple; all other attribute values of department 5 are 
recorded only once in the database, as a single tuple in the DEPARTMENT relation.  

• It is difficult to insert a new department that has no employees as yet in the EMP_DEPT relation. 
The only way to do this is to place null values in the attributes for employee. This causes a 
problem because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent 
an employee entity—not a department entity. Moreover, when the first employee is assigned 
to that department, we do not need the tuple with null values any more. This problem does not 
occur in the design of Figure 14.02, because a department is entered in the DEPARTMENT 
relation whether or not any employees work for it, and whenever an employee is assigned to 
that department, a corresponding tuple is inserted in EMPLOYEE.  

 
 

Deletion Anomalies 

This problem is related to the second insertion anomaly situation discussed above. If we delete from 
EMP_DEPT an employee tuple that happens to represent the last employee working for a particular 
department, the information concerning that department is lost from the database. This problem does 
not occur in the database of Figure 14.02 because DEPARTMENT tuples are stored separately.  

 
 

Modification Anomalies 

In EMP_DEPT, if we change the value of one of the attributes of a particular department—say, the 
manager of department 5—we must update the tuples of all employees who work in that department; 
otherwise, the database will become inconsistent. If we fail to update some tuples, the same department 
will be shown to have two different values for manager in different employee tuples, which should not 
be the case.  

Based on the preceding three anomalies, we can state the guideline that follows.  

 
 

GUIDELINE 2:  Design the base relation schemas so that no insertion, deletion, or modification 
anomalies are present in the relations. If any anomalies are present, note them clearly and make sure 
that the programs that update the database will operate correctly.  

 
 

The second guideline is consistent with and, in a way, a restatement of the first guideline. We can also 
see the need for a more formal approach to evaluating whether a design meets these guidelines. Section 
14.2, Section 14.3 and Section 14.4 provide these needed formal concepts. It is important to note that 
these guidelines may sometimes have to be violated in order to improve the performance of certain 
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queries. For example, if an important query retrieves information concerning the department of an 
employee, along with employee attributes, the EMP_DEPT schema may be used as a base relation. 
However, the anomalies in EMP_DEPT must be noted and well understood so that, whenever the base 
relation is updated, we do not end up with inconsistencies. In general, it is advisable to use anomaly-
free base relations and to specify views that include the JOINs for placing together the attributes 
frequently referenced in important queries. This reduces the number of JOIN terms specified in the 
query, making it simpler to write the query correctly, and in many cases it improves the performance 
(Note 3).  

 
 

14.1.3 Null Values in Tuples 

In some schema designs we may group many attributes together into a "fat" relation. If many of the 
attributes do not apply to all tuples in the relation, we end up with many nulls in those tuples. This can 
waste space at the storage level and may also lead to problems with understanding the meaning of the 
attributes and with specifying JOIN operations at the logical level (Note 4). Another problem with nulls 
is how to account for them when aggregate operations such as COUNT or SUM are applied. Moreover, 
nulls can have multiple interpretations, such as the following:  

• The attribute does not apply to this tuple.  
• The attribute value for this tuple is unknown.  
• The value is known but absent; that is, it has not been recorded yet.  

Having the same representation for all nulls compromises the different meanings they may have. 
Therefore, we may state another guideline.  

 
 

GUIDELINE 3:  As far as possible, avoid placing attributes in a base relation whose values may 
frequently be null. If nulls are unavoidable, make sure that they apply in exceptional cases only and do 
not apply to a majority of tuples in the relation.  

 
 

For example, if only 10 percent of employees have individual offices, there is little justification for 
including an attribute OFFICE_NUMBER in the EMPLOYEE relation; rather, a relation EMP_OFFICES(ESSN, 
OFFICE_NUMBER) can be created to include tuples for only the employees with individual offices.  

 
 

14.1.4 Generation of Spurious Tuples 

Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.05(a), which can be used 
instead of the EMP_PROJ relation of Figure 14.03(b). A tuple in EMP_LOCS means that the employee 
whose name is ENAME works on some project whose location is PLOCATION. A tuple in EMP_PROJ1 
means that the employee whose social security number is SSN works HOURS per week on the project 
whose name, number, and location are PNAME, PNUMBER, and PLOCATION. Figure 14.05(b) shows 
relation extensions of EMP_LOCS and EMP_PROJ1 corresponding to the EMP_PROJ relation of Figure 
14.04, which are obtained by applying the appropriate PROJECT (p) operations to EMP_PROJ (ignore 
the dotted lines in Figure 14.05b for now).  
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Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of EMP_PROJ. This 
produces a particularly bad schema design, because we cannot recover the information that was 
originally in EMP_PROJ from EMP_PROJ1 and EMP_LOCS. If we attempt a NATURAL JOIN operation on 
EMP_PROJ1 and EMP_LOCS, the result produces many more tuples than the original population of tuples 
in EMP_PROJ. In Figure 14.06, the result of applying the join to only the tuples above the dotted lines in 
Figure 14.05(b) is shown (to reduce the size of the resulting relation). Additional tuples that were not in 
EMP_PROJ are called spurious tuples because they represent spurious or wrong information that is not 
valid. The spurious tuples are marked by asterisks (*) in Figure 14.06.  

 

 

 
 

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because, when we JOIN them 
back using NATURAL JOIN, we do not get the correct original information. This is because in this 
case PLOCATION is the attribute that relates EMP_LOCS and EMP_PROJ1, and PLOCATION is neither a 
primary key nor a foreign key in either EMP_LOCS or EMP_PROJ1. We can now informally state another 
design guideline.  

 
 

GUIDELINE 4:  Design relation schemas so that they can be JOINed with equality conditions on 
attributes that are either primary keys or foreign keys in a way that guarantees that no spurious tuples 
are generated. Do not have relations that contain matching attributes other than foreign key-primary 
key combinations. If such relations are unavoidable, do not join them on such attributes, because the 
join may produce spurious tuples.  

 
 

This informal guideline obviously needs to be stated more formally. In Chapter 15 we discuss a formal 
condition, called the nonadditive (or lossless) join property, which guarantees that certain joins do not 
produce spurious tuples.  

 
 

14.1.5 Summary and Discussion of Design Guidelines 

In Section 14.1.1 through Section 14.1.4, we informally discussed situations that lead to problematic 
relation schemas, and we proposed informal guidelines for a good relational design. The problems we 
pointed out, which can be detected without additional tools of analysis, are as follows:  

• Anomalies that imply additional work to be done during insertion into and modification of a 
relation, and that may cause accidental loss of information during a deletion from a relation.  

• Waste of storage space due to nulls and difficulty of performing aggregation operations and 
joins due to null values.  
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• Generation of invalid and spurious data during joins on improperly related base relations.  

In the rest of this chapter we present formal concepts and theory that may be used to define concepts of 
the "goodness" and the "badness" of individual relation schemas more precisely. We first discuss 
functional dependency as a tool for analysis. Then we specify the three normal forms and the Boyce-
Codd normal form (BCNF) for relation schemas. In Chapter 15 we give additional criteria for 
determining that a set of relation schemas together forms a good relational database schema. We also 
present algorithms that are a part of this theory to design relational databases and define additional 
normal forms beyond BCNF. The normal forms defined in this chapter are based on the concept of a 
functional dependency, which we describe next, whereas the normal forms discussed in Chapter 15 use 
additional types of data dependencies called multivalued dependencies and join dependencies.  

 
 

14.2 Functional Dependencies 

14.2.1 Definition of Functional Dependency 
14.2.2 Inference Rules for Functional Dependencies 
14.2.3 Equivalence of Sets of Functional Dependencies 
14.2.4 Minimal Sets of Functional Dependencies

The single most important concept in relational schema design is that of a functional dependency. In 
this section we formally define the concept, and in Section 14.3 we see how it can be used to define 
normal forms for relation schemas.  

 
 

14.2.1 Definition of Functional Dependency 

A functional dependency is a constraint between two sets of attributes from the database. Suppose that 
our relational database schema has n attributes , , . . . ; let us think of the whole database as being 
described by a single universal relation schema (Note 5). We do not imply that we will actually store 
the database as a single universal table; we use this concept only in developing the formal theory of 
data dependencies (Note 6).  

A functional dependency, denoted by X â Y, between two sets of attributes X and Y that are subsets 
of R specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is 
that, for any two tuples and in r that have [X] = [X], we must also have [Y] = [Y]. This means that the 
values of the Y component of a tuple in r depend on, or are determined by, the values of the X 
component; or alternatively, the values of the X component of a tuple uniquely (or functionally) 
determine the values of the Y component. We also say that there is a functional dependency from X to 
Y or that Y is functionally dependent on X. The abbreviation for functional dependency is FD or f.d. 
The set of attributes X is called the left-hand side of the FD, and Y is called the right-hand side.  

Thus X functionally determines Y in a relation schema R if and only if, whenever two tuples of r(R) 
agree on their X-value, they must necessarily agree on their Y-value. Notice the following:  

• If a constraint on R states that there cannot be more than one tuple with a given X-value in any 
relation instance r(R)—that is, X is a candidate key of R—this implies that X â Y for any 
subset of attributes Y of R (because the key constraint implies that no two tuples in any legal 
state r(R) will have the same value of X).  

• If X â Y in R, this does not say whether or not Y â X in R.  

A functional dependency is a property of the semantics or meaning of the attributes. The database 
designers will use their understanding of the semantics of the attributes of R—that is, how they relate to 
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one another—to specify the functional dependencies that should hold on all relation states (extensions) 
r of R. Whenever the semantics of two sets of attributes in R indicate that a functional dependency 
should hold, we specify the dependency as a constraint. Relation extensions r(R) that satisfy the 
functional dependency constraints are called legal extensions (or legal relation states) of R, because 
they obey the functional dependency constraints. Hence, the main use of functional dependencies is to 
describe further a relation schema R by specifying constraints on its attributes that must hold at all 
times. Certain FDs can be specified without referring to a specific relation, but as a property of those 
attributes. For example, {State, Driver_license_number} â SSN should hold for any adult 
in the United States. It is also possible that certain functional dependencies may cease to exist in the 
real world if the relationship changes. For example, the FD Zip_code â Area_code used to exist 
as a relationship between postal codes and telephone number codes in the United States, but with the 
proliferation of telephone area codes it is no longer true.  

Consider the relation schema EMP_PROJ in Figure 14.03(b); from the semantics of the attributes, we 
know that the following functional dependencies should hold:  

a. SSN â ENAME  
b. PNUMBER â {PNAME, PLOCATION}  
c. {SSN, PNUMBER} â HOURS  

These functional dependencies specify that (a) the value of an employee’s social security number (SSN) 
uniquely determines the employee name (ENAME), (b) the value of a project’s number (PNUMBER) 
uniquely determines the project name (PNAME) and location (PLOCATION), and (c) a combination of SSN 
and PNUMBER values uniquely determines the number of hours the employee works on the project per 
week (HOURS). Alternatively, we say that ENAME is functionally determined by (or functionally 
dependent on) SSN, or "given a value of SSN, we know the value of ENAME," and so on.  

A functional dependency is a property of the relation schema (intension) R, not of a particular legal 
relation state (extension) r of R. Hence, an FD cannot be inferred automatically from a given relation 
extension r but must be defined explicitly by someone who knows the semantics of the attributes of R. 
For example, Figure 14.07 shows a particular state of the TEACH relation schema. Although at first 
glance we may think that TEXT â COURSE, we cannot confirm this unless we know that it is true for all 
possible legal states of TEACH. It is, however, sufficient to demonstrate a single counterexample to 
disprove a functional dependency. For example, because ‘Smith’ teaches both ‘Data Structures’ and 
‘Data Management’, we can conclude that TEACHER does not functionally determine COURSE.  

 

 

 
 

Figure 14.03 introduces a diagrammatic notation for displaying FDs: Each FD is displayed as a 
horizontal line. The left-hand side attributes of the FD are connected by vertical lines to the line 
representing the FD, while the right-hand-side attributes are connected by arrows pointing toward the 
attributes, as shown in Figure 14.03(a) and Figure 14.03(b).  

 
 

14.2.2 Inference Rules for Functional Dependencies 

We denote by F the set of functional dependencies that are specified on relation schema R. Typically, 
the schema designer specifies the functional dependencies that are semantically obvious; usually, 
however, numerous other functional dependencies hold in all legal relation instances that satisfy the 
dependencies in F. Those other dependencies can be inferred or deduced from the FDs in F. For real-
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life examples, it is practically impossible to specify all possible functional dependencies that may hold. 
The set of all such dependencies is called the closure of F and is denoted by . For example, suppose 
that we specify the following set F of obvious functional dependencies on the relation schema of 
Figure 14.03(a) :  

 
 

F = {SSN â {ENAME, BDATE, ADDRESS, DNUMBER},  

       DNUMBER â {DNAME,DMGRSSN}}  

 
 

We can infer the following additional functional dependencies from F:  

 
 

SSN â {DNAME, DMGRSSN},  

SSN â SSN,  

DNUMBER â DNAME  

 
 

An FD X â Y is inferred from a set of dependencies F specified on R if X â Y holds in every 
relation state r that is a legal extension of R; that is, whenever r satisfies all the dependencies in F, X 
âY also holds in r. The closure of F is the set of all functional dependencies that can be inferred from 
F. To determine a systematic way to infer dependencies, we must discover a set of inference rules that 
can be used to infer new dependencies from a given set of dependencies. We consider some of these 
inference rules next. We use the notation F X â Y to denote that the functional dependency X â Y is 
inferred from the set of functional dependencies F.  

In the following discussion, we use an abbreviated notation when discussing functional dependencies. 
We concatenate attribute variables and drop the commas for convenience. Hence, the FD {X,Y} â Z is 
abbreviated to XY â Z, and the FD {X,Y,Z} â {U,V} is abbreviated to XYZ â UV. The following six 
rules (IR1 through IR6) are well-known inference rules for functional dependencies: 

 
 

IR1 (reflexive rule (Note 7)): If X Y, then X â Y.  

IR2 (augmentation rule (Note 8)): {X â Y } XZ â YZ.  

IR3 (transitive rule): {X â Y, Y âZ} X â Z.  

IR4 (decomposition, or projective, rule): {X â YZ} X â Y.  

IR5 (union, or additive, rule): {X â Y, XâZ} X â YZ.  
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IR6 (pseudotransitive rule): {X â Y, WY â Z } WX â Z.  

 
 

The reflexive rule (IR1) states that a set of attributes always determines itself or any of its subsets, 
which is obvious. Because IR1 generates dependencies that are always true, such dependencies are 
called trivial. Formally, a functional dependency X â Y is trivial if X Y; otherwise, it is nontrivial. 
The augmentation rule (IR2) says that adding the same set of attributes to both the left- and right-hand 
sides of a dependency results in another valid dependency. According to IR3, functional dependencies 
are transitive. The decomposition rule (IR4) says that we can remove attributes from the right-hand 
side of a dependency; applying this rule repeatedly can decompose the FD X â into the set of 
dependencies . The union rule (IR5) allows us to do the opposite; we can combine a set of 
dependencies into the single FD X â .  

Each of the preceding inference rules can be proved from the definition of functional dependency, 
either by direct proof or by contradiction. A proof by contradiction assumes that the rule does not hold 
and shows that this is not possible. We now prove that the first three rules (IR1 through IR3) are valid. 
The second proof is by contradiction. 

 
 

PROOF OF IR1  

Suppose that X Y and that two tuples and exist in some relation instance r of R such that [X] = [X]. Then 
[Y] = [Y] because X Y; hence, X â Y must hold in r.  

 
 

PROOF OF IR2 (BY CONTRADICTION)  

Assume that X â Y holds in a relation instance r of R but that XZ â YZ does not hold. Then there 
must exist two tuples and in r such that (1) [X] = [X], (2) [Y] = [Y], (3) [XZ] = [XZ], and (4) [YZ] [YZ]. 
This is not possible because from (1) and (3) we deduce (5) [Z] = [Z], and from (2) and (5) we deduce 
(6) [YZ] = [YZ], contradicting (4).  

 
 

PROOF OF IR3  

Assume that (1) X â Y and (2) Y â Z both hold in a relation r. Then for any two tuples and in r such 
that [X] = [X], we must have (3) [Y] = [Y], from assumption (1); hence we must also have (4) [Z] = [Z], 
from (3) and assumption (2); hence X â Z must hold in r.  

Using similar proof arguments, we can prove the inference rules IR4 to IR6 and any additional valid 
inference rules. However, a simpler way to prove that an inference rule for functional dependencies is 
valid is to prove it by using inference rules that have already been shown to be valid. For example, we 
can prove IR4 through IR6 by using IR1 through IR3 as follows:  

 
 

PROOF OF IR4 (USING IR1 THROUGH IR3)  
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1. X â YZ (given). 
2. YZ â Y (using IR1 and knowing that YZ Y). 
3. X â Y (using IR3 on 1 and 2).  

PROOF OF IR5 (USING IR1 THROUGH IR3)  

1. X â Y (given).  
2. X â Z (given).  
3. X â XY (using IR2 on 1 by augmenting with X; notice that XX = X).  
4. XY â YZ (using IR2 on 2 by augmenting with Y).  
5. X â YZ (using IR3 on 3 and 4).  

PROOF OF IR6 (USING IR1 THROUGH IR3)  

1. X â Y (given).  
2. WY â Z (given).  
3. WX â WY (using IR2 on 1 by augmenting with W).  
4. WX â Z (using IR3 on 3 and 2).  

It has been shown by Armstrong (1974) that inference rules IR1 through IR3 are sound and complete. 
By sound, we mean that, given a set of functional dependencies F specified on a relation schema R, any 
dependency that we can infer from F by using IR1 through IR3 holds in every relation state r of R that 
satisfies the dependencies in F. By complete, we mean that using IR1 through IR3 repeatedly to infer 
dependencies until no more dependencies can be inferred results in the complete set of all possible 
dependencies that can be inferred from F. In other words, the set of dependencies , which we called the 
closure of F, can be determined from F by using only inference rules IR1 through IR3. Inference rules 
IR1 through IR3 are known as Armstrong’s inference rules (Note 9).  

Typically, database designers first specify the set of functional dependencies F that can easily be 
determined from the semantics of the attributes of R; then IR1, IR2, and IR3 are used to infer 
additional functional dependencies that will also hold on R. A systematic way to determine these 
additional functional dependencies is first to determine each set of attributes X that appears as a left-
hand side of some functional dependency in F and then to determine the set of all attributes that are 
dependent on X. Thus for each such set of attributes X, we determine the set of attributes that are 
functionally determined by X based on F; is called the closure of X under F. Algorithm 14.1 can be 
used to calculate .  

 
 

Algorithm 14.1  Determining , the closure of X under F  

:= X;  

repeat  

old:= ;  

for each functional dependency Y â Z in F do  

if Y then := D Z;  

until ( = old);  
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Algorithm 14.1 starts by setting to all the attributes in X. By IR1, we know that all these attributes are 
functionally dependent on X. Using inference rules IR3 and IR4, we add attributes to , using each 
functional dependency in F. We keep going through all the dependencies in F (the repeat loop) until no 
more attributes are added to during a complete cycle (the for loop) through the dependencies in F. For 
example, consider the relation schema EMP_PROJ in Figure 14.03(b); from the semantics of the 
attributes, we specify the following set F of functional dependencies that should hold on EMP_PROJ:  

 

  F  =  {SSN â ENAME,  
      PNUMBER â {PNAME, PLOCATION},  
      {SSN, PNUMBER} â HOURS}  

 
 

Using Algorithm 14.1, we calculate the following closure sets with respect to F:  

 
 

{ SSN }+ = { SSN, ENAME }  

{ PNUMBER }+ = { PNUMBER, PNAME, PLOCATION }  

{ SSN, PNUMBER }+ = { SSN, PNUMBER, ENAME, PNAME, PLOCATION, HOURS }  

 
 

14.2.3 Equivalence of Sets of Functional Dependencies 

In this section we discuss the equivalence of two sets of functional dependencies. First, we give some 
preliminary definitions. A set of functional dependencies E is covered by a set of functional 
dependencies F—or alternatively, F is said to cover E—if every FD in E is also in ; that is, if every 
dependency in E can be inferred from F. Two sets of functional dependencies E and F are equivalent if 
= . Hence, equivalence means that every FD in E can be inferred from F, and every FD in F can be 
inferred from E; that is, E is equivalent to F if both the conditions E covers F and F covers E hold.  

We can determine whether F covers E by calculating with respect to F for each FD X â Y in E, and 
then checking whether this includes the attributes in Y. If this is the case for every FD in E, then F 
covers E. We determine whether E and F are equivalent by checking that E covers F and F covers E.  

 
 

14.2.4 Minimal Sets of Functional Dependencies 

A set of functional dependencies F is minimal if it satisfies the following conditions:  

1. Every dependency in F has a single attribute for its right-hand side.  
2. We cannot replace any dependency X â A in F with a dependency Y â A, where Y is a 

proper subset of X, and still have a set of dependencies that is equivalent to F.  
3. We cannot remove any dependency from F and still have a set of dependencies that is 

equivalent to F.  
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We can think of a minimal set of dependencies as being a set of dependencies in a standard or 
canonical form and with no redundancies. Condition 1 ensures that every dependency is in a canonical 
form with a single attribute on the right-hand side (Note 10). Conditions 2 and 3 ensure that there are 
no redundancies in the dependencies either by having redundant attributes on the left-hand side of a 
dependency (Condition 2), or by having a dependency that can be inferred from the remaining FDs in F 
(Condition 3). A minimal cover of a set of functional dependencies F is a minimal set of dependencies 
that is equivalent to F. Unfortunately, there can be several minimal covers for a set of functional 
dependencies. We can always find at least one minimal cover G for any set of dependencies F using 
Algorithm 14.2.  

 
 

Algorithm 14.2  Finding a minimal cover G for F  

1. Set G := F.  
2. Replace each functional dependency X â in G by the n functional dependencies X â , X 

â , . . ., X â .  

3. For each functional dependency X â A in G  

    for each attribute B that is an element of X 
      if ((G - {X â A}) D {(X - {B}) â A}) is equivalent to G,  

        then replace X â A with (X - {B}) â A in G.  

4. For each remaining functional dependency X â A in G  

    if (G - {X â A}) is equivalent to G,  

      then remove X â A from G.  

 
 

14.3 Normal Forms Based on Primary Keys 

14.3.1 Introduction to Normalization 
14.3.2 First Normal Form 
14.3.3 Second Normal Form 
14.3.4 Third Normal Form

Having studied functional dependencies and some of their properties, we are now ready to use them as 
information about the semantics of the relation schemas. We assume that a set of functional 
dependencies is given for each relation, and that each relation has a designated primary key; this 
information combined with the tests (conditions) for normal forms drives the normalization process. 
We will focus on the first three normal forms for relation schemas and the intuition behind them, and 
discuss how they were developed historically. More general definitions of these normal forms, which 
take into account all candidate keys of a relation rather than just the primary key, are deferred to 
Section 14.4. In Section 14.5 we define Boyce-Codd normal form (BCNF), and in Chapter 15 we 
define further normal forms that are based on other types of data dependencies.  

We start in Section 14.3.1 by informally discussing normal forms and the motivation behind their 
development, as well as reviewing some definitions from Chapter 7 that are needed here. We then 
discuss first normal form (1NF) in Section 14.3.2, and present the definitions of second normal form 
(2NF) and third normal form (3NF) that are based on primary keys in Section 14.3.3 and Section 
14.3.4.  
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14.3.1 Introduction to Normalization 

The normalization process, as first proposed by Codd (1972a), takes a relation schema through a series 
of tests to "certify" whether it satisfies a certain normal form. The process, which proceeds in a top-
down fashion by evaluating each relation against the criteria for normal forms and decomposing 
relations as necessary, can thus be considered as relational design by analysis. Initially, Codd proposed 
three normal forms, which he called first, second, and third normal form. A stronger definition of 
3NF—called Boyce-Codd normal form (BCNF)—was proposed later by Boyce and Codd. All these 
normal forms are based on the functional dependencies among the attributes of a relation. Later, a 
fourth normal form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of 
multivalued dependencies and join dependencies, respectively; these are discussed in Chapter 15. At 
the beginning of Chapter 15, we also discuss how 3NF relations may be synthesized from a given set of 
FDs. This approach is called relational design by synthesis.  

Normalization of data can hence be looked upon as a process of analyzing the given relation schemas 
based on their FDs and primary keys to achieve the desirable properties of (1) minimizing redundancy 
and (2) minimizing the insertion, deletion, and update anomalies discussed in Section 14.1.2. 
Unsatisfactory relation schemas that do not meet certain conditions—the normal form tests—are 
decomposed into smaller relation schemas that meet the tests and hence possess the desirable 
properties. Thus, the normalization procedure provides database designers with:  

• A formal framework for analyzing relation schemas based on their keys and on the functional 
dependencies among their attributes.  

• A series of normal form tests that can be carried out on individual relation schemas so that the 
relational database can be normalized to any desired degree.  

The normal form of a relation refers to the highest normal form condition that it meets, and hence 
indicates the degree to which it has been normalized. Normal forms, when considered in isolation from 
other factors, do not guarantee a good database design. It is generally not sufficient to check separately 
that each relation schema in the database is, say, in BCNF or 3NF. Rather, the process of normalization 
through decomposition must also confirm the existence of additional properties that the relational 
schemas, taken together, should possess. These would include two properties:  

• The lossless join or nonadditive join property, which guarantees that the spurious tuple 
generation problem discussed in Section 14.1.4 does not occur with respect to the relation 
schemas created after decomposition.  

• The dependency preservation property, which ensures that each functional dependency is 
represented in some individual relations resulting after decomposition.  

The nonadditive join property is extremely critical and must be achieved at any cost, whereas the 
dependency preservation property, although desirable, is sometimes sacrificed, as we shall see in 
Section 15.1.2. We defer the presentation of the formal concepts and techniques that guarantee the 
above two properties to Chapter 15.  

Additional normal forms may be defined to meet other desirable criteria, based on additional types of 
constraints, as we shall see in Chapter 15. However, the practical utility of normal forms becomes 
questionable when the constraints on which they are based are hard to understand or to detect by the 
database designers and users who must discover these constraints. Thus database design as practiced in 
industry today pays particular attention to normalization up to BCNF or 4NF.  

Another point worth noting is that the database designers need not normalize to the highest possible 
normal form. Relations may be left in a lower normalization status for performance reasons, such as 
those discussed at the end of Section 14.1.2. The process of storing the join of higher normal form 
relations as a base relation—which is in a lower normal form—is known as denormalization.  

Before proceeding further, let us look again at the definitions of keys of a relation schema from 
Chapter 7. A superkey of a relation schema is a set of attributes S R with the property that no two 
tuples and in any legal relation state r of R will have [S] = [S]. A key K is a superkey with the 
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additional property that removal of any attribute from K will cause K not to be a superkey any more. 
The difference between a key and a superkey is that a key has to be minimal; that is, if we have a key 
of R, then K - {} is not a key of R for any i, 1 1 i 1 k. In Figure 14.01 {SSN} is a key for EMPLOYEE, 
whereas {SSN}, {SSN, ENAME}, {SSN, ENAME, BDATE}, etc. are all superkeys.  

If a relation schema has more than one key, each is called a candidate key. One of the candidate keys 
is arbitrarily designated to be the primary key, and the others are called secondary keys. Each relation 
schema must have a primary key. In Figure 14.01 {SSN} is the only candidate key for EMPLOYEE, so it 
is also the primary key.  

An attribute of relation schema R is called a prime attribute of R if it is a member of some candidate 
key of R. An attribute is called nonprime if it is not a prime attribute—that is, if it is not a member of 
any candidate key. In Figure 14.01 both SSN and PNUMBER are prime attributes of WORKS_ON, whereas 
other attributes of WORKS_ON are nonprime.  

We now present the first three normal forms: 1NF, 2NF, and 3NF. These were proposed by Codd 
(1972a) as a sequence to achieve the desirable state of 3NF relations by progressing through the 
intermediate states of 1NF and 2NF if needed.  

 
 

14.3.2 First Normal Form 

First normal form (1NF) is now considered to be part of the formal definition of a relation in the basic 
(flat) relational model (Note 11); historically, it was defined to disallow multivalued attributes, 
composite attributes, and their combinations. It states that the domain of an attribute must include only 
atomic (simple, indivisible) values and that the value of any attribute in a tuple must be a single value 
from the domain of that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a 
combination of both as an attribute value for a single tuple. In other words, 1NF disallows "relations 
within relations" or "relations as attributes of tuples." The only attribute values permitted by 1NF are 
single atomic (or indivisible) values.  

Consider the DEPARTMENT relation schema shown in Figure 14.01, whose primary key is DNUMBER, and 
suppose that we extend it by including the DLOCATIONS attribute as shown in Figure 14.08(a). We 
assume that each department can have a number of locations. The DEPARTMENT schema and an example 
extension are shown in Figure 14.08. As we can see, this is not in 1NF because DLOCATIONS is not an 
atomic attribute, as illustrated by the first tuple in Figure 14.08(b). There are two ways we can look at 
the DLOCATIONS attribute:  

• The domain of DLOCATIONS contains atomic values, but some tuples can have a set of these 
values. In this case, DLOCATIONS is not functionally dependent on DNUMBER.  

• The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case, 
DNUMBER â DLOCATIONS, because each set is considered a single member of the attribute 
domain (Note 12). 

 

 
 

In either case, the DEPARTMENT relation of Figure 14.08 is not in 1NF; in fact, it does not even qualify 
as a relation, according to our definition of relation in Section 7.1. There are three main techniques to 
achieve first normal form for such a relation:  

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate relation 
DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The primary key of 
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this relation is the combination {DNUMBER, DLOCATION}, as shown in Figure 14.02. A distinct 
tuple in DEPT_LOCATIONS exists for each location of a department. This decomposes the non-
1NF relation into two 1NF relations.  

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT relation for 
each location of a DEPARTMENT, as shown in Figure 14.08(c). In this case, the primary key 
becomes the combination {DNUMBER, DLOCATION}. This solution has the disadvantage of 
introducing redundancy in the relation.  

3. If a maximum number of values is known for the attribute—for example, if it is known that at 
most three locations can exist for a department—replace the DLOCATIONS attribute by three 
atomic attributes: DLOCATION1, DLOCATION2, and DLOCATION3. This solution has the 
disadvantage of introducing null values if most departments have fewer than three locations.  

Of the three solutions above, the first is superior because it does not suffer from redundancy and it is 
completely general, having no limit placed on a maximum number of values. In fact, if we choose the 
second solution, it will be decomposed further during subsequent normalization steps into the first 
solution.  

The first normal form also disallows multivalued attributes that are themselves composite. These are 
called nested relations because each tuple can have a relation within it. Figure 14.09 shows how the 
EMP_PROJ relation could appear if nesting is allowed. Each tuple represents an employee entity, and a 
relation PROJS(PNUMBER, HOURS) within each tuple represents the employee’s projects and the hours 
per week that employee works on each project. The schema of this EMP_PROJ relation can be 
represented as follows:  

 
 

EMP_PROJ(SSN, ENAME, {PROJS(PNUMBER, HOURS)})  

 

 

 
 

The set braces { } identify the attribute PROJS as multivalued, and we list the component attributes that 
form PROJS between parentheses ( ). Interestingly, recent research into the relational model is 
attempting to allow and formalize nested relations (see Section 13.6), which were disallowed early on 
by 1NF.  

Notice that SSN is the primary key of the EMP_PROJ relation in Figure 14.09(a) and Figure 14.09(b), 
while PNUMBER is the partial primary key of the nested relation; that is, within each tuple, the nested 
relation must have unique values of PNUMBER. To normalize this into 1NF, we remove the nested 
relation attributes into a new relation and propagate the primary key into it; the primary key of the new 
relation will combine the partial key with the primary key of the original relation. Decomposition and 
primary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2 shown in Figure 14.09(c).  

This procedure can be applied recursively to a relation with multiple-level nesting to unnest the 
relation into a set of 1NF relations. This is useful in converting an unnormalized relation schema with 
many levels of nesting into 1NF relations, as we saw in Section 13.6. We also saw in that section that 
the unnest operator is a part of the nested relational model. Chapter 15 will show that restricting 
relations to 1NF leads to the problems associated with multivalued dependencies and 4NF.  

 
 

14.3.3 Second Normal Form 
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Second normal form (2NF) is based on the concept of full functional dependency. A functional 
dependency X â Y is a full functional dependency if removal of any attribute A from X means that 
the dependency does not hold any more; that is, for any attribute A X, (X - {A}) does not functionally 
determine Y. A functional dependency X â Y is a partial dependency if some attribute A X can be 
removed from X and the dependency still holds; that is, for some A X, (X - {A}) â Y. In Figure 
14.03(b), {SSN, PNUMBER}â HOURS is a full dependency (neither SSN â HOURS nor PNUMBER â 
HOURS holds). However, the dependency {SSN, PNUMBER} â ENAME is partial because SSN â ENAME 
holds.  

The test for 2NF involves testing for functional dependencies whose left-hand side attributes are part of 
the primary key. If the primary key contains a single attribute, the test need not be applied at all. A 
relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the 
primary key of R. The EMP_PROJ relation in Figure 14.03(b) is in 1NF but is not in 2NF. The nonprime 
attribute ENAME violates 2NF because of FD2, as do the nonprime attributes PNAME and PLOCATION 
because of FD3. The functional dependencies FD2 and FD3 make ENAME, PNAME, and PLOCATION 
partially dependent on the primary key {SSN, PNUMBER} of EMP_PROJ, thus violating the 2NF test.  

If a relation schema is not in 2NF, it can be "second normalized" or "2NF normalized" into a number of 
2NF relations in which nonprime attributes are associated only with the part of the primary key on 
which they are fully functionally dependent. The functional dependencies FD1, FD2, and FD3 in 
Figure 14.03(b) hence lead to the decomposition of EMP_PROJ into the three relation schemas EP1, 
EP2, and EP3 shown in Figure 14.10(a), each of which is in 2NF.  

 

 

 
 

14.3.4 Third Normal Form 

Third normal form (3NF) is based on the concept of transitive dependency. A functional dependency 
X â Y in a relation schema R is a transitive dependency if there is a set of attributes Z that is neither a 
candidate key nor a subset of any key of R (Note 13), and both X â Z and Z âY hold. The 
dependency SSN â DMGRSSN is transitive through DNUMBER in EMP_DEPT of Figure 14.03(a) because 
both the dependencies SSN â DNUMBER and DNUMBER â DMGRSSN hold and DNUMBER is neither a key 
itself nor a subset of the key of EMP_DEPT. Intuitively, we can see that the dependency of DMGRSSN on 
DNUMBER is undesirable in EMP_DEPT since DNUMBER is not a key of EMP_DEPT.  

According to Codd’s original definition, a relation schema R is in 3NF if it satisfies 2NF and no 
nonprime attribute of R is transitively dependent on the primary key. The relation schema EMP_DEPT in 
Figure 14.03(a) is in 2NF, since no partial dependencies on a key exist. However, EMP_DEPT is not in 
3NF because of the transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER. We can 
normalize EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2 shown in 
Figure 14.10(b). Intuitively, we see that ED1 and ED2 represent independent entity facts about 
employees and departments. A NATURAL JOIN operation on ED1 and ED2 will recover the original 
relation EMP_DEPT without generating spurious tuples.  

Table 14.1 informally summarizes the three normal forms based on primary keys, the tests used in each 
case, and the corresponding "remedy" or normalization to achieve the normal form.  

 

Table 14.1  Summary of Normal Forms Based on Primary Keys and Corresponding Normalization.  
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Normal Form  Test  Remedy (Normalization)  

 
 

First (1NF)  Relation should have no nonatomic 
attributes or nested relations  

Form new relations for each nonatomic 
attribute or nested relation 

Second (2NF)  For relations where primary key contains 
multiple attributes, no nonkey attribute 
should be functionally dependent on a part 
of the primary key  

Decompose and set up a new relation for 
each partial key with its dependent 
attribute(s). Make sure to keep a relation 
with the original primary key and any 
attributes that are fully functionally 
dependent on it.  

Third (3NF)  Relation should not have a nonkey 
attribute functionally determined by 
another nonkey attribute (or by a set of 
nonkey attributes.) That is, there should 
be no transitive dependency of a nonkey 
attribute on the primary key.  

Decompose and set up a relation that 
includes the nonkey attribute(s) that 
functionally determine(s) other nonkey 
attribute(s).  

 
 

14.4 General Definitions of Second and Third Normal Forms 

14.4.1 General Definition of Second Normal Form 
14.4.2 General Definition of Third Normal Form 
14.4.3 Interpreting the General Definition of 3NF

In general, we want to design our relation schemas so that they have neither partial nor transitive 
dependencies, because these types of dependencies cause the update anomalies discussed in Section 
14.1.2. The steps for normalization into 3NF relations that we discussed so far disallow partial and 
transitive dependencies on the primary key. These definitions, however, do not take other candidate 
keys of a relation, if any, into account. In this section we give the more general definitions of 2NF and 
3NF that take all candidate keys of a relation into account. Notice that this does not affect the definition 
of 1NF, since it is independent of keys and functional dependencies. As a general definition of prime 
attribute, an attribute that is part of any candidate key will be considered as prime. Partial and full 
functional dependencies and transitive dependencies will now be with respect to all candidate keys of a 
relation.  

 
 

14.4.1 General Definition of Second Normal Form 

A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially 
dependent on any key of R (Note 14). Consider the relation schema LOTS shown in Figure 14.11(a), 
which describes parcels of land for sale in various counties of a state. Suppose that there are two 
candidate keys: PROPERTY_ID# and {COUNTY_NAME, LOT#}; that is, lot numbers are unique only within 
each county but PROPERTY_ID numbers are unique across counties for the entire state.  
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Based on the two candidate keys PROPERTY_ID# and {COUNTY_NAME, LOT#}, we know that the 
functional dependencies FD1 and FD2 of Figure 14.11(a) hold. We choose PROPERTY_ID# as the 
primary key, so it is underlined in Figure 14.11(a); but no special consideration will be given to this 
key over the other candidate key. Suppose that the following two additional functional dependencies 
hold in LOTS:  

 
 

FD3: COUNTRY_NAME â TAX_RATE 

FD4: AREA â PRICE  

 
 

In words, the dependency FD3 says that the tax rate is fixed for a given county (does not vary lot by lot 
within the same county), while FD4 says that the price of a lot is determined by its area regardless of 
which county it is in. (Assume that this is the price of the lot for tax purposes.) The LOTS relation 
schema violates the general definition of 2NF because TAX_RATE is partially dependent on the candidate 
key {COUNTY_NAME, LOT#}, due to FD3. To normalize LOTS into 2NF, we decompose it into the two 
relations LOTS1 and LOTS2, shown in Figure 14.11(b). We construct LOTS1 by removing the attribute 
TAX_RATE that violates 2NF from LOTS and placing it with COUNTY_NAME (the left-hand side of FD3 that 
causes the partial dependency) into another relation LOTS2. Both LOTS1 and LOTS2 are in 2NF. Notice 
that FD4 does not violate 2NF and is carried over to LOTS1.  

 
 

14.4.2 General Definition of Third Normal Form 

A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency X 
â A holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R. According to this 
definition, LOTS2 (Figure 14.11b) is in 3NF. However, FD4 in LOTS1 violates 3NF because AREA is not 
a superkey and PRICE is not a prime attribute in LOTS1. To normalize LOTS1 into 3NF, we decompose it 
into the relation schemas LOTS1A and LOTS1B shown in Figure 14.11(c). We construct LOTS1A by 
removing the attribute PRICE that violates 3NF from LOTS1 and placing it with AREA (the left-hand side 
of FD4 that causes the transitive dependency) into another relation LOTS1B. Both LOTS1A and LOTS1B 
are in 3NF. Two points are worth noting about the general definition of 3NF:  

• LOTS1 violates 3NF because PRICE is transitively dependent on each of the candidate keys of 
LOTS1 via the nonprime attribute AREA.  

• This definition can be applied directly to test whether a relation schema is in 3NF; it does not 
have to go through 2NF first. If we apply the above 3NF definition to LOTS with the 
dependencies FD1 through FD4, we find that both FD3 and FD4 violate 3NF. We could hence 
decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence the transitive and partial 
dependencies that violate 3NF can be removed in any order.  

 
 

14.4.3 Interpreting the General Definition of 3NF 
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A relation schema R violates the general definition of 3NF if a functional dependency X â A holds in 
R that violates both conditions (a) and (b) of 3NF. Violating (b) means that A is a nonprime attribute. 
Violating (a) means that X is not a superset of any key of R; hence, X could be nonprime or it could be 
a proper subset of a key of R. If X is nonprime, we typically have a transitive dependency that violates 
3NF, whereas if X is a proper subset of a key of R we have a partial dependency that violates 3NF (and 
also 2NF). Hence, we can state a general alternative definition of 3NF as follows: A relation schema 
R is in 3NF if every nonprime attribute of R meets both of the following terms:  

• It is fully functionally dependent on every key of R.  
• It is nontransitively dependent on every key of R.  

 
 

14.5 Boyce-Codd Normal Form 

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to be 
stricter than 3NF, because every relation in BCNF is also in 3NF; however, a relation in 3NF is not 
necessarily in BCNF. Intuitively, we can see the need for a stronger normal form than 3NF by going 
back to the LOTS relation schema of Figure 14.11(a) with its four functional dependencies, FD1 through 
FD4. Suppose that we have thousands of lots in the relation but the lots are from only two counties: 
Dekalb and Fulton. Suppose also that lot sizes in Dekalb County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 
acres, whereas lot sizes in Fulton County are restricted to 1.1, 1.2, ..., 1.9, and 2.0 acres. In such a 
situation we would have the additional functional dependency FD5: AREA â COUNTY_NAME. If we add 
this to the other dependencies, the relation schema LOTS1A still is in 3NF because COUNTY_NAME is a 
prime attribute.  

The area of a lot that determines the county, as specified by FD5, can be represented by 16 tuples in a 
separate relation R(AREA, COUNTY_NAME), since there are only 16 possible AREA values. This 
representation reduces the redundancy of repeating the same information in the thousands of LOTS1A 
tuples. BCNF is a stronger normal form that would disallow LOTS1A and suggest the need for 
decomposing it.  

The formal definition of BCNF differs slightly from the definition of 3NF. A relation schema R is in 
BCNF if whenever a nontrivial functional dependency X â A holds in R, then X is a superkey of R. 
The only difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, which 
allows A to be prime, is absent from BCNF.  

In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of LOTS1A. Note that 
FD5 satisfies 3NF in LOTS1A because COUNTY_NAME is a prime attribute (condition b), but this 
condition does not exist in the definition of BCNF. We can decompose LOTS1A into two BCNF 
relations LOTS1AX and LOTS1AY, shown in Figure 14.12(a). This decomposition loses the functional 
dependency FD2 because its attributes no longer coexist in the same relation.  

 

 

 
 

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X â A holds in a relation 
schema R with X not being a superkey and A being a prime attribute will R be in 3NF but not in BCNF. 
The relation schema R shown in Figure 14.12(b) illustrates the general case of such a relation. Ideally, 
relational database design should strive to achieve BCNF or 3NF for every relation schema. Achieving 
the normalization status of just 1NF or 2NF is not considered adequate, as they were developed 
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historically as stepping stones to 3NF and BCNF. Figure 14.13 shows a relation TEACH with the 
following dependencies:  

 
 

FD1: {STUDENT, COURSE} â INSTRUCTOR  

FD2 (Note 15): INSTRUCTOR â COURSE  

 

 

 
 

Note that {STUDENT, COURSE} is a candidate key for this relation and that the dependencies shown 
follow the pattern in Figure 14.12(b). Hence this relation is in 3NF but not BCNF. Decomposition of 
this relation schema into two schemas is not straightforward because it may be decomposed in one of 
the three possible pairs:  

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.  
2. {COURSE, INSTRUCTOR} and {COURSE, STUDENT}  
3. {INSTRUCTOR, COURSE} and {INSTRUCTOR, STUDENT}.  

All three decompositions "lose" the functional dependency FD1. The desirable decomposition out of 
the above three is the third one, because it will not generate spurious tuples after a join. A test to 
determine whether a decomposition is nonadditive (lossless) is discussed in Section 15.1.3 under 
Property LJ1. In general, a relation not in BCNF should be decomposed so as to meet this property, 
while possibly forgoing the preservation of all functional dependencies in the decomposed relations, as 
is the case in this example. Algorithm 15.3 in the next chapter does that and could have been used 
above to give the same decomposition for TEACH.  

 
 

14.6 Summary 

In this chapter we discussed on an intuitive basis several pitfalls in relational database design, 
identified informally some of the measures for indicating whether a relation schema is "good" or "bad," 
and provided informal guidelines for a good design. We then presented some formal concepts that 
allow us to do relational design in a top-down fashion by analyzing relations individually. We defined 
this process of design by analysis and decomposition by introducing the process of normalization. The 
topics discussed in this chapter will be continued in Chapter 15, where we discuss more advanced 
concepts in relational design theory.  

We discussed the problems of update anomalies that occur when redundancies are present in relations. 
Informal measures of good relation schemas include simple and clear attribute semantics and few nulls 
in the extensions of relations. A good decomposition should also avoid the problem of generation of 
spurious tuples as a result of the join operation.  

We defined the concept of functional dependency and discussed some of its properties. Functional 
dependencies are the fundamental source of semantic information about the attributes of a relation 
schema. We showed how from a given set of functional dependencies, additional dependencies can be 
inferred using a set of inference rules. We defined the concepts of closure and minimal cover of a set of 
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dependencies, and we provided an algorithm to compute a minimal cover. We also showed how to 
check whether two sets of functional dependencies are equivalent.  

We then described the normalization process for achieving good designs by testing relations for 
undesirable types of functional dependencies. We provided a treatment of successive normalization 
based on a predefined primary key in each relation, then relaxed this requirement and provided more 
general definitions of second normal form (2NF) and third normal form (3NF) that take all candidate 
keys of a relation into account. We presented examples to illustrate how using the general definition of 
3NF a given relation may be analyzed and decomposed to eventually yield a set of relations in 3NF.  

Finally, we presented Boyce-Codd normal form (BCNF) and discussed how it is a stronger form of 
3NF. We also illustrated how the decomposition of a non-BCNF relation must be done by considering 
the nonadditive decomposition requirement.  

Chapter 15 will present synthesis as well as decomposition algorithms for relational database design 
based on functional dependencies. Related to decomposition, we will discuss the concepts of lossless 
(nonadditive) join and dependency preservation, which are enforced by some of these algorithms. 
Other topics in Chapter 15 include multivalued dependencies, join dependencies, and additional normal 
forms that take these dependencies into account.  

 
 

Review Questions 

  14.1.  Discuss the attribute semantics as an informal measure of goodness for a relation schema.  

  14.2.  Discuss insertion, deletion, and modification anomalies. Why are they considered bad? 
Illustrate with examples. 

  14.3.  Why are many nulls in a relation considered bad?  

  14.4.  Discuss the problem of spurious tuples and how we may prevent it. 

  14.5.  State the informal guidelines for relation schema design that we discussed. Illustrate how 
violation of these guidelines may be harmful.  

  14.6.  What is a functional dependency? Who specifies the functional dependencies that hold among 
the attributes of a relation schema? 

  14.7.  Why can we not infer a functional dependency from a particular relation state?  

  14.8.  Why are Armstrong’s inference rules—the three inference rules IR1 through IR3—important?  

  14.9.  What is meant by the completeness and soundness of Armstrong’s inference rules?  

14.10.  What is meant by the closure of a set of functional dependencies?  

14.11.  When are two sets of functional dependencies equivalent? How can we determine their 
equivalence?  

14.12.  What is a minimal set of functional dependencies? Does every set of dependencies have a 
minimal equivalent set? 

14.13.  What does the term unnormalized relation refer to? How did the normal forms develop 
historically?  

14.14.  Define first, second, and third normal forms when only primary keys are considered. How do 
the general definitions of 2NF and 3NF, which consider all keys of a relation, differ from those 
that consider only primary keys?  

14.15.  What undesirable dependencies are avoided when a relation is in 3NF?  
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14.16.  Define Boyce-Codd normal form. How does it differ from 3NF? Why is it considered a 
stronger form of 3NF?  

 
 

Exercises 

14.17.  Suppose that we have the following requirements for a university database that is used to keep 
track of students’ transcripts: 

  a. The university keeps track of each student’s name (SNAME); student number (SNUM); 
social security number (SSN); current address (SCADDR) and phone (SCPHONE); 
permanent address (SPADDR) and phone (SPPHONE); birth date (BDATE); sex (SEX); 
class (CLASS) (freshman, sophomore, ..., graduate); major department (MAJORCODE); 
minor department (MINORCODE) (if any); and degree program (PROG) (B.A., B.S., ..., 
PH.D.). Both SSSN and student number have unique values for each student.  

b. Each department is described by a name (DNAME), department code (DCODE), office 
number (DOFFICE), office phone (DPHONE), and college (DCOLLEGE). Both name and 
code have unique values for each department.  

c. Each course has a course name (CNAME), description (CDESC), course number (CNUM), 
number of semester hours (CREDIT), level (LEVEL), and offering department (CDEPT). 
The course number is unique for each course.  

d. Each section has an instructor (INAME), semester (SEMESTER), year (YEAR), course 
(SECCOURSE), and section number (SECNUM). The section number distinguishes 
different sections of the same course that are taught during the same semester/year; its 
values are 1, 2, 3, ..., up to the total number of sections taught during each semester.  

e. A grade record refers to a student (SSN), a particular section, and a grade (GRADE).  

  Design a relational database schema for this database application. First show all the functional 
dependencies that should hold among the attributes. Then design relation schemas for the 
database that are each in 3NF or BCNF. Specify the key attributes of each relation. Note any 
unspecified requirements, and make appropriate assumptions to render the specification 
complete.  

14.18. Prove or disprove the following inference rules for functional dependencies. A proof can be 
made either by a proof argument or by using inference rules IR1 through IR3. A disproof 
should be performed by demonstrating a relation instance that satisfies the conditions and 
functional dependencies in the-left-hand side of the inference rule but does not satisfy the 
dependencies in the right-hand side.  

  a. {W â Y, X â Z} {WX â Y}.  
b. {X â Y} and Y Z {X â Z}.  
c. {X â Y, X â W, WY â Z} {X â Z}.  
d. {XY â Z, Y â W} {XW â Z}.  
e. {X â Z, Y â Z} {X â Y}.  
f. {X â Y, XY â Z} {X â Z}.  
g. {X â Y, Z âW} {XZ â YW}.  
h. {XY â Z, Z â X} {Z â Y}.  
i. {X â Y, Y â Z} {X â YZ}.  
j. {XY â Z, Z â W} {X â W}.  

14.19.  Consider the following two sets of functional dependencies: F = {A â C, AC â D, E â AD, 
E â H} and G = {A â CD, E â AH}. Check whether they are equivalent.  

14.20. Consider the relation schema EMP_DEPT in Figure 14.03(a) and the following set G of 
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functional dependencies on EMP_DEPT: G = {SSN â {ENAME, BDATE, ADDRESS, DNUMBER}, 
DNUMBER â {DNAME, DMGRSSN}}. Calculate the closures {SSN} and {DNUMBER} with respect 
to G.  

14.21. Is the set of functional dependencies G in Exercise 14.20 minimal? If not, try to find a minimal 
set of functional dependencies that is equivalent to G. Prove that your set is equivalent to G.  

14.22. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of Figure 14.03 and 
Figure 14.04?  

14.23.  In what normal form is the LOTS relation schema in Figure 14.11(a) with respect to the 
restrictive interpretations of normal form that take only the primary key into account? Would it 
be in the same normal form if the general definitions of normal form were used?  

14.24. Prove that any relation schema with two attributes is in BCNF.  

14.25. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and EMP_LOCS relations of 
Figure 14.05 (result shown in Figure 14.06)?  

14.26. Consider the universal relation R = {A, B, C, D, E, F, G, H, I, J} and the set of functional 
dependencies F = {{A, B} â {C}, {A} â {D, E}, {B} â {F}, {F} â{G, H}, {D} â {I, 
J}}. What is the key for R? Decompose R into 2NF, then 3NF relations.  

14.27. Repeat exercise 14.26 for the following different set of functional dependencies G = {{A, B} 
â {C}, {B, D} â {E, F}, {A, D} â {G, H}, {A} â {I}, {H} â {J}}.  

14.28. Consider the following relation:  

 

A  B  C  TUPLE#  

 
 

10  b1  c1  #1  

10  b2  c2  #2  

11  b4  c1  #3  

12  b3  c4  #4  

13  b1  c1  #5  

14  b3  c4  #6   

  a. Given the above extension (state), which of the following dependencies may hold in 
the above relation? If the dependency cannot hold, explain why by specifying the 
tuples that cause the violation.  

             i. A â B, ii. B â C, iii. C â B, iv. B â A, v. C â A  

b. Does the above relation have a potential candidate key? If it does, what is it? If it does 
not, why not?  

14.29. Consider a relation R(A, B, C, D, E) with the following dependencies:  
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AB â C, CD â E, DE â B  

 
 

Is AB a candidate key of this relation? If not, is ABD? Explain your answer.  

14.30. Consider the relation R, which has attributes that hold schedules of courses and sections at a 
university; R = {CourseNo, SecNo, OfferingDept, CreditHours, CourseLevel, 
InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStudents}. 
Suppose that the following functional dependencies hold on R: 

 
 

{CourseNo} â {OfferingDept, CreditHours, CourseLevel}  

{CourseNo, SecNo, Semester, Year} â  

   {Days_Hours, RoomNo, NoOfStudents, InstructorSSN}  

{RoomNo, Days_Hours, Semester, Year} â  

   {InstructorSSN, CourseNo, SecNo}  

 
 

Try to determine which sets of attributes form keys of R. How would you normalize this 
relation?  

14.31. Consider the following relations for an order-processing application database in ABC Inc.  

 
 

ORDER (O#, Odate, Cust#, Total_amount)  

ORDER-ITEM( O#,I#, Qty_ordered, Total_price, Discount%)  

 
 

Assume that each item has a different discount; the Total_price refers to one item, Odate 
is the date on which the order was placed, the Total_amount is the amount of the order. If 
we apply natural join on the relations ORDER-ITEM and ORDER in the above database, what 
does the resulting relation schema look like? What will be its key? Show the FDs in this 
resulting relation. Is it in 2NF Is it in 3NF? Why or why not? (State assumptions, if you make 
any.)  

14.32. Consider the following relation:  
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CAR_SALE (Car #, Date_sold, Salesman#, Commission%, Discount_amt)  

 
 

Assume that a car may be sold by multiple salesmen and hence {Car#, Salesman#} is the 
primary key. Additional dependencies are  

 
 

Date_sold â Discount_amt and Salesman# â Commission%.  

 
 

Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why or why not? How 
would you successively normalize it completely?  

14.33. Consider the relation for published books:  

 
 

BOOK (Book_title, Authorname, Book_type, Listprice, Author_affil, Publisher)  

 
 

Author_affil refers to the affiliation of author. Suppose the following dependencies exist:  

 
 

Book_title â Publisher, Book_type  

Book_type â Listprice  

Authorname â Author-affil  

a. What normal form is the relation in? Explain your answer.  
b. Apply normalization until you cannot decompose the relations further. State the 

reasons behind each decomposition.  

 
 

Selected Bibliography 

Functional dependencies were originally introduced by Codd (1970). The original definitions of first, 
second, and third normal form were also defined in Codd (1972a), where a discussion on update 
anomalies can be found. Boyce-Codd normal form was defined in Codd (1974). The alternative 
definition of third normal form is given in Ullman (1988), as is the definition of BCNF that we give 
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here. Ullman (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many of the theorems 
and proofs concerning functional dependencies.  

Armstrong (1974) shows the soundness and completeness of the inference rules IR1 through IR3. 
Additional references to relational design theory are given in Chapter 15.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15

Note 1 

For example, the NIAM methodology; see Verheijen and VanBekkum (1982).  

 
 

Note 2 

These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, as 
we shall discuss in Section 14.3.  

 
 

Note 3 

The performance of a query specified on a view that is the JOIN of several base relations depends on 
how the DBMS implements the view. Many relational DBMSS materialize a frequently used view so 
that they do not have to perform the JOINs often. The DBMS remains responsible for updating the 
materialized view (either immediately or periodically) whenever the base relations are updated.  

 
 

Note 4 

This is because inner and outer joins produce different results when nulls are involved in joins. The 
users must thus be aware of the different meanings of the various types of joins. Although this is 
reasonable for sophisticated users, it may be difficult for others.  
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Note 5 

This concept of a universal relation is important when we discuss the algorithms for relational database 
design in Chapter 15.  

 
 

Note 6 

This assumption means that every attribute in the database should have a distinct name. In Chapter 7 
we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinct 
relations had the same name.  

 
 

Note 7 

The reflexive rule can also be stated as X â X; that is, any set of attributes functionally determines 
itself.  

 
 

Note 8 

The augmentation rule can also be stated as {X â Y} XZ â Y; that is, augmenting the left-hand side 
attributes of an FD produces another valid FD.  

 
 

Note 9 

They are actually known as Armstrong’s axioms. In the strict mathematical sense, the axioms (given 
facts) are the functional dependencies in F, since we assume that they are correct, while IR1 through 
IR3 are the inference rules for inferring new functional dependencies (new facts).  

 
 

Note 10 

This is a standard form, not a requirement, to simplify the conditions and algorithms that ensure no 
redundancy exists in F. By using the inference rules IR4 and IR5, we can convert a single dependency 
with multiple attributes on the right-hand side into a set of dependencies, and vice versa.  

 
 

Note 11 
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This condition is removed in the nested relational model and in object-relational systems (ORDBMSs), 
both of which allow unnormalized relations (see Chapter 13).  

 
 

Note 12 

In this case we can consider the domain of DLOCATIONS to be the power set of the set of single 
locations; that is, the domain is made up of all possible subsets of the set of single locations.  

 
 

Note 13 

This is the general definition of transitive dependency. Because we are concerned only with primary 
keys in this section, we allow transitive dependencies where X is the primary key but Z may be (a 
subset of) a candidate key.  

 
 

Note 14 

This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A 
in R is fully functionally dependent on every key of R.  

 
 

Note 15 

This assumes that "each instructor teaches one course" is a constraint for this application.  

 
 

Chapter 15: Relational Database Design Algorithms 
and Further Dependencies 
15.1 Algorithms for Relational Database Schema Design 
15.2 Multivalued Dependencies and Fourth Normal Form 
15.3 Join Dependencies and Fifth Normal Form 
15.4 Inclusion Dependencies 
15.5 Other Dependencies and Normal Forms 
15.6 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

As we discussed in Chapter 14, there are two main approaches for relational database design. The first 
approach is a top-down design, a technique that is currently used most extensively in commercial 
database application design; this involves designing a conceptual schema in a high-level data model, 
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such as the EER model, and then mapping the conceptual schema into a set of relations using mapping 
procedures such as the ones discussed in Section 9.1 and Section 9.2. Following this, each of the 
relations is analyzed based on the functional dependencies and assigned primary keys, by applying the 
normalization procedure in Section 14.3 to remove partial and transitive dependencies if any remain. 
Analyzing for undesirable dependencies can also be done during the conceptual design itself by 
analyzing the functional dependencies among attributes within the entity types and relationship types, 
thereby obviating the need for additional normalization after the mapping is performed.  

The second approach is bottom-up design, a technique that is a more purist approach and views 
relational database schema design strictly in terms of functional and other types of dependencies 
specified on the database attributes. After the database designer specifies the dependencies, a 
normalization algorithm is applied to synthesize the relation schemas. Each individual relation 
schema should possess the measures of goodness associated with 3NF or BCNF or with some higher 
normal form. In this chapter, we describe some of these normalization algorithms as well as the other 
types of dependencies. We also describe the two desirable properties of nonadditive (lossless) joins and 
dependency preservation in more detail. The normalization algorithms typically start by synthesizing 
one giant relation schema, called the universal relation, which includes all the database attributes. We 
then repeatedly perform decomposition until it is no longer feasible or no longer desirable, based on the 
functional and other dependencies specified by the database designer.  

Section 15.1 presents several normalization algorithms based on functional dependencies alone that can 
be used to synthesize 3NF and BCNF schemas. We first describe the two desirable properties of 
decompositions—namely, the dependency preservation property and the lossless (or nonadditive) join 
property, which are both used by the design algorithms to achieve desirable decompositions. We also 
show that normal forms are insufficient on their own as criteria for a good relational database schema 
design. The relations must collectively satisfy these two additional properties to qualify as a good 
design.  

We then introduce other types of data dependencies, including multivalued dependencies and join 
dependencies, which specify constraints that cannot be expressed by functional dependencies. Presence 
of these dependencies leads to the definition of fourth normal form (4NF) and fifth normal form (5NF) 
respectively. We also define inclusion dependencies and template dependencies (which have not led to 
any new normal forms so far). We then briefly discuss domain-key normal form (DKNF), which is 
considered the most general normal form.  

It is possible to skip some or all of Section 15.3, Section 15.4, and Section 15.5.  

 
 

15.1 Algorithms for Relational Database Schema Design 

15.1.1 Relation Decomposition and Insufficiency of Normal Forms 
15.1.2 Decomposition and Dependency Preservation 
15.1.3 Decomposition and Lossless (Nonadditive) Joins 
15.1.4 Problems with Null Values and Dangling Tuples 
15.1.5 Discussion of Normalization Algorithms

In Section 15.1.1 we give examples to show that looking at an individual relation to test whether it is in 
a higher normal form does not, on its own, guarantee a good design; rather, a set of relations that 
together form the relational database schema must possess certain additional properties to ensure a 
good design. In Section 15.1.2 and Section 15.1.3 we discuss two of these properties: the dependency 
preservation property and the lossless or nonadditive join property. We present decomposition 
algorithms that guarantee these properties (which are formal concepts), as well as guaranteeing that the 
individual relations are normalized appropriately. Section 15.1.4 discusses problems associated with 
null values, and Section 15.1.5 summarizes the design algorithms and their properties.  
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15.1.1 Relation Decomposition and Insufficiency of Normal Forms 

The relational database design algorithms that we present here start from a single universal relation 
schema that includes all the attributes of the database. We implicitly make the universal relation 
assumption, which states that every attribute name is unique. The set F of functional dependencies that 
should hold on the attributes of R is specified by the database designers and is made available to the 
design algorithms. Using the functional dependencies, the algorithms decompose the universal relation 
schema R into a set of relation schemas that will become the relational database schema; D is called a 
decomposition of R.  

We must make sure that each attribute in R will appear in at least one relation schema in the 
decomposition so that no attributes are "lost"; formally we have  

 
 

 
 

This is called the attribute preservation condition of a decomposition.  

Another goal is to have each individual relation in the decomposition D be in BCNF (or 3NF). 
However, this condition is not sufficient to guarantee a good database design on its own. We must 
consider the decomposition as a whole, in addition to looking at the individual relations. To illustrate 
this point, consider the EMP_LOCS(ENAME, PLOCATION) relation of Figure 14.05, which is in 3NF and 
also in BCNF. In fact, any relation schema with only two attributes is automatically in BCNF (Note 1). 
Although EMP_LOCS is in BCNF, it still gives rise to spurious tuples when joined with EMP_PROJ1(SSN, 
PNUMBER, HOURS, PNAME, PLOCATION), which is not in BCNF (see the result of the natural join in 
Figure 14.06). Hence, EMP_LOCS represents a particularly bad relation schema because of its 
convoluted semantics by which PLOCATION gives the location of one of the projects on which an 
employee works. Joining EMP_LOCS with PROJECT(PNAME, PNUMBER, PLOCATION, DNUM) of Figure 
14.02—which is in BCNF—also gives rise to spurious tuples. We need other criteria that, together with 
the conditions of 3NF or BCNF, prevent such bad designs. In Section 15.1.2, Section 15.1.3 and 
Section 15.1.4 we discuss such additional conditions that should hold on a decomposition D as a whole.  

 
 

15.1.2 Decomposition and Dependency Preservation 

It would be useful if each functional dependency X â Y specified in F either appeared directly in one 
of the relation schemas in the decomposition D or could be inferred from the dependencies that appear 
in some . Informally, this is the dependency preservation condition. We want to preserve the 
dependencies because each dependency in F represents a constraint on the database. If one of the 
dependencies is not represented in some individual relation of the decomposition, we cannot enforce 
this constraint by dealing with an individual relation; instead, we have to join two or more of the 
relations in the decomposition and then check that the functional dependency holds in the result of the 
join operation. This is clearly an inefficient and impractical procedure.  

It is not necessary that the exact dependencies specified in F appear themselves in individual relations 
of the decomposition D. It is sufficient that the union of the dependencies that hold on the individual 
relations in D be equivalent to F. We now define these concepts more formally.  

First we need a preliminary definition. Given a set of dependencies F on R, the projection of F on , 
denoted by pRi(F) where is a subset of R (Note 2), is the set of dependencies X â Y in such that the 
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attributes in X D Y are all contained in . Hence, the projection of F on each relation schema in the 
decomposition D is the set of functional dependencies in , the closure of F, such that all their left- and 
right-hand-side attributes are in . We say that a decomposition of R is dependency-preserving with 
respect to F if the union of the projections of F on each in D is equivalent to F; that is  

 

 

 
 

If a decomposition is not dependency-preserving, some dependency is lost in the decomposition. As we 
mentioned earlier, to check that a lost dependency holds, we must take the JOIN of two or more 
relations in the decomposition to get a relation that includes all left- and right-hand-side attributes of 
the lost dependency, and then check that the dependency holds on the result of the JOIN—an option 
that is not practical.  

An example of a decomposition that does not preserve dependencies is shown in Figure 14.12(a), 
where the functional dependency FD2 is lost when LOTS1A is decomposed into {LOTS1AX, LOTS1AY}. 
The decompositions in Figure 14.11, however, are dependency-preserving. Similarly, for the example 
in Figure 14.13, no matter what decomposition is chosen for the relation TEACH(STUDENT, COURSE, 
INSTRUCTOR) out of the three shown, one or both of the dependencies originally present are lost. We 
state a claim below related to this property without providing any proof.  

 
 

Claim 1: It is always possible to find a dependency-preserving decomposition D with respect to F such 
that each relation in D is in 3NF.  

 
 

Algorithm 15.1 creates a dependency-preserving decomposition of a universal relation R based on a set 
of functional dependencies F, such that each in D is in 3NF. It guarantees only the dependency-
preserving property; it does not guarantee the lossless join property that will be discussed in the next 
section. The first step of Algorithm 15.1 is to find a minimal cover G for F; Algorithm 14.2 can be used 
for this step.  

 
 

Algorithm 15.1 Relational synthesis algorithm with dependency preservation  

 
 

Input: A universal relation R and a set of functional dependencies F on the attributes of R.  

 

1. Find a minimal cover G for F (use Algorithm 14.2);  
2. For each left-hand-side X of a functional dependency that appears in G, create a relation 

schema in D with attributes , where X â , X â , ..., X â are the only dependencies in G 
with X as left-hand-side (X is the key of this relation);  
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3. Place any remaining attributes (that have not been placed in any relation) in a single relation 
schema to ensure the attribute preservation property.  

 
 

Claim 1A: Every relation schema created by Algorithm 15.1 is in 3NF. (We will not provide a formal 
proof here (Note 3); the proof depends on G being a minimal set of dependencies).  

 
 

It is obvious that all the dependencies in G are preserved by the algorithm because each dependency 
appears in one of the relations in the decomposition D. Since G is equivalent to F, all the dependencies 
in F are either preserved directly in the decomposition or are derivable from those in the resulting 
relations, thus ensuring the dependency preservation property. Algorithm 15.1 is called the relational 
synthesis algorithm, because each relation schema in the decomposition is synthesized (constructed) 
from the set of functional dependencies in G with the same left-hand-side X.  

 
 

15.1.3 Decomposition and Lossless (Nonadditive) Joins 

Another property a decomposition D should possess is the lossless join or nonadditive join property, 
which ensures that no spurious tuples are generated when a NATURAL JOIN operation is applied to 
the relations in the decomposition. We already illustrated this problem in Section 14.1.4 with the 
example of Figure 14.05 and Figure 14.06. Because this is a property of a decomposition of relation 
schemas, the condition of no spurious tuples should hold on every legal relation state—that is, every 
relation state that satisfies the functional dependencies in F. Hence, the lossless join property is always 
defined with respect to a specific set F of dependencies. Formally, a decomposition of R has the 
lossless (nonadditive) join property with respect to the set of dependencies F on R if, for every 
relation state r of R that satisfies F, the following holds, where * is the NATURAL JOIN of all the 
relations in D: 

 
 
 

The word loss in lossless refers to loss of information, not to loss of tuples. If a decomposition does not 
have the lossless join property, we may get additional spurious tuples after the PROJECT(p) and 
NATURAL JOIN(*) operations are applied; these additional tuples represent erroneous information. 
We prefer the term nonadditive join because it describes the situation more accurately; if the property 
holds on a decomposition, we are guaranteed that no spurious tuples bearing wrong information are 
added to the result after the PROJECT and NATURAL JOIN operations are applied.  

The decomposition of EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION) from Figure 14.03 
into EMP_LOCS(ENAME, PLOCATION) and EMP_PROJ1(SSN, PNUMBER, HOURS, PNAME, PLOCATION) in 
Figure 14.05 obviously does not have the lossless join property as illustrated in Figure 14.06. We can 
use Algorithm 15.2 to check whether a given decomposition D has the lossless join property with 
respect to a set of functional dependencies F. 

 
 

Algorithm 15.2 Testing for the lossless (nonadditive) join property  
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Input: A universal relation R, a decomposition of R, and a set F of functional dependencies.  

 

1. Create an initial matrix S with one row i for each relation in D, and one column j for each 
attribute in R.  

2. Set S(i,j) := for all matrix entries. 

(* each bij is a distinct symbol associated with indices (i,j) *)  

3. For each row i representing relation schema  

{for each column j representing attribute  

{if (relation includes attribute ) then set S(i,j):= ;};};  

(* each is a distinct symbol associated with index (j) *)  

4. Repeat the following loop until a complete loop execution results in no changes to S  

{for each functional dependency X â Y in F  

{for all rows in S which have the same symbols in the columns corresponding to attributes in X  

{make the symbols in each column that correspond to an attribute in Y be the same in all these rows as 
follows: if any of the rows has an "a" symbol for the column, set the other rows to that same "a" 
symbol in the column. If no "a" symbol exists for the attribute in any of the rows, choose one of the "b" 
symbols that appear in one of the rows for the attribute and set the other rows to that same "b" symbol 
in the column ;};};};  

5. If a row is made up entirely of "a" symbols,, then the decomposition has the lossless join 
property; otherwise it does not.  

 
 

Given a relation R that is decomposed into a number of relations Algorithm 15.2 begins by creating a 
relation state r in the matrix S. Row i in S represents a tuple (corresponding to relation ) which has "a" 
symbols in the columns that correspond to the attributes of and "b" symbols in the remaining columns. 
The algorithm then transforms the rows of this matrix (during the loop of step 4) so that they represent 
tuples that satisfy all the functional dependencies in F. At the end of the loop of applying functional 
dependencies, any two rows in S—which represent two tuples in r—that agree in their values for the 
left-hand-side attributes X of a functional dependency X â Y in F will also agree in their values for the 
right-hand-side attributes Y. It can be shown that after applying the loop of Step 4, if any row in S ends 
up with all "a" symbols, then the decomposition D has the lossless join property with respect to F. If, 
on the other hand, no row ends up being all "a" symbols, D does not satisfy the lossless join property. 
In the latter case, the relation state r represented by S at the end of the algorithm will be an example of 
a relation state r of R that satisfies the dependencies in F but does not satisfy the lossless join condition; 
thus, this relation serves as a counterexample that proves that D does not have the lossless join property 
with respect to F. Note that the "a" and "b" symbols have no special meaning at the end of the 
algorithm.  
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Figure 15.01(a) shows how we apply Algorithm 15.2 to the decomposition of the EMP_PROJ relation 
schema from Figure 14.03(b) into the two relation schemas EMP_PROJ1 and EMP_LOCS of Figure 
14.05(a). The loop in Step 4 of the algorithm cannot change any "b" symbols to "a" symbols; hence, the 
resulting matrix S does not have a row with all "a" symbols, and so the decomposition does not have 
the lossless join property.  

Figure 15.01(b) shows another decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON that 
does have the lossless join property, and Figure 15.01(c) shows how we apply the algorithm to that 
decomposition. Once a row consists only of "a" symbols, we know that the decomposition has the 
lossless join property, and we can stop applying the functional dependencies (Step 4 of the algorithm) 
to the matrix S.  

 

 

 
 

Algorithm 15.2 allows us to test whether a particular decomposition D obeys the lossless join property 
with respect to a set of functional dependencies F. The next question is whether there is an algorithm to 
decompose a universal relation schema into a decomposition such that each is in BCNF and the 
decomposition D has the lossless join property with respect to F. The answer is yes, but we need to 
present some properties of lossless join decompositions in general before describing the algorithm. The 
first property deals with binary decompositions—decomposition of a relation R into two relations. It 
gives an easier test to apply than Algorithm 15.2, but it is limited to binary decompositions only.  

 
 

PROPERTY LJ1  

 
 

A decomposition D = {, } of R has the lossless join property with respect to a set of functional 
dependencies F on R if and only if either  

 

 

 
 

You should verify that this property holds with respect to our informal successive normalization 
examples in Section 14.3 and Section 14.4. The second property deals with applying successive 
decompositions.  

 
 

PROPERTY LJ2  
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If a decomposition of R has the lossless join property with respect to a set of functional dependencies F 
on R, and if a decomposition of has the lossless join property with respect to the projection of F on , 
then the decomposition of R has the lossless join property with respect to F.  

 
 

Property LJ2 says that, if a decomposition D already has the lossless join property—with respect to F—
and we further decompose one of the relation schemas in D into another decomposition that has the 
lossless join property—with respect to pRi(F)—then replacing in D by will result in a decomposition 
that also has the lossless join property—with respect to F. We implicitly assumed this property in the 
informal normalization examples of Section 14.3 and Section 14.4. For example, in Figure 14.11, as we 
normalized the LOTS relation into LOTS1 and LOTS2, this decomposition was assumed to be lossless. 
Decomposing LOTS1 further into LOTS1A and LOTS1B results in three relations: LOTS1A, LOTS1B, and 
LOTS2; this eventual decomposition maintains the losslessness by virtue of Property LJ2 above.  

Algorithm 15.3 utilizes properties LJ1 and LJ2 to create a lossless join decomposition of a universal 
relation R based on a set of functional dependencies F, such that each in D is in BCNF.  

 
 

Algorithm 15.3 Relational decomposition into BCNF relations with lossless join property  

 
 

Input: A universal relation R and a set of functional dependencies F on the attributes of R.  

 

1. Set D := {R};  
2. While there is a relation schema Q in D that is not in BCNF do  

{  

choose a relation schema Q in D that is not in BCNF;  

find a functional dependency X â Y in Q that violates BCNF;  

replace Q in D by two relation schemas (Q – Y) and (X D Y);  

};  

 
 

Each time through the loop in Algorithm 15.3, we decompose one relation schema Q that is not in 
BCNF into two relation schemas. According to properties LJ1 and LJ2, the decomposition D has the 
lossless join property. At the end of the algorithm, all relation schemas in D will be in BCNF. The 
reader can check that the normalization example in Figure 14.11 and Figure 14.12 basically follows 
this algorithm. The functional dependencies FD3, FD4, and later FD5 violate BCNF, so the LOTS 
relation is decomposed appropriately into BCNF relations and the decomposition then satisfies the 
lossless join property. Similarly, if we apply the algorithm to the TEACH relation schema from Figure 
14.13, it is decomposed into TEACH1(INSTRUCTOR, STUDENT) and TEACH2(INSTRUCTOR, COURSE) 
because the dependency FD2 : INSTRUCTOR â COURSE violates BCNF.  
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In Step 2 of Algorithm 15.3, it is necessary to determine whether a relation schema Q is in BCNF or 
not. One method for doing this is to test, for each functional dependency X â Y in Q, whether fails to 
include all the attributes in Q. If that is the case, then X â Y violates BCNF because X cannot then be a 
(super)key of Q. Another technique based on an observation that whenever a relation schema Q 
violates BCNF, there exists a pair of attributes A and B in Q such that {Q – {A, B}} â A; by 
computing the closure {Q – {A, B}}+ for each pair of attributes {A, B} of Q, and checking whether the 
closure includes A (or B), we can determine whether Q is in BCNF.  

If we want a decomposition to have the lossless join property and to preserve dependencies, we have to 
be satisfied with relation schemas in 3NF rather than BCNF. A simple modification to Algorithm 15.1, 
shown as Algorithm 15.4, yields a decomposition D of R that does the following:  

• Preserves dependencies.  
• Has the lossless join property.  
• Is such that each resulting relation schema in the decomposition is in 3NF.  

 
 

Algorithm 15.4 Relational synthesis algorithm with dependency preservation and lossless join 
property  

 
 

Input: A universal relation R and a set of functional dependencies F on the attributes of R.  

 

1. Find a minimal cover G for F (use Algorithm 14.2).  
2. For each left-hand-side X of a functional dependency that appears in G create a relation 

schema in D with attributes , where X â , X â , ..., X â are the only dependencies in G with 
X as left-hand-side (X is the key of this relation).  

3. If none of the relation schemas in D contains a key of R, then create one more relation schema 
in D that contains attributes that form a key of R.  

 
 

It can be shown that the decomposition formed from the set of relation schemas created by the 
preceding algorithm is dependency-preserving and has the lossless join property. In addition, each 
relation schema in the decomposition is in 3NF. This algorithm is an improvement over Algorithm 15.1 
in that the former guaranteed only dependency preservation (Note 4).  

Step 3 of Algorithm 15.4 involves identifying a key K of R. Algorithm 15.4a can be used to identify a 
key K of R based on the set of given functional dependencies F. We start by setting K to all the 
attributes of R; we then remove one attribute at a time and check whether the remaining attributes still 
form a superkey. Notice that the set of functional dependencies used to determine a key in Algorithm 
15.4a could be either F or G, since they are equivalent. Notice, too, that Algorithm 15.4a determines 
only one key out of the possible candidate keys for R; the key returned depends on the order in which 
attributes are removed from R in Step 2.  

 
 

Algorithm 15.4a Finding a key K for relation schema R based on a set F of functional dependencies  
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1. Set K := R.  
2. For each attribute A in K  

{compute (K - A)+ with respect to F;  

If (K - A)+ contains all the attributes in R, then set K := K -  

{A}};  

 
 

It is not always possible to find a decomposition into relation schemas that preserves dependencies and 
allows each relation schema in the decomposition to be in BCNF (instead of 3NF as in Algorithm 
15.4). We can check the 3NF relation schemas in the decomposition individually to see whether each 
satisfies BCNF. If some relation schema is not in BCNF, we can choose to decompose it further or to 
leave it as it is in 3NF (with some possible update anomalies). The fact that we cannot always find a 
decomposition into relation schemas in BCNF that preserves dependencies can be illustrated by the 
examples in Figure 14.12. The relations LOTS1A (Figure 14.12a) and TEACH (Figure 14.13) are not in 
BCNF but are in 3NF. Any attempt to decompose either relation further into BCNF relations results in 
loss of the dependency FD2 : {COUNTY_NAME, LOT#} â {PROPERTY_ID#, AREA} in LOTS1A or loss of 
FD1: {STUDENT, COURSE} â INSTRUCTOR in TEACH.  

It is important to note that the theory of lossless join decompositions is based on the assumption that no 
null values are allowed for the join attributes. The next section discusses some of the problems that 
nulls may cause in relational decompositions.  

 
 

15.1.4 Problems with Null Values and Dangling Tuples 

We must carefully consider the problems associated with nulls when designing a relational database 
schema. There is no fully satisfactory relational design theory as yet that includes null values. One 
problem occurs when some tuples have null values for attributes that will be used to JOIN individual 
relations in the decomposition. To illustrate this, consider the database shown in Figure 15.02(a), where 
two relations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—Berger and 
Benitez—represent newly hired employees who have not yet been assigned to a department (assume 
that this does not violate any integrity constraints). Now suppose that we want to retrieve a list of 
(ENAME, DNAME) values for all the employees. If we apply the NATURAL JOIN operation on 
EMPLOYEE and DEPARTMENT (Figure 15.02b), the two aforementioned tuples will not appear in the 
result. The OUTER JOIN operation, discussed in Chapter 7, can deal with this problem. Recall that, if 
we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT, tuples in EMPLOYEE that have null for 
the join attribute will still appear in the result, joined with an "imaginary" tuple in DEPARTMENT that has 
nulls for all its attribute values. Figure 15.02(c) shows the result.  

 

 

 
 

In general, whenever a relational database schema is designed where two or more relations are 
interrelated via foreign keys, particular care must be devoted to watching for potential null values in 
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foreign keys. This can cause unexpected loss of information in queries that involve joins on that foreign 
key. Moreover, if nulls occur in other attributes, such as SALARY, their effect on built-in functions such 
as SUM and AVERAGE must be carefully evaluated.  

A related problem is that of dangling tuples, which may occur if we carry a decomposition too far. 
Suppose that we decompose the EMPLOYEE relation of Figure 15.02(a) further into EMPLOYEE_1 and 
EMPLOYEE_2, shown in Figure 15.03(a) and Figure 15.03(b) (Note 5). If we apply the NATURAL JOIN 
operation to EMPLOYEE_1 and EMPLOYEE_2, we get the original EMPLOYEE relation. However, we may 
use the alternative representation, shown in Figure 15.03(c), where we do not include a tuple in 
EMPLOYEE_3 if the employee has not been assigned a department (instead of including a tuple with null 
for DNUM as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of EMPLOYEE_2 and apply a NATURAL 
JOIN on EMPLOYEE_1 and EMPLOYEE_3, the tuples for Berger and Benitez will not appear in the result; 
these are called dangling tuples because they are represented in only one of the two relations that 
represent employees and hence are lost if we apply an (inner) join operation.  

 

 

 
 

15.1.5 Discussion of Normalization Algorithms 

One of the problems with the normalization algorithms we described is that the database designer must 
first specify all the relevant functional dependencies among the database attributes. This is not a simple 
task for a large database with hundreds of attributes. Failure to specify one or two important 
dependencies may result in an undesirable design. Another problem is that these algorithms are not 
deterministic in general. For example, the synthesis algorithms (Algorithms 15.1 and 15.4) require the 
specification of a minimal cover G for the set of functional dependencies F. Because there may be in 
general many minimal covers corresponding to F, the algorithm can give different designs depending 
on the particular minimal cover used. Some of these designs may not be desirable. The decomposition 
algorithm (Algorithm 15.3) depends on the order in which the functional dependencies are supplied to 
the algorithm; again it is possible that many different designs may arise corresponding to the same set 
of functional dependencies, depending on the order in which such dependencies are considered for 
violation of BCNF. Again, some of the designs may be quite superior while others may be undesirable.  

 
 

15.2 Multivalued Dependencies and Fourth Normal Form 

 
15.2.1 Formal Definition of Multivalued Dependency 
15.2.2 Inference Rules for Functional and Multivalued Dependencies 
15.2.3 Fourth Normal Form 
15.2.4 Lossless Join Decomposition into 4NF Relations

So far we have discussed only functional dependency, which is by far the most important type of 
dependency in relational database design theory. However, in many cases relations have constraints 
that cannot be specified as functional dependencies. In this section, we discuss the concept of 
multivalued dependency (MVD) and define fourth normal form, which is based on this dependency. 
Multivalued dependencies are a consequence of first normal form (1NF) (see Section 14.3.2), which 
disallowed an attribute in a tuple to have a set of values. If we have two or more multivalued 
independent attributes in the same relation schema, we get into a problem of having to repeat every 
value of one of the attributes with every value of the other attribute to keep the relation state consistent 
and to maintain the independence among the attributes involved. This constraint is specified by a 
multivalued dependency.  
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For example, consider the relation EMP shown in Figure 15.04(a). A tuple in this EMP relation 
represents the fact that an employee whose name is ENAME works on the project whose name is PNAME 
and has a dependent whose name is DNAME. An employee may work on several projects and may have 
several dependents, and the employee’s projects and dependents are independent of one another (Note 
6). To keep the relation state consistent, we must have a separate tuple to represent every combination 
of an employee’s dependent and an employee’s project. This constraint is specified as a multivalued 
dependency on the EMP relation. Informally, whenever two independent 1:N relationships A:B and A:C 
are mixed in the same relation, an MVD may arise.  

 

 

 
 

15.2.1 Formal Definition of Multivalued Dependency 

Formally, a multivalued dependency (MVD) X Y specified on relation schema R, where X and Y are 
both subsets of R, specifies the following constraint on any relation state r of R: If two tuples and exist 
in r such that [X] = [X], then two tuples and should also exist in r with the following properties (Note 
7), where we use Z to denote (R - (X D Y)) (Note 8):  

 

 

 
 

Whenever X Y holds, we say that X multidetermines Y. Because of the symmetry in the definition, 
whenever X Y holds in R, so does X Z. Hence, X Y implies X Z, and therefore it is sometimes written as 
X Y | Z.  

The formal definition specifies that, given a particular value of X, the set of values of Y determined by 
this value of X is completely determined by X alone and does not depend on the values of the remaining 
attributes Z of R. Hence, whenever two tuples exist that have distinct values of Y but the same value of 
X, these values of Y must be repeated in separate tuples with every distinct value of Z that occurs with 
that same value of X. This informally corresponds to Y being a multivalued attribute of the entities 
represented by tuples in R.  

In Figure 15.04(a) the MVDs ENAME PNAME and ENAME DNAME (or ENAME PNAME | DNAME) hold in the 
EMP relation. The employee with ENAME ‘Smith’ works on projects with PNAME ‘X’ and ‘Y’ and 
has two dependents with DNAME ‘John’ and ‘Anna’. If we stored only the first two tuples in EMP 
(<‘Smith’, ‘X’, ‘John’> and <‘Smith’, ‘Y’, ‘Anna’>), we would incorrectly show 
associations between project ‘X’ and ‘John’ and between project ‘Y’ and ‘Anna’; these should 
not be conveyed, because no such meaning is intended in this relation. Hence, we must store the other 
two tuples (<‘Smith’, ‘X’, ‘Anna’> and <‘Smith’, ‘Y’, ‘John’>) to show that {‘X’, 
‘Y’} and {‘John’, ‘Anna’} are associated only with ‘Smith’; that is, there is no association 
between PNAME and DNAME—which means that the two attributes are independent.  

An MVD X Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X D Y = R. For example, the 
relation EMP_PROJECTS in Figure 15.04(b) has the trivial MVD ENAME PNAME. An MVD that satisfies 
neither (a) nor (b) is called a nontrivial MVD. A trivial MVD will hold in any relation state r of R; it is 
called trivial because it does not specify any significant or meaningful constraint on R.  
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If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in the tuples. In 
the EMP relation of Figure 15.04(a), the values ‘X’ and ‘Y’ of PNAME are repeated with each value of 
DNAME (or by symmetry, the values ‘John’ and ‘Anna’ of DNAME are repeated with each value of 
PNAME). This redundancy is clearly undesirable. However, the EMP schema is in BCNF because no 
functional dependencies hold in EMP. Therefore, we need to define a fourth normal form that is stronger 
than BCNF and disallows relation schemas such as EMP. We first discuss some of the properties of 
MVDs and consider how they are related to functional dependencies.  

 
 

15.2.2 Inference Rules for Functional and Multivalued Dependencies 

As with functional dependencies (FDs), inference rules for multivalued dependencies (MVDs) have 
been developed. It is better, though, to develop a unified framework that includes both FDs and MVDs 
so that both types of constraints can be considered together. The following inference rules IR1 through 
IR8 form a sound and complete set for inferring functional and multivalued dependencies from a given 
set of dependencies. Assume that all attributes are included in a "universal" relation schema and that X, 
Y, Z, and W are subsets of R.  

 
 

IR1 (reflexive rule for FDs): If X Y, then X â Y.  

IR2 (augmentation rule for FDs): {X â Y} XZ â YZ.  

IR3 (transitive rule for FDs): {X â Y, Y â Z} X â Z.  

IR4 (complementation rule for MVDs): {X Y} {X (R – (X D Y))}.  

IR5 (augmentation rule for MVDs): If X Y and W Z then WX YZ.  

IR6 (transitive rule for MVDs): {X Y, Y Z} X (Z – Y).  

IR7 (replication rule for FD to MVD): {X â Y} X Y.  

IR8 (coalescence rule for FDs and MVDs): If X Y and there exists W with the properties that (a) W C Y 
is empty, (b) W â Z, and (c) Y Z, then X â Z.  

 
 

IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6 are inference rules 
pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs. In particular, IR7 says that a functional 
dependency is a special case of a multivalued dependency; that is, every FD is also an MVD because it 
satisfies the formal definition of MVD. Basically, an FD X â Y is an MVD X Y with the additional 
restriction that at most one value of Y is associated with each value of X (Note 9). Given a set F of 
functional and multivalued dependencies specified on , we can use IR1 through IR8 to infer the 
(complete) set of all dependencies (functional or multivalued) that will hold in every relation state r of 
R that satisfies F. We again call the closure of F.  
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15.2.3 Fourth Normal Form 

We now present the definition of fourth normal form (4NF), which is violated when a relation has 
undesirable multivalued dependencies, and hence can be used to identify and decompose such 
relations. A relation schema R is in 4NF with respect to a set of dependencies F (that includes 
functional dependencies and multivalued dependencies) if, for every nontrivial multivalued 
dependency X Y in , X is a superkey for R.  

The EMP relation of Figure 15.04(a) is not in 4NF because in the nontrivial MVDs ENAME PNAME and 
ENAME DNAME, ENAME is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and 
EMP_DEPENDENTS, shown in Figure 15.04(b). Both EMP_PROJECTS and EMP_ DEPENDENTS are in 4NF, 
because the MVDs ENAME PNAME in EMP_PROJECTS and ENAME DNAME in EMP_DEPENDENTS are trivial 
MVDs. No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in 
these relation schemas either.  

To illustrate the importance of 4NF, Figure 15.05(a) shows the EMP relation with an additional 
employee, ‘Brown’, who has three dependents (‘Jim’, ‘Joan’, and ‘Bob’) and works on four different 
projects (‘W’, ‘X’, ‘Y’, and ‘Z’). There are 16 tuples in EMP in Figure 15.05(a). If we decompose EMP 
into EMP_PROJECTS and EMP_DEPENDENTS, as shown in Figure 15.05(b), we need to store a total of 
only 11 tuples in both relations. Not only would the decomposition save on storage, but also the update 
anomalies associated with multivalued dependencies are avoided. For example, if Brown starts 
working on another project, we must insert three tuples in EMP—one for each dependent. If we forget to 
insert any one of those, the relation violates the MVD and becomes inconsistent in that it incorrectly 
implies a relationship between project and dependent. However, only a single tuple need be inserted in 
the 4NF relation EMP_PROJECTS. Similar problems occur with deletion and modification anomalies if a 
relation is not in 4NF.  

 

 

 
 

The EMP relation in Figure 15.04(a) is not in 4NF, because it represents two independent 1:N 
relationships—one between employees and the projects they work on and the other between employees 
and their dependents. We sometimes have a relationship between three entities that depends on all three 
participating entities, such as the SUPPLY relation shown in Figure 15.04(c). (Consider only the tuples 
in Figure 15.04(c) above the dotted line for now.) In this case a tuple represents a supplier supplying a 
specific part to a particular project, so there are no nontrivial MVDs. The SUPPLY relation is already in 
4NF and should not be decomposed. Notice that relations containing nontrivial MVDs tend to be all 
key relations—that is, their key is all their attributes taken together.  

 
 

15.2.4 Lossless Join Decomposition into 4NF Relations 

Whenever we decompose a relation schema R into = (X D Y) and = (R – Y) based on an MVD X Y that 
holds in R, the decomposition has the lossless join property. It can be shown that this is a necessary and 
sufficient condition for decomposing a schema into two schemas that have the lossless join property, as 
given by property LJ1.  

 
 

PROPERTY L J1  
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The relation schemas and form a lossless join decomposition of R if and only if ( C ) ( - ) (or by 
symmetry, if and only if ( C ) ( - )). 

 
 

This is similar to property LJ1 of Section 15.1.3, except that LJ1 dealt with FDs only, whereas LJ1’ 
deals with both FDs and MVDs (recall that an FD is also an MVD). We can use a slight modification 
of Algorithm 15.3 to develop Algorithm 15.5, which creates a lossless join decomposition into relation 
schemas that are in 4NF (rather than in BCNF). As with Algorithm 15.3, Algorithm 15.5 does not 
necessarily produce a decomposition that preserves FDs.  

 
 

Algorithm 15.5 Relational decomposition into 4NF relations with lossless join property  

 
 

Input: A universal relation R and a set of functional and multivalued dependencies F.  

 

1. Set D := { R };  
2. While there is a relation schema Q in D that is not in 4NF do  

{  

choose a relation schema Q in D that is not in 4NF  

find a nontrivial MVD X Y in Q that violates 4NF  

replace Q in D by two relation schemas (Q – Y) and (X D Y);  

};  

 
 

15.3 Join Dependencies and Fifth Normal Form 

We saw that LJ1 and LJ1’ give the condition for a relation schema R to be decomposed into two 
schemas and , where the decomposition has the lossless join property. However, in some cases there 
may be no lossless join decomposition of R into two relation schemas but there may be a lossless join 
decomposition into more than two relation schemas. Moreover, there may be no functional dependency 
in R that violates any normal form up to BCNF and there may be no nontrivial MVD present in R either 
that violates 4NF. We then resort to another dependency called the join dependency and if it is present, 
carry out a multiway decomposition into fifth normal form (5NF). It is important to note that such a 
dependency is very difficult to detect in practice and therefore, normalization into 5NF is considered 
very rarely in practice.  

1 Page 459 of 893



www.manaraa.com

A join dependency (JD), denoted by JD, specified on relation schema R, specifies a constraint on the 
states r of R. The constraint states that every legal state r of R should have a lossless join 
decomposition into ; that is, for every such r we have  

 

 

 
 

Notice that an MVD is a special case of a JD where n = 2. That is, a JD denoted as JD(, ) implies an 
MVD ( C ) ( - ) (or by symmetry, ( C ) ( - ) . A join dependency JD, specified on relation schema R, is 
a trivial JD if one of the relation schemas in JD is equal to R. Such a dependency is called trivial 
because it has the lossless join property for any relation state r of R and hence does not specify any 
constraint on R. We can now define fifth normal form, which is also called project-join normal form. A 
relation schema R is in fifth normal form (5NF) (or project-join normal form (PJNF)) with respect 
to a set F of functional, multivalued, and join dependencies if, for every nontrivial join dependency JD 
in (that is, implied by F), every is a superkey of R.  

For an example of a JD, consider once again the SUPPLY all-key relation of Figure 15.04(c). Suppose 
that the following additional constraint always holds: Whenever a supplier s supplies part p, and a 
project j uses part p, and the supplier s supplies at least one part to project j, then supplier s will also be 
supplying part p to project j. This constraint can be restated in other ways and specifies a join 
dependency JD(R1, R2, R3) among the three projections R1(SNAME, PARTNAME), R2(SNAME, 
PROJNAME), and R3(PARTNAME, PROJNAME) of SUPPLY. If this constraint holds, the tuples below the 
dotted line in Figure 15.04(c) must exist in any legal state of the SUPPLY relation that also contains the 
tuples above the dotted line. Figure 15.04(d) shows how the SUPPLY relation with the join dependency 
is decomposed into three relations R1, R2, and R3 that are each in 5NF. Notice that applying 
NATURAL JOIN to any two of these relations produces spurious tuples, but applying NATURAL 
JOIN to all three together does not. The reader should verify this on the example relation of Figure 
15.04(c) and its projections in Figure 15.04(d). This is because only the JD exists, but no MVDs are 
specified. Notice, too, that the JD(R1, R2, R3) is specified on all legal relation states, not just on the 
one shown in Figure 15.04(c).  

Discovering JDs in practical databases with hundreds of attributes is possible only with a great degree 
of intuition about the data on the part of the designer. Hence, current practice of database design pays 
scant attention to them.  

 
 

15.4 Inclusion Dependencies 

Inclusion dependencies were defined in order to formalize certain interrelational constraints. For 
example, the foreign key (or referential integrity) constraint cannot be specified as a functional or 
multivalued dependency because it relates attributes across relations; but it can be specified as an 
inclusion dependency. Moreover, inclusion dependencies can also be used to represent the constraint 
between two relations that represent a class/subclass relationship (see Chapter 4). Formally, an 
inclusion dependency R.X < S.Y between two sets of attributes—X of relation schema R, and Y of 
relation schema S—specifies the constraint that, at any specific time when r is a relation state of R and 
s a relation state of S, we must have  

 
 

pX(r(R)) pY(s(S))  
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The (subset) relationship does not necessarily have to be a proper subset. Obviously, the sets of 
attributes on which the inclusion dependency is specified—X of R and Y of S—must have the same 
number of attributes. In addition, the domains for each pair of corresponding attributes should be 
compatible. For example, if X = and , one possible correspondence is to have dom() COMPATIBLE-
WITH dom() for 1 1 i 1 n. In this case we say that corresponds-to .  

For example, we can specify the following inclusion dependencies on the relational schema in Figure 
14.01 :  

 
 

DEPARTMENT.DMGRSSN < EMPLOYEE.SSN  

WORKS_ON.SSN < EMPLOYEE.SSN  

EMPLOYEE.DNUMBER < DEPARTMENT.DNUMBER  

PROJECT. DNUM < DEPARTMENT.DNUMBER  

WORKS_ON.PNUMBER < PROJECT.PNUMBER  

DEPT_LOCATIONS.DNUMBER < DEPARTMENT.DNUMBER  

 
 

All the preceding inclusion dependencies represent referential integrity constraints. We can also use 
inclusion dependencies to represent class/subclass relationships. For example, in the relational 
schema of Figure 09.03, we can specify the following inclusion dependencies:  

 
 

EMPLOYEE.SSN < PERSON.SSN  

ALUMNUS. SSN < PERSON.SSN  

STUDENT. SSN < PERSON.SSN  

 
 

Inference rules exist for inclusion dependencies. The following are three examples:  

 
 

IDIR1 (reflexivity): R.X < R.X.  

IDIR2 (attribute correspondence): If R.X < S.Y where X = {, ,..., } and and CORRESPONDS-TO , then 
R. < S. for 1 1 i 1 n.  
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IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X < T.Z.  

 
 

The preceding inference rules were shown to be sound and complete for inclusion dependencies. So 
far, no normal forms have been developed based on inclusion dependencies.  

 
 

15.5 Other Dependencies and Normal Forms 

15.5.1 Template Dependencies 
15.5.2 Domain-Key Normal Form (DKNF)

15.5.1 Template Dependencies 

No matter how many types of dependencies we develop, some peculiar constraint may come up based 
on the semantics of attributes within relations that cannot be represented by any of them. The idea 
behind template dependencies is to specify a template—or example—that defines each constraint or 
dependency. There are two types of templates: tuple-generating templates and constraint-generating 
templates. A template consists of a number of hypothesis tuples that are meant to show an example of 
the tuples that may appear in one or more relations. The other part of the template is the template 
conclusion. For tuple-generating templates, the conclusion is a set of tuples that must also exist in the 
relations if the hypothesis tuples are there. For constraint-generating templates, the template conclusion 
is a condition that must hold on the hypothesis tuples.  

Figure 15.06 shows how we may define functional, multivalued, and inclusion dependencies by 
templates. Figure 15.07 shows how we may specify the constraint that "an employee’s salary cannot be 
higher than the salary of his or her direct supervisor" on the relation schema EMPLOYEE in Figure 07.05.  

 

 

 

 

 
 

15.5.2 Domain-Key Normal Form (DKNF) 

There is no hard and fast rule about defining normal forms only up to 5NF. Historically, the process of 
normalization and the process of discovering undesirable dependencies was carried through 5NF as a 
meaningful design activity, but it has been possible to define stricter normal forms that take into 
account additional types of dependencies and constraints. The idea behind domain-key normal form 
(DKNF) is to specify (theoretically, at least) the "ultimate normal form" that takes into account all 
possible types of dependencies and constraints. A relation is said to be in DKNF if all constraints and 
dependencies that should hold on the relation can be enforced simply by enforcing the domain 
constraints and key constraints on the relation. For a relation in DKNF, it becomes very straightforward 
to enforce all database constraints by simply checking that each attribute value in a tuple is of the 
appropriate domain and that every key constraint is enforced.  
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However, because of the difficulty of including complex constraints in a DKNF relation, its practical 
utility is limited, since it may be quite difficult to specify general integrity constraints. For example, 
consider a relation CAR(MAKE, VIN#) (where VIN# is the vehicle identification number) and 
another relation MANUFACTURE(VIN#, COUNTRY) (where COUNTRY is the country of manufacture). 
A general constraint may be of the following form: "If the MAKE is either Toyota or Lexus, then the 
first character of the VIN# is a "J" if the country of manufacture is Japan; if the MAKE is Honda or 
Acura, the second character of the VIN# is a "J" if the country of manufacture is Japan." There is no 
simplified way to represent such constraints short of writing a procedure (or general assertions) to test 
them.  

 
 

15.6 Summary 

In this chapter we presented several normalization algorithms. The relational synthesis algorithms 
create 3NF relations from a universal relation schema based on a given set of functional dependencies 
that has been specified by the database designer. The relational decomposition algorithms create BCNF 
(or 4NF) relations by successive lossless decomposition of unnormalized relations into two component 
relations at a time. We first discussed two important properties of decompositions: the lossless 
(nonadditive) join property, and the dependency-preserving property. An algorithm to test for lossless 
decomposition, and a simpler test for checking the losslessness of binary decompositions, were 
described. We saw that it is possible to synthesize 3NF relation schemas that meet both of the above 
properties; however, in the case of BCNF, it is possible to aim only for losslessness; the dependency 
preservation cannot be necessarily guaranteed.  

We then defined additional types of dependencies and some additional normal forms. Multivalued 
dependencies, which arise from an improper combination of two or more multivalued attributes in the 
same relation, are used to define fourth normal form (4NF). Join dependencies, which indicate a 
lossless multiway decomposition of a relation, lead to the definition of fifth normal form (5NF), which 
is also known as project-join normal form (PJNF). We also discussed inclusion dependencies, which 
are used to specify referential integrity and class/subclass constraints, and template dependencies, 
which can be used to specify arbitrary types of constraints. We concluded with a brief discussion of the 
domain-key normal form (DKNF).  

 
 

Review Questions 

 

  15.1.  What is meant by the attribute preservation condition on a decomposition?  

  15.2.  Why are normal forms alone insufficient as a condition for a good schema design?  

  15.3.  What is the dependency preservation property for a decomposition? Why is it important?  

  15.4.  Why can we not guarantee that BCNF relation schemas be produced by dependency-preserving 
decompositions of non-BCNF relation schemas? Give a counter-example to illustrate this 
point.  

  15.5.  What is the lossless (or nonadditive) join property of a decomposition? Why is it important?  

  15.6.  Between the properties of dependency preservation and losslessness, which one must be 
definitely satisfied? Why?  

  15.7.  Discuss the null value and dangling tuple problems.  

  15.8.  What is a multivalued dependency? What type of constraint does it specify? When does it 
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arise?  

  15.9.  Illustrate how the process of creating first normal form relations may lead to multivalued 
dependencies. How should the first normalization be done properly so that MVDs are avoided? 

15.10.  Define fourth normal form. Why is it useful?  

15.11.  Define join dependencies and fifth normal form. Why is 5NF also called project-join normal 
form (PJNF)?  

15.12.  What types of constraints are inclusion dependencies meant to represent?  

15.13.  How do template dependencies differ from the other types of dependencies we discussed?  

15.14. Why is the domain-key normal form (DKNF) known as the ultimate normal form?  

 
 

Exercises 

 

15.15. Show that the relation schemas produced by Algorithm 15.1 are in 3NF.  

15.16.  Show that, if the matrix S resulting from Algorithm 15.2 does not have a row that is all "a" 
symbols, projecting S on the decomposition and joining it back will always produce at least one 
spurious tuple.  

15.17.  Show that the relation schemas produced by Algorithm 15.3 are in BCNF.  

15.18.  Show that the relation schemas produced by Algorithm 15.4 are in 3NF.  

15.19.  Specify a template dependency for join dependencies.  

15.20.  Specify all the inclusion dependencies for the relational schema of Figure 07.05.  

15.21.  Prove that a functional dependency is also a multivalued dependency.  

15.22.  Consider the example of normalizing the LOTS relation in Section 14.4. Determine whether the 
decomposition of LOTS into {LOTS1AX, LOTS1AY, LOTS1B, LOTS2} has the lossless join 
property, by applying Algorithm 15.2 and also by using the test under property LJ1.  

15.23.  Show how the MVDs ENAME PNAME and ENAME DNAME in Figure 15.04(a) may arise during 
normalization into 1NF of a relation, where the attributes PNAME and DNAME are multivalued 
(nonsimple).  

15.24.  Apply Algorithm 15.4a to the relation in Exercise 14.26 to determine a key for R. Create a 
minimal set of dependencies G that is equivalent to F, and apply the synthesis algorithm 
(Algorithm 15.4) to decompose R into 3NF relations.  

15.25.  Repeat Exercise 15.24 for the functional dependencies in Exercise 14.27.  

15.26.  Apply the decomposition algorithm (Algorithm 15.3) to the relation R and the set of 
dependencies F in Exercise 14.26. Repeat for the dependencies G in Exercise 14.27.  

15.27.  Apply Algorithm 15.4a to the relation in Exercises 14.29 and 14.30 to determine a key for R. 
Apply the synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations and the 
decomposition algorithm (Algorithm 15.3) to decompose R into BCNF relations.  

15.28.  Write programs that implement Algorithms 15.3 and 15.4.  

15.29.  Consider the following decompositions for the relation schema R of Exercise 14.26. Determine 
whether each decomposition has (i) the dependency preservation property, and (ii) the lossless 
join property, with respect to F. Also determine which normal form each relation in the 

1 Page 464 of 893



www.manaraa.com

decomposition is in.  

 
 

15.30.  Consider the following relation REFRIG(Model#, Year, Price, Manuf_Plant, 
Color), which is abbreviated as REFRIG(M, Y, P, MP, C), and with the following set F 
of functional dependencies: F = {M â MP, {M, Y} â P, MP â C}  

a. Evaluate each of the following as a candidate key for REFRIG, giving reasons why it 
can or cannot be a key: {M}, {M, Y}, {M, C}.  

b. Based on the above key determination, state whether the relation REFRIG is in 3NF and 
in BCNF, giving proper reasons.  

c. Consider the decomposition of REFRIG into D = {R1(M, Y, P), R2(M, MP, 
C)}. Is this decomposition lossless? Show why. (You may consult the test under 
property LJ1 in Section 15.1.3.)  
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Note 1 
Note 2 
Note 3 
Note 4 
Note 5 

1 Page 465 of 893



www.manaraa.com

Note 6 
Note 7 
Note 8 
Note 9

Note 1 

As an exercise, the reader should prove that this statement is true.  

 
 

Note 2 

In the second edition of this book, we used the notation (instead of to denote the projection of F on .  

 
 

Note 3 

See Maier (1983) or Ullman (1982) for a proof.  

 
 

Note 4 

Step 3 of Algorithm 15.1 is not needed in Algorithm 15.4 to preserve attributes because the key will 
include any unplaced attributes; these are the attributes that do not participate in any functional 
dependency.  

 
 

Note 5 

This sometimes happens when we apply vertical fragmentation to a relation in the context of a 
distributed database (see Chapter 24).  

 
 

Note 6 

In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type (see 
Chapter 3).  

 
 

Note 7 

The tuples , , , and are not necessarily distinct.  
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Note 8 

Z is shorthand for the attributes remaining in R after the attributes in (X D Y) are removed from R.  

 
 

Note 9 

That is, the set of values of Y determined by a value of X is restricted to being a singleton set with only 
one value.  

 
 

Chapter 16: Practical Database Design and Tuning 
16.1 The Role of Information Systems in Organizations 
16.2 The Database Design Process 
16.3 Physical Database Design in Relational Databases 
16.4 An Overview of Database Tuning in Relational Systems 
16.5 Automated Design Tools 
16.6 Summary 
Review Questions 
Selected Bibliography 
Footnotes

In this chapter we move from the theory to the practice of database design. We have already described 
in several chapters material that is relevant to the design of actual databases for practical real-world 
applications. This material includes Chapter 3 and Chapter 4 on database conceptual modeling; Chapter 
7, Chapter 8, and Chapter 10 on the relational model, the SQL language, and relational systems 
(RDBMSs); Section 9.1 and Section 9.2 on mapping a high-level conceptual ER or EER schema into a 
relational schema; Chapter 11 and Chapter 12 on the object data model, its associated languages, and 
object database systems (ODBMSs); Chapter 13 on object-relational systems (ORDBMSs); and 
Chapter 14 and Chapter 15 on data dependency theory and relational normalization algorithms. 
Unfortunately, there is no standard object database design theory comparable to the theory of relational 
database design. Section 12.5 discussed the differences between conceptual design in object versus 
relational databases and showed how EER schemas may be mapped into object database schemas.  

The overall database design activity has to undergo a systematic process called the design 
methodology, whether the target database is managed by an RDBMS, ORDBMS, or ODBMS. Various 
design methodologies are implicit in the database design tools currently supplied by vendors. Popular 
tools include Designer 2000 by Oracle; ERWin, BPWin, and Paradigm Plus by Platinum Technology; 
Sybase enterprise application studio; ER Studio by Embarcadero Technologies; and System Architect 
by Popkin Software, among many others. Our goal in this chapter is to discuss not one specific 
methodology but rather database design in a broader context, as it is undertaken in large organizations 
for the design and implementation of applications catering to hundreds or thousands of users. 

Generally, the design of small databases with perhaps up to 20 users need not be very complicated. But 
for medium-sized or large databases that serve several diverse application groups, each with tens or 
hundreds of users, a systematic approach to the overall database design activity becomes necessary. 
The sheer size of a populated database does not reflect the complexity of the design; it is the schema 
that is more important. Any database with a schema that includes more than 30 or 40 entity types and a 
similar number of relationship types requires a careful design methodology.  
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Using the term large database for databases with several tens of gigabytes of data and a schema with 
more than 30 or 40 distinct entity types, we can cover a wide array of databases in government, 
industry, and financial and commercial institutions. Service sector industries, including banking, hotels, 
airlines, insurance, utilities, and communications, use databases for their day-to-day operations 24 
hours a day, 7 days a week—known in industry as 24 by 7 operation. Application systems for these 
databases are called transaction processing systems due to the large transaction volumes and rates that 
are required. In this chapter we will be concentrating on the database design for such medium- and 
large-scale databases where transaction processing dominates.  

This chapter has a variety of objectives. Section 16.1 discusses the information system life cycle within 
organizations with a particular emphasis on the database system. Section 16.2 highlights the phases of a 
database design methodology in the organizational context. Section 16.3 emphasizes the need for joint 
database design/application design methodologies, and discusses physical database design. Section 
16.4 provides the various forms of tuning of designs. Section 16.5 briefly discusses automated database 
design tools.  

 
 

16.1 The Role of Information Systems in Organizations 

16.1.1 The Organizational Context for Using Database Systems 
16.1.2 The Information System Life Cycle 
16.1.3 The Database Application System Life Cycle

16.1.1 The Organizational Context for Using Database Systems 

Database systems have become a part of the information systems of many organizations. In the 1960s 
information systems were dominated by file systems, but since the early 1970s organizations have 
gradually moved to database systems. To accommodate such systems, many organizations have created 
the position of database administrator (DBA) or even database administration departments to oversee 
and control database life-cycle activities. Similarly, information resource management (IRM) has been 
recognized by large organizations to be a key to successful management of the business. There are 
several reasons for this:  

• Data is regarded as a corporate resource, and its management and control is considered central 
to the effective working of the organization.  

• More functions in organizations are computerized, increasing the need to keep large volumes 
of data available in an up-to-the-minute current state.  

• As the complexity of the data and applications grows, complex relationships among the data 
need to be modeled and maintained.  

• There is a tendency toward consolidation of information resources in many organizations.  

Database systems satisfy the preceding four requirements in large measure. Two additional 
characteristics of database systems are also very valuable in this environment:  

• Data independence protects application programs from changes in the underlying logical 
organization and in the physical access paths and storage structures.  

• External schemas (views) allow the same data to be used for multiple applications, with each 
application having its own view of the data.  

New capabilities provided by database systems and the following key features that they offer have 
made them integral components in computer-based information systems:  

• Integration of data across multiple applications into a single database.  
• Simplicity of developing new applications using high-level languages like SQL.  
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• Possibility of supporting casual access for browsing and querying by managers while 
supporting major production-level transaction processing.  

From the early 1970s through the mid-1980s, the move was toward creating large centralized 
repositories of data managed by a single centralized DBMS. Over the last 10 to 15 years, this trend has 
been reversed because of the following developments:  

 

1. Personal computers and database-like software products, such as EXCEL, FOXPRO, MSSQL, 
ACCESS (all of Microsoft), or SQL Anywhere (of Sybase) are being heavily utilized by users 
who previously belonged to the category of casual and occasional database users. Many 
administrators, secretaries, engineers, scientists, architects, and the like belong to this 
category. As a result, the practice of creating personal databases is gaining popularity. It is 
now possible to check out a copy of part of a large database from a mainframe computer or a 
database server, work on it from a personal workstation, and then re-store it on the mainframe. 
Similarly, users can design and create their own databases and then merge them into a larger 
one.  

2. The advent of distributed and client-server DBMSs (see Chapter 17 and Chapter 24) is 
opening up the option of distributing the database over multiple computer systems for better 
local control and faster local processing. At the same time, local users can access remote data 
using the facilities provided by the DBMS as a client, or through the Web. Application 
development tools such as POWERBUILDER, or Developer 2000 (by Oracle) are being used 
heavily with built-in facilities to link applications to multiple back-end database servers.  

3. Many organizations now use data dictionary systems or information repositories, which 
are mini DBMSs that manage metadata—that is, data that describes the database structure, 
constraints, applications, authorizations, and so on. These are often used as an integral tool for 
information resource management. A useful data dictionary system should store and manage 
the following types of information:  

a. Descriptions of the schemas of the database system.  
b. Detailed information on physical database design, such as storage structures, access 

paths, and file and record sizes.  
c. Descriptions of the database users, their responsibilities, and their access rights.  
d. High-level descriptions of the database transactions and applications and of the 

relationships of users to transactions.  
e. The relationship between database transactions and the data items referenced by 

them. This is useful in determining which transactions are affected when certain data 
definitions are changed.  

f. Usage statistics such as frequencies of queries and transactions and access counts to 
different portions of the database.  

 
 

This metadata is available to DBAs, designers, and authorized users as on-line system documentation. 
This improves the control of DBAs over the information system and the users’ understanding and use 
of the system. The advent of data warehousing technology has highlighted the importance of metadata. 
We discuss some of the system-maintained metadata in Chapter 17.  

When designing high-performance transaction processing systems, which require around-the-clock 
nonstop operation, performance becomes critical. These databases are often accessed by hundreds of 
transactions per minute from remote and local terminals. Transaction performance, in terms of the 
average number of transactions per minute and the average and maximum transaction response time, is 
critical. A careful physical database design that meets the organization’s transaction processing needs 
is a must in such systems.  

Some organizations have committed their information resource management to certain DBMS and data 
dictionary products. Their investment in the design and implementation of large and complex systems 
makes it difficult for them to change to newer DBMS products, which means that the organizations 
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become locked in to their current DBMS system. With regard to such large and complex databases, we 
cannot overemphasize the importance of a careful design that takes into account the need for possible 
system modifications—called tuning—to respond to changing requirements. The cost can be very high 
if a large and complex system cannot evolve, and it becomes necessary to move to other DBMS 
products.  

 
 

16.1.2 The Information System Life Cycle 

In a large organization, the database system is typically part of the information system, which includes 
all resources that are involved in the collection, management, use, and dissemination of the information 
resources of the organization. In a computerized environment, these resources include the data itself, 
the DBMS software, the computer system hardware and storage media, the personnel who use and 
manage the data (DBA, end users, parametric users, and so on), the applications software that accesses 
and updates the data, and the application programmers who develop these applications. Thus the 
database system is part of a much larger organizational information system.  

In this section we examine the typical life cycle of an information system and how the database system 
fits into this life cycle. The information system life cycle is often called the macro life cycle, whereas 
the database system life cycle is referred to as the micro life cycle. The distinction between these two 
is becoming fuzzy for information systems where databases are a major integral component. The macro 
life cycle typically includes the following phases:  

1. Feasibility analysis: This phase is concerned with analyzing potential application areas, 
identifying the economics of information gathering and dissemination, performing preliminary 
cost-benefit studies, determining the complexity of data and processes, and setting up 
priorities among applications.  

2. Requirements collection and analysis: Detailed requirements are collected by interacting with 
potential users and user groups to identify their particular problems and needs. 
Interapplication dependencies, communication, and reporting procedures are identified.  

3. Design: This phase has two aspects: the design of the database system, and the design of the 
application systems (programs) that use and process the database.  

4. Implementation: The information system is implemented, the database is loaded, and the 
database transactions are implemented and tested.  

5. Validation and acceptance testing: The acceptability of the system in meeting users’ 
requirements and performance criteria is validated. The system is tested against performance 
criteria and behavior specifications.  

6. Deployment, operation and maintenance: This may be preceded by conversion of users from 
an older system as well as by user training. The operational phase starts when all system 
functions are operational and have been validated. As new requirements or applications crop 
up, they pass through all the previous phases until they are validated and incorporated into the 
system. Monitoring of system performance and system maintenance are important activities 
during the operational phase.  

 
 

16.1.3 The Database Application System Life Cycle 

Activities related to the database application system (micro) life cycle include the following phases:  

1. System definition: The scope of the database system, its users, and its applications are defined. 
The interfaces for various categories of users, the response time constraints, and storage and 
processing needs are identified.  

2. Database design: At the end of this phase, a complete logical and physical design of the 
database system on the chosen DBMS is ready.  
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3. Database implementation: This comprises the process of specifying the conceptual, external, 
and internal database definitions, creating empty database files, and implementing the 
software applications.  

4. Loading or data conversion: The database is populated either by loading the data directly or 
by converting existing files into the database system format.  

5. Application conversion: Any software applications from a previous system are converted to 
the new system.  

6. Testing and validation: The new system is tested and validated.  
7. Operation: The database system and its applications are put into operation. Usually, the old 

and the new systems are operated in parallel for some time.  
8. Monitoring and maintenance: During the operational phase, the system is constantly 

monitored and maintained. Growth and expansion can occur in both data content and software 
applications. Major modifications and reorganizations may be needed from time to time.  

Activities 2, 3, and 4 together are part of the design and implementation phases of the larger 
information system life cycle. Our emphasis in Section 16.2 is on activity 2, which covers the database 
design phase. Most databases in organizations undergo all of the preceding life-cycle activities. The 
conversion steps (4 and 5) are not applicable when both the database and the applications are new. 
When an organization moves from an established system to a new one, activities 4 and 5 tend to be the 
most time-consuming and the effort to accomplish them is often underestimated. In general, there is 
often feedback among the various steps because new requirements frequently arise at every stage. 
Figure 16.01 shows the feedback loop affecting the conceptual and logical design phases as a result of 
system implementation and tuning.  

 

 

 
 

16.2 The Database Design Process 

16.2.1 Phase 1: Requirements Collection and Analysis 
16.2.2 Phase 2: Conceptual Database Design 
16.2.3 Phase 3: Choice of a DBMS 
16.2.4 Phase 4: Data Model Mapping (Logical Database Design) 
16.2.5 Phase 5: Physical Database Design 
16.2.6 Phase 6: Database System Implementation and Tuning

We now focus on Step 2 of the database application system life cycle, which is database design. The 
problem of database design can be stated as follows: 

 
 

Design the logical and physical structure of one or more databases to accommodate the information 
needs of the users in an organization for a defined set of applications.  

 
 

The goals of database design are multiple:  

• Satisfy the information content requirements of the specified users and applications.  
• Provide a natural and easy-to-understand structuring of the information.  
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• Support processing requirements and any performance objectives such as response time, 
processing time, and storage space.  

These goals are very hard to accomplish and measure, and they involve an inherent tradeoff: if one 
attempts to achieve more "naturalness" and "understandability" of the model, it may be at the cost of 
performance. The problem is aggravated because the database design process often begins with 
informal and poorly defined requirements. In contrast, the result of the design activity is a rigidly 
defined database schema that cannot easily be modified once the database is implemented. We can 
identify six main phases of the database design process:  

1. Requirements collection and analysis.  
2. Conceptual database design.  
3. Choice of a DBMS.  
4. Data model mapping (also called logical database design). 
5. Physical database design.  
6. Database system implementation and tuning.  

The design process consists of two parallel activities, as illustrated in Figure 16.01. The first activity 
involves the design of the data content and structure of the database; the second relates to the design 
of database applications. To keep the figure simple, we have avoided showing most of the 
interactions among these two sides, but the two activities are closely intertwined. For example, by 
analyzing database applications, we can identify data items that will be stored in the database. In 
addition, the physical database design phase, during which we choose the storage structures and access 
paths of database files, depends on the applications that will use these files. On the other hand, we 
usually specify the design of database applications by referring to the database schema constructs, 
which are specified during the first activity. Clearly, these two activities strongly influence one another. 
Traditionally, database design methodologies have primarily focused on the first of these activities 
whereas software design has focused on the second; this may be called data-driven versus process-
driven design. It is rapidly being recognized by database designers and software engineers that the two 
activities should proceed hand in hand, and design tools are increasingly combining them.  

The six phases mentioned previously do not have to proceed strictly in sequence. In many cases we 
may have to modify the design from an earlier phase during a later phase. These feedback loops 
among phases—and also within phases—are common. We show only a couple of feedback loops in 
Figure 16.01, but many more exist between various pairs of phases. We have also shown some 
interaction between the data and the process sides of the figure; many more interactions exist in reality. 
Phase 1 in Figure 16.01 involves collecting information about the intended use of the database and 
Phase 6 concerns database implementation and redesign. The heart of the database design process 
comprises Phases 2, 4, and 5; we briefly summarize these phases:  

• Conceptual database design (Phase 2): The goal of this phase is to produce a conceptual 
schema for the database that is independent of a specific DBMS. We often use a high-level 
data model such as the ER or EER model (see Chapter 3 and Chapter 4) during this phase. In 
addition, we specify as many of the known database applications or transactions as possible, 
using a notation that is independent of any specific DBMS. Often, the DBMS choice is 
already made for the organization; the intent of conceptual design is still to keep it as free as 
possible from implementation considerations.  

• Data model mapping (Phase 4): During this phase, which is also called logical database 
design, we map (or transform) the conceptual schema from the high-level data model used in 
Phase 2 into the data model of the chosen DBMS. We can start this phase after choosing a 
specific type of DBMS—for example, if we decide to use some relational DBMS but have not 
yet decided on which particular one. We call the latter system-independent (but data model-
dependent) logical design. In terms of the three-level DBMS architecture discussed in Chapter 
2, the result of this phase is a conceptual schema in the chosen data model. In addition, the 
design of external schemas (views) for specific applications is often done during this phase.  

• Physical database design (Phase 5): During this phase, we design the specifications for the 
stored database in terms of physical storage structures, record placement, and indexes. This 
corresponds to designing the internal schema in the terminology of the three-level DBMS 
architecture.  
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• Database system implementation and tuning (Phase 6): During this phase, the database and 
application programs are implemented, tested, and eventually deployed for service. Various 
transactions and applications are tested individually and then in conjunction with each other. 
This typically reveals opportunities for physical design changes, data indexing, reorganization, 
and different placement of data—an activity referred to as database tuning. Tuning is an 
ongoing activity—a part of system maintenance that continues for the life cycle of a database 
as long as the database and applications keep evolving and performance problems are 
detected.  

In the following subsections we discuss each of the six phases of database design in more detail.  

 
 

16.2.1 Phase 1: Requirements Collection and Analysis 

(Note 1) 

 
 

Before we can effectively design a database, we must know and analyze the expectations of the users 
and the intended uses of the database in as much detail as possible. This process is called 
requirements collection and analysis. To specify the requirements, we must first identify the other 
parts of the information system that will interact with the database system. These include new and 
existing users and applications, whose requirements are then collected and analyzed. Typically, the 
following activities are part of this phase:  

1. The major application areas and user groups that will use the database or whose work will be 
affected by it are identified. Key individuals and committees within each group are chosen to 
carry out subsequent steps of requirements collection and specification.  

2. Existing documentation concerning the applications is studied and analyzed. Other 
documentation—policy manuals, forms, reports, and organization charts—is reviewed to 
determine whether it has any influence on the requirements collection and specification 
process.  

3. The current operating environment and planned use of the information is studied. This 
includes analysis of the types of transactions and their frequencies as well as of the flow of 
information within the system. Geographic characteristics regarding users, origin of 
transactions, destination of reports, and so forth, are studied. The input and output data for the 
transactions are specified.  

4. Written responses to sets of questions are sometimes collected from the potential database 
users or user groups. These questions involve the users’ priorities and the importance they 
place on various applications. Key individuals may be interviewed to help in assessing the 
worth of information and in setting up priorities.  

Requirement analysis is carried out for the final users or "customers" of the database system by a team 
of analysts or requirement experts. The initial requirements are likely to be informal, incomplete, 
inconsistent, and partially incorrect. Much work therefore needs to be done to transform these early 
requirements into a specification of the application that can be used by developers and testers as the 
starting point for writing the implementation and test cases. Because the requirements reflect the initial 
understanding of a system that does not yet exist, they will inevitably change. It is therefore important 
to use techniques that help customers converge quickly on the implementation requirements.  

There is a lot of evidence that customer participation in the development process increases customer 
satisfaction with the delivered system. For this reason, many practitioners now use meetings and 
workshops involving all stakeholders. One such methodology of refining initial system requirements is 
called Joint Application Design (JAD). More recently, techniques have been developed, such as 
Contextual Design, that involve the designers becoming immersed in the workplace in which the 
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application is to be used. To help customer representatives better understand the proposed system, it is 
common to walk through workflow or transaction scenarios or to create a mock-up prototype of the 
application.  

The preceding modes help structure and refine requirements but leave them still in an informal state. 
To transform requirements into a better structured form requirements specification techniques are 
used. These include OOA (object-oriented analysis), DFDs (data flow diagrams), and the refinement of 
application goals. These methods use diagramming techniques for organizing and presenting 
information-processing requirements. Additional documentation in the form of text, tables, charts, and 
decision requirements usually accompanies the diagrams. There are techniques that produce a formal 
specification that can be checked mathematically for consistency and "what-if" symbolic analyses. 
These methods are hardly used now but may become standard in the future for those parts of 
information systems that serve mission-critical functions and which therefore must work as planned. 
The model-based formal specification methods, of which the Z-notation and methodology is the most 
prominent, can be thought of as extensions of the ER model and are therefore the most applicable to 
information system design.  

Some computer-aided techniques—called "Upper CASE" tools—have been proposed to help check the 
consistency and completeness of specifications, which are usually stored in a single repository and can 
be displayed and updated as the design progresses. Other tools are used to trace the links between 
requirements and other design entities, such as code modules and test cases. Such traceability 
databases are especially important in conjunction with enforced change-management procedures for 
systems where the requirements change frequently. They are also used in contractual projects where the 
development organization must provide documentary evidence to the customer that all the 
requirements have been implemented.  

The requirements collection and analysis phase can be quite time-consuming, but it is crucial to the 
success of the information system. Correcting a requirements error is much more expensive than 
correcting an error made during implementation, because the effects of a requirements error are usually 
pervasive, and much more downstream work has to be re-implemented as a result. Not correcting the 
error means that the system will not satisfy the customer and may not even be used at all. Requirements 
gathering and analysis have been the subject of entire books.  

 
 

16.2.2 Phase 2: Conceptual Database Design 

Phase 2a: Conceptual Schema Design 
Approaches to Conceptual Schema Design 
Strategies for Schema Design 
Schema (View) Integration 
Phase 2b: Transaction Design

The second phase of database design involves two parallel activities (Note 2). The first activity, 
conceptual schema design, examines the data requirements resulting from Phase 1 and produces a 
conceptual database schema. The second activity, transaction and application design, examines the 
database applications analyzed in Phase 1 and produces high-level specifications for these applications.  

 
 

Phase 2a: Conceptual Schema Design 

The conceptual schema produced by this phase is usually contained in a DBMS-independent high-level 
data model for the following reasons:  
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1. The goal of conceptual schema design is a complete understanding of the database structure, 
meaning (semantics), interrelationships, and constraints. This is best achieved independently 
of a specific DBMS because each DBMS typically has idiosyncrasies and restrictions that 
should not be allowed to influence the conceptual schema design.  

2. The conceptual schema is invaluable as a stable description of the database contents. The 
choice of DBMS and later design decisions may change without changing the DBMS-
independent conceptual schema.  

3. A good understanding of the conceptual schema is crucial for database users and application 
designers. Use of a high-level data model that is more expressive and general than the data 
models of individual DBMSs is hence quite important.  

4. The diagrammatic description of the conceptual schema can serve as an excellent vehicle of 
communication among database users, designers, and analysts. Because high-level data 
models usually rely on concepts that are easier to understand than lower-level DBMS-specific 
data models, or syntactic definitions of data, any communication concerning the schema 
design becomes more exact and more straightforward.  

In this phase of database design, it is important to use a conceptual high-level data model with the 
following characteristics:  

1. Expressiveness: The data model should be expressive enough to distinguish different types of 
data, relationships, and constraints.  

2. Simplicity and understandability: The model should be simple enough for typical 
nonspecialist users to understand and use its concepts.  

3. Minimality: The model should have a small number of basic concepts that are distinct and 
nonoverlapping in meaning.  

4. Diagrammatic representation: The model should have a diagrammatic notation for displaying 
a conceptual schema that is easy to interpret.  

5. Formality: A conceptual schema expressed in the data model must represent a formal 
unambiguous specification of the data. Hence, the model concepts must be defined accurately 
and unambiguously.  

Many of these requirements—the first one in particular—sometimes conflict with other requirements. 
Many high-level conceptual models have been proposed for database design (see the selected 
bibliography for Chapter 4). In the following discussion, we will use the terminology of the Enhanced 
Entity-Relationship (EER) model presented in Chapter 4, and we will assume that it is being used in 
this phase. Conceptual schema design including data modeling is becoming an integral part of object-
oriented analysis and design methodologies. The Universal Modeling Language (UML) has class 
diagrams that are largely based on extensions of the EER model. 

 
 

Approaches to Conceptual Schema Design 

For conceptual schema design, we must identify the basic components of the schema: the entity types, 
relationship types, and attributes. We should also specify key attributes, cardinality and participation 
constraints on relationships, weak entity types, and specialization/generalization hierarchies/lattices. 
There are two approaches to designing the conceptual schema, which is derived from the requirements 
collected during Phase 1.  

The first approach is the centralized (or one-shot) schema design approach, in which the 
requirements of the different applications and user groups from Phase 1 are merged into a single set of 
requirements before schema design begins. A single schema corresponding to the merged set of 
requirements is then designed. When many users and applications exist, merging all the requirements 
can be an arduous and time-consuming task. The assumption is that a centralized authority, the DBA, is 
responsible for deciding how to merge the requirements and for designing the conceptual schema for 
the whole database. Once the conceptual schema is designed and finalized, external schemas for the 
various user groups and applications can be specified by the DBA.  
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The second approach is the view integration approach, in which the requirements are not merged. 
Rather a schema (or view) is designed for each user group or application based only on its own 
requirements. Thus we develop one high-level schema (view) for each such user group or application. 
During a subsequent view integration phase, these schemas are merged or integrated into a global 
conceptual schema for the entire database. The individual views can be reconstructed as external 
schemas after view integration.  

The main difference between the two approaches lies in the manner and stage in which multiple views 
or requirements of the many users and applications are reconciled and merged. In the centralized 
approach, the reconciliation is done manually by the DBA’s staff prior to designing any schemas and is 
applied directly to the requirements collected in Phase 1. This places the burden to reconcile the 
differences and conflicts among user groups on the DBA’s staff. The problem has been typically dealt 
with by using external consultants/design experts to bring in their own ways of resolving these 
conflicts. Because of the difficulties of managing this task, the view integration approach is now 
gaining more acceptance.  

In the view integration approach, each user group or application actually designs its own conceptual 
(EER) schema from its requirements. Then an integration process is applied to these schemas (views) 
by the DBA to form the global integrated schema. Although view integration can be done manually, its 
application to a large database involving tens of user groups requires a methodology and the use of 
automated tools to help in carrying out the integration. The correspondences among the attributes, 
entity types, and relationship types in various views must be specified before the integration can be 
applied. In addition, problems such as integrating conflicting views and verifying the consistency of the 
specified interschema correspondences must be dealt with.  

 
 

Strategies for Schema Design 

Given a set of requirements, whether for a single user or for a large user community, we must create a 
conceptual schema that satisfies these requirements. There are various strategies for designing such a 
schema. Most strategies follow an incremental approach—that is, they start with some schema 
constructs derived from the requirements and then they incrementally modify, refine, or build on them. 
We now discuss some of these strategies:  

1. Top-down strategy: We start with a schema containing high-level abstractions and then apply 
successive top-down refinements. For example, we may specify only a few high-level entity 
types and then, as we specify their attributes, split them into lower-level entity types and 
relationships. The process of specialization to refine an entity type into subclasses that we 
illustrated in Section 4.2 and Section 4.3 (see Figure 04.02, Figure 04.04, and Figure 04.05) is 
another example of a top-down design strategy.  

2. Bottom-up strategy: Start with a schema containing basic abstractions and then combine or 
add to these abstractions. For example, we may start with the attributes and group these into 
entity types and relationships. We may add new relationships among entity types as the design 
progresses. The process of generalizing entity types into higher-level generalized superclasses 
(see Section 4.2 and Section 4.3) is another example of a bottom-up design strategy.  

3. Inside-out strategy: This is a special case of a bottom-up strategy, where attention is focused 
on a central set of concepts that are most evident. Modeling then spreads outward by 
considering new concepts in the vicinity of existing ones. We could specify a few clearly 
evident entity types in the schema and continue by adding other entity types and relationships 
that are related to each.  

4. Mixed strategy: Instead of following any particular strategy throughout the design, the 
requirements are partitioned according to a top-down strategy, and part of the schema is 
designed for each partition according to a bottom-up strategy. The various schema parts are 
then combined.  

Figure 16.02 and Figure 16.03 illustrate top-down and bottom-up refinement, respectively. An example 
of a top-down refinement primitive is decomposition of an entity type into several entity types. Figure 
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16.02(a) shows a COURSE being refined into COURSE and SEMINAR, and the TEACHES relationship is 
correspondingly split into TEACHES and OFFERS. Figure 16.02(b) shows a COURSE_OFFERING entity type 
being refined into two entity types COURSE and INSTRUCTOR and a relationship between them. 
Refinement typically forces a designer to ask more questions and extract more constraints and details: 
for example, the (min, max) cardinality ratios between COURSE and INSTRUCTOR are obtained during 
refinement. Figure 16.03(a) shows the bottom-up refinement primitive of generating new relationships 
among entity types. The bottom-up refinement using categorization (union type) is illustrated in Figure 
16.03(b), where the new concept of VEHICLE_OWNER is discovered from the existing entity types 
FACULTY, STAFF, and STUDENT; this process of creating a category and the related diagrammatic notation 
follows what we introduced in Section 4.4.  

 

 

 

 

 
 

Schema (View) Integration 

For large databases with many expected users and applications, the view integration approach of 
designing individual schemas and then merging them can be used. Because the individual views can be 
kept relatively small, design of the schemas is simplified. However, a methodology for integrating the 
views into a global database schema is needed. Schema integration can be divided into the following 
sub-tasks:  

 

1. Identifying correspondences and conflicts among the schemas: Because the schemas are 
designed individually, it is necessary to specify constructs in the schemas that represent the 
same real-world concept. These correspondences must be identified before integration can 
proceed. During this process, several types of conflicts among the schemas may be 
discovered:  

a. Naming conflicts: These are of two types: synonyms and homonyms. A synonym 
occurs when two schemas use different names to describe the same concept; for 
example, an entity type CUSTOMER in one schema may describe the same concept as 
an entity type CLIENT in another schema. A homonym occurs when two schemas use 
the same name to describe different concepts; for example, an entity type PART may 
represent computer parts in one schema and furniture parts in another schema.  

b. Type conflicts: The same concept may be represented in two schemas by different 
modeling constructs. For example, the concept of a DEPARTMENT may be an entity 
type in one schema and an attribute in another.  

c. Domain (value set) conflicts: An attribute may have different domains in two 
schemas. For example, SSN may be declared as an integer in one schema and as a 
character string in the other. A conflict of the unit of measure could occur if one 
schema represented WEIGHT in pounds and the other used kilograms.  

d. Conflicts among constraints: Two schemas may impose different constraints; for 
example, the key of an entity type may be different in each schema. Another example 
involves different structural constraints on a relationship such as TEACHES; one 
schema may represent it as 1:N (a course has one instructor), while the other schema 
represents it as M:N (a course may have more than one instructor).  
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2. Modifying views to conform to one another: Some schemas are modified so that they conform 
to other schemas more closely. Some of the conflicts identified in the first subtask are 
resolved during this step.  

3. Merging of views: The global schema is created by merging the individual schemas. 
Corresponding concepts are represented only once in the global schema, and mappings 
between the views and the global schema are specified. This is the most difficult step to 
achieve in real-life databases involving hundreds of entities and relationships. It involves a 
considerable amount of human intervention and negotiation to resolve conflicts and to settle 
on the most reasonable and acceptable solutions for a global schema.  

4. Restructuring: As a final optional step, the global schema may be analyzed and restructured to 
remove any redundancies or unnecessary complexity.  

 
 

Some of these ideas are illustrated by the rather simple example presented in Figure 16.04 and Figure 
16.05. In Figure 16.04, two views are merged to create a bibliographic database. During identification 
of correspondences between the two views, we discover that RESEARCHER and AUTHOR are synonyms 
(as far as this database is concerned), as are CONTRIBUTED_BY and WRITTEN_BY. Further, we decide to 
modify VIEW 1 to include a SUBJECT for ARTICLE, as shown in Figure 16.04, to conform to VIEW 2. 
Figure 16.05 shows the result of merging MODIFIED VIEW 1 with VIEW 2. We generalize the entity types 
ARTICLE and BOOK into the entity type PUBLICATION, with their common attribute Title. The 
relationships CONTRIBUTED_BY and WRITTEN_BY are merged, as are the entity types RESEARCHER and 
AUTHOR. The attribute Publisher applies only to the entity type BOOK, whereas the attribute Size 
and the relationship type PUBLISHED_IN apply only to ARTICLE.  

 

 

 

 

 
 

The above example illustrates the complexity of the merging process and how the meaning of the 
various concepts must be accounted for in simplifying the resultant schema design. For real-life 
designs, the process of schema integration requires a more disciplined and systematic approach. 
Several strategies have been proposed for the view integration process (Figure 16.06):  

1. Binary ladder integration: Two schemas that are quite similar are integrated first. The 
resulting schema is then integrated with another schema, and the process is repeated until all 
schemas are integrated. The ordering of schemas for integration can be based on some 
measure of schema similarity. This strategy is suitable for manual integration because of its 
step-by-step approach.  

2. N-ary integration: All the views are integrated in one procedure after an analysis and 
specification of their correspondences. This strategy requires computerized tools for large 
design problems. Such tools have been built as research prototypes but are not yet 
commercially available.  

3. Binary balanced strategy: Pairs of schemas are integrated first; then the resulting schemas are 
paired for further integration; the procedure is repeated until a final global schema results.  

4. Mixed strategy: Initially, the schemas are partitioned into groups based on their similarity, and 
each group is integrated separately. The intermediate schemas are grouped again and 
integrated, and so on.  
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Phase 2b: Transaction Design 

The purpose of Phase 2b, which proceeds in parallel with Phase 2a, is to design the characteristics of 
known database transactions (applications) in a DBMS-independent way. When a database system is 
being designed, the designers are aware of many known applications (or transactions) that will run on 
the database once it is implemented. An important part of database design is to specify the functional 
characteristics of these transactions early on in the design process. This ensures that the database 
schema will include all the information required by these transactions. In addition, knowing the relative 
importance of the various transactions and the expected rates of their invocation plays a crucial part in 
physical database design (Phase 5). Usually, only some of the database transactions are known at 
design time; after the database system is implemented, new transactions are continuously identified and 
implemented. However, the most important transactions are often known in advance of system 
implementation and should be specified at an early stage. The informal "80–20 rule" typically applies 
in this context: 80 percent of the workload is represented by 20 percent of the most frequently used 
transactions, which govern the design. In applications that are of the ad-hoc querying or batch 
processing variety, queries and applications that process a substantial amount of data must be 
identified.  

A common technique for specifying transactions at a conceptual level is to identify their input/output 
and functional behavior. By specifying the input and output parameters (arguments), and internal 
functional flow of control, designers can specify a transaction in a conceptual and system-independent 
way. Transactions usually can be grouped into three categories: (1) retrieval transactions, which are 
used to retrieve data for display on a screen or for production of a report; (2) update transactions, 
which are used to enter new data or to modify existing data in the database; (3) mixed transactions, 
which are used for more complex applications that do some retrieval and some update. For example, 
consider an airline reservations database. A retrieval transaction could list all morning flights on a 
given date between two cities. An update transaction could be to book a seat on a particular flight. A 
mixed transaction may first display some data, such as showing a customer reservation on some flight, 
and then update the database, such as canceling the reservation by deleting it, or by adding a flight 
segment to an existing reservation. Transactions (applications) may originate in a front-end tool such as 
POWERBUILDER (from Sybase) or Developer 2000 (from Oracle), which collect parameters online 
and then send a transaction to the DBMS as a backend (Note 3).  

Several techniques for requirements specification include notation for specifying processes, which in 
this context are more complex operations that can consist of several transactions. Process modeling 
tools like BPWin as well as workflow modeling tools are becoming popular to identify information 
flows in organizations. The UML language, which provides for data modeling via class and object 
diagrams, has a variety of process modeling diagrams including state transition diagrams, activity 
diagrams, sequence diagrams, and collaboration diagrams. All of these refer to activities, events, and 
operations within the information system, the inputs and outputs of the processes, and the sequencing 
or synchronization requirements, and other conditions. It is possible to refine these specifications and 
extract individual transactions from them. Other proposals for specifying transactions include TAXIS, 
GALILEO, and GORDAS (see the selected bibliography at the end of this chapter). Some of these 
have been implemented into prototype systems and tools. Process modeling still remains an active area 
of research.  

Transaction design is just as important as schema design, but it is often considered to be part of 
software engineering rather than database design. Many current design methodologies emphasize one 
over the other. One should go through Phases 2a and 2b in parallel, using feedback loops for 
refinement, until a stable design of schema and transactions is reached (Note 4). 
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16.2.3 Phase 3: Choice of a DBMS 

The choice of a DBMS is governed by a number of factors—some technical, others economic, and still 
others concerned with the politics of the organization. The technical factors are concerned with the 
suitability of the DBMS for the task at hand. Issues to consider here are the type of DBMS (relational, 
object-relational, object, other), the storage structures and access paths that the DBMS supports, the 
user and programmer interfaces available, the types of high-level query languages, the availability of 
development tools, ability to interface with other DBMSs via standard interfaces, architectural options 
related to client-server operation, and so on. Nontechnical factors include the financial status and the 
support organization of the vendor. In this section we concentrate on discussing the economic and 
organizational factors that affect the choice of DBMS. The following costs must be considered:  

1. Software acquisition cost: This is the "up-front" cost of buying the software, including 
language options, different interface options such as forms, menu, and Web-based graphic 
user interface (GUI) tools, recovery/backup options, special access methods, and 
documentation. The correct DBMS version for a specific operating system must be selected. 
Typically, the development tools, design tools, and additional language support are not 
included in basic pricing.  

2. Maintenance cost: This is the recurring cost of receiving standard maintenance service from 
the vendor and for keeping the DBMS version up to date.  

3. Hardware acquisition cost: New hardware may be needed, such as additional memory, 
terminals, disk drives and controllers, or specialized DBMS storage and archival storage.  

4. Database creation and conversion cost: This is the cost of either creating the database system 
from scratch or converting an existing system to the new DBMS software. In the latter case it 
is customary to operate the existing system in parallel with the new system until all the new 
applications are fully implemented and tested. This cost is hard to project and is often 
underestimated. 

5. Personnel cost: Acquisition of DBMS software for the first time by an organization is often 
accompanied by a reorganization of the data-processing department. Positions of DBA and 
staff exist in most companies that have adopted DBMSs.  

6. Training cost: Because DBMSs are often complex systems, personnel must often be trained to 
use and program the DBMS. Training is required at all levels, including programming, 
application development, and database administration.  

7. Operating cost: The cost of continued operation of the database system is typically not 
worked into an evaluation of alternatives because it is incurred regardless of the DBMS 
selected.  

The benefits of acquiring a DBMS are not so easy to measure and quantify. A DBMS has several 
intangible advantages over traditional file systems, such as ease of use, consolidation of company-wide 
information, wider availability of data, and faster access to information. With Web-based access, 
certain parts of the data can be made globally accessible to employees as well as external users. More 
tangible benefits include reduced application development cost, reduced redundancy of data, and better 
control and security. Although databases have been firmly entrenched in most organizations, the 
decision of whether to move an application from a file-based to a database-centered approach comes up 
frequently. This move is generally driven by the following factors:  

1. Data complexity: As data relationships become more complex, the need for a DBMS is felt 
more strongly. 

2. Sharing among applications: The greater the sharing among applications, the more the 
redundancy among files, and hence the greater the need for a DBMS.  

3. Dynamically evolving or growing data: If the data changes constantly, it is easier to cope with 
these changes using a DBMS than using a file system.  

4. Frequency of ad hoc requests for data: File systems are not at all suitable for ad hoc retrieval 
of data.  

5. Data volume and need for control: The sheer volume of data and the need to control it 
sometimes demands a DBMS. 

It is difficult to develop a generic set of guidelines for adopting a single approach to data management 
within an organization—whether relational, object-oriented, or object-relational. If the data to be stored 

1 Page 480 of 893



www.manaraa.com

in the database has a high level of complexity and deals with multiple data types, the typical approach 
may be to consider an object or object-relational DBMS (Note 5). Also, the benefits of inheritance 
among classes and the corresponding advantage of reuse favors these approaches. Finally, several 
economic and organizational factors affect the choice of one DBMS over another:  

1. Organization-wide adoption of a certain philosophy: This is often a dominant factor affecting 
the acceptability of a certain data model (for example, relational versus object), a certain 
vendor, or a certain development methodology and tools (for example, use of an object-
oriented analysis and design tool and methodology may be required of all new applications).  

2. Familiarity of personnel with the system: If the programming staff within the organization is 
familiar with a particular DBMS, it may be favored to reduce training cost and learning time.  

3. Availability of vendor services: The availability of vendor assistance in solving problems with 
the system is important, since moving from a non-DBMS to a DBMS environment is 
generally a major undertaking and requires much vendor assistance at the start.  

Another factor to consider is the DBMS portability among different types of hardware. Many 
commercial DBMSs now have versions that run on many hardware/software configurations (or 
platforms). The need of applications for backup, recovery, performance, integrity, and security must 
also be considered. Many DBMSs are currently being designed as total solutions to the information-
processing and information resource management needs within organizations. Most DBMS vendors are 
combining their products with the following options or built-in features:  

• Text editors and browsers.  
• Report generators and listing utilities.  
• Communication software (often called teleprocessing monitors). 
• Data entry and display features such as forms, screens, and menus with automatic editing 

features.  
• Inquiry and access tools that can be used on the World Wide Web (Web enabling tools).  
• Graphical database design tools.  

A large amount of "third-party" software is available that provides added functionality to a DBMS in 
each of the above areas. In rare cases it may be preferable to develop in-house software rather than use 
a DBMS—for example, if the applications are very well defined and are all known beforehand. Under 
such circumstances, an in-house custom-designed system may be appropriate to implement the known 
applications in the most efficient way. In most cases, however, new applications that were not foreseen 
at design time come up after system implementation. This is precisely why DBMSs have become very 
popular: They facilitate the incorporation of new applications with only incremental modifications to 
the existing design of a database. Such design evolution—or schema evolution—is a feature present to 
various degrees in commercial DBMSs.  

 
 

16.2.4 Phase 4: Data Model Mapping (Logical Database Design) 

The next phase of database design is to create a conceptual schema and external schemas in the data 
model of the selected DBMS by mapping those schemas produced in Phase 2a. The mapping can 
proceed in two stages:  

1. System-independent mapping: In this stage, the mapping does not consider any specific 
characteristics or special cases that apply to the DBMS implementation of the data model. We 
already discussed DBMS-independent mapping of an ER schema to a relational schema in 
Section 9.1 and of EER schemas to relational and object-oriented schemas in Section 9.2 and 
Section 12.5, respectively.  

2. Tailoring the schemas to a specific DBMS: Different DBMSs implement a data model by 
using specific modeling features and constraints. We may have to adjust the schemas obtained 
in Step 1 to conform to the specific implementation features of a data model as used in the 
selected DBMS.  
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The result of this phase should be DDL statements in the language of the chosen DBMS that specify 
the conceptual and external level schemas of the database system. But if the DDL statements include 
some physical design parameters, a complete DDL specification must wait until after the physical 
database design phase is completed. Many automated CASE (computer-assisted software engineering) 
design tools (see Section 16.5) can generate DDL for commercial systems from a conceptual schema 
design.  

 
 

16.2.5 Phase 5: Physical Database Design 

Physical database design is the process of choosing specific storage structures and access paths for the 
database files to achieve good performance for the various database applications. Each DBMS offers a 
variety of options for file organization and access paths. These usually include various types of 
indexing, clustering of related records on disk blocks, linking related records via pointers, and various 
types of hashing. Once a specific DBMS is chosen, the physical database design process is restricted to 
choosing the most appropriate structures for the database files from among the options offered by that 
DBMS. In this section we give generic guidelines for physical design decisions; they hold for any type 
of DBMS. The following criteria are often used to guide the choice of physical database design 
options:  

1. Response time: This is the elapsed time between submitting a database transaction for 
execution and receiving a response. A major influence on response time that is under the 
control of the DBMS is the database access time for data items referenced by the transaction. 
Response time is also influenced by factors not under DBMS control, such as system load, 
operating system scheduling, or communication delays.  

2. Space utilization: This is the amount of storage space used by the database files and their 
access path structures on disk, including indexes and other access paths.  

3. Transaction throughput: This is the average number of transactions that can be processed per 
minute; it is a critical parameter of transaction systems such as those used for airline 
reservations or banking. Transaction throughput must be measured under peak conditions on 
the system.  

Typically, average and worst-case limits on the preceding parameters are specified as part of the 
system performance requirements. Analytical or experimental techniques, which can include 
prototyping and simulation, are used to estimate the average and worst-case values under different 
physical design decisions, to determine whether they meet the specified performance requirements.  

Performance depends on record size and number of records in the file. Hence, we must estimate these 
parameters for each file. In addition, we should estimate the update and retrieval patterns for the file 
cumulatively from all the transactions. Attributes used for selecting records should have primary access 
paths and secondary indexes constructed for them. Estimates of file growth, either in the record size 
because of new attributes or in the number of records, should also be taken into account during 
physical database design. 

The result of the physical database design phase is an initial determination of storage structures and 
access paths for the database files. It is almost always necessary to modify the design on the basis of its 
observed performance after the database system is implemented. We include this activity of database 
tuning in the next phase and cover it in a separate section. In Section 16.3 we will briefly discuss 
physical design issues related to relational DBMSs.  

 
 

16.2.6 Phase 6: Database System Implementation and Tuning 
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After the logical and physical designs are completed, we can implement the database system. This is 
typically the responsibility of the DBA and is carried out in conjunction with the database designers. 
Language statements in the DDL (data definition language) including the SDL (storage definition 
language) of the selected DBMS are compiled and used to create the database schemas and (empty) 
database files. The database can then be loaded (populated) with the data. If data is to be converted 
from an earlier computerized system, conversion routines may be needed to reformat the data for 
loading into the new database.  

Database transactions must be implemented by the application programmers by referring to the 
conceptual specifications of transactions, and then writing and testing program code with embedded 
DML commands. Once the transactions are ready and the data is loaded into the database, the design 
and implementation phase is over and the operational phase of the database system begins.  

Most systems include a monitoring utility to collect performance statistics, which are kept in the 
system catalog or data dictionary for later analysis. These include statistics on the number of 
invocations of predefined transactions or queries, input/output activity against files, counts of file pages 
or index records, and frequency of index usage. As the database system requirements change, it often 
becomes necessary to add or remove existing tables and to reorganize some files by changing primary 
access methods or by dropping old indexes and constructing new ones. Some queries or transactions 
may be rewritten for better performance. Database tuning continues as long as the database is in 
existence, as long as performance problems are discovered, and while the requirements keep changing.  

 
 

16.3 Physical Database Design in Relational Databases 

16.3.1 Factors That Influence Physical Database Design 
16.3.2 Physical Database Design Decisions

In this section we first discuss the physical design factors that affect the performance of applications 
and transactions; we then comment on the specific guidelines for RDBMSs. In Section 16.4 we discuss 
the variety of ways in which a design may be tuned once it has been in operation.  

 
 

16.3.1 Factors That Influence Physical Database Design 

A. Analyzing the Database Queries and Transactions 
B. Analyzing the Expected Frequency of Invocation of Queries and Transactions 
C. Analyzing the Time Constraints of Queries and Transactions 
D. Analyzing the Expected Frequencies of Update Operations 
E. Analyzing the Uniqueness Constraints on Attributes

Physical design is an activity where the goal is not only to come up with the appropriate structuring of 
data in storage but to do so in a way that guarantees good performance. For a given conceptual schema, 
there are many physical design alternatives in a given DBMS. It is not possible to make meaningful 
physical design decisions and performance analyses until we know the queries, transactions, and 
applications that are expected to run on the database. We must analyze these applications, their 
expected frequencies of invocation, any time constraints on their execution, and the expected frequency 
of update operations. We discuss each of these factors next.  

 
 

A. Analyzing the Database Queries and Transactions 
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Before undertaking physical database design, we must have a good idea of the intended use of the 
database by defining the queries and transactions that we expect to run on the database in a high-level 
form. For each query, we should specify the following: 

1. The files that will be accessed by the query (Note 6).  
2. The attributes on which any selection conditions for the query are specified.  
3. The attributes on which any join conditions or conditions to link multiple tables or objects for 

the query are specified.  
4. The attributes whose values will be retrieved by the query. 

The attributes listed in items 2 and 3 above are candidates for definition of access structures. For each 
update transaction or operation, we should specify the following: 

1. The files that will be updated.  
2. The type of operation on each file (insert, update, or delete). 
3. The attributes on which selection conditions for a delete or update are specified.  
4. The attributes whose values will be changed by an update operation.  

Again, the attributes listed previously in item 3 are candidates for access structures. On the other hand, 
the attributes listed in item 4 are candidates for avoiding an access structure, since modifying them will 
require updating the access structures.  

 
 

B. Analyzing the Expected Frequency of Invocation of Queries and Transactions 

Besides identifying the characteristics of expected queries and transactions, we must consider their 
expected rates of invocation. This frequency information, along with the attribute information collected 
on each query and transaction, is used to compile a cumulative list of expected frequency of use for all 
queries and transactions. This is expressed as the expected frequency of using each attribute in each file 
as a selection attribute or a join attribute, over all the queries and transactions. Generally, for large 
volumes of processing, the informal "80–20 rule" applies, which states that approximately 80 percent 
of the processing is accounted for by only 20 percent of the queries and transactions. Therefore, in 
practical situations it is rarely necessary to collect exhaustive statistics and invocation rates on all the 
queries and transactions; it is sufficient to determine the 20 percent or so most important ones.  

 
 

C. Analyzing the Time Constraints of Queries and Transactions 

Some queries and transactions may have stringent performance constraints. For example, a transaction 
may have the constraint that it should terminate within 5 seconds on 95 percent of the occasions when 
it is invoked and that it should never take more than 20 seconds. Such performance constraints place 
further priorities on the attributes that are candidates for access paths. The selection attributes used by 
queries and transactions with time constraints become higher-priority candidates for primary access 
structures.  

 
 

D. Analyzing the Expected Frequencies of Update Operations 

A minimum number of access paths should be specified for a file that is updated frequently, because 
updating the access paths themselves slows down the update operations.  
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E. Analyzing the Uniqueness Constraints on Attributes 

Access paths should be specified on all candidate key attributes—or sets of attributes—that are either 
the primary key or constrained to be unique. The existence of an index (or other access path) makes it 
sufficient to search only the index when checking this constraint, since all values of the attribute will 
exist in the leaf nodes of the index.  

Once we have compiled the preceding information, we can address the physical database design 
decisions, which consist mainly of deciding on the storage structures and access paths for the database 
files.  

 
 

16.3.2 Physical Database Design Decisions 

Design Decisions about Indexing 
Denormalization as a Design Decision for Speeding Up Queries

Most relational systems represent each base relation as a physical database file. The access path options 
include specifying the type of file for each relation and the attributes on which indexes should be 
defined. At most one of the indexes on each file may be a primary or clustering index. Any number of 
additional secondary indexes can be created (Note 7). 

 
 

Design Decisions about Indexing 

The attributes whose values are required in equality or range conditions (selection operation) and those 
that are keys or that participate in join conditions (join operation) require access paths.  

The performance of queries largely depends upon what indexes or hashing schemes exist to expedite 
the processing of selections and joins. On the other hand, during insert, delete, or update operations, 
existence of indexes adds to the overhead. This overhead must be justified in terms of the gain in 
efficiency by expediting queries and transactions.  

The physical design decisions for indexing fall into the following categories:  

1. Whether to index an attribute: The attribute must be a key, or there must be some query that 
uses that attribute either in a selection condition (equality or range of values) or in a join. One 
factor in favor of setting up many indexes is that some queries can be processed by just 
scanning the indexes without retrieving any data.  

2. What attribute or attributes to index on: An index can be constructed on one or multiple 
attributes. If multiple attributes from one relation are involved together in several queries, (for 
example, (garment_style_#, color) in a garment inventory database), a 
multiattribute index is warranted. The ordering of attributes within a multiattribute index must 
correspond to the queries. For example, the above index assumes that queries would be based 
on an ordering of colors within a garment_style_# rather than vice versa.  

3. Whether to set up a clustered index: At most one index per table can be a primary or 
clustering index, because this implies that the file be physically ordered on that attribute. In 
most RDBMSs, this is specified by the keyword CLUSTER. (If the attribute is a key, a 
primary index is created, whereas a clustering index is created if the attribute is not a key.) If a 
table requires several indexes, the decision about which one should be a clustered index 
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depends upon whether keeping the table ordered on that attribute is needed. Range queries 
benefit a great deal from clustering. If several attributes require range queries, relative benefits 
must be evaluated before deciding which attribute to cluster on. If a query is to be answered 
by doing an index search only (without retrieving data records), the corresponding index 
should not be clustered, since the main benefit of clustering is achieved when retrieving the 
records themselves.  

4. Whether to use a hash index over a tree index: In general, RDBMSs use B+-trees for indexing. 
However, ISAM and hash indexes are also provided in some systems (see Chapter 6). B+-trees 
support both equality and range queries on the attribute used as the search key. Hash indexes 
work well with equality conditions, particularly during joins to find a matching record(s).  

5. Whether to use dynamic hashing for the file: For files that are very volatile—that is, those that 
grow and shrink continuously—one of the dynamic hashing schemes discussed in Section 5.9 
would be suitable. Currently, they are not offered by most commercial RDBMSs.  

 
 

Denormalization as a Design Decision for Speeding Up Queries 

The ultimate goal during normalization (see Chapter 14 and Chapter 15) was to separate the logically 
related attributes into tables to minimize redundancy, and thereby avoid the update anomalies that lead 
to an extra processing overhead to maintain consistency in the database.  

The above ideals are sometimes sacrificed in favor of faster execution of frequently occurring queries 
and transactions. This process of storing the logical database design (which may be in BCNF or 4NF) 
in a weaker normal form, say 2NF or 1NF, is called denormalization. Typically, the designer adds to a 
table attributes that are needed for answering queries or producing reports so that a join with another 
table, which contains the newly added attribute, is avoided. This reintroduces a partial functional 
dependency or a transitive dependency into the table, thereby creating the associated redundancy 
problems (see Chapter 14).  

Other forms of denormalization consist of storing extra tables to maintain original functional 
dependencies that are lost during a BCNF decomposition. For example, Figure 14.13 showed the 
TEACH(STUDENT, COURSE, INSTRUCTOR) relation with the functional dependencies {{STUDENT, COURSE} 
â INSTRUCTOR, INSTRUCTOR â COURSE}. A lossless decomposition of TEACH into T1(STUDENT, 
INSTRUCTOR) and T2(INSTRUCTOR, COURSE) does not allow queries of the form "what course did student 
Smith take from Instructor Navathe" to be answered without joining T1 and T2. Therefore, storing T1, 
T2, and TEACH may be a possible solution, which reduces the design from BCNF to 3NF. Here, TEACH 
is a materialized join of the other two tables, representing an extreme redundancy. Any updates to T1 
and T2 would have to be applied to TEACH. An alternate strategy is to consider T1 and T2 as updatable 
base tables whereas TEACH can be created as a view.  

 
 

16.4 An Overview of Database Tuning in Relational Systems 

16.4.1 Tuning Indexes 
16.4.2 Tuning the Database Design 
16.4.3 Tuning Queries 
16.4.4 Additional Query Tuning Guidelines

After a database is deployed and is in operation, actual use of the applications, transactions, queries, 
and views reveals factors and problem areas that may not have been accounted for during the initial 
physical design. The inputs to physical design listed in Section 16.3.1 can be revised by gathering 
actual statistics about usage patterns. Resource utilization as well as internal DBMS processing—such 
as query optimization—can be monitored to reveal bottlenecks, such as contention for the same data or 
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devices. Volumes of activity and sizes of data can be better estimated. It is therefore necessary to 
monitor and revise the physical database design constantly. The goals of tuning are as follows:  

• To make applications run faster.  
• To lower the response time of queries/transactions.  
• To improve the overall throughput of transactions.  

The dividing line between physical design and tuning is very thin. The same design decisions that we 
discussed in Section 16.3.3 are revisited during the tuning phase, which is a continued adjustment of 
design. We give only a brief overview of the tuning process below (Note 8). The inputs to the tuning 
process include statistics related to the factors mentioned in Section 16.3.1. In particular, DBMSs can 
internally collect the following statistics:  

• Sizes of individual tables.  
• Number of distinct values in a column.  
• The number of times a particular query or transaction is submitted/executed in an interval of 

time.  
• The times required for different phases of query and transaction processing (for a given set of 

queries or transactions).  

These and other statistics create a profile of the contents and use of the database. Other information 
obtained from monitoring the database system activities and processes includes the following:  

• Storage statistics: Data about allocation of storage into tablespaces, indexspaces, and buffer 
ports (Note 9). 

• I/O and device performance statistics: Total read/write activity (paging) on disk extents and 
disk hot spots.  

• Query/transaction processing statistics: Execution times of queries and transactions, 
optimization times during query optimization.  

• Locking/logging related statistics: Rates of issuing different types of locks, transaction 
throughput rates, and log records activity (Note 10). 

• Index statistics: Number of levels in an index, number of noncontiguous leaf pages, etc.  

Many of the above statistics relate to transactions, concurrency control, and recovery, which are to be 
discussed in Chapter 19, Chapter 20 and Chapter 21. Tuning a database involves dealing with the 
following types of problems:  

• How to avoid excessive lock contention, thereby increasing concurrency among transactions.  
• How to minimize overheard of logging and unnecessary dumping of data.  
• How to optimize buffer size and scheduling of processes.  
• How to allocate resources such as disks, RAM, and processes for most efficient utilization.  

Most of the previously mentioned problems can be solved by setting appropriate physical DBMS 
parameters, changing configurations of devices, changing operating system parameters, and other 
similar activities. The solutions tend to be closely tied to specific systems. The DBAs are typically 
trained to handle these problems of tuning for the specific DBMS. We briefly discuss the tuning of 
various physical database design decisions below.  

 
 

16.4.1 Tuning Indexes 

The initial choice of indexes may have to be revised for the following reasons:  

• Certain queries may take too long to run for lack of an index.  
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• Certain indexes may not get utilized at all.  
• Certain indexes may be causing excessive overhead because the index is on an attribute that 

undergoes frequent changes.  

Most DBMSs have a command or trace facility, which can be used by the DBA to ask the system to 
show how a query was executed—what operations were performed in what order and what secondary 
access structures were used. By analyzing these execution plans, it is possible to diagnose the causes of 
the above problems. Some indexes may be dropped and some new indexes may be created based on the 
tuning analysis.  

The goal of tuning is to dynamically evaluate the requirements, which sometimes fluctuate seasonally 
or during different times of the month or week, and to reorganize the indexes to yield the best overall 
performance. Dropping and building new indexes is an overhead that can be justified in terms of 
performance improvements. Updating of a table is generally suspended while an index is dropped or 
created; this loss of service must be accounted for. Besides dropping or creating indexes and changing 
from a nonclustered to a clustered index and vice versa, rebuilding the index may improve 
performance. Most RDBMSs use B+-trees for an index. If there are many deletions on the index key, 
index pages may contain wasted space, which can be claimed during a rebuild operation. Similarly, too 
many insertions may cause overflows in a clustered index that affect performance. Rebuilding a 
clustered index amounts to reorganizing the entire table ordered on that key.  

The available options for indexing and the way they are defined, created, and reorganized varies from 
system to system. Just for illustration, consider the sparse and dense indexes of Chapter 6. Sparse 
indexes have one index pointer for each page (disk block) in the data file; dense indexes have an index 
pointer for each record. Sybase provides clustering indexes as sparse indexes in the form of B+-trees 
whereas INGRES provides sparse clustering indexes as ISAM files, and dense clustering indexes as 
B+-trees. In some versions of Oracle and DB2, the option of setting up a clustering index is limited to a 
dense index (with many more index entries), and the DBA has to work with this limitation.  

 
 

16.4.2 Tuning the Database Design 

We already discussed in Section 16.3.2 the need for a possible denormalization, which is a departure 
from keeping all tables as BCNF relations. If a given physical database design does not meet the 
expected objectives, we may revert to the logical database design, make adjustments to the logical 
schema, and remap it to a new set of physical tables and indexes.  

As we pointed out in Section 16.2, the entire database design has to be driven by the processing 
requirements as much as by data requirements. If the processing requirements are dynamically 
changing, the design needs to respond by making changes to the conceptual schema if necessary and to 
reflect those changes into the logical schema and physical design. These changes may be of the 
following nature:  

• Existing tables may be joined (denormalized) because certain attributes from two or more 
tables are frequently needed together: This reduces the normalization level from BCNF to 
3NF, 2NF, or 1NF (Note 11). 

• For the given set of tables, there may be alternative design choices, all of which achieve 3NF 
or BCNF. One may be replaced by the other.  

• A relation of the form R(K,A, B, C, D, ...)—with K as a set of key attributes—that 
is in BCNF can be stored into multiple tables that are also in BCNF—for example, R1(K, 
A, B), R2(K, C, D, ), R3(K, ...)—by replicating the key K in each table. Each 
table groups sets of attributes that are accessed together. For example, the table 
EMPLOYEE(SSN, Name, Phone, Grade, Salary) may be split into two tables 
EMP1(SSN, Name, Phone) and EMP2(SSN, Grade, Salary). If the original table 
had a very large number of rows (say 100,000) and queries about phone numbers and salary 
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information are totally distinct, this separation of tables may work better. This is also called 
vertical partitioning.  

• Attribute(s) from one table may be repeated in another even though this creates redundancy 
and a potential anomaly. For example, Partname may be replicated in tables wherever the 
Part# appears (as foreign key), but there may be one master table called 
PART_MASTER(Part#, Partname, . . .) where the Partname is guaranteed to be 
up-to-date.  

• Just as vertical partitioning splits a table vertically into multiple tables, horizontal 
partitioning takes horizontal slices of a table and stores them as distinct tables. For example, 
product sales data may be separated into ten tables based on ten product lines. Each table has 
the same set of columns (attributes) but contains a distinct set of products (tuples). If a query 
or transaction applies to all product data, it may have to run against all the tables and the 
results may have to be combined.  

These types of adjustments designed to meet the high volume queries or transactions, with or without 
sacrificing the normal forms, are commonplace in practice. 

 
 

16.4.3 Tuning Queries 

We already discussed how query performance is dependent upon appropriate selection of indexes and 
how indexes may have to be tuned after analyzing queries that give poor performance by using the 
commands in the RDBMS that show the execution plan of the query. There are mainly two indications 
that suggest that query tuning may be needed:  

1. A query issues too many disk accesses (for example, an exact match query scans an entire 
table).  

2. The query plan shows that relevant indexes are not being used. 

Some typical instances of situations prompting query tuning include the following:  

1. Many query optimizers do not use indexes in the presence of arithmetic expressions (such as 
SALARY/365 > 10.50), numerical comparisons of attributes of different sizes and precision 
(such as AQTY = BQTY where AQTY is of type INTEGER and BQTY is of type SMALLINTEGER), NULL 
comparisons (such as BDATE IS NULL), and substring comparisons (such as LNAME LIKE 
"%MANN").  

2. Indexes are often not used for nested queries using IN; for example, the query:  

SELECT SSN FROM EMPLOYEE 

WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT  

WHERE MGRSSN = ‘333445555’);  

 
 

may not use the index on DNO in EMPLOYEE, whereas using DNO = DNUMBER in the WHERE-clause with a 
single block query may cause the index to be used.  

3. Some DISTINCTs may be redundant and can be avoided without changing the result. A DISTINCT 
often causes a sort operation and must be avoided as far as possible.  

4. Unnecessary use of temporary result tables can be avoided by collapsing multiple queries into 
a single query unless the temporary relation is needed for some intermediate processing.  
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5. In some situations involving use of correlated queries, temporaries are useful. Consider the 
query: 

 
 

SELECT SSN  

FROM EMPLOYEE E  

WHERE SALARY = SELECT MAX (SALARY)  

FROM EMPLOYEE AS M  

WHERE M.DNO = E.DNO;  

 
 

This has the potential danger of searching all of the inner EMPLOYEE table M for each tuple from the 
outer EMPLOYEE table E. To make it more efficient, it can be broken into two queries where the first 
query just computes the maximum salary in each department as follows:  

 
 

SELECT MAX (SALARY) AS HIGHSALARY, DNO INTO TEMP  

FROM EMPLOYEE  

GROUP BY DNO;  

 
 

SELECT SSN  

FROM EMPLOYEE, TEMP  

WHERE SALARY = HIGHSALARY AND EMPLOYEE.DNO = TEMP.DNO;  

 

6. If multiple options for join condition are possible, choose one that uses a clustering index and 
avoid those that contain string comparisons. For example, assuming that the NAME attribute is 
a candidate key in EMPLOYEE and STUDENT, it is better to use EMPLOYEE.SSN = STUDENT.SSN as 
a join condition rather than EMPLOYEE.NAME = STUDENT. NAME if SSN has a clustering index in 
one or both tables.  

7. One idiosyncrasy with query optimizers is that the order of tables in the FROM-clause may 
affect the join processing. If that is the case, one may have to switch this order so that the 
smaller of the two relations is scanned and the larger relation is used with an appropriate 
index.  

8. Some query optimizers perform worse on nested queries compared to their equivalent 
unnested counterparts. There are four types of nested queries: 

o Uncorrelated subqueries with aggregates in inner query.  
o Uncorrelated subqueries without aggregates.  
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o Correlated subqueries with aggregates in inner query.  
o Correlated subqueries without aggregates.  

Out of the above four types, the first one typically presents no problem, since most query optimizers 
evaluate the inner query once. However, for a query of the second type, such as the example in (2) 
above, most query optimizers may not use an index on DNO in EMPLOYEE. The same optimizers may do 
so if the query is written as an unnested query. Transformation of correlated subqueries may involve 
setting temporary tables. Detailed examples are outside our scope here (Note 12).  

9. Finally, many applications are based on views that define the data of interest to those 
applications. Sometimes, these views become an overkill, because a query may be posed 
directly against a base table, rather than going through a view that is defined by a join.  

 
 

16.4.4 Additional Query Tuning Guidelines 

Additional techniques for improving queries apply in certain situations: 

 

1. A query with multiple selection conditions that are connected via OR may not be prompting 
the query optimizer to use any index. Such a query may be split up and expressed as a union 
of queries, each with a condition on an attribute that causes an index to be used. For example,  

 
 

SELECT FNAME, LNAME, SALARY, AGE (Note 13) 

FROM EMPLOYEE  

WHERE AGE > 45 OR SALARY < 50000;  

 
 

may be executed using sequential scan giving poor performance. Splitting it up as  

 
 

SELECT FNAME, LNAME, SALARY, AGE  

FROM EMPLOYEE  

WHERE AGE > 45  

 
 

UNION  
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SELECT FNAME, LNAME, SALARY, AGE  

FROM EMPLOYEE  

WHERE SALARY < 50000;  

 
 

may utilize indexes on AGE as well as on SALARY.  

2. To help in expediting a query, the following transformations may be tried:  
o NOT condition may be transformed into a positive expression.  
o Embedded SELECT blocks using IN, = ALL, = ANY, and = SOME may be replaced by 

joins.  
o If an equality join is set up between two tables, the range predicate (selection 

condition) on the joining attribute set up in one table may be repeated for the other 
table.  

3. WHERE conditions may be rewritten to utilize the indexes on multiple columns. For example,  

 
 

SELECT REGION#, PROD_TYPE, MONTH, SALES  

FROM SALES_STATISTICS  

WHERE REGION# = 3 AND ((PRODUCT_TYPE BETWEEN 1 AND 3) OR (PRODUCT_TYPE 
BETWEEN 8 AND 10));  

 
 

may use an index only on REGION# and search through all leaf pages of the index for a match on 
PRODUCT_TYPE. Instead, using  

 
 

SELECT REGION#, PROD_TYPE, MONTH, SALES 

FROM SALES_STATISTICS  

WHERE (REGION# = 3 AND (PRODUCT_TYPE BETWEEN 1 AND 3)) OR (REGION# = 3 AND 
(PRODUCT_TYPE BETWEEN 8 AND 10));  

 
 

can use a composite index on (REGION#, PRODUCT_TYPE) and work much more efficiently.  
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We have covered in this section most of the common opportunities where inefficiency of a query may 
be corrected by some simple corrective action such as using a temporary, avoiding certain types of 
constructs, or avoiding use of views. The problems and the remedies will depend upon the workings of 
a query optimizer within an RDBMS. Detailed literature exists in terms of individual manuals on 
database tuning guidelines for database administration by the RDBMS vendors.  

 
 

16.5 Automated Design Tools 

The database design activity predominantly spans Phase 2 (conceptual design), Phase 4 (data model 
mapping, or logical design) and Phase 5 (physical database design) in the design process that we 
discussed in Section 16.2. When database technology was first introduced, most database design was 
carried out manually by expert designers, who used their experience and knowledge in the design 
process. However, at least two factors indicated that some form of automation had to be utilized if 
possible:  

1. As an application involves more and more complexity of data in terms of relationships and 
constraints, the number of options or different designs to model the same information keeps 
increasing rapidly. It becomes difficult to deal with this complexity and the corresponding 
design alternatives manually.  

2. The sheer size of some databases runs into hundreds of entity types and relationship types 
making the task of manually managing these designs almost impossible. The meta information 
related to the design process we described in Section 16.2 yields another database that must be 
created, maintained, and queried as a database in its own right.  

The above factors have given rise to many tools on the market that come under the general category of 
CASE (Computer-Aided Software Engineering) tools for database design. They consist of a 
combination of the following facilities:  

1. Diagramming: This allows the designer to draw a conceptual schema diagram, in some tool-
specific notation. Most notations include entity types, relationship types that are shown either 
as separate boxes or simply as directed or undirected lines, cardinality constraints shown 
alongside the lines or in terms of the different types of arrowheads or min/max constraints, 
attributes, keys, and so on (Note 14). Some tools display inheritance hierarchies and use 
additional notation for showing the partial versus total and disjoint versus overlapping nature 
of the generalizations. The diagrams are internally stored as conceptual designs and are 
available for modification as well as generation of reports, cross reference listings, and other 
uses.  

2. Model mapping: This implements mapping algorithms similar to the ones we presented in 
Section 9.1 and Section 9.2. The mapping is system-specific—most tools generate schemas in 
SQL DDL for Oracle, DB2, Informix, Sybase, and other RDBMSs. This part of the tool is 
most amenable to automation. The designer can edit the produced DDL files if needed.  

3. Design normalization: This utilizes a set of functional dependencies that are supplied at the 
conceptual design or after the relational schemas are produced during logical design. The 
design decomposition algorithms from Chapter 15 are applied to decompose existing relations 
into higher normal form relations. Typically, tools lack the approach of generating alternative 
3NF or BCNF designs and allowing the designer to select among them based on some criteria 
like the minimum number of relations or least amount of storage.  

Most tools incorporate some form of physical design including the choice of indexes. A whole range of 
separate tools exists for performance monitoring and measurement. The problem of tuning a design or 
the database implementation is still mostly handled as a human decision-making activity. Out of the 
phases of design described in this chapter, one area where there is hardly any commercial tool support 
is view integration (see Section 16.2.2).  
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We will not survey database design tools here, but only mention the following characteristics that a 
good design tool should possess:  

1. An easy-to-use interface: This is critical because it enables designers to focus on the task at 
hand, not on understanding the tool. Graphical and point and click interfaces are commonly 
used. A few tools like the SECSI tool from France use natural language input. Different 
interfaces may be tailored to beginners or to expert designers.  

2. Analytical components: Tools should provide analytical components for tasks that are difficult 
to perform manually, such as evaluating physical design alternatives or detecting conflicting 
constraints among views. This area is weak in most current tools.  

3. Heuristic components: Aspects of the design that cannot be precisely quantified can be 
automated by entering heuristic rules in the design tool to evaluate design alternatives.  

4. Trade-off analysis: A tool should present the designer with adequate comparative analysis 
whenever it presents multiple alternatives to choose from. Tools should ideally incorporate an 
analysis of a design change at the conceptual design level down to physical design. Because of 
the many alternatives possible for physical design in a given system, such tradeoff analysis is 
difficult to carry out and most current tools avoid it.  

5. Display of design results: Design results, such as schemas, are often displayed in 
diagrammatic form. Aesthetically pleasing and well laid out diagrams are not easy to generate 
automatically. Multipage design layouts that are easy to read are another challenge. Other 
types of results of design may be shown as tables, lists, or reports that can be easily 
interpreted.  

6. Design verification: This is a highly desirable feature. Its purpose is to verify that the resulting 
design satisfies the initial requirements. Unless the requirements are captured and internally 
represented in some analyzable form, the verification cannot be attempted.  

Currently there is increasing awareness of the value of design tools, and they are becoming a must for 
dealing with large database design problems. There is also an increasing awareness that schema design 
and application design should go hand in hand, and the current trend among CASE tools is to address 
both areas. Some vendors like Platinum provide a tool for data modeling and schema design (ERWin) 
and another for process modeling and functional design (BPWin). Other tools (for example, SECSI) 
use expert system technology to guide the design process by including design expertise in the form of 
rules. Expert system technology is also useful in the requirements collection and analysis phase, which 
is typically a laborious and frustrating process. The trend is to use both metadata repositories and 
design tools to achieve better designs for complex databases. Without a claim of being exhaustive, 
Table 16.1 lists some popular database design and application modeling tools. Companies in the table 
are listed in alphabetical order. 

 

Table 16.1  Some of the Currently Available Automated Database Design Tools  

 
 

Company  Tool  Functionality  

 
 

Embarcadero Technologies  ER Studio  Database Modeling in ER and 
IDEF1X  

  DB Artisan  Database administration and space 
and security management  

Oracle  Developer 2000 and Designer 
2000  

Database modeling, application 
development 

Popkin Software  System Architect 2001  Data modeling, object modeling, 
process modeling, structured 
analysis/design  
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Platinum Technology  Platinum Enterprise Modeling 
Suite: ERwin, BPWin, Paradigm 
Plus  

Data, process, and business 
component modeling  

Persistence Inc.  Powertier  Mapping from O-O to relational 
model  

Rational  Rational Rose  Modeling in UML and application 
generation in C++ and JAVA  

Rogue Ware  RW Metro  Mapping from O-O to relational 
model  

Resolution Ltd.  XCase  Conceptual modeling up to code 
maintenance  

Sybase  Enterprise Application Suite  Data modeling, business logic 
modeling  

Visio  Visio Enterprise  Data modeling, design and 
reengineering Visual Basic and 
Visual C++  

 
 

16.6 Summary 

We started this chapter by discussing the role of information systems in organizations; database 
systems are looked upon as a part of information systems in large-scale applications. We discussed 
how databases fit within an information system for information resource management in an 
organization and the life cycle they go through. We then discussed the six phases of the design process. 
The three phases commonly included as a part of database design are conceptual design, logical design 
(data model mapping), and physical design. We also discussed the initial phase of requirements 
collection and analysis, which is often considered to be a predesign phase. In addition, at some point 
during the design, a specific DBMS package must be chosen. We discussed some of the organizational 
criteria that come into play in selecting a DBMS. As performance problems are detected, and as new 
applications are added, designs have to be modified. For relational databases, we discussed the factors 
that affect physical database design decisions and provided guidelines for choosing among physical 
design alternatives. We discussed changes to logical design, modifications of indexing, and changes to 
queries as a part of database tuning.  

The importance of designing both the schema and the applications (or transactions) was highlighted. 
We discussed different approaches to conceptual schema design and the difference between centralized 
schema design and the view integration approach. Finally, we briefly discussed the current 
functionality and desirable features of automated design tools.  

 
 

Review Questions 

  16.1. What are the six phases of database design? Discuss each phase.  

  16.2. Which of the six phases are considered the main activities of the database design process itself? 
Why?  

  16.3. Why is it important to design the schemas and applications in parallel?  

  16.4. Why is it important to use an implementation-independent data model during conceptual 
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schema design? What models are used in current design tools? Why?  

  16.5. Discuss the importance of Requirements Collection and Analysis.  

  16.6. Consider an actual application of a database system of interest. Define the requirements of the 
different levels of users in terms of data needed, types of queries, and transactions to be 
processed.  

  16.7. Discuss the characteristics that a data model for conceptual schema design should possess.  

  16.8. Compare and contrast the two main approaches to conceptual schema design.  

  16.9. Discuss the strategies for designing a single conceptual schema from its requirements.  

16.10. What are the steps of the view integration approach to conceptual schema design? What are the 
difficulties during each step?  

16.11. How would a view integration tool work? Design a sample modular architecture for such a 
tool. 

16.12. What are the different strategies for view integration? 

16.13. Discuss the factors that influence the choice of a DBMS package for the information system of 
an organization.  

16.14. What is system-independent data model mapping? How is it different from system dependent 
data model mapping?  

16.15. What are the important factors that influence physical database design?  

16.16. Discuss the decisions made during physical database design.  

16.17. Discuss the macro and micro life cycles of an information system.  

16.18. Discuss the guidelines for physical database design in RDBMSs.  

16.19. Discuss the types of modifications that may be applied to the logical database design of a 
relational database.  

16.20. Under what situations would denormalization of a database schema be used? Give examples of 
denormalization.  

16.21. Discuss the tuning of indexes for relational databases.  

16.22. Discuss the considerations for reevaluating and modifying SQL queries.  

16.23. Illustrate the types of changes to SQL queries that may be worth considering for improving the 
performance during database tuning.  

16.24. What functions do the typical database design tools provide?  

16.25. What type of functionality would be desirable in automated tools to support optimal design of 
large databases?  

 
 

Selected Bibliography 

There is a vast amount of literature on database design. We first list some of the books that address 
database design. Batini et al. (1992) is a comprehensive treatment of conceptual and logical database 
design. Wiederhold (1986) covers all phases of database design, with an emphasis on physical design. 
O’Neil (1994) has a detailed discussion of physical design and transaction issues in reference to 
commercial RDBMSs. A large body of work on conceptual modeling and design was done in the 
eighties. Brodie et al. (1984) gives a collection of chapters on conceptual modeling, constraint 
specification and analysis, and transaction design. Yao (1985) is a collection of works ranging from 
requirements specification techniques to schema restructuring. Teorey (1998) emphasizes EER 
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modeling and discusses various aspects of conceptual and logical database design. McFadden and 
Hoffer (1997) is a good introduction to the business applications issues of database management.  

Navathe and Kerschberg (1986) discuss all phases of database design and point out the role of data 
dictionaries. Goldfine and Konig (1988) and ANSI (1989) discuss the role of data dictionaries in 
database design. Rozen and Shasha (1991) and Carlis and March (1984) present different models for 
the problem of physical database design. Object-oriented database design is discussed in Schlaer and 
Mellor (1988), Rumbaugh et al. (1991), Martin and Odell (1991), and Jacobson (1992). Recent books 
by Blaha and Premerlani (1998) and Rumbaugh et al. (1999) consolidate the existing techniques in 
object-oriented design. Fowler and Scott (1997) is a quick introduction to UML.  

Requirements collection and analysis is a heavily researched topic. Chatzoglu et al. (1997) and Lubars 
et al. (1993) present surveys of current practices in requirements capture, modeling, and analysis. 
Carroll (1995) provides a set of readings on the use of scenarios for requirements gathering in early 
stages of system development. Wood and Silver (1989) gives a good overview of the official Joint 
Application Design (JAD) process. Potter et al. (1991) describes the Z notation and methodology for 
formal specification of software. Zave (1997) has classified the research efforts in requirements 
engineering.  

A large body of work has been produced on the problems of schema and view integration, which is 
becoming particularly relevant now because of the need to integrate a variety of existing databases. 
Navathe and Gadgil (1982) defined approaches to view integration. Schema integration methodologies 
are compared in Batini et al. (1986). Detailed work on n-ary view integration can be found in Navathe 
et al. (1986), Elmasri et al. (1986), and Larson et al. (1989). An integration tool based on Elmasri et al. 
(1986) is described in Sheth et al. (1988). Another view integration system is discussed in Hayne and 
Ram (1990). Casanova et al. (1991) describes a tool for modular database design. Motro (1987) 
discusses integration with respect to preexisting databases. The binary balanced strategy to view 
integration is discussed in Teorey and Fry (1982). A formal approach to view integration, which uses 
inclusion dependencies, is given in Casanova and Vidal (1982). Ramesh and Ram (1997) describe a 
methodology for integration of relationships in schemas utilizing the knowledge of integrity 
constraints; this extends the previous work of Navathe et al. (1984a). Sheth at al. (1993) describe the 
issues of building global schemas by reasoning about attribute relationships and entity equivalences. 
Navathe and Savasere (1996) describe a practical approach to building global schemas based on 
operators applied to schema components. Santucci (1998) provides a detailed treatment of refinement 
of EER schemas for integration. Castano et al. (1999) present a comprehensive survey of conceptual 
schema analysis techniques.  

Transaction design is a relatively less thoroughly researched topic. Mylopoulos et al. (1980) proposed 
the TAXIS language, and Albano et al. (1987) developed the GALILEO system, both of which are 
comprehensive systems for specifying transactions. The GORDAS language for the ECR model 
(Elmasri et al. 1985) contains a transaction specification capability. Navathe and Balaraman (1991) and 
Ngu (1991) discuss transaction modeling in general for semantic data models. Elmagarmid (1992) 
discusses transaction models for advanced applications. Batini et al. (1992, chaps. 8, 9, and 11) discuss 
high level transaction design and joint analysis of data and functions. Shasha (1992) is an excellent 
source on database tuning.  

Information about some well-known commercial database design tools can be found at the Web sites of 
the vendors (see company names in Table 16.1). Principles behind automated design tools are 
discussed in Batini et al. (1992, chap. 15). The SECSI tool from France is described in Metais et al. 
(1998). DKE (1997) is a special issue on natural language issues in databases.  

 
 

Footnotes 

Note 1 
Note 2 
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Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14

Note 1 

A part of this section has been contributed by Colin Potts.  

 
 

Note 2 

This phase of design is discussed in great detail in the first seven chapters of Batini et al. (1992); we 
summarize that discussion here.  

 
 

Note 3 

This philosophy has been followed for over 20 years in popular products like CICS, which serves as a 
tool to generate transactions for legacy DBMSs like IMS.  

 
 

Note 4 

High-level transaction modeling is covered in Batini et al. (1992, chaps. 8, 9, and 11). The joint 
functional and data analysis philosophy is advocated throughout that book.  

 
 

Note 5 

See the discussion in Section 13.1 concerning this issue.  

 
 

Note 6 

For simplicity we use the term files. This can be substituted by tables or classes or objects.  
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Note 7 

The reader should review the various types of indexes described in Section 6.1. For a clearer 
understanding of this discussion, it is also useful to be familiar with the algorithms for query processing 
discussed in Chapter 18.  

 
 

Note 8 

Interested readers should consult Shasha (1992) for a detailed discussion of tuning.  

 
 

Note 9 

See Chapter 10 for explanation of these terms. 

 
 

Note 10 

The reader will need to look ahead and review Chapter 19, Chapter 20, and Chapter 21 for explanation 
of these terms.  

 
 

Note 11 

Note that 3NF and 2NF address different types of problem dependencies which are independent of each 
other; hence the normalization (or denormalization) order between them is arbitrary. 

 
 

Note 12 

For further details, see Shasha (1992).  

 
 

Note 13 

We modified the schema and used AGE in EMPLOYEE instead of BDATE.  
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Note 14 

We showed the ER, EER, and UML class diagram notations in Chapter 3 and Chapter 4. See Appendix 
A for an idea of the different types of diagrammatic notations used.  

 
 

© Copyright 2000 by Ramez Elmasri and Shamkant B. Navathe 
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Part 5: System Implementation 
Techniques 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Chapter 17: Database System Architectures and the System Catalog 
Chapter 18: Query Processing and Optimization 
Chapter 19: Transaction Processing Concepts 
Chapter 20: Concurrency Control Techniques 
Chapter 21: Database Recovery Techniques 
Chapter 22: Database Security and Authorization

Chapter 17: Database System Architectures and the 
System Catalog 
17.1 System Architectures for DBMSs 
17.2 Catalogs for Relational DBMSs 
17.3 System Catalog Information in ORACLE 
17.4 Other Catalog Information Accessed by DBMS Software Modules 
17.5 Data Dictionary and Data Repository Systems 
17.6 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

We now move into Part V of the book, on system implementation techniques. We start in this chapter 
by discussing two important aspects of database system implementation—system architectures and the 
system catalog. Although the two topics are not directly related, they provide a context and foundation 
for discussing the various DBMS system modules. Section 17.1 gives an overview of the basic system 
architectures that are used in DBMSs. In particular, we distinguish between the centralized 
architectures that were used in earlier systems, and the client-server architectures—which are 
prevalent in current systems. We discuss two different approaches to client-server architecture. The 
first, used in many relational DBMSs (RDBMSs), allows application programs to run at the client 
while most database functionality remains at the server. The second, used in many object DBMSs 
(ODBMSs), distributes some of the traditional DBMS functionality between the client and server. We 
will further discuss additional concepts and types of client-server architectures, as well as distributed 
database architectures, in Chapter 24.  

We then turn our attention to the system catalog, which is at the heart of any general-purpose DBMS. 
It is a "minidatabase" itself, and one of its main functions is to store the schemas, or descriptions, of 
the databases that the DBMS maintains. Such information is often called metadata. It includes a 
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description of the conceptual database schema, the internal schema, any external schemas, and the 
mappings between schemas at different levels. In addition, information needed by specific DBMS 
modules—for example, the query optimization module or the security and authorization module—is 
stored in the catalog.  

In Section 17.2 we discuss general catalog information for relational DBMSs, and in Section 17.3 we 
focus on the catalog for a specific commercial DBMS, ORACLE. In Section 17.4 we discuss how a 
catalog is used by various modules of a DBMS, and we describe other types of information that may be 
stored in a catalog. In Section 17.5, we briefly discuss the types of systems called data dictionaries or 
data repositories, which maintain information similar to the catalog but of a more general nature.  

 
 

17.1 System Architectures for DBMSs 

17.1.1 Centralized DBMS Architecture 
17.1.2 Client-Server Architecture 
17.1.3 Client-Server Architectures for DBMSs

17.1.1 Centralized DBMS Architecture 

Architectures for DBMSs followed trends similar to those of general computer systems architectures. 
Earlier architectures used mainframe computers to provide the main processing for all functions of the 
system, including user application programs, user interface programs, as well as all the DBMS 
functionality. The reason was that most users accessed such systems via computer terminals that did 
not have processing power and only provided display capabilities. So, all processing was performed 
remotely, and only display information and controls were sent from the computer to the display 
terminals, which were connected to the central computer via various types of communications 
networks.  

As the prices of hardware declined, most users replaced their terminals with personal computers (PCs) 
and workstations. At first, database systems used these computers in the same way as they had used 
display terminals, so that the DBMS itself was still a centralized DBMS where all the DBMS 
functionality, application program execution, and user interface processing were carried out in one 
machine. Figure 17.01(a) illustrates the physical components in a centralized architecture. Gradually 
DBMS systems started to exploit the available processing power at the user side, which led to client-
server DBMS architectures.  

 

 

 
 

17.1.2 Client-Server Architecture 

We first discuss client-server architecture in general, then see how it is applied to DBMSs. The client-
server architecture was developed to deal with computing environments where a large number of 
PCs, workstations, file servers, printers, database servers, Web servers, and other equipment are 
connected together via a network. The idea is to define specialized servers with specific 
functionalities. For example, it is possible to connect a number of PCs or small workstations as clients 
to a file server that maintains the files of the client machines. Another machine could be designated as 
a printer server by being connected to various printers; thereafter, all print requests by the clients are 
forwarded to this machine. Web servers or E-mail servers also fall into the specialized server 
category. In this way, the resources provided by specialized servers can be accessed by many client 
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machines. The client machines provide the user with the appropriate interfaces to utilize these servers 
as well as with local processing power to run local applications. This concept can be carried over to 
software, with specialized software—such as a DBMS or a CAD (computer-aided design) package—
being stored on specific server machines and being made accessible to multiple clients. Figure 17.01(b) 
illustrates client-server architecture at the logical level, and Figure 17.01(c) is a simplified diagram that 
shows how the physical architecture would look. Some machines would be only client sites (for 
example, diskless workstations or workstations/PCs with disks that have only client software installed). 
Other machines would be dedicated servers. Still other machines would have both client and server 
functionality.  

The concept of client-server architecture assumes an underlying framework that consists of many PCs 
and workstations as well as a smaller number of mainframe machines, connected via local area 
networks and other types of computer networks. A client in this framework is typically a user machine 
that provides user interface capabilities and local processing. When a client requires access to 
additional functionality—such as database access—that does not exist at that machine, it connects to a 
server that provides the needed functionality. A server is a machine that can provide services to the 
client machines, such as printing, archiving, or database access. Two main types of basic DBMS 
architectures were created on this underlying client-server framework (Note 1). We discuss those next.  

 
 

17.1.3 Client-Server Architectures for DBMSs 

The client-server architecture is increasingly being incorporated into commercial DBMS packages. In 
relational DBMSs, many of which started as centralized systems, the system components that were first 
moved to the client side were the user interface and application programs. Because SQL provided a 
standard language for RDBMSs, it created a logical dividing point between client and server. Hence, 
the query and transaction functionality remained at the server side. In such an architecture, the server is 
often called a query server or transaction server, because it provided these two functionalities. In 
RDBMSs, the server is also often called an SQL server, since most RDBMS servers are based on the 
SQL language and standard.  

In such a client-server architecture, the user interface programs and application programs can run at the 
client side. When DBMS access is required, the program establishes a connection to the DBMS—
which is on the server side—and once the connection is created, the client program can communicate 
with the DBMS. A standard called Open Database Connectivity (ODBC) provides an Application 
Programming Interface (API), which allows client-side programs to call the DBMS, as long as both 
client and server machines have the necessary software installed. Most DBMS vendors provide ODBC 
drivers for their systems. Hence, a client program can actually connect to several RDBMSs and send 
query and transaction requests using the ODBC API, which are processed at the server sites. Any query 
results are sent back to the client program, which can process or display the results as needed. Another 
related standard for the JAVA programming language, called JDBC, has also been defined. This allows 
JAVA client programs to access the DBMS through a standard interface.  

The second approach to client-server was taken by some object-oriented DBMSs. Because many of 
those systems were developed in the era of client-server architecture, the approach taken was to divide 
the software modules of the DBMS between client and server in a more integrated way. For example, 
the server level may include the part of the DBMS software responsible for handling data storage on 
disk pages, local concurrency control and recovery, buffering and caching of disk pages, and other such 
functions. Meanwhile, the client level may handle the user interface, data dictionary functions, DBMS 
interaction with programming language compilers, global query optimization/concurrency 
control/recovery, structuring of complex objects from the data in the buffers, and other such functions. 
In this approach, the client-server interaction is more tightly coupled and is done internally by the 
DBMS modules—some of which reside in the client—rather than by the users. The exact division of 
functionality varies from system to system. In such a client-server architecture, the server has been 
called a data server, because it provides data in disk pages to the client, which can then be structured 
into objects for the client programs by the client-side DBMS software itself.  
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We will further elaborate on client-server and distributed architectures in Chapter 24. After this brief 
introduction to system architectures, we discuss DBMS catalogs for the rest of this chapter.  

 
 

17.2 Catalogs for Relational DBMSs 

We now turn our attention to the second topic of this chapter, which is the DBMS catalog, and discuss 
catalogs for relational DBMSs (Note 2). The information stored in a catalog of an RDBMS includes the 
relation names, attribute names, and attribute domains (data types), as well as descriptions of 
constraints (primary keys, secondary keys, foreign keys, NULL/NOT NULL, and other types of 
constraints), views, and storage structures and indexes. Security and authorization information is also 
kept in the catalog; this describes each user’s privileges to access specific database relations and views, 
and the creator or owner of each relation (see Chapter 22).  

In relational DBMSs it is common practice to store the catalog itself as relations and to use the DBMS 
software for querying, updating, and maintaining the catalog. This allows DBMS routines (as well as 
users) to access the information stored in the catalog—whenever they are authorized to do so—using 
the query language of the DBMS, such as SQL.  

A possible catalog structure for base relation information is shown in Figure 17.02, which stores 
relation names, attribute names, attribute types, and primary key information. Figure 17.02 also shows 
how foreign key constraints may be included. The description of the relational database schema in 
Figure 07.05 is shown as the tuples (contents) of the catalog relation in Figure 17.02, which we call 
REL_AND_ATTR_CATALOG. The primary key of REL_AND_ATTR_CATALOG is the combination of the 
attributes {REL_NAME, ATTR_NAME}, because all relation names should be unique and all attribute names 
within a particular relation should also be unique (Note 3). Another catalog relation can store 
information such as tuple size, current number of tuples, number of indexes, and creator name for each 
relation.  

 

 

 
 

To include information on secondary key attributes of a relation, we can simply extend the preceding 
catalog if we assume that an attribute can be a member of one key only. In this case we can replace the 
MEMBER_OF_PK attribute of REL_AND_ATTR_CATALOG with an attribute KEY_NUMBER; the value of 
KEY_NUMBER is 0 if the attribute is not a member of any key, 1 if it is a member of the primary key, and 
i > 1 for the secondary key, where the secondary keys of a relation are numbered 2, 3, ..., n. However, 
if an attribute can be a member of more than one key, which is the general case, the above 
representation is not sufficient. One possibility is to store information on key attributes separately in a 
second catalog relation RELATION_KEYS, with attributes {REL_NAME, KEY_NUMBER, MEMBER_ATTR}, 
which also together form the key of RELATION_KEYS. This is shown in Figure 17.03(a). The DDL 
compiler assigns the value 1 to KEY_NUMBER for the primary key and values 2, 3, ..., n for the secondary 
keys, if any. Each key will have a tuple in RELATION_KEYS for each attribute that is part of that key, and 
the value of MEMBER_ATTRIBUTE gives the name of that attribute. A similar structure can be used to 
store information involving foreign keys. If constraints are given names so they can be dropped later, 
then a unique attribute CONSTRAINT_NAME must be added to the catalog tables that describes constraints 
(including those that describe keys).  
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Next, let us consider information regarding indexes. In the general case where an attribute can be a 
member of more than one index, the RELATION_INDEXES catalog relation shown in Figure 17.03(b) can 
be used. The key of RELATION_INDEXES is the combination {INDEX_NAME, MEMBER_ATTR} (assuming 
that index names are unique). MEMBER_ATTR is the name of an attribute included in the index. For 
example, if we specify three indexes on the WORKS_ON relation of Figure 07.05—a clustering index on 
ESSN, a secondary index on PNO, and another secondary index on the combination {ESSN, PNO}—the 
attributes ESSN and PNO are members of two indexes each. The ATTR_NO and ASC_DESC fields specify 
the order of each attribute within the index entries and specify whether the index entries are ordered in 
ascending or descending order in the index (Note 4). 

The definitions of views must also be stored in the catalog. A view is specified by a query, with a 
possible renaming of the values appearing in the query result (see Chapter 8). We can use the two 
catalog relations shown in Figure 17.03(c) to store view definitions. The first, VIEW_QUERIES, has two 
attributes {VIEW_NAME, QUERY} and stores the query (as a text string) corresponding to the view. The 
second, VIEW_ATTRIBUTES, has attributes {VIEW_NAME, ATTR_NAME, ATTR_NUM} to store the names of the 
attributes of the view, where ATTR_NUM is an integer number greater than zero specifying the 
correspondence of each view attribute to the attributes in the query result. The key of VIEW_QUERIES is 
VIEW_NAME, and that of VIEW_ATTRIBUTES is the combination {VIEW_NAME, ATTR_NAME}.  

The preceding examples illustrate the types of information stored in a catalog. In a real system, the 
catalog will typically include many more tables and information. Most relational systems store their 
catalog files as DBMS relations. However, because the catalog is accessed very frequently by the 
DBMS modules, it is important to implement catalog access as efficiently as possible. It may be more 
efficient to use a specialized set of data structures and access routines to implement the catalog, thus 
trading generality for efficiency. An additional problem is that of system initialization; the catalog 
tables must be created before the system can function!  

In conclusion, we take a conceptual look at the basic information stored in the parts of a relational 
catalog for describing tables (relations). Figure 17.04 shows a high-level EER schema diagram (see 
Chapter 3 and Chapter 4) describing the information about schemas, relations, attributes, keys, views, 
and indexes. The SCHEMA entity type in the figure represents the schemas that have been defined in a 
RDBMS. The entity type RELATION is a weak entity type owned by (or identified by) SCHEMA—with 
partial key RelName—to represent the relations that appear in a particular schema. Two disjoint 
subclasses, BASE_RELATION and VIEW_RELATION, are created for RELATION. The entity type ATTRIBUTE is 
a weak entity type owned by BASE_RELATION, and its partial key is AttrName. BASE_RELATIONs also 
have general key and foreign key constraints, as well as indexes, whereas VIEW_RELATIONs have their 
defining query, as well as the AttrNum described earlier to specify correspondence of view attributes 
to query attributes. Notice that an additional unspecified constraint in Figure 17.04 is that all attributes 
related to a KEY or INDEX entity—via the relationships KEY_ATTRS or INDEX_ATTRS—must be related to 
the same BASE_RELATION entity to which the KEY or INDEX entity is related. KeyType specifies whether 
the key is a foreign, primary, or secondary key. FKEY is a subclass for foreign keys and is related to the 
referenced relation via the REFREL relationship.  

 

 

 
 

We discuss additional information that must be stored in a catalog in Section 17.4.  

 
 

1 Page 505 of 893



www.manaraa.com

17.3 System Catalog Information in ORACLE 

The various commercial database products adopt different conventions and terminology with regard to 
their system catalog. However, in general, the catalogs contain similar metadata describing conceptual, 
internal, and external schemas. In this section, we examine parts of the system catalog for the 
ORACLE RDBMS as an example of a catalog for a commercial system.  

In ORACLE, the collection of metadata is called the data dictionary. The metadata is information 
about schema objects, such as tables, indexes, views, triggers, and more. Access to the data dictionary 
is allowed through numerous views, which are divided into three categories: USER, ALL, and DBA. These 
terms are used as prefixes for the various views. The views that have a prefix of USER contain schema 
information for objects owned by a given user. Those with a prefix of ALL contain schema information 
for objects owned by a user as well as objects that the user has been granted access to, and those with a 
prefix of DBA are for the database administrator and contain information about all database objects.  

As already mentioned, the system catalog contains information about all three levels of database 
schemas: external (view definitions), conceptual (base tables), and internal (storage and index 
descriptions). To illustrate in ORACLE, we examine some of the catalog views relating to each of the 
three schema levels. The catalog (metadata) data can be retrieved through SQL statements as can the 
user (actual) data.  

We start with the conceptual schema information. To find the objects owned by a particular user, 
‘SMITH’, we can write the following query:  

 
 

SELECT * 

FROM ALL_CATALOG  

WHERE OWNER  = ‘SMITH’;  

 
 

The result of this query could be as shown in Figure 17.05, which indicates that three base tables are 
owned by SMITH: ACCOUNT, CUSTOMERS, and ORDERS, plus a view CUSTORDER. The meaning of each 
column in the result should be clear from its name.  

 

 

 
 

To find some of the information describing the columns of the ORDERS table for ‘SMITH’, the 
following query could be submitted:  

 

  SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH, NUM_DISTINCT, 
LOW_VALUE, HIGH_VALUE 

  FROM  USER_TAB_COLUMNS  
  WHERE  TABLE_NAME = ‘ORDERS’;  
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The result of this query could be as shown in Figure 17.06. Because the USER_TAB_COLUMNS table of 
the catalog has the prefix USER_, this query must be submitted by the owner of the ORDERS table. The 
last three columns specified in the SELECT-clause of the SQL query play an important role in the query 
optimization process, as we shall see in Chapter 18. The NUM_DISTINCT column specifies the number of 
distinct values for a given column and the LOW_VALUE and HIGH_VALUE specify the lowest and highest 
value, respectively, for the given column. We should note that these values, called database statistics, 
are not automatically updated when tuples are inserted/deleted/modified. Rather, the statistics are 
updated, either by exact computation or by estimation, whenever the ANALYZE SQL statement in 
ORACLE is executed as follows:  

 

  ANALYZE  TABLE ORDERS  
  COMPUTE STATISTICS; 

 

 

 
 

This SQL statement would update all statistics for the ORDERS relation and its associated indexes.  

To access information about the internal schema, the USER_TABLES and USER_INDEXES catalog tables 
can be queried. For example, to find storage information about the ORDERS table, the following query 
can be submitted:  

 

  SELECT PCT_FREE, INITIAL_EXTENT, NUM_ROWS, BLOCKS, EMPTY_BLOCKS, 
AVG_ROW_LENGTH 

  FROM  USER_TABLES  
  WHERE  TABLE_NAME = ‘ORDERS’;  

 
 

The result of this query could be as shown in Figure 17.07, which contains a subset of the available 
storage information in the catalog. The information includes—from left to right—the minimum 
percentage of free space in a block, the size of the initial storage extent in bytes, the number of rows in 
the table, the number of used data blocks allocated to the table, the number of free data blocks allocated 
to the table, and the average length of a row in the table in bytes.  

 

 

 
 

The information from USER_TABLES also plays a useful role in query processing and optimization. For 
example, in Figure 17.07, we see that the entire ORDERS table is stored in a single block of disk storage. 
So, processing a query that involves only the ORDERS relation can be done efficiently (without using an 
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index) by accessing a single disk block. To retrieve information about the indexes for a specific table, 
the following query can be run:  

 

  SELECT INDEX_NAME, UNIQUENESS, BLEVEL, LEAF_BLOCKS, DISTINCT_KEYS, 
AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY 

  FROM  USER_INDEXES 
  WHERE  TABLE_NAME = ‘ORDERS’;  

 
 

Figure 17.08 shows how the query result could look. The above table contains a subset of the available 
index storage information, which includes from left to right the name of the index, the uniqueness 
(whether the indexing attribute is unique—that is, a key—or not), the depth of the index from the root 
block to the leaf blocks (number of index levels), the number of leaf blocks, the number of distinct 
indexed values, the average number of leaf blocks for a specific value, and the average number of data 
blocks pointed to by a specific value in the index leaf blocks. Additional information on an index 
would include whether it is on a clustering (ordering) attribute in the table.  

 

 

 
 

The storage information about the indexes is just as important to the query optimizer as the storage 
information about the relations. For example, the number of index blocks that have to be accessed 
when searching for a specific key can be computed as the sum of BLEVEL and LEAF_BLOCKS_PER_KEY 
(Note 5). This information is used by the optimizer in deciding how to execute a query efficiently (see 
Chapter 18).  

For information about the external schema, the USER_VIEWS table can be queried as follows:  

 

  SELECT * 
  FROM  USER_VIEWS;  

 
 

The result could be as shown in Figure 17.09.  

 

 

 
 

Using the view name, CUSTORDER, the associated column information can be extracted from the 
USER_TAB_COLUMNS table. The query is shown below with the query results displayed in Figure 17.10.  
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  SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH  
  FROM  USER_TAB_COLUMNS  
  WHERE  TABLE_NAME = ‘CUSTORDER’;  

 

 

 
 

More detailed information about ORACLE’s data dictionary facilities can be found in the ORACLE 
RDBMS Database Administrator’s Guide and the ORACLE SQL Language Reference Manual.  

 
 

17.4 Other Catalog Information Accessed by DBMS Software Modules 

The DBMS modules use and access a catalog very frequently; that is why it is important to implement 
access to the catalog as efficiently as possible. In this section we discuss the different ways in which 
some of the DBMS software modules use and access the catalog. These include the following:  

1. DDL (and SDL) compilers: These DBMS modules process and check the specification of a 
database schema in the data definition language (DDL) and store that description in the 
catalog. Schema constructs and constraints at all levels—conceptual, internal, and external—
are extracted from the DDL and SDL (storage definition language) specifications and entered 
into the catalog, as is any mapping information among levels, if necessary. Hence, these 
software modules actually populate (load) the catalog’s minidatabase (or metadatabase) with 
data, the data being the descriptions of database schemas.  

2. Query and DML parser and verifier: These modules parse queries, DML retrieval statements, 
and database update statements; they also check the catalog to verify whether all the schema 
names referenced in these statements are valid. For example, in a relational system, a query 
parser would check that all the relation names specified in the query exist in the catalog and 
that the attributes specified belong to the appropriate relations and have the appropriate type.  

3. Query and DML compilers: These compilers convert high-level queries and DML commands 
into low-level file access commands. The mapping between the conceptual schema and the 
internal schema file structures is accessed from the catalog during this process. For example, 
the catalog must include a description of each file and its fields and the correspondences 
between fields and conceptual-level attributes.  

4. Query and DML optimizer (Note 6): The query optimizer accesses the catalog for access path, 
implementation information, and data statistics to determine the best way to execute a query 
or DML command (see Chapter 18). For example, the optimizer accesses the catalog to check 
which fields of a relation have hash access or indexes, before deciding how to execute a 
selection or join condition on the relation.  

5. Authorization and security checking: The DBA has privileged commands to update the 
authorization and security portion of the catalog (see Chapter 22). All access by a user to a 
relation is checked by the DBMS for proper authorization by accessing the catalog.  

6. External-to-conceptual mapping of queries and DML commands: Queries and DML 
commands specified with reference to an external view or schema must be transformed to 
refer to the conceptual schema before they can be processed by the DBMS. This is 
accomplished by accessing the catalog description of the view in order to perform the 
transformation.  
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17.5 Data Dictionary and Data Repository Systems 

The terms data dictionary and data repository are used to indicate a more general software utility than a 
catalog. A catalog is closely coupled with the DBMS software; it provides the information stored in it 
to users and the DBA, but it is mainly accessed by the various software modules of the DBMS itself, 
such as DDL and DML compilers, the query optimizer, the transaction processor, report generators, 
and the constraint enforcer. On the other hand, the software package for a stand-alone data dictionary 
or data repository may interact with the software modules of the DBMS, but it is mainly used by the 
designers, users, and administrators of a computer system for information resource management. These 
systems are used to maintain information on system hardware and software configurations, 
documentation, applications, and users, as well as other information relevant to system administration.  

If a data dictionary system is used only by designers, users, and administrators, not by the DBMS 
software, it is called a passive data dictionary; otherwise, it is called an active data dictionary or 
data directory. Figure 17.11 illustrates the types of active data dictionary interfaces. Data dictionaries 
are also used to document the database design process itself, by storing documentation on the results of 
every design phase and the design decisions. This helps in automating the design process by making 
the design decisions and changes available to all the database designers. Modifications to the database 
description are made by changing the data dictionary contents. Using the data dictionary during 
database design means that, at the conclusion of the design phase, the metadata is already in the data 
dictionary.  

 

 

 
 

17.6 Summary 

In this chapter we first gave an overview of the centralized versus client-server system architectures, 
and described how these architectures are used in the database context. We discussed how earlier 
database systems were centralized, and how the emergence of the environment of networked 
workstations, PCs, and mainframes led to client-server computing. We showed how relational systems 
evolved into SQL servers (also called query servers or transaction servers), and discussed how the 
newer object databases further divide basic functionality between client and server, leading to data 
servers.  

We then discussed the type of information that is included in a DBMS catalog. We discussed catalog 
structure for a relational DBMS and showed how it can store the constructs of the relational model, 
including information concerning key constraints, indexes, and views. We also gave a conceptual 
description—in the form of an EER schema diagram—of the relational model constructs and how they 
are related to one another. We covered some specifics about the system catalog in the ORACLE 
RDBMS. We then discussed how different DBMS modules access the information stored in a DBMS 
catalog, and gave an overview of other types of information stored in a catalog. Finally, we briefly 
discussed data dictionary/repository systems and how they differ from catalogs.  

 
 

Review Questions 

  17.1. What is the difference between centralized and client-server architectures in general?  

  17.2. How did relational DBMSs evolve from the centralized architecture to the client-server 
architecture? What is ODBC used for in this context? 
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  17.3. How do object databases differ from relational systems in a client-server system architecture?  

  17.4. What is meant by the term metadata?  

  17.5. How are relational DBMS catalogs usually implemented?  

  17.6. Discuss the types of information included in a relational catalog at the conceptual, internal, and 
external levels.  

  17.7. Discuss how some of the different DBMS modules access a catalog and the type of information 
each accesses.  

  17.8. Why is it important to have efficient access to a DBMS catalog? 

  17.9. What are the three different view categories for catalog information in ORACLE and why are 
they important?  

 
 

Exercises 

17.10. Expand the relational catalog of Figure 17.03 to include a more complete description of a 
relational schema plus internal descriptions of storage files and any needed mapping 
information. 

17.11. For the EER diagrams shown in Figure 17.04, use the mapping algorithms discussed in Chapter 
9 to create an equivalent relational schema to represent a relational catalog.  

17.12. Write (in English) sample queries against the EER schema of Figure 17.04 that would retrieve 
meaningful information about the database schemas from the catalog. 

17.13. Using the relational schemas from Exercise 17.11, write the queries you specified in 17.12 in 
some relational query language (SQL, relational algebra).  

17.14. Suppose that we have a "generalized" DBMS that uses the EER model at the conceptual 
schema level and relation-like files at the internal level. Draw an EER diagram to represent the 
basic information for a catalog that represents such an EER database system. First describe the 
EER concepts as an EER schema (!), and then add mapping information from the conceptual 
schema to the internal schema in the catalog.  

17.15. Why are database statistics, such as those stored in ORACLE, not updated automatically after 
every insert/delete/update to a table? 

 
 

Selected Bibliography 

Detailed information about the system catalog for the ORACLE relational database system can be 
found in the ORACLE RDBMS Database Administrator’s Guide (1992a).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
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Note 5 
Note 6

Note 1 

There are many other variations of client-server architectures. We only discuss the two most basic ones 
here. In Chapter 24, we discuss additional client-server and distributed architectures.  

 
 

Note 2 

We discuss only relational systems here. Catalogs for other types of DBMSs will contain similar types 
of information, but the actual details will be different because of the differences between the data 
models.  

 
 

Note 3 

In general, the schema name should also be included in the REL_AND_ATTR_CATALOG catalog relation 
(and other catalog relations). It can also be part of the primary key, since a single DBMS can have 
multiple schemas. We left out the schema name to simplify the diagram in Figure 17.02.  

 
 

Note 4 

This is necessary because the attributes in a composite index must be defined as an ordered list.  

 
 

Note 5 

Note that BLEVEL is the number of index levels, and that LEAF_BLOCKS_PER_KEY is 1 if the indexing 
attribute is a key and is the number of indirect-level blocks otherwise (see Chapter 6).  

 
 

Note 6 

As we shall see in Chapter 18, items 3 and 4 are generally processed by the same DBMS module.  

 
 

Chapter 18: Query Processing and Optimization 
 
18.1 Translating SQL Queries into Relational Algebra 
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18.2 Basic Algorithms for Executing Query Operations 
18.3 Using Heuristics in Query Optimization 
18.4 Using Selectivity and Cost Estimates in Query Optimization 
18.5 Overview of Query Optimization in ORACLE 
18.6 Semantic Query Optimization 
18.7 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

In this chapter we discuss the techniques used by a DBMS to process, optimize, and execute high-level 
queries. A query expressed in a high-level query language such as SQL must first be scanned, parsed, 
and validated (Note 1). The scanner identifies the language tokens—such as SQL keywords, attribute 
names, and relation names—in the text of the query, whereas the parser checks the query syntax to 
determine whether it is formulated according to the syntax rules (rules of grammar) of the query 
language. The query must also be validated, by checking that all attribute and relation names are valid 
and semantically meaningful names in the schema of the particular database being queried. An internal 
representation of the query is then created, usually as a tree data structure called a query tree. It is also 
possible to represent the query using a graph data structure called a query graph. The DBMS must 
then devise an execution strategy for retrieving the result of the query from the database files. A query 
typically has many possible execution strategies, and the process of choosing a suitable one for 
processing a query is known as query optimization.  

Figure 18.01 shows the different steps of processing a high-level query. The query optimizer module 
has the task of producing an execution plan, and the code generator generates the code to execute that 
plan. The runtime database processor has the task of running the query code, whether in compiled or 
interpreted mode, to produce the query result. If a runtime error results, an error message is generated 
by the runtime database processor.  

 

 

 
 

The term optimization is actually a misnomer because in some cases the chosen execution plan is not 
the optimal (best) strategy—it is just a reasonably efficient strategy for executing the query. Finding 
the optimal strategy is usually too time-consuming except for the simplest of queries and may require 
information on how the files are implemented and even on the contents of the files—information that 
may not be fully available in the DBMS catalog. Hence, planning of an execution strategy may be a 
more accurate description than query optimization.  

For lower-level navigational database languages in legacy systems—such as the network DML or the 
hierarchical HDML (see Appendix C and Appendix D)—the programmer must choose the query 
execution strategy while writing a database program. If a DBMS provides only a navigational 
language, there is limited need or opportunity for extensive query optimization by the DBMS; instead, 
the programmer is given the capability to choose the "optimal" execution strategy. On the other hand, a 
high-level query language—such as SQL for relational DBMSs (RDBMSs) or OQL for object DBMSs 
(ODBMSs)—is more declarative in nature because it specifies what the intended results of the query 
are, rather than identifying the details of how the result should be obtained. Query optimization is thus 
necessary for queries that are specified in a high-level query language.  

We will concentrate on describing query optimization in the context of an RDBMS because many of 
the techniques we describe have been adapted for ODBMSs (Note 2). A relational DBMS must 
systematically evaluate alternative query execution strategies and choose a reasonably efficient or 
optimal strategy. Each DBMS typically has a number of general database access algorithms that 
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implement relational operations such as SELECT or JOIN or combinations of these operations. Only 
execution strategies that can be implemented by the DBMS access algorithms and that apply to the 
particular query and particular physical database design can be considered by the query optimization 
module.  

We start in Section 18.1 with a general discussion of how SQL queries are typically translated into 
relational algebra queries and then optimized. We then discuss algorithms for implementing relational 
operations in Section 18.2. Following this, we give an overview of query optimization strategies. There 
are two main techniques for implementing query optimization. The first technique is based on heuristic 
rules for ordering the operations in a query execution strategy. A heuristic is a rule that works well in 
most cases but is not guaranteed to work well in every possible case. The rules typically reorder the 
operations in a query tree. The second technique involves systematically estimating the cost of 
different execution strategies and choosing the execution plan with the lowest cost estimate. The two 
techniques are usually combined in a query optimizer (Note 3). We discuss heuristic optimization in 
Section 18.3 and cost estimation in Section 18.4. We then provide a brief overview of the factors 
considered during query optimization in the ORACLE commercial RDBMS in Section 18.5. Section 
18.6 introduces the topic of semantic query optimization, in which known constraints are used to devise 
efficient query execution strategies.  

 
 

18.1 Translating SQL Queries into Relational Algebra 

In practice, SQL is the query language that is used in most commercial RDBMSs. An SQL query is 
first translated into an equivalent extended relational algebra expression—represented as a query tree 
data structure—that is then optimized. Typically, SQL queries are decomposed into query blocks, 
which form the basic units that can be translated into the algebraic operators and optimized. A query 
block contains a single SELECT-FROM-WHERE expression, as well as GROUP BY and HAVING 
clauses if these are part of the block. Hence, nested queries within a query are identified as separate 
query blocks. Because SQL includes aggregate operators—such as MAX, MIN, SUM, AND 
COUNT—these operators must also be included in the extended algebra, as we discussed in Section 
7.5.  

Consider the following SQL query on the EMPLOYEE relation in Figure 07.05:  

 
 

  SELECT LNAME, FNAME  
  FROM  EMPLOYEE  
  WHERE  SALARY > (SELECT  MAX (SALARY) 
      FROM  EMPLOYEE  
      WHERE  DNO=5); 

 
 

This query includes a nested subquery and hence would be decomposed into two blocks. The inner 
block is  

 

  (SELECT MAX (SALARY) 
  FROM  EMPLOYEE 
  WHERE  DNO=5)  
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and the outer block is  

 

  SELECT LNAME, FNAME 
  FROM  EMPLOYEE 
  WHERE  SALARY > c   

 
 

where c represents the result returned from the inner block. The inner block could be translated into the 
extended relational algebra expression 

 
 

MAX SALARY(sDNO=5(EMPLOYEE))  

 
 

and the outer block into the expression  

 
 

pLNAME, FNAME(sSALARY>C(EMPLOYEE))  

 
 

The query optimizer would then choose an execution plan for each block. We should note that in the 
above example, the inner block needs to be evaluated only once to produce the maximum salary, which 
is then used—as the constant c—by the outer block. We called this an uncorrelated nested query in 
Chapter 8. It is much harder to optimize the more complex correlated nested queries (see Section 8.3), 
where a tuple variable from the outer block appears in the WHERE-clause of the inner block.  

 
 

18.2 Basic Algorithms for Executing Query Operations 

18.2.1 External Sorting 
18.2.2 Implementing the SELECT Operation 
18.2.3 Implementing the JOIN Operation 
18.2.4 Implementing PROJECT and Set Operations 
18.2.5 Implementing Aggregate Operations 
18.2.6 Implementing Outer Join 
18.2.7 Combining Operations Using Pipelining

An RDBMS must include algorithms for implementing the different types of relational operations (as 
well as other types of operations) that can appear in a query execution strategy. These operations 
include the basic and extended relational algebra operations discussed in Chapter 7 and, in many cases, 
combinations of these operations. For each such operation or combination of operations, one or more 
algorithms would typically be available to execute the operation(s). An algorithm may apply only to 
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particular storage structures and access paths; if so, it can only be used if the files involved in the 
operation include these access paths (see Chapter 5 and Chapter 6). In this section we discuss typical 
algorithms used to implement SELECT, JOIN, and other relational operations. We begin by discussing 
external sorting in Section 18.2.1, which is at the heart of many relational operations that utilize sort-
merge strategies. Then we discuss algorithms for implementing the SELECT operation in Section 
18.2.2; the JOIN operation in Section 18.2.3; the PROJECT operation and the set operations (UNION, 
INTERSECTION, SET DIFFERENCE) in Section 18.2.4; and aggregate operations (MIN, MAX, 
COUNT, AVERAGE, SUM) in Section 18.2.5 (Note 4).  

 
 

18.2.1 External Sorting 

Sorting is one of the primary algorithms used in query processing. For example, whenever an SQL 
query specifies an ORDER BY-clause, the query result must be sorted. Sorting is also a key component 
in sort-merge algorithms used for JOIN and other operations (such as UNION and INTERSECTION), 
and in duplicate elimination algorithms for the PROJECT operation (when an SQL query specifies the 
DISTINCT option in the SELECT clause). We will discuss some of these algorithms in Section 18.2.3 
and Section 18.2.4. Note that sorting may be avoided if an appropriate index exists to allow ordered 
access to the records.  

External sorting refers to sorting algorithms that are suitable for large files of records stored on disk 
that do not fit entirely in main memory, such as most database files (Note 5). The typical external 
sorting algorithm uses a sort-merge strategy, which starts by sorting small subfiles—called runs—of 
the main file and then merges the sorted runs, creating larger sorted subfiles that are merged in turn. 
The sort-merge algorithm, like other database algorithms, requires buffer space in main memory, where 
the actual sorting and merging of the runs is performed. The basic algorithm, outlined in Figure 18.02, 
consists of two phases: (1) the sorting phase and (2) the merging phase.  

 

 

 
 

In the sorting phase, runs (portions or pieces) of the file that can fit in the available buffer space are 
read into main memory, sorted using an internal sorting algorithm, and written back to disk as 
temporary sorted subfiles (or runs). The size of a run and number of initial runs is dictated by the 
number of file blocks (b) and the available buffer space . For example, if = 5 blocks and the size of 
the file b = 1024 blocks, then = , or 205 initial runs each of size 5 blocks (except the last run which will 
have 4 blocks). Hence, after the sort phase, 205 sorted runs are stored as temporary subfiles on disk.  

In the merging phase, the sorted runs are merged during one or more passes. The degree of merging 
is the number of runs that can be merged together in each pass. In each pass, one buffer block is needed 
to hold one block from each of the runs being merged, and one block is needed for containing one 
block of the merge result. Hence, is the smaller of ( - 1) and , and the number of passes is . In our 
example, = 4 (four-way merging), so the 205 initial sorted runs would be merged into 52 at the end of 
the first pass, which are then merged into 13, then 4, then 1 run, which means that four passes are 
needed. The minimum of 2 gives the worst-case performance of the algorithm, which is  

 
 

(2 * b) + (2 * (b * (log2 b)))  
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The first term represents the number of block accesses for the sort phase, since each file block is 
accessed twice—once for reading into memory and once for writing the records back to disk after 
sorting. The second term represents the number of block accesses for the merge phase, assuming the 
worst-case of 2. In general, the log is taken to the base and the expression for number of block accesses 
becomes  

 
 
 

18.2.2 Implementing the SELECT Operation 

Search Methods for Simple Selection 
Search Methods for Complex Selection

There are many options for executing a SELECT operation; some depend on the file having specific 
access paths and may apply only to certain types of selection conditions. We discuss some of the 
algorithms for implementing SELECT in this section. We will use the following operations, specified 
on the relational database of Figure 07.05, to illustrate our discussion:  

 
 

(OP1): sSSN=’123456789’(EMPLOYEE)  

(OP2): sDNUMBER>5(DEPARTMENT) 

(OP3): sDNO=5(EMPLOYEE)  

(OP4): sDNO=5 AND SALARY>30000 AND SEX=’F’(EMPLOYEE)  

(OP5): sESSN=’123456789’ AND PNO=10(WORKS_ON)  

 
 

Search Methods for Simple Selection 

A number of search algorithms are possible for selecting records from a file. These are also known as 
file scans, because they scan the records of a file to search for and retrieve records that satisfy a 
selection condition (Note 6). If the search algorithm involves the use of an index, the index search is 
called an index scan. The following search methods (S1 through S6) are examples of some of the 
search algorithms that can be used to implement a select operation:  

 

• S1.  Linear search (brute force): Retrieve every record in the file, and test whether its attribute 
values satisfy the selection condition.  

• S2.  Binary search: If the selection condition involves an equality comparison on a key attribute 
on which the file is ordered, binary search—which is more efficient than linear search—can 
be used. An example is OP1 if SSN is the ordering attribute for the EMPLOYEE file (Note 7). 

• S3.  Using a primary index (or hash key): If the selection condition involves an equality 
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comparison on a key attribute with a primary index (or hash key)—for example, SSN = 
‘123456789’ in OP1—use the primary index (or hash key) to retrieve the record. Note that 
this condition retrieves a single record (at most).  

• S4.  Using a primary index to retrieve multiple records: If the comparison condition is >, >=, <, 
or <= on a key field with a primary index—for example, DNUMBER > 5 in OP2—use the 
index to find the record satisfying the corresponding equality condition (DNUMBER = 5), then 
retrieve all subsequent records in the (ordered) file. For the condition DNUMBER < 5, retrieve 
all the preceding records.  

• S5.  Using a clustering index to retrieve multiple records: If the selection condition involves an 
equality comparison on a non-key attribute with a clustering index—for example, DNO = 5 
in OP3—use the index to retrieve all the records satisfying the condition.  

• S6.  Using a secondary (-tree) index on an equality comparison: This search method can be used 
to retrieve a single record if the indexing field is a key (has unique values) or to retrieve 
multiple records if the indexing field is not a key. This can also be used for comparisons 
involving >, >=, <, or <=.  

 
 

In Section 18.4.3, we discuss how to develop formulas that estimate the access cost of these search 
methods in terms of number of block accesses and access time. Method S1 applies to any file, but all 
the other methods depend on having the appropriate access path on the attribute used in the selection 
condition. Methods S4 and S6 can be used to retrieve records in a certain range—for example, 
30000<=SALARY<=35000. Queries involving such conditions are called range queries.  

 
 

Search Methods for Complex Selection 

If a condition of a SELECT operation is a conjunctive condition—that is, if it is made up of several 
simple conditions connected with the AND logical connective such as OP4 above—the DBMS can use 
the following additional methods to implement the operation:  

 

• S7.  Conjunctive selection using an individual index: If an attribute involved in any single simple 
condition in the conjunctive condition has an access path that permits the use of one of the 
Methods S2 to S6, use that condition to retrieve the records and then check whether each 
retrieved record satisfies the remaining simple conditions in the conjunctive condition.  

• S8.  Conjunctive selection using a composite index: If two or more attributes are involved in 
equality conditions in the conjunctive condition and a composite index (or hash structure) 
exists on the combined fields—for example, if an index has been created on the composite 
key (ESSN, PNO) of the WORKS_ON file for OP5—we can use the index directly.  

• S9.  Conjunctive selection by intersection of record pointers (Note 8): If secondary indexes (or 
other access paths) are available on more than one of the fields involved in simple conditions 
in the conjunctive condition, and if the indexes include record pointers (rather than block 
pointers), then each index can be used to retrieve the set of record pointers that satisfy the 
individual condition. The intersection of these sets of record pointers gives the record 
pointers that satisfy the conjunctive condition, which are then used to retrieve those records 
directly. If only some of the conditions have secondary indexes, each retrieved record is 
further tested to determine whether it satisfies the remaining conditions (Note 9). 
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Whenever a single condition specifies the selection—such as OP1, OP2, or OP3—we can only check 
whether an access path exists on the attribute involved in that condition. If an access path exists, the 
method corresponding to that access path is used; otherwise, the brute force linear search approach of 
method S1 can be used. Query optimization for a SELECT operation is needed mostly for conjunctive 
select conditions whenever more than one of the attributes involved in the conditions have an access 
path. The optimizer should choose the access path that retrieves the fewest records in the most efficient 
way by estimating the different costs (see Section 18.4) and choosing the method with the least 
estimated cost.  

When the optimizer is choosing between multiple simple conditions in a conjunctive select condition, it 
typically considers the selectivity of each condition. The selectivity (s) is defined as the ratio of the 
number of records (tuples) that satisfy the condition to the total number of records (tuples) in the file 
(relation), and thus is a number between zero and 1—zero selectivity means no records satisfy the 
condition and 1 means all the records satisfy the condition. Although exact selectivities of all 
conditions may not be available, estimates of selectivities are often kept in the DBMS catalog and are 
used by the optimizer. For example, for an equality condition on a key attribute of relation r(R), s = 1/ | 
r(R) |, where | r(R) | is the number of tuples in relation r(R). For an equality condition on an attribute 
with i distinct values, s is estimated by ( |r(R) | /i)/ | r(R) | or 1/i, assuming that the records are evenly 
distributed among the distinct values (Note 10). Under this assumption, | r(R) | /i records will satisfy an 
equality condition on this attribute. In general, the number of records satisfying a selection condition 
with selectivity s is estimated to be | r(R) | * s. The smaller this estimate is, the higher the desirability of 
using that condition first to retrieve records.  

Compared to a conjunctive selection condition, a disjunctive condition (where simple conditions are 
connected by the OR logical connective rather than by AND) is much harder to process and optimize. 
For example, consider OP4:  

 
 

(OP49): sDNO=5 OR SALARY>30000 OR SEX=‘F’ (EMPLOYEE)  

 
 

With such a condition, little optimization can be done, because the records satisfying the disjunctive 
condition are the union of the records satisfying the individual conditions. Hence, if any one of the 
conditions does not have an access path, we are compelled to use the brute force linear search 
approach. Only if an access path exists on every condition can we optimize the selection by retrieving 
the records satisfying each condition—or their record ids—and then applying the union operation to 
eliminate duplicates.  

A DBMS will have available many of the methods discussed above, and typically many additional 
methods. The query optimizer must choose the appropriate one for executing each SELECT operation 
in a query. This optimization uses formulas that estimate the costs for each available access method, as 
we shall discuss in Section 18.4. The optimizer chooses the access method with the lowest estimated 
cost.  

 
 

18.2.3 Implementing the JOIN Operation 

Methods for Implementing Joins 
Effects of Available Buffer Space and Join Selection Factor on Join Performance 
Partition Hash Join and Hybrid Hash Join
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The JOIN operation is one of the most time-consuming operations in query processing. Many of the 
join operations encountered in queries are of the EQUIJOIN and NATURAL JOIN varieties, so we 
consider only these two here. For the remainder of this chapter, the term join refers to an EQUIJOIN 
(or NATURAL JOIN). There are many possible ways to implement a two-way join, which is a join on 
two files. Joins involving more than two files are called multiway joins. The number of possible ways 
to execute multiway joins grows very rapidly. In this section we discuss techniques for implementing 
only two-way joins. To illustrate our discussion, we refer to the relational schema of Figure 07.05 once 
more—specifically, to the EMPLOYEE, DEPARTMENT, and PROJECT relations. The algorithms we consider 
are for join operations of the form  

 
 

RA=BBB S 

 
 

where A and B are domain-compatible attributes of R and S, respectively. The methods we discuss can 
be extended to more general forms of join. We illustrate four of the most common techniques for 
performing such a join, using the following example operations:  

 
 

(OP6): EMPLOYEEDNO=DNUMBER DEPARTMENT  

(OP7): DEPARTMENTMGRSSN=SSN EMPLOYEE  

 
 

Methods for Implementing Joins 

• J1.  Nested-loop join (brute force): For each record t in R (outer loop), retrieve every record s 
from S (inner loop) and test whether the two records satisfy the join condition t[A] = s[B] 
(Note 11).  

• J2.  Single-loop join (using an access structure to retrieve the matching records): If an index (or 
hash key) exists for one of the two join attributes—say, B of S—retrieve each record t in R, 
one at a time (single loop), and then use the access structure to retrieve directly all matching 
records s from S that satisfy s[B] = t[A].  

• J3.  Sort–merge join: If the records of R and S are physically sorted (ordered) by value of the join 
attributes A and B, respectively, we can implement the join in the most efficient way 
possible. Both files are scanned concurrently in order of the join attributes, matching the 
records that have the same values for A and B. If the files are not sorted, they may be sorted 
first by using external sorting (see Section 18.2.1). In this method, pairs of file blocks are 
copied into memory buffers in order and the records of each file are scanned only once each 
for matching with the other file—unless both A and B are nonkey attributes, in which case 
the method needs to be modified slightly. A sketch of the sort-merge join algorithm is given 
in Figure 18.03(a). We use R(i) to refer to the record in R. A variation of the sort-merge join 
can be used when secondary indexes exist on both join attributes. The indexes provide the 
ability to access (scan) the records in order of the join attributes, but the records themselves 
are physically scattered all over the file blocks, so this method may be quite inefficient, as 
every record access may involve accessing a different disk block.  

• J4.  Hash-join: The records of files R and S are both hashed to the same hash file, using the same 
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hashing function on the join attributes A of R and B of S as hash keys. First, a single pass 
through the file with fewer records (say, R) hashes its records to the hash file buckets; this is 
called the partitioning phase, since the records of R are partitioned into the hash buckets. In 
the second phase, called the probing phase, a single pass through the other file (S) then 
hashes each of its records to probe the appropriate bucket, and that record is combined with 
all matching records from R in that bucket. This simplified description of hash-join assumes 
that the smaller of the two files fits entirely into memory buckets after the first phase. We 
will discuss variations of hash-join that do not require this assumption below. 

 

 

 
 

In practice, techniques J1 to J4 are implemented by accessing whole disk blocks of a file, rather than 
individual records. Depending on the available buffer space in memory, the number of blocks read in 
from the file can be adjusted.  

 
 

Effects of Available Buffer Space and Join Selection Factor on Join Performance 

The buffer space available has an important effect on the various join algorithms. First, let us consider 
the nested-loop approach (J1). Looking again at the operation OP6 above, assume that the number of 
buffers available in main memory for implementing the join is = 7 blocks (buffers). For illustration, 
assume that the DEPARTMENT file consists of = 50 records stored in = 10 disk blocks and that the 
EMPLOYEE file consists of = 6000 records stored in = 2000 disk blocks. It is advantageous to read as 
many blocks as possible at a time into memory from the file whose records are used for the outer loop 
(that is, - 2 blocks). The algorithm can then read one block at a time for the inner-loop file and use its 
records to probe (that is, search) the outer loop blocks in memory for matching records. This reduces 
the total number of block accesses. An extra buffer block is needed to contain the resulting records 
after they are joined, and the contents of this buffer block are appended to the result file—the disk file 
that contains the join result—whenever it is filled. This buffer block is then is reused to hold additional 
result records.  

In the nested-loop join, it makes a difference which file is chosen for the outer loop and which for the 
inner loop. If EMPLOYEE is used for the outer loop, each block of EMPLOYEE is read once, and the entire 
DEPARTMENT file (each of its blocks) is read once for each time we read in ( - 2) blocks of the 
EMPLOYEE file. We get the following:  

 
 

Total number of blocks accessed for outer file =  

Number of times ( - 2) blocks of outer file are loaded =  

Total number of blocks accessed for inner file =  

 
 

Hence, we get the following total number of block accesses:  
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On the other hand, if we use the DEPARTMENT records in the outer loop, by symmetry we get the 
following total number of block accesses:  

 
 

 

 
 

The join algorithm uses a buffer to hold the joined records of the result file. Once the buffer is filled, it 
is written to disk and reused (Note 12). If the result file of the join operation has disk blocks, each 
block is written once, so an additional block access should be added to the preceding formulas in order 
to estimate the total cost of the join operation. The same holds for the formulas developed later for 
other join algorithms. As this example shows, it is advantageous to use the file with fewer blocks as the 
outer-loop file in the nested-loop join.  

Another factor that affects the performance of a join, particularly the single-loop method J2, is the 
percentage of records in a file that will be joined with records in the other file. We call this the join 
selection factor (Note 13) of a file with respect to an equijoin condition with another file. This factor 
depends on the particular equijoin condition between the two files. To illustrate this, consider the 
operation OP7, which joins each DEPARTMENT record with the EMPLOYEE record for the manager of that 
department. Here, each DEPARTMENT record (there are 50 such records in our example) is expected to 
be joined with a single EMPLOYEE record, but many EMPLOYEE records (the 4950 of them that do not 
manage a department) will not be joined.  

Suppose that secondary indexes exist on both the attributes SSN of EMPLOYEE and MGRSSN of 
DEPARTMENT, with the number of index levels = 4 and = 2, respectively. We have two options for 
implementing method J2. The first retrieves each EMPLOYEE record and then uses the index on MGRSSN 
of DEPARTMENT to find a matching DEPARTMENT record. In this case, no matching record will be found 
for employees who do not manage a department. The number of block accesses for this case is 
approximately  

 

 

 
 

The second option retrieves each DEPARTMENT record and then uses the index on SSN of EMPLOYEE to 
find a matching manager EMPLOYEE record. In this case, every DEPARTMENT record will have one 
matching EMPLOYEE record. The number of block accesses for this case is approximately  
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The second option is more efficient because the join selection factor of DEPARTMENT with respect to the 
join condition SSN = MGRSSN is 1, whereas the join selection factor of EMPLOYEE with respect to the 
same join condition is (50/5000), or 0.01. For method J2, either the smaller file or the file that has a 
match for every record (that is, the file with the high join selection factor) should be used in the (outer) 
join loop. It is also possible to create an index specifically for performing the join operation if one does 
not already exist.  

The sort-merge join J3 is quite efficient if both files are already sorted by their join attribute. Only a 
single pass is made through each file. Hence, the number of blocks accessed is equal to the sum of the 
numbers of blocks in both files. For this method, both OP6 and OP7 would need + = 2000 + 10 = 2010 
block accesses. However, both files are required to be ordered by the join attributes; if one or both are 
not, they may be sorted specifically for performing the join operation. If we estimate the cost of sorting 
an external file by (b log2b) block accesses, and if both files need to be sorted, the total cost of a sort-
merge join can be estimated by .  

 
 

Partition Hash Join and Hybrid Hash Join 

The hash-join method J4 is also quite efficient. In this case only a single pass is made through each file, 
whether or not the files are ordered. If the hash table for the smaller of the two files can be kept entirely 
in main memory after hashing (partitioning) on its join attribute, the implementation is straightforward. 
If, however, parts of the hash file must be stored on disk, the method becomes more complex, and a 
number of variations to improve the efficiency have been proposed. We discuss two techniques: 
partition hash join and a variation called hybrid hash join, which has been shown to be quite efficient.  

In the partition hash join algorithm, each file is first partitioned into M partitions using a partitioning 
hash function on the join attributes. Then, each pair of partitions is joined. For example, suppose we 
are joining relations R and S on the join attributes R.A and S.B:  

 
 

RA=B S  

 
 

In the partitioning phase, R is partitioned into the M partitions , , ..., , and S into the M partitions , , ..., 
. The property of each pair of corresponding partitions , is that records in only need to be joined with 
records in , and vice versa. This property is ensured by using the same hash function to partition both 
files on their join attributes—attribute A for R and attribute B for S. The minimum number of in-
memory buffers needed for the partitioning phase is M. Each of the files R and S are partitioned 
separately. For each of the partitions, a single in-memory buffer—whose size is one disk block—is 
allocated to store the records that hash to this partition. Whenever the in-memory buffer for a partition 
gets filled, its contents are appended to a disk subfile that stores this partition. The partitioning phase 
has two iterations. After the first iteration, the first file R is partitioned into the subfiles , , ..., , where all 
the records that hashed to the same buffer are in the same partition. After the second iteration, the 
second file S is similarly partitioned.  

In the second phase, called the joining or probing phase, M iterations are needed. During iteration i, 
the two partitions and are joined. The minimum number of buffers needed for iteration i is the number 
of blocks in the smaller of the two partitions, say , plus two additional buffers. If we use a nested loop 
join during iteration i, the records from the smaller of the two partitions are copied into memory 
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buffers; then all blocks from the other partition are read—one at a time—and each record is used to 
probe (that is, search) partition for matching record(s). Any matching records are joined and written 
into the result file. To improve the efficiency of in-memory probing, it is common to use an in-memory 
hash table for storing the records in partition by using a different hash function from the partitioning 
hash function (Note 14). 

We can approximate the cost of this partition hash-join as for our example, since each record is read 
once and written back to disk once during the partitioning phase. During the joining (probing) phase, 
each record is read a second time to perform the join. The main difficulty of this algorithm is to ensure 
that the partitioning hash function is uniform—that is, the partition sizes are nearly equal in size. If the 
partitioning function is skewed (nonuniform), then some partitions may be too large to fit in the 
available memory space for the second joining phase.  

Notice that if the available in-memory buffer space > ( + 2), where is the number of blocks for the 
smaller of the two files being joined, say R, then there is no reason to do partitioning since in this case 
the join can be performed entirely in memory using some variation of the nested-loop join based on 
hashing and probing. For illustration, assume we are performing the join operation OP6, repeated 
below:  

 
 

(OP6): EMPLOYEEDNO=DNUMBER DEPARTMENT 

 
 

In this example, the smaller file is the DEPARTMENT file; hence, if the number of available memory 
buffers > ( + 2), the whole DEPARTMENT file can be read into main memory and organized into a hash 
table on the join attribute. Each EMPLOYEE block is then read into a buffer, and each EMPLOYEE record 
in the buffer is hashed on its join attribute and is used to probe the corresponding in-memory bucket in 
the DEPARTMENT hash table. If a matching record is found, the records are joined, and the result 
record(s) are written to the result buffer and eventually to the result file on disk. The cost in terms of 
block accesses is hence ( + ), plus —the cost of writing the result file.  

The hybrid hash-join algorithm is a variation of partition hash join, where the joining phase for one 
of the partitions is included in the partitioning phase. To illustrate this, let us assume that the size of a 
memory buffer is one disk block; that such buffers are available; and that the hash function used is 
h(K) = K mod M so that M partitions are being created, where M < . For illustration, assume we are 
performing the join operation OP6. In the first pass of the partitioning phase, when the hybrid hash-join 
algorithm is partitioning the smaller of the two files (DEPARTMENT in OP6), the algorithm divides the 
buffer space among the M partitions such that all the blocks of the first partition of DEPARTMENT 
completely reside in main memory. For each of the other partitions, only a single in-memory buffer—
whose size is one disk block—is allocated; the remainder of the partition is written to disk as in the 
regular partition hash join. Hence, at the end of the first pass of the partitioning phase, the first 
partition of DEPARTMENT resides wholly in main memory, whereas each of the other partitions of 
DEPARTMENT resides in a disk subfile.  

For the second pass of the partitioning phase, the records of the second file being joined—the larger 
file, EMPLOYEE in OP6—are being partitioned. If a record hashes to the first partition, it is joined with 
the matching record in DEPARTMENT and the joined records are written to the result buffer (and 
eventually to disk). If an EMPLOYEE record hashes to a partition other than the first, it is partitioned 
normally. Hence, at the end of the second pass of the partitioning phase, all records that hash to the first 
partition have been joined. Now there are M - 1 pairs of partitions on disk. Therefore, during the second 
joining or probing phase, M - 1 iterations are needed instead of M. The goal is to join as many records 
during the partitioning phase so as to save the cost of storing those records back to disk and rereading 
them a second time during the joining phase.  

1 Page 524 of 893



www.manaraa.com

 
 

18.2.4 Implementing PROJECT and Set Operations 

A PROJECT operation p<attribute list>(R) is straightforward to implement if <attribute list> includes a key 
of relation R, because in this case the result of the operation will have the same number of tuples as R, 
but with only the values for the attributes in <attribute list> in each tuple. If <attribute list> does not 
include a key of R, duplicate tuples must be eliminated. This is usually done by sorting the result of the 
operation and then eliminating duplicate tuples, which appear consecutively after sorting. A sketch of 
the algorithm is given in Figure 18.03(b). Hashing can also be used to eliminate duplicates: as each 
record is hashed and inserted into a bucket of the hash file in memory, it is checked against those 
already in the bucket; if it is a duplicate, it is not inserted. It is useful to recall here that in SQL queries, 
the default is not to eliminate duplicates from the query result; only if the keyword DISTINCT is 
included are duplicates eliminated from the query result.  

Set operations—UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT—are 
sometimes expensive to implement. In particular, the CARTESIAN PRODUCT operation R x S is 
quite expensive, because its result includes a record for each combination of records from R and S. In 
addition, the attributes of the result include all attributes of R and S. If R has n records and j attributes 
and S has m records and k attributes, the result relation will have n * m records and j + k attributes. 
Hence, it is important to avoid the CARTESIAN PRODUCT operation and to substitute other 
equivalent operations during query optimization (see Section 18.3).  

The other three set operations—UNION, INTERSECTION, and SET DIFFERENCE (Note 15)—apply 
only to union-compatible relations, which have the same number of attributes and the same attribute 
domains. The customary way to implement these operations is to use variations of the sort-merge 
technique: the two relations are sorted on the same attributes, and, after sorting, a single scan through 
each relation is sufficient to produce the result. For example, we can implement the UNION operation, 
R D S, by scanning and merging both sorted files concurrently, and whenever the same tuple exists in 
both relations, only one is kept in the merged result. For the INTERSECTION operation, R C S, we 
keep in the merged result only those tuples that appear in both relations. Figure 18.03(c), Figure 
18.03(d) and Figure 18.03(e) sketches the implementation of these operations by sorting and merging. 
If sorting is done on unique key attributes, the operations are further simplified.  

Hashing can also be used to implement UNION, INTERSECTION, and SET DIFFERENCE. One 
table is partitioned and the other is used to probe the appropriate partition. For example, to implement 
R D S, first hash (partition) the records of R; then, hash (probe) the records of S, but do not insert 
duplicate records in the buckets. To implement R C S, first partition the records of R to the hash file. 
Then, while hashing each record of S, probe to check if an identical record from R is found in the 
bucket, and if so add the record to the result file. To implement R - S, first hash the records of R to the 
hash file buckets. While hashing (probing) each record of S, if an identical record is found in the 
bucket, remove that record from the bucket.  

 
 

18.2.5 Implementing Aggregate Operations 

The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an entire table, 
can be computed by a table scan or by using an appropriate index, if available. For example, consider 
the following SQL query:  

 

  SELECT  MAX(SALARY)  
  FROM  EMPLOYEE;  
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If an (ascending) index on SALARY exists for the EMPLOYEE relation, then the optimizer can decide on 
using the index to search for the largest value by following the rightmost pointer in each index node 
from the root to the rightmost leaf. That node would include the largest SALARY value as its last entry. 
In most cases, this would be more efficient than a full table scan of EMPLOYEE, since no actual records 
need to be retrieved. The MIN aggregate can be handled in a similar manner, except that the leftmost 
pointer is followed from the root to leftmost leaf. That node would include the smallest SALARY value 
as its first entry.  

The index could also be used for the COUNT, AVERAGE, and SUM aggregates, but only if it is a 
dense index—that is, if there is an index entry for every record in the main file. In this case, the 
associated computation would be applied to the values in the index. For a nondense index, the actual 
number of records associated with each index entry must be used for a correct computation (except for 
COUNT DISTINCT, where the number of distinct values can be counted from the index itself).  

When a GROUP BY clause is used in a query, the aggregate operator must be applied separately to 
each group of tuples. Hence, the table must first be partitioned into subsets of tuples, where each 
partition (group) has the same value for the grouping attributes. In this case, the computation is more 
complex. Consider the following query:  

 

  SELECT  DNO, AVG(SALARY)  
  FROM  EMPLOYEE  
  GROUP BY  DNO;  

 
 

The usual technique for such queries is to first use either sorting or hashing on the grouping attributes 
to partition the file into the appropriate groups. Then the algorithm computes the aggregate function for 
the tuples in each group, which have the same grouping attribute(s) value. In the example query, the set 
of tuples for each department number would be grouped together in a partition and the average 
computed for each group.  

Notice that if a clustering index (see Chapter 6) exists on the grouping attribute(s), then the records are 
already partitioned (grouped) into the appropriate subsets. In this case, it is only necessary to apply the 
computation to each group.  

 
 

18.2.6 Implementing Outer Join 

In Section 7.5.3, the outer join operation was introduced, with its three variations: left outer join, right 
outer join, and full outer join. We also discussed in Chapter 8 how these operations can be specified in 
SQL2. The following is an example of a left outer join operation in SQL2:  

 
 

SELECT LNAME, FNAME, DNAME  

FROM (EMPLOYEE LEFT OUTER JOIN DEPARTMENT ON DNO=DNUMBER);  
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The result of this query is a table of employee names and their associated departments. It is similar to a 
regular (inner) join result, with the exception that if an EMPLOYEE tuple (a tuple in the left relation) does 
not have an associated department, the employee’s name will still appear in the resulting table, but the 
department name would be null for such tuples in the query result.  

Outer join can be computed by modifying one of the join algorithms, such as nestedloop join or single-
loop join. For example, to compute a left outer join, we use the left relation as the outer loop or single-
loop because every tuple in the left relation must appear in the result. If there are matching tuples in the 
other relation, the joined tuples are produced and saved in the result. However, if no matching tuple is 
found, the tuple is still included in the result but is padded with null value(s). The sort-merge and hash-
join algorithms can also be extended to compute outer joins.  

Alternatively, outer join can be computed by executing a combination of relational algebra operators. 
For example, the left outer join operation shown above is equivalent to the following sequence of 
relational operations:  

1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables. 
TEMP1 ã pLNAME, FNAME, DNAME (EMPLOYEEDNO=DNUMBER DEPARTMENT)  

2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result. 
TEMP2 ã pLNAME, FNAME (EMPLOYEE) - pLNAME, FNAME (TEMP1)  

3. Pad each tuple in TEMP2 with a null DNAME field. 
TEMP2 ã TEMP2 x ‘null’  

4. Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT OUTER JOIN result.  
RESULT ã TEMP1 D TEMP2  

The cost of the outer join as computed above would be the sum of the costs of the associated steps 
(inner join, projections, and union). However, note that Step 3 can be done as the temporary relation is 
being constructed in Step 2; that is, we can simply pad each resulting tuple with a null. In addition, in 
Step 4, we know that the two operands of the union are disjoint (no common tuples), so there is no 
need for duplicate elimination.  

 
 

18.2.7 Combining Operations Using Pipelining 

A query specified in SQL will typically be translated into a relational algebra expression that is a 
sequence of relational operations. If we execute a single operation at a time, we must generate 
temporary files on disk to hold the results of these temporary operations, creating excessive overhead. 
Generating and storing large temporary files on disk is time-consuming and can be unnecessary in 
many cases, since these files will immediately be used as input to the next operation. To reduce the 
number of temporary files, it is common to generate query execution code that correspond to 
algorithms for combinations of operations in a query.  

For example, rather than being implemented separately, a JOIN can be combined with two SELECT 
operations on the input files and a final PROJECT operation on the resulting file; all this is 
implemented by one algorithm with two input files and a single output file. Rather than creating four 
temporary files, we apply the algorithm directly and get just one result file. In Section 18.3.1 we 
discuss how heuristic relational algebra optimization can group operations together for execution. This 
is called pipelining or stream-based processing.  

It is common to create the query execution code dynamically to implement multiple operations. The 
generated code for producing the query combines several algorithms that correspond to individual 
operations. As the result tuples from one operation are produced, they are provided as input for 
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subsequent operations. For example, if a join operation follows two select operations on base relations, 
the tuples resulting from each select are provided as input for the join algorithm in a stream or 
pipeline as they are produced.  

 
 

18.3 Using Heuristics in Query Optimization 

18.3.1 Notation for Query Trees and Query Graphs 
18.3.2 Heuristic Optimization of Query Trees 
18.3.3 Converting Query Trees into Query Execution Plans

In this section we discuss optimization techniques that apply heuristic rules to modify the internal 
representation of a query—which is usually in the form of a query tree or a query graph data 
structure—to improve its expected performance. The parser of a high-level query first generates an 
initial internal representation, which is then optimized according to heuristic rules. Following that, a 
query execution plan is generated to execute groups of operations based on the access paths available 
on the files involved in the query.  

One of the main heuristic rules is to apply SELECT and PROJECT operations before applying the 
JOIN or other binary operations. This is because the size of the file resulting from a binary operation—
such as JOIN—is usually a multiplicative function of the sizes of the input files. The SELECT and 
PROJECT operations reduce the size of a file and hence should be applied before a join or other binary 
operation.  

We start in Section 18.3.1 by introducing the query tree and query graph notations. These can be used 
as the basis for the data structures that are used for internal representation of queries. A query tree is 
used to represent a relational algebra or extended relational algebra expression, whereas a query graph 
is used to represent a relational calculus expression. We then show in Section 18.3.2 how heuristic 
optimization rules are applied to convert a query tree into an equivalent query tree, which represents a 
different relational algebra expression that is more efficient to execute but gives the same result as the 
original one. We also discuss the equivalence of various relational algebra expressions. Finally, Section 
18.3.3 discusses the generation of query execution plans.  

 
 

18.3.1 Notation for Query Trees and Query Graphs 

A query tree is a tree data structure that corresponds to a relational algebra expression. It represents 
the input relations of the query as leaf nodes of the tree, and represents the relational algebra operations 
as internal nodes. An execution of the query tree consists of executing an internal node operation 
whenever its operands are available and then replacing that internal node by the relation that results 
from executing the operation. The execution terminates when the root node is executed and produces 
the result relation for the query.  

Figure 18.04(a) shows a query tree for query Q2 of Chapter 7, Chapter 8 and Chapter 9: For every 
project located in ‘Stafford’, retrieve the project number, the controlling department number, and the 
department manager’s last name, address, and birthdate. This query is specified on the relational 
schema of Figure 07.05 and corresponds to the following relational algebra expression:  

 
 

pPNUMBER, DNUM, LNAME, ADDRESS, BDATE (((sPLOCATION=’Stafford’(PROJECT))  
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DNUM=DNUMBER(DEPARTMENT))MGRSSN=SSN(EMPLOYEE))  

 
 

This corresponds to the following SQL query:  

 

  Q2:  SELECT P.PNUMBER, P.DNUM, E.LNAME, E.ADDRESS, E.BDATE  
    FROM  PROJECT AS P, DEPARTMENT AS D, EMPLOYEE AS E  
    WHERE P.DNUM=D.DNUMBER AND D.MGRSSN=E.SSN AND  

P.PLOCATION=’Stafford’;  

 

 

 
 

In Figure 18.04(a) the three relations PROJECT, DEPARTMENT, and EMPLOYEE are represented by leaf 
nodes P, D, and E, while the relational algebra operations of the expression are represented by internal 
tree nodes. When this query tree is executed, the node marked (1) in Figure 18.04(a) must begin 
execution before node (2) because some resulting tuples of operation (1) must be available before we 
can begin executing operation (2). Similarly, node (2) must begin executing and producing results 
before node (3) can start execution, and so on.  

As we can see, the query tree represents a specific order of operations for executing a query. A more 
neutral representation of a query is the query graph notation. Figure 18.04(c) shows the query graph 
for query Q2. Relations in the query are represented by relation nodes, which are displayed as single 
circles. Constant values, typically from the query selection conditions, are represented by constant 
nodes, which are displayed as double circles. Selection and join conditions are represented by the 
graph edges, as shown in Figure 18.04(c). Finally, the attributes to be retrieved from each relation are 
displayed in square brackets above each relation.  

The query graph representation does not indicate an order on which operations to perform first. There 
is only a single graph corresponding to each query (Note 16). Although some optimization techniques 
were based on query graphs, it is now generally accepted that query trees are preferable because, in 
practice, the query optimizer needs to show the order of operations for query execution, which is not 
possible in query graphs.  

 
 

18.3.2 Heuristic Optimization of Query Trees 

Example of Transforming a Query 
General Transformation Rules for Relational Algebra Operations 
Outline of a Heuristic Algebraic Optimization Algorithm 
Summary of Heuristics for Algebraic Optimization

In general, many different relational algebra expressions—and hence many different query trees—can 
be equivalent; that is, they can correspond to the same query (Note 17). The query parser will typically 
generate a standard initial query tree to correspond to an SQL query, without doing any optimization. 
For example, for a select–project–join query, such as Q2, the initial tree is shown in Figure 18.04(b). 
The CARTESIAN PRODUCT of the relations specified in the FROM clause is first applied; then the 
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selection and join conditions of the WHERE clause are applied, followed by the projection on the 
SELECT clause attributes. Such a canonical query tree represents a relational algebra expression that is 
very inefficient if executed directly, because of the CARTESIAN PRODUCT (X) operations. For 
example, if the PROJECT, DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150 
bytes and contained 100, 20, and 5000 tuples, respectively, the result of the CARTESIAN PRODUCT 
would contain 10 million tuples of record size 300 bytes each. However, the query tree in Figure 
18.04(b) is in a simple standard form that can be easily created. It is now the job of the heuristic query 
optimizer to transform this initial query tree into a final query tree that is efficient to execute.  

The optimizer must include rules for equivalence among relational algebra expressions that can be 
applied to the initial tree. The heuristic query optimization rules then utilize these equivalence 
expressions to transform the initial tree into the final, optimized query tree. We first discuss informally 
how a query tree is transformed by using heuristics. Then we discuss general transformation rules and 
show how they may be used in an algebraic heuristic optimizer.  

 
 

Example of Transforming a Query 

Consider the following query Q on the database of Figure 07.05: "Find the last names of employees 
born after 1957 who work on a project named ‘Aquarius’." This query can be specified in SQL as 
follows:  

 

  Q:  SELECT LNAME  
    FROM  EMPLOYEE, WORKS_ON, PROJECT  
    WHERE PNAME=‘Aquarius’ AND PNUMBER=PNO AND ESSN=SSN AND 

BDATE.‘1957-12-31’;  

 
 

The initial query tree for Q is shown in Figure 18.05(a). Executing this tree directly first creates a very 
large file containing the CARTESIAN PRODUCT of the entire EMPLOYEE, WORKS_ON, and PROJECT 
files. However, this query needs only one record from the PROJECT relation—for the ‘Aquarius’ 
project—and only the EMPLOYEE records for those whose date of birth is after ‘1957-12-31’. Figure 
18.05(b) shows an improved query tree that first applies the SELECT operations to reduce the number 
of tuples that appear in the CARTESIAN PRODUCT.  

 

 

 
 

A further improvement is achieved by switching the positions of the EMPLOYEE and PROJECT relations 
in the tree, as shown in Figure 18.05(c). This uses the information that PNUMBER is a key attribute of 
the project relation, and hence the SELECT operation on the PROJECT relation will retrieve a single 
record only. We can further improve the query tree by replacing any CARTESIAN PRODUCT 
operation that is followed by a join condition with a JOIN operation, as shown in Figure 18.05(d). 
Another improvement is to keep only the attributes needed by subsequent operations in the 
intermediate relations, by including PROJECT (p) operations as early as possible in the query tree, as 
shown in Figure 18.05(e). This reduces the attributes (columns) of the intermediate relations, whereas 
the SELECT operations reduce the number of tuples (records).  
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As the preceding example demonstrates, a query tree can be transformed step by step into another 
query tree that is more efficient to execute. However, we must make sure that the transformation steps 
always lead to an equivalent query tree. To do this, the query optimizer must know which 
transformation rules preserve this equivalence. We discuss some of these transformation rules next.  

 
 

General Transformation Rules for Relational Algebra Operations 

There are many rules for transforming relational algebra operations into equivalent ones. Here we are 
interested in the meaning of the operations and the resulting relations. Hence, if two relations have the 
same set of attributes in a different order but the two relations represent the same information, we 
consider the relations equivalent. In Section 7.1.2 we gave an alternative definition of relation that 
makes order of attributes unimportant; we will use this definition here. We now state some 
transformation rules that are useful in query optimization, without proving them:  

1. Cascade of s: A conjunctive selection condition can be broken up into a cascade (that is, a 
sequence) of individual s operations:  

2. Commutativity of s: The s operation is commutative:  

3. Cascade of p: In a cascade (sequence) of p operations, all but the last one can be ignored:  

4. Commuting s with p: If the selection condition c involves only those attributes A1, ..., An in 
the projection list, the two operations can be commuted:  

5. Commutativity of (and X): The operation is commutative, as is the X operation:  

R X S M S X R  

 
 

Notice that, although the order of attributes may not be the same in the relations resulting from the two 
joins (or two cartesian products), the "meaning" is the same because order of attributes is not important 
in the alternative definition of relation.  

6. Commuting s with (or X): If all the attributes in the selection condition c involve only the 
attributes of one of the relations being joined—say, R—the two operations can be commuted 
as follows:  

 
 

Alternatively, if the selection condition c can be written as (c1 AND c2), where condition c1 involves 
only the attributes of R and condition c2 involves only the attributes of S, the operations commute as 
follows:  

 
 

 
 

The same rules apply if the is replaced by a X operation.  
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7. Commuting p with (or X): Suppose that the projection list is , where , ..., are attributes of R 
and , ..., are attributes of S. If the join condition c involves only attributes in L, the two 
operations can be commuted as follows:  

 
 

If the join condition c contains additional attributes not in L, these must be added to the projection list, 
and a final p operation is needed. For example, if attributes of R and of S are involved in the join 
condition c but are not in the projection list L, the operations commute as follows:  

 
 

 
 

For X, there is no condition c, so the first transformation rule always applies by replacing c with X.  

8. Commutativity of set operations: The set operations D and C are commutative but - is not.  
9. Associativity of , X, D, and C: These four operations are individually associative; that is, if h 

stands for any one of these four operations (throughout the expression), we have:  

(R h S) h T M R h (S h T)  

10. Commuting s with set operations: The s operation commutes with D, C, and -. If h stands for 
any one of these three operations (throughout the expression), we have:  

sc (R h S) M (sc (R)) h (sc (S))  

11. The p operation commutes with D:  

pL (R D S) M (pL (R)) D (pL (S))  

12. Converting a (s, X) sequence into : If the condition c of a s that follows a X corresponds to a 
join condition, convert the (s, X) sequence into a as follows:  

(sc (R X S)) M (Rc S)  

 
 

There are other possible transformations. For example, a selection or join condition c can be converted 
into an equivalent condition by using the following rules (DeMorgan’s laws):  

 
 

NOT (c1 AND c2) M (NOT c1) OR (NOT c2)  

NOT (c1 OR c2) M (NOT c1) AND (NOT c2)  
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Additional transformations discussed in Chapter 7 and Chapter 9 are not repeated here. We discuss 
next how transformations can be used in heuristic optimization.  

 
 

Outline of a Heuristic Algebraic Optimization Algorithm 

We can now outline the steps of an algorithm that utilizes some of the above rules to transform an 
initial query tree into an optimized tree that is more efficient to execute (in most cases). The algorithm 
will lead to transformations similar to those discussed in our example of Figure 18.05. The steps of the 
algorithm are as follows:  

1. Using Rule 1, break up any SELECT operations with conjunctive conditions into a cascade of 
SELECT operations. This permits a greater degree of freedom in moving SELECT operations 
down different branches of the tree.  

2. Using Rules 2, 4, 6, and 10 concerning the commutativity of SELECT with other operations, 
move each SELECT operation as far down the query tree as is permitted by the attributes 
involved in the select condition.  

3. Using Rules 5 and 9 concerning commutativity and associativity of binary operations, 
rearrange the leaf nodes of the tree using the following criteria. First, position the leaf node 
relations with the most restrictive SELECT operations so they are executed first in the query 
tree representation. The definition of most restrictive SELECT can mean either the ones that 
produce a relation with the fewest tuples or with the smallest absolute size (Note 18). Another 
possibility is to define the most restrictive SELECT as the one with the smallest selectivity; 
this is more practical because estimates of selectivities are often available in the DBMS 
catalog. Second, make sure that the ordering of leaf nodes does not cause CARTESIAN 
PRODUCT operations; for example, if the two relations with the most restrictive SELECT do 
not have a direct join condition between them, it may be desirable to change the order of leaf 
nodes to avoid Cartesian products (Note 19). 

4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subsequent SELECT 
operation in the tree into a JOIN operation, if the condition represents a join condition.  

5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the commuting of 
PROJECT with other operations, break down and move lists of projection attributes down the 
tree as far as possible by creating new PROJECT operations as needed. Only those attributes 
needed in the query result and in subsequent operations in the query tree should be kept after 
each PROJECT operation.  

6. Identify subtrees that represent groups of operations that can be executed by a single 
algorithm.  

In our example, Figure 18.05(b) shows the tree of Figure 18.05(a) after applying Steps 1 and 2 of the 
algorithm; Figure 18.05(c) shows the tree after Step 3; Figure 18.05(d) after Step 4; and Figure 
18.05(e) after Step 5. In Step 6 we may group together the operations in the subtree whose root is the 
operation pESSN into a single algorithm. We may also group the remaining operations into another 
subtree, where the tuples resulting from the first algorithm replace the subtree whose root is the 
operation pESSN, because the first grouping means that this subtree is executed first.  

 
 

Summary of Heuristics for Algebraic Optimization 

We now summarize the basic heuristics for algebraic optimization. The main heuristic is to apply first 
the operations that reduce the size of intermediate results. This includes performing as early as possible 
SELECT operations to reduce the number of tuples and PROJECT operations to reduce the number of 
attributes. This is done by moving SELECT and PROJECT operations as far down the tree as possible. 
In addition, the SELECT and JOIN operations that are most restrictive—that is, result in relations with 
the fewest tuples or with the smallest absolute size—should be executed before other similar 
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operations. This is done by reordering the leaf nodes of the tree among themselves while avoiding 
Cartesian products, and adjusting the rest of the tree appropriately.  

 
 

18.3.3 Converting Query Trees into Query Execution Plans 

An execution plan for a relational algebra expression represented as a query tree includes information 
about the access methods available for each relation as well as the algorithms to be used in computing 
the relational operators represented in the tree. As a simple example, consider query Q1 from Chapter 
7, whose corresponding relational algebra expression is  

 
 

p FNAME, LNAME, ADDRESS(s DNAME=‘RESEARCH’(DEPARTMENT)  

DNUMBER=DNO EMPLOYEE)  

 
 

The query tree is shown in Figure 18.06. To convert this into an execution plan, the optimizer might 
choose an index search for the SELECT operation (assuming one exists), a table scan as access method 
for EMPLOYEE, a nested-loop join algorithm for the join, and a scan of the JOIN result for the PROJECT 
operator. In addition, the approach taken for executing the query may specify a materialized or a 
pipelined evaluation.  

 

 

 
 

With materialized evaluation, the result of an operation is stored as a temporary relation (that is, the 
result is physically materialized). For instance, the join operation can be computed and the entire result 
stored as a temporary relation, which is then read as input by the algorithm that computes the 
PROJECT operation, which would produce the query result table. On the other hand, with pipelined 
evaluation, as the resulting tuples of an operation are produced, they are forwarded directly to the next 
operation in the query sequence. For example, as the selected tuples from DEPARTMENT are produced by 
the SELECT operation, they are placed in a buffer; the JOIN operation algorithm would then consume 
the tuples from the buffer, and those tuples that result from the JOIN operation are pipelined to the 
projection operation algorithm. The advantage of pipelining is the cost savings in not having to write 
the intermediate results to disk and not having to read them back for the next operation.  

 
 

18.4 Using Selectivity and Cost Estimates in Query Optimization 

18.4.1 Cost Components for Query Execution 
18.4.2 Catalog Information Used in Cost Functions 
18.4.3 Examples of Cost Functions for SELECT 
18.4.4 Examples of Cost Functions for JOIN 
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18.4.5 Multiple Relation Queries and Join Ordering 
18.4.6 Example to Illustrate Cost-Based Query Optimization

A query optimizer should not depend solely on heuristic rules; it should also estimate and compare the 
costs of executing a query using different execution strategies and should choose the strategy with the 
lowest cost estimate. For this approach to work, accurate cost estimates are required so that different 
strategies are compared fairly and realistically. In addition, we must limit the number of execution 
strategies to be considered; otherwise, too much time will be spent making cost estimates for the many 
possible execution strategies. Hence, this approach is more suitable for compiled queries where the 
optimization is done at compile time and the resulting execution strategy code is stored and executed 
directly at runtime. For interpreted queries, where the entire process shown in Figure 18.01 occurs at 
runtime, a full-scale optimization may slow down the response time. A more elaborate optimization is 
indicated for compiled queries, whereas a partial, less time-consuming optimization works best for 
interpreted queries.  

We call this approach cost-based query optimization (Note 20), and it uses traditional optimization 
techniques that search the solution space to a problem for a solution that minimizes an objective (cost) 
function. The cost functions used in query optimization are estimates and not exact cost functions, so 
the optimization may select a query execution strategy that is not the optimal one. In Section 18.4.1 we 
discuss the components of query execution cost. In Section 18.4.2 we discuss the type of information 
needed in cost functions. This information is kept in the DBMS catalog. In Section 18.4.3 we give 
examples of cost functions for the SELECT operation, and in Section 18.4.4 we discuss cost functions 
for two-way JOIN operations. Section 18.4.5 discusses multiway joins, and Section 18.4.6 gives an 
example.  

 
 

18.4.1 Cost Components for Query Execution 

The cost of executing a query includes the following components:  

1. Access cost to secondary storage: This is the cost of searching for, reading, and writing data 
blocks that reside on secondary storage, mainly on disk. The cost of searching for records in a 
file depends on the type of access structures on that file, such as ordering, hashing, and 
primary or secondary indexes. In addition, factors such as whether the file blocks are allocated 
contiguously on the same disk cylinder or scattered on the disk affect the access cost.  

2. Storage cost: This is the cost of storing any intermediate files that are generated by an 
execution strategy for the query.  

3. Computation cost: This is the cost of performing in-memory operations on the data buffers 
during query execution. Such operations include searching for and sorting records, merging 
records for a join, and performing computations on field values.  

4. Memory usage cost: This is the cost pertaining to the number of memory buffers needed 
during query execution.  

5. Communication cost: This is the cost of shipping the query and its results from the database 
site to the site or terminal where the query originated.  

For large databases, the main emphasis is on minimizing the access cost to secondary storage. Simple 
cost functions ignore other factors and compare different query execution strategies in terms of the 
number of block transfers between disk and main memory. For smaller databases, where most of the 
data in the files involved in the query can be completely stored in memory, the emphasis is on 
minimizing computation cost. In distributed databases, where many sites are involved (see Chapter 24), 
communication cost must be minimized also. It is difficult to include all the cost components in a 
(weighted) cost function because of the difficulty of assigning suitable weights to the cost components. 
That is why some cost functions consider a single factor only—disk access. In the next section we 
discuss some of the information that is needed for formulating cost functions.  
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18.4.2 Catalog Information Used in Cost Functions 

To estimate the costs of various execution strategies, we must keep track of any information that is 
needed for the cost functions. This information may be stored in the DBMS catalog, where it is 
accessed by the query optimizer. First, we must know the size of each file. For a file whose records are 
all of the same type, the number of records (tuples) (r), the (average) record size (R), and the 
number of blocks (b) (or close estimates of them) are needed. The blocking factor (bfr) for the file 
may also be needed. We must also keep track of the primary access method and the primary access 
attributes for each file. The file records may be unordered, ordered by an attribute with or without a 
primary or clustering index, or hashed on a key attribute. Information is kept on all secondary indexes 
and indexing attributes. The number of levels (x) of each multilevel index (primary, secondary, or 
clustering) is needed for cost functions that estimate the number of block accesses that occur during 
query execution. In some cost functions the number of first-level index blocks is needed.  

Another important parameter is the number of distinct values (d) of an attribute and its selectivity 
(sl), which is the fraction of records satisfying an equality condition on the attribute. This allows 
estimation of the selection cardinality (s = sl * r) of an attribute, which is the average number of 
records that will satisfy an equality selection condition on that attribute. For a key attribute, d = r, sl = 
1/r and s = 1. For a nonkey attribute, by making an assumption that the d distinct values are uniformly 
distributed among the records, we estimate sl = (1/d) and so s = (r/d) (Note 21). 

Information such as the number of index levels is easy to maintain because it does not change very 
often. However, other information may change frequently; for example, the number of records r in a 
file changes every time a record is inserted or deleted. The query optimizer will need reasonably close 
but not necessarily completely up-to-the-minute values of these parameters for use in estimating the 
cost of various execution strategies. In Section 18.4.3 and Section 18.4.4 we examine how some of 
these parameters are used in cost functions for a cost-based query optimizer.  

 
 

18.4.3 Examples of Cost Functions for SELECT 

Example of Using the Cost Functions

We now give cost functions for the selection algorithms S1 to S8 discussed in Section 18.2.2 in terms 
of number of block transfers between memory and disk. These cost functions are estimates that ignore 
computation time, storage cost, and other factors. The cost for method Si is referred to as block 
accesses.  

 

• S1.  Linear search (brute force) approach: We search all the file blocks to retrieve all records 
satisfying the selection condition; hence, = b. For an equality condition on a key, only half 
the file blocks are searched on the average before finding the record, so = (b/2) if the record 
is found; if no record satisfies the condition, = b.  

• S2.  Binary search: This search accesses approximately = + (s/bfr) - 1 file blocks. This reduces to 
if the equality condition is on a unique (key) attribute, because s = 1 in this case.  

• S3.  Using a primary index (S3a) or hash key (S3b) to retrieve a single record: For a primary 
index, retrieve one more block than the number of index levels; hence, = x + 1. For hashing, 
the cost function is approximately = 1 for static hashing or linear hashing, and it is 2 for 
extendible hashing (see Chapter 5).  

• S4.  Using an ordering index to retrieve multiple records: If the comparison condition is >, >=, 
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<, or <= on a key field with an ordering index, roughly half the file records will satisfy the 
condition. This gives a cost function of = x + (b/2). This is a very rough estimate, and 
although it may be correct on the average, it may be quite inaccurate in individual cases.  

• S5.  Using a clustering index to retrieve multiple records: Given an equality condition, s records 
will satisfy the condition, where s is the selection cardinality of the indexing attribute. This 
means that (s/bfr) file blocks will be accessed, giving = x + (s/bfr).  

• S6.  Using a secondary (-tree) index: On an equality comparison, s records will satisfy the 
condition, where s is the selection cardinality of the indexing attribute. However, because the 
index is nonclustering, each of the records may reside on a different block, so the (worst 
case) cost estimate is = x + s. This reduces to x + 1 for a key indexing attribute. If the 
comparison condition is >, >=, <, or <= and half the file records are assumed to satisfy the 
condition, then (very roughly) half the first-level index blocks are accessed, plus half the file 
records via the index. The cost estimate for this case, approximately, is = x + + (r/2). The r/2 
factor can be refined if better selectivity estimates are available.  

• S7. Conjunctive selection: We can use either S1 or one of the methods S2 to S6 discussed above. 
In the latter case, we use one condition to retrieve the records and then check in the memory 
buffer whether each retrieved record satisfies the remaining conditions in the conjunction.  

• S8.  Conjunctive selection using a composite index: Same as S3a, S5, or S6a, depending on the 
type of index.  

 
 

Example of Using the Cost Functions 

In a query optimizer, it is common to enumerate the various possible strategies for executing a query 
and to estimate the costs for different strategies. An optimization technique, such as dynamic 
programming, may be used to find the optimal (least) cost estimate efficiently, without having to 
consider all possible execution strategies. We do not discuss optimization algorithms here; rather, we 
use a simple example to illustrate how cost estimates may be used. Suppose that the EMPLOYEE file of 
Figure 07.05 has = 10,000 records stored in = 2000 disk blocks with blocking factor = 5 records/block 
and the following access paths:  

1. A clustering index on SALARY, with levels = 3 and average selection cardinality = 20.  
2. A secondary index on the key attribute SSN, with = 4 ( = 1).  
3. A secondary index on the nonkey attribute DNO, with = 2 and first-level index blocks = 4. 

There are = 125 distinct values for DNO, so the selection cardinality of DNO is sDNO = = 80.  
4. A secondary index on SEX, with = 1. There are = 2 values for the sex attribute, so the average 

selection cardinality is = = 5000.  

We illustrate the use of cost functions with the following examples:  

 
 

(OP1): sSSN=‘123456789’(EMPLOYEE)  

(OP2): sDNO>5(EMPLOYEE)  

(OP3): sDNO=5(EMPLOYEE)  

(OP4): sDNO=5 AND SALARY>30000 AND SEX=‘F’(EMPLOYEE) 
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The cost of the brute force (linear search) option S1 will be estimated as = = 2000 (for a selection on a 
nonkey attribute) or = = 1000 (average cost for a selection on a key attribute). For OP1 we can use 
either method S1 or method S6a; the cost estimate for S6a is = + 1 = 4 + 1 = 5, and it is chosen over 
Method S1, whose average cost is = 1000. For OP2 we can use either method S1 (with estimated cost = 
2000) or method S6b (with estimated cost = + + = 2 + (4/2) + (10,000/2) = 5004), so we choose the 
brute force approach for OP2. For OP3 we can use either method S1 (with estimated cost = 2000) or 
method S6a (with estimated cost = + = 2 + 80 = 82), so we choose method S6a.  

Finally, consider OP4, which has a conjunctive selection condition. We need to estimate the cost of 
using any one of the three components of the selection condition to retrieve the records, plus the brute 
force approach. The latter gives cost estimate = 2000. Using the condition (DNO = 5) first gives the cost 
estimate = 82. Using the condition (SALARY > 30,000) first gives a cost estimate = + = 3 + (2000/2) = 
1003. Using the condition (SEX = ‘F’) first gives a cost estimate = + = 1 + 5000 = 5001. The optimizer 
would then choose method S6a on the secondary index on DNO because it has the lowest cost estimate. 
The condition (DNO = 5) is used to retrieve the records, and the remaining part of the conjunctive 
condition (SALARY > 30,000 AND SEX = ‘F’) is checked for each selected record after it is retrieved 
into memory.  

 
 

18.4.4 Examples of Cost Functions for JOIN 

Example of Using the Cost Functions

To develop reasonably accurate cost functions for JOIN operations, we need to have an estimate for the 
size (number of tuples) of the file that results after the JOIN operation. This is usually kept as a ratio of 
the size (number of tuples) of the resulting join file to the size of the Cartesian product file, if both are 
applied to the same input files, and it is called the join selectivity (js). If we denote the number of 
tuples of a relation R by | R |, we have  

 
 

js = | (Rc S) | / | (R x S) | = | (Rc S) | / ( | R | * | S | )  

 
 

If there is no join condition c, then js = 1 and the join is the same as the CARTESIAN PRODUCT. If 
no tuples from the relations satisfy the join condition, then js = 0. In general, 0 1 js 1 1. For a join 
where the condition c is an equality comparison R.A = S.B, we get the following two special cases:  

1. If A is a key of R, then | (Rc S) | 1 | S |, so js 1 ( 1/ | R | ).  
2. If B is a key of S, then | (Rc S) | 1 | R |, so js 1 ( 1/ | S | ).  

Having an estimate of the join selectivity for commonly occurring join conditions enables the query 
optimizer to estimate the size of the resulting file after the join operation, given the sizes of the two 
input files, by using the formula | (Rc S) | = js * | R | * | S |. We can now give some sample approximate 
cost functions for estimating the cost of some of the join algorithms given in Section 18.2.3. The join 
operations are of the form  

 
 

RA=B S  
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where A and B are domain-compatible attributes of R and S, respectively. Assume that R has blocks and 
that S has blocks:  

 

• J1.  Nested-loop join: Suppose that we use R for the outer loop; then we get the following cost 
function to estimate the number of block accesses for this method, assuming three memory 
buffers. We assume that the blocking factor for the resulting file is and that the join 
selectivity is known:  

 

 

 
 

The last part of the formula is the cost of writing the resulting file to disk. This cost formula 
can be modified to take into account different numbers of memory buffers, as discussed in 
Section 18.2.3.  

• J2.  Single-loop join (using an access structure to retrieve the matching record(s)): If an index 
exists for the join attribute B of S with index levels , we can retrieve each record s in R and 
then use the index to retrieve all the matching records t from S that satisfy t[B] = s[A]. The 
cost depends on the type of index. For a secondary index where is the selection cardinality 
for the join attribute B of S, (Note 22) we get  

 

 

 
 

For a clustering index where is the selection cardinality of B, we get  

 

 

 
 

For a primary index, we get  

 

 

 
 

If a hash key exists for one of the two join attributes—say, B of S—we get  
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where h 1 is the average number of block accesses to retrieve a record, given its hash key 
value.  

• J3.  Sort–merge join: If the files are already sorted on the join attributes, the cost function for this 
method is  

 

 

 
 

If we must sort the files, the cost of sorting must be added. We can approximate the sorting 
cost by (2 * b) + (2 * b * ) for a file of b blocks (see Section 18.2.1). Hence, we get the 
following cost function:  

 

 
 

 
 

Example of Using the Cost Functions 

Suppose that we have the EMPLOYEE file described in the example of the previous section, and assume 
that the DEPARTMENT file of Figure 07.05 consists of = 125 records stored in = 13 disk blocks. Consider 
the join operations  

 
 

(OP6): EMPLOYEE DNO=DNUMBER DEPARTMENT  

(OP7): DEPARTMENTMGRSSN=SSN EMPLOYEE  

 
 

Suppose that we have a primary index on DNUMBER of DEPARTMENT with = 1 level and a secondary 
index on MGRSSN of DEPARTMENT with selection cardinality = 1 and levels = 2. Assume that the join 
selectivity for OP6 is = (1/| DEPARTMENT |) = 1/125 because DNUMBER is a key of DEPARTMENT. Also 
assume that the blocking factor for the resulting join file = 4 records per block. We can estimate the 
costs for the JOIN operation OP6 using the applicable methods J1 and J2 as follows:  

1. Using Method J1 with EMPLOYEE as outer loop:  
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2. Using Method J1 with DEPARTMENT as outer loop:  

 

3. Using Method J2 with EMPLOYEE as outer loop:  

 

4. Using Method J2 with DEPARTMENT as outer loop: 

 

 
 

Case 4 has the lowest cost estimate and will be chosen. Notice that if 15 memory buffers (or more) 
were available for executing the join instead of just two, 13 of them could be used to hold the entire 
DEPARTMENT relation in memory, one could be used as buffer for the result, and the cost for Case 2 
could be drastically reduced to just + + (( * * )/) or 4513, as discussed in Section 18.2.3. As an 
exercise, the reader should perform a similar analysis for OP7.  

 
 

18.4.5 Multiple Relation Queries and Join Ordering 

The algebraic transformation rules in Section 18.3.2 include a commutative rule and an associative rule 
for the join operation. With these rules, many equivalent join expressions can be produced. As a result, 
the number of alternative query trees grows very rapidly as the number of joins in a query increases. In 
general, a query that joins n relations will have n - 1 join operations, and hence can have a large 
number of different join orders. Estimating the cost of every possible join tree for a query with a large 
number of joins will require a substantial amount of time by the query optimizer. Hence, some pruning 
of the possible query trees is needed. Query optimizers typically limit the structure of a (join) query 
tree to that of left-deep (or right-deep) trees. A left-deep tree is a binary tree where the right child of 
each nonleaf node is always a base relation. The optimizer would choose the particular left-deep tree 
with the lowest estimated cost. Two examples of left-deep trees are shown in Figure 18.07. (Note that 
the trees in Figure 18.05 are also left-deep trees.)  

 

 

 
 

With left-deep trees, the right child is considered to be the inner relation when executing a nested-loop 
join. One advantage of left-deep (or right-deep) trees is that they are amenable to pipelining, as 
discussed in Section 18.3.3. For instance, consider the first left-deep tree in Figure 18.07 and assume 
that the join algorithm is the single-loop method; in this case, a disk page of tuples of the outer relation 
is used to probe the inner relation for matching tuples. As a resulting block of tuples is produced from 
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the join of R1 and R2, it could be used to probe R3. Likewise, as a resulting page of tuples is produced 
from this join, it could be used to probe R4. Another advantage of left-deep (or right-deep) trees is that 
having a base relation as one of the inputs of each join allows the optimizer to utilize any access paths 
on that relation that may be useful in executing the join.  

If materialization is used instead of pipelining (see Section 18.3.3), the join results could be 
materialized and stored as temporary relations. The key idea from the optimizer’s standpoint with 
respect to join ordering is to find an ordering that will reduce the size of the temporary results, since the 
temporary results (pipelined or materialized) are used by subsequent operators and hence affect the 
execution cost of those operators.  

 
 

18.4.6 Example to Illustrate Cost-Based Query Optimization 

We will consider query Q2 and its query tree shown in Figure 18.04 (a) to illustrate cost-based query 
optimization:  

 

  Q2: SELECT  PNUMBER, DNUM, LNAME, ADDRESS, BDATE  
    FROM  PROJECT, DEPARTMENT, EMPLOYEE  
    WHERE  DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION=’Stafford’;  

 
 

Suppose we have the statistical information about the relations shown in Figure 18.08. The format of 
the information follows the catalog presentation in Section 17.3. The LOW_VALUE and HIGH_VALUE 
statistics have been normalized for clarity. The tree in Figure 18.04(a) is assumed to represent the result 
of the algebraic heuristic optimization process and the start of cost-based optimization (in this example, 
we assume that the heuristic optimizer does not push the projection operations down the tree).  

 

 

 
 

The first cost-based optimization to consider is join ordering. As previously mentioned, we assume the 
optimizer considers only left-deep trees, so the potential join orders—without Cartesian product—are  

 

1. PROJECTDEPARTMENTEMPLOYEE  
2. DEPARTMENTPROJECTEMPLOYEE  
3. DEPARTMENTEMPLOYEEPROJECT  
4. EMPLOYEEDEPARTMENTPROJECT  

 
 

Assume that the selection operation has already been applied to the PROJECT relation. If we assume a 
materialized approach, then a new temporary relation is created after each join operation. To examine 
the cost of join order (1), the first join is between PROJECT and DEPARTMENT. Both the join method and 
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the access methods for the input relations must be determined. Since DEPARTMENT has no index 
according to Figure 18.08, the only available access method is a table scan (that is, a linear search). The 
PROJECT relation will have the selection operation performed before the join, so two options exist: table 
scan (linear search) or utilizing its PROJ_PLOC index, so the optimizer must compare their estimated 
costs. The statistical information on the PROJ_PLOC index (see Figure 18.08) shows the number of 
index levels x = 2 (root plus leaf levels). The index is nonunique (because PLOCATION is not a key of 
PROJECT), so the optimizer assumes a uniform data distribution and estimates the number of record 
pointers for each PLOCATION value to be 10. This is computed from the tables in Figure 18.08 by 
multiplying SELECTIVITY * NUM_ROWS, where SELECTIVITY is estimated by 
1/NUM_DISTINCT. So the cost of using the index and accessing the records is estimated to be 12 
block accesses (2 for the index and 10 for the data blocks). The cost of a table scan is estimated to be 
100 block accesses, so the index access is more efficient as expected.  

In the materialized approach, a temporary file TEMP1 of size 1 block is created to hold the result of the 
selection operation. The file size is calculated by determining the blocking factor using the formula 
NUM_ROWS/BLOCKS, which gives 2000/100 or 20 rows per block. Hence, the 10 records selected 
from the PROJECT relation will fit into a single block. Now we can compute the estimated cost of the 
first join. We will consider only the nested-loop join method, where the outer relation is the temporary 
file, TEMP1, and the inner relation is DEPARTMENT. Since the entire TEMP1 file fits in available buffer 
space, we need to read each of the DEPARTMENT table’s five blocks only once, so the join cost is six 
block accesses plus the cost of writing the temporary result file, TEMP2. The optimizer would have to 
determine the size of TEMP2. Since the join attribute DNUMBER is the key for DEPARTMENT, any DNUM 
value from TEMP1 will join with at most one record from DEPARTMENT, so the number of rows in the 
TEMP2 will be equal to the number of rows in TEMP1, which is 10. The optimizer would determine the 
record size for TEMP2 and the number of blocks needed to store these 10 rows. For brevity, assume that 
the blocking factor for TEMP2 is five rows per block, so a total of two blocks are needed to store TEMP2.  

Finally, the cost of the last join needs to be estimated. We can use a single-loop join on TEMP2 since in 
this case the index EMP_SSN (see Figure 18.08) can be used to probe and locate matching records 
from EMPLOYEE. Hence, the join method would involve reading in each block of TEMP2 and looking up 
each of the five MGRSSN values using the EMP_SSN index. Each index lookup would require a root 
access, a leaf access, and a data block access (x+1, where the number of levels x is 2). So, 10 lookups 
require 30 block accesses. Adding the two block accesses for TEMP2 gives a total of 32 block accesses 
for this join.  

For the final projection, assume pipelining is used to produce the final result, which does not require 
additional block accesses, so the total cost for join order (1) is estimated as the sum of the previous 
costs. The optimizer would then estimate costs in a similar manner for the other three join orders and 
choose the one with the lowest estimate. We leave this as an exercise for the reader.  

 
 

18.5 Overview of Query Optimization in ORACLE 

The ORACLE DBMS (Version 7) provides two different approaches to query optimization: rule-based 
and cost-based. With the rule-based approach, the optimizer chooses execution plans based on 
heuristically ranked operations. ORACLE maintains a table of 15 ranked access paths, where a lower 
ranking implies a more efficient approach. The access paths range from table access by ROWID (most 
efficient)—where ROWID specifies the record’s physical address that includes the data file, data block, 
and row offset within the block—to a full table scan (least efficient)—where all rows in the table are 
searched by doing multiblock reads. However, the rule-based approach is being phased out in favor of 
the cost-based approach, where the optimizer examines alternative access paths and operator 
algorithms and chooses the execution plan with lowest estimated cost. The catalog tables containing 
statistical information are used in a similar fashion, as described in Section 18.4.6. The estimated query 
cost is proportional to the expected elapsed time needed to execute the query with the given execution 
plan. The ORACLE optimizer calculates this cost based on the estimated usage of resources, such as 
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I/O, CPU time, and memory needed. The goal of cost-based optimization in ORACLE is to minimize 
the elapsed time to process the entire query.  

An interesting addition to the ORACLE query optimizer is the capability for an application developer 
to specify hints to the optimizer (Note 23). The idea is that an application developer might know more 
information about the data than the optimizer. For example, consider the EMPLOYEE table shown in 
Figure 07.05. The SEX column of that table has only two distinct values. If there are 10,000 employees, 
then the optimizer would estimate that half are male and half are female, assuming a uniform data 
distribution. If a secondary index exists, it would more than likely not be used. However, if the 
application developer knows that there are only 100 male employees, a hint could be specified in an 
SQL query whose WHERE-clause condition is SEX = ‘M’ so that the associated index would be used in 
processing the query. Various hints can be specified, such as:  

• The optimization approach for an SQL statement.  
• The access path for a table accessed by the statement.  
• The join order for a join statement.  
• A particular join operation in a join statement.  

The cost-based optimization of ORACLE 8 is a good example of the sophisticated approach taken to 
optimize SQL queries in commercial RDBMSs.  

 
 

18.6 Semantic Query Optimization 

A different approach to query optimization, called semantic query optimization, has been suggested. 
This technique, which may be used in combination with the techniques discussed previously, uses 
constraints specified on the database schema—such as unique attributes and other more complex 
constraints—in order to modify one query into another query that is more efficient to execute. We will 
not discuss this approach in detail but only illustrate it with a simple example. Consider the SQL query:  

 

SELECT  E.LNAME, M.LNAME  

FROM  EMPLOYEE AS E, EMPLOYEE AS M  

WHERE  E.SUPERSSN=M.SSN AND E.SALARY.M.SALARY  

 
 

This query retrieves the names of employees who earn more than their supervisors. Suppose that we 
had a constraint on the database schema that stated that no employee can earn more than his or her 
direct supervisor. If the semantic query optimizer checks for the existence of this constraint, it need not 
execute the query at all because it knows that the result of the query will be empty. This may save 
considerable time if the constraint checking can be done efficiently. However, searching through many 
constraints to find those that are applicable to a given query and that may semantically optimize it can 
also be quite time-consuming. With the inclusion of active rules in database systems (see Chapter 23), 
semantic query optimization techniques may eventually be fully incorporated into the DBMSs of the 
future.  

 
 

18.7 Summary 
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In this chapter we gave an overview of the techniques used by DBMSs in processing and optimizing 
high-level queries. We first discussed how SQL queries are translated into relational algebra and then 
how various relational algebra operations may be executed by a DBMS. We saw that some operations, 
particularly SELECT and JOIN, may have many execution options. We also discussed how operations 
can be combined during query processing to create pipelined or stream-based execution instead of 
materialized execution.  

Following that, we described heuristic approaches to query optimization, which use heuristic rules and 
algebraic techniques to improve the efficiency of query execution. We showed how a query tree that 
represents a relational algebra expression can be heuristically optimized by reorganizing the tree nodes 
and transforming it into another equivalent query tree that is more efficient to execute. We also gave 
equivalence-preserving transformation rules that may be applied to a query tree. Then we introduced 
query execution plans for SQL queries, which add method execution plans to the query tree operations.  

We then discussed the cost-based approach to query optimization. We showed how cost functions are 
developed for some database access algorithms and how these cost functions are used to estimate the 
costs of different execution strategies. We presented an overview of the ORACLE query optimizer, and 
we mentioned the technique of semantic query optimization.  

 
 

Review Questions 

  18.1.  Discuss the reasons for converting SQL queries into relational algebra queries before 
optimization is done.  

  18.2.  Discuss the different algorithms for implementing each of the following relational operators 
and the circumstances under which each algorithm can be used: SELECT, JOIN, PROJECT, 
UNION, INTERSECT, SET DIFFERENCE, CARTESIAN PRODUCT.  

  18.3.  What is a query execution plan?  

  18.4.  What is meant by the term heuristic optimization? Discuss the main heuristics that are applied 
during query optimization.  

  18.5.  How does a query tree represent a relational algebra expression? What is meant by an 
execution of a query tree? Discuss the rules for transformation of query trees, and identify 
when each rule should be applied during optimization.  

  18.6.  How many different join orders are there for a query that joins 10 relations?  

  18.7.  What is meant by cost-based query optimization?  

  18.8.  What is the difference between pipelining and materialization?  

  18.9.  Discuss the cost components for a cost function that is used to estimate query execution cost. 
Which cost components are used most often as the basis for cost functions?  

18.10.  Discuss the different types of parameters that are used in cost functions. Where is this 
information kept?  

18.11.  List the cost functions for the SELECT and JOIN methods discussed in Section 18.2.  

18.12.  What is meant by semantic query optimization? How does it differ from other query 
optimization techniques?  

 
 

Exercises 
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18.13.  Consider SQL queries Q1, Q8, Q1B, Q4, and Q27 from Chapter 8.  

a. Draw at least two query trees that can represent each of these queries. Under what 
circumstances would you use each of your query trees?  

b. Draw the initial query tree for each of these queries, then show how the query tree is 
optimized by the algorithm outlined in Section 18.3.2.  

c. For each query, compare your own query trees of part (a) and the initial and final 
query trees of part (b).  

18.14.  A file of 4096 blocks is to be sorted with an available buffer space of 64 blocks. How many 
passes will be needed in the merge phase of the external sort-merge algorithm?  

18.15.  Develop cost functions for the PROJECT, UNION, INTERSECTION, SET DIFFERENCE, 
and CARTESIAN PRODUCT algorithms discussed in Section 18.2.3 and Section 18.2.4.  

18.16.  Develop cost functions for an algorithm that consists of two SELECTs, a JOIN, and a final 
PROJECT, in terms of the cost functions for the individual operations.  

18.17.  Can a nondense index be used in the implementation of an aggregate operator? Why or why 
not?  

18.18.  Calculate the cost functions for different options of executing the JOIN operation OP7 
discussed in Section 18.2.3.  

18.19.  Develop formulas for the hybrid hash join algorithm for calculating the size of the buffer for 
the first bucket. Develop more accurate cost estimation formulas for the algorithm.  

18.20.  Estimate the cost of operations OP6 and OP7, using the formulas developed in Exercise 18.19.  

18.21.  Extend the sort-merge join algorithm to implement the left outer join operation.  

18.22.  Compare the cost of two different query plans for the following query:  

 
 

sSALARY.40000(EMPLOYEEDNO=DNUMBERDEPARTMENT)  

 
 

Use the database statistics in Figure 18.08.  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20 
Note 21 
Note 22 
Note 23

Note 1 

We will not discuss the parsing and syntax-checking phase of query processing here; this material is 
discussed in compiler textbooks.  

 
 

Note 2 

There are some query optimization problems and techniques that are pertinent only to ODBMSs. 
However, we do not discuss these here as we can give only an introduction to query optimization.  
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Note 3 

In addition to query optimization, similar optimization techniques are also used for constraint 
enforcement by the DBMS.  

 
 

Note 4 

Similarly, algorithms must also be available for implementing OUTER JOINs, correlated subqueries, 
and other more complex operations but we do not discuss those here.  

 
 

Note 5 

Internal sorting algorithms are suitable for sorting data structures that can fit entirely in memory.  

 
 

Note 6 

A selection operation is sometimes called a filter, since it filters out the records in the file that do not 
satisfy the selection condition.  

 
 

Note 7 

Generally, binary search is not used in database search because ordered files are not used unless they 
also have a corresponding primary index.  

 
 

Note 8 

A record pointer uniquely identifies a record and provides the address of the record on disk; hence, it is 
also called the record identifier or record id.  

 
 

Note 9 

The technique can have many variations—for example, if the indexes are logical indexes that store 
primary key values instead of record pointers.  
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Note 10 

In more sophisticated optimizers, histograms representing the distribution of the records among the 
different attribute values can be kept in the catalog.  

 
 

Note 11 

For disk files, it is obvious that the loops will be over disk blocks so this technique has also been called 
nested-block join.  

 
 

Note 12 

If we reserve two buffers for the result file, double buffering can be used to speed the algorithm (see 
Section 5.4).  

 
 

Note 13 

This is different from the join selectivity, which we shall discuss in Section 18.4.  

 
 

Note 14 

If the hash function used for partitioning is used again, all records in a partition will hash to the same 
bucket again. 

 
 

Note 15 

SET DIFFERENCE is called EXCEPT in SQL.  

 
 

Note 16 

Hence, a query graph corresponds to a relational calculus expression (see Chapter 9).  
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Note 17 

A query may also be stated in various ways in a high-level query language such as SQL (see Chapter 
8).  

 
 

Note 18 

Either definition can be used, since these rules are heuristic.  

 
 

Note 19 

Note that a Cartesian product is acceptable in some cases—for example, if each relation has only a 
single tuple because each had a previous select condition on a key field.  

 
 

Note 20 

This approach was first used in the optimizer for the SYSTEM R experimental DBMS developed at 
IBM.  

 
 

Note 21 

As we mentioned earlier, more accurate optimizers may store histograms of the distribution of records 
over the data values for an attribute.  

 
 

Note 22 

Selection cardinality was defined as the average number of records that satisfy an equality condition on 
an attribute, which is the average number of records that have the same value for the attribute and 
hence will be joined to a single record in the other file.  

 
 

Note 23 

Such hints have also been called query annotations.  
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Chapter 19: Transaction Processing Concepts 
19.1 Introduction to Transaction Processing 
19.2 Transaction and System Concepts 
19.3 Desirable Properties of Transactions 
19.4 Schedules and Recoverability 
19.5 Serializability of Schedules 
19.6 Transaction Support in SQL 
19.7 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

The concept of transaction provides a mechanism for describing logical units of database processing. 
Transaction processing systems are systems with large databases and hundreds of concurrent users 
that are executing database transactions. Examples of such systems include systems for reservations, 
banking, credit card processing, stock markets, supermarket checkout, and other similar systems. They 
require high availability and fast response time for hundreds of concurrent users. In this chapter we 
present the concepts that are needed in transaction processing systems. We define the concept of a 
transaction, which is used to represent a logical unit of database processing that must be completed in 
its entirety to ensure correctness. We discuss the concurrency control problem, which occurs when 
multiple transactions submitted by various users interfere with one another in a way that produces 
incorrect results. We also discuss recovery from transaction failures.  

Section 19.1 informally discusses why concurrency control and recovery are necessary in a database 
system. Section 19.2 introduces the concept of a transaction and discusses additional concepts related 
to transaction processing in database systems. Section 19.3 presents the concepts of atomicity, 
consistency preservation, isolation, and durability or permanency—called the ACID properties—that 
are considered desirable in transactions. Section 19.4 introduces the concept of schedules (or histories) 
of executing transactions and characterizes the recoverability of schedules. Section 19.5 discusses the 
concept of serializability of concurrent transaction executions, which can be used to define correct 
execution sequences (or schedules) of concurrent transactions. Section 19.6 presents the facilities that 
support the transaction concept in SQL2.  

The two subsequent chapters continue with more details on the techniques used to support transaction 
processing. Chapter 20 describes the basic concurrency control techniques, and Chapter 21 presents an 
overview of recovery techniques.  

 
 

19.1 Introduction to Transaction Processing 

19.1.1 Single-User Versus Multiuser Systems 
19.1.2 Transactions, Read and Write Operations, and DBMS Buffers 
19.1.3 Why Concurrency Control Is Needed 
19.1.4 Why Recovery Is Needed

In this section we informally introduce the concepts of concurrent execution of transactions and 
recovery from transaction failures. Section 19.1.1 compares single-user and multiuser database systems 
and demonstrates how concurrent execution of transactions can take place in multiuser systems. 
Section 19.1.2 defines the concept of transaction and presents a simple model of transaction execution, 
based on read and write database operations, that is used to formalize concurrency control and recovery 
concepts. Section 19.1.3 shows by informal examples why concurrency control techniques are needed 
in multiuser systems. Finally, Section 19.1.4 discusses why techniques are needed to permit recovery 
from failure by discussing the different ways in which transactions can fail while executing.  
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19.1.1 Single-User Versus Multiuser Systems 

One criterion for classifying a database system is according to the number of users who can use the 
system concurrently—that is, at the same time. A DBMS is single-user if at most one user at a time 
can use the system, and it is multiuser if many users can use the system—and hence access the 
database—concurrently. Single-user DBMSs are mostly restricted to some microcomputer systems; 
most other DBMSs are multiuser. For example, an airline reservations system is used by hundreds of 
travel agents and reservation clerks concurrently. Systems in banks, insurance agencies, stock 
exchanges, supermarkets, and the like are also operated on by many users who submit transactions 
concurrently to the system.  

Multiple users can access databases—and use computer systems—simultaneously because of the 
concept of multiprogramming, which allows the computer to execute multiple programs—or 
processes—at the same time. If only a single central processing unit (CPU) exists, it can actually 
execute at most one process at a time. However, multiprogramming operating systems execute some 
commands from one process, then suspend that process and execute some commands from the next 
process, and so on. A process is resumed at the point where it was suspended whenever it gets its turn 
to use the CPU again. Hence, concurrent execution of processes is actually interleaved, as illustrated 
in Figure 19.01, which shows two processes A and B executing concurrently in an interleaved fashion. 
Interleaving keeps the CPU busy when a process requires an input or output (I/O) operation, such as 
reading a block from disk. The CPU is switched to execute another process rather than remaining idle 
during I/O time. Interleaving also prevents a long process from delaying other processes.  

 

 

 
 

If the computer system has multiple hardware processors (CPUs), parallel processing of multiple 
processes is possible, as illustrated by processes C and D in Figure 19.01. Most of the theory 
concerning concurrency control in databases is developed in terms of interleaved concurrency, so for 
the remainder of this chapter we assume this model. In a multiuser DBMS, the stored data items are the 
primary resources that may be accessed concurrently by interactive users or application programs, 
which are constantly retrieving information from and modifying the database.  

 
 

19.1.2 Transactions, Read and Write Operations, and DBMS Buffers 

A transaction is a logical unit of database processing that includes one or more database access 
operations—these can include insertion, deletion, modification, or retrieval operations. The database 
operations that form a transaction can either be embedded within an application program or they can be 
specified interactively via a high-level query language such as SQL. One way of specifying the 
transaction boundaries is by specifying explicit begin transaction and end transaction statements in 
an application program; in this case, all database access operations between the two are considered as 
forming one transaction. A single application program may contain more than one transaction if it 
contains several transaction boundaries. If the database operations in a transaction do not update the 
database but only retrieve data, the transaction is called a read-only transaction.  

The model of a database that is used to explain transaction processing concepts is much simplified. A 
database is basically represented as a collection of named data items. The size of a data item is called 
its granularity, and it can be a field of some record in the database, or it may be a larger unit such as a 

1 Page 552 of 893



www.manaraa.com

record or even a whole disk block, but the concepts we discuss are independent of the data item 
granularity. Using this simplified database model, the basic database access operations that a 
transaction can include are as follows:  

• read_item(X): Reads a database item named X into a program variable. To simplify our 
notation, we assume that the program variable is also named X.  

• write_item(X): Writes the value of program variable X into the database item named X.  

As we discussed in Chapter 5, the basic unit of data transfer from disk to main memory is one block. 
Executing a read_item(X) command includes the following steps:  

1. Find the address of the disk block that contains item X.  
2. Copy that disk block into a buffer in main memory (if that disk block is not already in some 

main memory buffer).  
3. Copy item X from the buffer to the program variable named X.  

Executing a write_item(X) command includes the following steps:  

1. Find the address of the disk block that contains item X.  
2. Copy that disk block into a buffer in main memory (if that disk block is not already in some 

main memory buffer).  
3. Copy item X from the program variable named X into its correct location in the buffer.  
4. Store the updated block from the buffer back to disk (either immediately or at some later point 

in time).  

Step 4 is the one that actually updates the database on disk. In some cases the buffer is not immediately 
stored to disk, in case additional changes are to be made to the buffer. Usually, the decision about when 
to store back a modified disk block that is in a main memory buffer is handled by the recovery manager 
of the DBMS in cooperation with the underlying operating system. The DBMS will generally maintain 
a number of buffers in main memory that hold database disk blocks containing the database items 
being processed. When these buffers are all occupied, and additional database blocks must be copied 
into memory, some buffer replacement policy is used to choose which of the current buffers is to be 
replaced. If the chosen buffer has been modified, it must be written back to disk before it is reused 
(Note 1).  

A transaction includes read_item and write_item operations to access and update the database. 
Figure 19.02 shows examples of two very simple transactions. The read-set of a transaction is the set 
of all items that the transaction reads, and the write-set is the set of all items that the transaction writes. 
For example, the read-set of in Figure 19.02 is {X, Y} and its write-set is also {X, Y}.  

 

 

 
 

Concurrency control and recovery mechanisms are mainly concerned with the database access 
commands in a transaction. Transactions submitted by the various users may execute concurrently and 
may access and update the same database items. If this concurrent execution is uncontrolled, it may 
lead to problems, such as an inconsistent database. In the next section we informally introduce three of 
the problems that may occur.  

 
 

19.1.3 Why Concurrency Control Is Needed 
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The Lost Update Problem 
The Temporary Update (or Dirty Read) Problem 
The Incorrect Summary Problem

Several problems can occur when concurrent transactions execute in an uncontrolled manner. We 
illustrate some of these problems by referring to a much simplified airline reservations database in 
which a record is stored for each airline flight. Each record includes the number of reserved seats on 
that flight as a named data item, among other information. Figure 19.02(a) shows a transaction that 
transfers N reservations from one flight whose number of reserved seats is stored in the database item 
named X to another flight whose number of reserved seats is stored in the database item named Y. 
Figure 19.02(b) shows a simpler transaction that just reserves M seats on the first flight (X) referenced 
in transaction (Note 2). To simplify our example, we do not show additional portions of the 
transactions, such as checking whether a flight has enough seats available before reserving additional 
seats.  

When a database access program is written, it has the flight numbers, their dates, and the number of 
seats to be booked as parameters; hence, the same program can be used to execute many transactions, 
each with different flights and numbers of seats to be booked. For concurrency control purposes, a 
transaction is a particular execution of a program on a specific date, flight, and number of seats. In 
Figure 19.02(a) and Figure 19.02(b), the transactions and are specific executions of the programs that 
refer to the specific flights whose numbers of seats are stored in data items X and Y in the database. We 
now discuss the types of problems we may encounter with these two transactions if they run 
concurrently.  

 
 

The Lost Update Problem 

This problem occurs when two transactions that access the same database items have their operations 
interleaved in a way that makes the value of some database item incorrect. Suppose that transactions 
and are submitted at approximately the same time, and suppose that their operations are interleaved as 
shown in Figure 19.03(a); then the final value of item X is incorrect, because reads the value of X 
before changes it in the database, and hence the updated value resulting from is lost. For example, if X 
= 80 at the start (originally there were 80 reservations on the flight), N = 5 ( transfers 5 seat 
reservations from the flight corresponding to X to the flight corresponding to Y), and M = 4 ( reserves 4 
seats on X), the final result should be X = 79; but in the interleaving of operations shown in Figure 
19.03(a), it is X = 84 because the update in that removed the five seats from X was lost.  

 

 

 
 

The Temporary Update (or Dirty Read) Problem 

This problem occurs when one transaction updates a database item and then the transaction fails for 
some reason (see Section 19.1.4). The updated item is accessed by another transaction before it is 
changed back to its original value. Figure 19.03(b) shows an example where updates item X and then 
fails before completion, so the system must change X back to its original value. Before it can do so, 
however, transaction reads the "temporary" value of X, which will not be recorded permanently in the 
database because of the failure of . The value of item X that is read by is called dirty data, because it 
has been created by a transaction that has not completed and committed yet; hence, this problem is also 
known as the dirty read problem.  
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The Incorrect Summary Problem 

If one transaction is calculating an aggregate summary function on a number of records while other 
transactions are updating some of these records, the aggregate function may calculate some values 
before they are updated and others after they are updated. For example, suppose that a transaction is 
calculating the total number of reservations on all the flights; meanwhile, transaction is executing. If 
the interleaving of operations shown in Figure 19.03(c) occurs, the result of will be off by an amount N 
because reads the value of X after N seats have been subtracted from it but reads the value of Y before 
those N seats have been added to it.  

Another problem that may occur is called unrepeatable read, where a transaction T reads an item 
twice and the item is changed by another transaction T between the two reads. Hence, T receives 
different values for its two reads of the same item. This may occur, for example, if during an airline 
reservation transaction, a customer is inquiring about seat availability on several flights. When the 
customer decides on a particular flight, the transaction then reads the number of seats on that flight a 
second time before completing the reservation.  

 
 

19.1.4 Why Recovery Is Needed 

Types of Failures

Whenever a transaction is submitted to a DBMS for execution, the system is responsible for making 
sure that either (1) all the operations in the transaction are completed successfully and their effect is 
recorded permanently in the database, or (2) the transaction has no effect whatsoever on the database or 
on any other transactions. The DBMS must not permit some operations of a transaction T to be applied 
to the database while other operations of T are not. This may happen if a transaction fails after 
executing some of its operations but before executing all of them.  

 
 

Types of Failures 

Failures are generally classified as transaction, system, and media failures. There are several possible 
reasons for a transaction to fail in the middle of execution:  

1. A computer failure (system crash): A hardware, software, or network error occurs in the 
computer system during transaction execution. Hardware crashes are usually media failures—
for example, main memory failure.  

2. A transaction or system error: Some operation in the transaction may cause it to fail, such as 
integer overflow or division by zero. Transaction failure may also occur because of erroneous 
parameter values or because of a logical programming error (Note 3). In addition, the user 
may interrupt the transaction during its execution.  

3. Local errors or exception conditions detected by the transaction: During transaction 
execution, certain conditions may occur that necessitate cancellation of the transaction. For 
example, data for the transaction may not be found. Notice that an exception condition (Note 
4), such as insufficient account balance in a banking database, may cause a transaction, such 
as a fund withdrawal, to be canceled. This exception should be programmed in the transaction 
itself, and hence would not be considered a failure.  

4. Concurrency control enforcement: The concurrency control method (see Chapter 20) may 
decide to abort the transaction, to be restarted later, because it violates serializability (see 
Section 19.5) or because several transactions are in a state of deadlock.  
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5. Disk failure: Some disk blocks may lose their data because of a read or write malfunction or 
because of a disk read/write head crash. This may happen during a read or a write operation of 
the transaction.  

6. Physical problems and catastrophes: This refers to an endless list of problems that includes 
power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes by mistake, 
and mounting of a wrong tape by the operator.  

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. Whenever a failure of type 
1 through 4 occurs, the system must keep sufficient information to recover from the failure. Disk 
failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do occur, recovery 
is a major task. We discuss recovery from failure in Chapter 21.  

The concept of transaction is fundamental to many techniques for concurrency control and recovery 
from failures.  

 
 

19.2 Transaction and System Concepts 

19.2.1 Transaction States and Additional Operations 
19.2.2 The System Log 
19.2.3 Commit Point of a Transaction

In this section we discuss additional concepts relevant to transaction processing. Section 19.2.1 
describes the various states a transaction can be in, and discusses additional relevant operations needed 
in transaction processing. Section 19.2.2 discusses the system log, which keeps information needed for 
recovery. Section 19.2.3 describes the concept of commit points of transactions, and why they are 
important in transaction processing.  

 
 

19.2.1 Transaction States and Additional Operations 

A transaction is an atomic unit of work that is either completed in its entirety or not done at all. For 
recovery purposes, the system needs to keep track of when the transaction starts, terminates, and 
commits or aborts (see below). Hence, the recovery manager keeps track of the following operations:  

• BEGIN_TRANSACTION: This marks the beginning of transaction execution.  
• READ or WRITE: These specify read or write operations on the database items that are executed 

as part of a transaction.  
• END_TRANSACTION: This specifies that READ and WRITE transaction operations have ended and 

marks the end of transaction execution. However, at this point it may be necessary to check 
whether the changes introduced by the transaction can be permanently applied to the database 
(committed) or whether the transaction has to be aborted because it violates serializability (see 
Section 19.5) or for some other reason.  

• COMMIT_TRANSACTION: This signals a successful end of the transaction so that any changes 
(updates) executed by the transaction can be safely committed to the database and will not be 
undone.  

• ROLLBACK (or ABORT): This signals that the transaction has ended unsuccessfully, so that any 
changes or effects that the transaction may have applied to the database must be undone.  

Figure 19.04 shows a state transition diagram that describes how a transaction moves through its 
execution states. A transaction goes into an active state immediately after it starts execution, where it 
can issue READ and WRITE operations. When the transaction ends, it moves to the partially committed 
state. At this point, some recovery protocols need to ensure that a system failure will not result in an 
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inability to record the changes of the transaction permanently (usually by recording changes in the 
system log, discussed in the next section) (Note 5). Once this check is successful, the transaction is said 
to have reached its commit point and enters the committed state. Commit points are discussed in more 
detail in Section 19.2.3. Once a transaction is committed, it has concluded its execution successfully 
and all its changes must be recorded permanently in the database.  

 

 

 
 

However, a transaction can go to the failed state if one of the checks fails or if the transaction is 
aborted during its active state. The transaction may then have to be rolled back to undo the effect of its 
WRITE operations on the database. The terminated state corresponds to the transaction leaving the 
system. The transaction information that is maintained in system tables while the transaction has been 
running is removed when the transaction terminates. Failed or aborted transactions may be restarted 
later—either automatically or after being resubmitted by the user—as brand new transactions.  

 
 

19.2.2 The System Log 

To be able to recover from failures that affect transactions, the system maintains a log (Note 6) to keep 
track of all transaction operations that affect the values of database items. This information may be 
needed to permit recovery from failures. The log is kept on disk, so it is not affected by any type of 
failure except for disk or catastrophic failure. In addition, the log is periodically backed up to archival 
storage (tape) to guard against such catastrophic failures. We now list the types of entries—called log 
records—that are written to the log and the action each performs. In these entries, T refers to a unique 
transaction-id that is generated automatically by the system and is used to identify each transaction:  

1. [start_transaction, T]: Indicates that transaction T has started execution.  
2. [write_item, T,X,old_value,new_value]: Indicates that transaction T has changed the value 

of database item X from old_value to new_value.  
3. [read_item, T,X]: Indicates that transaction T has read the value of database item X.  
4. [commit,T]: Indicates that transaction T has completed successfully, and affirms that its 

effect can be committed (recorded permanently) to the database.  
5. [abort,T]: Indicates that transaction T has been aborted.  

Protocols for recovery that avoid cascading rollbacks (see Section 19.4.2)—which include all practical 
protocols—do not require that READ operations be written to the system log. However, if the log is 
also used for other purposes—such as auditing (keeping track of all database operations)—then such 
entries can be included. In addition, some recovery protocols require simpler WRITE entries that do not 
include new_value (see Section 19.4.2).  

Notice that we assume here that all permanent changes to the database occur within transactions, so the 
notion of recovery from a transaction failure amounts to either undoing or redoing transaction 
operations individually from the log. If the system crashes, we can recover to a consistent database 
state by examining the log and using one of the techniques described in Chapter 21. Because the log 
contains a record of every WRITE operation that changes the value of some database item, it is possible 
to undo the effect of these WRITE operations of a transaction T by tracing backward through the log and 
resetting all items changed by a WRITE operation of T to their old_values. Redoing the operations 
of a transaction may also be needed if all its updates are recorded in the log but a failure occurs before 
we can be sure that all these new_values have been written permanently in the actual database on 
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disk (Note 7). Redoing the operations of transaction T is applied by tracing forward through the log and 
setting all items changed by a WRITE operation of T to their new_values.  

 
 

19.2.3 Commit Point of a Transaction 

A transaction T reaches its commit point when all its operations that access the database have been 
executed successfully and the effect of all the transaction operations on the database have been 
recorded in the log. Beyond the commit point, the transaction is said to be committed, and its effect is 
assumed to be permanently recorded in the database. The transaction then writes a commit record 
[commit,T] into the log. If a system failure occurs, we search back in the log for all transactions T that 
have written a [start_transaction,T] record into the log but have not written their [commit,T] 
record yet; these transactions may have to be rolled back to undo their effect on the database during the 
recovery process. Transactions that have written their commit record in the log must also have recorded 
all their WRITE operations in the log, so their effect on the database can be redone from the log records.  

Notice that the log file must be kept on disk. As discussed in Chapter 5, updating a disk file involves 
copying the appropriate block of the file from disk to a buffer in main memory, updating the buffer in 
main memory, and copying the buffer to disk. It is common to keep one or more blocks of the log file 
in main memory buffers until they are filled with log entries and then to write them back to disk only 
once, rather than writing to disk every time a log entry is added. This saves the overhead of multiple 
disk writes of the same log file block. At the time of a system crash, only the log entries that have been 
written back to disk are considered in the recovery process because the contents of main memory may 
be lost. Hence, before a transaction reaches its commit point, any portion of the log that has not been 
written to the disk yet must now be written to the disk. This process is called force-writing the log file 
before committing a transaction.  

 
 

19.3 Desirable Properties of Transactions 

Transactions should possess several properties. These are often called the ACID properties, and they 
should be enforced by the concurrency control and recovery methods of the DBMS. The following are 
the ACID properties:  

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in its entirety 
or not performed at all.  

2. Consistency preservation: A transaction is consistency preserving if its complete execution 
take(s) the database from one consistent state to another.  

3. Isolation: A transaction should appear as though it is being executed in isolation from other 
transactions. That is, the execution of a transaction should not be interfered with by any other 
transactions executing concurrently.  

4. Durability or permanency: The changes applied to the database by a committed transaction 
must persist in the database. These changes must not be lost because of any failure.  

The atomicity property requires that we execute a transaction to completion. It is the responsibility of 
the transaction recovery subsystem of a DBMS to ensure atomicity. If a transaction fails to complete 
for some reason, such as a system crash in the midst of transaction execution, the recovery technique 
must undo any effects of the transaction on the database.  

The preservation of consistency is generally considered to be the responsibility of the programmers 
who write the database programs or of the DBMS module that enforces integrity constraints. Recall 
that a database state is a collection of all the stored data items (values) in the database at a given point 
in time. A consistent state of the database satisfies the constraints specified in the schema as well as 
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any other constraints that should hold on the database. A database program should be written in a way 
that guarantees that, if the database is in a consistent state before executing the transaction, it will be in 
a consistent state after the complete execution of the transaction, assuming that no interference with 
other transactions occurs.  

Isolation is enforced by the concurrency control subsystem of the DBMS (Note 8). If every transaction 
does not make its updates visible to other transactions until it is committed, one form of isolation is 
enforced that solves the temporary update problem and eliminates cascading rollbacks (see Chapter 
21). There have been attempts to define the level of isolation of a transaction. A transaction is said to 
have level 0 (zero) isolation if it does not overwrite the dirty reads of higher-level transactions. A level 
1 (one) isolation transaction has no lost updates; and level 2 isolation has no lost updates and no dirty 
reads. Finally, level 3 isolation (also called true isolation) has, in addition to degree 2 properties, 
repeatable reads.  

Finally, the durability property is the responsibility of the recovery subsystem of the DBMS. We will 
discuss how recovery protocols enforce durability and atomicity in Chapter 21.  

 
 

19.4 Schedules and Recoverability 

19.4.1 Schedules (Histories) of Transactions 
19.4.2 Characterizing Schedules Based on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the order of execution of 
operations from the various transactions is known as a schedule (or history). In this section, we first 
define the concept of schedule, and then we characterize the types of schedules that facilitate recovery 
when failures occur. In Section 19.5, we characterize schedules in terms of the interference of 
participating transactions, leading to the concepts of serializability and serializable schedules.  

 
 

19.4.1 Schedules (Histories) of Transactions 

A schedule (or history) S of n transactions , , ..., is an ordering of the operations of the transactions 
subject to the constraint that, for each transaction that participates in S, the operations of in S must 
appear in the same order in which they occur in . Note, however, that operations from other 
transactions can be interleaved with the operations of in S. For now, consider the order of operations in 
S to be a total ordering, although it is possible theoretically to deal with schedules whose operations 
form partial orders (as we discuss later).  

For the purpose of recovery and concurrency control, we are mainly interested in the read_item and 
write_item operations of the transactions, as well as the commit and abort operations. A 
shorthand notation for describing a schedule uses the symbols r, w, c, and a for the operations 
read_item, write_item, commit, and abort, respectively, and appends as subscript the 
transaction id (transaction number) to each operation in the schedule. In this notation, the database item 
X that is read or written follows the r and w operations in parentheses. For example, the schedule of 
Figure 19.03(a), which we shall call , can be written as follows in this notation:  
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Similarly, the schedule for Figure 19.03(b), which we call , can be written as follows, if we assume that 
transaction aborted after its read_item(Y) operation:  

 

 

 
 

Two operations in a schedule are said to conflict if they satisfy all three of the following conditions: (1) 
they belong to different transactions; (2) they access the same item X; and (3) at least one of the 
operations is a write_item(X). For example, in schedule , the operations (X) and (X) conflict, as do 
the operations (X) and (X), and the operations (X) and (X). However, the operations (X) and (X) do not 
conflict, since they are both read operations; the operations (X) and (Y) do not conflict, because they 
operate on distinct data items X and Y; and the operations (X) and (X) do not conflict, because they 
belong to the same transaction.  

A schedule S of n transactions , , ..., , is said to be a complete schedule if the following conditions 
hold:  

1. The operations in S are exactly those operations in , , ..., , including a commit or abort 
operation as the last operation for each transaction in the schedule.  

2. For any pair of operations from the same transaction , their order of appearance in S is the 
same as their order of appearance in . 

3. For any two conflicting operations, one of the two must occur before the other in the schedule 
(Note 9). 

The preceding condition (3) allows for two nonconflicting operations to occur in the schedule without 
defining which occurs first, thus leading to the definition of a schedule as a partial order of the 
operations in the n transactions (Note 10). However, a total order must be specified in the schedule for 
any pair of conflicting operations (condition 3) and for any pair of operations from the same transaction 
(condition 2). Condition 1 simply states that all operations in the transactions must appear in the 
complete schedule. Since every transaction has either committed or aborted, a complete schedule will 
not contain any active transactions at the end of the schedule.  

In general, it is difficult to encounter complete schedules in a transaction processing system, because 
new transactions are continually being submitted to the system. Hence, it is useful to define the concept 
of the committed projection C(S) of a schedule S, which includes only the operations in S that belong 
to committed transactions—that is, transactions whose commit operation is in S.  

 
 

19.4.2 Characterizing Schedules Based on Recoverability 

For some schedules it is easy to recover from transaction failures, whereas for other schedules the 
recovery process can be quite involved. Hence, it is important to characterize the types of schedules for 
which recovery is possible, as well as those for which recovery is relatively simple. These 
characterizations do not actually provide the recovery algorithm but instead only attempt to 
theoretically characterize the different types of schedules.  

First, we would like to ensure that, once a transaction T is committed, it should never be necessary to 
roll back T. The schedules that theoretically meet this criterion are called recoverable schedules and 
those that do not are called nonrecoverable, and hence should not be permitted. A schedule S is 
recoverable if no transaction T in S commits until all transactions T that have written an item that T 
reads have committed. A transaction T reads from transaction T in a schedule S if some item X is first 
written by T and later read by T. In addition, T should not have been aborted before T reads item X, and 
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there should be no transactions that write X after T writes it and before T reads it (unless those 
transactions, if any, have aborted before T reads X).  

Recoverable schedules require a complex recovery process as we shall see, but if sufficient information 
is kept (in the log), a recovery algorithm can be devised. The (partial) schedules and from the preceding 
section are both recoverable, since they satisfy the above definition. Consider the schedule given 
below, which is the same as schedule except that two commit operations have been added to :  

 

 

 
 

is recoverable, even though it suffers from the lost update problem. However, consider the two (partial) 
schedules and that follow:  

 

 

 
 

is not recoverable, because reads item X from , and then commits before commits. If aborts after the 
operation in , then the value of X that read is no longer valid and must be aborted after it had been 
committed, leading to a schedule that is not recoverable. For the schedule to be recoverable, the 
operation in must be postponed until after commits, as shown in ; if aborts instead of committing, then 
should also abort as shown in , because the value of X it read is no longer valid.  

In a recoverable schedule, no committed transaction ever needs to be rolled back. However, it is 
possible for a phenomenon known as cascading rollback (or cascading abort) to occur, where an 
uncommitted transaction has to be rolled back because it read an item from a transaction that failed. 
This is illustrated in schedule , where transaction has to be rolled back because it read item X from , 
and then aborted.  

Because cascading rollback can be quite time-consuming—since numerous transactions can be rolled 
back (see Chapter 21)—it is important to characterize the schedules where this phenomenon is 
guaranteed not to occur. A schedule is said to be cascadeless, or avoid cascading rollback, if every 
transaction in the schedule reads only items that were written by committed transactions. In this case, 
all items read will not be discarded, so no cascading rollback will occur. To satisfy this criterion, the 
(X) command in schedule must be postponed until after has committed (or aborted), thus delaying but 
ensuring no cascading rollback if aborts. 

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in which 
transactions can neither read nor write an item X until the last transaction that wrote X has committed 
(or aborted). Strict schedules simplify the recovery process. In a strict schedule, the process of undoing 
a write_item(X) operation of an aborted transaction is simply to restore the before image 
(old_value or BFIM) of data item X. This simple procedure always works correctly for strict schedules, 
but it may not work for recoverable or cascadeless schedules. For example, consider schedule :  
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Suppose that the value of X was originally 9, which is the before image stored in the system log along 
with the (X, 5) operation. If aborts, as in , the recovery procedure that restores the before image of an 
aborted write operation will restore the value of X to 9, even though it has already been changed to 8 by 
transaction , thus leading to potentially incorrect results. Although schedule is cascadeless, it is not a 
strict schedule, since it permits to write item X even though the transaction that last wrote X had not yet 
committed (or aborted). A strict schedule does not have this problem.  

We have now characterized schedules according to the following terms: (1) recoverability, (2) 
avoidance of cascading rollback, and (3) strictness. We have thus seen that those properties of 
schedules are successively more stringent conditions. Thus condition (2) implies condition (1), and 
condition (3) implies both (2) and (1), but the reverse is not always true.  

 
 

19.5 Serializability of Schedules 

 
19.5.1 Serial, Nonserial, and Conflict-Serializable Schedules 
19.5.2 Testing for Conflict Serializability of a Schedule 
19.5.3 Uses of Serializability 
19.5.4 View Equivalence and View Serializability 
19.5.5 Other Types of Equivalence of Schedules

In the previous section, we characterized schedules based on their recoverability properties. We now 
characterize the types of schedules that are considered correct when concurrent transactions are 
executing. Suppose that two users—two airline reservation clerks—submit to the DBMS transactions 
and of Figure 19.02 at approximately the same time. If no interleaving of operations is permitted, there 
are only two possible outcomes:  

1. Execute all the operations of transaction (in sequence) followed by all the operations of 
transaction (in sequence).  

2. Execute all the operations of transaction (in sequence) followed by all the operations of 
transaction (in sequence).  

These alternatives are shown in Figure 19.05(a) and Figure 19.05(b), respectively. If interleaving of 
operations is allowed, there will be many possible orders in which the system can execute the 
individual operations of the transactions. Two possible schedules are shown in Figure 19.05(c). The 
concept of serializability of schedules is used to identify which schedules are correct when transaction 
executions have interleaving of their operations in the schedules. This section defines serializability 
and discusses how it may be used in practice.  

 

 

 
 

19.5.1 Serial, Nonserial, and Conflict-Serializable Schedules 

Schedules A and B in Figure 19.05(a) and Figure 19.05(b) are called serial because the operations of 
each transaction are executed consecutively, without any interleaved operations from the other 
transaction. In a serial schedule, entire transactions are performed in serial order: and in Figure 
19.05(a), and and then in Figure 19.05(b). Schedules C and D in Figure 19.05(c) are called nonserial 
because each sequence interleaves operations from the two transactions.  
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Formally, a schedule S is serial if, for every transaction T participating in the schedule, all the 
operations of T are executed consecutively in the schedule; otherwise, the schedule is called nonserial. 
Hence, in a serial schedule, only one transaction at a time is active—the commit (or abort) of the active 
transaction initiates execution of the next transaction. No interleaving occurs in a serial schedule. One 
reasonable assumption we can make, if we consider the transactions to be independent, is that every 
serial schedule is considered correct. We can assume this because every transaction is assumed to be 
correct if executed on its own (according to the consistency preservation property of Section 19.3). 
Hence, it does not matter which transaction is executed first. As long as every transaction is executed 
from beginning to end without any interference from the operations of other transactions, we get a 
correct end result on the database. The problem with serial schedules is that they limit concurrency or 
interleaving of operations. In a serial schedule, if a transaction waits for an I/O operation to complete, 
we cannot switch the CPU processor to another transaction, thus wasting valuable CPU processing 
time. In addition, if some transaction T is quite long, the other transactions must wait for T to complete 
all its operations before commencing. Hence, serial schedules are generally considered unacceptable in 
practice. 

To illustrate our discussion, consider the schedules in Figure 19.05, and assume that the initial values 
of database items are X = 90 and Y = 90 and that N = 3 and M = 2. After executing transactions and , 
we would expect the database values to be X = 89 and Y = 93, according to the meaning of the 
transactions. Sure enough, executing either of the serial schedules A or B gives the correct results. Now 
consider the nonserial schedules C and D. Schedule C (which is the same as Figure 19.03a) gives the 
results X = 92 and Y = 93, in which the X value is erroneous, whereas schedule D gives the correct 
results.  

Schedule C gives an erroneous result because of the lost update problem discussed in Section 19.1.3; 
transaction reads the value of X before it is changed by transaction , so only the effect of on X is 
reflected in the database. The effect of on X is lost, overwritten by , leading to the incorrect result for 
item X. However, some nonserial schedules give the correct expected result, such as schedule D. We 
would like to determine which of the nonserial schedules always give a correct result and which may 
give erroneous results. The concept used to characterize schedules in this manner is that of 
serializability of a schedule.  

A schedule S of n transactions is serializable if it is equivalent to some serial schedule of the same n 
transactions. We will define the concept of equivalence of schedules shortly. Notice that there are n! 
possible serial schedules of n transactions and many more possible nonserial schedules. We can form 
two disjoint groups of the nonserial schedules: those that are equivalent to one (or more) of the serial 
schedules, and hence are serializable; and those that are not equivalent to any serial schedule and hence 
are not serializable.  

Saying that a nonserial schedule S is serializable is equivalent to saying that it is correct, because it is 
equivalent to a serial schedule, which is considered correct. The remaining question is: When are two 
schedules considered "equivalent"? There are several ways to define equivalence of schedules. The 
simplest, but least satisfactory, definition of schedule equivalence involves comparing the effects of the 
schedules on the database. Two schedules are called result equivalent if they produce the same final 
state of the database. However, two different schedules may accidentally produce the same final state. 
For example, in Figure 19.06, schedules and will produce the same final database state if they execute 
on a database with an initial value of X = 100; but for other initial values of X, the schedules are not 
result equivalent. In addition, these two schedules execute different transactions, so they definitely 
should not be considered equivalent. Hence, result equivalence alone cannot be used to define 
equivalence of schedules. The safest and most general approach to defining schedule equivalence is not 
to make any assumption about the types of operations included in the transactions. For two schedules to 
be equivalent, the operations applied to each data item affected by the schedules should be applied to 
that item in both schedules in the same order. Two definitions of equivalence of schedules are 
generally used: conflict equivalence and view equivalence. We discuss conflict equivalence next, which 
is the more commonly used definition.  
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Two schedules are said to be conflict equivalent if the order of any two conflicting operations is the 
same in both schedules. Recall from Section 19.4.1 that two operations in a schedule are said to conflict 
if they belong to different transactions, access the same database item, and at least one of the two 
operations is a write_item operation. If two conflicting operations are applied in different orders in 
two schedules, the effect can be different on the database or on other transactions in the schedule, and 
hence the schedules are not conflict equivalent. For example, if a read and write operation occur in the 
order (X), (X) in schedule , and in the reverse order (X), (X) in schedule , the value read by (X) can be 
different in the two schedules. Similarly, if two write operations occur in the order (X), (X) in , and in 
the reverse order (X), (X) in , the next r(X) operation in the two schedules will read potentially different 
values; or if these are the last operations writing item X in the schedules, the final value of item X in the 
database will be different. 

Using the notion of conflict equivalence, we define a schedule S to be conflict serializable (Note 11) if 
it is (conflict) equivalent to some serial schedule S´. In such a case, we can reorder the nonconflicting 
operations in S until we form the equivalent serial schedule S´. According to this definition, schedule D 
of Figure 19.05(c) is equivalent to the serial schedule A of Figure 19.05(a). In both schedules, the 
read_item(X) of reads the value of X written by , while the other read_item operations read the 
database values from the initial database state. In addition, is the last transaction to write Y, and is the 
last transaction to write X in both schedules. Because A is a serial schedule and schedule D is 
equivalent to A, D is a serializable schedule. Notice that the operations (Y) and (Y) of schedule D do 
not conflict with the operations (X) and (X), since they access different data items. Hence, we can move 
(Y), (Y) before (X), (X), leading to the equivalent serial schedule , .  

Schedule C of Figure 19.05(c) is not equivalent to either of the two possible serial schedules A and B, 
and hence is not serializable. Trying to reorder the operations of schedule C to find an equivalent serial 
schedule fails, because (X) and (X) conflict, which means that we cannot move (X) down to get the 
equivalent serial schedule T1, T2. Similarly, because (X) and (X) conflict, we cannot move (X) down to 
get the equivalent serial schedule T2, T1.  

Another, more complex definition of equivalence—called view equivalence, which leads to the concept 
of view serializability—is discussed in Section 19.5.4.  

 
 

19.5.2 Testing for Conflict Serializability of a Schedule 

There is a simple algorithm for determining the conflict serializability of a schedule. Most concurrency 
control methods do not actually test for serializability. Rather protocols, or rules, are developed that 
guarantee that a schedule will be serializable. We discuss the algorithm for testing conflict 
serializability of schedules here to gain a better understanding of these concurrency control protocols, 
which are discussed in Chapter 20.  

Algorithm 19.1 can be used to test a schedule for conflict serializability. The algorithm looks at only 
the read_item and write_item operations in a schedule to construct a precedence graph (or 
serialization graph), which is a directed graph G = (N, E) that consists of a set of nodes N = {, , ..., } 
and a set of directed edges . There is one node in the graph for each transaction in the schedule. Each 
edge in the graph is of the form ( â ), 1 1 j 1 n, 1 1 k 1 n, where is the starting node of and is the 
ending node of . Such an edge is created if one of the operations in appears in the schedule before 
some conflicting operation in .  
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ALGORITHM 19.1 Testing conflict serializability of a schedule S.  

1. For each transaction participating in schedule S, create a node labeled in the precedence graph.  
2. For each case in S where executes a read_item(X) after executes a write_item(X), 

create an edge ( â ) in the precedence graph.  
3. For each case in S where executes a write_item(X) after executes a read_item(X), 

create an edge ( â ) in the precedence graph.  
4. For each case in S where executes a write_item(X) after executes a write_item(X), 

create an edge ( â ) in the precedence graph.  
5. The schedule S is serializable if and only if the precedence graph has no cycles.  

The precedence graph is constructed as described in Algorithm 19.1. If there is a cycle in the 
precedence graph, schedule S is not (conflict) serializable; if there is no cycle, S is serializable. A cycle 
in a directed graph is a sequence of edges C = (( â ), ( â ), ..., ( â )) with the property that the 
starting node of each edge—except the first edge—is the same as the ending node of the previous edge, 
and the starting node of the first edge is the same as the ending node of the last edge (the sequence 
starts and ends at the same node).  

In the precedence graph, an edge from to means that transaction must come before transaction Tj in any 
serial schedule that is equivalent to S, because two conflicting operations appear in the schedule in that 
order. If there is no cycle in the precedence graph, we can create an equivalent serial schedule S ´ that 
is equivalent to S, by ordering the transactions that participate in S as follows: Whenever an edge exists 
in the precedence graph from to , must appear before in the equivalent serial schedule S ´ (Note 12). 
Notice that the edges ( â ) in a precedence graph can optionally be labeled by the name(s) of the data 
item(s) that led to creating the edge. Figure 19.07 shows such labels on the edges.  

 

 

 
 

In general, several serial schedules can be equivalent to S if the precedence graph for S has no cycle. 
However, if the precedence graph has a cycle, it is easy to show that we cannot create any equivalent 
serial schedule, so S is not serializable. The precedence graphs created for schedules A to D, 
respectively, of Figure 19.05 appear in Figure 19.07(a) to Figure 19.07(d). The graph for schedule C 
has a cycle, so it is not serializable. The graph for schedule D has no cycle, so it is serializable, and the 
equivalent serial schedule is followed by . The graphs for schedules A and B have no cycles, as 
expected, because the schedules are serial and hence serializable.  

Another example, in which three transactions participate, is shown in Figure 19.08. Figure 19.08(a) 
shows the read_item and write_item operations in each transaction. Two schedules E and F for 
these transactions are shown in Figure 19.08(b) and Figure 19.08(c), respectively, and the precedence 
graphs for schedules E and F are shown in Figure 19.08(d) and Figure 19.08(e). Schedule E is not 
serializable, because the corresponding precedence graph has cycles. Schedule F is serializable, and the 
serial schedule equivalent to F is shown in Figure 19.08(e). Although only one equivalent serial 
schedule exists for F, in general there may be more than one equivalent serial schedule for a 
serializable schedule. Figure 19.08(f) shows a precedence graph representing a schedule that has two 
equivalent serial schedules.  

 

1 Page 565 of 893



www.manaraa.com

 

 
 
 

19.5.3 Uses of Serializability 

As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S is (conflict) 
equivalent to a serial schedule—is tantamount to saying that S is correct. Being serializable is distinct 
from being serial, however. A serial schedule represents inefficient processing because no interleaving 
of operations from different transactions is permitted. This can lead to low CPU utilization while a 
transaction waits for disk I/O, or for another transaction to terminate, thus slowing down processing 
considerably. A serializable schedule gives the benefits of concurrent execution without giving up any 
correctness. In practice, it is quite difficult to test for the serializability of a schedule. The interleaving 
of operations from concurrent transactions—which are usually executed as processes by the operating 
system—is typically determined by the operating system scheduler, which allocates resources to all 
processes. Factors such as system load, time of transaction submission, and priorities of processes 
contribute to the ordering of operations in a schedule. Hence, it is difficult to determine how the 
operations of a schedule will be interleaved beforehand to ensure serializability.  

If transactions are executed at will and then the resulting schedule is tested for serializability, we must 
cancel the effect of the schedule if it turns out not to be serializable. This is a serious problem that 
makes this approach impractical. Hence, the approach taken in most practical systems is to determine 
methods that ensure serializability, without having to test the schedules themselves. The approach 
taken in most commercial DBMSs is to design protocols (sets of rules) that—if followed by every 
individual transaction or if enforced by a DBMS concurrency control subsystem—will ensure 
serializability of all schedules in which the transactions participate.  

Another problem appears here: When transactions are submitted continuously to the system, it is 
difficult to determine when a schedule begins and when it ends. Serializability theory can be adapted to 
deal with this problem by considering only the committed projection of a schedule S. Recall from 
Section 19.4.1 that the committed projection C(S) of a schedule S includes only the operations in S that 
belong to committed transactions. We can theoretically define a schedule S to be serializable if its 
committed projection C(S) is equivalent to some serial schedule, since only committed transactions are 
guaranteed by the DBMS.  

In Chapter 20, we discuss a number of different concurrency control protocols that guarantee 
serializability. The most common technique, called two-phase locking, is based on locking data items 
to prevent concurrent transactions from interfering with one another, and enforcing an additional 
condition that guarantees serializability. This is used in the majority of commercial DBMSs. Other 
protocols have been proposed (Note 13); these include timestamp ordering, where each transaction is 
assigned a unique timestamp and the protocol ensures that any conflicting operations are executed in 
the order of the transaction timestamps; multiversion protocols, which are based on maintaining 
multiple versions of data items; and optimistic (also called certification or validation) protocols, which 
check for possible serializability violations after the transactions terminate but before they are 
permitted to commit.  

 
 

19.5.4 View Equivalence and View Serializability 

In Section 19.5.1, we defined the concepts of conflict equivalence of schedules and conflict 
serializability. Another less restrictive definition of equivalence of schedules is called view 
equivalence. This leads to another definition of serializability called view serializability. Two schedules 
S and S ´ are said to be view equivalent if the following three conditions hold:  
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1. The same set of transactions participates in S and S ´, and S and S ´ include the same 
operations of those transactions.  

2. For any operation (X) of in S, if the value of X read by the operation has been written by an 
operation (X) of (or if it is the original value of X before the schedule started), the same 
condition must hold for the value of X read by operation (X) of in S'.  

3. If the operation (Y) of is the last operation to write item Y in S, then (Y) of must also be the last 
operation to write item Y in S'.  

The idea behind view equivalence is that, as long as each read operation of a transaction reads the 
result of the same write operation in both schedules, the write operations of each transaction must 
produce the same results. The read operations are hence said to see the same view in both schedules. 
Condition 3 ensures that the final write operation on each data item is the same in both schedules, so 
the database state should be the same at the end of both schedules. A schedule S is said to be view 
serializable if it is view equivalent to a serial schedule.  

The definitions of conflict serializability and view serializability are similar if a condition known as the 
constrained write assumption holds on all transactions in the schedule. This condition states that any 
write operation (X) in is preceded by a (X) in and that the value written by (X) in depends only on the 
value of X read by (X). This assumes that computation of the new value of X is a function f(X) based on 
the old value of X read from the database. However, the definition of view serializability is less 
restrictive than that of conflict serializability under the unconstrained write assumption, where the 
value written by an operation (X) in can be independent of its old value from the database. This is 
called a blind write, and it is illustrated by the following schedule of three transactions and :  

 

 

 
 

In the operations (X) and (X) are blind writes, since and do not read the value of X. The schedule is 
view serializable, since it is view equivalent to the serial schedule , , . However, is not conflict 
serializable, since it is not conflict equivalent to any serial schedule. It has been shown that any 
conflict-serializable schedule is also view serializable but not vice versa, as illustrated by the preceding 
example. There is an algorithm to test whether a schedule S is view serializable or not. However, the 
problem of testing for view serializability has been shown to be NP-complete, meaning that finding an 
efficient polynomial time algorithm for this problem is highly unlikely.  

 
 

19.5.5 Other Types of Equivalence of Schedules 

Serializability of schedules is sometimes considered to be too restrictive as a condition for ensuring the 
correctness of concurrent executions. Some applications can produce schedules that are correct by 
satisfying conditions less stringent than either conflict serializability or view serializability. An 
example is the type of transactions known as debit-credit transactions—for example, those that apply 
deposits and withdrawals to a data item whose value is the current balance of a bank account. The 
semantics of debit-credit operations is that they update the value of a data item X by either subtracting 
from or adding to the value of the data item. Because addition and subtraction operations are 
commutative—that is, they can be applied in any order—it is possible to produce correct schedules that 
are not serializable. For example, consider the following two transactions, each of which may be used 
to transfer an amount of money between two bank accounts:  
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Consider the following non-serializable schedule for the two transactions:  

 

 

 
 

With the additional knowledge, or semantics, that the operations between each (I) and (I) are 
commutative, we know that the order of executing the sequences consisting of (read, update, write) is 
not important as long as each (read, update, write) sequence by a particular transaction on a particular 
item I is not interrupted by conflicting operations. Hence, the schedule is considered to be correct even 
though it is not serializable. Researchers have been working on extending concurrency control theory 
to deal with cases where serializability is considered to be too restrictive as a condition for correctness 
of schedules.  

 
 

19.6 Transaction Support in SQL 

The definition of an SQL-transaction is similar to our already defined concept of a transaction. That is, 
it is a logical unit of work and is guaranteed to be atomic. A single SQL statement is always considered 
to be atomic—either it completes execution without error or it fails and leaves the database unchanged.  

With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is done 
implicitly when particular SQL statements are encountered. However, every transaction must have an 
explicit end statement, which is either a COMMIT or a ROLLBACK. Every transaction has certain 
characteristics attributed to it. These characteristics are specified by a SET TRANSACTION statement in 
SQL2. The characteristics are the access mode, the diagnostic area size, and the isolation level.  

The access mode can be specified as READ ONLY or READ WRITE. The default is READ WRITE, unless the 
isolation level of READ UNCOMMITTED is specified (see below), in which case READ ONLY is assumed. A 
mode of READ WRITE allows update, insert, delete and create commands to be executed. A mode of 
READ ONLY, as the name implies, is simply for data retrieval.  

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, indicating the number 
of conditions that can be held simultaneously in the diagnostic area. These conditions supply feedback 
information (errors or exceptions) to the user on the most recently executed SQL statement.  

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>, where the 
value for <isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, or 
SERIALIZABLE (Note 14). The default isolation level is SERIALIZABLE, although some systems use as 
READ COMMITTED their default. The use of the term SERIALIZABLE here is based on not allowing 
violations that cause dirty read, unrepeatable read, and phantoms (Note 15), and it is thus not identical 
to the way serializability was defined earlier in Section 19.5. If a transaction executes at a lower 
isolation level than SERIALIZABLE, then one or more of the following three violations may occur:  
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1. Dirty read: A transaction may read the update of a transaction , which has not yet committed. 
If fails and is aborted, then would have read a value that does not exist and is incorrect.  

2. Nonrepeatable read: A transaction may read a given value from a table. If another 
transaction later updates that value and reads that value again, will see a different value.  

3. Phantoms: A transaction may read a set of rows from a table, perhaps based on some 
condition specified in the SQL WHERE-clause. Now suppose that a transaction inserts a new 
row that also satisfies the WHERE-clause condition used in , into the table used by . If is 
repeated, then will see a phantom, a row that previously did not exist.  

Table 19.1 summarizes the possible violations for the different isolation levels. An entry of "yes" 
indicates that a violation is possible and an entry of "no" indicates that it is not possible.  

 

Table 19.1  Possible Violations Based on Isolation Levels as Defined in SQL  

 
 

  Type of Violation 

   
 

Isolation level Dirty read Nonrepeatable 
read 

Phantom 

 
 

READ UNCOMMITTTED yes  yes  yes  

READ COMMITTED  no  yes  yes 

REPEATABLE READ  no  no  yes  

SERIALIZABLE  no  no  no  

 
 

A sample SQL transaction might look like the following:  

 
 

EXEC SQL WHENEVER SQLERROR GOTO UNDO;  

EXEC SQL SET TRANSACTION  

READ WRITE  

DIAGNOSTICS SIZE 5  

ISOLATION LEVEL SERIALIZABLE;  

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)  

VALUES (‘Robert’, ‘Smith’, ‘991004321’, 2, 35000);  

EXEC SQL UPDATE EMPLOYEE  
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SET SALARY = SALARY * 1.1 WHERE DNO = 2;  

EXEC SQL COMMIT;  

GOTO THE_END;  

UNDO: EXEC SQL ROLLBACK;  

THE_END: ...;  

 
 

The above transaction consists of first inserting a new row in the EMPLOYEE table and then updating the 
salary of all employees who work in department 2. If an error occurs on any of the SQL statements, the 
entire transaction is rolled back. This implies that any updated salary (by this transaction) would be 
restored to its previous value and that the newly inserted row would be removed.  

As we have seen, SQL provides a number of transaction-oriented features. The DBA or database 
programmers can take advantage of these options to try improving transaction performance by relaxing 
serializability if that is acceptable for their applications.  

 
 

19.7 Summary 

In this chapter we discussed DBMS concepts for transaction processing. We introduced the concept of 
a database transaction and the operations relevant to transaction processing. We compared single-user 
systems to multiuser systems and then presented examples of how uncontrolled execution of concurrent 
transactions in a multiuser system can lead to incorrect results and database values. We also discussed 
the various types of failures that may occur during transaction execution.  

We then introduced the typical states that a transaction passes through during execution, and discussed 
several concepts that are used in recovery and concurrency control methods. The system log keeps 
track of database accesses, and the system uses this information to recover from failures. A transaction 
either succeeds and reaches its commit point or it fails and has to be rolled back. A committed 
transaction has its changes permanently recorded in the database. We presented an overview of the 
desirable properties of transactions—namely, atomicity, consistency preservation, isolation, and 
durability—which are often referred to as the ACID properties.  

We then defined a schedule (or history) as an execution sequence of the operations of several 
transactions with possible interleaving. We characterized schedules in terms of their recoverability. 
Recoverable schedules ensure that, once a transaction commits, it never needs to be undone. 
Cascadeless schedules add the additional condition to ensure that no aborted transaction requires the 
cascading abort of other transactions. Strict schedules provide an even stronger condition that allows a 
simple recovery scheme consisting of restoring the old values of items that have been changed by an 
aborted transaction.  

We then defined equivalence of schedules and saw that a serializable schedule is equivalent to some 
serial schedule. We defined the concepts of conflict equivalence and view equivalence, which led to 
definitions for conflict serializability and view serializability. A serializable schedule is considered 
correct. We then presented algorithms for testing the (conflict) serializability of a schedule. We 
discussed why testing for serializability is impractical in a real system, although it can be used to define 
and verify concurrency control protocols, and we briefly mentioned less restrictive definitions of 
schedule equivalence. Finally, we gave a brief overview of how transaction concepts are used in 
practice within SQL.  

1 Page 570 of 893



www.manaraa.com

We will discuss concurrency control protocols in Chapter 20, and recovery protocols in Chapter 21.  

 
 

Review Questions 

 19.1. What is meant by the concurrent execution of database transactions in a multiuser system? 
Discuss why concurrency control is needed, and give informal examples.  

 19.2. Discuss the different types of failures. What is meant by catastrophic failure?  

 19.3. Discuss the actions taken by the read_item and write_item operations on a database.  

 19.4. Draw a state diagram, and discuss the typical states that a transaction goes through during 
execution.  

 19.5. What is the system log used for? What are the typical kinds of records in a system log? What 
are transaction commit points, and why are they important?  

 19.6. Discuss the atomicity, durability, isolation, and consistency preservation properties of a 
database transaction.  

 19.7. What is a schedule (history)? Define the concepts of recoverable, cascadeless, and strict 
schedules, and compare them in terms of their recoverability.  

 19.8. Discuss the different measures of transaction equivalence. What is the difference between 
conflict equivalence and view equivalence?  

 19.9. What is a serial schedule? What is a serializable schedule? Why is a serial schedule considered 
correct? Why is a serializable schedule considered correct?  

19.10. What is the difference between the constrained write and the unconstrained write 
assumptions? Which is more realistic?  

19.11. Discuss how serializability is used to enforce concurrency control in a database system. Why 
is serializability sometimes considered too restrictive as a measure of correctness for 
schedules?  

 19.12. Describe the four levels of isolation in SQL2.  

19.13. Define the violations caused by each of the following: dirty read, nonrepeatable read, and 
phantoms.  

 
 

Exercises 

19.14. Change transaction in Figure 19.02b to read  

 
 

read_item(X);  

X:= X+M;  

if X > 90 then exit  
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else write_item(X); 

 
 

Discuss the final result of the different schedules in Figure 19.03(a) and Figure 19.03(b), where 
M = 2 and N = 2, with respect to the following questions. Does adding the above condition 
change the final outcome? Does the outcome obey the implied consistency rule (that the 
capacity of X is 90)?  

19.15. Repeat Exercise 19.12, adding a check in so that Y does not exceed 90.  

19.16. Add the operation commit at the end of each of the transactions and from Figure 19.02; then 
list all possible schedules for the modified transactions. Determine which of the schedules are 
recoverable, which are cascadeless, and which are strict.  

19.17. List all possible schedules for transactions and from Figure 19.02, and determine which are 
conflict serializable (correct) and which are not.  

19.18. How many serial schedules exist for the three transactions in Figure 19.08(a)? What are they? 
What is the total number of possible schedules?  

19.19. Write a program to create all possible schedules for the three transactions in Figure 19.08(a), 
and to determine which of those schedules are conflict serializable and which are not. For each 
conflict serializable schedule, your program should print the schedule and list all equivalent 
serial schedules.  

19.20. Why is an explicit transaction end statement needed in SQL2 but not an explicit begin 
statement?  

19.21. Describe situations where each of the different isolation levels would be useful for transaction 
processing.  

19.22. Which of the following schedules is (conflict) serializable? For each serializable schedule, 
determine the equivalent serial schedules. 

 

 
 

19.23. Consider the three transactions , , and , and the schedules and given below. Draw the 
serializability (precedence) graphs for and , and state whether each schedule is serializable or 
not. If a schedule is serializable, write down the equivalent serial schedule(s).  

 

 
 

19.24. Consider schedules , , and below. Determine whether each schedule is strict, cascadeless, 
recoverable, or nonrecoverable. (Determine the strictest recoverability condition that each 
schedule satisfies.)  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15

Note 1 

We will not discuss buffer replacement policies here as these are typically discussed in operating 
systems textbooks.  

 
 

Note 2 

A similar, more commonly used example assumes a bank database, with one transaction doing a 
transfer of funds from account X to account Y and the other transaction doing a deposit to account X.  

 
 

Note 3 

In general, a transaction should be thoroughly tested to ensure that it has no bugs (logical programming 
errors).  
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Note 4 

Exception conditions, if programmed correctly, do not constitute transaction failures.  

 
 

Note 5 

Optimistic concurrency control (see Section 20.4) also requires that certain checks be made at this 
point to ensure that the transaction did not interfere with other executing transactions.  

 
 

Note 6 

The log has sometimes been called the DBMS journal.  

 
 

Note 7 

Undo and redo are discussed more fully in Chapter 21.  

 
 

Note 8 

We will discuss concurrency control protocols in Chapter 20.  

 
 

Note 9 

Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.  

 
 

Note 10 

In practice, most schedules have a total order of operations. If parallel processing is employed, it is 
theoretically possible to have schedules with partially-ordered non-conflicting operations.  

 
 

Note 11 
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We will use serializable to mean conflict serializable. Another definition of serializable used in 
practice (see Section 19.6) is to have repeatable reads, no dirty reads, and no phantom records (see 
Section 20.7.1 for a discussion on phantoms).  

 
 

Note 12 

This process of ordering the nodes of an acyclic graph is known as topological sorting.  

 
 

Note 13 

These other protocols have not been used much in practice so far; most systems use some variation of 
the two-phase locking protocol.  

 
 

Note 14 

These are similar to the isolation levels discussed briefly at the end of Section 19.3.  

 
 

Note 15 

The dirty read and unrepeatable read problems were discussed in Section 19.1.3. Phantoms are 
discussed in Section 20.6.1.  

 
 

Chapter 20: Concurrency Control Techniques 
20.1 Locking Techniques for Concurrency Control 
20.2 Concurrency Control Based on Timestamp Ordering 
20.3 Multiversion Concurrency Control Techniques 
20.4 Validation (Optimistic) Concurrency Control Techniques 
20.5 Granularity of Data Items and Multiple Granularity Locking 
20.6 Using Locks for Concurrency Control in Indexes 
20.7 Other Concurrency Control Issues 
20.8 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

In this chapter, we discuss a number of concurrency control techniques that are used to ensure the 
noninterference or isolation property of concurrently executing transactions. Most of these techniques 
ensure serializability of schedules (see Section 19.5), using protocols (that is, sets of rules) that 
guarantee serializability. One important set of protocols employs the technique of locking data items to 
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prevent multiple transactions from accessing the items concurrently; a number of locking protocols are 
described in Section 20.1. Locking protocols are used in most commercial DBMSs. Another set of 
concurrency control protocols use timestamps. A timestamp is a unique identifier for each transaction, 
generated by the system. Concurrency control protocols that use timestamp ordering to ensure 
serializability are described in Section 20.2. In Section 20.3, we discuss multiversion concurrency 
control protocols that use multiple versions of a data item. In Section 20.4, we present a protocol based 
on the concept of validation or certification of a transaction after it executes its operations; these are 
sometimes called optimistic protocols.  

Another factor that affects concurrency control is the granularity of the data items—that is, what 
portion of the database a data item represents. An item can be as small as a single attribute (field) value 
or as large as a disk block, or even a whole file or the entire database. We discuss granularity of items 
in Section 20.5. In Section 20.6, we discuss concurrency control issues that arise when indexes are used 
to process transactions. Finally, in Section 20.7 we discuss some additional concurrency control issues.  

It is sufficient to cover Section 20.1, Section 20.5, Section 20.6, and Section 20.7, and possibly Section 
20.3.2, if the main emphasis is on introducing the concurrency control techniques that are used most 
often in practice. The other techniques are mainly of theoretical interest.  

 
 

20.1 Locking Techniques for Concurrency Control 

20.1.1 Types of Locks and System Lock Tables 
20.1.2 Guaranteeing Serializability by Two-Phase Locking 
20.1.3 Dealing with Deadlock and Starvation

Some of the main techniques used to control concurrent execution of transactions are based on the 
concept of locking data items. A lock is a variable associated with a data item that describes the status 
of the item with respect to possible operations that can be applied to it. Generally, there is one lock for 
each data item in the database. Locks are used as a means of synchronizing the access by concurrent 
transactions to the database items. In Section 20.1.1 we discuss the nature and types of locks. Then, in 
Section 20.1.2, we present protocols that use locking to guarantee serializability of transaction 
schedules. Finally, in Section 20.1.3 we discuss two problems associated with the use of locks—
namely, deadlock and starvation—and show how these problems are handled.  

 
 

20.1.1 Types of Locks and System Lock Tables 

Binary Locks 
Shared/Exclusive (or Read/Write) Locks 
Conversion of Locks

Several types of locks are used in concurrency control. To introduce locking concepts gradually, we 
first discuss binary locks, which are simple but restrictive and so are not used in practice. We then 
discuss shared/exclusive locks, which provide more general locking capabilities and are used in 
practical database locking schemes. In Section 20.3.2, we describe a certify lock and show how it can 
be used to improve performance of locking protocols.  

 
 

Binary Locks 
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A binary lock can have two states or values: locked and unlocked (or 1 and 0, for simplicity). A 
distinct lock is associated with each database item X. If the value of the lock on X is 1, item X cannot 
be accessed by a database operation that requests the item. If the value of the lock on X is 0, the item 
can be accessed when requested. We refer to the current value (or state) of the lock associated with 
item X as LOCK(X).  

Two operations, lock_item and unlock_item, are used with binary locking. A transaction 
requests access to an item X by first issuing a lock_item(X) operation. If LOCK(X) = 1, the 
transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the 
transaction is allowed to access item X. When the transaction is through using the item, it issues an 
unlock_item(X) operation, which sets LOCK(X) to 0 (unlocks the item) so that X may be accessed 
by other transactions. Hence, a binary lock enforces mutual exclusion on the data item. A description 
of the lock_item(X) and unlock_item(X) operations is shown in Figure 20.01.  

 

 

 
 

Notice that the lock_item and unlock_item operations must be implemented as indivisible units 
(known as critical sections in operating systems); that is, no interleaving should be allowed once a 
lock or unlock operation is started until the operation terminates or the transaction waits. In Figure 
20.01, the wait command within the lock_item(X) operation is usually implemented by putting the 
transaction on a waiting queue for item X until X is unlocked and the transaction can be granted access 
to it. Other transactions that also want to access X are placed on the same queue. Hence, the wait 
command is considered to be outside the lock_item operation.  

Notice that it is quite simple to implement a binary lock; all that is needed is a binary-valued variable, 
LOCK, associated with each data item X in the database. In its simplest form, each lock can be a record 
with three fields: <data item name, LOCK, locking transaction> plus a queue for transactions that are 
waiting to access the item. The system needs to maintain only these records for the items that are 
currently locked in a lock table, which could be organized as a hash file. Items not in the lock table are 
considered to be unlocked. The DBMS has a lock manager subsystem to keep track of and control 
access to locks.  

If the simple binary locking scheme described here is used, every transaction must obey the following 
rules:  

1. A transaction T must issue the operation lock_item(X) before any read_item(X) or 
write_item(X) operations are performed in T.  

2. A transaction T must issue the operation unlock_item(X) after all read_item(X) and 
write_item(X) operations are completed in T.  

3. A transaction T will not issue a lock_item(X) operation if it already holds the lock on item 
X (Note 1).  

4. A transaction T will not issue an unlock_item(X) operation unless it already holds the lock 
on item X.  

These rules can be enforced by the lock manager module of the DBMS. Between the lock_item(X) 
and unlock_item(X) operations in transaction T, T is said to hold the lock on item X. At most one 
transaction can hold the lock on a particular item. Thus no two transactions can access the same item 
concurrently.  
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Shared/Exclusive (or Read/Write) Locks 

The preceding binary locking scheme is too restrictive for database items, because at most one 
transaction can hold a lock on a given item. We should allow several transactions to access the same 
item X if they all access X for reading purposes only. However, if a transaction is to write an item X, it 
must have exclusive access to X. For this purpose, a different type of lock called a multiple-mode lock 
is used. In this scheme—called shared/exclusive or read/write locks—there are three locking 
operations: read_lock(X), write_lock(X), and unlock(X). A lock associated with an item X, 
LOCK(X), now has three possible states: "read-locked," "write-locked," or "unlocked." A read-locked 
item is also called share-locked, because other transactions are allowed to read the item, whereas a 
write-locked item is called exclusive-locked, because a single transaction exclusively holds the lock 
on the item.  

One method for implementing the preceding three operations on a read/write lock is to keep track of 
the number of transactions that hold a shared (read) lock on an item in the lock table. Each record in the 
lock table will have four fields: <data item name, LOCK, no_of_reads, locking_transaction(s)>. Again, 
to save space, the system need maintain lock records only for locked items in the lock table. The value 
(state) of LOCK is either read-locked or write-locked, suitably coded (if we assume no records are kept 
in the lock table for unlocked items). If LOCK(X)=write-locked, the value of locking_transaction(s) is 
a single transaction that holds the exclusive (write) lock on X. If LOCK(X)=read-locked, the value of 
locking transaction(s) is a list of one or more transactions that hold the shared (read) lock on X. The 
three operations read_lock(X), write_lock(X), and unlock(X) are described in Figure 20.02 
(Note 2). As before, each of the three operations should be considered indivisible; no interleaving 
should be allowed once one of the operations is started until either the operation terminates by granting 
the lock or the transaction is placed on a waiting queue for the item.  

 

 

 
 

When we use the shared/exclusive locking scheme, the system must enforce the following rules:  

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any 
read_item(X) operation is performed in T.  

2. A transaction T must issue the operation write_lock(X) before any write_item(X) 
operation is performed in T.  

3. A transaction T must issue the operation unlock(X) after all read_item(X) and 
write_item(X) operations are completed in T (Note 3).  

4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared) 
lock or a write (exclusive) lock on item X. This rule may be relaxed, as we discuss shortly.  

5. A transaction T will not issue a write_lock(X) operation if it already holds a read (shared) 
lock or write (exclusive) lock on item X. This rule may be relaxed, as we discuss shortly.  

6. A transaction T will not issue an unlock(X) operation unless it already holds a read (shared) 
lock or a write (exclusive) lock on item X. 

 
 

Conversion of Locks 

Sometimes it is desirable to relax conditions 4 and 5 in the preceding list in order to allow lock 
conversion; that is, a transaction that already holds a lock on item X is allowed under certain 
conditions to convert the lock from one locked state to another. For example, it is possible for a 
transaction T to issue a read_lock(X) and then later on to upgrade the lock by issuing a 
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write_lock(X) operation. If T is the only transaction holding a read lock on X at the time it issues 
the write_lock(X) operation, the lock can be upgraded; otherwise, the transaction must wait. It is 
also possible for a transaction T to issue a write_lock(X) and then later on to downgrade the lock 
by issuing a read_lock(X) operation. When upgrading and downgrading of locks is used, the lock 
table must include transaction identifiers in the record structure for each lock (in the 
locking_transaction(s) field) to store the information on which transactions hold locks on the item. The 
descriptions of the read_lock(X) and write_lock(X) operations in Figure 20.02 must be changed 
appropriately. We leave this as an exercise for the reader.  

Using binary locks or read/write locks in transactions, as described earlier, does not guarantee 
serializability of schedules on its own. Figure 20.03 shows an example where the preceding locking 
rules are followed but a nonserializable schedule may result. This is because in Figure 20.03(a) the 
items Y in T1 and X in T2 were unlocked too early. This allows a schedule such as the one shown in 
Figure 20.03(c) to occur, which is not a serializable schedule and hence gives incorrect results. To 
guarantee serializability, we must follow an additional protocol concerning the positioning of locking 
and unlocking operations in every transaction. The best known protocol, two-phase locking, is 
described in the next section.  

 

 

 
 

20.1.2 Guaranteeing Serializability by Two-Phase Locking 

 
Basic, Conservative, Strict, and Rigorous Two-Phase Locking

A transaction is said to follow the two-phase locking protocol if all locking operations 
(read_lock, write_lock) precede the first unlock operation in the transaction (Note 4). Such a 
transaction can be divided into two phases: an expanding or growing (first) phase, during which new 
locks on items can be acquired but none can be released; and a shrinking (second) phase, during 
which existing locks can be released but no new locks can be acquired. If lock conversion is allowed, 
then upgrading of locks (from read-locked to write-locked) must be done during the expanding phase, 
and downgrading of locks (from write-locked to read-locked) must be done in the shrinking phase. 
Hence, a read_lock(X) operation that downgrades an already held write lock on X can appear only 
in the shrinking phase.  

 

 

 
 

Transactions T1 and T2 of Figure 20.03(a) do not follow the two-phase locking protocol. This is 
because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly the 
write_lock(Y) operation follows the unlock(X) operation in T2. If we enforce two-phase locking, 
the transactions can be rewritten as T1 and T2, as shown in Figure 20.04. Now, the schedule shown in 
Figure 20.03(c) is not permitted for T1 and T2 (with their modi ed order of locking and unlocking 
operations) under the rules of locking described in Section 20.1.1. This is because T1 will issue its 
write_lock(X) before it unlocks item Y; consequently, when T2 issues its read_lock(X), it is 
forced to wait until T1 releases the lock by issuing an unlock (X) in the schedule.  
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It can be proved that, if every transaction in a schedule follows the two-phase locking protocol, the 
schedule is guaranteed to be serializable, obviating the need to test for serializability of schedules any 
more. The locking mechanism, by enforcing two-phase locking rules, also enforces serializability.  

Two-phase locking may limit the amount of concurrency that can occur in a schedule. This is because a 
transaction T may not be able to release an item X after it is through using it if T must lock an 
additional item Y later on; or conversely, T must lock the additional item Y before it needs it so that it 
can release X. Hence, X must remain locked by T until all items that the transaction needs to read or 
write have been locked; only then can X be released by T. Meanwhile, another transaction seeking to 
access X may be forced to wait, even though T is done with X; conversely, if Y is locked earlier than it 
is needed, another transaction seeking to access Y is forced to wait even though T is not using Y yet. 
This is the price for guaranteeing serializability of all schedules without having to check the schedules 
themselves.  

 
 

Basic, Conservative, Strict, and Rigorous Two-Phase Locking 

There are a number of variations of two-phase locking (2PL). The technique just described is known as 
basic 2PL. A variation known as conservative 2PL (or static 2PL) requires a transaction to lock all 
the items it accesses before the transaction begins execution, by predeclaring its read-set and write-
set. Recall from Section 19.1.2 that the read-set of a transaction is the set of all items that the 
transaction reads, and the write-set is the set of all items that it writes. If any of the predeclared items 
needed cannot be locked, the transaction does not lock any item; instead, it waits until all the items are 
available for locking. Conservative 2PL is a deadlock-free protocol, as we shall see in Section 20.1.3 
when we discuss the deadlock problem. However, it is difficult to use in practice because of the need to 
predeclare the read-set and write-set, which is not possible in most situations.  

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict schedules (see 
Section 19.4). In this variation, a transaction T does not release any of its exclusive (write) locks until 
after it commits or aborts. Hence, no other transaction can read or write an item that is written by T 
unless T has committed, leading to a strict schedule for recoverability. Strict 2PL is not deadlock-free. 
A more restrictive variation of strict 2PL is rigorous 2PL, which also guarantees strict schedules. In 
this variation, a transaction T does not release any of its locks (exclusive or shared) until after it 
commits or aborts, and so it is easier to implement than strict 2PL. Notice the difference between 
conservative and rigorous 2PL; the former must lock all its items before it starts so once the transaction 
starts it is in its shrinking phase, whereas the latter does not unlock any of its items until after it 
terminates (by committing or aborting) so the transaction is in its expanding phase until it ends.  

In many cases, the concurrency control subsystem itself is responsible for generating the 
read_lock and write_lock requests. For example, suppose the system is to enforce the strict 2PL 
protocol. Then, whenever transaction T issues a read_item(X), the system calls the read_lock(X) 
operation on behalf of T. If the state of LOCK(X) is write_locked by some other transaction T, the 
system places T on the waiting queue for item X; otherwise, it grants the read_lock(X) request and 
permits the read_item(X) operation of T to execute. On the other hand, if transaction T issues a 
write_item(X), the system calls the write_lock(X) operation on behalf of T. If the state of 
LOCK(X) is write_locked or read_locked by some other transaction T, the system places T on the 
waiting queue for item X; if the state of LOCK(X) is read_locked and T itself is the only transaction 
holding the read lock on X, the system upgrades the lock to write locked and permits the 
write_item(X) operation by T; finally, if the state of LOCK(X) is unlocked, the system grants the 
write_lock(X) request and permits the write_item(X) operation to execute. After each action, 
the system must update its lock table appropriately.  

Although the two-phase locking protocol guarantees serializability (that is, every schedule that is 
permitted is serializable), it does not permit all possible serializable schedules (that is, some 
serializable schedules will be prohibited by the protocol). In addition, the use of locks can cause two 
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additional problems: deadlock and starvation. We discuss these problems and their solutions in the next 
section.  

 
 

20.1.3 Dealing with Deadlock and Starvation 

 
Deadlock Prevention Protocols 
Deadlock Detection and Timeouts 
Starvation

Deadlock occurs when each transaction T in a set of two or more transactions is waiting for some item 
that is locked by some other transaction T in the set. Hence, each transaction in the set is on a waiting 
queue, waiting for one of the other transactions in the set to release the lock on an item. A simple 
example is shown in Figure 20.05(a), where the two transactions T1 and T2 are deadlocked in a partial 
schedule; T1 is on the waiting queue for X, which is locked by T2, while T2 is on the waiting queue for 
Y, which is locked by T1. Meanwhile, neither T1 nor T2 nor any other transaction can access items X 
and Y.  

 

 

 
 

Deadlock Prevention Protocols 

One way to prevent deadlock is to use a deadlock prevention protocol (Note 5). One deadlock 
prevention protocol, which is used in conservative two-phase locking, requires that every transaction 
lock all the items it needs in advance (which is generally not a practical assumption)—if any of the 
items cannot be obtained, none of the items are locked. Rather, the transaction waits and then tries 
again to lock all the items it needs. This solution obviously further limits concurrency. A second 
protocol, which also limits concurrency, involves ordering all the items in the database and making 
sure that a transaction that needs several items will lock them according to that order. This requires that 
the programmer (or the system) be aware of the chosen order of the items, which is also not practical in 
the database context.  

A number of other deadlock prevention schemes have been proposed that make a decision about what 
to do with a transaction involved in a possible deadlock situation: Should it be blocked and made to 
wait or should it be aborted, or should the transaction preempt and abort another transaction? These 
techniques use the concept of transaction timestamp TS(T), which is a unique identifier assigned to 
each transaction. The timestamps are typically based on the order in which transactions are started; 
hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2). Notice that the older 
transaction has the smaller timestamp value. Two schemes that prevent deadlock are called wait-die 
and wound-wait. Suppose that transaction Ti tries to lock an item X but is not able to because X is 
locked by some other transaction Tj with a conflicting lock. The rules followed by these schemes are as 
follows:  

• Wait-die: If TS(Ti) < TS (Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti 
younger than Tj) abort Ti (Ti dies) and restart it later with the same timestamp.  

• Wound-wait: If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and restart it 
later with the same timestamp; otherwise (Ti younger than Tj) Ti is allowed to wait.  

In wait-die, an older transaction is allowed to wait on a younger transaction, whereas a younger 
transaction requesting an item held by an older transaction is aborted and restarted. The wound-wait 
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approach does the opposite: A younger transaction is allowed to wait on an older one, whereas an older 
transaction requesting an item held by a younger transaction preempts the younger transaction by 
aborting it. Both schemes end up aborting the younger of the two transactions that may be involved in a 
deadlock. It can be shown that these two techniques are deadlock-free, since in wait-die, transactions 
only wait on younger transactions so no cycle is created. Similarly, in wound-wait, transactions only 
wait on older transactions so no cycle is created. However, both techniques may cause some 
transactions to be aborted and restarted needlessly, even though those transactions may never actually 
cause a deadlock.  

Another group of protocols that prevent deadlock do not require timestamps. These include the no 
waiting (NW) and cautious waiting (CW) algorithms. In the no waiting algorithm, if a transaction is 
unable to obtain a lock, it is immediately aborted and then restarted after a certain time delay without 
checking whether a deadlock will actually occur or not. Because this scheme can cause transactions to 
abort and restart needlessly, the cautious waiting algorithm was proposed to try to reduce the number 
of needless aborts/restarts. Suppose that transaction Ti tries to lock an item X but is not able to do so 
because X is locked by some other transaction Tj with a conflicting lock. The cautious waiting rules are 
as follows:  

• Cautious waiting: If Tj is not blocked (not waiting for some other locked item), then Ti is 
blocked and allowed to wait; otherwise abort Ti.  

It can be shown that cautious waiting is deadlock-free, by considering the time b(T) at which each 
blocked transaction T was blocked. If the two transactions Ti and Tj above both become blocked, and Ti 
is waiting on Tj, then b(Ti) < b(Tj), since Ti can only wait on Tj at a time when Tj is not blocked. Hence, 
the blocking times form a total ordering on all blocked transactions, so no cycle that causes deadlock 
can occur.  

 
 

Deadlock Detection and Timeouts 

A second—more practical—approach to dealing with deadlock is deadlock detection, where the 
system checks if a state of deadlock actually exists. This solution is attractive if we know there will be 
little interference among the transactions—that is, if different transactions will rarely access the same 
items at the same time. This can happen if the transactions are short and each transaction locks only a 
few items, or if the transaction load is light. On the other hand, if transactions are long and each 
transaction uses many items, or if the transaction load is quite heavy, it may be advantageous to use a 
deadlock prevention scheme.  

A simple way to detect a state of deadlock is for the system to construct and maintain a wait-for 
graph. One node is created in the wait-for graph for each transaction that is currently executing. 
Whenever a transaction Ti is waiting to lock an item X that is currently locked by a transaction Tj, a 
directed edge (Ti â Tj) is created in the wait-for graph. When Tj releases the lock(s) on the items that 
Ti was waiting for, the directed edge is dropped from the wait-for graph. We have a state of deadlock if 
and only if the wait-for graph has a cycle. One problem with this approach is the matter of determining 
when the system should check for a deadlock. Criteria such as the number of currently executing 
transactions or the period of time several transactions have been waiting to lock items may be used. 
Figure 20.05(b) shows the wait-for graph for the (partial) schedule shown in Figure 20.05(a). If the 
system is in a state of deadlock, some of the transactions causing the deadlock must be aborted. 
Choosing which transactions to abort is known as victim selection. The algorithm for victim selection 
should generally avoid selecting transactions that have been running for a long time and that have 
performed many updates, and it should try instead to select transactions that have not made many 
changes.  

Another simple scheme to deal with deadlock is the use of timeouts. This method is practical because 
of its low overhead and simplicity. In this method, if a transaction waits for a period longer than a 
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system-defined timeout period, the system assumes that the transaction may be deadlocked and aborts 
it—regardless of whether a deadlock actually exists or not.  

 
 

Starvation 

Another problem that may occur when we use locking is starvation, which occurs when a transaction 
cannot proceed for an indefinite period of time while other transactions in the system continue 
normally. This may occur if the waiting scheme for locked items is unfair, giving priority to some 
transactions over others. One solution for starvation is to have a fair waiting scheme, such as using a 
first-come-first-serve queue; transactions are enabled to lock an item in the order in which they 
originally requested the lock. Another scheme allows some transactions to have priority over others but 
increases the priority of a transaction the longer it waits, until it eventually gets the highest priority and 
proceeds. Starvation can also occur because of victim selection if the algorithm selects the same 
transaction as victim repeatedly, thus causing it to abort and never finish execution. The algorithm can 
use higher priorities for transactions that have been aborted multiple times to avoid this problem. The 
wait-die and wound-wait schemes discussed above avoid starvation.  

 
 

20.2 Concurrency Control Based on Timestamp Ordering 

20.2.1 Timestamps 
20.2.2 The Timestamp Ordering Algorithm

The use of locks, combined with the 2PL protocol, guarantees serializability of schedules. The 
serializable schedules produced by 2PL have their equivalent serial schedules based on the order in 
which executing transactions lock the items they acquire. If a transaction needs an item that is already 
locked, it may be forced to wait until the item is released. A different approach that guarantees 
serializability involves using transaction timestamps to order transaction execution for an equivalent 
serial schedule. In Section 20.2.1 we discuss timestamps and in Section 20.2.2 we discuss how 
serializability is enforced by ordering transactions based on their timestamps.  

 
 

20.2.1 Timestamps 

Recall that a timestamp is a unique identifier created by the DBMS to identify a transaction. Typically, 
timestamp values are assigned in the order in which the transactions are submitted to the system, so a 
timestamp can be thought of as the transaction start time. We will refer to the timestamp of transaction 
T as TS(T). Concurrency control techniques based on timestamp ordering do not use locks; hence, 
deadlocks cannot occur.  

Timestamps can be generated in several ways. One possibility is to use a counter that is incremented 
each time its value is assigned to a transaction. The transaction timestamps are numbered 1, 2, 3, . . . in 
this scheme. A computer counter has a finite maximum value, so the system must periodically reset the 
counter to zero when no transactions are executing for some short period of time. Another way to 
implement timestamps is to use the current date/time value of the system clock and ensure that no two 
timestamp values are generated during the same tick of the clock.  
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20.2.2 The Timestamp Ordering Algorithm 

Basic Timestamp Ordering 
Strict Timestamp Ordering 
Thomas's Write Rule

The idea for this scheme is to order the transactions based on their timestamps. A schedule in which the 
transactions participate is then serializable, and the equivalent serial schedule has the transactions in 
order of their timestamp values. This is called timestamp ordering (TO). Notice how this differs from 
2PL, where a schedule is serializable by being equivalent to some serial schedule allowed by the 
locking protocols. In timestamp ordering, however, the schedule is equivalent to the particular serial 
order corresponding to the order of the transaction timestamps. The algorithm must ensure that, for 
each item accessed by conflicting operations in the schedule, the order in which the item is accessed 
does not violate the serializability order. To do this, the algorithm associates with each database item X 
two timestamp (TS) values:  

1. Read_TS(X): The read timestamp of item X; this is the largest timestamp among all the 
timestamps of transactions that have successfully read item X—that is, read_TS(X) = TS(T), 
where T is the youngest transaction that has read X successfully.  

2. Write_TS(X): The write timestamp of item X; this is the largest of all the timestamps of 
transactions that have successfully written item X—that is, write_TS(X) = TS(T), where T is 
the youngest transaction that has written X successfully.  

 
 

Basic Timestamp Ordering 

Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation, the 
basic TO algorithm compares the timestamp of T with read_TS(X) and write_TS(X) to ensure that the 
timestamp order of transaction execution is not violated. If this order is violated, then transaction T is 
aborted and resubmitted to the system as a new transaction with a new timestamp. If T is aborted and 
rolled back, any transaction T1 that may have used a value written by T must also be rolled back. 
Similarly, any transaction T2 that may have used a value written by T1 must also be rolled back, and so 
on. This effect is known as cascading rollback and is one of the problems associated with basic TO, 
since the schedules produced are not recoverable. An additional protocol must be enforced to ensure 
that the schedules are recoverable, cascadeless, or strict. We first describe the basic TO algorithm here. 
The concurrency control algorithm must check whether conflicting operations violate the timestamp 
ordering in the following two cases:  

1. Transaction T issues a write_item(X) operation:  
a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and 

reject the operation. This should be done because some younger transaction with a 
timestamp greater than TS(T)—and hence after T in the timestamp ordering—has 
already read or written the value of item X before T had a chance to write X, thus 
violating the timestamp ordering.  

b. If the condition in part (a) does not occur, then execute the write_item(X) 
operation of T and set write_TS(X) to TS(T).  

2. Transaction T issues a read_item(X) operation:  
a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This 

should be done because some younger transaction with timestamp greater than 
TS(T)—and hence after T in the timestamp ordering—has already written the value 
of item X before T had a chance to read X.  

b. If write_TS(X) <= TS(T), then execute the read_item(X) operation of T and set 
read_TS(X) to the larger of TS(T) and the current read_TS(X).  
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Hence, whenever the basic TO algorithm detects two conflicting operations that occur in the incorrect 
order, it rejects the later of the two operations by aborting the transaction that issued it. The schedules 
produced by basic TO are hence guaranteed to be conflict serializable, like the 2PL protocol. However, 
some schedules are possible under each protocol that are not allowed under the other. Hence, neither 
protocol allows all possible serializable schedules. As mentioned earlier, deadlock does not occur with 
timestamp ordering. However, cyclic restart (and hence starvation) may occur if a transaction is 
continually aborted and restarted.  

 
 

Strict Timestamp Ordering 

A variation of basic TO called strict TO ensures that the schedules are both strict (for easy 
recoverability) and (conflict) serializable. In this variation, a transaction T that issues a read_item(X) or 
write_item(X) such that TS(T) > write_TS(X) has its read or write operation delayed until the 
transaction T that wrote the value of X (hence TS(T) = write_TS(X)) has committed or aborted. To 
implement this algorithm, it is necessary to simulate the locking of an item X that has been written by 
transaction T until T is either committed or aborted. This algorithm does not cause deadlock, since T 
waits for T only if TS(T) > TS(T).  

 
 

Thomas's Write Rule 

A modification of the basic TO algorithm, known as Thomas’s write rule, does not enforce conflict 
serializability; but it rejects fewer write operations, by modifying the checks for the write_item(X) 
operation as follows:  

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.  
2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing. This 

is because some transaction with timestamp greater than TS(T)—and hence after T in the 
timestamp ordering—has already written the value of X. Hence, we must ignore the 
write_item(X) operation of T because it is already outdated and obsolete. Notice that any 
conflict arising from this situation would be detected by case (1).  

3. If neither the condition in part (1) nor the condition in part (2) occurs, then execute the 
write_item(X) operation of T and set write_TS(X) to TS(T).  

 
 

20.3 Multiversion Concurrency Control Techniques 

20.3.1 Multiversion Technique Based on Timestamp Ordering 
20.3.2 Multiversion Two-Phase Locking Using Certify Locks

Other protocols for concurrency control keep the old values of a data item when the item is updated. 
These are known as multiversion concurrency control, because several versions (values) of an item 
are maintained. When a transaction requires access to an item, an appropriate version is chosen to 
maintain the serializability of the currently executing schedule, if possible. The idea is that some read 
operations that would be rejected in other techniques can still be accepted by reading an older version 
of the item to maintain serializability. When a transaction writes an item, it writes a new version and 
the old version of the item is retained. Some multiversion concurrency control algorithms use the 
concept of view serializability rather than conflict serializability.  
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An obvious drawback of multiversion techniques is that more storage is needed to maintain multiple 
versions of the database items. However, older versions may have to be maintained anyway—for 
example, for recovery purposes. In addition, some database applications require older versions to be 
kept to maintain a history of the evolution of data item values. The extreme case is a temporal database 
(see Chapter 23), which keeps track of all changes and the times at which they occurred. In such cases, 
there is no additional storage penalty for multiversion techniques, since older versions are already 
maintained.  

Several multiversion concurrency control schemes have been proposed. We discuss two schemes here, 
one based on timestamp ordering and the other based on 2PL.  

 
 

20.3.1 Multiversion Technique Based on Timestamp Ordering 

In this method, several versions , , ..., of each data item X are maintained. For each version, the value of 
version and the following two timestamps are kept:  

1. read_TS: The read timestamp of is the largest of all the timestamps of transactions that have 
successfully read version .  

2. write_TS: The write timestamp of is the timestamp of the transaction that wrote the value of 
version .  

Whenever a transaction T is allowed to execute a write_item(X) operation, a new version of item X 
is created, with both the write_TS and the read_TS set to TS(T). Correspondingly, when a transaction T 
is allowed to read the value of version Xi, the value of read_TS() is set to the larger of the current 
read_TS() and TS(T).  

To ensure serializability, the following two rules are used:  

1. If transaction T issues a write_item(X) operation, and version i of X has the highest 
write_TS() of all versions of X that is also less than or equal to TS(T), and read_TS() > TS(T), 
then abort and roll back transaction T; otherwise, create a new version of X with read_TS() = 
write_TS() = TS(T).  

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest 
write_TS() of all versions of X that is also less than or equal to TS(T); then return the value of 
to transaction T, and set the value of read_TS() to the larger of TS(T) and the current 
read_TS().  

As we can see in case 2, a read_item(X) is always successful, since it finds the appropriate version 
to read based on the write_TS of the various existing versions of X. In case 1, however, transaction T 
may be aborted and rolled back. This happens if T is attempting to write a version of X that should have 
been read by another transaction T whose timestamp is read_TS(); however, T has already read version 
Xi, which was written by the transaction with timestamp equal to write_TS(). If this conflict occurs, T 
is rolled back; otherwise, a new version of X, written by transaction T, is created. Notice that, if T is 
rolled back, cascading rollback may occur. Hence, to ensure recoverability, a transaction T should not 
be allowed to commit until after all the transactions that have written some version that T has read have 
committed.  

 
 

20.3.2 Multiversion Two-Phase Locking Using Certify Locks 

In this multiple-mode locking scheme, there are three locking modes for an item: read, write, and 
certify, instead of just the two modes (read, write) discussed previously. Hence, the state of LOCK(X) 
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for an item X can be one of read-locked, write-locked, certify-locked, or unlocked. In the standard 
locking scheme with only read and write locks (see Section 20.1.1), a write lock is an exclusive lock. 
We can describe the relationship between read and write locks in the standard scheme by means of the 
lock compatibility table shown in Figure 20.06(a). An entry of yes means that, if a transaction T holds 
the type of lock specified in the column header on item X and if transaction T requests the type of lock 
specified in the row header on the same item X, then T can obtain the lock because the locking modes 
are compatible. On the other hand, an entry of no in the table indicates that the locks are not 
compatible, so T must wait until T releases the lock.  

 

 

 
 

In the standard locking scheme, once a transaction obtains a write lock on an item, no other 
transactions can access that item. The idea behind multiversion 2PL is to allow other transactions T to 
read an item X while a single transaction T holds a write lock on X. This is accomplished by allowing 
two versions for each item X; one version must always have been written by some committed 
transaction. The second version X is created when a transaction T acquires a write lock on the item. 
Other transactions can continue to read the committed version of X while T holds the write lock. 
Transaction T can write the value of X as needed, without affecting the value of the committed version 
X. However, once T is ready to commit, it must obtain a certify lock on all items that it currently holds 
write locks on before it can commit. The certify lock is not compatible with read locks, so the 
transaction may have to delay its commit until all its write-locked items are released by any reading 
transactions in order to obtain the certify locks. Once the certify locks—which are exclusive locks—are 
acquired, the committed version X of the data item is set to the value of version X, version X is 
discarded, and the certify locks are then released. The lock compatibility table for this scheme is shown 
in Figure 20.06(b).  

In this multiversion 2PL scheme, reads can proceed concurrently with a single write operation—an 
arrangement not permitted under the standard 2PL schemes. The cost is that a transaction may have to 
delay its commit until it obtains exclusive certify locks on all the items it has updated. It can be shown 
that this scheme avoids cascading aborts, since transactions are only allowed to read the version X that 
was written by a committed transaction. However, deadlocks may occur if upgrading of a read lock to a 
write lock is allowed, and these must be handled by variations of the techniques discussed in Section 
20.1.3.  

 
 

20.4 Validation (Optimistic) Concurrency Control Techniques 

In all the concurrency control techniques we have discussed so far, a certain degree of checking is done 
before a database operation can be executed. For example, in locking, a check is done to determine 
whether the item being accessed is locked. In timestamp ordering, the transaction timestamp is checked 
against the read and write timestamps of the item. Such checking represents overhead during 
transaction execution, with the effect of slowing down the transactions.  

In optimistic concurrency control techniques, also known as validation or certification techniques, 
no checking is done while the transaction is executing. Several proposed concurrency control methods 
use the validation technique. We will describe only one scheme here. In this scheme, updates in the 
transaction are not applied directly to the database items until the transaction reaches its end. During 
transaction execution, all updates are applied to local copies of the data items that are kept for the 
transaction (Note 6). At the end of transaction execution, a validation phase checks whether any of the 
transaction’s updates violate serializability. Certain information needed by the validation phase must be 
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kept by the system. If serializability is not violated, the transaction is committed and the database is 
updated from the local copies; otherwise, the transaction is aborted and then restarted later.  

There are three phases for this concurrency control protocol:  

1. Read phase: A transaction can read values of committed data items from the database. 
However, updates are applied only to local copies (versions) of the data items kept in the 
transaction workspace.  

2. Validation phase: Checking is performed to ensure that serializability will not be violated if 
the transaction updates are applied to the database.  

3. Write phase: If the validation phase is successful, the transaction updates are applied to the 
database; otherwise, the updates are discarded and the transaction is restarted.  

The idea behind optimistic concurrency control is to do all the checks at once; hence, transaction 
execution proceeds with a minimum of overhead until the validation phase is reached. If there is little 
interference among transactions, most will be validated successfully. However, if there is much 
interference, many transactions that execute to completion will have their results discarded and must be 
restarted later. Under these circumstances, optimistic techniques do not work well. The techniques are 
called "optimistic" because they assume that little interference will occur and hence that there is no 
need to do checking during transaction execution.  

The optimistic protocol we describe uses transaction timestamps and also requires that the 
write_sets and read_sets of the transactions be kept by the system. In addition, start and end 
times for some of the three phases need to be kept for each transaction. Recall that the write_set of 
a transaction is the set of items it writes, and the read_set is the set of items it reads. In the 
validation phase for transaction Ti, the protocol checks that Ti does not interfere with any committed 
transactions or with any other transactions currently in their validation phase. The validation phase for 
Ti checks that, for each such transaction Tj that is either committed or is in its validation phase, one of 
the following conditions holds:  

1. Transaction Tj completes its write phase before Ti starts its read phase.  
2. Ti starts its write phase after Tj completes its write phase, and the read_set of Ti has no 

items in common with the write_set of Tj.  
3. Both the read_set and write_set of Ti have no items in common with the write_set 

of Tj, and Tj completes its read phase before Ti completes its read phase.  

When validating transaction Ti, the first condition is checked first for each transaction Tj, since (1) is 
the simplest condition to check. Only if condition (1) is false is condition (2) checked, and only if (2) is 
false is condition (3)—the most complex to evaluate—checked. If any one of these three conditions 
holds, there is no interference and Ti is validated successfully. If none of these three conditions holds, 
the validation of transaction Ti fails and it is aborted and restarted later because interference may have 
occurred.  

 
 

20.5 Granularity of Data Items and Multiple Granularity Locking 

20.5.1 Granularity Level Considerations for Locking 
20.5.2 Multiple Granularity Level Locking

All concurrency control techniques assumed that the database was formed of a number of named data 
items. A database item could be chosen to be one of the following:  

• A database record.  
• A field value of a database record.  
• A disk block.  
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• A whole file.  
• The whole database.  

The granularity can affect the performance of concurrency control and recovery. In Section 20.5.1, we 
discuss some of the tradeoffs with regard to choosing the granularity level used for locking, and, in 
Section 20.5.2, we discuss a multiple granularity locking scheme, where the granularity level (size of 
the data item) may be changed dynamically.  

 
 

20.5.1 Granularity Level Considerations for Locking 

The size of data items is often called the data item granularity. Fine granularity refers to small item 
sizes, whereas coarse granularity refers to large item sizes. Several tradeoffs must be considered in 
choosing the data item size. We shall discuss data item size in the context of locking, although similar 
arguments can be made for other concurrency control techniques.  

First, notice that the larger the data item size is, the lower the degree of concurrency permitted. For 
example, if the data item size is a disk block, a transaction T that needs to lock a record B must lock the 
whole disk block X that contains B because a lock is associated with the whole data item (block). Now, 
if another transaction S wants to lock a different record C that happens to reside in the same block X in 
a conflicting lock mode, it is forced to wait. If the data item size was a single record, transaction S 
would be able to proceed, because it would be locking a different data item (record).  

On the other hand, the smaller the data item size is, the more the number of items in the database. 
Because every item is associated with a lock, the system will have a larger number of active locks to be 
handled by the lock manager. More lock and unlock operations will be performed, causing a higher 
overhead. In addition, more storage space will be required for the lock table. For timestamps, storage is 
required for the read_TS and write_TS for each data item, and there will be similar overhead for 
handling a large number of items.  

Given the above tradeoffs, an obvious question can be asked: What is the best item size? The answer is 
that it depends on the types of transactions involved. If a typical transaction accesses a small number of 
records, it is advantageous to have the data item granularity be one record. On the other hand, if a 
transaction typically accesses many records in the same file, it may be better to have block or file 
granularity so that the transaction will consider all those records as one (or a few) data items.  

 
 

20.5.2 Multiple Granularity Level Locking 

Since the best granularity size depends on the given transaction, it seems appropriate that a database 
system support multiple levels of granularity, where the granularity level can be different for various 
mixes of transactions. Figure 20.07 shows a simple granularity hierarchy with a database containing 
two files, each file containing several pages, and each page containing several records. This can be 
used to illustrate a multiple granularity level 2PL protocol, where a lock can be requested at any 
level. However, additional types of locks will be needed to efficiently support such a protocol.  
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Consider the following scenario, with only shared and exclusive lock types, that refers to the example 
in Figure 20.07. Suppose transaction T1 wants to update all the records in file , and T1 requests and is 
granted an exclusive lock for . Then all of ’s pages ( through )—and the records contained on those 
pages—are locked in exclusive mode. This is beneficial for T1 because setting a single file-level lock is 
more efficient than setting n page-level locks or having to lock each individual record. Now suppose 
another transaction T2 only wants to read record from page of file ; then T2 would request a shared 
record-level lock on . However, the database system (that is, the transaction manager or more 
specifically the lock manager) must verify the compatibility of the requested lock with already held 
locks. One way to verify this is to traverse the tree from the leaf to to to db. If at any time a conflicting 
lock is held on any of those items, then the lock request for is denied and T2 is blocked and must wait. 
This traversal would be fairly efficient.  

However, what if transaction T2’s request came before transaction T1’s request? In this case, the shared 
record lock is granted to T2 for , but when T1’s file-level lock is requested, it is quite difficult for the 
lock manger to check all nodes (pages and records) that are descendants of node for a lock conflict. 
This would be very inefficient and would defeat the purpose of having multiple granularity level locks.  

To make multiple granularity level locking practical, additional types of locks, called intention locks, 
are needed. The idea behind intention locks is for a transaction to indicate, along the path from the root 
to the desired node, what type of lock (shared or exclusive) it will require from one of the node’s 
descendants. There are three types of intention locks:  

1. Intention-shared (IS) indicates that a shared lock(s) will be requested on some descendant 
node(s).  

2. Intention-exclusive (IX) indicates that an exclusive lock(s) will be requested on some 
descendant node(s).  

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared mode but 
an exclusive lock(s) will be requested on some descendant node(s).  

The compatibility table of the three intention locks, and the shared and exclusive locks, is shown in 
Figure 20.08. Besides the introduction of the three types of intention locks, an appropriate locking 
protocol must be used. The multiple granularity locking (MGL) protocol consists of the following 
rules:  

 

 

1. The lock compatibility (based on Figure 20.08) must be adhered to.  
2. The root of the tree must be locked first, in any mode.  
3. A node N can be locked by a transaction T in S or IS mode only if the parent node N is 

already locked by transaction T in either IS or IX mode.  
4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the parent of node N 

is already locked by transaction T in either IX or SIX mode.  
5. A transaction T can lock a node only if it has not unlocked any node (to enforce the 2PL 

protocol).  
6. A transaction T can unlock a node, N, only if none of the children of node N are currently 

locked by T.  

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state the conditions 
when a transaction may lock a given node in any of the lock modes. Rules 5 and 6 of the MGL protocol 
enforce 2PL rules to produce serializable schedules. To illustrate the MGL protocol with the database 
hierarchy in Figure 20.07, consider the following three transactions:  

1. T1 wants to update record and record .  
2. T2 wants to update all records on page .  
3. T3 wants to read record and the entire file.  
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Figure 20.09 shows a possible serializable schedule for these three transactions. Only the lock 
operations are shown. The notation <lock_type> (<item>) is used to display the locking 
operations in the schedule.  

 

 

 
 

The multiple granularity level protocol is especially suited when processing a mix of transactions that 
include: (1) short transactions that access only a few items (records or fields), and (2) long transactions 
that access entire files. In this environment, less transaction blocking and less locking overhead is 
incurred by such a protocol when compared to a single level granularity locking approach.  

 
 

20.6 Using Locks for Concurrency Control in Indexes 

Two-phase locking can also be applied to indexes (see Chapter 6), where the nodes of an index 
correspond to disk pages. However, holding locks on index pages until the shrinking phase of 2PL 
could cause an undue amount of transaction blocking. This is because searching an index always starts 
at the root, so if a transaction wants to insert a record (write operation), the root would be locked in 
exclusive mode, so all other conflicting lock requests for the index must wait until the transaction 
enters its shrinking phase. This blocks all other transactions from accessing the index, so in practice 
other approaches to locking an index must be used.  

The tree structure of the index can be taken advantage of when developing a concurrency control 
scheme. For example, when an index search (read operation) is being executed, a path in the tree is 
traversed from the root to a leaf. Once a lower-level node in the path has been accessed, the higher-
level nodes in that path will not be used again. So once a read lock on a child node is obtained, the lock 
on the parent can be released. Second, when an insertion is being applied to a leaf node (that is, when a 
key and a pointer are inserted), then a specific leaf node must be locked in exclusive mode. However, if 
that node is not full, the insertion will not cause changes to higher-level index nodes, which implies 
that they need not be locked exclusively.  

A conservative approach for insertions would be to lock the root node in exclusive mode and then to 
access the appropriate child node of the root. If the child node is not full, then the lock on the root node 
can be released. This approach can be applied all the way down the tree to the leaf, which is typically 
three or four levels from the root. Although exclusive locks are held, they are soon released. An 
alternative, more optimistic approach would be to request and hold shared locks on the nodes leading to 
the leaf node, with an exclusive lock on the leaf. If the insertion causes the leaf to split, insertion will 
propagate to a higher level node(s). Then, the locks on the higher level node(s) can be upgraded to 
exclusive mode.  

Another approach to index locking is to use a variant of the B+-tree, called the B-link tree. In a B-link 
tree, sibling nodes on the same level are linked together at every level. This allows shared locks to be 
used when requesting a page and requires that the lock be released before accessing the child node. For 
an insert operation, the shared lock on a node would be upgraded to exclusive mode. If a split occurs, 
the parent node must be relocked in exclusive mode. One complication is for search operations 
executed concurrently with the update. Suppose that a concurrent update operation follows the same 
path as the search, and inserts a new entry into the leaf node. In addition, suppose that the insert causes 
that leaf node to split. When the insert is done, the search process resumes, following the pointer to the 
desired leaf, only to find that the key it is looking for is not present because the split has moved that 
key into a new leaf node, which would be the right sibling of the original leaf node. However, the 
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search process can still succeed if it follows the pointer (link) in the original leaf node to its right 
sibling, where the desired key has been moved.  

Handling the deletion case, where two or more nodes from the index tree merge, is also part of the B-
link tree concurrency protocol. In this case, locks on the nodes to be merged are held as well as a lock 
on the parent of the two nodes to be merged.  

 
 

20.7 Other Concurrency Control Issues 

20.7.1 Insertion, Deletion, and Phantom Records 
20.7.2 Interactive Transactions 
20.7.3 Latches

In this section, we discuss some other issues relevant to concurrency control. In Section 20.7.1, we 
discuss problems associated with insertion and deletion of records and the so-called phantom problem, 
which may occur when records are inserted. This problem was described as a potential problem 
requiring a concurrency control measure in Section 19.6. Then, in Section 20.7.2, we discuss problems 
that may occur when a transaction outputs some data to a monitor before it commits, and then the 
transaction is later aborted.  

 
 

20.7.1 Insertion, Deletion, and Phantom Records 

When a new data item is inserted in the database, it obviously cannot be accessed until after the item is 
created and the insert operation is completed. In a locking environment, a lock for the item can be 
created and set to exclusive (write) mode; the lock can be released at the same time as other write locks 
would be released, based on the concurrency control protocol being used. For a timestamp-based 
protocol, the read and write timestamps of the new item are set to the timestamp of the creating 
transaction.  

A deletion operation is applied on an existing data item. For locking protocols, again an exclusive 
(write) lock must be obtained before the transaction can delete the item. For timestamp ordering, the 
protocol must ensure that no later transaction has read or written the item before allowing the item to 
be deleted.  

A situation known as the phantom problem can occur when a new record that is being inserted by 
some transaction T satisfies a condition that a set of records accessed by another transaction T must 
satisfy. For example, suppose that transaction T is inserting a new EMPLOYEE record whose DNO = 
5, while transaction T´ is accessing all EMPLOYEE records whose DNO = 5 (say, to add up all their 
SALARY values to calculate the personnel budget for department 5). If the equivalent serial order is T 
followed by T, then T must read the new EMPLOYEE record and include its SALARY in the sum 
calculation. For the equivalent serial order T followed by T, the new salary should not be included. 
Notice that although the transactions logically conflict, in the latter case there is really no record (data 
item) in common between the two transactions, since T may have locked all the records with DNO = 5 
before T inserted the new record. This is because the record that causes the conflict is a phantom 
record that has suddenly appeared in the database on being inserted. If other operations in the two 
transactions conflict, the conflict due to the phantom record may not be recognized by the concurrency 
control protocol.  

One solution to the phantom record problem is to use index locking, as discussed in Section 20.6. 
Recall from Chapter 6 that an index includes entries that have an attribute value, plus a set of pointers 
to all records in the file with that value. For example, an index on DNO of EMPLOYEE would include 
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an entry for each distinct DNO value, plus a set of pointers to all EMPLOYEE records with that value. 
If the index entry is locked before the record itself can be accessed, then the conflict on the phantom 
record can be detected. This is because transaction T would request a read lock on the index entry for 
DNO = 5, and T would request a write lock on the same entry before they could place the locks on the 
actual records. Since the index locks conflict, the phantom conflict would be detected.  

A more general technique, called predicate locking, would lock access to all records that satisfy an 
arbitrary predicate (condition) in a similar manner; however predicate locks have proved to be difficult 
to implement efficiently.  

 
 

20.7.2 Interactive Transactions 

Another problem occurs when interactive transactions read input and write output to an interactive 
device, such as a monitor screen, before they are committed. The problem is that a user can input a 
value of a data item to a transaction T that is based on some value written to the screen by transaction 
T, which may not have committed. This dependency between T and T cannot be modeled by the 
system concurrency control method, since it is only based on the user interacting with the two 
transactions.  

An approach to dealing with this problem is to postpone output of transactions to the screen until they 
have committed.  

 
 

20.7.3 Latches 

Locks held for a short duration are typically called latches. Latches do not follow the usual 
concurrency control protocol such as two-phase locking. For example, a latch can be used to guarantee 
the physical integrity of a page when that page is being written from the buffer to disk. A latch would 
be acquired for the page, the page written to disk, and then the latch is released.  

 
 

20.8 Summary 

In this chapter we discussed DBMS techniques for concurrency control. We started by discussing lock-
based protocols, which are by far the most commonly used in practice. We described the two-phase 
locking (2PL) protocol and a number of its variations: basic 2PL, strict 2PL, conservative 2PL, and 
rigorous 2PL. The strict and rigorous variations are more common because of their better recoverability 
properties. We introduced the concepts of shared (read) and exclusive (write) locks, and showed how 
locking can guarantee serializability when used in conjunction with the two-phase locking rule. We 
also presented various techniques for dealing with the deadlock problem, which can occur with 
locking. In practice, it is common to use timeouts and deadlock detection (wait-for graphs).  

We then presented other concurrency control protocols that are not used often in practice but are 
important for the theoretical alternatives they show for solving this problem. These include the 
timestamp ordering protocol, which ensures serializability based on the order of transaction 
timestamps. Timestamps are unique, system-generated transaction identifiers. We discussed Thomas’s 
write rule, which improves performance but does not guarantee conflict serializability. The strict 
timestamp ordering protocol was also presented. We then discussed two multiversion protocols, which 
assume that older versions of data items can be kept in the database. One technique, called multiversion 
two-phase locking (which has been used in practice), assumes that two versions can exist for an item 
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and attempts to increase concurrency by making write and read locks compatible (at the cost of 
introducing an additional certify lock mode). We also presented a multiversion protocol based on 
timestamp ordering. We then presented an example of an optimistic protocol, which is also known as a 
certification or validation protocol.  

We then turned our attention to the important practical issue of data item granularity. We described a 
multigranularity locking protocol that allows the change of granularity (item size) based on the current 
transaction mix, with the goal of improving the performance of concurrency control. An important 
practical issue was then presented, which is to develop locking protocols for indexes so that indexes do 
not become a hindrance to concurrent access. Finally, we introduced the phantom problem and 
problems with interactive transactions, and briefly described the concept of latches and how it differs 
from locks.  

In the next chapter, we give an overview of recovery techniques.  

 
 

Review Questions 

  20.1.  What is the two-phase locking protocol? How does it guarantee serializability?  

  20.2.  What are some variations of the two-phase locking protocol? Why is strict or rigorous two-
phase locking often preferred?  

  20.3.  Discuss the problems of deadlock and starvation, and the different approaches to dealing with 
these problems.  

  20.4.  Compare binary locks to exclusive/shared locks. Why is the latter type of locks preferable?  

  20.5.  Describe the wait-die and wound-wait protocols for deadlock prevention.  

  20.6.  Describe the cautious waiting, no waiting, and timeout protocols for deadlock prevention.  

  20.7.  What is a timestamp? How does the system generate timestamps?  

  20.8.  Discuss the timestamp ordering protocol for concurrency control. How does strict timestamp 
ordering differ from basic timestamp ordering?  

  20.9.  Discuss two multiversion techniques for concurrency control.  

20.10.  What is a certify lock? What are the advantages and disadvantages of using certify locks?  

20.11.  How do optimistic concurrency control techniques differ from other concurrency control 
techniques? Why are they also called validation or certification techniques? Discuss the typical 
phases of an optimistic concurrency control method.  

20.12.  How does the granularity of data items affect the performance of concurrency control? What 
factors affect selection of granularity size for data items?  

20.13.  What type of locks are needed for insert and delete operations?  

20.14.  What is multiple granularity locking? Under what circumstances is it used?  

20.15.  What are intention locks?  

20.16.  When are latches used?  

20.17.  What is a phantom record? Discuss the problem that a phantom record can cause for 
concurrency control.  

20.18.  How does index locking resolve the phantom problem?  

20.19.  What is a predicate lock?  
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Exercises 

20.20.  Prove that the basic two-phase locking protocol guarantees conflict serializability of schedules. 
(Hint: Show that, if a serializability graph for a schedule has a cycle, then at least one of the 
transactions participating in the schedule does not obey the two-phase locking protocol.)  

20.21.  Modify the data structures for multiple-mode locks and the algorithms for read_lock(X), 
write_lock(X), and unlock(X) so that upgrading and downgrading of locks are possible. 
(Hint: The lock needs to check the transaction id(s) that hold the lock, if any.)  

20.22.  Prove that strict two-phase locking guarantees strict schedules.  

20.23.  Prove that the wait-die and wound-wait protocols avoid deadlock and starvation.  

20.24.  Prove that cautious waiting avoids deadlock.  

20.25.  Apply the timestamp ordering algorithm to the schedules of Figure 19.08(b) and Figure 
19.08(c), and determine whether the algorithm will allow the execution of the schedules.  

20.26.  Repeat Exercise 20.25, but use the multiversion timestamp ordering method.  

20.27.  Why is two-phase locking not used as a concurrency control method for indexes such as -trees? 

20.28.  The compatibility matrix of Figure 20.08 shows that IS and IX locks are compatible. Explain 
why this is valid.  

20.29.  The MGL protocol states that a transaction T can unlock a node N, only if none of the children 
of node N are still locked by transaction T. Show that without this condition, the MGL protocol 
would be incorrect.  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Note 1 

This rule may be removed if we modify the lock_item(X) operation in Figure 18.01 so that if the item is 
currently locked by the requesting transaction, the lock is granted. 

 
 

Note 2 

These algorithms do not allow upgrading or downgrading of locks, as described later in this section. 
The reader can extend the algorithms to allow these additional operations.  

 
 

Note 3 

This rule may be relaxed to allow a transaction to unlock an item, then lock it again later.  

 
 

Note 4 

This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter 
24).  

 
 

Note 5 

These protocols are not generally used in practice, either because of unrealistic assumptions or because 
of their possible overhead. Deadlock detection and timeouts are more practical.  

 
 

Note 6 

Note that this can be considered as keeping multiple versions of items!  
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Exercises 
Selected Bibliography 
Footnotes

In this chapter we discuss some of the techniques that can be used for database recovery from failures. 
We have already discussed the different causes of failure, such as system crashes and transaction 
errors, in Section 19.1.4. We have also covered many of the concepts that are used by recovery 
processes, such as the system log and commit points, in Section 19.2.  

We start Section 21.1 with an outline of a typical recovery procedures and a categorization of recovery 
algorithms, and then discuss several recovery concepts, including write-ahead logging, in-place versus 
shadow updates, and the process of rolling back (undoing) the effect of an incomplete or failed 
transaction. In Section 21.2, we present recovery techniques based on deferred update, also known as 
the NO-UNDO/REDO technique. In Section 21.3, we discuss recovery techniques based on immediate 
update; these include the UNDO/REDO and UNDO/NO-REDO algorithms. We discuss the technique 
known as shadowing or shadow paging, which can be categorized as a NO-UNDO/NO-REDO 
algorithm in Section 21.4. An example of a practical DBMS recovery scheme, called ARIES, is 
presented in Section 21.5. Recovery in multidatabases is briefly discussed in Section 21.6. Finally, 
techniques for recovery from catastrophic failure are discussed in Section 21.7.  

Our emphasis is on conceptually describing several different approaches to recovery. For descriptions 
of recovery features in specific systems, the reader should consult the bibliographic notes and the user 
manuals for those systems. Recovery techniques are often intertwined with the concurrency control 
mechanisms. Certain recovery techniques are best used with specific concurrency control methods. We 
will attempt to discuss recovery concepts independently of concurrency control mechanisms, but we 
will discuss the circumstances under which a particular recovery mechanism is best used with a certain 
concurrency control protocol.  

 
 

21.1 Recovery Concepts 

21.1.1 Recovery Outline and Categorization of Recovery Algorithms 
21.1.2 Caching of Disk Blocks 
21.1.3 Write-Ahead Logging, Steal/No-Steal, and Force/No-Force 
21.1.4 Checkpoints in the System Log and Fuzzy Checkpointing 
21.1.5 Transaction Rollback

21.1.1 Recovery Outline and Categorization of Recovery Algorithms 

Recovery from transaction failures usually means that the database is restored to the most recent 
consistent state just before the time of failure. To do this, the system must keep information about the 
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changes that were applied to data items by the various transactions. This information is typically kept 
in the system log, as we discussed in Section 19.2.2. A typical strategy for recovery may be 
summarized informally as follows:  

1. If there is extensive damage to a wide portion of the database due to catastrophic failure, such 
as a disk crash, the recovery method restores a past copy of the database that was backed up to 
archival storage (typically tape) and reconstructs a more current state by reapplying or redoing 
the operations of committed transactions from the backed up log, up to the time of failure.  

2. When the database is not physically damaged but has become inconsistent due to 
noncatastrophic failures of types 1 through 4 of Section 19.1.4, the strategy is to reverse any 
changes that caused the inconsistency by undoing some operations. It may also be necessary 
to redo some operations in order to restore a consistent state of the database, as we shall see. 
In this case we do not need a complete archival copy of the database. Rather, the entries kept 
in the on-line system log are consulted during recovery.  

Conceptually, we can distinguish two main techniques for recovery from non-catastrophic transaction 
failures: (1) deferred update and (2) immediate update. The deferred update techniques do not 
physically update the database on disk until after a transaction reaches its commit point; then the 
updates are recorded in the database. Before reaching commit, all transaction updates are recorded in 
the local transaction workspace (or buffers). During commit, the updates are first recorded persistently 
in the log and then written to the database. If a transaction fails before reaching its commit point, it will 
not have changed the database in any way, so UNDO is not needed. It may be necessary to REDO the 
effect of the operations of a committed transaction from the log, because their effect may not yet have 
been recorded in the database. Hence, deferred update is also known as the NO-UNDO/REDO 
algorithm. We discuss this technique in Section 21.2.  

In the immediate update techniques, the database may be updated by some operations of a transaction 
before the transaction reaches its commit point. However, these operations are typically recorded in the 
log on disk by force writing before they are applied to the database, making recovery still possible. If a 
transaction fails after recording some changes in the database but before reaching its commit point, the 
effect of its operations on the database must be undone; that is, the transaction must be rolled back. In 
the general case of immediate update, both undo and redo may be required during recovery. This 
technique, known as the UNDO/REDO algorithm, requires both operations, and is used most often in 
practice. A variation of the algorithm where all updates are recorded in the database before a 
transaction commits requires undo only, so it is known as the UNDO/NO-REDO algorithm. We 
discuss these techniques in Section 21.3.  

 
 

21.1.2 Caching of Disk Blocks 

The recovery process is often closely intertwined with operating system functions—in particular, the 
buffering and caching of disk pages in main memory. Typically, one or more disk pages that include 
the data items to be updated are cached into main memory buffers and then updated in memory before 
being written back to disk. The caching of disk pages is traditionally an operating system function, but 
because of its importance to the efficiency of recovery procedures, it is handled by the DBMS by 
calling low-level operating systems routines.  

In general, it is convenient to consider recovery in terms of the database disk pages (blocks). Typically 
a collection of in-memory buffers, called the DBMS cache, is kept under the control of the DBMS for 
the purpose of holding these buffers. A directory for the cache is used to keep track of which database 
items are in the buffers (Note 1). This can be a table of <disk page address, buffer 
location> entries. When the DBMS requests action on some item, it first checks the cache directory 
to determine whether the disk page containing the item is in the cache. If it is not, then the item must be 
located on disk, and the appropriate disk pages are copied into the cache. It may be necessary to 
replace (or flush) some of the cache buffers to make space available for the new item. Some page-
replacement strategy from operating systems, such as least recently used (LRU) or first-in-first-out 
(FIFO), can be used to select the buffers for replacement.  
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Associated with each buffer in the cache is a dirty bit, which can be included in the directory entry, to 
indicate whether or not the buffer has been modified. When a page is first read from the database disk 
into a cache buffer, the cache directory is updated with the new disk page address, and the dirty bit is 
set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corresponding directory entry is 
set to 1 (one). When the buffer contents are replaced (flushed) from the cache, the contents must first 
be written back to the corresponding disk page only if its dirty bit is 1. Another bit, called the pin-
unpin bit, is also needed—a page in the cache is pinned (bit value 1 (one)) if it cannot be written back 
to disk as yet.  

Two main strategies can be employed when flushing a modified buffer back to disk. The first strategy, 
known as in-place updating, writes the buffer back to the same original disk location, thus overwriting 
the old value of any changed data items on disk (Note 2). Hence, a single copy of each database disk 
block is maintained. The second strategy, known as shadowing, writes an updated buffer at a different 
disk location, so multiple versions of data items can be maintained. In general, the old value of the data 
item before updating is called the before image (BFIM), and the new value after updating is called the 
after image (AFIM). In shadowing, both the BFIM and the AFIM can be kept on disk; hence, it is not 
strictly necessary to maintain a log for recovering. We briefly discuss recovery based on shadowing in 
Section 21.4.  

 
 

21.1.3 Write-Ahead Logging, Steal/No-Steal, and Force/No-Force 

When in-place updating is used, it is necessary to use a log for recovery (see Section 19.2.2). In this 
case, the recovery mechanism must ensure that the BFIM of the data item is recorded in the appropriate 
log entry and that the log entry is flushed to disk before the BFIM is overwritten with the AFIM in the 
database on disk. This process is generally known as write-ahead logging. Before we can describe a 
protocol for write-ahead logging, we need to distinguish between two types of log entry information 
included for a write command: (1) the information needed for UNDO and (2) that needed for REDO. A 
REDO-type log entry includes the new value (AFIM) of the item written by the operation since this is 
needed to redo the effect of the operation from the log (by setting the item value in the database to its 
AFIM). The UNDO-type log entries include the old value (BFIM) of the item since this is needed to 
undo the effect of the operation from the log (by setting the item value in the database back to its 
BFIM). In an UNDO/REDO algorithm, both types of log entries are combined. In addition, when 
cascading rollback is possible, read_item entries in the log are considered to be UNDO-type entries 
(see Section 21.1.5).  

As mentioned, the DBMS cache holds the cached database disk blocks, which include not only data 
blocks but also index blocks and log blocks from the disk. When a log record is written, it is stored in 
the current log block in the DBMS cache. The log is simply a sequential (append-only) disk file and the 
DBMS cache may contain several log blocks (for example, the last n log blocks) that will be written to 
disk. When an update to a data block—stored in the DBMS cache—is made, an associated log record is 
written to the last log block in the DBMS cache. With the write-ahead logging approach, the log blocks 
that contain the associated log records for a particular data block update must first be written to disk 
before the data block itself can be written back to disk.  

Standard DBMS recovery terminology includes the terms steal/no-steal and force/ no-force, which 
specify when a page from the database can be written to disk from the cache:  

1. If a cache page updated by a transaction cannot be written to disk before the transaction 
commits, this is called a no-steal approach. The pin-unpin bit indicates if a page cannot be 
written back to disk. Otherwise, if the protocol allows writing an updated buffer before the 
transaction commits, it is called steal. Steal is used when the DBMS cache (buffer) manager 
needs a buffer frame for another transaction and the buffer manager replaces an existing page 
that had been updated but whose transaction has not committed.  

2. If all pages updated by a transaction are immediately written to disk when the transaction 
commits, this is called a force approach. Otherwise, it is called no-force.  
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The deferred update recovery scheme in Section 21.2 follows a no-steal approach. However, typical 
database systems employ a steal/no-force strategy. The advantage of steal is that it avoids the need for 
a very large buffer space to store all updated pages in memory. The advantage of no-force is that an 
updated page of a committed transaction may still be in the buffer when another transaction needs to 
update it, thus eliminating the I/O cost to read that page again from disk. This may provide a 
substantial saving in the number of I/O operations when a specific page is updated heavily by multiple 
transactions.  

To permit recovery when in-place updating is used, the appropriate entries required for recovery must 
be permanently recorded in the log on disk before changes are applied to the database. For example, 
consider the following write-ahead logging (WAL) protocol for a recovery algorithm that requires 
both UNDO and REDO:  

1. The before image of an item cannot be overwritten by its after image in the database on disk 
until all UNDO-type log records for the updating transaction—up to this point in time—have 
been force-written to disk.  

2. The commit operation of a transaction cannot be completed until all the REDO-type and 
UNDO-type log records for that transaction have been force-written to disk.  

To facilitate the recovery process, the DBMS recovery subsystem may need to maintain a number of 
lists related to the transactions being processed in the system. These include a list for active 
transactions that have started but not committed as yet, and it may also include lists of all committed 
and aborted transactions since the last checkpoint (see next section). Maintaining these lists makes 
the recovery process more efficient.  

 
 

21.1.4 Checkpoints in the System Log and Fuzzy Checkpointing 

Another type of entry in the log is called a checkpoint (Note 3). A [checkpoint] record is written 
into the log periodically at that point when the system writes out to the database on disk all DBMS 
buffers that have been modified. As a consequence of this, all transactions that have their [commit, 
T] entries in the log before a [checkpoint] entry do not need to have their WRITE operations 
redone in case of a system crash, since all their updates will be recorded in the database on disk during 
checkpointing.  

The recovery manager of a DBMS must decide at what intervals to take a checkpoint. The interval may 
be measured in time—say, every m minutes—or in the number t of committed transactions since the 
last checkpoint, where the values of m or t are system parameters. Taking a checkpoint consists of the 
following actions:  

1. Suspend execution of transactions temporarily.  
2. Force-write all main memory buffers that have been modified to disk.  
3. Write a [checkpoint] record to the log, and force-write the log to disk.  
4. Resume executing transactions.  

As a consequence of Step 2, a checkpoint record in the log may also include additional information, 
such as a list of active transaction ids, and the locations (addresses) of the first and most recent (last) 
records in the log for each active transaction. This can facilitate undoing transaction operations in the 
event that a transaction must be rolled back.  

The time needed to force-write all modified memory buffers may delay transaction processing because 
of Step 1. To reduce this delay, it is common to use a technique called fuzzy checkpointing in practice. 
In this technique, the system can resume transaction processing after the [checkpoint] record is 
written to the log without having to wait for Step 2 to finish. However, until Step 2 is completed, the 
previous [checkpoint] record should remain to be valid. To accomplish this, the system maintains 
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a pointer to the valid checkpoint, which continues to point to the previous [checkpoint] record in 
the log. Once Step 2 is concluded, that pointer is changed to point to the new checkpoint in the log.  

 
 

21.1.5 Transaction Rollback 

If a transaction fails for whatever reason after updating the database, it may be necessary to roll back 
the transaction. If any data item values have been changed by the transaction and written to the 
database, they must be restored to their previous values (BFIMs). The undo-type log entries are used to 
restore the old values of data items that must be rolled back.  

If a transaction T is rolled back, any transaction S that has, in the interim, read the value of some data 
item X written by T must also be rolled back. Similarly, once S is rolled back, any transaction R that has 
read the value of some data item Y written by S must also be rolled back; and so on. This phenomenon 
is called cascading rollback, and can occur when the recovery protocol ensures recoverable schedules 
but does not ensure strict or cascadeless schedules (see Section 19.4.2). Cascading rollback, 
understandably, can be quite complex and time-consuming. That is why almost all recovery 
mechanisms are designed such that cascading rollback is never required.  

Figure 21.01 shows an example where cascading rollback is required. The read and write operations of 
three individual transactions are shown in Figure 21.01(a). Figure 21.01(b) shows the system log at the 
point of a system crash for a particular execution schedule of these transactions. The values of data 
items A, B, C, and D, which are used by the transactions, are shown to the right of the system log 
entries. We assume that the original item values, shown in the first line, are A = 30, B = 15, C = 40, and 
D = 20. At the point of system failure, transaction has not reached its conclusion and must be rolled 
back. The WRITE operations of , marked by a single * in Figure 21.01(b), are the operations that are 
undone during transaction rollback. Figure 21.01(c) graphically shows the operations of the different 
transactions along the time axis.  

 

 

 
 

We must now check for cascading rollback. From Figure 21.01(c) we see that transaction reads the 
value of item B that was written by transaction ; this can also be determined by examining the log. 
Because is rolled back, must now be rolled back, too. The WRITE operations of , marked by ** in the 
log, are the ones that are undone. Note that only write_item operations need to be undone during 
transaction rollback; read_item operations are recorded in the log only to determine whether 
cascading rollback of additional transactions is necessary.  

In practice, cascading rollback of transactions is never required because practical recovery methods 
guarantee cascadeless or strict schedules. Hence, there is also no need to record any read_item 
operations in the log, because these are needed only for determining cascading rollback.  

 
 

21.2 Recovery Techniques Based on Deferred Update 

21.2.1 Recovery Using Deferred Update in a Single-User Environment 
21.2.2 Deferred Update with Concurrent Execution in a Multiuser Environment 
21.2.3 Transaction Actions That Do Not Affect the Database
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The idea behind deferred update techniques is to defer or postpone any actual updates to the database 
until the transaction completes its execution successfully and reaches its commit point (Note 4). During 
transaction execution, the updates are recorded only in the log and in the cache buffers. After the 
transaction reaches its commit point and the log is force-written to disk, the updates are recorded in the 
database. If a transaction fails before reaching its commit point, there is no need to undo any 
operations, because the transaction has not affected the database on disk in any way. Although this may 
simplify recovery, it cannot be used in practice unless transactions are short and each transaction 
changes few items. For other types of transactions, there is the potential for running out of buffer space 
because transaction changes must be held in the cache buffers until the commit point.  

We can state a typical deferred update protocol as follows:  

1. A transaction cannot change the database on disk until it reaches its commit point.  
2. A transaction does not reach its commit point until all its update operations are recorded in the 

log and the log is force-written to disk.  

Notice that Step 2 of this protocol is a restatement of the write-ahead logging (WAL) protocol. Because 
the database is never updated on disk until after the transaction commits, there is never a need to 
UNDO any operations. Hence, this is known as the NO-UNDO/REDO recovery algorithm. REDO is 
needed in case the system fails after a transaction commits but before all its changes are recorded in the 
database on disk. In this case, the transaction operations are redone from the log entries.  

Usually, the method of recovery from failure is closely related to the concurrency control method in 
multiuser systems. First we discuss recovery in single-user systems, where no concurrency control is 
needed, so that we can understand the recovery process independently of any concurrency control 
method. We then discuss how concurrency control may affect the recovery process.  

 
 

21.2.1 Recovery Using Deferred Update in a Single-User Environment 

In such an environment, the recovery algorithm can be rather simple. The algorithm RDU_S (Recovery 
using Deferred Update in a Single-user environment) uses a REDO procedure, given subsequently, for 
redoing certain write_item operations; it works as follows:  

 
 

PROCEDURE RDU_S: Use two lists of transactions: the committed transactions since the last 
checkpoint, and the active transactions (at most one transaction will fall in this category, because the 
system is single-user). Apply the REDO operation to all the write_item operations of the 
committed transactions from the log in the order in which they were written to the log. Restart the 
active transactions.  

 
 

The REDO procedure is defined as follows:  

 
 

REDO(WRITE_OP): Redoing a write_item operation WRITE_OP consists of examining its log 
entry [write_item, T, X, new_value] and setting the value of item X in the database to 
new_value, which is the after image (AFIM).  
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The REDO operation is required to be idempotent—that is, executing it over and over is equivalent to 
executing it just once. In fact, the whole recovery process should be idempotent. This is so because, if 
the system were to fail during the recovery process, the next recovery attempt might REDO certain 
write_item operations that had already been redone during the first recovery process. The result of 
recovery from a system crash during recovery should be the same as the result of recovering when 
there is no crash during recovery!  

Notice that the only transaction in the active list will have had no effect on the database because of the 
deferred update protocol, and it is ignored completely by the recovery process because none of its 
operations were reflected in the database on disk. However, this transaction must now be restarted, 
either automatically by the recovery process or manually by the user.  

Figure 21.02 shows an example of recovery in a single-user environment, where the first failure occurs 
during execution of transaction , as shown in Figure 21.02(b). The recovery process will redo the 
[write_item, , D, 20] entry in the log by resetting the value of item D to 20 (its new value). The 
[write, , ...] entries in the log are ignored by the recovery process because is not committed. If a 
second failure occurs during recovery from the first failure, the same recovery process is repeated from 
start to finish, with identical results.  

 

 

 
 

21.2.2 Deferred Update with Concurrent Execution in a Multiuser Environment 

For multiuser systems with concurrency control, the recovery process may be more complex, 
depending on the protocols used for concurrency control. In many cases, the concurrency control and 
recovery processes are interrelated. In general, the greater the degree of concurrency we wish to 
achieve, the more time consuming the task of recovery becomes.  

Consider a system in which concurrency control uses strict two-phase locking, so the locks on items 
remain in effect until the transaction reaches its commit point. After that, the locks can be released. 
This ensures strict and serializable schedules. Assuming that [checkpoint] entries are included in 
the log, a possible recovery algorithm for this case, which we call RDU_M (Recovery using Deferred 
Update in a Multi-user environment), is given next. This procedure uses the REDO procedure defined 
earlier.  

 
 

PROCEDURE RDU_M (WITH CHECKPOINTS): Use two lists of transactions maintained by the 
system: the committed transactions T since the last checkpoint (commit list), and the active 
transactions T (active list). REDO all the WRITE operations of the committed transactions from the 
log, in the order in which they were written into the log. The transactions that are active and did not 
commit are effectively canceled and must be resubmitted.  

 
 

Figure 21.03 shows a possible schedule of executing transactions. When the checkpoint was taken at 
time , transaction had committed, whereas transactions and had not. Before the system crash at time , 
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and were committed but not and . According to the RDU_M method, there is no need to redo the 
write_item operations of transaction —or any transactions committed before the last checkpoint 
time . Write_item operations of and must be redone, however, because both transactions reached 
their commit points after the last checkpoint. Recall that the log is force-written before committing a 
transaction. Transactions and are ignored: They are effectively canceled or rolled back because none of 
their write_item operations were recorded in the database under the deferred update protocol. We 
will refer to Figure 21.03 later to illustrate other recovery protocols.  

 

 

 
 

We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that, if a data item X 
has been updated—as indicated in the log entries—more than once by committed transactions since the 
last checkpoint, it is only necessary to REDO the last update of X from the log during recovery. The 
other updates would be overwritten by this last REDO in any case. In this case, we start from the end of 
the log; then, whenever an item is redone, it is added to a list of redone items. Before REDO is applied 
to an item, the list is checked; if the item appears on the list, it is not redone again, since its last value 
has already been recovered.  

If a transaction is aborted for any reason (say, by the deadlock detection method), it is simply 
resubmitted, since it has not changed the database on disk. A drawback of the method described here is 
that it limits the concurrent execution of transactions because all items remain locked until the 
transaction reaches its commit point. In addition, it may require excessive buffer space to hold all 
updated items until the transactions commit. The method’s main benefit is that transaction operations 
never need to be undone, for two reasons:  

1. A transaction does not record any changes in the database on disk until after it reaches its 
commit point—that is, until it completes its execution successfully. Hence, a transaction is 
never rolled back because of failure during transaction execution.  

2. A transaction will never read the value of an item that is written by an uncommitted 
transaction, because items remain locked until a transaction reaches its commit point. Hence, 
no cascading rollback will occur.  

Figure 21.04 shows an example of recovery for a multiuser system that utilizes the recovery and 
concurrency control method just described.  

 

 

 
 

21.2.3 Transaction Actions That Do Not Affect the Database 

In general, a transaction will have actions that do not affect the database, such as generating and 
printing messages or reports from information retrieved from the database. If a transaction fails before 
completion, we may not want the user to get these reports, since the transaction has failed to complete. 
If such erroneous reports are produced, part of the recovery process would have to inform the user that 
these reports are wrong, since the user may take an action based on these reports that affects the 
database. Hence, such reports should be generated only after the transaction reaches its commit point. 
A common method of dealing with such actions is to issue the commands that generate the reports but 
keep them as batch jobs, which are executed only after the transaction reaches its commit point. If the 
transaction fails, the batch jobs are canceled.  

1 Page 604 of 893



www.manaraa.com

 
 

21.3 Recovery Techniques Based on Immediate Update 

21.3.1 UNDO/REDO Recovery Based on Immediate Update in a Single-User Environment 
21.3.2 UNDO/REDO Recovery Based on Immediate Update with Concurrent Execution

In these techniques, when a transaction issues an update command, the database can be updated 
"immediately," without any need to wait for the transaction to reach its commit point. In these 
techniques, however, an update operation must still be recorded in the log (on disk) before it is applied 
to the database—using the write-ahead logging protocol—so that we can recover in case of failure.  

Provisions must be made for undoing the effect of update operations that have been applied to the 
database by a failed transaction. This is accomplished by rolling back the transaction and undoing the 
effect of the transaction’s write_item operations. Theoretically, we can distinguish two main 
categories of immediate update algorithms. If the recovery technique ensures that all updates of a 
transaction are recorded in the database on disk before the transaction commits, there is never a need to 
REDO any operations of committed transactions. This is called the UNDO/NO-REDO recovery 
algorithm. On the other hand, if the transaction is allowed to commit before all its changes are written 
to the database, we have the most general case, known as the UNDO/REDO recovery algorithm. This 
is also the most complex technique. Next, we discuss two examples of UNDO/REDO algorithms and 
leave it as an exercise for the reader to develop the UNDO/NO-REDO variation. In Section 21.5, we 
describe a more practical approach known as the ARIES recovery technique.  

 
 

21.3.1 UNDO/REDO Recovery Based on Immediate Update in a Single-User Environment 

In a single-user system, if a failure occurs, the executing (active) transaction at the time of failure may 
have recorded some changes in the database. The effect of all such operations must be undone. The 
recovery algorithm RIU_S (Recovery using Immediate Update in a Single-user environment) uses the 
REDO procedure defined earlier, as well as the UNDO procedure defined below.  

 
 

PROCEDURE RIU_S  

1. Use two lists of transactions maintained by the system: the committed transactions since the 
last checkpoint and the active transactions (at most one transaction will fall in this category, 
because the system is single-user).  

2. Undo all the write_item operations of the active transaction from the log, using the UNDO 
procedure described below.  

3. Redo the write_item operations of the committed transactions from the log, in the order in 
which they were written in the log, using the REDO procedure described earlier.  

The UNDO procedure is defined as follows:  

 
 

UNDO(WRITE_OP): Undoing a write_item operation WRITE_OP consists of examining its log 
entry [write_item, T, X, old_value, new_value] and setting the value of item X in the 
database to old_value which is the before image (BFIM). Undoing a number of write_item 
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operations from one or more transactions from the log must proceed in the reverse order from the order 
in which the operations were written in the log.  

 
 

21.3.2 UNDO/REDO Recovery Based on Immediate Update with Concurrent Execution 

When concurrent execution is permitted, the recovery process again depends on the protocols used for 
concurrency control. The procedure RIU_M (Recovery using Immediate Updates for a Multiuser 
environment) outlines a recovery algorithm for concurrent transactions with immediate update. Assume 
that the log includes checkpoints and that the concurrency control protocol produces strict schedules—
as, for example, the strict two-phase locking protocol does. Recall that a strict schedule does not allow 
a transaction to read or write an item unless the transaction that last wrote the item has committed (or 
aborted and rolled back). However, deadlocks can occur in strict two-phase locking, thus requiring 
abort and UNDO of transactions. For a strict schedule, UNDO of an operation requires changing the 
item back to its old value (BFIM).  

 
 

PROCEDURE RIU_M  

1. Use two lists of transactions maintained by the system: the committed transactions since the 
last checkpoint and the active transactions.  

2. Undo all the write_item operations of the active (uncommitted) transactions, using the 
UNDO procedure. The operations should be undone in the reverse of the order in which they 
were written into the log.  

3. Redo all the write_item operations of the committed transactions from the log, in the order 
in which they were written into the log.  

As we discussed in Section 21.2.2, Step 3 is more efficiently done by starting from the end of the log 
and redoing only the last update of each item X. Whenever an item is redone, it is added to a list of 
redone items and is not redone again.  

 
 

21.4 Shadow Paging 

This recovery scheme does not require the use of a log in a single-user environment. In a multiuser 
environment, a log may be needed for the concurrency control method. Shadow paging considers the 
database to be made up of a number of fixed-size disk pages (or disk blocks)—say, n—for recovery 
purposes. A directory with n entries (Note 5) is constructed, where the ith entry points to the ith 
database page on disk. The directory is kept in main memory if it is not too large, and all references—
reads or writes—to database pages on disk go through it. When a transaction begins executing, the 
current directory—whose entries point to the most recent or current database pages on disk—is 
copied into a shadow directory. The shadow directory is then saved on disk while the current directory 
is used by the transaction.  

During transaction execution, the shadow directory is never modified. When a write_item 
operation is performed, a new copy of the modified database page is created, but the old copy of that 
page is not overwritten. Instead, the new page is written elsewhere—on some previously unused disk 
block. The current directory entry is modified to point to the new disk block, whereas the shadow 
directory is not modified and continues to point to the old unmodified disk block. Figure 21.05 
illustrates the concepts of shadow and current directories. For pages updated by the transaction, two 
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versions are kept. The old version is referenced by the shadow directory, and the new version by the 
current directory.  

 

 

 
 

To recover from a failure during transaction execution, it is sufficient to free the modified database 
pages and to discard the current directory. The state of the database before transaction execution is 
available through the shadow directory, and that state is recovered by reinstating the shadow directory. 
The database thus is returned to its state prior to the transaction that was executing when the crash 
occurred, and any modified pages are discarded. Committing a transaction corresponds to discarding 
the previous shadow directory. Since recovery involves neither undoing nor redoing data items, this 
technique can be categorized as a NO-UNDO/NO-REDO technique for recovery.  

In a multiuser environment with concurrent transactions, logs and checkpoints must be incorporated 
into the shadow paging technique. One disadvantage of shadow paging is that the updated database 
pages change location on disk. This makes it difficult to keep related database pages close together on 
disk without complex storage management strategies. Furthermore, if the directory is large, the 
overhead of writing shadow directories to disk as transactions commit is significant. A further 
complication is how to handle garbage collection when a transaction commits. The old pages 
referenced by the shadow directory that have been updated must be released and added to a list of free 
pages for future use. These pages are no longer needed after the transaction commits. Another issue is 
that the operation to migrate between current and shadow directories must be implemented as an 
atomic operation.  

 
 

21.5 The ARIES Recovery Algorithm 

We now describe the ARIES algorithm as an example of a recovery algorithm used in database 
systems. ARIES uses a steal/no-force approach for writing, and it is based on three concepts: (1) write-
ahead logging, (2) repeating history during redo, and (3) logging changes during undo. We already 
discussed write-ahead logging in Section 21.1.3. The second concept, repeating history, means that 
ARIES will retrace all actions of the database system prior to the crash to reconstruct the database state 
when the crash occurred. Transactions that were uncommitted at the time of the crash (active 
transactions) are undone. The third concept, logging during undo, will prevent ARIES from repeating 
the completed undo operations if a failure occurs during recovery, which causes a restart of the 
recovery process.  

The ARIES recovery procedure consists of three main steps: (1) analysis, (2) REDO and (3) UNDO. 
The analysis step identifies the dirty (updated) pages in the buffer (Note 6), and the set of transactions 
active at the time of the crash. The appropriate point in the log where the REDO operation should start 
is also determined. The REDO phase actually reapplies updates from the log to the database. 
Generally, the REDO operation is applied to only committed transactions. However, in ARIES, this is 
not the case. Certain information in the ARIES log will provide the start point for REDO, from which 
REDO operations are applied until the end of the log is reached. In addition, information stored by 
ARIES and in the data pages will allow ARIES to determine whether the operation to be redone has 
actually been applied to the database and hence need not be reapplied. Thus only the necessary REDO 
operations are applied during recovery. Finally, during the UNDO phase, the log is scanned backwards 
and the operations of transactions that were active at the time of the crash are undone in reverse order. 
The information needed for ARIES to accomplish its recovery procedure includes the log, the 
Transaction Table, and the Dirty Page Table. In addition, checkpointing is used. These two tables are 
maintained by the transaction manager and written to the log during checkpointing.  
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In ARIES, every log record has an associated log sequence number (LSN) that is monotonically 
increasing and indicates the address of the log record on disk. Each LSN corresponds to a specific 
change (action) of some transaction. In addition, each data page will store the LSN of the latest log 
record corresponding to a change for that page. A log record is written for any of the following 
actions: updating a page (write), committing a transaction (commit), aborting a transaction (abort), 
undoing an update (undo), and ending a transaction (end). The need for including the first three actions 
in the log has been discussed, but the last two need some explanation. When an update is undone, a 
compensation log record is written in the log. When a transaction ends, whether by committing or 
aborting, an end log record is written.  

Common fields in all log records include: (1) the previous LSN for that transaction, (2) the transaction 
ID, and (3) the type of log record. The previous LSN is important because it links the log records (in 
reverse order) for each transaction. For an update (write) action, additional fields in the log record 
include: (4) the page ID for the page that includes the item, (5) the length of the updated item, (6) its 
offset from the beginning of the page, (7) the before image of the item, and (8) its after image.  

Besides the log, two tables are needed for efficient recovery: the Transaction Table and the Dirty 
Page Table, which are maintained by the transaction manager. When a crash occurs, these tables are 
rebuilt in the analysis phase of recovery. The Transaction Table contains an entry for each active 
transaction, with information such as the transaction ID, transaction status, and the LSN of the most 
recent log record for the transaction. The Dirty Page Table contains an entry for each dirty page in the 
buffer, which includes the page ID and the LSN corresponding to the earliest update to that page.  

Checkpointing in ARIES consists of the following: (1) writing a begin_checkpoint record to the 
log, (2) writing an end_checkpoint record to the log, and (3) writing the LSN of the 
begin_checkpoint record to a special file. This special file is accessed during recovery to locate 
the last checkpoint information. With the end_checkpoint record, the contents of both the 
Transaction Table and Dirty Page Table are appended to the end of the log. To reduce the cost, fuzzy 
checkpointing is used so that the DBMS can continue to execute transactions during checkpointing 
(see Section 21.1.4). In addition, the contents of the DBMS cache do not have to be flushed to disk 
during checkpoint, since the Transaction Table and Dirty Page Table—which are appended to the log 
on disk—contain the information needed for recovery. Notice that if a crash occurs during 
checkpointing, the special file will refer to the previous checkpoint, which is used for recovery.  

After a crash, the ARIES recovery manager takes over. Information from the last checkpoint is first 
accessed through the special file. The analysis phase starts at the begin_checkpoint record and 
proceeds to the end of the log. When the end_checkpoint record is encountered, the Transaction 
Table and Dirty Page Table are accessed (recall that these tables were written in the log during 
checkpointing). During analysis, the log records being analyzed may cause modifications to these two 
tables. For instance, if an end log record was encountered for a transaction T in the Transaction Table, 
then the entry for T is deleted from that table. If some other type of log record is encountered for a 
transaction , then an entry for is inserted into the Transaction Table, if not already present, and the last 
LSN field is modified. If the log record corresponds to a change for page P, then an entry would be 
made for page P (if not present in the table) and the associated LSN field would be modified. When the 
analysis phase is complete, the necessary information for REDO and UNDO has been compiled in the 
tables.  

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES starts redoing at a 
point in the log where it knows (for sure) that previous changes to dirty pages have already been 
applied to the database on disk. It can determine this by finding the smallest LSN, M, of all the dirty 
pages in the Dirty Page Table, which indicates the log position where ARIES needs to start the REDO 
phase. Any changes corresponding to a LSN < M, for redoable transactions, must have already been 
propagated to disk or already been overwritten in the buffer; otherwise, those dirty pages with that LSN 
would be in the buffer (and the Dirty Page Table). So, REDO starts at the log record with LSN = M and 
scans forward to the end of the log. For each change recorded in the log, the REDO algorithm would 
verify whether or not the change has to be reapplied. For example, if a change recorded in the log 
pertains to page P that is not in the Dirty Page Table, then this change is already on disk and need not 
be reapplied. Or, if a change recorded in the log (with LSN = N, say) pertains to page P and the Dirty 
Page Table contains an entry for P with LSN greater than N, then the change is already present. If 

1 Page 608 of 893



www.manaraa.com

neither of these two conditions hold, page P is read from disk and the LSN stored on that page, 
LSN(P), is compared with N. If N < LSN(P), then the change has been applied and the page need not 
be rewritten to disk.  

Once the REDO phase is finished, the database is in the exact state that it was in when the crash 
occurred. The set of active transactions—called the undo_set—has been identified in the Transaction 
Table during the analysis phase. Now, the UNDO phase proceeds by scanning backward from the end 
of the log and undoing the appropriate actions. A compensating log record is written for each action 
that is undone. The UNDO reads backward in the log until every action of the set of transactions in the 
undo_set has been undone. When this is completed, the recovery process is finished and normal 
processing can begin again.  

Consider the recovery example shown in Figure 21.06. There are three transactions: , , and . updates 
page C, updates pages B and C, and updates page A. Figure 21.06 (a) shows the partial contents of the 
log and Figure 21.06 (b) shows the contents of the Transaction Table and Dirty Page Table. Now, 
suppose that a crash occurs at this point. Since a checkpoint has occurred, the address of the associated 
begin_checkpoint record is retrieved, which is location 4. The analysis phase starts from location 
4 until it reaches the end. The end_checkpoint record would contain the Transaction Table and 
Dirty Page table in Figure 21.06(b), and the analysis phase will further reconstruct these tables. When 
the analysis phase encounters log record 6, a new entry for transaction is made in the Transaction Table 
and a new entry for page A is made in the Dirty Page table. After log record 8 is analyzed, the status of 
transaction is changed to committed in the Transaction Table. Figure 21.06(c) shows the two tables 
after the analysis phase.  

 

 

 
 

For the REDO phase, the smallest LSN in the Dirty Page table is 1. Hence the REDO will start at log 
record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7} corresponding to the updates 
for pages C, B, A, and C, respectively, are not less than the LSNs of those pages (as shown in the Dirty 
Page table). So those data pages will be read again and the updates reapplied from the log (assuming 
the actual LSNs stored on those data pages are less then the corresponding log entry). At this point, the 
REDO phase is finished and the UNDO phase starts. From the Transaction Table (Figure 21.06c), 
UNDO is applied only to the active transaction . The UNDO phase starts at log entry 6 (the last update 
for ) and proceeds backward in the log. The backward chain of updates for transaction (only log record 
6 in this example) is followed and undone.  

 
 

21.6 Recovery in Multidatabase Systems 

So far, we have implicitly assumed that a transaction accesses a single database. In some cases a single 
transaction, called a multidatabase transaction, may require access to multiple databases. These 
databases may even be stored on different types of DBMSs; for example, some DBMSs may be 
relational, whereas others are object-oriented, hierarchical, or network DBMSs. In such a case, each 
DBMS involved in the multidatabase transaction may have its own recovery technique and transaction 
manager separate from those of the other DBMSs. This situation is somewhat similar to the case of a 
distributed database management system (see Chapter 24), where parts of the database reside at 
different sites that are connected by a communication network.  

To maintain the atomicity of a multidatabase transaction, it is necessary to have a two-level recovery 
mechanism. A global recovery manager, or coordinator, is needed to maintain information needed 
for recovery, in addition to the local recovery managers and the information they maintain (log, tables). 

1 Page 609 of 893



www.manaraa.com

The coordinator usually follows a protocol called the two-phase commit protocol, whose two phases 
can be stated as follows:  

• Phase 1: When all participating databases signal the coordinator that the part of the 
multidatabase transaction involving each has concluded, the coordinator sends a message 
"prepare for commit" to each participant to get ready for committing the transaction. Each 
participating database receiving that message will force-write all log records and needed 
information for local recovery to disk and then send a "ready to commit" or "OK" signal to the 
coordinator. If the force-writing to disk fails or the local transaction cannot commit for some 
reason, the participating database sends a "cannot commit" or "not OK" signal to the 
coordinator. If the coordinator does not receive a reply from a database within a certain time 
out interval, it assumes a "not OK" response.  

• Phase 2: If all participating databases reply "OK," and the coordinator’s vote is also "OK," 
the transaction is successful, and the coordinator sends a "commit" signal for the transaction to 
the participating databases. Because all the local effects of the transaction and information 
needed for local recovery have been recorded in the logs of the participating databases, 
recovery from failure is now possible. Each participating database completes transaction 
commit by writing a [commit] entry for the transaction in the log and permanently updating 
the database if needed. On the other hand, if one or more of the participating databases or the 
coordinator have a "not OK" response, the transaction has failed, and the coordinator sends a 
message to "roll back" or UNDO the local effect of the transaction to each participating 
database. This is done by undoing the transaction operations, using the log.  

The net effect of the two-phase commit protocol is that either all participating databases commit the 
effect of the transaction or none of them do. In case any of the participants—or the coordinator—fails, 
it is always possible to recover to a state where either the transaction is committed or it is rolled back. 
A failure during or before Phase 1 usually requires the transaction to be rolled back, whereas a failure 
during Phase 2 means that a successful transaction can recover and commit.  

 
 

21.7 Database Backup and Recovery from Catastrophic Failures 

So far, all the techniques we have discussed apply to noncatastrophic failures. A key assumption has 
been that the system log is maintained on the disk and is not lost as a result of the failure. Similarly, the 
shadow directory must be stored on disk to allow recovery when shadow paging is used. The recovery 
techniques we have discussed use the entries in the system log or the shadow directory to recover from 
failure by bringing the database back to a consistent state.  

The recovery manager of a DBMS must also be equipped to handle more catastrophic failures such as 
disk crashes. The main technique used to handle such crashes is that of database backup. The whole 
database and the log are periodically copied onto a cheap storage medium such as magnetic tapes. In 
case of a catastrophic system failure, the latest backup copy can be reloaded from the tape to the disk, 
and the system can be restarted.  

To avoid losing all the effects of transactions that have been executed since the last backup, it is 
customary to back up the system log at more frequent intervals than full database backup by 
periodically copying it to magnetic tape. The system log is usually substantially smaller than the 
database itself and hence can be backed up more frequently. Thus users do not lose all transactions they 
have performed since the last database backup. All committed transactions recorded in the portion of 
the system log that has been backed up to tape can have their effect on the database redone. A new log 
is started after each database backup. Hence, to recover from disk failure, the database is first recreated 
on disk from its latest backup copy on tape. Following that, the effects of all the committed transactions 
whose operations have been recorded in the backed-up copies of the system log are reconstructed.  
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21.8 Summary 

In this chapter we discussed the techniques for recovery from transaction failures. The main goal of 
recovery is to ensure the atomicity property of a transaction. If a transaction fails before completing its 
execution, the recovery mechanism has to make sure that the transaction has no lasting effects on the 
database. We first gave an informal outline for a recovery process and then discussed system concepts 
for recovery. These included a discussion of caching, in-place updating versus shadowing, before and 
after images of a data item, UNDO versus REDO recovery operations, steal/no-steal and force/no-force 
policies, system checkpointing, and the write-ahead logging protocol.  

Next we discussed two different approaches to recovery: deferred update and immediate update. 
Deferred update techniques postpone any actual updating of the database on disk until a transaction 
reaches its commit point. The transaction force-writes the log to disk before recording the updates in 
the database. This approach, when used with certain concurrency control methods, is designed never to 
require transaction rollback, and recovery simply consists of redoing the operations of transactions 
committed after the last checkpoint from the log. The disadvantage is that too much buffer space may 
be needed, since updates are kept in the buffers and are not applied to disk until a transaction commits. 
Deferred update can lead to a recovery algorithm known as NO-UNDO/REDO. Immediate update 
techniques may apply changes to the database on disk before the transaction reaches a successful 
conclusion. Any changes applied to the database must first be recorded in the log and force-written to 
disk so that these operations can be undone if necessary. We also gave an overview of a recovery 
algorithm for immediate update known as UNDO/REDO. Another algorithm, known as UNDO/NO-
REDO, can also be developed for immediate update if all transaction actions are recorded in the 
database before commit.  

We discussed the shadow paging technique for recovery, which keeps track of old database pages by 
using a shadow directory. This technique, which is classified as NO-UNDO/NO-REDO, does not 
require a log in single-user systems but still needs the log for multiuser systems. We also presented 
ARIES, a specific recovery scheme used in some of IBM’s relational database products. We then 
discussed the two-phase commit protocol, which is used for recovery from failures involving 
multidatabase transactions. Finally, we discussed recovery from catastrophic failures, which is 
typically done by backing up the database and the log to tape. The log can be backed up more 
frequently than the database, and the backup log can be used to redo operations starting from the last 
database backup.  

 
 

Review Questions 

  21.1. Discuss the different types of transaction failures. What is meant by catastrophic failure?  

  21.2. Discuss the actions taken by the read_item and write_item operations on a database.  

  21.3. (Review from Chapter 19) What is the system log used for? What are the typical kinds of 
entries in a system log? What are checkpoints, and why are they important? What are 
transaction commit points, and why are they important?  

  21.4. How are buffering and caching techniques used by the recovery subsystem?  

  21.5. What are the before image (BFIM) and after image (AFIM) of a data item? What is the 
difference between in-place updating and shadowing, with respect to their handling of BFIM 
and AFIM?  

  21.6. What are UNDO-type and REDO-type log entries?  

  21.7. Describe the write-ahead logging protocol.  

  21.8. Identify three typical lists of transactions that are maintained by the recovery sub-system.  
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  21.9. What is meant by transaction rollback? What is meant by cascading rollback? Why do practical 
recovery methods use protocols that do not permit cascading rollback? Which recovery 
techniques do not require any rollback?  

21.10. Discuss the UNDO and REDO operations and the recovery techniques that use each.  

21.11. Discuss the deferred update technique of recovery. What are the advantages and disadvantages 
of this technique? Why is it called the NO-UNDO/REDO method?  

21.12. How can recovery handle transaction operations that do not affect the database, such as the 
printing of reports by a transaction?  

21.13. Discuss the immediate update recovery technique in both single-user and multiuser 
environments. What are the advantages and disadvantages of immediate update?  

21.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO algorithms for 
recovery with immediate update? Develop the outline for an UNDO/NO-REDO algorithm.  

21.15. Describe the shadow paging recovery technique. Under what circumstances does it not require 
a log?  

21.16. Describe the three phases of the ARIES recovery method.  

21.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What information does 
the Dirty Page Table and Transaction Table contain? Describe how fuzzy checkpointing is 
used in ARIES.  

21.18. What do the terms steal/no-steal and force/no-force mean with regard to buffer management 
for transaction processing.  

21.19. Describe the two-phase commit protocol for multidatabase transactions.  

21.20. Discuss how recovery from catastrophic failures is handled.  

 
 

Exercises 

21.21. Suppose that the system crashes before the [read_item, , A] entry is written to the log in 
Figure 21.01(b). Will that make any difference in the recovery process?  

21.22. Suppose that the system crashes before the [write_item, , D, 25, 26] entry is written to 
the log in Figure 21.01(b). Will that make any difference in the recovery process?  

21.23. Figure 21.07 shows the log corresponding to a particular schedule at the point of a system 
crash for four transactions , , , and . Suppose that we use the immediate update protocol with 
checkpointing. Describe the recovery process from the system crash. Specify which 
transactions are rolled back, which operations in the log are redone and which (if any) are 
undone, and whether any cascading rollback takes place.  

 

21.24. Suppose that we use the deferred update protocol for the example in Figure 21.07. Show how 
the log would be different in the case of deferred update by removing the unnecessary log 
entries; then describe the recovery process, using your modified log. Assume that only REDO 
operations are applied, and specify which operations in the log are redone and which are 
ignored.  

21.25. How does checkpointing in ARIES differ from checkpointing as described in Section 21.1.4?  

21.26. How are log sequence numbers used by ARIES to reduce the amount of REDO work needed 
for recovery? Illustrate with an example using the information shown in Figure 21.06. You can 
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make your own assumptions as to when a page is written to disk.  

21.27. What implications would a no-steal/force buffer management policy have on checkpointing 
and recovery? 

Choose the correct answer for each of the following multiple-choice questions:  

21.28. Incremental logging with deferred updates implies that the recovery system must necessarily  

a. store the old value of the updated item in the log.  
b. store the new value of the updated item in the log.  
c. store both the old and new value of the updated item in the log.  
d. store only the Begin Transaction and Commit Transaction records in the log.  

21.29. The write ahead logging (WAL) protocol simply means that  

a. the writing of a data item should be done ahead of any logging operation.  
b. the log record for an operation should be written before the actual data is written.  
c. all log records should be written before a new transaction begins execution.  
d. the log never needs to be written to disk.  

21.30. In case of transaction failure under a deferred update incremental logging scheme, which of the 
following will be needed:  

a. an undo operation.  
b. a redo operation.  
c. an undo and redo operation.  
d. none of the above.  

21.31. For incremental logging with immediate updates, a log record for a transaction would contain:  

a. a transaction name, data item name, old value of item, new value of item.  
b. a transaction name, data item name, old value of item.  
c. a transaction name, data item name, new value of item.  
d. a transaction name and a data item name.  

21.32. For correct behavior during recovery, undo and redo operations must be  

a. commutative.  
b. associative.  
c. idempotent.  
d. distributive.  

21.33. When a failure occurs, the log is consulted and each operation is either undone or redone. This 
is a problem because  

a. searching the entire log is time consuming.  
b. many redo’s are unnecessary.  
c. both (a) and (b).  
d. none of the above.  

21.34. When using a log based recovery scheme, it might improve performance as well as providing a 
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recovery mechanism by  

a. writing the log records to disk when each transaction commits.  
b. writing the appropriate log records to disk during the transaction’s execution.  
c. waiting to write the log records until multiple transactions commit and writing them 

as a batch.  
d. never writing the log records to disk.  

21.35. There is a possibility of a cascading rollback when  

a. a transaction writes items that have been written only by a committed transaction.  
b. a transaction writes an item that is previously written by an uncommitted transaction.  
c. a transaction reads an item that is previously written by an uncommitted transaction.  
d. both (b) and (c).  

21.36. To cope with media (disk) failures, it is necessary  

a. for the DBMS to only execute transactions in a single user environment.  
b. to keep a redundant copy of the database.  
c. to never abort a transaction.  
d. all of the above.  

21.37. If the shadowing approach is used for flushing a data item back to disk, then  

a. the item is written to disk only after the transaction commits.  
b. the item is written to a different location on disk.  
c. the item is written to disk before the transaction commits.  
d. the item is written to the same disk location from which it was read.  

 
 

Selected Bibliography 

The books by Bernstein et al. (1987) and Papadimitriou (1986) are devoted to the theory and principles 
of concurrency control and recovery. The book by Gray and Reuter (1993) is an encyclopedic work on 
concurrency control, recovery, and other transaction-processing issues.  

Verhofstad (1978) presents a tutorial and survey of recovery techniques in database systems. 
Categorizing algorithms based on their UNDO/REDO characteristics is discussed in Haerder and 
Reuter (1983) and in Bernstein et al. (1983). Gray (1978) discusses recovery, along with other system 
aspects of implementing operating systems for databases. The shadow paging technique is discussed in 
Lorie (1977), Verhofstad (1978), and Reuter (1980). Gray et al. (1981) discuss the recovery mechanism 
in SYSTEM R. Lockeman and Knutsen (1968), Davies (1972), and Bjork (1973) are early papers that 
discuss recovery. Chandy et al. (1975) discuss transaction rollback. Lilien and Bhargava (1985) discuss 
the concept of integrity block and its use to improve the efficiency of recovery.  

Recovery using write-ahead logging is analyzed in Jhingran and Khedkar (1992) and is used in the 
ARIES system (Mohan et al. 1992a). More recent work on recovery includes compensating 
transactions (Korth et al. 1990) and main memory database recovery (Kumar 1991). The ARIES 
recovery algorithms (Mohan et al. 1992) have been quite successful in practice. Franklin et al. (1992) 
discusses recovery in the EXODUS system. Two recent books by Kumar and Hsu (1998) and Kumar 

1 Page 614 of 893



www.manaraa.com
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number of existing relational database products.  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Note 1 

This is somewhat similar to the concept of page tables used by the operating system.  

 
 

Note 2 

In-place updating is used in most systems in practice.  

 
 

Note 3 

The term checkpoint has been used to describe more restrictive situations in some systems, such as 
DB2. It has also been used in the literature to describe entirely different concepts.  

 
 

Note 4 

Hence deferred update can generally be characterized as a no-steal approach.  

 
 

Note 5 

The directory is similar to the page table maintained by the operating system for each process.  

 
 

Note 6 
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The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored 
in the log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to identify this 
information (see Section 21.5).  

 
 

Chapter 22: Database Security and Authorization 
22.1 Introduction to Database Security Issues 
22.2 Discretionary Access Control Based on Granting/Revoking of Privileges 
22.3 Mandatory Access Control for Multilevel Security 
22.4 Introduction to Statistical Database Security 
22.5 Summary 
Review Questions 
Exercises 
Selected Bibliography 
Footnotes

In this chapter we discuss the techniques used for protecting the database against persons who are not 
authorized to access either certain parts of a database or the whole database. Section 22.1 provides an 
introduction to security issues and an overview of the topics covered in the rest of this chapter. Section 
22.2 discusses the mechanisms used to grant and revoke privileges in relational database systems and 
in SQL—mechanisms that are often referred to as discretionary access control. Section 22.3 offers an 
overview of the mechanisms for enforcing multiple levels of security—a more recent concern in 
database system security that is known as mandatory access control. Section 22.4 briefly discusses 
the security problem in statistical databases. Readers who are interested only in basic database security 
mechanisms will find it sufficient to cover the material in Section 22.1 and Section 22.2.  

 
 

22.1 Introduction to Database Security Issues 

22.1.1 Types of Security 
22.1.2 Database Security and the DBA 
22.1.3 Access Protection, User Accounts, and Database Audits

22.1.1 Types of Security 

Database security is a very broad area that addresses many issues, including the following:  

• Legal and ethical issues regarding the right to access certain information. Some information 
may be deemed to be private and cannot be accessed legally by unauthorized persons. In the 
United States, there are numerous laws governing privacy of information.  

• Policy issues at the governmental, institutional, or corporate level as to what kinds of 
information should not be made publicly available—for example, credit ratings and personal 
medical records.  

• System-related issues such as the system levels at which various security functions should be 
enforced—for example, whether a security function should be handled at the physical 
hardware level, the operating system level, or the DBMS level.  

• The need in some organizations to identify multiple security levels and to categorize the data 
and users based on these classifications—for example, top secret, secret, confidential, and 
unclassified. The security policy of the organization with respect to permitting access to 
various classifications of data must be enforced.  
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In a multiuser database system, the DBMS must provide techniques to enable certain users or user 
groups to access selected portions of a database without gaining access to the rest of the database. This 
is particularly important when a large integrated database is to be used by many different users within 
the same organization. For example, sensitive information such as employee salaries or performance 
reviews should be kept confidential from most of the database system’s users. A DBMS typically 
includes a database security and authorization subsystem that is responsible for ensuring the 
security of portions of a database against unauthorized access. It is now customary to refer to two types 
of database security mechanisms:  

• Discretionary security mechanisms: These are used to grant privileges to users, including the 
capability to access specific data files, records, or fields in a specified mode (such as read, 
insert, delete, or update).  

• Mandatory security mechanisms: These are used to enforce multilevel security by classifying 
the data and users into various security classes (or levels) and then implementing the 
appropriate security policy of the organization. For example, a typical security policy is to 
permit users at a certain classification level to see only the data items classified at the user’s 
own (or lower) classification level.  

We discuss discretionary security in Section 22.2 and mandatory security in Section 22.3.  

A second security problem common to all computer systems is that of preventing unauthorized persons 
from accessing the system itself—either to obtain information or to make malicious changes in a 
portion of the database. The security mechanism of a DBMS must include provisions for restricting 
access to the database system as a whole. This function is called access control and is handled by 
creating user accounts and passwords to control the log-in process by the DBMS. We discuss access 
control techniques in Section 22.1.3.  

A third security problem associated with databases is that of controlling the access to a statistical 
database, which is used to provide statistical information or summaries of values based on various 
criteria. For example, a database for population statistics may provide statistics based on age groups, 
income levels, size of household, education levels, and other criteria. Statistical database users such as 
government statisticians or market research firms are allowed to access the database to retrieve 
statistical information about a population but not to access the detailed confidential information on 
specific individuals. Security for statistical databases must ensure that information on individuals 
cannot be accessed. It is sometimes possible to deduce certain facts concerning individuals from 
queries that involve only summary statistics on groups; consequently this must not be permitted either. 
This problem, called statistical database security, is discussed briefly in Section 22.4.  

A fourth security issue is data encryption, which is used to protect sensitive data—such as credit card 
numbers—that is being transmitted via some type of communications network. Encryption can be used 
to provide additional protection for sensitive portions of a database as well. The data is encoded by 
using some coding algorithm. An unauthorized user who accesses encoded data will have difficulty 
deciphering it, but authorized users are given decoding or decrypting algorithms (or keys) to decipher 
the data. Encrypting techniques that are very difficult to decode without a key have been developed for 
military applications. We will not discuss encryption algorithms here.  

A complete discussion of security in computer systems and databases is outside the scope of this 
textbook. We give only a brief overview of database security techniques here. The interested reader can 
refer to one of the references at the end of this chapter for a more comprehensive discussion.  

 
 

22.1.2 Database Security and the DBA 

As we discussed in Chapter 1, the database administrator (DBA) is the central authority for managing a 
database system. The DBA’s responsibilities include granting privileges to users who need to use the 
system and classifying users and data in accordance with the policy of the organization. The DBA has a 
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DBA account in the DBMS, sometimes called a system or superuser account, which provides 
powerful capabilities that are not made available to regular database accounts and users (Note 1). DBA 
privileged commands include commands for granting and revoking privileges to individual accounts, 
users, or user groups and for performing the following types of actions:  

1. Account creation: This action creates a new account and password for a user or a group of 
users to enable them to access the DBMS.  

2. Privilege granting: This action permits the DBA to grant certain privileges to certain 
accounts.  

3. Privilege revocation: This action permits the DBA to revoke (cancel) certain privileges that 
were previously given to certain accounts.  

4. Security level assignment: This action consists of assigning user accounts to the appropriate 
security classification level.  

The DBA is responsible for the overall security of the database system. Action 1 in the preceding list is 
used to control access to the DBMS as a whole, whereas actions 2 and 3 are used to control 
discretionary database authorizations, and action 4 is used to control mandatory authorization.  

 
 

22.1.3 Access Protection, User Accounts, and Database Audits 

Whenever a person or a group of persons needs to access a database system, the individual or group 
must first apply for a user account. The DBA will then create a new account number and password 
for the user if there is a legitimate need to access the database. The user must log in to the DBMS by 
entering the account number and password whenever database access is needed. The DBMS checks 
that the account number and password are valid; if they are, the user is permitted to use the DBMS and 
to access the database. Application programs can also be considered as users and can be required to 
supply passwords.  

It is straightforward to keep track of database users and their accounts and passwords by creating an 
encrypted table or file with the two fields AccountNumber and Password. This table can easily be 
maintained by the DBMS. Whenever a new account is created, a new record is inserted into the table. 
When an account is canceled, the corresponding record must be deleted from the table.  

The database system must also keep track of all operations on the database that are applied by a certain 
user throughout each log-in session, which consists of the sequence of database interactions that a user 
performs from the time of logging in to the time of logging off. When a user logs in, the DBMS can 
record the user’s account number and associate it with the terminal from which the user logged in. All 
operations applied from that terminal are attributed to the user’s account until the user logs off. It is 
particularly important to keep track of update operations that are applied to the database so that, if the 
database is tampered with, the DBA can find out which user did the tampering.  

To keep a record of all updates applied to the database and of the particular user who applied each 
update, we can modify the system log. Recall from Chapter 19 and Chapter 21 that the system log 
includes an entry for each operation applied to the database that may be required for recovery from a 
transaction failure or system crash. We can expand the log entries so that they also include the account 
number of the user and the on-line terminal ID that applied each operation recorded in the log. If any 
tampering with the database is suspected, a database audit is performed, which consists of reviewing 
the log to examine all accesses and operations applied to the database during a certain time period. 
When an illegal or unauthorized operation is found, the DBA can determine the account number used 
to perform this operation. Database audits are particularly important for sensitive databases that are 
updated by many transactions and users, such as a banking database that is updated by many bank 
tellers. A database log that is used mainly for security purposes is sometimes called an audit trail.  
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22.2 Discretionary Access Control Based on Granting/Revoking of 
Privileges 

22.2.1 Types of Discretionary Privileges 
22.2.2 Specifying Privileges Using Views 
22.2.3 Revoking Privileges 
22.2.4 Propagation of Privileges Using the GRANT OPTION 
22.2.5 An Example 
22.2.6 Specifying Limits on Propagation of Privileges

The typical method of enforcing discretionary access control in a database system is based on the 
granting and revoking of privileges. Let us consider privileges in the context of a relational DBMS. In 
particular, we will discuss a system of privileges somewhat similar to the one originally developed for 
the SQL language (see Chapter 8). Many current relational DBMSs use some variation of this 
technique. The main idea is to include additional statements in the query language that allow the DBA 
and selected users to grant and revoke privileges.  

 
 

22.2.1 Types of Discretionary Privileges 

In SQL2, the concept of authorization identifier is used to refer, roughly speaking, to a user account 
(or group of user accounts). For simplicity, we will use the words user or account interchangeably in 
place of authorization identifier. The DBMS must provide selective access to each relation in the 
database based on specific accounts. Operations may also be controlled; thus having an account does 
not necessarily entitle the account holder to all the functionality provided by the DBMS. Informally, 
there are two levels for assigning privileges to use the database system:  

1. The account level: At this level, the DBA specifies the particular privileges that each account 
holds independently of the relations in the database.  

2. The relation (or table) level: At this level, we can control the privilege to access each 
individual relation or view in the database.  

The privileges at the account level apply to the capabilities provided to the account itself and can 
include the CREATE SCHEMA or CREATE TABLE privilege, to create a schema or base relation; the 
CREATE VIEW privilege; the ALTER privilege, to apply schema changes such as adding or removing 
attributes from relations; the DROP privilege, to delete relations or views; the MODIFY privilege, to 
insert, delete, or update tuples; and the SELECT privilege, to retrieve information from the database by 
using a SELECT query. Notice that these account privileges apply to the account in general. If a certain 
account does not have the CREATE TABLE privilege, no relations can be created from that account. 
Account-level privileges are not defined as part of SQL2; they are left to the DBMS implementers to 
define. In earlier versions of SQL, a CREATETAB privilege existed to give an account the privilege to 
create tables (relations).  

The second level of privileges applies to the relation level, whether they are base relations or virtual 
(view) relations. These privileges are defined for SQL2. In the following discussion, the term relation 
may refer either to a base relation or to a view, unless we explicitly specify one or the other. Privileges 
at the relation level specify for each user the individual relations on which each type of command can 
be applied. Some privileges also refer to individual columns (attributes) of relations. SQL2 commands 
provide privileges at the relation and attribute level only. Although this is quite general, it makes it 
difficult to create accounts with limited privileges. The granting and revoking of privileges generally 
follows an authorization model for discretionary privileges known as the access matrix model, where 
the rows of a matrix M represent subjects (users, accounts, programs) and the columns represent 
objects (relations, records, columns, views, operations). Each position M(i, j) in the matrix represents 
the types of privileges (read, write, update) that subject i holds on object j.  
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To control the granting and revoking of relation privileges, each relation R in a database is assigned an 
owner account, which is typically the account that was used when the relation was created in the first 
place. The owner of a relation is given all privileges on that relation. In SQL2, the DBA can assign an 
owner to a whole schema by creating the schema and associating the appropriate authorization 
identifier with that schema, using the CREATE SCHEMA command (see Section 8.1.1). The owner 
account holder can pass privileges on any of the owned relations to other users by granting privileges 
to their accounts. In SQL the following types of privileges can be granted on each individual relation R:  

• SELECT (retrieval or read) privilege on R: Gives the account retrieval privilege. In SQL this 
gives the account the privilege to use the SELECT statement to retrieve tuples from R.  

• MODIFY privileges on R: This gives the account the capability to modify tuples of R. In SQL 
this privilege is further divided into UPDATE, DELETE, and INSERT privileges to apply the 
corresponding SQL command to R. In addition, both the INSERT and UPDATE privileges 
can specify that only certain attributes of R can be updated by the account.  

• REFERENCES privilege on R: This gives the account the capability to reference relation R 
when specifying integrity constraints. This privilege can also be restricted to specific attributes 
of R.  

Notice that to create a view, the account must have SELECT privilege on all relations involved in the 
view definition.  

 
 

22.2.2 Specifying Privileges Using Views 

The mechanism of views is an important discretionary authorization mechanism in its own right. For 
example, if the owner A of a relation R wants another account B to be able to retrieve only some fields 
of R, then A can create a view V of R that includes only those attributes and then grant SELECT on V to 
B. The same applies to limiting B to retrieving only certain tuples of R; a view V can be created by 
defining the view by means of a query that selects only those tuples from R that A wants to allow B to 
access. We shall illustrate this discussion with the example given in Section 22.2.5.  

 
 

22.2.3 Revoking Privileges 

In some cases it is desirable to grant some privilege to a user temporarily. For example, the owner of a 
relation may want to grant the SELECT privilege to a user for a specific task and then revoke that 
privilege once the task is completed. Hence, a mechanism for revoking privileges is needed. In SQL a 
REVOKE command is included for the purpose of canceling privileges. We will see how the REVOKE 
command is used in the example in Section 22.2.5.  

 
 

22.2.4 Propagation of Privileges Using the GRANT OPTION 

Whenever the owner A of a relation R grants a privilege on R to another account B, the privilege can be 
given to B with or without the GRANT OPTION. If the GRANT OPTION is given, this means that B 
can also grant that privilege on R to other accounts. Suppose that B is given the GRANT OPTION by A 
and that B then grants the privilege on R to a third account C, also with GRANT OPTION. In this way, 
privileges on R can propagate to other accounts without the knowledge of the owner of R. If the owner 
account A now revokes the privilege granted to B, all the privileges that B propagated based on that 
privilege should automatically be revoked by the system.  
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It is possible for a user to receive a certain privilege from two or more sources. For example, A4 may 
receive a certain UPDATE R privilege from both A2 and A3. In such a case, if A2 revokes this privilege 
from A4, A4 will still continue to have the privilege by virtue of having been granted it from A3. If A3 
later revokes the privilege from A4, A4 totally loses the privilege. Hence, a DBMS that allows 
propagation of privileges must keep track of how all the privileges were granted so that revoking of 
privileges can be done correctly and completely.  

 
 

22.2.5 An Example 

Suppose that the DBA creates four accounts—A1, A2, A3, and A4—and wants only A1 to be able to 
create base relations; then the DBA must issue the following GRANT command in SQL:  

 
 

GRANT CREATETAB TO A1;  

 
 

The CREATETAB (create table) privilege gives account A1 the capability to create new database 
tables (base relations) and is hence an account privilege. This privilege was part of earlier versions of 
SQL but is now left to each individual system implementation to define. In SQL2, the same effect can 
be accomplished by having the DBA issue a CREATE SCHEMA command, as follows:  

 
 

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;  

 
 

Now user account A1 can create tables under the schema called EXAMPLE. To continue our example, 
suppose that A1 creates the two base relations EMPLOYEE and DEPARTMENT shown in Figure 22.01; then 
A1 is the owner of these two relations and hence has all the relation privileges on each of them.  

 

 

 
 

Next, suppose that account A1 wants to grant to account A2 the privilege to insert and delete tuples in 
both of these relations. However, A1 does not want A2 to be able to propagate these privileges to 
additional accounts. Then A1 can issue the following command:  

 
 

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;  
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Notice that the owner account A1 of a relation automatically has the GRANT OPTION, allowing it to 
grant privileges on the relation to other accounts. However, account A2 cannot grant INSERT and 
DELETE privileges on the EMPLOYEE and DEPARTMENT tables, because A2 was not given the GRANT 
OPTION in the preceding command.  

Next, suppose that A1 wants to allow account A3 to retrieve information from either of the two tables 
and also to be able to propagate the SELECT privilege to other accounts. Then A1 can issue the 
following command:  

 
 

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;  

 
 

The clause WITH GRANT OPTION means that A3 can now propagate the privilege to other accounts 
by using GRANT. For example, A3 can grant the SELECT privilege on the EMPLOYEE relation to A4 by 
issuing the following command:  

 
 

GRANT SELECT ON EMPLOYEE TO A4;  

 
 

Notice that A4 cannot propagate the SELECT privilege to other accounts because the GRANT 
OPTION was not given to A4. Now suppose that A1 decides to revoke the SELECT privilege on the 
EMPLOYEE relation from A3; A1 then can issue this command:  

 
 

REVOKE SELECT ON EMPLOYEE FROM A3;  

 
 

The DBMS must now automatically revoke the SELECT privilege on EMPLOYEE from A4, too, because 
A3 granted that privilege to A4 and A3 does not have the privilege any more. Next, suppose that A1 
wants to give back to A3 a limited capability to SELECT from the EMPLOYEE relation and wants to 
allow A3 to be able to propagate the privilege. The limitation is to retrieve only the NAME, BDATE, and 
ADDRESS attributes and only for the tuples with DNO = 5. A1 then can create the following view:  

 
 

CREATE VIEW A3EMPLOYEE AS  

SELECT NAME, BDATE, ADDRESS  
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FROM EMPLOYEE  

WHERE DNO = 5;  

 
 

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 as follows:  

 
 

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;  

 
 

Finally, suppose that A1 wants to allow A4 to update only the SALARY attribute of EMPLOYEE; A1 can 
then issue the following command:  

 
 

GRANT UPDATE ON EMPLOYEE (SALARY) TO A4;  

 
 

The UPDATE or INSERT privilege can specify particular attributes that may be updated or inserted in 
a relation. Other privileges (SELECT, DELETE) are not attribute-specific, as this specificity can easily 
be controlled by creating the appropriate views that include only the desired attributes and granting the 
corresponding privileges on the views. However, because updating views is not always possible (see 
Chapter 8), the UPDATE and INSERT privileges are given the option to specify particular attributes of 
a base relation that may be updated.  

 
 

22.2.6 Specifying Limits on Propagation of Privileges 

Techniques to limit the propagation of privileges have been developed, although they have not yet been 
implemented in most DBMSs and are not a part of SQL. Limiting horizontal propagation to an 
integer number i means that an account B given the GRANT OPTION can grant the privilege to at 
most i other accounts. Vertical propagation is more complicated; it limits the depth of the granting of 
privileges. Granting a privilege with vertical propagation of zero is equivalent to granting the privilege 
with no GRANT OPTION. If account A grants a privilege to account B with vertical propagation set to 
an integer number j > 0, this means that the account B has the GRANT OPTION on that privilege, but 
B can grant the privilege to other accounts only with a vertical propagation less than j. In effect, 
vertical propagation limits the sequence of grant options that can be given from one account to the next 
based on a single original grant of the privilege.  

We now briefly illustrate horizontal and vertical propagation limits—which are not available currently 
in SQL or other relational systems—with an example. Suppose that A1 grants SELECT to A2 on the 
EMPLOYEE relation with horizontal propagation = 1 and vertical propagation = 2. A2 can then grant 
SELECT to at most one account because the horizontal propagation limitation is set to 1. In addition, 
A2 cannot grant the privilege to another account except with vertical propagation = 0 (no GRANT 
OPTION) or 1; this is because A2 must reduce the vertical propagation by at least 1 when passing the 
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privilege to others. As this example shows, horizontal and vertical propagation techniques are designed 
to limit the propagation of privileges.  

 
 

22.3 Mandatory Access Control for Multilevel Security 

The discretionary access control technique of granting and revoking privileges on relations has 
traditionally been the main security mechanism for relational database systems. This is an all-or-
nothing method: a user either has or does not have a certain privilege. In many applications, an 
additional security policy is needed that classifies data and users based on security classes. This 
approach—known as mandatory access control—would typically be combined with the discretionary 
access control mechanisms described in Section 22.2. It is important to note that most commercial 
DBMSs currently provide mechanisms only for discretionary access control. However, the need for 
multilevel security exists in government, military, and intelligence applications, as well as in many 
industrial and corporate applications.  

Typical security classes are top secret (TS), secret (S), confidential (C), and unclassified (U), where 
TS is the highest level and U the lowest. Other more complex security classification schemes exist, in 
which the security classes are organized in a lattice. For simplicity, we will use the system with four 
security classification levels, where TS S C U, to illustrate our discussion. The commonly used model 
for multilevel security, known as the Bell-LaPadula model, classifies each subject (user, account, 
program) and object (relation, tuple, column, view, operation) into one of the security classifications 
TS, S, C, or U. We will refer to the clearance (classification) of a subject S as class(S) and to the 
classification of an object O as class(O). Two restrictions are enforced on data access based on the 
subject/object classifications:  

1. A subject S is not allowed read access to an object O unless class(S) class(O). This is known 
as the simple security property.  

2. A subject S is not allowed to write an object O unless class(S) 1 class(O). This is known as 
the *-property (or star property).  

The first restriction is intuitive and enforces the obvious rule that no subject can read an object whose 
security classification is higher than the subject’s security clearance. The second restriction is less 
intuitive. It prohibits a subject from writing an object at a lower security classification than the 
subject’s security clearance. Violation of this rule would allow information to flow from higher to 
lower classifications, which violates a basic tenet of multilevel security. For example, a user (subject) 
with TS clearance may make a copy of an object with classification TS and then write it back as a new 
object with classification U, thus making it visible throughout the system.  

To incorporate multilevel security notions into the relational database model, it is common to consider 
attribute values and tuples as data objects. Hence, each attribute A is associated with a classification 
attribute C in the schema, and each attribute value in a tuple is associated with a corresponding 
security classification. In addition, in some models, a tuple classification attribute TC is added to the 
relation attributes to provide a classification for each tuple as a whole. Hence, a multilevel relation 
schema R with n attributes would be represented as  

 

 

 
 

where each represents the classification attribute associated with attribute .  
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The value of the TC attribute in each tuple t—which is the highest of all attribute classification values 
within t—provides a general classification for the tuple itself, whereas each provides a finer security 
classification for each attribute value within the tuple. The apparent key of a multilevel relation is the 
set of attributes that would have formed the primary key in a regular (single-level) relation. A 
multilevel relation will appear to contain different data to subjects (users) with different clearance 
levels. In some cases, it is possible to store a single tuple in the relation at a higher classification level 
and produce the corresponding tuples at a lower level classification through a process known as 
filtering. In other cases, it is necessary to store two or more tuples at different classification levels with 
the same value for the apparent key. This leads to the concept of polyinstantiation (Note 2), where 
several tuples can have the same apparent key value but have different attribute values for users at 
different classification levels.  

We illustrate these concepts with the simple example of a multilevel relation shown in Figure 22.02(a), 
where we display the classification attribute values next to each attribute’s value. Assume that the 
Name attribute is the apparent key, and consider the query SELECT * FROM EMPLOYEE. A user 
with security clearance S would see the same relation shown in Figure 22.02(a), since all tuple 
classifications are less than or equal to S. However, a user with security clearance C would not be 
allowed to see values for Salary of Brown and JobPerformance of Smith, since they have 
higher classification. The tuples would be filtered to appear as shown in Figure 22.02(b), with Salary 
and JobPerformance appearing as null. For a user with security clearance U, the filtering allows 
only the name attribute of Smith to appear, with all the other attributes appearing as null (Figure 
22.02c). Thus filtering introduces null values for attribute values whose security classification is higher 
than the user’s security clearance.  

 

 

 
 

In general, the entity integrity rule for multilevel relations states that all attributes that are members of 
the apparent key must not be null and must have the same security classification within each individual 
tuple. In addition, all other attribute values in the tuple must have a security classification greater than 
or equal to that of the apparent key. This constraint ensures that a user can see the key if the user is 
permitted to see any part of the tuple at all. Other integrity rules, called null integrity and 
interinstance integrity, informally ensure that, if a tuple value at some security level can be filtered 
(derived) from a higher-classified tuple, then it is sufficient to store the higher-classified tuple in the 
multilevel relation.  

To illustrate polyinstantiation further, suppose that a user with security clearance C tries to update the 
value of JobPerformance of Smith in Figure 22.02 to ‘Excellent’; this corresponds to the 
following SQL update being issued:  

 
 

UPDATE EMPLOYEE  

SET JobPerformance = ‘Excellent’  

WHERE Name = ‘Smith’;  
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Since the view provided to users with security clearance C (see Figure 22.02b) permits such an update, 
the system should not reject it; otherwise, the user could infer that some nonnull value exists for the 
JobPerformance attribute of Smith rather than the null value that appears. This is an example of 
inferring information through what is known as a covert channel, which should not be permitted in 
highly secure systems. However, the user should not be allowed to overwrite the existing value of 
JobPerformance at the higher classification level. The solution is to create a polyinstantiation for 
the Smith tuple at the lower classification level C, as shown in Figure 22.02(d). This is necessary 
since the new tuple cannot be filtered from the existing tuple at classification S.  

The basic update operations of the relational model (insert, delete, update) must be modified to handle 
this and similar situations, but this aspect of the problem is outside the scope of our presentation. We 
refer the interested reader to the end-of-chapter bibliography for further details.  

 
 

22.4 Introduction to Statistical Database Security 

Statistical databases are used mainly to produce statistics on various populations. The database may 
contain confidential data on individuals, which should be protected from user access. However, users 
are permitted to retrieve statistical information on the populations, such as averages, sums, counts, 
maximums, minimums, and standard deviations. The techniques that have been developed to protect 
the privacy of individual information are outside the scope of this book. We will only illustrate the 
problem with a very simple example, which refers to the relation shown in Figure 22.03. This is a 
PERSON relation with the attributes NAME, SSN, INCOME, ADDRESS, CITY, STATE, ZIP, SEX, and 
LAST_DEGREE.  

 

 

 
 

A population is a set of tuples of a relation (table) that satisfy some selection condition. Hence each 
selection condition on the PERSON relation will specify a particular population of PERSON tuples. For 
example, the condition SEX = ‘M’ specifies the male population; the condition ((SEX = ‘F’) AND 
(LAST_DEGREE = ‘M. S.’ OR LAST_DEGREE = ‘PH.D. ’)) specifies the female population that has an M.S. or 
PH.D. degree as their highest degree; and the condition CITY = ‘Houston’ specifies the population 
that lives in Houston.  

Statistical queries involve applying statistical functions to a population of tuples. For example, we may 
want to retrieve the number of individuals in a population or the average income in the population. 
However, statistical users are not allowed to retrieve individual data, such as the income of a specific 
person. Statistical database security techniques must prohibit the retrieval of individual data. This can 
be controlled by prohibiting queries that retrieve attribute values and by allowing only queries that 
involve statistical aggregate functions such as COUNT, SUM, MIN, MAX, AVERAGE, and 
STANDARD DEVIATION. Such queries are sometimes called statistical queries.  

In some cases it is possible to infer the values of individual tuples from a sequence of statistical 
queries. This is particularly true when the conditions result in a population consisting of a small 
number of tuples. As an illustration, consider the two statistical queries:  

 

  Q1:  SELECT COUNT (*) FROM PERSON 
    WHERE,condition.; 
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  Q2:  SELECT AVG (INCOME) FROM PERSON  
    WHERE,condition.;  

 
 

Now suppose that we are interested in finding the SALARY of ‘Jane Smith’, and we know that she 
has a PH.D. degree and that she lives in the city of Bellaire, Texas. We issue the statistical query Q1 
with the following condition:  

 
 

(LAST_DEGREE=‘PH.D.’ AND SEX=‘F’ AND CITY=‘Bellaire’ AND STATE=‘Texas’)  

 
 

If we get a result of 1 for this query, we can issue Q2 with the same condition and find the INCOME of 
Jane Smith. Even if the result of Q1 on the preceding condition is not 1 but is a small number—say, 2 
or 3—we can issue statistical queries using the functions MAX, MIN, and AVERAGE to identify the 
possible range of values for the INCOME of Jane Smith.  

The possibility of inferring individual information from statistical queries is reduced if no statistical 
queries are permitted whenever the number of tuples in the population specified by the selection 
condition falls below some threshold. Another technique for prohibiting retrieval of individual 
information is to prohibit sequences of queries that refer repeatedly to the same population of tuples. It 
is also possible to introduce slight inaccuracies or "noise" into the results of statistical queries 
deliberately, to make it difficult to deduce individual information from the results. The interested 
reader is referred to the bibliography for a discussion of these techniques.  

 
 

22.5 Summary 

In this chapter we discussed several techniques for enforcing security in database systems. Security 
enforcement deals with controlling access to the database system as a whole and controlling 
authorization to access specific portions of a database. The former is usually done by assigning 
accounts with passwords to users. The latter can be accomplished by using a system of granting and 
revoking privileges to individual accounts for accessing specific parts of the database. This approach is 
generally referred to as discretionary access control. We presented some SQL commands for granting 
and revoking privileges, and we illustrated their use with examples. Then we gave an overview of 
mandatory access control mechanisms that enforce multilevel security. These require the classifications 
of users and data values into security classes and enforce the rules that prohibit flow of information 
from higher to lower security levels. Some of the key concepts underlying the multilevel relational 
model, including filtering and polyinstantiation, were presented. Finally, we briefly discussed the 
problem of controlling access to statistical databases to protect the privacy of individual information 
while concurrently providing statistical access to populations of records.  

 
 

Review Questions 

  22.1. Discuss what is meant by each of the following terms: database authorization, access control, 
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data encryption, privileged (system) account, database audit, audit trail. 

  22.2. Discuss the types of privileges at the account level and those at the relation level. 

  22.3. Which account is designated as the owner of a relation? What privileges does the owner of a 
relation have? 

  22.4. How is the view mechanism used as an authorization mechanism?  

  22.5. What is meant by granting a privilege?  

  22.6. What is meant by revoking a privilege?  

  22.7. Discuss the system of propagation of privileges and the restraints imposed by horizontal and 
vertical propagation limits.  

  22.8. List the types of privileges available in SQL.  

  22.9. What is the difference between discretionary and mandatory access control?  

22.10. What are the typical security classifications? Discuss the simple security property and the *-
property, and explain the justification behind these rules for enforcing multilevel security.  

22.11. Describe the multilevel relational data model. Define the following terms: apparent key, 
polyinstantiation, filtering.  

22.12. What is a statistical database? Discuss the problem of statistical database security. 

 
 

Exercises 

22.13. Consider the relational database schema of Figure 07.05. Suppose that all the relations were 
created by (and hence are owned by) user X, who wants to grant the following privileges to 
user accounts A, B, C, D, and E:  

a. Account A can retrieve or modify any relation except DEPENDENT and can grant any of 
these privileges to other users.  

b. Account B can retrieve all the attributes of EMPLOYEE and DEPARTMENT except for 
SALARY, MGRSSN, and MGRSTARTDATE.  

c. Account C can retrieve or modify WORKS_ON but can only retrieve the FNAME, MINIT, 
LNAME, SSN attributes of EMPLOYEE and the PNAME, PNUMBER attributes of PROJECT.  

d. Account D can retrieve any attribute of EMPLOYEE or DEPENDENT and can modify 
DEPENDENT.  

e. Account E can retrieve any attribute of EMPLOYEE but only for EMPLOYEE tuples that 
have DNO = 3.  

Write SQL statements to grant these privileges. Use views where appropriate.  

22.14. Suppose that privilege (a) of Exercise 22.13 is to be given with GRANT OPTION but only so 
that account A can grant it to at most five accounts, and each of these accounts can propagate 
the privilege to other accounts but without the GRANT OPTION privilege. What would the 
horizontal and vertical propagation limits be in this case?  

22.15. Consider the relation shown in Figure 22.02(d). How would it appear to a user with 
classification U? Suppose a classification U user tries to update the salary of ‘Smith’ to 
$50,000; what would be the result of this action? 
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Footnotes 

Note 1 
Note 2

Note 1 

This account is similar to the root or superuser accounts that are given to computer system 
administrators, allowing access to restricted operating systems commands.  

 
 

Note 2 

This is similar to the notion of having multiple versions in the database that represent the same real-
world object.  
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23.4 Summary 
Review Questions 
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As the use of database systems has grown, users have demanded additional functionality from these 
software packages, with the purpose of making it easier to implement more advanced and complex user 
applications. Object-oriented databases and object-relational systems do provide features that allow 
users to extend their systems by specifying additional abstract data types for each application. 
However, it is quite useful to identify certain common features for some of these advanced applications 
and to create models that can represent these common features. In addition, specialized storage 
structures and indexing methods can be implemented to improve the performance of these common 
features. These features can then be implemented as abstract data type or class libraries and separately 
purchased with the basic DBMS software package. The term datablade has been used in Informix and 
cartridge in Oracle (see Chapter 13) to refer to such optional sub-modules that can be included in a 
DBMS package. Users can utilize these features directly if they are suitable for their applications, 
without having to reinvent, reimplement, and reprogram such common features.  

This chapter introduces database concepts for some of the common features that are needed by 
advanced applications and that are starting to have widespread use. The features we will cover are 
active rules that are used in active database applications, temporal concepts that are used in temporal 
database applications, and briefly some of the issues involving multimedia databases. It is important to 
note that each of these topics is very broad, and we can give only a brief introduction to each area. In 
fact, each of these areas can serve as the sole topic for a complete book.  
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In Section 23.1, we will introduce the topic of active databases, which provide additional functionality 
for specifying active rules. These rules can be automatically triggered by events that occur, such as a 
database update or a certain time being reached, and can initiate certain actions that have been specified 
in the rule declaration if certain conditions are met. Many commercial packages already have some of 
the functionality provided by active databases in the form of triggers (Note 1). 

In Section 23.2, we will introduce the concepts of temporal databases, which permit the database 
system to store a history of changes, and allow users to query both current and past states of the 
database. Some temporal database models also allow users to store future expected information, such 
as planned schedules. It is important to note that many database applications are already temporal, but 
may have been implemented without having much temporal support from the DBMS package—that is, 
the temporal concepts were implemented in the application programs that access the database.  

Section 23.3 will give a brief overview of spatial and multimedia databases. Spatial databases provide 
concepts for databases that keep track of objects in a multidimensional space. For example, 
cartographic databases that store maps include two-dimensional spatial positions of their objects, which 
include countries, states, rivers, cities, roads, seas, and so on. Other databases, such as meteorological 
databases for weather information are three-dimensional, since temperatures and other meteorological 
information are related to three-dimensional spatial points. Multimedia databases provide features 
that allow users to store and query different types of multimedia information, which includes images 
(such as pictures or drawings), video clips (such as movies, news reels, or home videos), audio clips 
(such as songs, phone messages, or speeches), and documents (such as books or articles).  

Readers may choose to peruse the particular topics they are interested in, as the sections in this chapter 
are practically independent of one another.  

 
 

23.1 Active Database Concepts 

23.1.1 Generalized Model for Active Databases and Oracle Triggers 
23.1.2 Design and Implementation Issues for Active Databases 
23.1.3 Examples of Statement-Level Active Rules in STARBURST 
23.1.4 Potential Applications for Active Databases

Rules that specify actions that are automatically triggered by certain events have been considered as 
important enhancements to a database system for quite some time. In fact, the concept of triggers—a 
technique for specifying certain types of active rules—has existed in early versions of the SQL 
specification for relational databases. Commercial relational DBMSs—such as Oracle, DB2, and 
SYBASE—have had various versions of triggers available. However, much research into what a 
general model for active databases should look like has been done since the early models of triggers 
were proposed. In Section 23.1.1, we will present the general concepts that have been proposed for 
specifying rules for active databases. We will use the syntax of the Oracle commercial relational 
DBMS to illustrate these concepts with specific examples, since Oracle triggers are close to the way 
rules will be specified in the SQL3 standard. Section 23.2 will discuss some general design and 
implementation issues for active databases. We then give examples of how active databases are 
implemented in the STARBURST experimental DBMS in Section 23.1.3, since STARBURST 
provides for many of the concepts of generalized active databases within its framework. Section 23.1.4 
discusses possible applications of active databases.  

 
 

23.1.1 Generalized Model for Active Databases and Oracle Triggers 

The model that has been used for specifying active database rules is referred to as the Event-
Condition-Action, or ECA model. A rule in the ECA model has three components:  
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1. The event (or events) that trigger the rule: These events are usually database update operations 
that are explicitly applied to the database. However, in the general model, they could also be 
temporal events (Note 2) or other kinds of external events.  

2. The condition that determines whether the rule action should be executed: Once the triggering 
event has occurred, an optional condition may be evaluated. If no condition is specified, the 
action will be executed once the event occurs. If a condition is specified, it is first evaluated, 
and only if it evaluates to true will the rule action be executed.  

3. The action to be taken: The action is usually a sequence of SQL statements, but it could also 
be a database transaction or an external program that will be automatically executed.  

Let us consider some examples to illustrate these concepts. The examples are based on a much 
simplified variation of the COMPANY database application from Figure 07.07, which is shown in Figure 
23.01, with each employee having a name (NAME), social security number (SSN), salary (SALARY), 
department to which they are currently assigned (DNO, a foreign key to DEPARTMENT), and a direct 
supervisor (SUPERVISOR_SSN, a (recursive) foreign key to EMPLOYEE). For this example, we assume 
that null is allowed for DNO, indicating that an employee may be temporarily unassigned to any 
department. Each department has a name (DNAME), number (DNO), the total salary of all employees 
assigned to the department (TOTAL_SAL), and a manager (MANAGER_SSN, a foreign key to EMPLOYEE).  

 

 

 
 

Notice that the TOTAL_SAL attribute is really a derived attribute, whose value should be the sum of the 
salaries of all employees who are assigned to the particular department. Maintaining the correct value 
of such a derived attribute can be done via an active rule. We first have to determine the events that 
may cause a change in the value of TOTAL_SAL, which are as follows:  

1. Inserting (one or more) new employee tuples.  
2. Changing the salary of (one or more) existing employees. 
3. Changing the assignment of existing employees from one department to another.  
4. Deleting (one or more) employee tuples.  

In the case of event 1, we only need to recompute TOTAL_SAL if the new employee is immediately 
assigned to a department—that is, if the value of the DNO attribute for the new employee tuple is not 
null (assuming null is allowed for DNO). Hence, this would be the condition to be checked. A similar 
condition could be checked for events 2 (and 4) to determine whether the employee whose salary is 
changed (or who is being deleted) is currently assigned to a department. For event 3, we will always 
execute an action to maintain the value of TOTAL_SAL correctly, so no condition is needed (the action is 
always executed).  

The action for events 1, 2, and 4 is to automatically update the value of TOTAL_SAL for the employee’s 
department to reflect the newly inserted, updated, or deleted employee’s salary. In the case of event 3, a 
twofold action is needed; one to update the TOTAL_SAL of the employee’s old department and the other 
to update the TOTAL_SAL of the employee’s new department.  

The four active rules R1, R2, R3, and R4—corresponding to the above situation—can be specified in 
the notation of the Oracle DBMS as shown in Figure 23.02(a). Let us consider rule R1 to illustrate the 
syntax of creating active rules in Oracle. The CREATE TRIGGER statement specifies a trigger (or 
active rule) name—TOTALSAL1 for R1. The AFTER-clause specifies that the rule will be triggered after 
the events that trigger the rule occur. The triggering events—an insert of a new employee in this 
example—are specified following the AFTER keyword (Note 3). The ON-clause specifies the relation 
on which the rule is specified—EMPLOYEE for R1. The optional keywords FOR EACH ROW specify 
that the rule will be triggered once for each row that is affected by the triggering event (Note 4). The 
optional WHEN-clause is used to specify any conditions that need to be checked after the rule is 
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triggered but before the action is executed. Finally, the action(s) to be taken are specified as a PL/SQL 
block, which typically contains one or more SQL statements or calls to execute external procedures.  

 

 

 
 

The four triggers (active rules) R1, R2, R3, and R4 illustrate a number of features of active rules. First, 
the basic events that can be specified for triggering the rules are the standard SQL update commands: 
INSERT, DELETE, and UPDATE. These are specified by the keywords INSERT, DELETE, and 
UPDATE in Oracle notation. In the case of UPDATE one may specify the attributes to be updated—
for example, by writing UPDATE OF SALARY, DNO. Second, the rule designer needs to have a way to 
refer to the tuples that have been inserted, deleted, or modified by the triggering event. The keywords 
NEW and OLD are used in Oracle notation; NEW is used to refer to a newly inserted or newly updated 
tuple, whereas OLD is used to refer to a deleted tuple or to a tuple before it was updated.  

Thus rule R1 is triggered after an INSERT operation is applied to the EMPLOYEE relation. In R1, the 
condition (NEW.DNO IS NOT NULL) is checked, and if it evaluates to true, meaning that the newly inserted 
employee tuple is related to a department, then the action is executed. The action updates the 
DEPARTMENT tuple(s) related to the newly inserted employee by adding their salary (NEW.SALARY) to the 
TOTAL_SAL attribute of their related department.  

Rule R2 is similar to R1, but it is triggered by an UPDATE operation that updates the SALARY of an 
employee rather than by an INSERT. Rule R3 is triggered by an update to the DNO attribute of 
EMPLOYEE, which signifies changing an employee’s assignment from one department to another. There 
is no condition to check in R3, so the action is executed whenever the triggering event occurs. The 
action updates both the old department and new department of the reassigned employees by adding 
their salary to TOTAL_SAL of their new department and subtracting their salary from TOTAL_SAL of their 
old department. Note that this should work even if the value of DNO was null, because in this case no 
department will be selected for the rule action (Note 5). 

It is important to note the effect of the optional FOR EACH ROW clause, which signifies that the rule 
is triggered separately for each tuple. This is known as a row-level trigger. If this clause was left out, 
the trigger would be known as a statement-level trigger and would be triggered once for each 
triggering statement. To see the difference, consider the following update operation, which gives a 10 
percent raise to all employees assigned to department 5. This operation would be an event that triggers 
rule R2:  

 

  UPDATE  EMPLOYEE 

  SET  SALARY = 1.1 * SALARY 

  WHERE  DNO = 5; 

 
 

Because the above statement could update multiple records, a rule using row-level semantics, such as 
R2 in Figure 23.02, would be triggered once for each row, whereas a rule using statement-level 
semantics is triggered only once. The Oracle system allows the user to choose which of the above two 
options is to be used for each rule. Including the optional FOR EACH ROW clause creates a row-level 
trigger, and leaving it out creates a statement-level trigger. Note that the keywords NEW and OLD can 
only be used with row-level triggers.  
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As a second example, suppose we want to check whenever an employee’s salary is greater than the 
salary of his or her direct supervisor. Several events can trigger this rule: inserting a new employee, 
changing an employee’s salary, or changing an employee’s supervisor. Suppose that the action to take 
would be to call an external procedure INFORM_SUPERVISOR (Note 6), which will notify the supervisor. 
The rule could then be written as in R5 (see Figure 23.02b).  

Figure 23.03 shows the syntax for specifying some of the main options available in Oracle triggers.  

 

 

 
 

23.1.2 Design and Implementation Issues for Active Databases 

The previous section gave an overview of the main concepts for specifying active rules. In this section, 
we discuss some additional issues concerning how rules are designed and implemented. The first issue 
concerns activation, deactivation, and grouping of rules. In addition to creating rules, an active 
database system should allow users to activate, deactivate, and drop rules by referring to their rule 
names. A deactivated rule will not be triggered by the triggering event. This feature allows users to 
selectively deactivate rules for certain periods of time when they are not needed. The activate 
command will make the rule active again. The drop command deletes the rule from the system. 
Another option is to group rules into named rule sets, so the whole set of rules could be activated, 
deactivated, or dropped. It is also useful to have a command that can trigger a rule or rule set via an 
explicit PROCESS RULES command issued by the user.  

The second issue concerns whether the triggered action should be executed before, after, or 
concurrently with the triggering event. A related issue is whether the action being executed should be 
considered as a separate transaction or whether it should be part of the same transaction that triggered 
the rule. We will first try to categorize the various options. It is important to note that not all options 
may be available for a particular active database system. In fact, most commercial systems are limited 
to one or two of the options that we will now discuss.  

Let us assume that the triggering event occurs as part of a transaction execution. We should first 
consider the various options for how the triggering event is related to the evaluation of the rule’s 
condition. The rule condition evaluation is also known as rule consideration, since the action is to be 
executed only after considering whether the condition evaluates to true or false. There are three main 
possibilities for rule consideration:  

 

1. Immediate consideration: The condition is evaluated as part of the same transaction as the 
triggering event, and is evaluated immediately. This case can be further categorized into three 
options:  

o Evaluate the condition before executing the triggering event.  
o Evaluate the condition after executing the triggering event.  
o Evaluate the condition instead of executing the triggering event.  

2. Deferred consideration: The condition is evaluated at the end of the transaction that included 
the triggering event. In this case, there could be many triggered rules waiting to have their 
conditions evaluated.  

3. Detached consideration: The condition is evaluated as a separate transaction, spawned from 
the triggering transaction.  
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The next set of options concern the relationship between evaluating the rule condition and executing 
the rule action. Here, again, three options are possible: immediate, deferred, and detached execution. 
However, most active systems use the first option. That is, as soon as the condition is evaluated, if it 
returns true, the action is immediately executed.  

The Oracle system (see Section 23.1.1) uses the immediate consideration model, but it allows the user 
to specify for each rule whether the before or after option is to be used with immediate condition 
evaluation. It also uses the immediate execution model. The STARBURST system (see Section 23.1.3) 
uses the deferred consideration option, meaning that all rules triggered by a transaction wait until the 
triggering transaction reaches its end and issues its COMMIT WORK command before the rule 
conditions are evaluated (Note 7). 

Another issue concerning active database rules is the distinction between row-level rules versus 
statement-level rules. Because SQL update statements (which act as triggering events) can specify a set 
of tuples, one has to distinguish between whether the rule should be considered once for the whole 
statement or whether it should be considered separately for each row (that is, tuple) affected by the 
statement. The Oracle system (see Section 23.1.1) allows the user to choose which of the above two 
options is to be used for each rule, whereas STARBURST uses statement-level semantics only. We will 
give examples of how statement-level triggers can be specified in Section 23.1.3.  

One of the difficulties that may have limited the widespread use of active rules, in spite of their 
potential to simplify database and software development, is that there are no easy-to-use techniques for 
designing, writing, and verifying rules. For example, it is quite difficult to verify that a set of rules is 
consistent, meaning that two or more rules in the set do not contradict one another. It is also difficult to 
guarantee termination of a set of rules under all circumstances. To briefly illustrate the termination 
problem, consider the rules in Figure 23.04. Here, rule R1 is triggered by an INSERT event on TABLE1 
and its action includes an update event on ATTRIBUTE1 of TABLE2. However, rule R2’s triggering event 
is an UPDATE event on ATTRIBUTE1 of TABLE2, and its action includes an INSERT event on TABLE1. It 
is easy to see in this example that these two rules can trigger one another indefinitely, leading to 
nontermination. However, if dozens of rules are written, it is very difficult to determine whether 
termination is guaranteed or not.  

 

 

 
 

If active rules are to reach their potential, it is necessary to develop tools for the design, debugging, and 
monitoring of active rules that can help users in designing and debugging their rules.  

 
 

23.1.3 Examples of Statement-Level Active Rules in STARBURST 

We now give some examples to illustrate how rules can be specified in the STARBURST experimental 
DBMS. This will allow us to demonstrate how statement-level rules can be written, since these are the 
only types of rules allowed in STARBURST.  

The three active rules R1S, R2S, and R3S in Figure 23.05 correspond to the first three rules in Figure 
23.02, but use STARBURST notation and statement-level semantics. We can explain the rule structure 
using rule R1S. The CREATE RULE statement specifies a rule name—TOTALSAL1 for R1S. The ON-
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clause specifies the relation on which the rule is specified—EMPLOYEE for R1S. The WHEN-clause is 
used to specify the events that trigger the rule (Note 8). The optional IF-clause is used to specify any 
conditions that need to be checked. Finally, the THEN-clause is used to specify the action (or actions) 
to be taken, which are typically one or more SQL statements.  

 

 

 
 

In STARBURST, the basic events that can be specified for triggering the rules are the standard SQL 
update commands: INSERT, DELETE, and UPDATE. These are specified by the keywords INSERTED, 
DELETED, and UPDATED in STARBURST notation. Second, the rule designer needs to have a way to 
refer to the tuples that have been modified. The keywords INSERTED, DELETED, NEW-UPDATED, and OLD-
UPDATED are used in STARBURST notation to refer to four transition tables (relations) that include 
the newly inserted tuples, the deleted tuples, the updated tuples before they were updated, and the 
updated tuples after they were updated, respectively. Obviously, depending on the triggering events, 
only some of these transition tables may be available. The rule writer can refer to these tables when 
writing the condition and action parts of the rule. Transition tables contain tuples of the same type as 
those in the relation specified in the ON-clause of the rule—for R1S, R2S, and R3S, this is the 
EMPLOYEE relation.  

In statement-level semantics, the rule designer can only refer to the transition tables as a whole and the 
rule is triggered only once, so the rules must be written differently than for row-level semantics. 
Because multiple employee tuples may be inserted in a single insert statement, we have to check if at 
least one of the newly inserted employee tuples is related to a department. In R1S, the condition  

 
 

EXISTS(SELECT * FROM INSERTED WHERE DNO IS NOT NULL)  

 
 

is checked, and if it evaluates to true, then the action is executed. The action updates in a single 
statement the DEPARTMENT tuple(s) related to the newly inserted employee(s) by adding their salaries to 
the TOTAL_SAL attribute of each related department. Because more than one newly inserted employee 
may belong to the same department, we use the SUM aggregate function to ensure that all their salaries 
are added.  

Rule R2S is similar to R1S, but is triggered by an UPDATE operation that updates the salary of one or 
more employees rather than by an INSERT. Rule R3S is triggered by an update to the DNO attribute of 
EMPLOYEE, which signifies changing one or more employees’ assignment from one department to 
another. There is no condition in R3S, so the action is executed whenever the triggering event occurs 
(Note 9). The action updates both the old department(s) and new department(s) of the reassigned 
employees by adding their salary to TOTAL_SAL of each new department and subtracting their salary 
from TOTAL_SAL of each old department.  

In our example, it is more complex to write the statement-level rules than the row-level rules, as can be 
illustrated by comparing Figure 23.02 and Figure 23.05. However, this is not a general rule, and other 
types of active rules may be easier to specify using statement-level notation than when using row-level 
notation.  
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The execution model for active rules in STARBURST uses deferred consideration. That is, all the 
rules that are triggered within a transaction are placed in a set—called the conflict set—which is not 
considered for evaluation of conditions and execution until the transaction ends (by issuing its 
COMMIT WORK command). STARBURST also allows the user to explicitly start rule consideration 
in the middle of a transaction via an explicit PROCESS RULES command. Because multiple rules 
must be evaluated, it is necessary to specify an order among the rules. The syntax for rule declaration 
in STARBURST allows the specification of ordering among the rules to instruct the system about the 
order in which a set of rules should be considered (Note 10). In addition, the transition tables—
INSERTED, DELETED, NEW-UPDATED, and OLD-UPDATED—contain the net effect of all the operations 
within the transaction that affected each table, since multiple operations may have been applied to each 
table during the transaction.  

 
 

23.1.4 Potential Applications for Active Databases 

Finally, we will briefly discuss some of the potential applications of active rules. Obviously, one 
important application is to allow notification of certain conditions that occur. For example, an active 
database may be used to monitor, say, the temperature of an industrial furnace. The application can 
periodically insert in the database the temperature reading records directly from temperature sensors, 
and active rules can be written that are triggered whenever a temperature record is inserted, with a 
condition that checks if the temperature exceeds the danger level, and the action to raise an alarm.  

Active rules can also be used to enforce integrity constraints by specifying the types of events that 
may cause the constraints to be violated and then evaluating appropriate conditions that check whether 
the constraints are actually violated by the event or not. Hence, complex application constraints, often 
known as business rules may be enforced that way. For example, in the UNIVERSITY database 
application, one rule may monitor the grade point average of students whenever a new grade is entered, 
and it may alert the advisor if the GPA of a student falls below a certain threshold; another rule may 
check that course prerequisites are satisfied before allowing a student to enroll in a course; and so on.  

Other applications include the automatic maintenance of derived data, such as the examples of rules 
R1 through R4 that maintain the derived attribute TOTAL_SAL whenever individual employee tuples are 
changed. A similar application is to use active rules to maintain the consistency of materialized views 
(see Chapter 8) whenever the base relations are modified. This application is also relevant to the new 
data warehousing technologies (see Chapter 26). A related application is to maintain replicated tables 
consistent by specifying rules that modify the replicas whenever the master table is modified.  

 
 

23.2 Temporal Database Concepts 

23.2.1 Time Representation, Calendars, and Time Dimensions 
23.2.2 Incorporating Time in Relational Databases Using Tuple Versioning 
23.2.3 Incorporating Time in Object-Oriented Databases Using Attribute Versioning 
23.2.4 Temporal Querying Constructs and the TSQL2 Language 
23.2.5 Time Series Data

Temporal databases, in the broadest sense, encompass all database applications that require some 
aspect of time when organizing their information. Hence, they provide a good example to illustrate the 
need for developing a set of unifying concepts for application developers to use. Temporal database 
applications have been developed since the early days of database usage. However, in creating these 
applications, it was mainly left to the application designers and developers to discover, design, 
program, and implement the temporal concepts they need. There are many examples of applications 
where some aspect of time is needed to maintain the information in a database. These include 
healthcare, where patient histories need to be maintained; insurance, where claims and accident 
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histories are required as well as information on the times when insurance policies are in effect; 
reservation systems in general (hotel, airline, car rental, train, etc.), where information on the dates and 
times when reservations are in effect are required; scientific databases, where data collected from 
experiments includes the time when each data is measured; an so on. Even the two examples used in 
this book may be easily expanded into temporal applications. In the COMPANY database, we may wish 
to keep SALARY, JOB, and PROJECT histories on each employee. In the UNIVERSITY database, time is 
already included in the SEMESTER and YEAR of each SECTION of a COURSE; the grade history of a 
STUDENT; and the information on research grants. In fact, it is realistic to conclude that the majority of 
database applications have some temporal information. Users often attempted to simplify or ignore 
temporal aspects because of the complexity that they add to their applications.  

In this section, we will introduce some of the concepts that have been developed to deal with the 
complexity of temporal database applications. Section 23.2.1 gives an overview of how time is 
represented in databases, the different types of temporal information, and some of the different 
dimensions of time that may be needed. Section 23.2.2 discusses how time can be incorporated into 
relational databases. Section 23.2.3 gives some additional options for representing time that are 
possible in database models that allow complex-structured objects, such as object databases. Section 
23.2.4 introduces operations for querying temporal databases, and gives a brief overview of the TSQL2 
language, which extends SQL with temporal concepts. Section 23.2.5 focuses on time series data, 
which is a type of temporal data that is very important in practice.  

 
 

23.2.1 Time Representation, Calendars, and Time Dimensions 

Event Information Versus Duration (or State) Information 
Valid Time and Transaction Time Dimensions

For temporal databases, time is considered to be an ordered sequence of points in some granularity 
that is determined by the application. For example, suppose that some temporal application never 
requires time units that are less than one second. Then, each time point represents one second in time 
using this granularity. In reality, each second is a (short) time duration, not a point, since it may be 
further divided into milliseconds, microseconds, and so on. Temporal database researchers have used 
the term chronon instead of point to describe this minimal granularity for a particular application. The 
main consequence of choosing a minimum granularity—say, one second—is that events occurring 
within the same second will be considered to be simultaneous events, even though in reality they may 
not be.  

Because there is no known beginning or ending of time, one needs a reference point from which to 
measure specific time points. Various calendars are used by various cultures (such as Gregorian 
(Western), Chinese, Islamic, Hindu, Jewish, Coptic, etc.) with different reference points. A calendar 
organizes time into different time units for convenience. Most calendars group 60 seconds into a 
minute, 60 minutes into an hour, 24 hours into a day (based on the physical time of earth’s rotation 
around its axis), and 7 days into a week. Further grouping of days into months and months into years 
either follow solar or lunar natural phenomena, and are generally irregular. In the Gregorian calendar, 
which is used in most Western countries, days are grouped into months that are either 28, 29, 30, or 31 
days, and 12 months are grouped into a year. Complex formulas are used to map the different time 
units to one another.  

In SQL2, the temporal data types (see Chapter 8) include DATE (specifying Year, Month, and Day as 
YYYY-MM-DD), TIME (specifying Hour, Minute, and Second as HH:MM:SS), TIMESTAMP 
(specifying a Date/Time combination, with options for including sub-second divisions if they are 
needed), INTERVAL (a relative time duration, such as 10 days or 250 minutes), and PERIOD (an 
anchored time duration with a fixed starting point, such as the 10-day period from January 1, 1999 to 
January 10, 1999, inclusive) (Note 11). 
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Event Information Versus Duration (or State) Information 

A temporal database will store information concerning when certain events occur, or when certain facts 
are considered to be true. There are several different types of temporal information. Point events or 
facts are typically associated in the database with a single time point in some granularity. For 
example, a bank deposit event may be associated with the timestamp when the deposit was made, or 
the total monthly sales of a product (fact) may be associated with a particular month (say, February 
1999). Note that even though such events or facts may have different granularities, each is still 
associated with a single time value in the database. This type of information is often represented as 
time series data as we shall discuss in Section 23.2.5. Duration events or facts, on the other hand, are 
associated with a specific time period in the database (Note 12). For example, an employee may have 
worked in a company from August 15, 1993 till November 20, 1998. 

A time period is represented by its start and end time points [start-time, end-time]. For 
example, the above period is represented as [1993-08-15, 1998-11-20]. Such a time period is 
often interpreted to mean the set of all time points from start-time to end-time, inclusive, in the 
specified granularity. Hence, assuming day granularity, the period [1993-08-15, 1998-11-20] 
represents the set of all days from August 15, 1993 until November 20, 1998, inclusive (Note 13). 

 
 

Valid Time and Transaction Time Dimensions 

Given a particular event or fact that is associated with a particular time point or time period in the 
database, the association may be interpreted to mean different things. The most natural interpretation is 
that the associated time is the time that the event occurred, or the period during which the fact was 
considered to be true in the real world. If this interpretation is used, the associated time is often 
referred to as the valid time. A temporal database using this interpretation is called a valid time 
database.  

However, a different interpretation can be used, where the associated time refers to the time when the 
information was actually stored in the database; that is, it is the value of the system time clock when 
the information is valid in the system (Note 14). In this case, the associated time is called the 
transaction time. A temporal database using this interpretation is called a transaction time database.  

Other interpretations can also be intended, but these two are considered to be the most common ones, 
and they are referred to as time dimensions. In some applications, only one of the dimensions is 
needed and in other cases both time dimensions are required, in which case the temporal database is 
called a bitemporal database. If other interpretations are intended for time, the user can define the 
semantics and program the applications appropriately, and it is called a user-defined time.  

The next section shows with examples how these concepts can be incorporated into relational 
databases, and Section 23.2.3 shows an approach to incorporate temporal concepts into object 
databases.  

 
 

23.2.2 Incorporating Time in Relational Databases Using Tuple Versioning 

Valid Time Relations 
Transaction Time Relations 
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Bitemporal Relations 
Implementation Considerations

Valid Time Relations 

Let us now see how the different types of temporal databases may be represented in the relational 
model. First, suppose that we would like to include the history of changes as they occur in the real 
world. Consider again the database in Figure 23.01, and let us assume that, for this application, the 
granularity is day. Then, we could convert the two relations EMPLOYEE and DEPARTMENT into valid 
time relations by adding the attributes VST (Valid Start Time) and VET (Valid End Time), whose data 
type is DATE in order to provide day granularity. This is shown in Figure 23.06(a), where the relations 
have been renamed EMP_VT and DEPT_VT, respectively.  

 

 

 
 

Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE relation (Figure 23.01) 
(Note 15). In EMP_VT, each tuple v represents a version of an employee’s information that is valid (in 
the real world) only during the time period [v.VST, v.VET], whereas in EMPLOYEE each tuple represents 
only the current state or current version of each employee. In EMP_VT, the current version of each 
employee typically has a special value, now, as its valid end time. This special value, now, is a 
temporal variable that implicitly represents the current time as time progresses. The nontemporal 
EMPLOYEE relation would only include those tuples from the EMP_VT relation whose VET is now.  

Figure 23.07 shows a few tuple versions in the valid-time relations EMP_VT and DEPT_VT. There are two 
versions of Smith, three versions of Wong, one version of Brown, and one version of Narayan. We can 
now see how a valid time relation should behave when information is changed. Whenever one or more 
attributes of an employee are updated, rather than actually overwriting the old values, as would happen 
in a nontemporal relation, the system should create a new version and close the current version by 
changing its VET to the end time. Hence, when the user issued the command to update the salary of 
Smith effective on June 1, 1998 to $30000, the second version of Smith was created (see Figure 23.07). 
At the time of this update, the first version of Smith was the current version, with now as its VET, but 
after the update now was changed to May 31, 1998 (one less than June 1, 1998 in day granularity), to 
indicate that the version has become a closed or history version and that the new (second) version of 
Smith is now the current one.  

 

 

 
 

It is important to note that in a valid time relation, the user must generally provide the valid time of an 
update. For example, the salary update of Smith may have been entered in the database on May 15, 
1998 at 8:52:12am, say, even though the salary change in the real world is effective on June 1, 1998. 
This is called a proactive update, since it is applied to the database before it becomes effective in the 
real world. If the update was applied to the database after it became effective in the real world, it is 
called a retroactive update. An update that is applied at the same time when it becomes effective is 
called a simultaneous update.  

The action that corresponds to deleting an employee in a nontemporal database would typically be 
applied to a valid time database by closing the current version of the employee being deleted. For 
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example, if Smith leaves the company effective January 19, 1999, then this would be applied by 
changing VET of the current version of Smith from now to 1999-01-19. In Figure 23.07, there is no 
current version for Brown, because he presumably left the company on 1997-08-10 and was logically 
deleted. However, because the database is temporal, the old information on Brown is still there.  

The operation to insert a new employee would correspond to creating the first tuple version for that 
employee, and making it the current version, with the VST being the effective (real world) time when 
the employee starts work. In Figure 23.07, the tuple on Narayan illustrates this, since the first version 
has not been updated yet.  

Notice that in a valid time relation, the nontemporal key, such as SSN in EMPLOYEE, is no longer unique 
in each tuple (version). The new relation key for EMP_VT is a combination of the nontemporal key and 
the valid start time attribute VST (Note 16), so we use (SSN, VST) as primary key. This is because, at any 
point in time, there should be at most one valid version of each entity. Hence, the constraint that any 
two tuple versions representing the same entity should have nonintersecting valid time periods should 
hold on valid time relations. Notice that if the nontemporal primary key value may change over time, it 
is important to have a unique surrogate key attribute, whose value never changes for each real world 
entity, in order to relate together all versions of the same real world entity.  

Valid time relations basically keep track of the history of changes as they become effective in the real 
world. Hence, if all real-world changes are applied, the database keeps a history of the real-world 
states that are represented. However, because updates, insertions, and deletions may be applied 
retroactively or proactively, there is no record of the actual database state at any point in time. If the 
actual database states are more important to an application, then one should use transaction time 
relations.  

 
 

Transaction Time Relations 

In a transaction time database, whenever a change is applied to the database, the actual timestamp of 
the transaction that applied the change (insert, delete, or update) is recorded. Such a database is most 
useful when changes are applied simultaneously in the majority of cases—for example, real-time stock 
trading or banking transactions. If we convert the nontemporal database of Figure 23.01 into a 
transaction time database, then the two relations EMPLOYEE and DEPARTMENT are converted into 
transaction time relations by adding the attributes TST (Transaction Start Time) and TET (Transaction 
End Time), whose data type is typically TIMESTAMP. This is shown in Figure 23.06(b), where the 
relations have been renamed EMP_TT and DEPT_TT, respectively.  

In EMP_TT, each tuple v represents a version of an employee’s information that was created at actual 
time v.TST and was (logically) removed at actual time v.TET (because the information was no longer 
correct). In EMP_TT, the current version of each employee typically has a special value, uc (Until 
Changed), as its transaction end time, which indicates that the tuple represents correct information 
until it is changed by some other transaction (Note 17). A transaction time database has also been 
called a rollback database (Note 18), because a user can logically roll back to the actual database state 
at any past point in time t by retrieving all tuple versions v whose transaction time period 
[v.TST,v.TET] includes time point t.  

 
 

Bitemporal Relations 

Some applications require both valid time and transaction time, leading to bitemporal relations. In our 
example, Figure 23.06(c) shows how the EMPLOYEE and DEPARTMENT non-temporal relations in Figure 
23.01 would appear as bitemporal relations EMP_BT and DEPT_BT, respectively. Figure 23.08 shows a 
few tuples in these relations. In these tables, tuples whose transaction end time TET is uc are the ones 
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representing currently valid information, whereas tuples whose TET is an absolute timestamp are tuples 
that were valid until (just before) that timestamp. Hence, the tuples with uc in Figure 23.08 correspond 
to the valid time tuples in Figure 23.07. The transaction start time attribute TST in each tuple is the 
timestamp of the transaction that created that tuple.  

 

 

 
 

Now consider how an update operation would be implemented on a bitemporal relation. In this model 
of bitemporal databases (Note 19), no attributes are physically changed in any tuple except for the 
transaction end time attribute TET with a value of uc (Note 20). To illustrate how tuples are created, 
consider the EMP_BT relation. The current version v of an employee has uc in its TET attribute and now 
in its VET attribute. If some attribute—say, SALARY—is updated, then the transaction T that performs the 
update should have two parameters: the new value of SALARY and the valid time VT when the new 
salary becomes effective (in the real world). Assume that VT– is the time point before VT in the given 
valid time granularity and that transaction T has a timestamp TS(T). Then, the following physical 
changes would be applied to the EMP_BT table:  

1. Make a copy v2 of the current version v; set v2.VET to VT–, v2.TST to TS(T), v2.TET to uc, and 
insert v2 in EMP_BT; v2 is a copy of the previous current version v after it is closed at valid 
time VT–.  

2. Make a copy v3 of the current version v; set v3.VST to VT, v3.VET to now, v3.SALARY to the 
new salary value, v3.TST to TS(T), v3.TET to uc, and insert v3 in EMP_BT; v3 represents the 
new current version.  

3. Set v.TET to TS(T) since the current version is no longer representing correct information.  

As an illustration, consider the first three tuples v1, v2, and v3 in EMP_BT in Figure 23.08. Before the 
update of Smith’s salary from 25000 to 30000, only v1 was in EMP_BT and it was the current version 
and its TET was uc. Then, a transaction T whose timestamp TS(T) is 1998-06-04,08:56:12 
updates the salary to 30000 with the effective valid time of 1998-06-01. The tuple v2 is created, 
which is a copy of v1 except that its VET is set to 1998-05-31, one day less than the new valid time 
and its TST is the timestamp of the updating transaction. The tuple v3 is also created, which has the 
new salary, its VST is set to 1998-06-01, and its TST is also the timestamp of the updating 
transaction. Finally, the TET of v1 is set to the timestamp of the updating transaction, 1998-06-
04,08:56:12. Note that this is a retroactive update, since the updating transaction ran on June 4, 
1998, but the salary change is effective on June 1, 1998.  

Similarly, when Wong’s salary and department are updated (at the same time) to 30000 and 5, the 
updating transaction’s timestamp is 1996-01-07,14:33:02 and the effective valid time for the 
update is 1996-02-01. Hence, this is a proactive update because the transaction ran on January 7, 
1996, but the effective date was February 1, 1996. In this case, tuple v4 is logically replaced by v5 and 
v6.  

Next, let us illustrate how a delete operation would be implemented on a bitemporal relation by 
considering the tuples v9 and v10 in the EMP_BT relation of Figure 23.08. Here, employee Brown left 
the company effective August 10, 1997, and the logical delete is carried out by a transaction T with 
TS(T) = 1997-08-12,10:11:07. Before this, v9 was the current version of Brown, and its TET was 
uc. The logical delete is implemented by setting v9.TET to 1997-08-12,10:11:07 to invalidate it, 
and creating the final version v10 for Brown, with its VET = 1997-08-10 (see Figure 23.08). Finally, 
an insert operation is implemented by creating the first version as illustrated by v11 in the EMP_BT 
table.  
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Implementation Considerations 

There are various options for storing the tuples in a temporal relation. One is to store all the tuples in 
the same table, as in Figure 23.07 and Figure 23.08. Another option is to create two tables: one for the 
currently valid information and the other for the rest of the tuples. For example, in the bitemporal 
EMP_BT relation, tuples with uc for their TET and now for their VET would be in one relation, the current 
table, since they are the ones currently valid (that is, represent the current snapshot), and all other 
tuples would be in another relation. This allows the database administrator to have different access 
paths, such as indexes for each relation, and keeps the size of the current table reasonable. Another 
possibility is to create a third table for corrected tuples whose TET is not uc.  

Another option that is available is to vertically partition the attributes of the temporal relation into 
separate relations. The reason for this is that, if a relation has many attributes, a whole new tuple 
version is created whenever any one of the attributes is updated. If the attributes are updated 
asynchronously, each new version may differ in only one of the attributes, thus needlessly repeating the 
other attribute values. If a separate relation is created to contain only the attributes that always change 
synchronously, with the primary key replicated in each relation, the database is said to be in temporal 
normal form. However, to combine the information, a variation of join known as temporal 
intersection join would be needed, which is generally expensive to implement.  

It is important to note that bitemporal databases allow a complete record of changes. Even a record of 
corrections is possible. For example, it is possible that two tuple versions of the same employee may 
have the same valid time but different attribute values as long as their transaction times are disjoint. In 
this case, the tuple with the later transaction time is a correction of the other tuple version. Even 
incorrectly entered valid times may be corrected this way. The incorrect state of the database will still 
be available as a previous database state for querying purposes. A database that keeps such a complete 
record of changes and corrections has been called an append only database.  

 
 

23.2.3 Incorporating Time in Object-Oriented Databases Using Attribute Versioning 

The previous section discussed the tuple versioning approach to implementing temporal databases. In 
this approach, whenever one attribute value is changed, a whole new tuple version is created, even 
though all the other attribute values will be identical to the previous tuple version. An alternative 
approach can be used in database systems that support complex structured objects, such as object 
databases (see Chapter 11 and Chapter 12) or object-relational systems (see Chapter 13). This approach 
is called attribute versioning (Note 21). 

In attribute versioning, a single complex object is used to store all the temporal changes of the object. 
Each attribute that changes over time is called a time-varying attribute, and it has its values versioned 
over time by adding temporal periods to the attribute. The temporal periods may represent valid time, 
transaction time, or bitemporal, depending on the application requirements. Attributes that do not 
change are called non-time-varying and are not associated with the temporal periods. To illustrate this, 
consider the example in Figure 23.09, which is an attribute versioned valid time representation of 
EMPLOYEE using the ODL notation for object databases (see Chapter 12). Here, we assumed that name 
and social security number are non-time-varying attributes (they do not change over time), whereas 
salary, department, and supervisor are time-varying attributes (they may change over time). Each time-
varying attribute is represented as a list of tuples <valid_start_time, valid_end_time, 
value>, ordered by valid start time.  
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Whenever an attribute is changed in this model, the current attribute version is closed and a new 
attribute version for this attribute only is appended to the list. This allows attributes to change 
asynchronously. The current value for each attribute has now for its valid_end_time. When using 
attribute versioning, it is useful to include a lifespan temporal attribute associated with the whole 
object whose value is one or more valid time periods that indicate the valid time of existence for the 
whole object. Logical deletion of the object is implemented by closing the lifespan. The constraint that 
any time period of an attribute within an object should be a subset of the object’s lifespan should be 
enforced.  

For bitemporal databases, each attribute version would have a tuple with five components:  

 
 

<valid_start_time, valid_end_time, trans_start_time, trans_end_time, value>  

 
 

The object lifespan would also include both valid and transaction time dimensions. The full capabilities 
of bitemporal databases can hence be available with attribute versioning. Mechanisms similar to those 
discussed earlier for updating tuple versions can be applied to updating attribute versions.  

 
 

23.2.4 Temporal Querying Constructs and the TSQL2 Language 

So far, we have discussed how data models may be extended with temporal constructs. We now give a 
brief overview of how query operations need to be extended for temporal querying. Then we briefly 
discuss the TSQL2 language, which extends SQL for querying valid time, transaction time, and 
bitemporal relational databases.  

In nontemporal relational databases, the typical selection conditions involve attribute conditions, and 
tuples that satisfy these conditions are selected from the set of current tuples. Following that, the 
attributes of interest to the query are specified by a projection operation (see Chapter 7). For example, 
in the query to retrieve the names of all employees working in department 5 whose salary is greater 
than 30000, the selection condition would be:  

 
 

((SALARY > 30000) AND (DNO = 5)) 

 
 

The projected attribute would be NAME. In a temporal database, the conditions may involve time in 
addition to attributes. A pure time condition involves only time—for example, to select all employee 
tuple versions that were valid on a certain time point t or that were valid during a certain time period 
[t1, t2]. In this case, the specified time period is compared with the valid time period of each tuple 
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version [t.VST, t.VET], and only those tuples that satisfy the condition are selected. In these 
operations, a period is considered to be equivalent to the set of time points from t1 to t2 inclusive, so 
the standard set comparison operations can be used. Additional operations, such as whether one time 
period ends before another starts are also needed (Note 22). Some of the more common operations used 
in queries are as follows:  

 

[t.VST, t.VET] INCLUDES [t1, t2] Equivalent to t1 t.VST AND t2 1 t.VET 

[t.VST, t.VET] INCLUDED_IN [t1, t2]  Equivalent to t1 1 t.VST AND t2 t.VET  

[t.VST, t.VET] OVERLAPS [t1, t2]  Equivalent to (t1 1 t.VET AND t2 t.VST) (Note 23) 

[t.VST, t.VET] BEFORE [t1, t2] Equivalent to t1 t.VET  

[t.VST, t.VET] AFTER [t1, t2]  Equivalent to t2 t 1 VST  

[t.VST, t.VET] MEETS_BEFORE [t1, 
t2]  

Equivalent to t1 = t.VET + 1 (Note 24) 

[t.VST, t.VET] MEETS_AFTER [t1, t2]  Equivalent to t2 + 1 = t.VST 

 
 

In addition, operations are needed to manipulate time periods, such as computing the union or 
intersection of two time periods. The results of these operations may not themselves be periods, but 
rather temporal elements—a collection of one or more disjoint time periods such that no two time 
periods in a temporal element are directly adjacent. That is, for any two time periods [t1, t2] and 
[t3, t4] in a temporal element, the following three conditions must hold:  

• [t1, t2] intersection [t3, t4] is empty.  
• t3 is not the time point following t2 in the given granularity.  
• t1 is not the time point following t4 in the given granularity.  

The latter conditions are necessary to ensure unique representations of temporal elements. If two time 
periods [t1, t2] and [t3, t4] are adjacent, they are combined into a single time period [t1, t4]. 
This is called coalescing of time periods. Coalescing also combines intersecting time periods.  

To illustrate how pure time conditions can be used, suppose a user wants to select all employee 
versions that were valid at any point during 1997. The appropriate selection condition applied to the 
relation in Figure 23.07 would be  

 
 

[t.VST, t.VET] OVERLAPS [1997-01-01, 1997-12-31]  

 
 

Typically, most temporal selections are applied to the valid time dimension. For a bitemporal database, 
one usually applies the conditions to the currently correct tuples with uc as their transaction end times. 
However, if the query needs to be applied to a previous database state, an AS_OF t clause is appended 
to the query, which means that the query is applied to the valid time tuples that were correct in the 
database at time t.  
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In addition to pure time conditions, other selections involve attribute and time conditions. For 
example, suppose we wish to retrieve all EMP_VT tuple versions t for employees who worked in 
department 5 at any time during 1997. In this case, the condition is  

 
 

([t.VST, t.VET] OVERLAPS [1997-01-01, 1997-12-31]) AND (t.DNO = 5)  

 
 

Finally, we give a brief overview of the TSQL2 query language, which extends SQL with constructs 
for temporal databases. The main idea behind TSQL2 is to allow users to specify whether a relation is 
nontemporal (that is, a standard SQL relation) or temporal. The CREATE TABLE statement is 
extended with an optional AS-clause to allow users to declare different temporal options. The 
following options are available:  

• AS VALID STATE <granularity> (valid time relation with valid time period)  
• AS VALID EVENT <granularity> (valid time relation with valid time point)  
• AS TRANSACTION (transaction time relation with transaction time period)  
• AS VALID STATE <granularity> AND TRANSACTION (bitemporal relation, valid time period)  
• AS VALID EVENT <granularity> AND TRANSACTION (bitemporal relation, valid time point)  

The keywords STATE and EVENT are used to specify whether a time period or time point is 
associated with the valid time dimension. In TSQL2, rather than have the user actually see how the 
temporal tables are implemented (as we discussed in the previous sections), the TSQL2 language adds 
query language constructs to specify various types of temporal selections, temporal projections, 
temporal aggregations, transformation among granularities, and many other concepts. The book by 
Snodgrass et al. (1995) describes the language.  

 
 

23.2.5 Time Series Data 

Time series data are used very often in financial, sales, and economics applications. They involve data 
values that are recorded according to a specific predefined sequence of time points. They are hence a 
special type of valid event data, where the event time points are predetermined according to a fixed 
calendar. Consider the example of closing daily stock prices of a particular company on the New York 
Stock Exchange. The granularity here is day, but the days that the stock market is open are known 
(nonholiday weekdays). Hence, it has been common to specify a computational procedure that 
calculates the particular calendar associated with a time series. Typical queries on time series involve 
temporal aggregation over higher granularity intervals—for example, finding the average or 
maximum weekly closing stock price or the maximum and minimum monthly closing stock price from 
the daily information.  

As another example, consider the daily sales dollar amount at each store of a chain of stores owned by 
a particular company. Again, typical temporal aggregates would be retrieving the weekly, monthly, or 
yearly sales from the daily sales information (using the sum aggregate function), or comparing same 
store monthly sales with previous monthly sales, and so on.  

Because of the specialized nature of time series data, and the lack of support in older DBMSs, it has 
been common to use specialized time series management systems rather that general purpose DBMSs 
for managing such information. In such systems, it has been common to store time series values in 
sequential order in a file, and apply specialized time series procedures to analyze the information. The 
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problem with this approach is that the full power of high-level querying in languages such as SQL will 
not be available in such systems.  

More recently, some commercial DBMS packages are offering time series extensions, such as the time 
series datablade of Informix Universal Server (see Chapter 13). In addition, the TSQL2 language 
provides some support for time series in the form of event tables.  

 
 

23.3 Spatial and Multimedia Databases 

23.3.1 Introduction to Spatial Database Concepts 
23.3.2 Introduction to Multimedia Database Concepts

Because the two topics discussed in this section are very broad, we can give only a very brief 
introduction to these fields. Section 23.3.1 introduces spatial databases, and Section 23.3.2 briefly 
discusses multimedia databases.  

 
 

23.3.1 Introduction to Spatial Database Concepts 

Spatial databases provide concepts for databases that keep track of objects in a multi-dimensional 
space. For example, cartographic databases that store maps include two-dimensional spatial 
descriptions of their objects—from countries and states to rivers, cities, roads, seas, and so on. These 
databases are used in many applications, such as environmental, emergency, and battle management. 
Other databases, such as meteorological databases for weather information, are three-dimensional, 
since temperatures and other meteorological information are related to three-dimensional spatial points. 
In general, a spatial database stores objects that have spatial characteristics that describe them. The 
spatial relationships among the objects are important, and they are often needed when querying the 
database. Although a spatial database can in general refer to an n-dimensional space for any n, we will 
limit our discussion to two dimensions as an illustration.  

The main extensions that are needed for spatial databases are models that can interpret spatial 
characteristics. In addition, special indexing and storage structures are often needed to improve 
performance. Let us first discuss some of the model extensions for two-dimensional spatial databases. 
The basic extensions needed are to include two-dimensional geometric concepts, such as points, lines 
and line segments, circles, polygons, and arcs, in order to specify the spatial characteristics of objects. 
In addition, spatial operations are needed to operate on the objects’ spatial characteristics—for 
example, to compute the distance between two objects—as well as spatial Boolean conditions—for 
example, to check whether two objects spatially overlap. To illustrate, consider a database that is used 
for emergency management applications. A description of the spatial positions of many types of objects 
would be needed. Some of these objects generally have static spatial characteristics, such as streets and 
highways, water pumps (for fire control), police stations, fire stations, and hospitals. Other objects have 
dynamic spatial characteristics that change over time, such as police vehicles, ambulances, or fire 
trucks.  

The following categories illustrate three typical types of spatial queries:  

• Range query: Finds the objects of a particular type that are within a given spatial area or 
within a particular distance from a given location. (For example, finds all hospitals within the 
Dallas city area, or finds all ambulances within five miles of an accident location.)  

• Nearest neighbor query: Finds an object of a particular type that is closest to a given location. 
(For example, finds the police car that is closest to a particular location.)  
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• Spatial joins or overlays: Typically joins the objects of two types based on some spatial 
condition, such as the objects intersecting or overlapping spatially or being within a certain 
distance of one another. (For example, finds all cities that fall on a major highway or finds all 
homes that are within two miles of a lake.)  

For these and other types of spatial queries to be answered efficiently, special techniques for spatial 
indexing are needed. One of the best known techniques is the use of R-trees and their variations. R-
trees group together objects that are in close spatial physical proximity on the same leaf nodes of a tree-
structured index. Since a leaf node can point to only a certain number of objects, algorithms for 
dividing the space into rectangular subspaces that include the objects are needed. Typical criteria for 
dividing the space include minimizing the rectangle areas, since this would lead to a quicker narrowing 
of the search space. Problems such as having objects with overlapping spatial areas are handled in 
different ways by the many different variations of R-trees. The internal nodes of R-trees are associated 
with rectangles whose area covers all the rectangles in its subtree. Hence, R-trees can easily answer 
queries, such as find all objects in a given area by limiting the tree search to those subtrees whose 
rectangles intersect with the area given in the query.  

Other spatial storage structures include quadtrees and their variations. Quadtrees generally divide each 
space or subspace into equally sized areas, and proceed with the sub-divisions of each subspace to 
identify the positions of various objects. Recently, many newer spatial access structures have been 
proposed, and this area is still an active research area.  

 
 

23.3.2 Introduction to Multimedia Database Concepts 

Multimedia databases provide features that allow users to store and query different types of 
multimedia information, which includes images (such as pictures or drawings), video clips (such as 
movies, newsreels, or home videos), audio clips (such as songs, phone messages, or speeches), and 
documents (such as books or articles). The main types of database queries that are needed involve 
locating multimedia sources that contain certain objects of interest. For example, one may want to 
locate all video clips in a video database that include a certain person in them, say Bill Clinton. One 
may also want to retrieve video clips based on certain activities included in them, such as a video clips 
were a goal is scored in a soccer game by a certain player or team.  

The above types of queries are referred to as content-based retrieval, because the multimedia source 
is being retrieved based on its containing certain objects or activities. Hence, a multimedia database 
must use some model to organize and index the multimedia sources based on their contents. Identifying 
the contents of multimedia sources is a difficult and time-consuming task. There are two main 
approaches. The first is based on automatic analysis of the multimedia sources to identify certain 
mathematical characteristics of their contents. This approach uses different techniques depending on 
the type of multimedia source (image, text, video, or audio). The second approach depends on manual 
identification of the objects and activities of interest in each multimedia source and on using this 
information to index the sources. This approach can be applied to all the different multimedia sources, 
but it requires a manual preprocessing phase where a person has to scan each multimedia source to 
identify and catalog the objects and activities it contains so that they can be used to index these sources.  

In the remainder of this section, we will very briefly discuss some of the characteristics of each type of 
multimedia source—images, video, audio, and text sources, in that order.  

An image is typically stored either in raw form as a set of pixel or cell values, or in compressed form to 
save space. The image shape descriptor describes the geometric shape of the raw image, which is 
typically a rectangle of cells of a certain width and height. Hence, each image can be represented by an 
m by n grid of cells. Each cell contains a pixel value that describes the cell content. In black/white 
images, pixels can be one bit. In gray scale or color images, a pixel is multiple bits. Because images 
may require large amounts of space, they are often stored in compressed form. Compression standards, 
such as the GIF standard, use various mathematical transformations to reduce the number of cells 
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stored but still maintain the main image characteristics. The mathematical transforms that can be used 
include Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and wavelet transforms.  

To identify objects of interest in an image, the image is typically divided into homogeneous segments 
using a homogeneity predicate. For example, in a color image, cells that are adjacent to one another 
and whose pixel values are close are grouped into a segment. The homogeneity predicate defines the 
conditions for how to automatically group those cells. Segmentation and compression can hence 
identify the main characteristics of an image.  

A typical image database query would be to find images in the database that are similar to a given 
image. The given image could be an isolated segment that contains, say, a pattern of interest, and the 
query is to locate other images that contain that same pattern. There are two main techniques for this 
type of search. The first approach uses a distance function to compare the given image with the stored 
images and their segments. If the distance value returned is small, the probability of a match is high. 
Indexes can be created to group together stored images that are close in the distance metric so as to 
limit the search space. The second approach, called the transformation approach, measures image 
similarity by having a small number of transformations that can transform one image’s cells to match 
the other image. Transformations include rotations, translations, and scaling. Although the latter 
approach is more general, it is also more time consuming and difficult.  

A video source is typically represented as a sequence of frames, where each frame is a still image. 
However, rather than identifying the objects and activities in every individual frame, the video is 
divided into video segments, where each segment is made up of a sequence of contiguous frames that 
includes the same objects/activities. Each segment is identified by its starting and ending frames. The 
objects and activities identified in each video segment can be used to index the segments. An indexing 
technique called frame segment trees has been proposed for video indexing. The index includes both 
objects, such as persons, houses, cars, and activities, such as a person delivering a speech or two people 
talking.  

A text/document source is basically the full text of some article, book, or magazine. These sources are 
typically indexed by identifying the keywords that appear in the text and their relative frequencies. 
However, filler words are eliminated from that process. Because there could be too many keywords 
when attempting to index a collection of documents, techniques have been developed to reduce the 
number of keywords to those that are most relevant to the collection. A technique called singular value 
decompositions (SVD), which is based on matrix transformations, can be used for this purpose. An 
indexing technique called telescoping vector trees, or TV-trees, can then be used to group similar 
documents together.  

Audio sources include stored recorded messages, such as speeches, class presentations, or even 
surveillance recording of phone messages or conversations by law enforcement. Here, discrete 
transforms can be used to identify the main characteristics of a certain person’s voice in order to have 
similarity based indexing and retrieval. Audio characteristic features include loudness, intensity, pitch, 
and clarity.  

 
 

23.4 Summary 

In this chapter, we introduced database concepts for some of the common features that are needed by 
advanced applications: active databases, temporal databases, and spatial and multimedia databases. It is 
important to note that each of these topics is very broad and warrants a complete textbook.  

We first introduced the topic of active databases, which provide additional functionality for specifying 
active rules. We introduced the event-condition-action or ECA model for active databases. The rules 
can be automatically triggered by events that occur—such as a database update—and they can initiate 
certain actions that have been specified in the rule declaration if certain conditions are true. Many 
commercial packages already have some of the functionality provided by active databases in the form 
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of triggers. We discussed the different options for specifying rules, such as row-level versus statement-
level, before versus after, and immediate versus deferred. We gave examples of row-level triggers in 
the Oracle commercial system, and statement-level rules in the STARBURST experimental system. 
We briefly discussed some design issues and some possible applications for active databases.  

We then introduced some of the concepts of temporal databases, which permit the database system to 
store a history of changes and allows users to query both current and past states of the database. We 
discussed how time is represented and distinguished between the valid time and transaction time 
dimensions. We then discussed how valid time, transaction time, and bitemporal relations can be 
implemented using tuple versioning in the relational model, with examples to illustrate how updates, 
inserts, and deletes are implemented. We also showed how complex objects can be used to implement 
temporal databases using attribute versioning. We then looked at some of the querying operations for 
temporal relational databases and gave a very brief introduction to the TSQL2 language.  

We then turned to spatial and multimedia databases. Spatial databases provide concepts for databases 
that keep track of objects that have spatial characteristics, and they require models for representing 
these spatial characteristics and operators for comparing and manipulating them. Multimedia databases 
provide features that allow users to store and query different types of multimedia information, which 
includes images (such as pictures or drawings), video clips (such as movies, news reels, or home 
videos), audio clips (such as songs, phone messages, or speeches), and documents (such as books or 
articles). We gave a very brief overview of the various types of media sources and how multimedia 
sources may be indexed.  

 
 

Review Questions 

  23.1. What are the differences between row-level and statement-level active rules? 

  23.2. What are the differences among immediate, deferred, and detached consideration of active rule 
conditions? 

  23.3. What are the differences among immediate, deferred, and detached execution of active rule 
actions? 

  23.4. Briefly discuss the consistency and termination problems when designing a set of active rules. 

  23.5. Discuss some applications of active databases. 

  23.6. Discuss how time is represented in temporal databases and compare the different time 
dimensions.  

  23.7. What are the differences between valid time, transaction time, and bitemporal relations?  

  23.8. Describe how the insert, delete, and update commands should be implemented on a valid time 
relation.  

  23.9. Describe how the insert, delete, and update commands should be implemented on a bitemporal 
relation.  

23.10. Describe how the insert, delete, and update commands should be implemented on a transaction 
time relation.  

23.11. What are the main differences between tuple versioning and attribute versioning?  

23.12. How do spatial databases differ from regular databases?  

23.13. What are the different types of multimedia sources?  

23.14. How are multimedia sources indexed for content-based retrieval?  

1 Page 650 of 893



www.manaraa.com

 
 

Exercises 

23.15. Consider the COMPANY database described in Figure 07.06. Using the syntax of Oracle triggers, 
write active rules to do the following:  

a. Whenever an employee’s project assignments are changed, check if the total hours per 
week spent on the employee’s projects are less than 30 or greater than 40; if so, notify 
the employee’s direct supervisor.  

b. Whenever an EMPLOYEE is deleted, delete the PROJECT tuples and DEPENDENT tuples 
related to that employee, and if the employee is managing a department or supervising 
any employees, set the MGRSSN for that department to null and set the SUPERSSN for 
those employees to null.  

23.16. Repeat 23.15 but use the syntax of STARBURST active rules.  

23.17. Consider the relational schema shown in Figure 23.10. Write active rules for keeping the 
SUM_COMMISSIONS attribute of SALES_PERSON equal to the sum of the COMMISSION attribute in 
SALES for each sales person. Your rules should also check if the SUM_COMMISSIONS exceeds 
100000; if it does, call a procedure notify_manager (S_ID). Write both statement-level rules in 
STARBURST notation and row-level rules in Oracle.  

 
 
23.18. Consider the UNIVERSITY EER schema of Figure 04.10. Write some rules (in English) that could 

be implemented via active rules to enforce some common integrity constraints that you think 
are relevant to this application.  

23.19. Discuss which of the updates that created each of the tuples shown in Figure 23.08 were 
applied retroactively and which were applied proactively. 

23.20. Show how the following updates, if applied in sequence, would change the contents of the 
bitemporal EMP_BT relation in Figure 23.08. For each update, state whether it is a retroactive or 
proactive update.  

a. On 1999-03-10,17:30:00, the salary of Narayan is updated to 40000, 
effective on 1999-03-01.  

b. On 1998-07-30,08:31:00, the salary of Smith was corrected to show that it 
should have been entered as 31000 (instead of 30000 as shown), effective on 
1998-06-01.  

c. On 1999-03-18,08:31:00, the database was changed to indicate that Narayan 
was leaving the company (i.e., logically deleted) effective 1999-03-31.  

d. On 1999-04-20,14:07:33, the database was changed to indicate the hiring of a 
new employee called Johnson, with the tuple <‘Johnson’, ‘334455667’, 
1, null> effective on 1999-04-20.  

e. On 1999-04-28,12:54:02, the database was changed to indicate that Wong was 
leaving the company (i.e. logically deleted) effective 1999-06-01.  

f. On 1999-05-05,13:07:33, the database was changed to indicate the rehiring of 
Brown, with the same department and supervisor but with salary 35000 effective on 
1999-05-01.  

23.21. Show how the updates given in Exercise 23.20, if applied in sequence, would change the 
contents of the valid time EMP_VT relation in Figure 23.07.  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10 
Note 11 
Note 12 
Note 13 
Note 14 
Note 15 
Note 16 
Note 17 
Note 18 
Note 19 
Note 20 
Note 21 
Note 22 
Note 23 
Note 24

Note 1 

In fact, even some of the features in SQL2 can be considered active, such as the CASCADE actions 
specified on referential integrity constraints (see Chapter 8).  
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Note 2 

An example would be a temporal event specified as a periodic time, such as: Trigger this rule every day 
at 5:30 am.  

 
 

Note 3 

As we shall see later, it is also possible to specify BEFORE instead of AFTER, which indicates that the 
rule is triggered before the triggering event is executed.  

 
 

Note 4 

Again, we shall see later that an alternative is to trigger the rule only once even if multiple rows 
(tuples) are affected by the triggering event.  

 
 

Note 5 

R1, R2, and R4 can also be written without a condition. However, they may be more efficient to 
execute with the condition since the action is not invoked unless it is required.  

 
 

Note 6 

Assuming that an appropriate external procedure has been declared. This is a feature that is available in 
SQL3.  

 
 

Note 7 

STARBURST also allows the user to explicitly start rule consideration via a PROCESS RULES 
command.  

 
 

Note 8 

Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule 
condition in Oracle triggers.  
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Note 9 

As in the Oracle examples, rules R1S and R2S can be written without a condition. However, they may 
be more efficient to execute with the condition since the action is not invoked unless it is required.  

 
 

Note 10 

If no order is specified between a pair of rules, the system default order is based on placing the rule 
declared first ahead of the other rule.  

 
 

Note 11 

Unfortunately, the terminology has not been used consistently. For example, the term interval is often 
used to denote an anchored duration. For consistency, we shall use the SQL terminology.  

 
 

Note 12 

This is the same as an anchored duration. It has also been frequently called a time interval, but to 
avoid confusion we will use period to be consistent with SQL terminology.  

 
 

Note 13 

The representation [1993-08-15, 1998-11-20] is called a closed interval representation. One 
can also use an open interval, denoted [1993-08-15, 1998-11-21], where the set of points 
does not include the end point. Although the latter representation is sometimes more convenient, we 
shall use closed intervals throughout to avoid confusion.  

 
 

Note 14 

The explanation is more involved, as we shall see in Section 23.2.3.  

 
 

Note 15 

A nontemporal relation is also called a snapshot relation as it shows only the current snapshot or 
current state of the database.  
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Note 16 

A combination of the nontemporal key and the valid end time attribute VET could also be used.  

 
 

Note 17 

The uc variable in transaction time relations corresponds to the now variable in valid time relations. 
The semantics are slightly different though.  

 
 

Note 18 

The term rollback here does not have the same meaning as transaction rollback (see Chapter 21) 
during recovery, where the transaction updates are physically undone. Rather, here the updates can be 
logically undone, allowing the user to examine the database as it appeared at a previous time point.  

 
 

Note 19 

There have been many proposed temporal database models. We are describing specific models here as 
examples to illustrate the concepts.  

 
 

Note 20 

Some bitemporal models allow the VET attribute to be changed also, but the interpretations of the tuples 
are different in those models.  

 
 

Note 21 

Attribute versioning can also be used in the nested relational model (see Chapter 13).  

 
 

Note 22 

A complete set of operations, known as Allen’s algebra, has been defined for comparing time periods. 
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Note 23 

This operation returns true if the intersection of the two periods is not empty; it has also been called 
INTERSECTS_WITH.  

 
 

Note 24 

Here, 1 (one) refers to one time point in the specified granularity. The MEETS operations basically 
specify if one period starts immediately after the other period ends.  
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Architecture 
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In this chapter we turn our attention to distributed databases (DDBs), distributed database management 
systems (DDBMSs), and how the client-server architecture is used as a platform for database 
application development. The DDB technology emerged as a merger of two technologies: (1) database 
technology, and (2) network and data communication technology. The latter has made tremendous 
strides in terms of wired and wireless technologies—from satellite and cellular communications and 
Metropolitan Area Networks (MANs) to the standardization of protocols like Ethernet, TCP/IP, and the 
Asynchronous Transfer Mode (ATM) as well as the explosion of the Internet, including the newly 
started Internet-2 development. While early databases moved toward centralization and resulted in 
monolithic gigantic databases in the seventies and early eighties, the trend reversed toward more 
decentralization and autonomy of processing in the late eighties. With advances in distributed 
processing and distributed computing that occurred in the operating systems arena, the database 
research community did considerable work to address the issues of data distribution, distributed query 
and transaction processing, distributed database metadata management, and other topics, and developed 
many research prototypes. However, a full-scale comprehensive DDBMS that implements the 
functionality and techniques proposed in DDB research never emerged as a commercially viable 
product. Most major vendors redirected their efforts from developing a "pure" DDBMS product into 
developing systems based on client-server, or toward developing active heterogeneous DBMSs.  

Organizations, however, have been very interested in the decentralization of processing (at the system 
level) while achieving an integration of the information resources (at the logical level) within their 
geographically distributed systems of databases, applications, and users. Coupled with the advances in 
communications, there is now a general endorsement of the client-server approach to application 
development, which assumes many of the DDB issues.  
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In this chapter we discuss both distributed databases and client-server architectures (Note 1), in the 
development of database technology that is closely tied to advances in communications and network 
technology. Details of the latter are outside our scope; the reader is referred to a series of texts on data 
communications (see the Selected Bibliography at the end of this chapter).  

Section 24.1 introduces distributed database management and related concepts. Detailed issues of 
distributed database design, involving fragmenting of data and distributing it over multiple sites with 
possible replication, are discussed in Section 24.2. Section 24.3 introduces different types of distributed 
database systems, including federated and multidatabase systems and highlights the problems of 
heterogeneity and the needs of autonomy in federated database systems, which will dominate for years 
to come. Section 24.4 and Section 24.5 introduce distributed database query and transaction processing 
techniques, respectively. Section 24.6 discusses how the client-server architectural concepts are related 
to distributed databases. Section 24.7 elaborates on future issues in client-server architectures. Section 
24.8 discusses distributed database features of the Oracle RDBMS.  

For a short introduction to the topic, only section 24.1, section 24.3 and section 24.6 may be covered.  

 
 

24.1 Distributed Database Concepts 

24.1.1 Parallel Versus Distributed Technology 
24.1.2 Advantages of Distributed Databases 
24.1.3 Additional Functions of Distributed Databases

Distributed databases bring the advantages of distributed computing to the database management 
domain. A distributed computing system consists of a number of processing elements, not necessarily 
homogeneous, that are interconnected by a computer network, and that cooperate in performing certain 
assigned tasks. As a general goal, distributed computing systems partition a big, unmanageable 
problem into smaller pieces and solve it efficiently in a coordinated manner. The economic viability of 
this approach stems from two reasons: (1) more computer power is harnessed to solve a complex task, 
and (2) each autonomous processing element can be managed independently and develop its own 
applications.  

We can define a distributed database (DDB) as a collection of multiple logically interrelated 
databases distributed over a computer network, and a distributed database management system 
(DDBMS) as a software system that manages a distributed database while making the distribution 
transparent to the user (Note 2). A collection of files stored at different nodes of a network and the 
maintaining of inter relationships among them via hyperlinks has become a common organization on 
the Internet, with files of Web pages. The common functions of database management, including 
uniform query processing and transaction processing, do not apply to this scenario yet. The technology 
is, however, moving in a direction such that distributed World Wide Web (WWW) databases will 
become a reality in the near future. We shall discuss issues of accessing databases on the Web in 
Section 27.1 and mobile and intermittently connected databases in Section 27.3. None of those qualify 
as DDB by the definition given earlier.  

 
 

24.1.1 Parallel Versus Distributed Technology 

Turning our attention to system architectures, there are two main types of multiprocessor system 
architectures that are commonplace:  

• Shared memory (tightly coupled) architecture: Multiple processors share secondary (disk) 
storage and also share primary memory.  
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• Shared disk (loosely coupled) architecture: Multiple processors share secondary (disk) storage 
but each has their own primary memory.  

These architectures enable processors to communicate without the overhead of exchanging messages 
over a network (Note 3). Database management systems developed using the above types of 
architectures are termed parallel database management systems rather than DDBMS, since they 
utilize parallel processor technology. Another type of multiprocessor architecture is called shared 
nothing architecture. In this architecture, every processor has its own primary and secondary (disk) 
memory, no common memory exists, and the processors communicate over a high-speed 
interconnection network (bus or switch). Although the shared nothing architecture resembles a 
distributed database computing environment, major differences exist in the mode of operation. In 
shared nothing multiprocessor systems, there is symmetry and homogeneity of nodes; this is not true of 
the distributed database environment where heterogeneity of hardware and operating system at each 
node is very common. Shared nothing architecture is also considered as an environment for parallel 
databases. Figure 24.01 contrasts these different architectures.  

 

 

 
 

24.1.2 Advantages of Distributed Databases 

Distributed database management has been proposed for various reasons ranging from organizational 
decentralization and economical processing to greater autonomy. We highlight some of these 
advantages here.  

 

1. Management of distributed data with different levels of transparency: Ideally, a DBMS should 
be distribution transparent in the sense of hiding the details of where each file (table, 
relation) is physically stored within the system. Consider the company database in Figure 
07.05 that we have been discussing throughout the book. The EMPLOYEE, PROJECT, and 
WORKS_ON tables may be fragmented horizontally (that is, into sets of rows, as we shall 
discuss in Section 24.2) and stored with possible replication as shown in Figure 24.02. The 
following types of transparencies are possible:  

o Distribution or network transparency: This refers to freedom for the user from the 
operational details of the network. It may be divided into location transparency and 
naming transparency. Location transparency refers to the fact that the command 
used to perform a task is independent of the location of data and the location of the 
system where the command was issued. Naming transparency implies that once a 
name is specified, the named objects can be accessed unambiguously without 
additional specification.  

o Replication transparency: As we show in Figure 24.02, copies of data may be stored 
at multiple sites for better availability, performance, and reliability. Replication 
transparency makes the user unaware of the existence of copies.  

o Fragmentation transparency: Two types of fragmentation are possible. Horizontal 
fragmentation distributes a relation into sets of tuples (rows). Vertical 
fragmentation distributes a relation into subrelations where each subrelation is 
defined by a subset of the columns of the original relation. A global query by the user 
must be transformed into several fragment queries. Fragmentation transparency 
makes the user unaware of the existence of fragments.  

2. Increased reliability and availability: These are two of the most common potential advantages 
cited for distributed databases. Reliability is broadly defined as the probability that a system 
is running (not down) at a certain time point, whereas availability is the probability that the 
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system is continuously available during a time interval. When the data and DBMS software 
are distributed over several sites, one site may fail while other sites continue to operate. Only 
the data and software that exist at the failed site cannot be accessed. This improves both 
reliability and availability. Further improvement is achieved by judiciously replicating data 
and software at more than one site. In a centralized system, failure at a single site makes the 
whole system unavailable to all users. In a distributed database, some of the data may be 
unreachable, but users may still be able to access other parts of the database.  

3. Improved performance: A distributed DBMS fragments the database by keeping the data 
closer to where it is needed most. Data localization reduces the contention for CPU and I/O 
services and simultaneously reduces access delays involved in wide area networks. When a 
large database is distributed over multiple sites, smaller databases exist at each site. As a 
result, local queries and transactions accessing data at a single site have better performance 
because of the smaller local databases. In addition, each site has a smaller number of 
transactions executing than if all transactions are submitted to a single centralized database. 
Moreover, interquery and intraquery parallelism can be achieved by executing multiple 
queries at different sites, or by breaking up a query into a number of subqueries that execute in 
parallel. This contributes to improved performance.  

4. Easier expansion: In a distributed environment, expansion of the system in terms of adding 
more data, increasing database sizes, or adding more processors is much easier.  

 

 

 
 

The transparencies we discussed in (1) above lead to a compromise between ease of use and the 
overhead cost of providing transparency. Total transparency provides the global user with a view of the 
entire DDBS as if it is a single centralized system. Transparency is provided as a complement to 
autonomy, which gives the users tighter control over their own local databases. Transparency features 
may be implemented as a part of the user language, which may translate the required services into 
appropriate operations. In addition, transparency impacts the features that must be provided by the 
operating system and the DBMS.  

 
 

24.1.3 Additional Functions of Distributed Databases 

Distribution leads to increased complexity in the system design and implementation. To achieve the 
potential advantages listed previously, the DDBMS software must be able to provide the following 
functions in addition to those of a centralized DBMS:  

• Keeping track of data: The ability to keep track of the data distribution, fragmentation, and 
replication by expanding the DDBMS catalog.  

• Distributed query processing: The ability to access remote sites and transmit queries and data 
among the various sites via a communication network.  

• Distributed transaction management: The ability to devise execution strategies for queries and 
transactions that access data from more than one site and to synchronize the access to 
distributed data and maintain integrity of the overall database.  

• Replicated data management: The ability to decide which copy of a replicated data item to 
access and to maintain the consistency of copies of a replicated data item.  

• Distributed database recovery: The ability to recover from individual site crashes and from 
new types of failures such as the failure of a communication links.  

• Security: Distributed transactions must be executed with the proper management of the 
security of the data and the authorization/access privileges of users.  
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• Distributed directory (catalog) management: A directory contains information (metadata) 
about data in the database. The directory may be global for the entire DDB, or local for each 
site. The placement and distribution of the directory are design and policy issues.  

These functions themselves increase the complexity of a DDBMS over a centralized DBMS. Before we 
can realize the full potential advantages of distribution, we must find satisfactory solutions to these 
design issues and problems. Including all this additional functionality is hard to accomplish, and 
finding optimal solutions is a step beyond that.  

At the physical hardware level, the following main factors distinguish a DDBMS from a centralized 
system:  

• There are multiple computers, called sites or nodes.  
• These sites must be connected by some type of communication network to transmit data and 

commands among sites, as shown in Figure 24.01(c).  

The sites may all be located in physical proximity—say, within the same building or group of adjacent 
buildings—and connected via a local area network, or they may be geographically distributed over 
large distances and connected via a long-haul or wide area network. Local area networks typically 
use cables, whereas long-haul networks use telephone lines or satellites. It is also possible to use a 
combination of the two types of networks.  

Networks may have different topologies that define the direct communication paths among sites. The 
type and topology of the network used may have a significant effect on performance and hence on the 
strategies for distributed query processing and distributed database design. For high-level architectural 
issues, however, it does not matter which type of network is used; it only matters that each site is able 
to communicate, directly or indirectly, with every other site. For the remainder of this chapter, we 
assume that some type of communication network exists among sites, regardless of the particular 
topology. We will not address any network specific issues, although it is important to understand that 
for an efficient operation of a DDBS, network design and performance issues are very critical.  

 
 

24.2 Data Fragmentation, Replication, and Allocation Techniques for 
Distributed Database Design 

24.2.1 Data Fragmentation 
24.2.2 Data Replication and Allocation 
24.2.3 Example of Fragmentation, Allocation, and Replication

In this section we discuss techniques that are used to break up the database into logical units, called 
fragments, which may be assigned for storage at the various sites. We also discuss the use of data 
replication, which permits certain data to be stored in more than one site, and the process of allocating 
fragments—or replicas of fragments—for storage at the various sites. These techniques are used during 
the process of distributed database design. The information concerning data fragmentation, 
allocation, and replication is stored in a global directory that is accessed by the DDBS applications as 
needed.  

 
 

24.2.1 Data Fragmentation 

Horizontal Fragmentation 
Vertical Fragmentation 
Mixed (Hybrid) Fragmentation
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In a DDB, decisions must be made regarding which site should be used to store which portions of the 
database. For now, we will assume that there is no replication; that is, each relation—or portion of a 
relation—is to be stored at only one site. We discuss replication and its effects later in this section. We 
also use the terminology of relational databases—similar concepts apply to other data models. We 
assume that we are starting with a relational database schema and must decide on how to distribute the 
relations over the various sites. To illustrate our discussion, we use the relational database schema in 
Figure 07.05.  

Before we decide on how to distribute the data, we must determine the logical units of the database that 
are to be distributed. The simplest logical units are the relations themselves; that is, each whole relation 
is to be stored at a particular site. In our example, we must decide on a site to store each of the relations 
EMPLOYEE, DEPARTMENT, PROJECT, WORKS_ON, and DEPENDENT of Figure 07.05. In many cases, 
however, a relation can be divided into smaller logical units for distribution. For example, consider the 
company database shown in Figure 07.06, and assume there are three computer sites—one for each 
department in the company (Note 4). We may want to store the database information relating to each 
department at the computer site for that department. A technique called horizontal fragmentation can 
be used to partition each relation by department.  

 
 

Horizontal Fragmentation 

A horizontal fragment of a relation is a subset of the tuples in that relation. The tuples that belong to 
the horizontal fragment are specified by a condition on one or more attributes of the relation. Often, 
only a single attribute is involved. For example, we may define three horizontal fragments on the 
EMPLOYEE relation of Figure 07.06 with the following conditions: (DNO = 5), (DNO = 4), and (DNO = 
1)—each fragment contains the EMPLOYEE tuples working for a particular department. Similarly, we 
may define three horizontal fragments for the PROJECT relation, with the conditions (DNUM = 5), (DNUM 
= 4), and (DNUM = 1)—each fragment contains the PROJECT tuples controlled by a particular 
department. Horizontal fragmentation divides a relation "horizontally" by grouping rows to create 
subsets of tuples, where each subset has a certain logical meaning. These fragments can then be 
assigned to different sites in the distributed system. Derived horizontal fragmentation applies the 
partitioning of a primary relation (DEPARTMENT in our example) to other secondary relations 
(EMPLOYEE and PROJECT in our example), which are related to the primary via a foreign key. This way, 
related data between the primary and the secondary relations gets fragmented in the same way.  

 
 

Vertical Fragmentation 

Each site may not need all the attributes of a relation, which would indicate the need for a different 
type of fragmentation. Vertical fragmentation divides a relation "vertically" by columns. A vertical 
fragment of a relation keeps only certain attributes of the relation. For example, we may want to 
fragment the EMPLOYEE relation into two vertical fragments. The first fragment includes personal 
information—NAME, BDATE, ADDRESS, and SEX—and the second includes work-related information—
SSN, SALARY, SUPERSSN, DNO. This vertical fragmentation is not quite proper because, if the two 
fragments are stored separately, we cannot put the original employee tuples back together, since there 
is no common attribute between the two fragments. It is necessary to include the primary key or some 
candidate key attribute in every vertical fragment so that the full relation can be reconstructed from the 
fragments. Hence, we must add the SSN attribute to the personal information fragment.  

Notice that each horizontal fragment on a relation R can be specified by a sCi(R) operation in the 
relational algebra. A set of horizontal fragments whose conditions C1, C2, ..., Cn include all the tuples 
in R—that is, every tuple in R satisfies (C1 OR C2 OR ... OR Cn)—is called a complete horizontal 
fragmentation of R. In many cases a complete horizontal fragmentation is also disjoint; that is, no 
tuple in R satisfies (Ci AND Cj) for any i j. Our two earlier examples of horizontal fragmentation for 
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the EMPLOYEE and PROJECT relations were both complete and disjoint. To reconstruct the relation R 
from a complete horizontal fragmentation, we need to apply the UNION operation to the fragments.  

A vertical fragment on a relation R can be specified by a pLi (R) operation in the relational algebra. A 
set of vertical fragments whose projection lists L1, L2, ..., Ln include all the attributes in R but share 
only the primary key attribute of R is called a complete vertical fragmentation of R. In this case the 
projection lists satisfy the following two conditions:  

• L1 D L2 D . . . D Ln = ATTRS(R).  
• Li C Lj = PK(R) for any i j, where ATTRS(R) is the set of attributes of R and PK(R) is the 

primary key of R.  

To reconstruct the relation R from a complete vertical fragmentation, we apply the OUTER UNION 
operation to the vertical fragments (assuming no horizontal fragmentation is used). Notice that we 
could also apply a FULL OUTER JOIN operation and get the same result for a complete vertical 
fragmentation, even when some horizontal fragmentation may also have been applied. The two vertical 
fragments of the EMPLOYEE relation with projection lists L1 = {SSN, NAME, BDATE, ADDRESS, SEX} and 
L2 = {SSN, SALARY, SUPERSSN, DNO} constitute a complete vertical fragmentation of EMPLOYEE.  

Two horizontal fragments that are neither complete nor disjoint are those defined on the EMPLOYEE 
relation of Figure 07.05 by the conditions (SALARY > 50000) and (DNO = 4); they may not include all 
EMPLOYEE tuples, and they may include common tuples. Two vertical fragments that are not complete 
are those defined by the attribute lists L1 = {NAME, ADDRESS} and L2 = {SSN, NAME, SALARY}; these 
lists violate both conditions of a complete vertical fragmentation.  

 
 

Mixed (Hybrid) Fragmentation 

We can intermix the two types of fragmentation, yielding a mixed fragmentation. For example, we 
may combine the horizontal and vertical fragmentations of the EMPLOYEE relation given earlier into a 
mixed fragmentation that includes six fragments. In this case the original relation can be reconstructed 
by applying UNION and OUTER UNION (or OUTER JOIN) operations in the appropriate order. In 
general, a fragment of a relation R can be specified by a SELECT-PROJECT combination of 
operations pL(sC(R)). If C = TRUE (that is, all tuples are selected) and L ATTRS(R), we get a vertical 
fragment, and if C TRUE and L = ATTRS(R), we get a horizontal fragment. Finally, if C TRUE and L 
ATTRS(R), we get a mixed fragment. Notice that a relation can itself be considered a fragment with C 
= TRUE and L = ATTRS(R). In the following discussion, the term fragment is used to refer to a 
relation or to any of the preceding types of fragments.  

A fragmentation schema of a database is a definition of a set of fragments that includes all attributes 
and tuples in the database and satisfies the condition that the whole database can be reconstructed from 
the fragments by applying some sequence of OUTER UNION (or OUTER JOIN) and UNION 
operations. It is also sometimes useful—although not necessary—to have all the fragments be disjoint 
except for the repetition of primary keys among vertical (or mixed) fragments. In the latter case, all 
replication and distribution of fragments is clearly specified at a subsequent stage, separately from 
fragmentation.  

An allocation schema describes the allocation of fragments to sites of the DDBS; hence, it is a 
mapping that specifies for each fragment the site(s) at which it is stored. If a fragment is stored at more 
than one site, it is said to be replicated. We discuss data replication and allocation next.  

 
 

24.2.2 Data Replication and Allocation 
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Replication is useful in improving the availability of data. The most extreme case is replication of the 
whole database at every site in the distributed system, thus creating a fully replicated distributed 
database. This can improve availability remarkably because the system can continue to operate as long 
as at least one site is up. It also improves performance of retrieval for global queries, because the result 
of such a query can be obtained locally from any one site; hence, a retrieval query can be processed at 
the local site where it is submitted, if that site includes a server module. The disadvantage of full 
replication is that it can slow down update operations drastically, since a single logical update must be 
performed on every copy of the database to keep the copies consistent. This is especially true if many 
copies of the database exist. Full replication makes the concurrency control and recovery techniques 
more expensive than they would be if there were no replication, as we shall see in Section 24.5.  

The other extreme from full replication involves having no replication—that is, each fragment is 
stored at exactly one site. In this case all fragments must be disjoint, except for the repetition of 
primary keys among vertical (or mixed) fragments. This is also called nonredundant allocation.  

Between these two extremes, we have a wide spectrum of partial replication of the data—that is, 
some fragments of the database may be replicated whereas others may not. The number of copies of 
each fragment can range from one up to the total number of sites in the distributed system. A special 
case of partial replication is occurring heavily in applications where mobile workers—such as sales 
forces, financial planners, and claims adjustors—carry partially replicated databases with them on 
laptops and personal digital assistants and synchronize them periodically with the server database (Note 
5). A description of the replication of fragments is sometimes called a replication schema.  

Each fragment—or each copy of a fragment—must be assigned to a particular site in the distributed 
system. This process is called data distribution (or data allocation). The choice of sites and the 
degree of replication depend on the performance and availability goals of the system and on the types 
and frequencies of transactions submitted at each site. For example, if high availability is required and 
transactions can be submitted at any site and if most transactions are retrieval only, a fully replicated 
database is a good choice. However, if certain transactions that access particular parts of the database 
are mostly submitted at a particular site, the corresponding set of fragments can be allocated at that site 
only. Data that is accessed at multiple sites can be replicated at those sites. If many updates are 
performed, it may be useful to limit replication. Finding an optimal or even a good solution to 
distributed data allocation is a complex optimization problem.  

 
 

24.2.3 Example of Fragmentation, Allocation, and Replication 

We now consider an example of fragmenting and distributing the company database of Figure 07.05 
and Figure 07.06. Suppose that the company has three computer sites—one for each current 
department. Sites 2 and 3 are for departments 5 and 4, respectively. At each of these sites, we expect 
frequent access to the EMPLOYEE and PROJECT information for the employees who work in that 
department and the projects controlled by that department. Further, we assume that these sites mainly 
access the NAME, SSN, SALARY, and SUPERSSN attributes of EMPLOYEE. Site 1 is used by company 
headquarters and accesses all employee and project information regularly, in addition to keeping track 
of DEPENDENT information for insurance purposes.  

According to these requirements, the whole database of Figure 07.06 can be stored at site 1. To 
determine the fragments to be replicated at sites 2 and 3, we can first horizontally fragment 
DEPARTMENT by its key DNUMBER. We then apply derived fragmentation to the relations EMPLOYEE, 
PROJECT, and DEPT_LOCATIONS relations based on their foreign keys for department number—called 
DNO, DNUM, and DNUMBER, respectively, in Figure 07.05. We can then vertically fragment the resulting 
EMPLOYEE fragments to include only the attributes {NAME, SSN, SALARY, SUPERSSN, DNO}. Figure 24.03 
shows the mixed fragments EMPD5 and EMPD4, which include the EMPLOYEE tuples satisfying the 
conditions DNO = 5 and DNO = 4, respectively. The horizontal fragments of PROJECT, DEPARTMENT, and 
DEPT_LOCATIONS are similarly fragmented by department number. All these fragments—stored at sites 
2 and 3—are replicated because they are also stored at the headquarters site 1.  
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We must now fragment the WORKS_ON relation and decide which fragments of WORKS_ON to store at 
sites 2 and 3. We are confronted with the problem that no attribute of WORKS_ON directly indicates the 
department to which each tuple belongs. In fact, each tuple in WORKS_ON relates an employee e to a 
project p. We could fragment WORKS_ON based on the department d in which e works or based on the 
department d’ that controls p. Fragmentation becomes easy if we have a constraint stating that d = d 
for all WORKS_ON tuples—that is, if employees can work only on projects controlled by the department 
they work for. However, there is no such constraint in our database of Figure 07.06. For example, the 
WORKS_ON tuple <333445555, 10, 10.0> relates an employee who works for department 5 with 
a project controlled by department 4. In this case we could fragment WORKS_ON based on the 
department in which the employee works (which is expressed by the condition C) and then fragment 
further based on the department that controls the projects that employee is working on, as shown in 
Figure 24.04.  

 

 

 
 

In Figure 24.04, the union of fragments G1, G2, and G3 gives all WORKS_ON tuples for employees who 
work for department 5. Similarly, the union of fragments G4, G5, and G6 gives all WORKS_ON tuples 
for employees who work for department 4. On the other hand, the union of fragments G1, G4, and G7 
gives all WORKS_ON tuples for projects controlled by department 5. The condition for each of the 
fragments G1 through G9 is shown in Figure 24.04. The relations that represent M:N relationships, 
such as WORKS_ON, often have several possible logical fragmentations. In our distribution of Figure 
24.03, we choose to include all fragments that can be joined to either an EMPLOYEE tuple or a PROJECT 
tuple at sites 2 and 3. Hence, we place the union of fragments G1, G2, G3, G4, and G7 at site 2 and the 
union of fragments G4, G5, G6, G2, and G8 at site 3. Notice that fragments G2 and G4 are replicated at 
both sites. This allocation strategy permits the join between the local EMPLOYEE or PROJECT fragments 
at site 2 or site 3 and the local WORKS_ON fragment to be performed completely locally. This clearly 
demonstrates how complex the problem of database fragmentation and allocation is for large databases. 
The Selected Bibliography at the end of this chapter discusses some of the work done in this area.  

 
 

24.3 Types of Distributed Database Systems 

Federated Database Management Systems Issues 
Semantic Heterogeneity

The term distributed database management system can describe various systems that differ from one 
another in many respects. The main thing that all such systems have in common is the fact that data and 
software are distributed over multiple sites connected by some form of communication network. In this 
section we discuss a number of types of DDBMSs and the criteria and factors that make some of these 
systems different.  

The first factor we consider is the degree of homogeneity of the DDBMS software. If all servers (or 
individual local DBMSs) use identical software and all users (clients) use identical software, the 
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DDBMS is called homogeneous; otherwise, it is called heterogeneous. Another factor related to the 
degree of homogeneity is the degree of local autonomy. If there is no provision for the local site to 
function as a stand-alone DBMS, then the system has no local autonomy. On the other hand, if direct 
access by local transactions to a server is permitted, the system has some degree of local autonomy.  

At one extreme of the autonomy spectrum, we have a DDBMS that "looks like" a centralized DBMS to 
the user. A single conceptual schema exists, and all access to the system is obtained through a site that 
is part of the DDBMS—which means that no local autonomy exists. At the other extreme we encounter 
a type of DDBMS called a federated DDBMS (or a multidatabase system). In such a system, each 
server is an independent and autonomous centralized DBMS that has its own local users, local 
transactions, and DBA and hence has a very high degree of local autonomy. The term federated 
database system (FDBS) is used when there is some global view or schema of the federation of 
databases that is shared by the applications. On the other hand, a multidatabase system does not have 
a global schema and interactively constructs one as needed by the application. Both systems are 
hybrids between distributed and centralized systems and the distinction we made between them is not 
strictly followed. We will refer to them as FDBSs in a generic sense.  

In a heterogeneous FDBS, one server may be a relational DBMS, another a network DBMS, and a third 
an object or hierarchical DBMS; in such a case it is necessary to have a canonical system language and 
to include language translators to translate subqueries from the canonical language to the language of 
each server. We briefly discuss the issues affecting the design of FDBSs below.  

 
 

Federated Database Management Systems Issues 

The type of heterogeneity present in FDBSs may arise from several sources. We discuss these sources 
first and then point out how the different types of autonomies contribute to a semantic heterogeneity 
that must be resolved in a heterogeneous FDBS.  

• Differences in data models: Databases in an organization come from a variety of data models 
including the so-called legacy models (network and hierarchical, see Appendix C and 
Appendix D), the relational data model, the object data model, and even files. The modeling 
capabilities of the models vary. Hence, to deal with them uniformly via a single global schema 
or to process them in a single language is challenging. Even if two databases are both from the 
RDBMS environment, the same information may be represented as an attribute name, as a 
relation name, or as a value in different databases. This calls for an intelligent query-
processing mechanism that can relate information based on metadata.  

• Differences in constraints: Constraint facilities for specification and implementation vary 
from system to system. There are comparable features that must be reconciled in the 
construction of a global schema. For example, the relationships from ER models are 
represented as referential integrity constraints in the relational model. Triggers may have to be 
used to implement certain constraints in the relational model. The global schema must also 
deal with potential conflicts among constraints.  

• Differences in query languages: Even with the same data model, the languages and their 
versions vary. For example, SQL has multiple versions like SQL-89, SQL-92 (SQL2), and 
SQL3, and each system has its own set of data types, comparison operators, string 
manipulation features, and so on.  

 
 

Semantic Heterogeneity 

Semantic heterogeneity occurs when there are differences in the meaning, interpretation, and intended 
use of the same or related data. Semantic heterogeneity among component database systems (DBSs) 
creates the biggest hurdle in designing global schemas of heterogeneous databases. The design 
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autonomy of component DBSs refers to their freedom of choosing the following design parameters, 
which in turn affect the eventual complexity of the FDBS:  

• The universe of discourse from which the data is drawn: For example, two customer accounts 
databases in the federation may be from United States and Japan with entirely different sets of 
attributes about customer accounts required by the accounting practices. Currency rate 
fluctuations would also present a problem. Hence, relations in these two databases which have 
identical names—CUSTOMER or ACCOUNT—may have some common and some entirely 
distinct information.  

• Representation and naming: The representation and naming of data elements and the structure 
of the data model may be prespecified for each local database.  

• The understanding, meaning, and subjective interpretation of data. This is a chief contributor 
to semantic heterogeneity.  

• Transaction and policy constraints: These deal with serializability criteria, compensating 
transactions, and other transaction policies.  

• Derivation of summaries: Aggregation, summarization, and other data-processing features and 
operations supported by the system.  

Communication autonomy of a component DBS refers to its ability to decide whether to 
communicate with another component DBSs. Execution autonomy refers to the ability of a 
component DBS to execute local operations without interference from external operations by other 
component DBSs and its ability to decide the order in which to execute them. The association 
autonomy of a component DBS implies that it has the ability to decide whether and how much to share 
its functionality (operations it supports) and resources (data it manages) with other component DBSs. 
The major challenge of designing FDBSs is to let component DBSs interoperate while still providing 
the above types of autonomies to them.  

A typical five-level schema architecture to support global applications in the FDBS environment is 
shown in Figure 24.05. In this architecture, the local schema is the conceptual schema (full database 
definition) of a component database, and the component schema is derived by translating the local 
schema into a canonical data model or common data model (CDM) for the FDBS. Schema translation 
from the local schema to the component schema is accompanied by generation of mappings to 
transform commands on a component schema into commands on the corresponding local schema. The 
export schema represents the subset of a component schema that is available to the FDBS. The 
federated schema is the global schema or view, which is the result of integrating all the shareable 
export schemas. The external schemas define the schema for a user group or an application, as in the 
three-level schema architecture (Note 6).  

 

 

 
 

All the problems related to query processing, transaction processing, and directory and metadata 
management and recovery apply to FDBSs with additional considerations. It is not within our scope to 
discuss them in detail here.  

 
 

24.4 Query Processing in Distributed Databases 

24.4.1 Data Transfer Costs of Distributed Query Processing 
24.4.2 Distributed Query Processing Using Semijoin 
24.4.3 Query and Update Decomposition
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We now give an overview of how a DDBMS processes and optimizes a query. We first discuss the 
communication costs of processing a distributed query; we then discuss a special operation, called a 
semijoin, that is used in optimizing some types of queries in a DDBMS.  

 
 

24.4.1 Data Transfer Costs of Distributed Query Processing 

We discussed the issues involved in processing and optimizing a query in a centralized DBMS in 
Chapter 18. In a distributed system, several additional factors further complicate query processing. The 
first is the cost of transferring data over the network. This data includes intermediate files that are 
transferred to other sites for further processing, as well as the final result files that may have to be 
transferred to the site where the query result is needed. Although these costs may not be very high if 
the sites are connected via a high-performance local area network, they become quite significant in 
other types of networks. Hence, DDBMS query optimization algorithms consider the goal of reducing 
the amount of data transfer as an optimization criterion in choosing a distributed query execution 
strategy.  

We illustrate this with two simple example queries. Suppose that the EMPLOYEE and DEPARTMENT 
relations of Figure 07.05 are distributed as shown in Figure 24.06. We will assume in this example that 
neither relation is fragmented. According to Figure 24.06, the size of the EMPLOYEE relation is 100 * 
10,000 = 106 bytes, and the size of the DEPARTMENT relation is 35 * 100 = 3500 bytes. Consider the 
query Q: "For each employee, retrieve the employee name and the name of the department for which 
the employee works." This can be stated as follows in the relational algebra:  

 
 

Q: pFNAME,LNAME,DNAME(EMPLOYEEDNO=DNUMBER DEPARTMENT)  

 

 

 
 

The result of this query will include 10,000 records, assuming that every employee is related to a 
department. Suppose that each record in the query result is 40 bytes long. The query is submitted at a 
distinct site 3, which is called the result site because the query result is needed there. Neither the 
EMPLOYEE nor the DEPARTMENT relations reside at site 3.  

There are three simple strategies for executing this distributed query:  

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and perform the 
join at site 3. In this case a total of 1,000,000 + 3500 = 1,003,500 bytes must be transferred.  

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the result to site 3. 
The size of the query result is 40 * 10,000 = 400,000 bytes, so 400,000 + 1,000,000 = 
1,400,000 bytes must be transferred.  

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the result to site 
3. In this case 400,000 + 3500 = 403,500 bytes must be transferred.  

If minimizing the amount of data transfer is our optimization criterion, we should choose strategy 3. 
Now consider another query Q: "For each department, retrieve the department name and the name of 
the department manager." This can be stated as follows in the relational algebra:  
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Q: pFNAME,LNAME,DNAME(DEPARTMENTMGRSSN=SSN EMPLOYEE)  

 
 

Again, suppose that the query is submitted at site 3. The same three strategies for executing query Q 
apply to Q, except that the result of Q includes only 100 records, assuming that each department has a 
manager:  

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and perform the 
join at site 3. In this case a total of 1,000,000 + 3500 = 1,003,500 bytes must be transferred.  

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the result to site 3. 
The size of the query result is 40 * 100 = 4000 bytes, so 4000 + 1,000,000 = 1,004,000 bytes 
must be transferred.  

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the result to site 
3. In this case 4000 + 3500 = 7500 bytes must be transferred.  

Again, we would choose strategy 3—in this case by an overwhelming margin over strategies 1 and 2. 
The preceding three strategies are the most obvious ones for the case where the result site (site 3) is 
different from all the sites that contain files involved in the query (sites 1 and 2). However, suppose 
that the result site is site 2; then we have two simple strategies:  

1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the result to the user at 
site 2. Here, the same number of bytes—1,000,000—must be transferred for both Q and Q.  

2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, and send the result 
back to site 2. In this case 400,000 + 3500 = 403,500 bytes must be transferred for Q and 4000 
+ 3500 = 7500 bytes for Q.  

A more complex strategy, which sometimes works better than these simple strategies, uses an operation 
called semijoin. We introduce this operation and discuss distributed execution using semijoins next.  

 
 

24.4.2 Distributed Query Processing Using Semijoin 

The idea behind distributed query processing using the semijoin operation is to reduce the number of 
tuples in a relation before transferring it to another site. Intuitively, the idea is to send the joining 
column of one relation R to the site where the other relation S is located; this column is then joined 
with S. Following that, the join attributes, along with the attributes required in the result, are projected 
out and shipped back to the original site and joined with R. Hence, only the joining column of R is 
transferred in one direction, and a subset of S with no extraneous tuples or attributes is transferred in 
the other direction. If only a small fraction of the tuples in S participate in the join, this can be quite an 
efficient solution to minimizing data transfer.  

To illustrate this, consider the following strategy for executing Q or Q:  

1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site 1. For Q, we 
transfer F = pDNUMBER(DEPARTMENT), whose size is 4 * 100 = 400 bytes, whereas, for Q, we 
transfer F = pMGRSSN(DEPARTMENT), whose size is 9 * 100 = 900 bytes.  

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer the required 
attributes from the resulting file to site 2. For Q, we transfer R = pDNO, FNAME, 
LNAME(FDNUMBER=DNOEMPLOYEE), whose size is 34 * 10,000 = 340,000 bytes, whereas, for Q, we 
transfer R = pMGRSSN, FNAME, LNAME(FMGRSSN=SSN EMPLOYEE), whose size is 39 * 100 = 3900 bytes.  
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3. Execute the query by joining the transferred file R or R with DEPARTMENT, and present the 
result to the user at site 2.  

Using this strategy, we transfer 340,400 bytes for Q and 4800 bytes for Q. We limited the EMPLOYEE 
attributes and tuples transmitted to site 2 in step 2 to only those that will actually be joined with a 
DEPARTMENT tuple in step 3. For query Q, this turned out to include all EMPLOYEE tuples, so little 
improvement was achieved. However, for Q only 100 out of the 10,000 EMPLOYEE tuples were needed.  

The semijoin operation was devised to formalize this strategy. A semijoin operation R A=B BBS, where A 
and B are domain-compatible attributes of R and S, respectively, produces the same result as the 
relational algebra expression pR(RA=BS). In a distributed environment where R and S reside at different 
sites, the semijoin is typically implemented by first transferring F = pBBB(S) to the site where R resides 
and then joining F with R, thus leading to the strategy discussed here.  

Notice that the semijoin operation is not commutative; that is,  

 
 

R S S R  

 
 

24.4.3 Query and Update Decomposition 

In a DDBMS with no distribution transparency, the user phrases a query directly in terms of specific 
fragments. For example, consider another query Q: "Retrieve the names and hours per week for each 
employee who works on some project controlled by department 5," which is specified on the 
distributed database where the relations at sites 2 and 3 are shown in Figure 24.03, and those at site 1 
are shown in Figure 07.06, as in our earlier example. A user who submits such a query must specify 
whether it references the PROJS5 and WORKS_ON5 relations at site 2 (Figure 24.03) or the PROJECT and 
WORKS_ON relations at site 1 (Figure 07.06). The user must also maintain consistency of replicated data 
items when updating a DDBMS with no replication transparency.  

On the other hand, a DDBMS that supports full distribution, fragmentation, and replication 
transparency allows the user to specify a query or update request on the schema of Figure 07.05 just as 
though the DBMS were centralized. For updates, the DDBMS is responsible for maintaining 
consistency among replicated items by using one of the distributed concurrency control algorithms to 
be discussed in Section 24.5. For queries, a query decomposition module must break up or 
decompose a query into subqueries that can be executed at the individual sites. In addition, a strategy 
for combining the results of the subqueries to form the query result must be generated. Whenever the 
DDBMS determines that an item referenced in the query is replicated, it must choose or materialize a 
particular replica during query execution.  

To determine which replicas include the data items referenced in a query, the DDBMS refers to the 
fragmentation, replication, and distribution information stored in the DDBMS catalog. For vertical 
fragmentation, the attribute list for each fragment is kept in the catalog. For horizontal fragmentation, a 
condition, sometimes called a guard, is kept for each fragment. This is basically a selection condition 
that specifies which tuples exist in the fragment; it is called a guard because only tuples that satisfy this 
condition are permitted to be stored in the fragment. For mixed fragments, both the attribute list and the 
guard condition are kept in the catalog.  

In our earlier example, the guard conditions for fragments at site 1 (Figure 07.06) are TRUE (all 
tuples), and the attribute lists are * (all attributes). For the fragments shown in Figure 24.03, we have 
the guard conditions and attribute lists shown in Figure 24.07. When the DDBMS decomposes an 
update request, it can determine which fragments must be updated by examining their guard conditions. 
For example, a user request to insert a new EMPLOYEE tuple <’Alex’, ‘B’, ‘Coleman’, 
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‘345671239’, ‘22-APR-64’, ‘3306 Sandstone, Houston, TX’, M, 33000, 
‘987654321’, 4> would be decomposed by the DDBMS into two insert requests: the first inserts the 
preceding tuple in the EMPLOYEE fragment at site 1, and the second inserts the projected tuple 
<’Alex’, ‘B’, ‘Coleman’, ‘345671239’, 33000, ‘987654321’, 4> in the EMPD4 fragment 
at site 3.  

 

 

 
 

For query decomposition, the DDBMS can determine which fragments may contain the required tuples 
by comparing the query condition with the guard conditions. For example, consider the query Q: 
"Retrieve the names and hours per week for each employee who works on some project controlled by 
department 5"; this can be specified in SQL on the schema of Figure 07.05 as follows:  

 

  Q: SELECT FNAME, LNAME, HOURS  
    FROM  EMPLOYEE, PROJECT, WORKS_ON  
    WHERE  DNUM=5 AND PNUMBER=PNO AND ESSN=SSN;  

 
 

Suppose that the query is submitted at site 2, which is where the query result will be needed. The 
DDBMS can determine from the guard condition on PROJS5 and WORKS_ON5 that all tuples satisfying 
the conditions (DNUM = 5 AND PNUMBER = PNO) reside at site 2. Hence, it may decompose the query 
into the following relational algebra subqueries:  

 
 

T1 ã pESSN(PROJS5PNUMBER=PNOWORKS_ON5)  

T2 ã pESSN, FNAME, LNAME(T1ESSN=SSNEMPLOYEE)  

RESULT ã pFNAME, LNAME, HOURS(T2 * WORKS_ON5)  

 
 

This decomposition can be used to execute the query by using a semijoin strategy. The DDBMS knows 
from the guard conditions that PROJS5 contains exactly those tuples satisfying (DNUM = 5) and that 
WORKS_ON5 contains all tuples to be joined with PROJS5; hence, subquery T1 can be executed at site 2, 
and the projected column ESSN can be sent to site 1. Subquery T2 can then be executed at site 1, and 
the result can be sent back to site 2, where the final query result is calculated and displayed to the user. 
An alternative strategy would be to send the query Q itself to site 1, which includes all the database 
tuples, where it would be executed locally and from which the result would be sent back to site 2. The 
query optimizer would estimate the costs of both strategies and would choose the one with the lower 
cost estimate.  
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24.5 Overview of Concurrency Control and Recovery in Distributed 
Databases 

24.5.1 Distributed Concurrency Control Based on a Distinguished Copy of a Data Item 
24.5.2 Distributed Concurrency Control Based on Voting 
24.5.3 Distributed Recovery

For concurrency control and recovery purposes, numerous problems arise in a distributed DBMS 
environment that are not encountered in a centralized DBMS environment. These include the 
following:  

• Dealing with multiple copies of the data items: The concurrency control method is 
responsible for maintaining consistency among these copies. The recovery method is 
responsible for making a copy consistent with other copies if the site on which the copy is 
stored fails and recovers later.  

• Failure of individual sites: The DDBMS should continue to operate with its running sites, if 
possible, when one or more individual sites fail. When a site recovers, its local database must 
be brought up to date with the rest of the sites before it rejoins the system.  

• Failure of communication links: The system must be able to deal with failure of one or more 
of the communication links that connect the sites. An extreme case of this problem is that 
network partitioning may occur. This breaks up the sites into two or more partitions, where 
the sites within each partition can communicate only with one another and not with sites in 
other partitions.  

• Distributed commit: Problems can arise with committing a transaction that is accessing 
databases stored on multiple sites if some sites fail during the commit process. The two-phase 
commit protocol (see Chapter 21) is often used to deal with this problem.  

• Distributed deadlock: Deadlock may occur among several sites, so techniques for dealing with 
deadlocks must be extended to take this into account.  

Distributed concurrency control and recovery techniques must deal with these and other problems. In 
the following subsections, we review some of the techniques that have been suggested to deal with 
recovery and concurrency control in DDBMSs.  

 
 

24.5.1 Distributed Concurrency Control Based on a Distinguished Copy of a Data Item 

Primary Site Technique 
Primary Site with Backup Site 
Primary Copy Technique 
Choosing a New Coordinator Site in Case of Failure

To deal with replicated data items in a distributed database, a number of concurrency control methods 
have been proposed that extend the concurrency control techniques for centralized databases. We 
discuss these techniques in the context of extending centralized locking. Similar extensions apply to 
other concurrency control techniques. The idea is to designate a particular copy of each data item as a 
distinguished copy. The locks for this data item are associated with the distinguished copy, and all 
locking and unlocking requests are sent to the site that contains that copy.  

A number of different methods are based on this idea, but they differ in their method of choosing the 
distinguished copies. In the primary site technique, all distinguished copies are kept at the same site. 
A modification of this approach is the primary site with a backup site. Another approach is the 
primary copy method, where the distinguished copies of the various data items can be stored in 
different sites. A site that includes a distinguished copy of a data item basically acts as the coordinator 
site for concurrency control on that item. We discuss these techniques next.  
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Primary Site Technique 

In this method a single primary site is designated to be the coordinator site for all database items. 
Hence, all locks are kept at that site, and all requests for locking or unlocking are sent there. This 
method is thus an extension of the centralized locking approach. For example, if all transactions follow 
the two-phase locking protocol, serializability is guaranteed. The advantage of this approach is that it is 
a simple extension of the centralized approach and hence is not overly complex. However, it has 
certain inherent disadvantages. One is that all locking requests are sent to a single site, possibly 
overloading that site and causing a system bottleneck. A second disadvantage is that failure of the 
primary site paralyzes the system, since all locking information is kept at that site. This can limit 
system reliability and availability.  

Although all locks are accessed at the primary site, the items themselves can be accessed at any site at 
which they reside. For example, once a transaction obtains a read_lock on a data item from the 
primary site, it can access any copy of that data item. However, once a transaction obtains a 
write_lock and updates a data item, the DDBMS is responsible for updating all copies of the data 
item before releasing the lock.  

 
 

Primary Site with Backup Site 

This approach addresses the second disadvantage of the primary site method by designating a second 
site to be a backup site. All locking information is maintained at both the primary and the backup sites. 
In case of primary site failure, the backup site takes over as primary site, and a new backup site is 
chosen. This simplifies the process of recovery from failure of the primary site, since the backup site 
takes over and processing can resume after a new backup site is chosen and the lock status information 
is copied to that site. It slows down the process of acquiring locks, however, because all lock requests 
and granting of locks must be recorded at both the primary and the backup sites before a response is 
sent to the requesting transaction. The problem of the primary and backup sites becoming overloaded 
with requests and slowing down the system remains undiminished.  

 
 

Primary Copy Technique 

This method attempts to distribute the load of lock coordination among various sites by having the 
distinguished copies of different data items stored at different sites. Failure of one site affects any 
transactions that are accessing locks on items whose primary copies reside at that site, but other 
transactions are not affected. This method can also use backup sites to enhance reliability and 
availability.  

 
 

Choosing a New Coordinator Site in Case of Failure 

Whenever a coordinator site fails in any of the preceding techniques, the sites that are still running 
must choose a new coordinator. In the case of the primary site approach with no backup site, all 
executing transactions must be aborted and restarted in a tedious recovery process. Part of the recovery 
process involves choosing a new primary site and creating a lock manager process and a record of all 
lock information at that site. For methods that use backup sites, transaction processing is suspended 
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while the backup site is designated as the new primary site and a new backup site is chosen and is sent 
copies of all the locking information from the new primary site.  

If a backup site X is about to become the new primary site, X can choose the new backup site from 
among the system’s running sites. However, if no backup site existed, or if both the primary and the 
backup sites are down, a process called election can be used to choose the new coordinator site. In this 
process, any site Y that attempts to communicate with the coordinator site repeatedly and fails to do so 
can assume that the coordinator is down and can start the election process by sending a message to all 
running sites proposing that Y become the new coordinator. As soon as Y receives a majority of yes 
votes, Y can declare that it is the new coordinator. The election algorithm itself is quite complex, but 
this is the main idea behind the election method. The algorithm also resolves any attempt by two or 
more sites to become coordinator at the same time. The references in the Selected Bibliography at the 
end of this chapter discuss the process in detail.  

 
 

24.5.2 Distributed Concurrency Control Based on Voting 

The concurrency control methods for replicated items discussed earlier all use the idea of a 
distinguished copy that maintains the locks for that item. In the voting method, there is no 
distinguished copy; rather, a lock request is sent to all sites that include a copy of the data item. Each 
copy maintains its own lock and can grant or deny the request for it. If a transaction that requests a lock 
is granted that lock by a majority of the copies, it holds the lock and informs all copies that it has been 
granted the lock. If a transaction does not receive a majority of votes granting it a lock within a certain 
time-out period, it cancels its request and informs all sites of the cancellation.  

The voting method is considered a truly distributed concurrency control method, since the 
responsibility for a decision resides with all the sites involved. Simulation studies have shown that 
voting has higher message traffic among sites than do the distinguished copy methods. If the algorithm 
takes into account possible site failures during the voting process, it becomes extremely complex.  

 
 

24.5.3 Distributed Recovery 

The recovery process in distributed databases is quite involved. We give only a very brief idea of some 
of the issues here. In some cases it is quite difficult even to determine whether a site is down without 
exchanging numerous messages with other sites. For example, suppose that site X sends a message to 
site Y and expects a response from Y but does not receive it. There are several possible explanations:  

• The message was not delivered to Y because of communication failure.  
• Site Y is down and could not respond.  
• Site Y is running and sent a response, but the response was not delivered.  

Without additional information or the sending of additional messages, it is difficult to determine what 
actually happened.  

Another problem with distributed recovery is distributed commit. When a transaction is updating data 
at several sites, it cannot commit until it is sure that the effect of the transaction on every site cannot be 
lost. This means that every site must first have recorded the local effects of the transactions 
permanently in the local site log on disk. The two-phase commit protocol, discussed in Section 20.6, is 
often used to ensure the correctness of distributed commit.  
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24.6 An Overview of Client-Server Architecture and Its Relationship to 
Distributed Databases 

As we pointed out in the chapter introduction, full-scale DDBMSs have not been developed to support 
all the types of functionalities that we discussed so far. Instead, distributed database applications are 
being developed in the context of the client-server architecture, which we introduced in Section 17.1. 
The section further discusses client-server in the context of DDBMS.  

Exactly how to divide the DBMS functionality between client and server has not yet been established. 
Different approaches have been proposed. One possibility is to include the functionality of a 
centralized DBMS at the server level. A number of relational DBMS products have taken this 
approach, where an SQL server is provided to the clients. Each client must then formulate the 
appropriate SQL queries and provide the user interface and programming language interface functions. 
Since SQL is a relational standard, various SQL servers, possibly provided by different vendors, can 
accept SQL commands. The client may also refer to a data dictionary that includes information on the 
distribution of data among the various SQL servers, as well as modules for decomposing a global query 
into a number of local queries that can be executed at the various sites. Interaction between client and 
server might proceed as follows during the processing of an SQL query:  

1. The client parses a user query and decomposes it into a number of independent site queries. 
Each site query is sent to the appropriate server site.  

2. Each server processes the local query and sends the resulting relation to the client site.  
3. The client site combines the results of the subqueries to produce the result of the originally 

submitted query.  

In this approach, the SQL server has also been called a transaction server (or a database processor 
(DP) or a back-end machine), whereas the client has been called an application processor (AP) (or a 
front-end machine). The interaction between client and server can be specified by the user at the client 
level or via a specialized DBMS client module that is part of the DBMS package. For example, the user 
may know what data is stored in each server, break down a query request into site subqueries manually, 
and submit individual subqueries to the various sites. The resulting tables may be combined explicitly 
by a further user query at the client level. The alternative is to have the client module undertake these 
actions automatically.  

In a typical DDBMS, it is customary to divide the software modules into three levels:  

1. The server software is responsible for local data management at a site, much like centralized 
DBMS software.  

2. The client software is responsible for most of the distribution functions; it accesses data 
distribution information from the DDBMS catalog and processes all requests that require 
access to more than one site. It also handles all user interfaces.  

3. The communications software (sometimes in conjunction with a distributed operating 
system) provides the communication primitives that are used by the client to transmit 
commands and data among the various sites as needed. This is not strictly part of the 
DDBMS, but it provides essential communication primitives and services.  

The client is responsible for generating a distributed execution plan for a multisite query or transaction 
and for supervising distributed execution by sending commands to servers. These commands include 
local queries and transactions to be executed, as well as commands to transmit data to other clients or 
servers. Hence, client software should be included at any site where multisite queries are submitted. 
Another function controlled by the client (or coordinator) is that of ensuring consistency of replicated 
copies of a data item by employing distributed (or global) concurrency control techniques. The client 
must also ensure the atomicity of global transactions by performing global recovery when certain sites 
fail. We discussed distributed recovery and concurrency control in Section 24.5. One possible function 
of the client is to hide the details of data distribution from the user; that is, it enables the user to write 
global queries and transactions as though the database were centralized, without having to specify the 
sites at which the data referenced in the query or transaction resides. This property is called 
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distribution transparency. Some DDBMSs do not provide distribution transparency, instead requiring 
that users be aware of the details of data distribution.  

 
 

24.7 Distributed Databases in Oracle 

 
Heterogeneous Databases in Oracle

In the client-server architecture, the Oracle database system is divided into two parts: (1) a front-end as 
the client portion, and (2) a back-end as the server portion. The client portion is the front-end database 
application that interacts with the user. The client has no data access responsibility and merely handles 
the requesting, processing, and presentation of data managed by the server. The server portion runs 
Oracle and handles the functions related to concurrent shared access. It accepts SQL and PL/SQL 
statements originating from client applications, processes them, and sends the results back to the client. 
Oracle client-server applications provide location transparency by making location of data transparent 
to users; several features like views, synonyms, and procedures contribute to this. Global naming is 
achieved by using <tablename.@,databasename> to refer to tables uniquely.  

Oracle uses a two-phase commit protocol to deal with concurrent distributed transactions. The 
COMMIT statement triggers the two-phase commit mechanism. The RECO (recoverer) background 
process automatically resolves the outcome of those distributed transactions in which the commit was 
interrupted. The RECO of each local Oracle Server automatically commits or rolls back any "in-doubt" 
distributed transactions consistently on all involved nodes. For long-term failures, Oracle allows each 
local DBA to manually commit or roll back any in-doubt transactions and free up resources. Global 
consistency can be maintained by restoring the database at each site to a predetermined fixed point in 
the past.  

Oracle’s distributed database architecture is shown in Figure 24.08. A node in a distributed database 
system can act as a client, as a server, or both, depending on the situation. The figure shows two sites 
where databases called HQ (headquarters) and Sales are kept. For example, in the application shown 
running at the headquarters, for an SQL statement issued against local data (for example, DELETE 
FROM DEPT . . . ), the HQ computer acts as a server, whereas for a statement against remote data 
(for example, INSERT INTO EMP@SALES), the HQ computer acts as a client.  

 

 

 
 

All Oracle databases in a distributed database system (DDBS) use Oracle’s networking software Net8 
for interdatabase communication. Net8 allows databases to communicate across networks to support 
remote and distributed transactions. It packages SQL statements into one of the many communication 
protocols to facilitate client to server communication and then packages the results back similarly to the 
client. Each database has a unique global name provided by a hierarchical arrangement of network 
domain names that is prefixed to the database name to make it unique.  

Oracle supports database links that define a one-way communication path from one Oracle database to 
another. For example,  
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CREATE DATABASE LINK sales.us.americas;  

 
 

establishes a connection to the sales database in Figure 24.08 under the network domain us that comes 
under domain americas.  

Data in an Oracle DDBS can be replicated using snapshots or replicated master tables. Replication is 
provided at the following levels:  

• Basic replication: Replicas of tables are managed for read-only access. For updates, data must 
be accessed at a single primary site.  

• Advanced (symmetric) replication: This extends beyond basic replication by allowing 
applications to update table replicas throughout a replicated DDBS. Data can be read and 
updated at any site. This requires additional software called Oracle’s advanced replication 
option. A snapshot generates a copy of a part of the table by means of a query called the 
snapshot defining query. A simple snapshot definition looks like this: 

CREATE SNAPSHOT sales.orders AS  

SELECT * FROM sales.orders@hq.us.americas;  

 
 

Oracle groups snapshots into refresh groups. By specifying a refresh interval, the snapshot is 
automatically refreshed periodically at that interval by up to ten Snapshot Refresh Processes (SNPs). 
If the defining query of a snapshot contains a distinct or aggregate function, a GROUP BY or 
CONNECT BY clause, or join or set operations, the snapshot is termed a complex snapshot and 
requires additional processing. Oracle (up to version 7.3) also supports ROWID snapshots that are 
based on physical row identifiers of rows in the master table.  

 
 

Heterogeneous Databases in Oracle 

In a heterogeneous DDBS, at least one database is a non-Oracle system. Oracle Open Gateways 
provides access to a non-Oracle database from an Oracle server, which uses a database link to access 
data or to execute remote procedures in the non-Oracle system. The Open Gateways feature includes 
the following:  

• Distributed transactions: Under the two-phase commit mechanism, transactions may span 
Oracle and non-Oracle systems.  

• Transparent SQL access: SQL statements issued by an application are transparently 
transformed into SQL statements understood by the non-Oracle system.  

• Pass-through SQL and stored procedures: An application can directly access a non-Oracle 
system using that system’s version of SQL. Stored procedures in a non-Oracle SQL based 
system are treated as if they were PL/SQL remote procedures.  

• Global query optimization: Cardinality information, indexes, etc., at the non-Oracle system 
are accounted for by the Oracle Server query optimizer to perform global query optimization.  

• Procedural access: Procedural systems like messaging or queuing systems are accessed by the 
Oracle server using PL/SQL remote procedure calls.  
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In addition to the above, data dictionary references are translated to make the non-Oracle data 
dictionary appear as a part of the Oracle Server’s dictionary. Character set translations are done 
between national language character sets to connect multilingual databases.  

 
 

24.8 Future Prospects of Client-Server Technology 

Client-server computing is rapidly being shaped by advances in technology. Based on the technology 
available a few years ago, it is very difficult to say how many would have predicted the current state of 
client-server computing. It is equally difficult to predict where the technology will be in the next few 
years. Several factors play major roles in deciding the functionality of client or server or both: evolving 
hardware and software, network protocols, LAN/WAN technology, and communication pipelines. The 
declining cost of several of these factors make it continuously possible to have more computing power 
per dollar invested. These factors act as incentives for companies to constantly upgrade their computing 
environment.  

Currently, the most common client-server architecture in industry is called as the two-tier 
architecture. The way we described DDBMSs conforms with this architecture. The server (or servers) 
store data, and clients access this data. The server plays a dominant role in this architecture. The 
advantage of this system is its simplicity and seamless compatibility with existing legacy systems. The 
emergence of powerful computing machines changed the role of both clients and server, thus 
gravitating slowly toward a three-tier system.  

The emerging client-server architecture is called the three-tier architecture. In this model, the layers 
are represented by hosts, servers, and clients. The server plays an intermediary role by storing business 
rules (procedures or constraints) that are used to access data from the host. Clients contain GUI 
interfaces and some additional application-specific business rules. Thus the server acts as a conduit of 
passing (partially) processed data from host to clients where it may further be processed/filtered to be 
presented to users in GUI format. Thus user interface, rules, and data access act as three tiers. Clients 
are usually connected to the server via LAN, and the server is connected to the host via WAN. Remote 
clients may be connected to the server via WAN also. This system is well suited for big corporations 
where a centralized database can be stored on a corporate host and the costs of building LANs and 
WANs can be managed and optimized using the latest technologies for each within different parts of 
the organization.  

Evolution of operating systems is playing an important role in defining the role of machines that act as 
clients. For example, a few years ago, Windows 3.x introduced a new way of computing to desktop 
computers, which has been followed by Windows 95 and Windows 98. Windows NT, though designed 
for servers, is increasingly being used on high-end clients in a networked business environment. 
Windows NT includes features for network administration and fault-tolerance, thus enhancing the 
stability of the system. This, combined with advances in computing power of hardware, make the 
desktop PC a formidable client today.  

GUIs have become the de facto interface standard for clients. Now, smarter interfaces are the norm of 
the industry. Taking advantage of the technology, tools are being developed to make users do their jobs 
better and faster. An example is the Web-portal tools which allow managers to define the views of 
information they want to see as a Web-portal from which they can launch into detailed operations 
against a DDBS. In addition, the decreasing cost of computer memory and disk storage places 
increased computing and faster processing power in the hands of the users, thus changing the role of 
the clients. This will enable users to formulate data requests, locally store and analyze query results, 
display, and report information.  

Multimedia is also playing a major role in applications development. The use of video, graphics, and 
voice as data demands larger amounts of storage and higher bandwidth for transmission. Advances in 
communications technology and deployment of fiber optic networks provide solution for the bandwidth 
bottleneck at servers. Metropolitan Area Networks (MANs) and Asynchronous Transfer Mode (ATM) 
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are a couple of examples. Also, increased storage and faster processing enable a client to cache critical 
multimedia data locally, thereby reducing network traffic by reducing frequent lookups.  

Servers too are constantly becoming more powerful with emerging technology. Now, a server, which 
could be a desktop machine, is capable of doing and even exceeding what a midrange computer was 
able to do a few years ago. Features such as parallel processing, multitasking, and multithreading make 
servers fast and efficient. Also, the decreasing cost of processors and disk storage makes it easier for 
servers to have dual processors and redundant disks making them more reliable and robust.  

Advances in encryption and decryption technology make it safer to transfer encryption-sensitive data 
from server to client, where it will be decrypted. The latter can be done by the hardware or by advanced 
software. This technology gives higher levels of data security, but the network security issues remain a 
major concern. Various technologies for data compression are also helping in transferring large 
amounts of data from servers to clients over wired and wireless networks.  

Future applications of client-server systems with high bandwidth networks will include video 
conferencing, telemedicine, and distance learning. We review several emerging technologies and 
applications of databases in Chapter 27 where client-server based DDBSs will be an integral part.  

 
 

24.9 Summary 

In this chapter we provided an introduction to distributed databases. This is a very broad topic, and we 
discussed only some of the basic techniques used with distributed databases. We first discussed the 
reasons for distribution and the potential advantages of distributed databases over centralized systems. 
We also defined the concept of distribution transparency and the related concepts of fragmentation 
transparency and replication transparency. We discussed the design issues related to data 
fragmentation, replication, and distribution, and we distinguished between horizontal and vertical 
fragments of relations. We discussed the use of data replication to improve system reliability and 
availability. We categorized DDBMSs by using criteria such as degree of homogeneity of software 
modules and degree of local autonomy. We discussed the issues of federated database management in 
some detail focusing on the needs of supporting various types of autonomies and dealing with semantic 
heterogeneity.  

We illustrated some of the techniques used in distributed query processing, and discussed the cost of 
communication among sites, which is considered a major factor in distributed query optimization. We 
compared different techniques for executing joins and presented the semijoin technique for joining 
relations that reside on different sites. We briefly discussed the concurrency control and recovery 
techniques used in DDBMSs. We reviewed some of the additional problems that must be dealt with in 
a distributed environment that do not appear in a centralized environment.  

We then discussed the client-server architecture concepts and related them to distributed databases, and 
we described some of the facilities in Oracle to support distributed databases. We concluded the 
chapter with some general remarks about the future of client-server technology.  

 
 

Review Questions 

  24.1. What are the main reasons for and potential advantages of distributed databases?  
  24.2. What additional functions does a DDBMS have over a centralized DBMS?  
  24.3. What are the main software modules of a DDBMS? Discuss the main functions of each of these 

modules in the context of the client–server architecture.  
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  24.4. What is a fragment of a relation? What are the main types of fragments? Why is fragmentation a 
useful concept in distributed database design?  

  24.5. Why is data replication useful in DDBMSs? What typical units of data are replicated?  
  24.6. What is meant by data allocation in distributed database design? What typical units of data are 

distributed over sites?  
  24.7. How is a horizontal partitioning of a relation specified? How can a relation be put back together 

from a complete horizontal partitioning?  
  24.8. How is a vertical partitioning of a relation specified? How can a relation be put back together 

from a complete vertical partitioning?  
  24.9. Discuss what is meant by the following terms: degree of homogeneity of a DDBMS, degree of 

local autonomy of a DDBMS, federated DBMS, distribution transparency, fragmentation 
transparency, replication transparency, multidatabase system.  

24.10. Discuss the naming problem in distributed databases.  
24.11. Discuss the different techniques for executing an equijoin of two files located at different sites. 

What main factors affect the cost of data transfer?  
24.12. Discuss the semijoin method for executing an equijoin of two files located at different sites. 

Under what conditions is an equijoin strategy efficient?  
24.13. Discuss the factors that affect query decomposition. How are guard conditions and attribute lists 

of fragments used during the query decomposition process?  
24.14. How is the decomposition of an update request different from the decomposition of a query? 

How are guard conditions and attribute lists of fragments used during the decomposition of an 
update request?  

24.15. Discuss the factors that do not appear in centralized systems that affect concurrency control and 
recovery in distributed systems.  

24.16. Compare the primary site method with the primary copy method for distributed concurrency 
control. How does the use of backup sites affect each?  

24.17. When are voting and elections used in distributed databases?  
24.18. What are the software components in a client-server DDBMS? Compare the two-tier and three-

tier client-server architectures.  

 
 

Exercises 

24.19. Consider the data distribution of the COMPANY database, where the fragments at sites 2 and 3 
are as shown in Figure 24.03 and the fragments at site 1 are as shown in Figure 07.06. For each 
of the following queries, show at least two strategies of decomposing and executing the query. 
Under what conditions would each of your strategies work well?  

a. For each employee in department 5, retrieve the employee name and the names of the 
employee’s dependents.  

b. Print the names of all employees who work in department 5 but who work on some 
project not controlled by department 5.  

24.20. Consider the following relations:  

 
 

BOOKS (Book#, Primary_author, Topic, Total_stock, $price)  

BOOKSTORE (Store#, City, State, Zip, Inventory_value)  
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STOCK (Store#, Book#, Qty)  

 
 

Total_stock is the total number of books in stock, and inventory_value is the total 
inventory value for the store in dollars.  

a. Give an example of two simple predicates that would be meaningful for the 
BOOKSTORE relation for horizontal partitioning.  

b. How would a derived horizontal partitioning of STOCK be defined based on the 
partitioning of BOOKSTORE?  

c. Show predicates by which BOOKS may be horizontally partitioned by topic.  
d. Show how the STOCK may be further partitioned from the partitions in (b) by adding the 

predicates in (c).  

24.21. Consider a distributed database for a bookstore chain called National Books with 3 sites called 
EAST, MIDDLE, and WEST. The relation schemas are given in question 24.20. Consider that 
BOOKS are fragmented by $price amounts into:  

 
 
 

Similarly, BOOKSTORES are divided by Zipcodes into:  

 
 
 

Assume that STOCK is a derived fragment based on BOOKSTORE only.  

a. Consider the query:  

SELECT Book#, Total_stock  

FROM Books  

WHERE $price > 15 and $price < 55;  

 
 

Assume that fragments of BOOKSTORE are non-replicated and assigned based on region. 
Assume further that BOOKS are allocated as:  

 
 
 

Assuming the query was submitted in EAST, what remote subqueries does it generate? (write in 
SQL).  

b. If the bookprice of Book#= 1234 is updated from $45 to $55 at site MIDDLE, what 
updates does that generate? Write in English and then in SQL.  
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c. Given an example query issued at WEST that will generate a subquery for MIDDLE.  
d. Write a query involving selection and projection on the above relations and show two 

possible query trees that denote different ways of execution.  

24.22. Consider that you have been asked to propose a database architecture in a large organization, 
General Motors, as an example, to consolidate all data including legacy databases (from 
Hierarchical and Network model,s which are explained in Appendix C and Appendix D; no 
specific knowledge of these models is needed) as well as relational databases, which are 
geographically distributed so that global applications can be supported. Assume that alternative 
one is to keep all databases as they are, while alternative two is to first convert them to relational 
and then support the applications over a distributed integrated database.  

a. Draw two schematic diagrams for the above alternatives showing the linkages among 
appropriate schemas. For alternative one, choose the approach of providing export 
schemas for each database and constructing unified schemas for each application.  

b. List the steps one has to go through under each alternative from the present situation till 
global applications are viable.  

c. Compare these from the issues of: (i) design time considerations, and (ii) runtime 
considerations.  
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Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Note 1 
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The reader should review the introduction to client-server architecture in Section 17.1.  

 
 

Note 2 

This definition and some of the discussion in this section is based on Ozsu and Valduriez (1999).  

 
 

Note 3 

If both primary and secondary memories are shared, the architecture is also known as shared 
everything architecture.  

 
 

Note 4 

Of course, in an actual situation, there will be many more tuples in the relations than those shown in 
Figure 07.06. 

 
 

Note 5 

For a scalable approach to synchronize partially replicated databases, see Mahajan et al. (1998).  

 
 

Note 6 

For a detailed discussion of the autonomies and the five-level architecture of FDBMSs, see Sheth and 
Larson (1990).  
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Selected Bibliography 
Footnotes

In this chapter, we discuss deductive databases, an area that is at the intersection of databases, logic, 
and artificial intelligence or knowledge bases. A deductive database system is a database system that 
includes capabilities to define (deductive) rules, which can deduce or infer additional information 
from the facts that are stored in a database. (These are different from the active rules discussed in 
Chapter 23.) Because part of the theoretical foundation for some deductive database systems is 
mathematical logic, such rules are often referred to as logic databases. Other types of systems, referred 
to as expert database systems or knowledge-based systems, also incorporate reasoning and 
inferencing capabilities; such systems use techniques that were developed in the field of artificial 
intelligence, including semantic networks, frames, production systems, or rules for capturing domain-
specific knowledge. The main differences between these systems and the ones we discuss here are 
twofold:  

1. Knowledge-based expert systems have traditionally assumed that the data needed resides in 
main memory; hence, secondary storage management is not an issue. Deductive database 
systems attempt to change this restriction so that either a DBMS is enhanced to handle an 
expert system interface or an expert system is enhanced to handle secondary storage resident 
data.  

2. The knowledge in an expert or knowledge-based system is extracted from application experts 
and refers to an application domain rather than to knowledge inherent in the data.  

Whereas a close relationship exists between these and the deductive databases we are about to discuss, 
a detailed discussion goes beyond our scope. In this chapter, we discuss only logic-based systems and 
give an overview of the formal foundations of deductive database systems.  

For a brief introduction to deductive databases, the reader can cover only Section 25.1 and Section 
25.2. Those interested in applications of deductive databases may then go to Section 25.8.  

 
 

25.1 Introduction to Deductive Databases 

In a deductive database system, we typically specify rules through a declarative language—a 
language in which we specify what to achieve rather than how to achieve it. An inference engine (or 
deduction mechanism) within the system can deduce new facts from the database by interpreting 
these rules. The model used for deductive databases is closely related to the relational data model, and 
particularly to the domain relational calculus formalism (see Section 9.4). It is also related to the field 
of logic programming and the Prolog language. The deductive database work based on logic has used 
Prolog as a starting point. A variation of Prolog called Datalog is used to define rules declaratively in 
conjunction with an existing set of relations, which are themselves treated as literals in the language. 
Although the language structure of Datalog resembles that of Prolog, its operational semantics—that is, 
how a Datalog program is to be executed—is still a topic of active research.  

A deductive database uses two main types of specifications: facts and rules. Facts are specified in a 
manner similar to the way relations are specified, except that it is not necessary to include the attribute 
names. Recall that a tuple in a relation describes some real-world fact whose meaning is partly 
determined by the attribute names. In a deductive database, the meaning of an attribute value in a tuple 
is determined solely by its position within the tuple. Rules are somewhat similar to relational views. 
They specify virtual relations that are not actually stored but that can be formed from the facts by 
applying inference mechanisms based on the rule specifications. The main difference between rules 
and views is that rules may involve recursion and hence may yield virtual relations that cannot be 
defined in terms of standard relational views.  

The evaluation of Prolog programs is based on a technique called backward chaining, which involves a 
top-down evaluation of goals. In the deductive databases that use Datalog, attention has been devoted 
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to handling large volumes of data stored in a relational database. Hence, evaluation techniques have 
been devised that resemble those for a bottom-up evaluation. Prolog suffers from the limitation that the 
order of specification of facts and rules is significant in evaluation; moreover, the order of literals 
(defined later in Section 25.2.2) within a rule is significant. The execution techniques for Datalog 
programs attempt to circumvent these problems.  

We discussed object-oriented databases (OODBs) in Chapter 11. It is instructive to put deductive 
databases (DDBs) in a proper context with respect to OODBs. The emphasis in OODBs has been on 
providing a natural modeling mechanism for real-world objects by encapsulating their structure with 
behavior. The emphasis in DDBs, in contrast, has been on deriving new knowledge from existing data 
by supplying additional real-world relationships in the form of rules. A marriage of these two different 
enhancements to traditional databases has started appearing, in the form of adding deductive 
capabilities to OODBs and adding programming language interfaces like C++ to DDBs. This new 
breed of databases systems is referred to as deductive OODBs, or DOODs for short (Note 1). 

The rest of this chapter is organized as follows. In Section 25.2, we introduce the Prolog/Datalog 
notation; Datalog is a deductive query language similar to Prolog but more suitable for database 
applications. In Section 25.3 we discuss theoretical interpretations of the meaning of rules. The two 
standard approaches to inference mechanisms in logic programming languages, called forward 
chaining and backward chaining, are discussed in Section 25.4. Section 25.5 presents concepts related 
to Datalog programs, their evaluation, and their execution. Section 25.6 discusses three examples of 
deductive database systems: a commercial system called LDL, and two university research systems 
called CORAL and NAIL! Section 25.7 is devoted to a discussion of object-oriented database systems 
(DOODs), and introduces VALIDITY, the latest commercial system in this family. Applications of 
commercial deductive databases—LDL and VALIDITY—are covered in Section 25.8.  

 
 

25.2 Prolog/Datalog Notation 

25.2.1 An Example 
25.2.2 Datalog Notation 
25.2.3 Clausal Form and Horn Clauses

The notation used in Prolog/Datalog is based on providing predicates with unique names. A predicate 
has an implicit meaning, which is suggested by the predicate name, and a fixed number of arguments. 
If the arguments are all constant values, the predicate simply states that a certain fact is true. If, on the 
other hand, the predicate has variables as arguments, it is either considered as a query or as part of a 
rule or constraint. Throughout this chapter, we adopt the Prolog convention that all constant values in 
a predicate are either numeric or character strings; they are represented as identifiers (or names) 
starting with lowercase letters only, whereas variable names always start with an uppercase letter.  

 
 

25.2.1 An Example 

Consider the example shown in Figure 25.01, which is based on the relational database of Figure 07.06, 
but in a much simplified form. There are three predicate names: supervise, superior, and subordinate. 
The supervise predicate is defined via a set of facts, each of which has two arguments: a supervisor 
name, followed by the name of a direct supervisee (subordinate) of that supervisor. These facts 
correspond to the actual data that is stored in the database, and they can be considered as constituting a 
set of tuples in a relation SUPERVISE with two attributes whose schema is  
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SUPERVISE(Supervisor,Supervisee)  

 

 

 
 

Thus, supervise(X, Y) states the fact that "X supervises Y." Notice the omission of the attribute 
names in the Prolog notation. Attribute names are only represented by virtue of the position of each 
argument in a predicate: the first argument represents the supervisor, and the second argument 
represents a direct subordinate.  

The other two predicate names are defined by rules. The main contribution of deductive databases is 
the ability to specify recursive rules, and to provide a framework for inferring new information based 
on the specified rules. A rule is of the form head :- body, where :- is read as "if and only if". A rule 
usually has a single predicate to the left of the :- symbol—called the head or left-hand side (LHS) or 
conclusion of the rule—and one or more predicates to the right of the :- symbol—called the body or 
right-hand side (RHS) or premise(s) of the rule. A predicate with constants as arguments is said to be 
ground; we also refer to it as an instantiated predicate. The arguments of the predicates that appear 
in a rule typically include a number of variable symbols, although predicates can also contain constants 
as arguments. A rule specifies that, if a particular assignment or binding of constant values to the 
variables in the body (RHS predicates) makes all the RHS predicates true, it also makes the head (LHS 
predicate) true by using the same assignment of constant values to variables. Hence, a rule provides us 
with a way of generating new facts that are instantiations of the head of the rule. These new facts are 
based on facts that already exist, corresponding to the instantiations (or bindings) of predicates in the 
body of the rule. Notice that by listing multiple predicates in the body of a rule we implicitly apply the 
logical and operator to these predicates. Hence, the commas between the RHS predicates may be read 
as meaning "and."  

Consider the definition of the predicate superior in Figure 25.01, whose first argument is an 
employee name and whose second argument is an employee who is either a direct or an indirect 
subordinate of the first employee. By indirect subordinate, we mean the subordinate of some 
subordinate down to any number of levels. Thus superior(X, Y) stands for the fact that "X is a 
superior of Y" through direct or indirect supervision. We can write two rules that together specify the 
meaning of the new predicate. The first rule under Rules in the figure states that, for every value of X 
and Y, if supervise(X, Y)—the rule body—is true, then superior(X, Y)—the rule head—is 
also true, since Y would be a direct subordinate of X (at one level down). This rule can be used to 
generate all direct superior/subordinate relationships from the facts that define the supervise predicate. 
The second recursive rule states that, if supervise(X,  Z) and superior(Z,  Y) are both true, 
then superior(X, Y) is also true. This is an example of a recursive rule, where one of the rule body 
predicates in the RHS is the same as the rule head predicate in the LHS. In general, the rule body 
defines a number of premises such that, if they are all true, we can deduce that the conclusion in the 
rule head is also true. Notice that, if we have two (or more) rules with the same head (LHS predicate), 
it is equivalent to saying that the predicate is true (that is, that it can be instantiated) if either one of the 
bodies is true; hence, it is equivalent to a logical or operation. For example, if we have two rules X :- 
Y and X :- Z, they are equivalent to a rule X :- Y or Z. The latter form is not used in deductive 
systems, however, because it is not in the standard form of rule, called a Horn clause, as we discuss in 
Section 25.2.3.  

A Prolog system contains a number of built-in predicates that the system can interpret directly. These 
typically include the equality comparison operator =(X,Y), which returns true if X and Y are identical 
and can also be written as X=Y by using the standard infix notation (Note 2). Other comparison 
operators for numbers, such as <, <=, >, and >=, can be treated as binary predicates. Arithmetic 
functions such as +, -, *, and / can be used as arguments in predicates in Prolog. In contrast, Datalog (in 
its basic form) does not allow functions such as arithmetic operations as arguments; indeed, this is one 

1 Page 686 of 893



www.manaraa.com

of the main differences between Prolog and Datalog. However, later extensions to Datalog have been 
proposed to include functions.  

A query typically involves a predicate symbol with some variable arguments, and its meaning (or 
"answer") is to deduce all the different constant combinations that, when bound (assigned) to the 
variables, can make the predicate true. For example, the first query in Figure 25.01 requests the names 
of all subordinates of "james" at any level. A different type of query, which has only constant symbols 
as arguments, returns either a true or a false result, depending on whether the arguments provided can 
be deduced from the facts and rules. For example, the second query in Figure 25.01 returns true, since 
superior(james,  joyce) can be deduced.  

 
 

25.2.2 Datalog Notation 

In Datalog, as in other logic-based languages, a program is built from basic objects called atomic 
formulas. It is customary to define the syntax of logic-based languages by describing the syntax of 
atomic formulas and identifying how they can be combined to form a program. In Datalog, atomic 
formulas are literals of the form p(a1, a2, ..., an), where p is the predicate name and n is the number 
of arguments for predicate p. Different predicate symbols can have different numbers of arguments, 
and the number of arguments n of predicate p is sometimes called the arity or degree of p. The 
arguments can be either constant values or variable names. As mentioned earlier, we use the 
convention that constant values either are numeric or start with a lowercase character, whereas variable 
names always start with an uppercase character.  

A number of built-in predicates are included in Datalog, which can also be used to construct atomic 
formulas. The built-in predicates are of two main types: the binary comparison predicates <(less), 
<=(less_or_equal), >(greater), and >=  (greater_or_equal) over ordered domains; 
and the comparison predicates = (equal) and /= (not_equal) over ordered or unordered 
domains. These can be used as binary predicates with the same functional syntax as other predicates—
for example by writing less(X,  3)—or they can be specified by using the customary infix notation 
X<3. Notice that, because the domains of these predicates are potentially infinite, they should be used 
with care in rule definitions. For example, the predicate greater(X,  3), if used alone, generates an 
infinite set of values for X that satisfy the predicate (all integer numbers greater than 3). We discuss 
this problem a bit later.  

A literal is either an atomic formula as defined earlier—called a positive literal—or an atomic formula 
preceded by not. The latter is a negated atomic formula, called a negative literal. Datalog programs 
can be considered to be a subset of the predicate calculus formulas, which are somewhat similar to the 
formulas of the domain relational calculus (see Section 9.4). In Datalog, however, these formulas are 
first converted into what is known as clausal form before they are expressed in Datalog; and only 
formulas given in a restricted clausal form, called Horn clauses (Note 3), can be used in Datalog.  

 
 

25.2.3 Clausal Form and Horn Clauses 

Recall from Section 9.3.2 that a formula in the relational calculus is a condition that includes predicates 
called atoms (based on relation names). In addition, a formula can have quantifiers—namely, the 
universal quantifier (for all) and the existential quantifier (there exists). In clausal form, a formula must 
be transformed into another formula with the following characteristics:  

• All variables in the formula are universally quantified. Hence, it is not necessary to include the 
universal quantifiers (for all) explicitly; the quantifiers are removed, and all variables in the 
formula are implicitly quantified by the universal quantifier.  
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• In clausal form, the formula is made up of a number of clauses, where each clause is 
composed of a number of literals connected by OR logical connectives only. Hence, each 
clause is a disjunction of literals.  

• The clauses themselves are connected by AND logical connectives only, to form a formula. 
Hence, the clausal form of a formula is a conjunction of clauses.  

It can be shown that any formula can be converted into clausal form. For our purposes, we are mainly 
interested in the form of the individual clauses, each of which is a disjunction of literals. Recall that 
literals can be positive literals or negative literals. Consider a clause of the form:  

 

 

 
 

This clause has n negative literals and m positive literals. Such a clause can be transformed into the 
following equivalent logical formula:  

 

 

 
 

where => is the implies symbol. The formulas (1) and (2) are equivalent, meaning that their truth 
values are always the same. This is the case because, if all the Pi literals (i = 1, 2, ..., n) are true, the 
formula (2) is true only if at least one of the Qi’s is true, which is the meaning of the => (implies) 
symbol. Similarly, for formula (1), if all the Pi literals (i = 1, 2, ..., n) are true, their negations are all 
false; so in this case formula (1) is true only if at least one of the Qi’s is true. In Datalog, rules are 
expressed as a restricted form of clauses called Horn clauses, in which a clause can contain at most 
one positive literal. Hence, a Horn clause is either of the form  

 

 

 
 

or of the form  

 

 

 
 

The Horn clause in (3) can be transformed into the clause  
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which is written in Datalog as the following rule  

 

 

 
 

The Horn clause in (4) can be transformed into  

 

 

 
 

which is written in Datalog as follows:  

 

 

 
 

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based on formula (5), is that if the 
predicates P1 and P2 and ... and Pn are all true for a particular binding to their variable arguments, then Q 
is also true and can hence be inferred. The Datalog expression (8) can be considered as an integrity 
constraint, where all the predicates must be true to satisfy the query.  

In general, a query in Datalog consists of two components:  

• A Datalog program, which is a finite set of rules.  
• A literal P(X1, X2, ..., Xn), where each Xi is a variable or a constant.  

A Prolog or Datalog system has an internal inference engine that can be used to process and compute 
the results of such queries. Prolog inference engines typically return one result to the query (that is, one 
set of values for the variables in the query) at a time and must be prompted to return additional results. 
On the contrary, Datalog returns results set-at-a-time.  

 
 

25.3 Interpretations of Rules 

There are two main alternatives for interpreting the theoretical meaning of rules: proof-theoretic and 
model-theoretic. In practical systems, the inference mechanism within a system defines the exact 
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interpretation, which may not coincide with either of the two theoretical interpretations. The inference 
mechanism is a computational procedure and hence provides a computational interpretation of the 
meaning of rules. In this section, we first discuss the two theoretical interpretations. Inference 
mechanisms are then discussed briefly as a way of defining the meaning of rules. We discuss specific 
inference mechanisms in more detail in Section 25.4.  

In the proof-theoretic interpretation of rules, we consider the facts and rules to be true statements, or 
axioms. Ground axioms contain no variables. The facts are ground axioms that are given to be true. 
Rules are called deductive axioms, since they can be used to deduce new facts. The deductive axioms 
can be used to construct proofs that derive new facts from existing facts. For example, Figure 25.02 
shows how to prove the fact superior(james,  ahmad) from the rules and facts given in Figure 
25.01. The proof-theoretic interpretation gives us a procedural or computational approach for 
computing an answer to the Datalog query. The process of proving whether a certain fact (theorem) 
holds is known as theorem proving.  

 

 

 
 

The second type of interpretation is called the model-theoretic interpretation. Here, given a finite or an 
infinite domain of constant values (Note 4), we assign to a predicate every possible combination of 
values as arguments. We must then determine whether the predicate is true or false. In general, it is 
sufficient to specify the combinations of arguments that make the predicate true, and to state that all 
other combinations make the predicate false. If this is done for every predicate, it is called an 
interpretation of the set of predicates. For example, consider the interpretation shown in Figure 25.03 
for the predicates supervise and superior. This interpretation assigns a truth value (true or false) 
to every possible combination of argument values (from a finite domain) for the two predicates.  

An interpretation is called a model for a specific set of rules if those rules are always true under that 
interpretation; that is, for any values assigned to the variables in the rules, the head of the rules is true 
when we substitute the truth values assigned to the predicates in the body of the rule by that 
interpretation. Hence, whenever a particular substitution (binding) to the variables in the rules is 
applied, if all the predicates in the body of a rule are true under the interpretation, the predicate in the 
head of the rule must also be true. The interpretation shown in Figure 25.03 is a model for the two rules 
shown, since it can never cause the rules to be violated. Notice that a rule is violated if a particular 
binding of constants to the variables makes all the predicates in the rule body true but makes the 
predicate in the rule head false. For example, if supervise(a, b) and superior(b, c) are both 
true under some interpretation, but superior(a, c) is not true, the interpretation cannot be a model 
for the recursive rule:  

 
 

superior(X,Y) :- supervise(X,Z), superior(Z,Y)  

 

 

 
 

In the model-theoretic approach, the meaning of the rules is established by providing a model for these 
rules. A model is called a minimal model for a set of rules if we cannot change any fact from true to 
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false and still get a model for these rules. For example, consider the interpretation in Figure 25.03, and 
assume that the supervise predicate is defined by a set of known facts, whereas the superior predicate is 
defined as an interpretation (model) for the rules. Suppose that we add the predicate 
superior(james,  bob) to the true predicates. This remains a model for the rules shown, but it is 
not a minimal model, since changing the truth value of superior(james,  bob) from true to false 
still provides us with a model for the rules. The model shown in Figure 25.03 is the minimal model for 
the set of facts that are defined by the supervise predicate.  

In general, the minimal model that corresponds to a given set of facts in the model-theoretic 
interpretation should be the same as the facts generated by the proof-theoretic interpretation for the 
same original set of ground and deductive axioms. However, this is generally true only for rules with a 
simple structure. Once we allow negation in the specification of rules, the correspondence between 
interpretations does not hold. In fact, with negation, numerous minimal models are possible for a given 
set of facts.  

A third approach to interpreting the meaning of rules involves defining an inference mechanism that is 
used by the system to deduce facts from the rules. This inference mechanism would define a 
computational interpretation to the meaning of the rules. The Prolog logic programming language 
uses its inference mechanism to define the meaning of the rules and facts in a Prolog program. Not all 
Prolog programs correspond to the proof-theoretic or model-theoretic interpretations; it depends on the 
type of rules in the program. However, for many simple Prolog programs, the Prolog inference 
mechanism infers the facts that correspond either to the proof-theoretic interpretation or to a minimal 
model under the model-theoretic interpretation.  

 
 

25.4 Basic Inference Mechanisms for Logic Programs 

25.4.1 Bottom-Up Inference Mechanisms (Forward Chaining) 
25.4.2 Top-Down Inference Mechanisms (Backward Chaining)

We now discuss the two main approaches to computational inference mechanisms that are based on the 
proof-theoretic interpretation of rules. These are the bottom-up inference mechanisms, where the 
inference starts from the given facts and generates additional facts that are matched to the goal of a 
query, and the top-down inference mechanisms, where the inference starts from the goal of a query and 
tries to find constant values that make it true. The latter approach has been used in Prolog.  

 
 

25.4.1 Bottom-Up Inference Mechanisms (Forward Chaining) 

In bottom-up inference, which is also called forward chaining or bottom-up resolution, the inference 
engine starts with the facts and applies the rules to generate new facts. As facts are generated, they are 
checked against the query predicate goal for a match. The term forward chaining indicates that the 
inference moves forward from the facts toward the goal. For example, consider the first query shown in 
Figure 25.01, and assume that the facts and rules shown are the only ones that hold. In bottom-up 
inference, the inference mechanism first checks whether any of the existing facts directly matches the 
query—superior(james,  Y)?—that is given. Since all the facts are for the supervise predicate, no 
match is found; so the first rule is now applied to the existing facts to generate new facts. This causes 
the facts for the superior predicate to be generated by the first (nonrecursive) rule in the order shown in 
Figure 25.03. As each fact is generated, it is checked for a match against the query predicate. No 
matches are found until the fact superior(james,  franklin) is generated, which results in the 
first answer to the query—namely, Y=franklin.  
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In a Prolog-like system, where one answer at a time is generated, additional prompts must be entered to 
search for the next answer; in this case, the system continues to generate new facts and returns the next 
answer, Y=jennifer, from the generated fact superior(james,  jennifer). At this point, all 
possible applications of the first (nonrecursive) rule are exhausted, having generated the first seven 
facts of the superior predicate that are shown in Figure 25.03. If additional results are needed, the 
inference continues to the next (recursive) rule to generate additional facts. It must now match each 
supervise fact with each superior fact, searching for a match in the second argument of supervise with 
the first argument of superior, in order to satisfy both the RHS predicates: supervise(X,  Z) and 
superior(Z, Y). This results in the generation of the subsequent facts listed in Figure 25.03, and the 
additional answers Y=john, Y=ramesh, Y=joyce, Y=alicia, and Y=ahmad.  

In the bottom-up approach, a search strategy to generate only the facts that are relevant to a query 
should be used; otherwise, in a naive approach, all possible facts are generated in some order that is 
irrelevant to the particular query, which can be very inefficient for large sets of rules and facts.  

 
 

25.4.2 Top-Down Inference Mechanisms (Backward Chaining) 

The top-down inference mechanism—used in Prolog interpreters—is also called backward chaining 
and top-down resolution. It starts with the query predicate goal and attempts to find matches to the 
variables that lead to valid facts in the database. The term backward chaining indicates that the 
inference moves backward from the intended goal to determine facts that would satisfy the goal. In this 
approach, facts are not explicitly generated, as they are in forward chaining. For example, in processing 
the query superior(james, Y)?, the system first searches for any facts with the superior 
predicate whose first argument matches james. If any such facts exist, the system generates the results 
in the same order in which the facts were specified. Since there are no such facts in our example, the 
system then locates the first rule whose head (LHS) has the same predicate name as the query, leading 
to the (nonrecursive) rule:  

 
 

superior(X,Y) :- supervise(X,Y)  

 
 

The inference mechanism then matches X to james, leading to the rule:  

 
 

superior(james,Y) :- supervise(james,Y)  

 
 

The variable X is now said to be bound to the value james. The system proceeds to substitute 
superior(james, Y) with supervise(james, Y), and it searches for facts that match 
supervise(james, Y) to find an answer for Y. The facts are searched in the order in which they 
are listed in the program, leading to the first match Y=franklin, followed by the match 
Y=jennifer. At this point, the search using the first rule is exhausted, so the system searches for the 
next rule whose head (LHS) has the predicate name superior, which leads to the recursive rule. The 
inference mechanism then binds X to james, resulting in the modified rule:  
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superior(james,Y) :- supervise(james,Z), superior(Z,Y)  

 
 

It then substitutes the LHS with the RHS and starts searching for facts that satisfy both of the RHS 
predicates. These are now called subgoals of the query. In this case, to find a match for the query, the 
system must find facts that satisfy more than one predicate—supervise(james,  Z) and 
superior(Z,  Y)—which is known as a compound goal. To satisfy a compound goal, a standard 
approach is to employ depth-first search, meaning that the program first tries to find a binding that 
makes the first predicate true, and then moves on to search for a corresponding match for the next 
predicate. If the first predicate binding does not result in any match that makes the second predicate 
true, the system backtracks and searches for the next binding that makes the first predicate true, and 
then continues the search as before.  

In our example, the system finds the match supervise(james,  franklin) for the first sub-goal, 
which binds Z to franklin, resulting in Z=franklin. It then searches for a match to 
superior(franklin, Y) for the second subgoal, which continues the matching process by 
utilizing the first (nonrecursive) rule again and eventually returns Y=john, Y=ramesh, and 
Y=joyce. The process is then repeated with Z=jennifer, returning Y=alicia and Y=ahmad. 
These are shown pictorially in Figure 25.04.  

 

 

 
 

In this example, there are no additional "third-level" superior relationships; but if there were, these 
would also be generated at their appropriate order in the inference process (see Exercise 25.1) (Note 5). 

There has been a lot of research in devising more efficient inference mechanisms in the field of logic 
programming. In particular, one can employ breadth-first search techniques instead of depth-first 
search for compound goals, where the search for matches to multiple subgoals can proceed in parallel. 
Optimization techniques designed to guide the search by using more promising rules early during 
inference have also been proposed.  

The top-down, depth-first inference mechanism leads to certain problems because of its dependence on 
the order in which rules and facts are written. In particular, when rules are written to define a predicate 
recursively—for example, in the definition of the superior predicate—one must write the subgoals in 
the order shown so that no infinite recursion occurs during the inference process. Another problem 
occurs when rule definitions involve negation, which we will not be able to address in detail, except for 
a brief mention in Section 25.5.5. These problems have led to the definition of alternative inference 
mechanisms for Prolog, and query evaluation strategies for Datalog.  

 
 

25.5 Datalog Programs and Their Evaluation 

 
25.5.1 Safety of Programs 
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25.5.2 Use of Relational Operations 
25.5.3 Evaluation of Nonrecursive Datalog Queries 
25.5.4 Concepts for Recursive Query Processing in Datalog 
25.5.5 Stratified Negation

There are two main methods of defining the truth values of predicates in actual Datalog programs. 
Fact-defined predicates (or relations) are defined by listing all the combinations of values (the tuples) 
that make the predicate true. These correspond to base relations whose contents are stored in a database 
system. Figure 25.05 shows the fact-defined predicates employee, male, female, department, 
supervise, project, and workson, which correspond to part of the relational database shown in 
Figure 07.06. Rule-defined predicates (or views) are defined by being the head (LHS) of one or more 
Datalog rules; they correspond to virtual relations whose contents can be inferred by the inference 
engine. Figure 25.06 shows a number of rule-defined predicates.  

 

 

 

 

 
 

25.5.1 Safety of Programs 

A program or a rule is said to be safe if it generates a finite set of facts. The general theoretical problem 
of determining whether a set of rules is safe is undecidable. However, one can determine the safety of 
restricted forms of rules. For example, the rules shown in Figure 25.06 are safe. One situation where 
we get unsafe rules that can generate an infinite number of facts arises when one of the variables in the 
rule can range over an infinite domain of values, and that variable is not limited to ranging over a finite 
relation. For example, consider the rule  

 
 

big_salary(Y) :- Y>60000  

 
 

Here, we can get an infinite result if Y ranges over all possible integers. But suppose that we change 
the rule as follows:  

 
 

big_salary(Y) :- employee(X), salary(X,Y), Y>60000  

 
 

In the second rule, the result is not infinite, since the values that Y can be bound to are now restricted to 
values that are the salary of some employee in the database—presumably, a finite set of values. We can 
also rewrite the rule as follows:  
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big_salary(Y) :- Y>60000, employee(X), salary(X,Y)  

 
 

In this case, the rule is still theoretically safe. However, in Prolog or any other system that uses a top-
down, depth-first inference mechanism, the rule creates an infinite loop, since we first search for a 
value for Y and then check whether it is a salary of an employee. The result is generation of an infinite 
number of Y values, even though these, after a certain point, cannot lead to a set of true RHS 
predicates. One definition of Datalog considers both rules to be safe, since it does not depend on a 
particular inference mechanism. Nonetheless, it is generally advisable to write such a rule in the safest 
form, with the predicates that restrict possible bindings of variables placed first. As another example of 
an unsafe rule, consider the following rule:  

 
 

has_something(X,Y) :- employee(X)  

 
 

Here, an infinite number of Y values can again be generated, since the variable Y appears only in the 
head of the rule and hence is not limited to a finite set of values. To define safe rules more formally, we 
use the concept of a limited variable. A variable X is limited in a rule if (1) it appears in a regular (not 
built-in) predicate in the body of the rule; (2) it appears in a predicate of the form X=c or c=X or 
(c1<=X and X<=c2) in the rule body, where c, c1, and c2 are constant values; or (3) it appears in a 
predicate of the form X=Y or Y=X in the rule body, where Y is a limited variable. A rule is said to be 
safe if all its variables are limited.  

 
 

25.5.2 Use of Relational Operations 

It is straightforward to specify many operations of the relational algebra in the form of Datalog rules 
that define the result of applying these operations on the database relations (fact predicates). This 
means that relational queries and views can easily be specified in Datalog. The additional power that 
Datalog provides is in the specification of recursive queries, and views based on recursive queries. In 
this section, we show how some of the standard relational operations can be specified as Datalog rules. 
Our examples will use the base relations (fact-defined predicates) rel_one, rel_two, and 
rel_three, whose schemas are shown in Figure 25.07. In Datalog, we do not need to specify the 
attribute names as in Figure 25.07; rather, the arity (degree) of each predicate is the important aspect. 
In a practical system, the domain (data type) of each attribute is also important for operations such as 
UNION, INTERSECTION, and JOIN, and we assume that the attribute types are compatible for the 
various operations, as discussed in Chapter 7.  
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Figure 25.07 illustrates a number of basic relational operations. Notice that, if the Datalog model is 
based on the relational model and hence assumes that predicates (fact relations and query results) 
specify sets of tuples, duplicate tuples in the same predicate are automatically eliminated. This may or 
may not be true, depending on the Datalog inference engine. However, it is definitely not the case in 
Prolog, so any of the rules in Figure 25.07 that involve duplicate elimination are not correct for Prolog. 
For example, if we want to specify Prolog rules for the UNION operation with duplicate elimination, 
we must rewrite them as follows:  

 
 

union_one_two(X,Y,Z) :- rel_one(X,Y,Z).  

union_one_two(X,Y,Z) :- rel_two(X,Y,Z), not(rel_one(X,Y,Z)).  

 
 

However, the rules shown in Figure 25.07 should work for Datalog, if duplicates are automatically 
eliminated. Similarly, the rules for the PROJECT operation shown in Figure 25.07 should work for 
Datalog in this case, but they are not correct for Prolog, since duplicates would appear in the latter case.  

 
 

25.5.3 Evaluation of Nonrecursive Datalog Queries 

Implementations of Prolog have been based on the backward chaining approach where ordering of 
predicates is significant. Since Datalog has been defined as a subset of Prolog, the inference 
mechanisms for logic programming languages, such as forward chaining or backward chaining, can be 
used with Datalog. However, if Datalog is to be used in a deductive database system, it is appropriate 
to define an inference mechanism based on relational database query processing concepts. The inherent 
strategy involves a bottom-up evaluation, starting with base relations; the order of operations is kept 
flexible and subject to query optimization. In this section, we discuss an inference mechanism based on 
relational operations that can be applied to nonrecursive Datalog queries. We use the fact and rule 
base shown in Figure 25.05 and Figure 25.06 to illustrate our discussion.  

If a query involves only fact-defined predicates, the inference becomes one of searching among the 
facts for the query result. For example, a query such as  

 
 

department(X,research)?  

 
 

is a selection of all employee names X who work for the research department. In relational algebra, 
it is the query:  

 
 

p$1 (s$2 = "Research" (department))  
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which can be answered by searching through the fact-defined predicate department(X, Y). The 
query involves relational SELECT and PROJECT operations on a base relation, and it can be handled 
by the database query processing and optimization techniques discussed in Chapter 18.  

When a query involves rule-defined predicates, the inference mechanism must compute the result 
based on the rule definitions. If a query is nonrecursive and involves a predicate p that appears as the 
head of a rule p :- p1, p2, ..., pn, the strategy is first to compute the relations corresponding to p1, 
p2, ..., pn and then to compute the relation corresponding to p. It is useful to keep track of the 
dependency among the predicates of a deductive database in a predicate dependency graph. Figure 
25.08 shows the graph for the fact and rule predicates shown in Figure 25.06 and Figure 25.07. The 
dependency graph contains a node for each predicate. Whenever a predicate A is specified in the body 
(RHS) of a rule, and the head (LHS) of that rule is the predicate B, we say that B depends on A, and 
we draw a directed edge from A to B. This indicates that, in order to compute the facts for the predicate 
B (the rule head), we must first compute the facts for all the predicates A in the rule body. If the 
dependency graph has no cycles, we call the rule set nonrecursive. If there is at least one cycle, the 
rule set is called recursive. In Figure 25.08, there is one recursively defined predicate—namely, 
superior—which has a recursive edge pointing back to itself. In addition, because the predicate 
subordinate depends on superior, it also requires recursion in computing its result.  

 

 

 
 

A query that includes only nonrecursive predicates is called a nonrecursive query. In this section, we 
discuss only inference mechanisms for nonrecursive queries. In Figure 25.08, any query that does not 
involve the predicates subordinate or superior is nonrecursive. In the predicate dependency graph, the 
nodes corresponding to fact-defined predicates do not have any incoming edges, since all fact-defined 
predicates have their facts stored in a database relation. The contents of a fact-defined predicate can be 
computed by directly retrieving the tuples in the corresponding database relation.  

The main function of an inference mechanism is to compute the facts that correspond to query 
predicates. This can be accomplished by generating a relational expression involving relational 
operators as SELECT, PROJECT, JOIN, UNION, and SET DIFFERENCE (with appropriate provision 
for dealing with safety issues) that, when executed, provides the query result (see Section 7.4.6). The 
query can then be executed by utilizing the internal query processing and optimization operations of a 
relational database management system. Whenever the inference mechanism needs to compute the fact 
set corresponding to a nonrecursive rule-defined predicate p, it first locates all the rules that have p as 
their head. The idea is to compute the fact set for each such rule and then to apply the UNION 
operation to the results, since UNION corresponds to a logical OR operation. The dependency graph 
indicates all predicates q on which each p depends, and since we assume that the predicate is 
nonrecursive, we can always determine a partial order among such predicates q. Before computing the 
fact set for p, we first compute the fact sets for all predicates q on which p depends, based on their 
partial order. For example, if a query involves the predicate under_40K_supervisor, we must 
first compute both supervisor and over_40K_emp. Since the latter two depend only on the fact-
defined predicates employee, salary, and supervise, they can be computed directly from the 
stored database relations.  

We must also deal with built-in predicates, such as the comparison operators >, <, and =, if they appear 
in a rule body. In specifying an inference algorithm that computes the fact set of any nonrecursive 
query, it is common to convert the rules into a canonical form called rectified rules. A rule is said to 
be rectified if all the arguments in the predicate of the rule head are distinct variables. If a rule head has 
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constants, or if a variable is repeated twice in the rule head, it can easily be rectified: a constant c is 
replaced by a variable X, and a predicate equal(X,  c) is added to the rule body. Similarly, if a 
variable Y appears twice in a rule head, one of those occurrences is replaced by another variable Z, and 
a predicate equal(Y,  Z) is added to the rule body.  

The evaluation of a nonrecursive query can be expressed as a tree whose leaves are the base relations. 
What is needed is appropriate application of the relational operations of SELECT, PROJECT, and 
JOIN, together with set operations of UNION and SET DIFFERENCE, until the predicate in the query 
gets evaluated. An outline of an inference algorithm GET_EXPR(Q) that generates a relational 
expression for computing the result of a DATALOG query Q = p(arg1, arg2, ..., argn) can 
informally be stated as follows:  

 

1. Locate all rules S whose head involves the predicate p. If there are no such rules, then p is a 
fact-defined predicate corresponding to some database relation Rp; in this case, one of the 
following expressions is returned and the algorithm is terminated (we use the notation $i to 
refer to the name of the ith attribute of relation Rp);  

a. If all arguments are distinct variables, the relational expression returned is Rp.  
b. If some arguments are constants or if the same variable appears in more than one 

argument position, the expression returned is 
 
SELECT<condition>(Rp), 
 
where the selection <condition> is a conjunctive condition made up of a number 
of simple conditions connected by AND, and constructed as follows:  

i. if a constant c appears as argument i, include a simple condition ($i = 
c) in the conjunction.  

ii. If the same variable appears in both argument locations j and k, include a 
condition ($j = $k) in the conjunction.  

c. For an argument that is not present in any predicate, a unary relation containing 
values that satisfy all conditions is constructed. Since the rule is assumed to be safe, 
this unary relation must be finite.  

2. At this point, one or more rules Si, i = 1, 2, ..., n, n > 0 exist with predicate p as their 
head. For each such rule Si, generate a relational expression as follows:  

a. Apply selection operations on the predicates in the RHS for each such rule, as 
discussed in Step 1.  

b. A natural join is constructed among the relations that correspond to the predicates in 
the body of the rule Si over the common variables. For arguments that gave rise to 
the unary relations in Step 1(c), the corresponding relations are brought as members 
into the natural join. Let the resulting relation from this join be Rs.  

c. If any built-in predicate X h Y was defined over the arguments X and Y, the result of 
the join is subjected to an additional selection: 
 
SELECTX h Y(Rs),  
   

d. Repeat Step 2(b) until no more built-in predicates apply.  
3. Take the UNION of the expressions generated in Step 2 (if more than one rule exists with 

predicate p as its head).  

 
 

25.5.4 Concepts for Recursive Query Processing in Datalog 
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Naive Strategy 
Seminaive Strategy 
The Magic Set Rule Rewriting Technique

Query processing can be separated into two approaches:  

• Pure evaluation approach: Creating a query evaluation plan that produces an answer to the 
query.  

• Rule rewriting approach: Optimizing the plan into a more efficient strategy.  

Many approaches have been presented for both recursive and nonrecursive queries. We discussed an 
approach to nonrecursive query evaluation earlier. Here we first define some terminology for recursive 
queries, then discuss the naive and seminaive approaches to query evaluation—which generate simple 
plans—and then present the magic set approach—which is an optimization based on rule rewriting.  

We have already seen examples involving recursive rules where the same predicate occurs in the head 
and in the body of a rule. Another example is  

 
 

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y)  

 
 

which states that Y is an ancestor of X if Z is an ancestor of X and Y is a parent of Z. It is in 
conjunction with the rule  

 
 

ancestor(X,Y) :- parent (X,Y)  

 
 

which states that if Y is a parent of X, then Y is an ancestor of X.  

A rule is said to be linearly recursive if the recursive predicate appears once and only once in the RHS 
of the rule. For example,  

 
 

sg(X,Y) :- parent(X,XP), parent(Y,YP), sg(XP,YP)  

 
 

is a linear rule in which the predicate sg (same-generation cousins) is used only once in RHS. The rule 
states that X and Y are same-generation cousins if their parents are same-generation cousins. The rule  
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ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y)  

 
 

is called left linearly recursive, while the rule  

 
 

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y),  

 
 

is called right linearly recursive.  

Notice that the rule  

 
 

ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y)  

 
 

is not linearly recursive. It is believed that most "real-life" rules can be described as linear recursive 
rules; algorithms have been defined to execute linear sets of rules efficiently. The preceding definitions 
become more involved when a set of rules with predicates that occur on both the LHS and the RHS of 
rules are considered.  

A predicate whose relation is stored in the database is called an extensional database (EDB) 
predicate, while a predicate for which the corresponding relation is defined by logical rules is called an 
intensional database (IDB) predicate. Given a Datalog program with relations corresponding to the 
predicates, the "if" symbol, :-, may be replaced by an equality to form Datalog equations, without any 
loss of meaning. The resulting set of Datalog equations could potentially have many solutions. In a set 
of relations for the EDB predicates, say R1, R2, ..., Rn, a fixed point of the Datalog equations is a 
solution for the relations corresponding to the IDB predicates of those equations.  

The fixed point with respect to the given EDB relations, along with those relations, forms a model of 
the rules from which the Datalog equations were derived. However, it is not true that every model of a 
set of Datalog rules is a fixed point of the corresponding Datalog equations, because the model may 
have "too many" facts. It turns out that Datalog programs each have a unique minimal model 
containing any given EDB relations, and this also corresponds to the unique minimal fixed point, with 
respect to those EDB relations.  

Formally, given a family of solutions Si = P1(i),....,Pm(i), to a given set of equations, the least fixed point 
of a set of equations is obtained by finding the solution whose corresponding relations are the smallest 
proper subsets for all relations. For example, we say S1 1 S2, if relation Pk(1) is a subset of relation Pk(2) 
for all k, 1 1 k 1 m. Fixpoint theory was first developed in the field of recursion theory as a tool for 
explaining recursive functions. Since Datalog has an ability to express recursion, fixpoint theory is well 
suited for describing the semantics of recursive functions.  

For example, if we represent a directed graph by the predicate edge(X,Y) such that edge (X,Y) is true if 
and only if there is an edge from node X to node Y in the graph, the paths in the graph may be 
expressed by the following rules:  
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path(X,Y) :- edge(X,Y)  

path(X,Y) :- path(X,Z), path (Z,Y)  

 
 

Notice that there are other ways of defining paths recursively. Let us assume that relations P and A 
correspond to the predicates path and edge in the preceding rules. The transitive closure of relation P 
contains all possible pairs of nodes that have a path between them, and it corresponds to the least fixed-
point solution corresponding to the equations that result from the preceding rules (Note 6). These rules 
can be turned into a single equation for the relation P corresponding to the predicate edge.  

 
 

P(X,Y) = A(X,Y) D pX,Y (P(X,Z)P(Z,Y))  

 
 

Suppose that the nodes are 3,4,5 and A = {(3,4), (4,5)}. From the first and second rules we can infer 
that (3,4), (4,5) and (3,5) are in P. We need not look for any other paths, because P = {(3,4),(4,5),(3,5)} 
is a solution of the above equation:  

 
 

{(3,4),(4,5),(3,5)} = {(3,4),(4,5)}D p X,Y ({(3,4),(4,5),(3,5)}{ (3,4),(4,5),(3.5)})  

 
 

This solution constitutes a proof theoretic meaning of the rules, as it was derived from the EDB relation 
A, using just the rules. It is also the minimal model of the rules or the least fixed point of the equation.  

For evaluating a set of Datalog rules (equations) that may contain recursive rules, a large number of 
strategies have been proposed, details of which are beyond our scope. Here we illustrate three 
important techniques: the naive strategy, the seminaive strategy, and the use of magic sets.  

 
 

Naive Strategy 

The naive evaluation method is a pure evaluation, bottom-up strategy which computes the least model 
of a Datalog program. It is an iterative strategy and at each iteration all rules are applied to the set of 
tuples produced thus far to generate all implicit tuples. This iterative process continues until no more 
new tuples can be generated.  

The naive evaluation process does not take into account query patterns. As a result, a considerable 
amount of redundant computation is done. We present two versions of the naive method, called Jacobi 
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and Gauss-Seidel solution methods; these methods get their names from well known algorithms for the 
iterative solution of systems of equations in numerical analysis.  

Assume the following system of relational equations, formed by replacing the :- symbol by an equality 
sign in a Datalog program.  

 
 

Ri = Ei (R1, R2, ..., Rn)  

 
 

The Jacobi method proceeds as follows. Initially, the variable relations Ri are set equal to the empty set. 
Then, the computation Ri = Ei (R1, R2, ..., Rn), i = 1, ..., n is iterated until none of the Ri changes 
between two consecutive iterations (i.e., until the Ri reach a fixpoint).  

 
 

Algorithm 25.1 Jacobi naive strategy.  

 
 

Input: A system of algebraic equations and an EDB.  

Output: The values of the variable relations R1, R2, ..., Rn.  

 
 

for i = 1 to n do Ri = ;  

repeat  

condition = true;  

for i = 1 to n do Si = Ri;  

for i = 1 to n do  

begin  

Ri = Ei(S1, ..., Sn);  

If Ri Si then condition = false  

end  

until condition;  
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The convergence of the Jacobi method can be slightly improved if, at each step k, in order to compute 
the new value Ri(k) , we substitute in Ei the values of Rj(k) that have just been computed in the same 
iteration instead of the old values Rj(k - 1). This variant of the Jacobi method is called the Gauss-Seidel 
method, which produces the same result as the Jacobi algorithm. Consider the following example 
where ancestor(X, Y) means X is ancestor of Y; parent(X, Y) means X is parent of Y.  

 
 

ancestor(X,Y) :- parent(X,Y).  

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).  

 
 

If we define a relation A for the predicate ancestor and P for the parent, the Datalog equation for the 
above rules can be written in the form:  

 
 

A(X,Y) = pX,Y (A(X,Z)P(Z,Y)) D A(X,Y)  

 
 

Suppose the EDB is given as P = {(bert, alice), (bert, george), (alice, derek), (alice, pat), (derek, 
frank)}. Let us follow the Jacobi algorithm. The parent tree looks as in Figure 25.09.  

 

 

 
 

Initially, we set A(0) = , enter the repeat loop, and set condition = true. We then initialize S1= A = , 
then compute the first value of A. Since the first join involves an empty relation, we get  

 
 

A(1) = P = {(bert, alice),(bert, george),(alice, derek),(alice, pat),(derek, frank)}.  

 
 

A(1) includes parents as ancestors. A(1) S1, thus condition = false. We therefore enter the second iteration 
with S1 set to A(1). Computing the value of A again, we get,  

 
 

A(2) = P = {(bert,alice),(bert,george),(alice,derek),(alice,pat),(derek,frank), (bert,derek), (bert,pat), 
(alice,frank)}.  
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It can be seen that A(2) = A(1) D {(bert,derek), (bert,pat), (alice,frank)}. Note that A(2) now includes 
grandparents as ancestors besides parents. Since A(2) S1, we iterate again, setting S1 to A(2):  

 
 

A(3) = P = {(bert,alice),(bert,george),(alice,derek),(alice,pat),(derek,frank), (bert,derek), (bert,pat), 
(alice,frank), (bert,frank)}.  

 
 

Now, A(3) = A(2) D {(bert,frank)}. A(3) now has great grandparents included among ancestors. Since A(3) 

is different from S1, we enter the next iteration, setting S1 = A(3). We now get,  

 
 

A(4) = P = {(bert,alice),(bert,george),(alice,derek),(alice,pat),(derek,frank), (bert,derek), (bert,pat), 
(alice,frank), (bert,frank)}.  

 
 

Finally, A(4) = A(3) = S1, the evaluation is finished. Intuitively, from the above parental hierarchy, it is 
obvious that all ancestors have been computed.  

 
 

Seminaive Strategy 

Seminaive evaluation is a bottom-up technique designed to eliminate redundancy in the evaluation of 
tuples at different iterations. This method does not use any information about the structure of the 
program. There are two possible settings of the seminaive algorithm: the (pure) seminaive and the 
pseudo rewriting seminaive.  

Consider the Jacobi algorithm. Let Ri(k) be the temporary value of relation Ri at iteration Step k. The 
differential of Ri at Step k of the iteration is defined as,  

 
 

Di(k) = Ri(k) -Ri(k-1)  

 
 

When the whole system is linear, Di can be substituted for Ri in the Jacobi or Gauss-Seidel algorithms: 
the result is obtained by the union of the newly obtained term and the old one.  
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Algorithm 25.2 Seminaive strategy.  

input: A system of algebraic equations and an EDB.  

output: The values of the variable relations R1, R2, ..., Rn.  

 
 

for i = 1 to n do Ri = ;  

for i = 1 to n do Di = ;  

repeat  

for i = 1 to n do Si = ;  

condition = true;  

for i = 1 to n do  

begin  

Di = Ei[S1, ..., Sn] - Ri;  

Ri = Di D Ri;  

if Di then condition = false  

end  

until condition  

 
 

The advantage of this method is that, at each iteration step, a differential term Di is used in each 
equation instead of the whole Ri. Let us now look at the improvement due to the seminaive evaluation. 
Consider the EDB to be the same as in the previous example. We have  

 
 

D(0) = , A(0) = .  

D(1) = P = {(bert,alice),(bert,george), 

(alice,derek),(alice,pat), (derek,frank)}.  

 
 

Hence,  
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A(1) = D(1) D A(0)  

= {(bert,alice),(bert,george),(alice,derek), 

(alice,pat),(derek,frank)}.  

D(2) = {(bert,alice),(bert,george),(alice,derek), 

(alice,pat),(derek,frank), (bert,derek), 

(bert,pat), (alice,frank)}- A(1)  

= {(bert,derek), (bert,pat), (alice,frank)}.  

A(2) = D(2) D A(1)  

= {(bert,alice),(bert,george),(alice,derek), 

(alice,pat),(derek,frank), (bert,derek),  

(bert,pat), (alice,frank)}.  

D(3) = {(bert,frank)}.  

A(3) = D(3) D A(2)  

= {(bert,frank)}D A(2)  

= {(bert,alice),(bert,george),(alice,derek), 

(alice,pat),(derek,frank), (bert,derek), 

(bert,pat), (alice,frank),(bert,frank)}.  

 
 

D(4) = , and hence we have come to the end of our evaluation. Although the computation of the two 
results is the same, the computation is more efficient in the seminaive evaluation. Only the D(i)’s have 
been involved in the join, whereas in the naive evaluation we had to compute joins for each of the 
temporary values A(i), which have always had more tuples than D(i).  

 
 

The Magic Set Rule Rewriting Technique 

The problem addressed by the magic sets rule rewriting technique is that frequently a query asks not for 
the entire relation corresponding to an intentional predicate but for a small subset of this relation. 
Consider the following program:  
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sg(X,Y) :- flat(X,Y).  

sg(X,Y) :- up(X,U), sg(U,V), down(V,Y).  

 
 

Here, sg is a predicate ("same-generation cousin"), and the head of each of the two rules is the atomic 
formula sg(X,  Y). The other predicates found in the rules are flat, up, and down. These are 
presumably stored extensionally as facts, while the relation for sg is intentional—that is, defined only 
by the rules. For a query like sg(john,  Z)—that is, "who are the same generation cousins of 
John?"—asked of the predicate, our answer to the query must examine only the part of the database 
that is relevant—namely the part that involves individuals somehow connected to John.  

A top-down, or backward-chaining search would start from the query as a goal and use the rules from 
head to body to create more goals; none of these goals would be irrelevant to the query, although some 
might cause us to explore paths that happen to "deadend." On the other hand, a bottom-up or forward-
chaining search, working from the bodies of the rules to the heads, would cause us to infer sg facts that 
would never even be considered in the top-down search. Yet bottom-up evaluation is desirable because 
it avoids the problems of looping and repeated computation that are inherent in the top-down approach, 
and allow us to use set-at-a-time operations, such as relational joins.  

Magic sets rule rewriting is a technique that allows us to rewrite the rules as a function of the query 
form only—that is, it considers which arguments of the predicate are bound to constants and which are 
variable, so that the advantages of top-down and bottom-up methods are combined. The technique 
focuses on the goal inherent in the top-down evaluation but combines this with the looping freedom, 
easy termination testing, and efficient evaluation of bottom-up evaluation. Instead of giving the 
method, of which many variations are known and used in practice, we explain the idea with an 
example.  

Given the previously stated rules and the query sg(john, Z), a typical magic sets transformation of 
the rules would be  

 
 

sg(X,Y) :-magic-sg(X), flat (X,Y).  

sg(X,Y) :-magic-sg(X), up(X,U), sg(U,V), down(V,Y).  

magic-sg(U) :-magic-sg(X), up(X,U).  

magic-sg(john).  

 
 

Intuitively, we can see that the magic-sg facts correspond to queries or subgoals. The definition of 
the magic-sg predicate mimics how goals are generated in a top-down evaluation. The set of 
magic-sg facts is used as a filter in the rules defining sg, to avoid generating facts that are not 
answers to some subgoal. Thus, a purely bottom-up, forward-chaining evaluation of the rewritten 
program achieves a restriction of search similar to that achieved by top-down evaluation of the original 
program. Further details of this technique are beyond our scope.  
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While the magic sets technique was originally developed to deal with recursive queries, it is applicable 
to nonrecursive queries as well. Indeed, it has been adapted to deal with SQL queries (which contain 
features such as grouping, aggregation, arithmetic conditions, and multiset relations that are not present 
in pure logic queries), and it has been found to be useful for evaluating nonrecursive "nested" SQL 
queries.  

 
 

25.5.5 Stratified Negation 

A deductive database query language can be enhanced by permitting negated literals in the bodies of 
rules in programs. However, the important property of rules, called the minimal model, which we 
discussed earlier, does not hold. In the presence of negated literals, a program may not have a minimal 
or least model. For example, the program  

 
 

p(a):- not p(b).  

 
 

has two minimal models: {p(a)} and {p(b)}.  

A detailed analysis of the concept of negation is beyond our scope. But for practical purposes, we next 
discuss stratified negation, an important notion used in deductive system implementations.  

The meaning of a program with negation is usually given by some "intended" model. The challenge is 
to develop algorithms for choosing an intended model that does the following:  

1. Makes sense to the user of the rules.  
2. Allows us to answer queries about the model efficiently.  

In particular, it is desirable that the model work well with the magic sets transformation, in the sense 
that we can modify the rules by some suitable generalization of magic sets, and the resulting rules 
allow (only) the relevant portion of the selected model to be computed efficiently. (Alternatively, other 
efficient evaluation techniques must be developed.)  

One important class of negation that has been extensively studied is stratified negation. A program is 
stratified if there is no recursion through negation. Programs in this class have a very intuitive 
semantics and can be efficiently evaluated. The example that follows describes a stratified program. 
Consider the following program P2:  

 
 

r1: ancestor(X,Y) :- parent (X,Y).  

r2: ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).  

r3: nocyc(X,Y):- ancestor(X,Y), not (ancestor(Y,X)).  
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Notice that the third rule has a negative literal in its body. This program is stratified because the 
definition of the predicate nocyc depends (negatively) on the definition of ancestor, but the 
definition of ancestor does not depend on the definition of nocyc. We are not equipped to give a 
more formal definition without giving additional notation and definitions. A bottom-up evaluation of P2 
would first compute a fixed point of rules r1 and r2 (the rules defining ancestor). Rule r3 is applied 
only when all the ancestor facts are known.  

A natural extension of stratified programs is the class of locally stratified programs. Intuitively, a 
program P is locally stratified for a given database if, when we substitute constants for variables in all 
possible ways, the resulting instantiated rules do not have any recursion through negation.  

 
 

25.6 Deductive Database Systems 

25.6.1 The LDL System 
25.6.2 NAIL! 
25.6.3 The CORAL System

The founding event of the deductive database field can be considered to be the Toulouse workshop on 
"Logic and Databases" organized by Gallaire, Minker, and Nicolas in 1977. The next period of the 
explosive growth started with the setting up of the MCC (Microelectronics and Computer Technology 
Corporation), which was a reaction to the Japanese Fifth Generation Project. Several experimental 
deductive database systems have been developed and a few have been commercially deployed. In this 
section we briefly review three different implementations of the ideas presented so far: LDL, NAIL!, 
and CORAL.  

 
 

25.6.1 The LDL System 

Background, Motivation, and Overview 
The LDL Data Model and Language

The Logic Data Language (LDL) project at Microelectronics and Computer Technology Corporation 
(MCC) was started in 1984 with two primary objectives:  

• To develop a system that extends the relational model yet exploits some of the desirable 
features of an RDBMS (relational database management system).  

• To enhance the functionality of a DBMS so that it works as a deductive DBMS and also 
supports the development of general-purpose applications.  

The resulting system is now a deductive DBMS made available as a product. In this section, we briefly 
survey the highlights of the technical approach taken by LDL and consider its important features.  

 
 

Background, Motivation, and Overview 

The design of the LDL language may be viewed as a rule-based extension to domain calculus-based 
languages (see Section 9.4). The LDL system has tried to combine the expressive capability of Prolog 
with the functionality and facility of a general-purpose DBMS. The main drawback experienced by 
earlier systems that coupled Prolog with an RDBMS is that Prolog is navigational (tuple-at-a-time) 
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whereas in RDBMSs the user formulates a correct query and leaves the optimization of query 
execution to the system. The navigational nature of Prolog is manifested in the ordering of rules and 
goals to achieve an optimal execution and termination. Two options are available:  

• Make Prolog more "database-like" by adding navigational database management features. 
(For an example of navigational query language, see the network model DML in Section C.4 
of Appendix C.)  

• Modify Prolog into a general-purpose declarative logic language.  

The latter option was chosen in LDL, yielding a language that is different from Prolog in its constructs 
and style of programming in the following ways:  

• Rules are compiled in LDL.  
• There is a notion of a "schema" of the fact base in LDL at compile time. The fact base is 

freely updated at run-time. Prolog, on the other hand, treats facts and rules identically, and it 
subjects facts to interpretation when they are changed.  

• LDL does not follow the resolution and unification technique used in Prolog systems that are 
based on backward chaining.  

• The LDL execution model is simpler, based on the operation of matching and the computation 
of "least fixed points." These operators, in turn, use simple extensions to the relation algebra.  

The first LDL implementation, completed in 1987, was based on a language called FAD. A later 
implementation, completed in 1988, is called SALAD and underwent further changes as it was tested 
against the "real-life" applications described in Section 25.8. The current prototype is an efficient 
portable system for UNIX that assumes a single tuple get next interface between the compiled LDL 
program and an underlying fact manager.  

 
 

The LDL Data Model and Language 

With the design philosophy of LDL being to combine the declarative style of relational languages with 
the expressive power of Prolog, constructs in Prolog such as negation, set-of, updates, and cut have 
been dropped. Instead, the declarative semantics of Horn clauses was extended to support complex 
terms through the use of function symbols, called functors in Prolog.  

A particular employee record can therefore be defined as follows:  

 
 

Employee (Name (John Doe), Job(VP),  

Education ({(High school, 1961),  

(College (Fergusson, bs, physics), 1965),  

(College (Michigan, phd, ie), 1976)}))  

 
 

In the preceding record, VP is a simple term, whereas education is a complex term that consists of a 
term for high school and a nested relation containing the term for college and the year of graduation. 
LDL thus supports complex objects with an arbitrarily complex structure including lists, set terms, 
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trees, and nested relations. We can think of a compound term as a Prolog structure with the function 
symbol as the functor.  

LDL allows updates in the bodies of rules. For instance, a rule  

 
 

happy (Dept, Raise, Name) <- 

emp (Name, Dept, Sal), Newsal = Sal+Raise  

-emp (Name, Dept, -), +emp(Name,Dept,Newsal).  

 
 

combined with  

 
 

?happy(software, 1000, Name).  

 
 

gives a $1,000 raise to all employees in the software department and returns the names of those happy 
employees. This query is regarded as an indivisible transaction.  

LDL offers an if–then–else construct of clean declarative semantics, for the clear expression and 
efficient implementation of mutually disjunctive rules. In addition, it offers a nonprocedural "choice" 
predicate for situations where any answer will do that can be used to obtain a single-answer response, 
rather than the all-answer solution that represents the default response. In the declarative semantics of 
LDL, negation has been treated by using stratification and nondeterminism, which is supported through 
the same construct called "choice."  

Even though LDL’s semantics is defined in a bottom-up fashion (for example, via stratification), the 
implementor can use any execution that is faithful to this declarative semantics. In particular, the 
execution can proceed bottom-up or top-down, or it may be a hybrid execution. These choices enable 
the compiler/optimizer to be selective in customizing the most appropriate modes of execution for the 
given program. The LDL compiler and optimizer can select from among several strategies: pipelined or 
lazy pipelined execution, materialized or lazy materialized execution.  

 
 

25.6.2 NAIL! 

The NAIL! (Not Another Implementation of Logic!) project was started at Stanford University in 1985. 
The initial goal was to study the optimization of logic by using the database-oriented "all-solutions" 
model. The aim of the project was to support the optimal execution of Datalog goals over an RDBMS. 
Assuming that a single workable strategy was inappropriate for all logic programs in general, an 
extensible architecture was developed, which could be enhanced through progressive additions.  
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In collaboration with the MCC group, this project was responsible for the idea of magic sets and the 
first work on regular recursions. In addition, many important contributions to coping with negation and 
aggregation on logical rules were made by the project, including stratified negation, well-founded 
negation, and modularly stratified negation. The architecture of NAIL! is illustrated in Figure 25.10.  

 

 

 
 

The preprocessor rewrites the source NAIL! program by isolating "negation" and "set" operators, and 
by replacing disjunction with several conjunctive rules. After preprocessing, the NAIL! program is 
represented through its predicates and rules. The strategy selection module takes as input the user’s 
goal and produces as output the best execution strategies for solving the user’s goal and all the other 
goals related to it, using the internal language ICODE.  

The ICODE statements produced as a result of the strategy selection process are optimized and then 
executed through an interpreter, which translates ICODE retrieval statements to SQL when needed.  

An initial prototype system was built but later abandoned because the purely declarative paradigm was 
found to be unworkable for many applications. The revised system uses a core language, called GLUE, 
which is essentially single logical rules, with the power of SQL statements, wrapped in conventional 
language constructs such as loops, procedures, and modules. The original NAIL! language becomes a 
view mechanism for GLUE; it permits fully declarative specifications in situations where 
declarativeness is appropriate.  

 
 

25.6.3 The CORAL System 

The CORAL system, which was developed at the University of Wisconsin at Madison, builds on 
experience gained from the LDL project. Like LDL, the system provides a declarative language based 
on Horn clauses with an open architecture. There are many important differences, however, in both the 
language and its implementation. The CORAL system can be seen as a database programming 
language that combines important features of SQL and Prolog.  

From a language standpoint, CORAL adapts LDL’s set-grouping construct to be closer to SQL’s 
GROUP BY construct. For example, consider  

 
 

budget(Dname,sum(<Sal>)) :- dept(Dname,Ename,Sal).  

 
 

This rule computes one budget tuple for each department, and each salary value is added as often as 
there are people with that salary in the given department. In LDL, the grouping and the sum operation 
cannot be combined in one step; more importantly, the grouping is defined to produce a set of salaries 
for each department. Therefore, computing the budget is harder in LDL. A related point is that SQL 
supports a multiset semantics for queries when the DISTINCT clause is not specified. CORAL supports 
such a multiset semantics as well. Thus the following rule can be defined to compute either a set of 
tuples or a multiset of tuples in CORAL, as occurs in SQL:  
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budget2(Dname,Sal) :- dept(Dname,Ename,Sal)  

 
 

This raises an important point: How can a user specify which semantics (set or multiset) is desired? In 
SQL, the keyword DISTINCT is used; similarly, an annotation is provided in CORAL. In fact, 
CORAL supports a number of annotations that can be used to choose a desired semantics or to provide 
optimization hints to the CORAL system. The added complexity of queries in a recursive language 
makes optimization difficult, and the use of annotations often makes a big difference in the quality of 
the optimized evaluation plan.  

CORAL supports a class of programs with negation and grouping that is strictly larger than the class of 
stratified programs. The bill-of-materials problem, in which the cost of a composite part is defined as 
being the sum of the costs of all atomic parts, is an example of a problem that requires this added 
generality.  

CORAL is closer to Prolog than to LDL in supporting nonground tuples; thus, the tuple equal(X,X) can 
be stored in the database and denotes that every binary tuple in which the first and the second field 
values are the same is in the relation called equal. From an evaluation standpoint, CORAL’s main 
evaluation techniques are based on bottom-up evaluation, which is very different from Prolog’s top-
down evaluation. However, CORAL also provides a Prolog-like top-down evaluation mode.  

From an implementation perspective, CORAL implements several optimizations to deal with 
nonground tuples efficiently, in addition to techniques such as magic templates for pushing selections 
into recursive queries, pushing projections, and special optimizations of different kinds of (left- and 
right-) linear programs. It also provides an efficient way to compute nonstratified queries. A "shallow-
compilation" approach is used, whereby the run-time system interprets the compiled plan. CORAL 
uses the EXODUS storage manager to provide support for disk-resident relations. It also has a good 
interface with C++ and is extensible, enabling a user to customize the system for special applications 
by adding new data types or relation implementations. An interesting feature is an explanation package 
that allows a user to examine graphically how a fact is generated; this is useful for debugging as well as 
for providing explanations.  

 
 

25.7 Deductive Object-Oriented Databases 

25.7.1 Overview of DOODs 
25.7.2 VALIDITY

The emergence of deductive database concepts is contemporaneous with initial work in Logic 
Programming. Deductive object-oriented databases (DOODs) came about through the integration of the 
OO paradigm and logic programming. The observation that OO and deductive database systems 
generally have complementary strengths and weaknesses gave rise to the integration of the two 
paradigms.  

 
 

25.7.1 Overview of DOODs 
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Since the late 1980s, several DOOD prototypes were developed in universities and research 
laboratories. VALIDITY, which was developed at Bull, is the first industrial product in the DOOD 
arena. The LDL and the CORAL systems we reviewed offer some additional object-orientated 
features—e.g., in CORAL++ —and may be considered as DOODs.  

The following broad approaches have been adopted in the design of DOOD systems:  

• Language extension: An existing deductive language model is extended with object-oriented 
features. For example, Datalog is extended to support identity, inheritance, and other OO 
features.  

• Language integration: A deductive language is integrated with an imperative programming 
language in the context of an object model or type system. The resulting system supports a 
range of standard programs, while allowing different and complementary programming 
paradigms to be used for different tasks, or for different parts of the same task. This approach 
was pioneered by the Glue-Nail system.  

• Language reconstruction: An object model is reconstructed, creating a new logic language 
that includes object-oriented features. In this strategy, the goal is to develop an object logic 
that captures the essentials of the object-oriented paradigm and that can also be used as a 
deductive programming language in DOODs. The rationale behind this approach is the 
argument that language extensions fail to combine object-orientation and logic successfully, 
by losing declarativenesss or by failing to capture all aspects of the object-oriented model.  

 
 

25.7.2 VALIDITY 

DEL Data Model

VALIDITY combines deductive capabilities with the ability to manipulate complex objects (OIDs, 
inheritance, methods, etc.). The ability to declaratively specify knowledge as deduction and integration 
rules brings knowledge independence. Moreover, the logic-based language of deductive databases 
enables advanced tools, such as those for checking the consistency of a set of rules, to be developed. 
When compared with systems extending SQL technology, deductive systems offer more expressive 
declarative languages and cleaner semantics. VALIDITY provides the following:  

1. A DOOD data model and language, called DEL (Datalog Extended Language).  
2. An engine working along a client-server model.  
3. A set of tools for schema and rule editing, validation, and querying.  

The DEL data model provides object-oriented capabilities, similar to those offered by the ODMG data 
model (see Chapter 12), and includes both declarative and imperative features. The declarative features 
include deductive and integrity rules, with full recursion, stratified negation, disjunction, grouping, and 
quantification. The imperative features allow functions and methods to be written. The engine of 
VALIDITY integrates the traditional functions of a database (persistency, concurrency control, crash 
recovery, etc.) with the advanced deductive capabilities for deriving information and verifying 
semantic integrity. The lowest level component of the engine is a fact manager that integrates storage, 
concurrency control, and recovery functions. The fact manager supports fact identity and complex data 
items. In addition to locking, the concurrency control protocol integrates read-consistency technology, 
used in particular when verifying constraints. The higher-level component supports the DEL language 
and performs optimization, compilation, and execution of statements and queries. The engine also 
supports an SQL interface permitting SQL queries and updates to be run on VALIDITY data.  

VALIDITY also has a deductive wrapper for SQL systems, called DELite. This supports a subset of 
DEL functionality (no constraints, no recursion, limited object capabilities, etc.) on top of commercial 
SQL systems.  
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DEL Data Model 

The DEL data model integrates a rich type system with primitives to define persistent and derived data. 
The DEL type system consists of built-in types, which can be used to implement user-defined and 
composite types. Composite types are defined using four type constructors: (1) bag, (2) set, (3) list, and 
(4) tuple.  

The basic unit of information in VALIDITY is called a fact. Facts are instances of predicates, which 
are logical constructs characterized by a name and a set of typed attributes. A fact specifies values to 
the attributes of the predicate of which it is an instance. There are four kinds of predicates and facts in 
VALIDITY:  

1. Basis facts: Are persistent units of information stored in the database; they are instances of 
basis predicates, which have attributes and methods and are organized into inheritance 
hierarchies.  

2. Derived facts: Are deduced from basis facts stored in the database or other derived facts; they 
are instances of derived predicates.  

3. Computed predicates and facts: These are similar to derived predicates and facts, but they are 
computed by means of imperative code instead of derivation. The distance between two points 
is a typical example.  

4. Built-in predicates and facts: These are special computed predicates and facts whose 
associated function is provided by VALIDITY. Comparison operators are an example.  

Basis facts have an identity that is analogous to the notion of object identifier in OO databases. Further, 
external mappings can be defined for a predicate; they enable the retrieval of facts (through their fact-
IDs) based on the value of some of their unique attributes. Basis predicates may also have methods in 
the OO sense—that is, functions can be invoked in the context of a specific fact.  

 
 

25.8 Applications of Commercial Deductive Database Systems 

25.8.1 LDL Applications 
25.8.2 VALIDITY Applications

We discussed two commercial deductive database systems: LDL and VALIDITY. They have been 
used in a variety of business/industrial applications. We briefly summarize a few of them below.  

 
 

25.8.1 LDL Applications 

The LDL system has been applied to the following application domains:  

• Enterprise modeling: This domain involves modeling the structure, processes, and constraints 
within an enterprise. Data related to an enterprise may result in an extended ER model 
containing hundreds of entities and relationships and thousands of attributes. A number of 
applications useful to designers of new applications (as well as for management) can be 
developed based on this "metadatabase," which contains dictionary-like information about the 
whole enterprise.  

• Hypothesis testing or data dredging: This domain involves formulating a hypothesis, 
translating it into an LDL rule set and a query, and then executing the query against given data 
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to test the hypothesis. The process is repeated by reformulating the rules and the query. This 
has been applied to genome data analysis in the field of microbiology, where data dredging 
consists of identifying the DNA sequences from low-level digitized autoradiographs from 
experiments performed on E. coli bacteria.  

• Software reuse: The bulk of the software for an application is developed in standard 
procedural code, and a small fraction is rule-based and encoded in LDL. The rules give rise to 
a knowledge base that contains the following elements:  

A definition of each C module used in the system.  

A set of rules that defines ways in which modules can export/import functions, constraints, and so on.  

 
 

The "knowledge base" can be used to make decisions that pertain to the reuse of software subsets. 
Modules can be recombined to satisfy specific tasks, as long as the relevant rules are satisfied. This is 
being experimented with in banking software.  

 
 

25.8.2 VALIDITY Applications 

Knowledge independence is a term used by VALIDITY developers to refer to a technical version of 
business rule independence. From a database standpoint, it is a step beyond data independence that 
brings about integration of data and rules. The goal is to achieve streamlining of application 
development (multiple applications share rules managed by the database), application maintenance 
(changes in definitions and in regulations are more easily done), and ease-of-use (interactions are done 
through high-level tools enabled by the logic foundation). For instance, it simplifies the task of the 
application programmer who does not need to include tests in his application to guarantee the 
soundness of his transactions. VALIDITY claims to be able to express, manage, and apply the business 
rules governing the interactions among various processes within a company.  

VALIDITY is an appropriate tool for applying software engineering principles to application 
development. It allows the formal specification of an application in the DEL language, which can then 
be directly compiled. This eliminates the error-prone step that most methodologies based on entity-
relationship conceptual designs and relational implementations require between specification and 
compilation. The following are some application areas of the VALIDITY system:  

• Electronic commerce: In electronic commerce, complex customer profiles have to be matched 
against target descriptions. The profiles are built from various data sources. In a current 
application, demographic data and viewing history compose the viewer’s profiles. The 
matching process is also described by rules, and computed predicates deal with numeric 
computations. The declarative nature of DEL makes the formulation of the matching 
algorithm easy.  

• Rules-governed processes: In a rules-governed process, well-defined rules define the actions 
to be performed. An application prototype has been developed—its goal being to handle the 
management of dangerous gases placed in containers—and is coordinated by a large number 
of frequently changing regulations. The classes of dangerous materials are modeled as DEL 
classes. The possible locations for the containers are constrained by rules, which reflect the 
regulations. In the case of an incident, deduction rules identify potential accidents. The main 
advantage of VALIDITY is the ease with which new regulations are taken into account.  

• Knowledge discovery: The goal of knowledge discovery is to find new data relationships by 
analyzing existing data (see Section 26.2). An application prototype developed by the 
University of Illinois utilizes already existing minority student data that has been enhanced 
with rules in DEL.  
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• Concurrent engineering: A concurrent engineering application deals with large amounts of 
centralized data, shared by several participants. An application prototype has been developed 
in the area of civil engineering. The design data is modeled using the object-orientation power 
of the DEL language. When an inconsistency is detected, a new rule models the identified 
problem. Once a solution has been identified, it is turned into a constraint. DEL is able to 
handle transformation of rules into constraints, and it can also handle any closed formula as an 
integrity constraint.  

 
 

25.9 Summary 

In this chapter we introduced deductive database systems, a relatively new branch of database 
management. This field has been influenced by logic programming languages, particularly by Prolog. 
A subset of Prolog called Datalog, which contains function-free Horn clauses, is primarily used as the 
basis of current deductive database work. Concepts of Datalog were introduced here. We discussed the 
standard backward-chaining inferencing mechanism of Prolog and a forward-chaining bottom-up 
strategy. The latter has been adapted to evaluate queries dealing with relations (extensional databases), 
by using standard relational operations together with Datalog. Procedures for evaluating nonrecursive 
and recursive query processing were discussed and algorithms presented for naive and seminaive 
evaluation of recursive queries. Negation is particularly difficult to deal with in such deductive 
databases; a popular concept called stratified negation was introduced in this regard.  

We surveyed a commercial deductive database system called LDL originally developed at MCC and 
other experimental systems called CORAL and NAIL!. The latest deductive database implementations 
are called DOODs. They combine the power of object orientation with deductive capabilities. The most 
recent entry on the commercial DOOD scene is VALIDITY, which we discussed here briefly. The 
deductive database area is still in an experimental stage. Its adoption by industry will give a boost to its 
development. Toward this end, we mentioned practical applications in which LDL and VALIDITY are 
proving to be very valuable.  

 
 

Exercises 

  25.1. Add the following facts to the example database in Figure 25.03:  

 
 

supervise (ahmad,bob), supervise (franklin,gwen).  

 
 

First modify the supervisory tree in Figure 25.01(b) to reflect this change. Then modify the 
diagram in Figure 25.04 showing the top-down evaluation of the query superior(james, 
Y).  

  25.2. Consider the following set of facts for the relation parent(X, Y), where Y is the parent of X:  
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parent(a,aa), parent(a,ab), parent(aa,aaa), parent(aa,aab), parent(aaa,aaaa), parent(aaa,aaab).  

 
 

Consider the rules  

 
 

: ancestor(X,Y) :- parent(X,Y)  

: ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)  

 
 

which define ancestor Y of X as above.  

a. Show how to solve the Datalog query 
 
ancestor(aa,X)? 
 
using the naive strategy. Show your work at each step.  

b. Show the same query by computing only the changes in the ancestor relation and 
using that in rule 2 each time.  

[This question is derived from Bancilhon and Ramakrishnan (1986).]  

  25.3. Consider a deductive database with the following rules:  

 
 

ancestor(X,Y) :- father(X,Y)  

ancestor(X,Y) :- father(X,Z), ancestor(Z,Y)  

 
 

Notice that "father(X, Y)" means that Y is the father of X; "ancestor(X, Y)" means that 
Y is the ancestor of X. Consider the fact base  

 
 

father(Harry,Issac), father(Issac,John), father(John,Kurt).  

a. Construct a model theoretic interpretation of the above rules using the given facts.  
b. Consider that a database contains the above relations father(X, Y), another 

relation brother(X, Y), and a third relation birth(X, B), where B is the birthdate 
of person X. State a rule that computes the first cousins of the following variety: their 
fathers must be brothers.  

c. Show a complete Datalog program with fact-based and rule-based literals that 
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computes the following relation: list of pairs of cousins, where the first person is born 
after 1960 and the second after 1970. You may use "greater than" as a built-in 
predicate. (Note: Sample facts for brother, birth, and person must also be shown.)  

  25.4. Consider the following rules:  

 
 

reachable(X,Y) :- flight(X,Y)  

reachable(X,Y) :- flight(X,Z), reachable(Z,Y)  

 
 

where reachable(X, Y) means that city Y can be reached from city X, and flight(X, Y) 
means that there is a flight to city Y from city X.  

a. Construct fact predicates that describe the following:  
i. Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore, 

Sydney are cities.  
ii. The following flights exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt, 

Frankfurt to Atlanta, Frankfurt to Singapore, and Singapore to Sydney. 
(Note: No flight in reverse direction can be automatically assumed.)  

b. Is the given data cyclic? If so, in what sense?  
c. Construct a model theoretic interpretation (that is, an interpretation similar to the one 

shown in Figure 25.03) of the above facts and rules.  
d. Consider the query  

 
reachable(Atlanta,Sydney)? 
 
How will this query be executed using naive and seminaive evaluation? List the series 
of steps it will go through.  

e. Consider the following rule defined predicates: 
 
round-trip-reachable(X,Y) :- reachable(X,Y), 
reachable(Y,X) duration(X,Y,Z) 
 
Draw a predicate dependency graph for the above predicates. (Note: duration(X, 
Y, Z) means that you can take a flight from X to Y in Z hours.)  

f. Consider the following query: What cities are reachable in 12 hours from Atlanta? 
Show how to express it in Datalog. Assume built-in predicates like greater-
than(X, Y). Can this be converted into a relational algebra statement in a 
straightforward way? Why or why not?  

g. Consider the predicate population(X, Y) where Y is the population of city X. 
Consider the following query: List all possible bindings of the predicate pair pair 
(X, Y), where Y is a city that can be reached in two flights from city X, which has 
over 1 million people. Show this query in Datalog. Draw a corresponding query tree 
in relational algebraic terms.  

  25.5. Consider the following rules:  
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sgc(X,Y) :- eq(X,Y).  

sgc(X,Y) :- par(X,X1), sgc(X1,Y1), par(Y,Y1).  

 
 

and the EDB, PAR = {(d, g), (e, g), (b, d), (a, d), (a, h), (c, e)}. What is the result 
of the query  

 
 

sgc(a,Y)?  

 
 

Solve using the naive and seminaive methods.  

  25.6. The following rules have been given:  

 
 

path(X,Y) :- arc(X,Y).  

path(X,Y) :- path(X,Z), path(Z,Y).  

 
 

Suppose that the nodes in a graph are {a, b, c, d} and there are no arcs. Let the set of paths, P 
= {(a, b), (c, d)}. Show that this model is not a fixed point.  

  25.7. Consider the frequent flyer Skymiles program database at an airline. It maintains the following 
relations:  

 
 

99status(X,Y), 98status(X,Y), 98Miles(X,Y).  

 
 

The status data refers to passenger X having a status Y for the year, where Y can be regular, 
silver, gold, or platinum. Let the requirements for achieving gold status be expressed by:  

 
 

99status(X,’gold’) :- 98status(X,’gold’) AND 98Miles(X,Y) AND Y>45000  
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99status(X,’gold’) :- 98status(X,’platinum’) AND 98Miles(X,Y) AND Y>40000  

99status(X,’gold’) :- 98status(X,’regular’) AND 98Miles(X,Y) AND Y>50000  

 
 

98Miles(X, Y) gives the miles Y flown by passenger X in 1998. Assume that similar rules 
exist for reaching other statuses.  

a. Make up a set of other reasonable rules for achieving platinum status.  
b. Is the above programmable in DATALOG? Why or why not?  
c. Write a prolog program with the above rules, populate the predicates with sample 

data, and show how a query like 99status(‘John Smith’, Y) is computed in 
Prolog.  

  25.8. Consider a tennis tournament database with predicates rank (X, Y): X holds rank Y, 
beats (X1, X2): X1 beats X2, and superior (X1, X2): X1 is a superior 
player to X2. Assume that if a player beats another player he is superior to that player and 
assume that if a player 1 beats player 2 and player 2 is superior to 3 then 1 is superior to 3. 
Construct a set of recursive rules using the above predicates. (Note: We shall hypothetically 
assume that there are no "upsets"—that the above rule is always met.)  

a. Construct a set of recursive rules.  
b. Populate data for beats relation with 10 players playing 3 matches each.  
c. Show a computation of the superior table using this data.  
d. Does the superior have a fixpoint? Why or why not? Explain.  

For the population of players in the database, assuming John is one of the players, how do you 
compute "superior (john, X)?" using naive, and seminaive algorithms?  
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interpreted strategy, and the Henschen-Naqvi (1984) top-down compiled iterative strategy. Balbin and 
Rao (1987) discuss an extension of the seminaive differential approach for multiple predicates.  
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The original paper on magic sets is by Bancilhon et al. (1986). Beeri and Ramakrishnan (1987) extends 
it. Mumick et al. (1990) show the applicability of magic sets to nonrecursive nested SQL queries. Other 
approaches to optimizing rules without rewriting them appear in Vieille (1986, 1987). Kifer and 
Lozinskii (1986) propose a different technique. Bry (1990) discusses how the top-down and bottom-up 
approaches can be reconciled. Whang and Navathe (1992) describe an extended disjunctive normal 
form technique to deal with recursion in relational algebra expressions for providing an expert system 
interface over a relational DBMS.  

Chang (1981) describes an early system for combining deductive rules with relational databases. The 
LDL system prototype is described in Chimenti et al. (1990). Krishnamurthy and Naqvi (1989) 
introduce the "choice" notion in LDL. Zaniolo (1988) discusses the language issues for the LDL 
system. A language overview of CORAL is provided in Ramakrishnan et al. (1992), and the 
implementation is described in Ramakrishnan et al. (1993). An extension to support object-oriented 
features, called CORAL++, is described in Srivastava et al. (1993). Ullman (1985) provides the basis 
for the NAIL! system, which is described in Morris et al. (1987). Phipps et al. (1991) describe the 
GLUE-NAIL! deductive database system.  

Zaniolo (1990) reviews the theoretical background and the practical importance of deductive databases. 
Nicolas (1997) gives an excellent history of the developments leading up to DOODs. Falcone et al. 
(1997) survey the DOOD landscape. References on the VALIDITY system include Friesen et al. 
(1995), Vieille (1997), and Dietrich et al. (1999).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Note 1 

A historical perspective of these developments appears in Nicolas (1997).  

 
 

Note 2 

A Prolog system typically has a number of different equality predicates that have different 
interpretations.  

 
 

Note 3 

Named after the mathematician Alfred Horn.  

 
 

Note 4 
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The most commonly chosen domain is finite and is called the Herbrand Universe.  

 
 

Note 5 

Notice that, in our example, the order of search is quite similar for both forward and backward 
chaining. However, this is not generally the case.  

 
 

Note 6 

For a detailed discussion of fixed points, consult Ullman (1988).  

 
 

Chapter 26: Data Warehousing And Data Mining 
26.1 Data Warehousing 
26.2 Data Mining 
26.3 Summary 
Review Exercises 
Selected Bibliography 
Footnotes

The increasing processing power and sophistication of analytical tools and techniques have resulted in 
the development of what are known as data warehouses. These data warehouses provide storage, 
functionality, and responsiveness to queries beyond the capabilities of transaction-oriented databases. 
Accompanying this ever-increasing power has come a great demand to improve the data access 
performance of databases. As we have seen throughout the book, traditional databases balance the 
requirement of data access with the need to ensure integrity of data. In modern organizations, users of 
data are often completely removed from the data sources. Many people only need read-access to data, 
but still need a very rapid access to a larger volume of data than can conveniently be downloaded to the 
desktop. Often such data comes from multiple databases. Because many of the analyses performed are 
recurrent and predictable, software vendors and systems support staff have begun to design systems to 
support these functions. At present there is a great need to provide decision makers from middle 
management upward with information at the correct level of detail to support decision making. Data 
warehousing, on-line analytical processing (OLAP), and data mining provide this functionality. In this 
chapter we give a broad overview of each of these technologies.  

The market for such support has been growing rapidly since the mid-1990s. As managers become 
increasingly aware of the growing sophistication of analytic capabilities of these data-based systems, 
they look increasingly for more sophisticated support for their key organizational decisions.  

 
 

26.1 Data Warehousing 

26.1.1 Terminology and Definitions 
26.1.2 Characteristics of Data Warehouses 
26.1.3 Data Modeling for Data Warehouses 
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26.1.4 Building a Data Warehouse 
26.1.5 Typical Functionality of Data Warehouses 
26.1.6 Difficulties of Implementing Data Warehouses 
26.1.7 Open Issues in Data Warehousing

Because data warehouses have been developed in numerous organizations to meet particular needs, 
there is no single, canonical definition of the term data warehouse (Note 1). Professional magazine 
articles and books in the popular press have elaborated on the meaning in a variety of ways. Vendors 
have capitalized on the popularity of the term to help market a variety of related products, and 
consultants have provided a large variety of services, all under the data warehousing banner. However, 
data warehouses are quite distinct from traditional databases in their structure, functioning, 
performance, and purpose.  

 
 

26.1.1 Terminology and Definitions 

W. H. Inmon (Note 2) characterized a data warehouse as "a subject-oriented, integrated, nonvolatile, 
time-variant collection of data in support of management's decisions." Data warehouses provide access 
to data for complex analysis, knowledge discovery, and decision making.  

They support high-performance demands on an organization's data and information. Several types of 
applications—OLAP, DSS, and data mining applications—are supported. OLAP (on-line analytical 
processing) is a term used to describe the analysis of complex data from the data warehouse. In the 
hands of skilled knowledge workers, OLAP tools use distributed computing capabilities for analyses 
that require more storage and processing power than can be economically and efficiently located on an 
individual desktop. DSS (decision-support systems) also known as EIS (executive information 
systems) (not to be confused with enterprise integration systems) support an organization's leading 
decision makers with higher-level data for complex and important decisions. Data mining (which we 
will discuss in detail in Section 26.2) is used for knowledge discovery, the process of searching data for 
unanticipated new knowledge.  

Traditional databases support on-line transaction processing (OLTP), which includes insertions, 
updates, and deletions, while also supporting information query requirements. Traditional relational 
databases are optimized to process queries that may touch a small part of the database and transactions 
that deal with insertions or updates of a few tuples per relation to process. Thus, they cannot be 
optimized for OLAP, DSS, or data mining. By contrast, data warehouses are designed precisely to 
support efficient extraction, processing, and presentation for analytic and decision-making purposes. In 
comparison to traditional databases, data warehouses generally contain very large amounts of data from 
multiple sources that may include databases from different data models and sometimes files acquired 
from independent systems and platforms.  

 
 

26.1.2 Characteristics of Data Warehouses 

To discuss data warehouses and distinguish them from transactional databases calls for an appropriate 
data model. The multidimensional data model (explained in more detail below) is a good fit for OLAP 
and decision-support technologies. In contrast to multidatabases, which provide access to disjoint and 
usually heterogeneous databases, a data warehouse is frequently a store of integrated data from 
multiple sources, processed for storage in a multidimensional model. Unlike most transactional 
databases, data warehouses typically support time-series and trend analysis, both of which require more 
historical data than are generally maintained in transactional databases. Compared with transactional 
databases, data warehouses are nonvolatile. That means that information in the data warehouse changes 
far less often and may be regarded as non-real-time with periodic updating. In transactional systems, 
transactions are the unit and are the agent of change to the database; by contrast, data warehouse 
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information is much more coarse grained and is refreshed according to a careful choice of refresh 
policy, usually incremental. Warehouse updates are handled by the warehouse's acquisition component 
that provides all required preprocessing.  

We can also describe data warehousing more generally as "a collection of decision support 
technologies, aimed at enabling the knowledge worker (executive, manager, analyst) to make better 
and faster decisions" (Note 3). Figure 26.01 gives an overview of the conceptual structure of a data 
warehouse. It shows the entire data warehousing process. This process includes possible cleaning and 
reformatting of data before its warehousing. At the back end of the process, OLAP, data mining, and 
DSS may generate new relevant information such as rules; this information is shown in the figure 
going back into the warehouse. The figure also shows that data sources may include files.  

 

 

 
 

Data warehouses have the following distinctive characteristics (Note 4).  

• multidimensional conceptual view  
• generic dimensionality  
• unlimited dimensions and aggregation levels  
• unrestricted cross-dimensional operations  
• dynamic sparse matrix handling  
• client-server architecture  
• multi-user support  
• accessibility  
• transparency  
• intuitive data manipulation  
• consistent reporting performance  
• flexible reporting  

Because they encompass large volumes of data, data warehouses are generally an order of magnitude 
(sometimes two orders of magnitude) larger than the source databases. The sheer volume of data (likely 
to be in terabytes) is an issue that has been dealt with through enterprise-wide data warehouses, virtual 
data warehouses, and data marts:  

• Enterprise-wide data warehouses are huge projects requiring massive investment of time 
and resources.  

• Virtual data warehouses provide views of operational databases that are materialized for 
efficient access.  

• Data marts generally are targeted to a subset of the organization, such as a department, and 
are more tightly focused.  

 
 

26.1.3 Data Modeling for Data Warehouses 

Multidimensional models take advantage of inherent relationships in data to populate data in 
multidimensional matrices called data cubes. (These may be called hypercubes if they have more than 
three dimensions.) For data that lend themselves to dimensional formatting, query performance in 
multidimensional matrices can be much better than in the relational data model. Three examples of 
dimensions in a corporate data warehouse would be the corporation's fiscal periods, products, and 
regions.  

1 Page 725 of 893



www.manaraa.com

A standard spreadsheet is a two-dimensional matrix. One example would be a spreadsheet of regional 
sales by product for a particular time period. Products could be shown as rows, with sales revenues for 
each region comprising the columns. (Figure 26.02 shows this two-dimensional organization.) Adding 
a time dimension, such as an organization's fiscal quarters, would produce a three-dimensional matrix, 
which could be represented using a data cube.  

 

 

 
 

In Figure 26.03 there is a three-dimensional data cube that organizes product sales data by fiscal 
quarters and sales regions. Each cell could contain data for a specific product, specific fiscal quarter, 
and specific region. By including additional dimensions, a data hypercube could be produced, although 
more than three dimensions cannot be easily visualized at all or presented graphically. The data can be 
queried directly in any combination of dimensions, bypassing complex database queries. Tools exist for 
viewing data according to the user's choice of dimensions. Changing from one dimensional hierarchy 
(orientation) to another is easily accomplished in a data cube by a technique called pivoting (also 
called rotation). In this technique the data cube can be thought of as rotating to show a different 
orientation of the axes. For example, you might pivot the data cube to show regional sales revenues as 
rows, the fiscal quarter revenue totals as columns, and the company's products in the third dimension 
(Figure 26.04). Hence, this technique is equivalent to having a regional sales table for each product 
separately, where each table shows quarterly sales for that product region by region.  

 

 

 

 

 
 

Multidimensional models lend themselves readily to hierarchical views in what is known as roll-up 
display and drill-down display. Roll-up display moves up the hierarchy, grouping into larger units 
along a dimension (e.g., summing weekly data by quarter, or by year). Figure 26.05 shows a roll-up 
display that moves from individual products to a coarser grain of product categories. Shown in Figure 
26.06, a drill-down display provides the opposite capability, furnishing a finer-grained view, perhaps 
disaggregating country sales by region and then regional sales by subregion and also breaking up 
products by styles.  
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The multidimensional storage model involves two types of tables: dimension tables and fact tables. A 
dimension table consists of tuples of attributes of the dimension. A fact table can be thought of as 
having tuples, one per a recorded fact. This fact contains some measured or observed variable(s) and 
identifies it (them) with pointers to dimension tables. The fact table contains the data and the 
dimensions identify each tuple in that data. Figure 26.07 contains an example of a fact table that can be 
viewed from the perspective of multiple dimension tables.  

 

 

 
 

Two common multidimensional schemas are the star schema and the snowflake schema. The star 
schema consists of a fact table with a single table for each dimension (Figure 26.07). The snowflake 
schema is a variation on the star schema in which the dimensional tables from a star schema are 
organized into a hierarchy by normalizing them (Figure 26.08). Some installations are normalizing data 
warehouses up to the third normal form so that they can access the data warehouse to the finest level of 
detail. A fact constellation is a set of fact tables that share some dimension tables. Figure 26.09 shows 
a fact constellation with two fact tables, business results and business forecast. These share the 
dimension table called product. Fact constellations limit the possible queries for the warehouse.  

 

 

 

 

 
 

Data warehouse storage also utilizes indexing techniques to support high performance access (see 
Chapter 6 for a discussion of indexing). A technique called bitmap indexing constructs a bit vector for 
each value in a domain (column) being indexed. It works very well for domains of low-cardinality. 
There is a 1 bit placed in the jth position in the vector if the jth row contains the value being indexed. 
For example, imagine an inventory of 100,000 cars with a bitmap index on car size. If there are four car 
sizes—economy, compact, midsize, and fullsize—there will be four bit vectors, each containing 
100,000 bits (12.5 K) for a total index size of 50K. Bitmap indexing can provide considerable 
input/output and storage space advantages in low-cardinality domains. With bit vectors a bitmap index 
can provide dramatic improvements in comparison, aggregation, and join performance. In a star 
schema, dimensional data can be indexed to tuples in the fact table by join indexing. Join indexes are 
traditional indexes to maintain relationships between primary key and foreign key values. They relate 
the values of a dimension of a star schema to rows in the fact table. For example, consider a sales fact 
table that has city and fiscal quarter as dimensions. If there is a join index on city, for each city the join 
index maintains the tuple IDs of tuples containing that city. Join indexes may involve multiple 
dimensions.  

Data warehouse storage can facilitate access to summary data by taking further advantage of the 
nonvolatility of data warehouses and a degree of predictability of the analyses that will be performed 
using them. Two approaches have been used: (1) smaller tables including summary data such as 
quarterly sales or revenue by product line, and (2) encoding of level (e.g., weekly, quarterly, annual) 
into existing tables. By comparison, the overhead of creating and maintaining such aggregations would 
likely be excessive in a volatile, transaction-oriented database.  
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26.1.4 Building a Data Warehouse 

In constructing a data warehouse, builders should take a broad view of the anticipated use of the 
warehouse. There is no way to anticipate all possible queries or analyses during the design phase. 
However, the design should specifically support ad-hoc querying, that is, accessing data with any 
meaningful combination of values for the attributes in the dimension or fact tables. For example, a 
marketing-intensive consumer-products company would require different ways of organizing the data 
warehouse than would a nonprofit charity focused on fund raising. An appropriate schema should be 
chosen that reflects anticipated usage.  

Acquisition of data for the warehouse involves the following steps:  

• The data must be extracted from multiple, heterogeneous sources, for example, databases or 
other data feeds such as those containing financial market data or environmental data.  

• Data must be formatted for consistency within the warehouse. Names, meanings, and domains 
of data from unrelated sources must be reconciled. For instance, subsidiary companies of a 
large corporation may have different fiscal calendars with quarters ending on different dates, 
making it difficult to aggregate financial data by quarter. Various credit cards may report their 
transactions differently, making it difficult to compute all credit sales. These format 
inconsistencies must be resolved.  

• The data must be cleaned to ensure validity. Data cleaning is an involved and complex process 
that has been identified as the largest labor-demanding component of data warehouse 
construction. For input data, cleaning must occur before the data are loaded into the 
warehouse. There is nothing about cleaning data that is specific to data warehousing and that 
could not be applied to a host database. However, since input data must be examined and 
formatted consistently, data warehouse builders should take this opportunity to check for 
validity and quality. Recognizing erroneous and incomplete data is difficult to automate, and 
cleaning that requires automatic error correction can be even tougher. Some aspects, such as 
domain checking, are easily coded into data cleaning routines, but automatic recognition of 
other data problems can be more challenging. (For example, one might require that City = 'San 
Francisco' together with State = 'CT' be recognized as an incorrect combination.) After such 
problems have been taken care of, similar data from different sources must be coordinated for 
loading into the warehouse. As data managers in the organization discover that their data are 
being cleaned for input into the warehouse, they will likely want to upgrade their data with the 
cleaned data. The process of returning cleaned data to the source is called backflushing (see 
Figure 26.01).  

• The data must be fitted into the data model of the warehouse. Data from the various sources 
must be installed in the data model of the warehouse. Data may have to be converted from 
relational, object-oriented, or legacy databases (network and/or hierarchical) to a 
multidimensional model.  

• The data must be loaded into the warehouse. The sheer volume of data in the warehouse 
makes loading the data a significant task. Monitoring tools for loads as well as methods to 
recover from incomplete or incorrect loads are required. With the huge volume of data in the 
warehouse, incremental updating is usually the only feasible approach. The refresh policy will 
probably emerge as a compromise that takes into account the answers to the following 
questions:  

• How up-to-date must the data be?  
• Can the warehouse go off-line, and for how long?  
• What are the data interdependencies?  
• What is the storage availability?  
• What are the distribution requirements (such as for replication and partitioning)?  
• What is the loading time (including cleaning, formatting, copying, transmitting, and overhead 

such as index rebuilding)?  
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As we have said, databases must strike a balance between efficiency in transaction processing and 
supporting query requirements (ad hoc user requests), but a data warehouse is typically optimized for 
access from a decision maker's needs. Data storage in a data warehouse reflects this specialization and 
involves the following processes:  

• Storing the data according to the data model of the warehouse  
• Creating and maintaining required data structures  
• Creating and maintaining appropriate access paths  
• Providing for time-variant data as new data are added  
• Supporting the updating of warehouse data  
• Refreshing the data  
• Purging data  

Although adequate time can be devoted initially to constructing the warehouse, the sheer volume of 
data in the warehouse generally makes it impossible to simply reload the warehouse in its entirety later 
on. Alternatives include selective (partial) refreshing of data and separate warehouse versions 
(requiring double storage capacity for the warehouse!). When the warehouse uses an incremental data 
refreshing mechanism, data may need to be periodically purged; for example, a warehouse that 
maintains data on the previous twelve business quarters may periodically purge its data each year.  

Data warehouses must also be designed with full consideration of the environment in which they will 
reside. Important design considerations include the following:  

• Usage projections  
• The fit of the data model  
• Characteristics of available sources  
• Design of the metadata component  
• Modular component design  
• Design for manageability and change  
• Considerations of distributed and parallel architecture  

We discuss each of these in turn. Warehouse design is initially driven by usage projections; that is, by 
expectations about who will use the warehouse and in what way. Choice of a data model to support this 
usage is a key initial decision. Usage projections and the characteristics of the warehouse's data sources 
are both taken into account. Modular design is a practical necessity to allow the warehouse to evolve 
with the organization and its information environment. In addition, a well-built data warehouse must be 
designed for maintainability, enabling the warehouse managers to effectively plan for and manage 
change while providing optimal support to users.  

You may recall the term metadata from Chapter 2; metadata was defined as the description of a 
database including its schema definition. The metadata repository is a key data warehouse 
component. The metadata repository includes both technical and business metadata. The first, technical 
metadata, covers details of acquisition processing, storage structures, data descriptions, warehouse 
operations and maintenance, and access support functionality. The second, business metadata, includes 
the relevant business rules and organizational details supporting the warehouse.  

The architecture of the organization's distributed computing environment is a major determining 
characteristic for the design of the warehouse. There are two basic distributed architectures: the 
distributed warehouse and the federated warehouse. For a distributed warehouse, all the issues of 
distributed databases are relevant, for example, replication, partitioning, communications, and 
consistency concerns. A distributed architecture can provide benefits particularly important to 
warehouse performance, such as improved load balancing, scalability of performance, and higher 
availability. A single replicated metadata repository would reside at each distribution site. The idea of 
the federated warehouse is like that of the federated database: a decentralized confederation of 
autonomous data warehouses, each with its own metadata repository. Given the magnitude of the 
challenge inherent to data warehouses, it is likely that such federations will consist of smaller-scale 
components, such as data marts. Large organizations may choose to federate data marts rather than 
build huge data warehouses.  
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26.1.5 Typical Functionality of Data Warehouses 

Data Warehousing and Views

Data warehouses exist to facilitate complex, data-intensive, and frequent ad hoc queries. Accordingly, 
data warehouses must provide far greater and more efficient query support than is demanded of 
transactional databases. The data warehouse access component supports enhanced spreadsheet 
functionality, efficient query processing, structured queries, ad hoc queries, data mining, and 
materialized views. In particular, enhanced spreadsheet functionality includes support for state-of-the-
art spreadsheet applications (e.g., MS Excel) as well as for OLAP applications programs. These offer 
preprogrammed functionalities such as the following:  

• Roll-up: Data is summarized with increasing generalization (e.g., weekly to quarterly to 
annually).  

• Drill-down: Increasing levels of detail are revealed (the complement of roll-up).  
• Pivot: Cross tabulation (also referred as rotation) is performed.  
• Slice and dice: Performing projection operations on the dimensions.  
• Sorting: Data is sorted by ordinal value.  
• Selection: Data is available by value or range.  
• Derived (computed) attributes: Attributes are computed by operations on stored and derived 

values.  

Because data warehouses are free from the restrictions of the transactional environment there is an 
increased efficiency in query processing. Among the tools and techniques used are: query 
transformation, index intersection and union, special ROLAP (relational OLAP) and MOLAP 
(multidimensional OLAP) functions, SQL extensions, advanced join methods, and intelligent scanning 
(as in piggy-backing multiple queries).  

Improved performance has also been attained with parallel processing. Parallel server architectures 
include symmetric multiprocessor (SMP), cluster, and massively parallel processing (MPP), and 
combinations of these.  

Knowledge workers and decision makers use tools ranging from parametric queries to ad hoc queries to 
data mining. Thus, the access component of the data warehouse must provide support of structured 
queries (both parametric and ad hoc). These together make up a managed query environment. Data 
mining itself uses techniques from statistical analysis and artificial intelligence. Statistical analysis can 
be performed by advanced spreadsheets, by sophisticated statistical analysis software, or by custom-
written programs. Techniques such as lagging, moving averages, and regression analysis are also 
commonly employed. Artificial intelligence techniques, which may include genetic algorithms and 
neural networks, are used for classification and are employed to discover knowledge from the data 
warehouse that may be unexpected or difficult to specify in queries. (We treat data mining in detail in 
Section 26.2.)  

 
 

Data Warehousing and Views 

Some people have considered data warehouses to be an extension of database views. Earlier we 
mentioned materialized views as one way of meeting requirements for improved access to data (see 
Chapter 8 for a discussion of views). Materialized views have been explored for their performance 
enhancement. Views, however, provide only a subset of the functions and capabilities of data 
warehouses. Views and data warehouses are alike in that they both have read-only extracts from 
databases and subject-orientation. However, data warehouses are different from views in the following 
ways:  
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• Data warehouses exist as persistent storage instead of being materialized on demand.  
• Data warehouses are not usually relational, but rather multidimensional. Views of a relational 

database are relational.  
• Data warehouses can be indexed to optimize performance. Views cannot be indexed 

independent from of the underlying databases.  
• Data warehouses characteristically provide specific support of functionality; views cannot.  
• Data warehouses provide large amounts of integrated and often temporal data, generally more 

than is contained in one database, whereas views are an extract of a database.  

 
 

26.1.6 Difficulties of Implementing Data Warehouses 

Some significant operational issues arise with data warehousing: construction, administration, and 
quality control. Project management—the design, construction, and implementation of the 
warehouse—is an important and challenging consideration that should not be underestimated. The 
building of an enterprise-wide warehouse in a large organization is a major undertaking, potentially 
taking years from conceptualization to implementation. Because of the difficulty and amount of lead 
time required for such an undertaking, the widespread development and deployment of data marts may 
provide an attractive alternative, especially to those organizations with urgent needs for OLAP, DSS, 
and/or data mining support.  

The administration of a data warehouse is an intensive enterprise, proportional to the size and 
complexity of the warehouse. An organization that attempts to administer a data warehouse must 
realistically understand the complex nature of its administration. Although designed for read-access, a 
data warehouse is no more a static structure than any of its information sources. Source databases can 
be expected to evolve. The warehouse's schema and acquisition component must be expected to be 
updated to handle these evolutions.  

A significant issue in data warehousing is the quality control of data. Both quality and consistency of 
data are major concerns. Although the data passes through a cleaning function during acquisition, 
quality and consistency remain significant issues for the database administrator. Melding data from 
heterogeneous and disparate sources is a major challenge given differences in naming, domain 
definitions, identification numbers, and the like. Every time a source database changes, the data 
warehouse administrator must consider the possible interactions with other elements of the warehouse.  

Usage projections should be estimated conservatively prior to construction of the data warehouse and 
should be revised continually to reflect current requirements. As utilization patterns become clear and 
change over time, storage and access paths can be tuned to remain optimized for support of the 
organization's use of its warehouse. This activity should continue throughout the life of the warehouse 
in order to remain ahead of demand. The warehouse should also be designed to accommodate addition 
and attrition of data sources without major redesign. Sources and source data will evolve, and the 
warehouse must accommodate such change. Fitting the available source data into the data model of the 
warehouse will be a continual challenge, a task that is as much art as science. Because there is 
continual rapid change in technologies, both the requirements and capabilities of the warehouse will 
change considerably over time. Additionally, data warehousing technology itself will continue to 
evolve for some time so that component structures and functionalities will continually be upgraded. 
This certain change is excellent motivation for having fully modular design of components.  

Administration of a data warehouse will require far broader skills than are needed for traditional 
database administration. A team of highly skilled technical experts with overlapping areas of expertise 
will likely be needed, rather than a single individual. Like database administration, data warehouse 
administration is only partly technical; a large part of the responsibility requires working effectively 
with all the members of the organization with an interest in the data warehouse. However difficult that 
can be at times for database administrators, it is that much more challenging for data warehouse 
administrators, as the scope of their responsibilities is considerably broader.  
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Design of the management function and selection of the management team for a database warehouse 
are crucial. Managing the data warehouse in a large organization will surely be a major task. Many 
commercial tools are already available to support management functions. Effective data warehouse 
management will certainly be a team function, requiring a wide set of technical skills, careful 
coordination, and effective leadership. Just as we must prepare for the evolution of the warehouse, we 
must also recognize that the skills of the management team will, of necessity, evolve with it.  

 
 

26.1.7 Open Issues in Data Warehousing 

There has been much marketing hyperbole surrounding the term "data warehouse"; the exaggerated 
expectations will probably subside, but the concept of integrated data collections to support 
sophisticated analysis and decision support will undoubtedly endure.  

Data warehousing as an active research area is likely to see increased research activity in the near 
future as warehouses and data marts proliferate. Old problems will receive new emphasis; for example, 
data cleaning, indexing, partitioning, and views could receive renewed attention.  

Academic research into data warehousing technologies will likely focus on automating aspects of the 
warehouse that currently require significant manual intervention, such as the data acquisition, data 
quality management, selection and construction of appropriate access paths and structures, self-
maintainability, functionality, and performance optimization. Application of active database 
functionality (see Section 23.1) into the warehouse is likely also to receive considerable attention. 
Incorporation of domain and business rules appropriately into the warehouse creation and maintenance 
process may make it more intelligent, relevant, and self-governing.  

Commercial software for data warehousing is already available from a number of vendors, focusing 
principally on management of the data warehouse and OLAP/DSS applications. Other aspects of data 
warehousing, such as design and data acquisition (especially cleaning), are being addressed primarily 
by teams of in-house IT managers and consultants.  

 
 

26.2 Data Mining 

26.2.1 An Overview of Data Mining Technology 
26.2.2 Association Rules 
26.2.3 Approaches to Other Data Mining Problems 
26.2.4 Applications of Data Mining 
26.2.5 State-of-the-Art of Commercial Data Mining Tools

Over the last three decades, many organizations have generated a large amount of machine-readable 
data in the form of files and databases. To process this data, we have the database technology available 
to us that supports query languages like SQL. The problem with SQL is that it is a structured language 
that assumes the user is aware of the database schema. SQL supports operations of relational algebra 
that allow a user to select from tables (rows and columns of data) or join related information from 
tables based on common fields. In the last section we saw that data warehousing technology affords 
types of functionality, that of consolidation, aggregation, and summarization of data. It lets us view the 
same information along multiple dimensions. In this section, we will focus our attention on yet another 
very popular area of interest known as data mining. As the term connotes, data mining refers to the 
mining or discovery of new information in terms of patterns or rules from vast amounts of data. To be 
practically useful, data mining must be carried out efficiently on large files and databases. To date, it is 
not well-integrated with database management systems.  
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We will briefly review the state of the art of this rather extensive field of data mining, which uses 
techniques from such areas as machine learning, statistics, neural networks, and genetic algorithms. We 
will highlight the nature of the information that is discovered, the types of problems faced in databases, 
and potential applications. We also survey the state of the art of a large number of commercial tools 
available (see Section 26.2.5) and describe a number of research advances that are needed to make this 
area viable.  

 
 

26.2.1 An Overview of Data Mining Technology 

Data Mining and Data Warehousing 
Data Mining as a Part of the Knowledge Discovery Process 
Goals of Data Mining and Knowledge Discovery 
Types of Knowledge Discovered during Data Mining

In reports such as the very popular Gartner Report (Note 5), data mining has been hailed as one of the 
top technologies for the near future. In this section we relate data mining to the broader area called 
knowledge discovery and contrast the two by means of an illustrative example. We also discuss a 
number of data mining techniques and algorithms in Section 26.2.3.  

 
 

Data Mining and Data Warehousing 

The goal of a data warehouse is to support decision making with data. Data mining can be used in 
conjunction with a data warehouse to help with certain types of decisions. Data mining can be applied 
to operational databases with individual transactions. To make data mining more efficient, the data 
warehouse should have an aggregated or summarized collection of data. Data mining helps in 
extracting meaningful new patterns that cannot be found necessarily by merely querying or processing 
data or metadata in the data warehouse. Data mining applications should therefore be strongly 
considered early, during the design of a data warehouse. Also, data mining tools should be designed to 
facilitate their use in conjunction with data warehouses. In fact, for very large databases running into 
terabytes of data, successful use of database mining applications will depend first on the construction 
of a data warehouse.  

 
 

Data Mining as a Part of the Knowledge Discovery Process 

Knowledge Discovery in Databases, frequently abbreviated as KDD, typically encompasses more 
than data mining. The knowledge discovery process comprises six phases (Note 6): data selection, data 
cleansing, enrichment, data transformation or encoding, data mining, and the reporting and display of 
the discovered information.  

As an example, consider a transaction database maintained by a specialty consumer goods retailer. 
Suppose the client data includes a customer name, zip code, phone number, date of purchase, item 
code, price, quantity, and total amount. A variety of new knowledge can be discovered by KDD 
processing on this client database. During data selection, data about specific items or categories of 
items, or from stores in a specific region or area of the country, may be selected. The data cleansing 
process then may correct invalid zip codes or eliminate records with incorrect phone prefixes. 
Enrichment typically enhances the data with additional sources of information. For example, given the 
client names and phone numbers, the store may purchase other data about age, income, and credit 
rating and append them to each record. Data transformation and encoding may be done to reduce the 
amount of data. For instance, item codes may be grouped in terms of product categories into audio, 
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video, supplies, electronic gadgets, camera, accessories, and so on. Zip codes may be aggregated into 
geographic regions, incomes may be divided into ten ranges, and so on. Earlier, in Figure 26.01, we 
showed a step called cleaning as a precursor to the data warehouse creation. If data mining is based on 
an existing warehouse for this retail store chain, we would expect that the cleaning has already been 
applied. It is only after such preprocessing that data mining techniques are used to mine different rules 
and patterns. For example, the result of mining may be to discover:  

• Association rules—e.g., whenever a customer buys video equipment, he or she also buys 
another electronic gadget.  

• Sequential patterns—e.g., suppose a customer buys a camera, and within three months he or 
she buys photographic supplies, and within six months an accessory item. A customer who 
buys more than twice in the lean periods may be likely to buy at least once during Christmas 
period.  

• Classification trees—e.g., customers may be classified by frequency of visits, by types of 
financing used, by amount of purchase, or by affinity for types of items, and some revealing 
statistics may be generated for such classes.  

We can see that many possibilities exist for discovering new knowledge about buying patterns, relating 
factors such as age, income-group, place of residence, to what and how much the customers purchase. 
This information can then be utilized to plan additional store locations based on demographics, to run 
store promotions, to combine items in advertisements, or to plan seasonal marketing strategies. As this 
retail-store example shows, data mining must be preceded by significant data preparation before it can 
yield useful information that can directly influence business decisions.  

The results of data mining may be reported in a variety of formats, such as listings, graphic outputs, 
summary tables, or visualizations.  

 
 

Goals of Data Mining and Knowledge Discovery 

Broadly speaking, the goals of data mining fall into the following classes: prediction, identification, 
classification, and optimization.  

• Prediction—Data mining can show how certain attributes within the data will behave in the 
future. Examples of predictive data mining include the analysis of buying transactions to 
predict what consumers will buy under certain discounts, how much sales volume a store 
would generate in a given period, and whether deleting a product line would yield more 
profits. In such applications, business logic is used coupled with data mining. In a scientific 
context, certain seismic wave patterns may predict an earthquake with high probability.  

• Identification—Data patterns can be used to identify the existence of an item, an event, or an 
activity. For example, intruders trying to break a system may be identified by the programs 
executed, files accessed, and CPU time per session. In biological applications, existence of a 
gene may be identified by certain sequences of nucleotide symbols in the DNA sequence. The 
area known as authentication is a form of identification. It ascertains whether a user is indeed 
a specific user or one from an authorized class; it involves a comparison of parameters or 
images or signals against a database.  

• Classification—Data mining can partition the data so that different classes or categories can 
be identified based on combinations of parameters. For example, customers in a supermarket 
can be categorized into discount-seeking shoppers, shoppers in a rush, loyal regular shoppers, 
and infrequent shoppers. This classification may be used in different analyses of customer 
buying transactions as a post-mining activity. Sometimes classification based on common 
domain knowledge is used as an input to decompose the mining problem and make it simpler. 
For instance, health foods, party foods, or school lunch foods are distinct categories in the 
supermarket business. It makes sense to analyze relationships within and across categories as 
separate problems. Such categorization may be used to encode the data appropriately before 
subjecting it to further data mining.  
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• Optimization—One eventual goal of data mining may be to optimize the use of limited 
resources such as time, space, money, or materials and to maximize output variables such as 
sales or profits under a given set of constraints. As such, this goal of data mining resembles 
the objective function used in operations research problems that deals with optimization under 
constraints.  

The term data mining is currently used in a very broad sense. In some situations it includes statistical 
analysis and constrained optimization as well as machine learning. There is no sharp line separating 
data mining from these disciplines. It is beyond our scope, therefore, to discuss in detail the entire 
range of applications that make up this vast body of work.  

 
 

Types of Knowledge Discovered during Data Mining 

The term "knowledge" is very broadly interpreted as involving some degree of intelligence. Knowledge 
is often classified as inductive and deductive. We discussed discovery of deductive knowledge in 
Chapter 25. Data mining addresses inductive knowledge. Knowledge can be represented in many 
forms: in an unstructured sense, it can be represented by rules, or propositional logic. In a structured 
form, it may be represented in decision trees, semantic networks, neural networks, or hierarchies of 
classes or frames. The knowledge discovered during data mining can be described in five ways, as 
follows.  

1. Association rules—These rules correlate the presence of a set of items with another range of 
values for another set of variables. Examples: (1) When a female retail shopper buys a 
handbag, she is likely to buy shoes. (2) An X-ray image containing characteristics a and b is 
likely to also exhibit characteristic c.  

2. Classification hierarchies—The goal is to work from an existing set of events or transactions 
to create a hierarchy of classes. Examples: (1) A population may be divided into five ranges of 
credit worthiness based on a history of previous credit transactions. (2) A model may be 
developed for the factors that determine the desirability of location of a store on a 1–10 scale. 
(3) Mutual funds may be classified based on performance data using characteristics such as 
growth, income, and stability.  

3. Sequential patterns—A sequence of actions or events is sought. Example: If a patient 
underwent cardiac bypass surgery for blocked arteries and an aneurysm and later developed 
high blood urea within a year of surgery, he or she is likely to suffer from kidney failure 
within the next 18 months. Detection of sequential patterns is equivalent to detecting 
association among events with certain temporal relationships.  

4. Patterns within time series—Similarities can be detected within positions of the time series. 
Three examples follow with the stock market price data as a time series: (1) Stocks of a utility 
company ABC Power and a financial company XYZ Securities show the same pattern during 
1998 in terms of closing stock price. (2) Two products show the same selling pattern in 
summer but a different one in winter. (3) A pattern in solar magnetic wind may be used to 
predict changes in earth atmospheric conditions.  

5. Categorization and segmentation—A given population of events or items can be partitioned 
(segmented) into sets of "similar" elements. Examples: (1) An entire population of treatment 
data on a disease may be divided into groups based on the similarity of side effects produced. 
(2) The adult population in the United States may be categorized into five groups from "most 
likely to buy" to "least likely to buy" a new product. (3) The web accesses made by a 
collection of users against a set of documents (say, in a digital library) may be analyzed in 
terms of the keywords of documents to reveal clusters or categories of users.  

For most applications, the desired knowledge is a combination of the above types. We expand on each 
of the above knowledge types in the following subsections.  
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26.2.2 Association Rules 

Basic Algorithms for Finding Association Rules 
Association Rules among Hierarchies 
Negative Associations 
Additional Considerations for Association Rules

One of the major technologies in data mining involves the discovery of association rules. The database 
is regarded as a collection of transactions, each involving a set of items. A common example is that of 
market-basket data. Here the market basket corresponds to what a consumer buys in a supermarket 
during one visit. Consider four such transactions in a random sample:  

 

Transaction-id  Time  Items-Brought  

101  6:35  milk, bread, juice  

792  7:38  milk, juice  

1130  8:05  milk, eggs  

1735  8:40  bread, cookies, coffee  

 
 

An association rule is of the form  

 
 

X Y,  

 
 

where X = , and Y = are sets of items, with xi and yj being distinct items for all i and all j. This 
association states that if a customer buys X, he or she is also likely to buy Y. In general, any 
association rule has the form LHS (left-hand side) RHS (right-hand side), where LHS and RHS are sets 
of items. Association rules should supply both support and confidence.  

The support for the rule LHS RHS is the percentage of transactions that hold all of the items in the 
union, the set LHS RHS. If the support is low, it implies that there is no overwhelming evidence that 
items in LHS RHS occur together, because the union happens in only a small fraction of transactions. 
The rule Milk Juice has 50% support, while Bread Juice has only 25% support. Another term for 
support is prevalence of the rule.  

To compute confidence we consider all transactions that include items in LHS. The confidence for the 
association rule LHS RHS is the percentage (fraction) of such transactions that also include RHS. 
Another term for confidence is strength of the rule.  

For Milk Juice, the confidence is 66.7% (meaning that, of three transactions in which milk occurs, two 
contain juice) and bread juice has 50% confidence (meaning that one of two transactions containing 
bread also contains juice.)  

As we can see, support and confidence do not necessarily go hand in hand. The goal of mining 
association rules, then, is to generate all possible rules that exceed some minimum user-specified 
support and confidence thresholds. The problem is thus decomposed into two subproblems:  
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1. Generate all item sets that have a support that exceeds the threshold. These sets of items are 
called large itemsets. Note that large here means large support.  

2. For each large item set, all the rules that have a minimum confidence are generated as follows: 
for a large itemset X and Y X, let Z = X - Y; then if support (X)/support (Z) minimum 
confidence, the rule Z Y (i.e., X - Y Y) is a valid rule. [Note: In the previous sentence, Y X 
reads "Y is a subset of X."]  

Generating rules by using all large itemsets and their supports is relatively straightforward. However, 
discovering all large itemsets together with the value for their support is a major problem if the 
cardinality of the set of items is very high. A typical supermarket has thousands of items. The number 
of distinct itemsets is 2m, where m is the number of items, and counting support for all possible itemsets 
becomes very computation-intensive.  

To reduce the combinatorial search space, algorithms for finding association rules have the following 
properties:  

• A subset of a large itemset must also be large (i.e., each subset of a large itemset exceeds the 
minimum required support).  

• Conversely, an extension of a small itemset is also small (implying that it does not have 
enough support).  

The second property helps in discarding an itemset from further consideration of extension, if it is 
found to be small.  

 
 

Basic Algorithms for Finding Association Rules 

The current algorithms that find large itemsets are designed to work as follows:  

1. Test the support for itemsets of length 1, called 1-itemsets, by scanning the database. Discard 
those that do not meet minimum required support.  

2. Extend the large 1-itemsets into 2-itemsets by appending one item each time, to generate all 
candidate itemsets of length two. Test the support for all candidate itemsets by scanning the 
database and eliminate those 2-itemsets that do not meet the minimum support.  

3. Repeat the above steps; at step k, the previously found (k - 1) itemsets are extended into k-
itemsets and tested for minimum support.  

The process is repeated until no large itemsets can be found. However, the naive version of this 
algorithm is a combinatorial nightmare. Several algorithms have been proposed to mine the association 
rules. They vary mainly in terms of how the candidate itemsets are generated, and how the supports for 
the candidate itemsets are counted.  

Some algorithms use such data structures as bitmaps and hashtrees to keep information about itemsets. 
Several algorithms have been proposed that use multiple scans of the database because the potential 
number of itemsets, 2m, can be too large to set up counters during a single scan. We have proposed an 
algorithm called the Partition algorithm (Note 7), summarized below.  

If we are given a database with a small number of potential large itemsets, say, a few thousand, then 
the support for all of them can be tested in one scan by using a partitioning technique. Partitioning 
divides the database into nonoverlapping partitions; these are individually considered as separate 
databases and all large itemsets for that partition are generated in one pass. At the end of pass one, we 
thus generate a list of large itemsets from each partition. When these lists are merged, they contain 
some false positives. That is, some of the itemsets that are large in one partition may not qualify in 
several other partitions and hence may not exceed the minimum support when the original database is 
considered. Note that there are no false negatives, i.e., no large itemsets will be missed. The union of 
all large itemsets identified in pass one is input to pass two as the candidate itemsets, and their actual 
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support is measured for the entire database. At the end of phase two, all actual large itemsets are 
identified. Partitions are chosen in such a way that each partition can be accommodated in main 
memory and a partition is read only once in each phase. The Partition algorithm lends itself to parallel 
implementation, for efficiency. Further improvements to this algorithm have been suggested (Note 8).  

 
 

Association Rules among Hierarchies 

There are certain types of associations that are particularly interesting for a special reason. These 
associations occur among hierarchies of items. Typically, it is possible to divide items among disjoint 
hierarchies based on the nature of the domain. For example, foods in a supermarket, items in a 
department store, or articles in a sports shop can be categorized into classes and subclasses that give 
rise to hierarchies. Consider Figure 26.10, which shows the taxonomy of items in a supermarket. The 
figure shows two hierarchies—beverages and desserts, respectively. The entire groups may not produce 
associations of the form beverages desserts, or desserts beverages. However, associations of the type 
Healthy-brand frozen yogurt bottled water, or Richcream-brand ice cream wine cooler may produce 
enough confidence and support to be valid association rules of interest.  

 

 

 
 

Therefore, if the application area has a natural classification of the itemsets into hierarchies, 
discovering associations within the hierarchies is of no particular interest. The ones of specific interest 
are associations across hierarchies. They may occur among item groupings at different levels.  

 
 

Negative Associations 

The problem of discovering a negative association is harder than that of discovering a positive 
association. A negative association is of the following type: "60% of customers who buy potato chips 
do not buy bottled water." (Here, the 60% refers to the confidence for the negative association rule.) In 
a database with 10,000 items, there are 210000 possible combinations of items, a majority of which do 
not appear even once in the database. If the absence of a certain item combination is taken to mean a 
negative association, then we potentially have millions and millions of negative association rules with 
RHSs that are of no interest at all. The problem, then, is to find only interesting negative rules. In 
general, we are interested in cases in which two specific sets of items appear very rarely in the same 
transaction. This poses two problems:  

 
 

For a total item inventory of 10,000 items, the probability of any two being bought together is 
(1/10,000) * (1/10,000) = 10-8. If we find the actual support for these two occurring together to be zero, 
that does not represent a significant departure from expectation and hence is not an interesting 
(negative) association.  

The other problem is more serious. We are looking for item combinations with very low support, and 
there are millions and millions with low or even zero support. For example, a data set of 10 million 
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transactions has most of the 2.5 billion pairwise combinations of 10,000 items missing. This would 
generate billions of useless rules.  

 
 

Therefore, to make negative association rules interesting, we must use prior knowledge about the 
itemsets. One approach is to use hierarchies. Suppose we use the hierarchies of soft drinks and chips 
shown in Figure 26.11. A strong positive association has been shown between soft drinks and chips. If 
we find a large support for the fact that when customers buy Days chips they predominantly buy Topsy 
and not Joke and not Wakeup, that would be interesting. This is so because we would normally expect 
that if there is a strong association between Days and Topsy, there should also be such a strong 
association between Days and Joke or Days and Wakeup (Note 9).  

 

 

 
 

In the frozen yogurt and bottled water groupings in Figure 26.10, suppose the Reduce versus Healthy-
brand division is 80–20 and the Plain and Clear brands division is 60–40 among respective categories. 
This would give a joint probability of Reduce frozen yogurt being purchased with Plain bottled water 
as 48% among the transactions containing a frozen yogurt and a bottled water. If this support, however, 
is found to be only 20%, that would indicate a significant negative association among Reduce yogurt 
and Plain bottled water; again, that would be interesting.  

The problem of finding negative association is important in the above situations given the domain 
knowledge in the form of item generalization hierarchies (that is, the beverage given and desserts 
hierarchies shown in Figure 26.10), the existing positive associations (such as between the frozen 
yogurt and bottled water groups), and the distribution of items (such as the name brands within related 
groups). Recent work has been reported by the database group at Georgia Tech in this context (see 
bibliographic notes). The scope of discovery of negative associations is limited in terms of knowing the 
item hierarchies and distributions. Exponential growth of negative associations remains a challenge.  

 
 

Additional Considerations for Association Rules 

For very large datasets, one way to improve efficiency is by sampling. If a representative sample can be 
found that truly represents the properties of the original data, then most of the rules can be found. The 
problem then reduces to one of devising a proper sampling procedure. This process has the potential 
danger of discovering some false positives (large itemsets that are not truly large) as well as having 
false negatives by missing some large itemsets and corresponding association rules.  

Mining association rules in real-life databases is further complicated by the following factors.  

• The cardinality of itemsets in most situations is extremely large, and the volume of 
transactions is very high as well. Some operational databases in retailing and communication 
industries collect tens of millions of transactions per day.  

• Transactions show variability in such factors as geographic location and seasons, making 
sampling difficult.  

• Item classifications exist along multiple dimensions. Hence, driving the discovery process 
with domain knowledge, particularly for negative rules, is extremely difficult.  
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• Quality of data is variable; significant problems exist with missing, erroneous, conflicting, as 
well as redundant data in many industries.  

Association rules can be generalized for data mining purposes. Although the notion of itemsets was 
used above to discover association rules, almost any data in the standard relational form with a number 
of attributes can be used. For example, consider blood-test data with attributes like hemoglobin, red 
blood cell count, white blood cell count, blood-sugar, urea, age of patient, and so on. Each of the 
attributes can be divided into ranges, and the presence of an attribute with a value can be considered 
equivalent to an item. Thus, if the hemoglobin attribute is divided into ranges 0–5, 6–7, 8–9, 10–12, 
13–14, and above 14, then we can consider them as items H1, H2, ..., H7. Then a specific hemoglobin 
value for a patient corresponds to one of these seven items being present. The mutual exclusion among 
these hemoglobin items can be used to some advantage in the scanning for large itemsets. This way of 
dividing variable values into ranges allows us to apply the association-rule machinery to any database 
for mining purposes. The ranges have to be determined from domain knowledge such as the relative 
importance of each of the hemoglobin values.  

 
 

26.2.3 Approaches to Other Data Mining Problems 

Discovery of Sequential Patterns 
Discovery of Patterns in Time Series 
Discovery of Classification Rules 
Regression 
Neural Networks 
Genetic Algorithms 
Clustering and Segmentation

Earlier in this section we presented an overview of the goals of data mining, along with the types of 
knowledge discovered during data mining, and discussed at length some approaches for discovery of 
association rules. In the remaining part of this section, we discuss some approaches to other data 
mining problems and present some techniques associated with them.  

 
 

Discovery of Sequential Patterns 

The discovery of sequential patterns is based on the concept of a sequence of itemsets. We assume that 
transactions such as the supermarket-basket transactions we discussed previously are ordered by time 
of purchase. That ordering yields a sequence of itemsets. For example, {milk, bread, juice}, {bread, 
eggs}, {cookies, milk, coffee} may be such a sequence of itemsets based on three visits of the same 
customer to the store. The support for a sequence S of itemsets is the percentage of the given set U of 
sequences of which S is a subsequence. In this example, {milk, bread, juice} {bread, eggs} and {bread, 
eggs} {cookies, milk, coffee} are considered subsequences. The problem of identifying sequential 
patterns, then, is to find all subsequences from the given sets of sequences that have a user-defined 
minimum support. The sequence S1, S2, S3, ... is a predictor of the fact that a customer who buys 
itemset S1 is likely to buy itemset S2 and then S3, and so on. This production is based on the frequency 
(support) of this sequence in the past. Various algorithms have been investigated for sequence 
detection.  

 
 

Discovery of Patterns in Time Series 
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Time series are sequences of events; each event may be a given fixed type of a transaction. For 
example, the closing price of a stock or a fund is an event that occurs every weekday for each stock and 
fund. The sequence of these values per stock or fund constitutes a time series. For a time series, one 
may look for a variety of patterns by analyzing sequences and subsequences as we did above. For 
example, we might find the period during which the stock rose or held steady for n days, or we might 
find the longest period over which the stock had a fluctuation of no more than 1% over previous 
closing price, or we might find the quarter during which the stock had the most percentage gain or 
percentage loss. Time series may be compared by establishing measures of similarity to identify 
companies whose stocks behave in a similar fashion. Analysis and mining of time series is an extended 
functionality of temporal data management (see Section 23.2).  

 
 

Discovery of Classification Rules 

Classification is the process of learning a function that maps (classifies) a given object of interest into 
one of many possible classes. The classes may be predefined, or may be determined during the task of 
classification. A simple example is as follows. A bank wishes to classify its loan applicants into those 
that are loanworthy and those that are not. It may use a simple rule which states that if the current 
monthly debt obligation (which is a data element for each applicant) exceeds 25% of monthly net 
income (another data element for the applicant), then the applicant belongs to "not loanworthy" class; 
otherwise, he or she belongs to the "loanworthy" class.  

In general, the classification rules may be more complex, and may be of the following form:  

 
 

(var1 in range1) and (var2 in range2) and ... (varn in rangen) Object O belongs to class C1,  

 
 

A similar set of rules would exist for each class.  

Variables var1, ..., varn are the attributes of object O and would constitute columns of a relation with 
one tuple per object. Each tuple of this table would be mapped to a class. It would be possible to write a 
set of SQL queries that convert the population of the table into the instances of the classes, once these 
classes are defined. The mining problem is to discover the classes as well as the conditions that define 
those classes.  

The main distinction in forming the above rules in comparison to association rules is that the variables 
in the above rules take values from a discrete or continuous domain (e.g., number of children, income 
in dollars) as opposed to the itemsets, which are formed from a predefined set of items in case of 
association rules. Also, an association rule pertains to a set of transactions (input records), but a 
classification rule tells us how to map each record into a class.  

 
 

Regression 

Regression is a special application of the classification rule. If a classification rule is regarded as a 
function over the variables that maps these variables into a target class variable, the rule is called a 
regression rule. A general application of regression occurs when, instead of mapping a tuple of data 
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from a relation to a specific class, the value of a variable is predicted based on that tuple. For example, 
consider a relation  

 
 

LAB_TESTS (patient ID, test 1, test 2, ..., test n)  

 
 

which contains values that are results from a series of n tests for one patient. The target variable that we 
wish to predict is P, the probability of survival of the patient. Then the rule for regression takes the 
form:  

 
 

(test 1 in range1) and (test 2 in range2) and ... (test n in rangen) P = x, or x < P < y  

 
 

The choice depends on whether we can predict a unique value of P or a range of values for P. If we 
regard P as a function:  

 
 

P = f (test 1, test 2, ..., test n)  

 
 

the function is called a regression function to predict P. In general, if the function appears as  

 
 

 
 

and f is linear in the domain variables , the process of deriving f from a given set of tuples for is called 
linear regression. Linear regression is a commonly used statistical technique for fitting a set of 
observations or points in n dimensions with the target variable y.  

Regression analysis is a very common tool for analysis of data in many research domains. The 
discovery of the function to predict the target variable is equivalent to a data mining operation.  

 
 

Neural Networks 

Neural network is a technique derived from artificial intelligence research that uses generalized 
regression and provides an iterative method to carry it out. Neural networks use the curve-fitting 
approach to infer a function from a set of samples. This technique provides a "learning approach"; it is 
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driven by a test sample that is used for the initial inference and learning. With this kind of learning 
method, responses to new inputs may be able to be interpolated from the known samples. This 
interpolation however, depends on the world model (internal representation of the problem domain) 
developed by the learning method.  

Neural networks can be broadly classified into two categories: supervised and unsupervised networks. 
Adaptive methods that attempt to reduce the output error are supervised learning methods, whereas 
those that develop internal representations without sample outputs are called unsupervised learning 
methods.  

Neural networks self-adapt; that is, they learn from information on a specific problem. They perform 
well on classification tasks and are therefore useful in data mining. Yet, they are not without problems. 
Although they learn, they do not provide a good representation of what they have learned. Their 
outputs are highly quantitative and not easy to understand. As another limitation, the internal 
representations developed by neural networks are not unique. Also, in general, neural networks have 
trouble modeling time series data. Despite these shortcomings, they are popular and frequently used by 
several commercial vendors.  

 
 

Genetic Algorithms 

Genetic algorithms (GAs) are a class of randomized search procedures capable of adaptive and robust 
search over a wide range of search space topologies. Modeled after the adaptive emergence of 
biological species from evolutionary mechanisms, and introduced by Holland (Note 10), GAs have 
been successfully applied in such diverse fields such as image analysis, scheduling, and engineering 
design.  

Genetic algorithms extend the idea from human genetics of the four-letter alphabet (based on the 
A,C,T,G nucleotides) of the human DNA code. The construction of a genetic algorithm involves 
devising an alphabet that encodes the solutions to the decision problem in terms of strings of that 
alphabet. Strings are equivalent to individuals. A fitness function defines which solutions can survive 
and which cannot. The ways in which solutions can be combined are patterned after the cross-over 
operation of cutting and combining strings from a father and a mother. An initial population of well-
varied population is provided, and a game of evolution is played in which mutations occur among 
strings. They combine to produce a new generation of individuals; the fittest individuals survive and 
mutate until a family of successful solutions develops.  

The solutions produced by genetic algorithms (GAs) are distinguished from most other search 
techniques by the following characteristics:  

• A GA search uses a set of solutions during each generation rather than a single solution.  
• The search in the string-space represents a much larger parallel search in the space of encoded 

solutions.  
• The memory of the search done is represented solely by the set of solutions available for a 

generation.  
• A genetic algorithm is a randomized algorithm since search mechanisms use probabilistic 

operators.  
• While progressing from one generation to next, a GA finds near-optimal balance between 

knowledge acquisition and exploitation by manipulating encoded solutions.  

Genetic algorithms are used for problem solving and clustering problems. Their ability to solve 
problems in parallel provides a powerful tool for data mining. The drawbacks of GAs include the large 
overproduction of individual solutions, the random character of the searching process, and the high 
demand on computer processing. In general, substantial computing power is required to achieve 
anything of significance with genetic algorithms.  
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Clustering and Segmentation 

Clustering is a data mining technique that is directed toward the goals of identification and 
classification (see also Section 26.2.1). Clustering tries to identify a finite set of categories or clusters 
to which each data object (tuple) can be mapped. The categories may be disjoint or overlapping and 
may sometimes be organized into trees. For example, one might form categories of customers into the 
form of a tree and then map each customer to one or more of the categories. A closely related problem 
is that of estimating multivariate probability density functions of all variables that could be attributes in 
a relation or from different relations.  

 
 

26.2.4 Applications of Data Mining 

Data mining technologies can be applied to a large variety of decision-making contexts in business. In 
particular, areas of significant payoffs are expected to include the following:  

• Marketing—Applications include analysis of consumer behavior based on buying patterns; 
determination of marketing strategies including advertising, store location, and targeted 
mailing; segmentation of customers, stores, or products; and design of catalogs, store layouts, 
and advertising campaigns.  

• Finance—Applications include analysis of creditworthiness of clients, segmentation of 
account receivables, performance analysis of finance investments like stocks, bonds, and 
mutual funds; evaluation of financing options; and fraud detection.  

• Manufacturing—Applications involve optimization of resources like machines, manpower, 
and materials; optimal design of manufacturing processes, shop-floor layouts, and product 
design, such as for automobiles based on customer requirements.  

• Health Care—Applications include an analysis of effectiveness of certain treatments; 
optimization of processes within a hospital, relating patient wellness data with doctor 
qualifications; and analyzing side effects of drugs.  

 
 

26.2.5 State-of-the-Art of Commercial Data Mining Tools 

User Interface 
Application Programming Interface 
Future Directions

At the present time, commercial data mining tools use several common techniques to extract 
knowledge. These include association rules, clustering, neural networks, sequencing, and statistical 
analysis. We have discussed these earlier. Also used are decision trees, which are a representation of 
the rules used in classification or clustering, and statistical analyses, which may include regression and 
many other techniques. Other commercial products use advanced techniques such as genetic 
algorithms, case-based reasoning, Bayesian networks, nonlinear regression, combinatorial 
optimization, pattern matching, and fuzzy logic. In this chapter we have already discussed some of 
these.  

Most data mining tools use the ODBC (Open Database Connectivity) interface. ODBC is an industry 
standard that works with databases; it enables access to data in most of the popular database programs 
such as Access, dBASE, Informix, Oracle, and SQL Server. Some of these software packages provide 
interfaces to specific database programs; the most common are Oracle, Access, and SQL Server. Most 
of the tools work in the Microsoft Windows environment and a few work in the UNIX operating 
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system. The trend is for all products to operate under the Microsoft Windows environment. One tool, 
Data Surveyor, mentions ODMG compliance; see Chapter 12 where we discuss the ODMG object-
oriented standard.  

In general, these programs perform sequential processing in a single machine. Many of these products 
work in the client-server mode. Some products incorporate parallel processing in parallel computer 
architectures and work as a part of on-line analytical processing (OLAP) tools.  

 
 

User Interface 

Most of the tools run in a graphical user interface (GUI) environment. Some products include 
sophisticated visualization techniques to view data and rules (e.g., MineSet of SGI), and are even able 
to manipulate data this way interactively. Text interfaces are rare and are more common in tools 
available for UNIX, such as IBM's Intelligent Miner.  

 
 

Application Programming Interface 

Usually, the application programming interface (API) is an optional tool. Most products do not permit 
using their internal functions. However, some of them allow the application programmer to reuse their 
code. The most common interfaces are C libraries and Dynamic Link Libraries (DLLs). Some tools 
include proprietary database command languages.  

In Table 26.1 we list 10 representative data mining tools. To date there are more than 70 commercial 
data mining products available worldwide. Non-U.S. products include Data Surveyor from the 
Netherlands and Polyanalyst from Russia.  

 
 

Table 26.1 Some representative data mining tools  

 
 
Company  Product  Technique  Platform  Interface * 

 
 
Acknosoft  Kate  Decision trees, Case-based 

reasoning  
Win NT UNIX  Microsoft 

Access  

Angoss  Knowledge Seeker  Decision trees, Statistics  Win NT  ODBC  

Business 
Objects  

Business Miner Neural nets, Machine learning Win NT  ODBC  

CrossZ  QueryObject  Statistical Analysis 
Optimization algorithm  

Win NT MVS 
UNIX  

ODBC  

Data 
Distilleries  

Data Surveyor Comprehensive, Can mix DM 
algorithms 

UNIX  ODBC 
ODMG-
compliant  
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IBM Intelligent Miner  Classification, Association 
rules, Predictive models  

UNIX (AIX)  IBM DB2  

Megaputer 
Intelligence  

Polyanalyst  Symbolic knowledge 
acquisition, Evolutionary 
programming  

Win NT OS/2  ODBC Oracle 
DB2  

NCR  Management 
Discovery Tool 
(MDT)  

Association rules  Win NT  ODBC  

SAS  Enterprise Miner  Decision trees, Association 
rules, Neural nets, 
Regression, Clustering  

UNIX (Solaris) 
Win NT 
Macintosh  

ODBC Oracle 
AS/400  

Silicon 
Graphics  

MineSet  Decision trees, Association 
rules  

UNIX (Irix)  Oracle 
Sybase 
Informix  

 
 
* ODBC: Open Data Base Connectivity;  

ODMG: Object Data Management Group  

 
 

Future Directions 

Data mining tools are continually evolving, building on ideas from the latest scientific research. Many 
of these tools incorporate the latest algorithms taken from artificial intelligence (AI), statistics, and 
optimization.  

At present, fast processing is done using modern database techniques—such as distributed 
processing—in client-server architectures, in parallel databases, and in data warehousing. For the 
future, the trend is toward developing Internet capabilities more fully. In addition, hybrid approaches 
will become commonplace, and processing will be done using all resources available. Processing will 
take advantage of both parallel and distributed computing environments. This shift is especially 
important because modern databases contain very large amounts of information. Not only are 
multimedia databases growing, but image storage and retrieval are both slow operations. Also, the cost 
of secondary storage is decreasing, so massive information storage will be feasible, even for small 
companies. Thus, data mining programs will have to deal with larger sets of data of more companies.  

In the near future it seems that Microsoft Windows NT and UNIX will be the standard platforms, with 
NT being dominant. Most of data mining software will use the ODBC standard to extract data from 
business databases; proprietary input formats can be expected to disappear. There is a definite need to 
include nonstandard data, including images and other multimedia data, as source data for data mining. 
However, the algorithmic developments for nonstandard data mining have not reached a maturity level 
sufficient for commercialization.  

 
 

26.3 Summary 

In this chapter we surveyed two very important branches of database technology that are going to play 
a significant role over the next decade: data warehousing and data mining.  
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Data warehousing can be seen as a process that requires a variety of activities to precede it; data mining 
may be thought as an activity that draws knowledge from an existing data warehouse. We introduced 
key concepts related to data warehousing and we discussed the special functionality associated with a 
multidimensional view of data. We also discussed the ways in which data warehouses supply decision 
makers with information at the correct level of detail, based on an appropriate organization and 
perspective.  

In our discussion we gave an illustrative example of knowledge discovery in databases; this has a wider 
scope than data mining. For data mining, among the various techniques, we focused on association 
rules and gave a detailed introduction to their discovery. A variety of other techniques, including the 
AI-based neural networks and genetic algorithms, were also discussed.  

Active research is ongoing in both data warehousing and data mining and we have outlined some of the 
expected research directions. In the future database technology products market a great deal of activity 
is expected. We summarized 10 out of 70 available data mining tools available today; future research is 
expected to extend the number and functionality significantly.  

 
 

Review Exercises 

  26.1. What is a data warehouse? How does it differ from a database? 

  26.2. Define the terms: OLAP (Online Analytical Processing), ROLAP (Relational OLAP), and 
MOLAP (Multidimensional OLAP), DSS (Decision Support Systems). 

  26.3. Describe the characteristics of a data warehouse. Divide them into functionality of a warehouse 
and advantages users derive from it. 

  26.4. What is the multidimensional data model? How is it used in data warehousing? 

  26.5. Define these terms: Star Schema, Snowflake Schema, Fact Constellation, Data Marts. 

  26.6. What types of indexes are built for a warehouse? Illustrate the uses for each with an example. 

  26.7. Describe the steps of building a warehouse. 

  26.8. What considerations play a major role in the design of a warehouse? 

  26.9. Describe the functions a user can perform on a data warehouse and illustrate the results of these 
functions on a sample multidimensional data warehouse. 

26.10. How is the concept of a relational view related to data warehouse and data marts? In what way 
are they different? 

26.11. List the difficulties in implementing a data warehouse. 

26.12. List the open issues and research problems in data warehousing. 

26.13. What is data mining? How does data mining technology relate to data warehousing 
technology? 

26.14. What are the different phases of the knowledge discovery from databases? Describe a complete 
application scenario in which new knowledge may be mined from an existing database of 
transactions. 

26.15. What are the goals or tasks that data mining attempts to facilitate? 

26.16. What are the five types of knowledge produced from data mining? 

26.17. What are association rules as a type of knowledge? Give a definition of support and confidence 
and use them to define an association rule. 
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26.18. Describe an association rule among hierarchies with an example. 

26.19. What is a negative association rule in the context of the hierarchy of Figure 26.10 ?  

26.20. What are the difficulties of mining association rules from large databases? 

26.21. Define a sequential pattern based on sequences of Hemsets. 

26.22. Give an example of a pattern in a time series. 

26.23. What are classification rules? How is regression related to classification? 

26.24. Describe neural networks and genetic algorithms as techniques for data mining. What are the 
main difficulties in using these techniques? 

26.25. Describe clustering and segmentation as data mining techniques. 

26.26. What are the main features of data mining tools? Evaluate the features of a data mining tool not 
mentioned in the list in Table 26.1. 

 
 

Selected Bibliography 

Data warehousing has become a very popular topic and has appeared in many publications in the last 
few years. Inmon (1992) is credited for giving this term wide acceptance. Codd (1993) popularized the 
term online analytical processing (OLAP) and defined a set of characteristics for data warehouses to 
support OLAP. Mattison (1996) is one of the several books on data warehousing that gives a 
comprehensive analysis of techniques available in data warehouses and the strategies companies should 
use in deploying them. Bischoff and Alexander (1997) is a compilation of advice from experts. 
Chaudhuri and Dayal (1997) give an excellent tutorial on the topic, while Widom (1995) points to a 
number of outstanding research problems.  

Literature on data mining comes from several fields, including statistics, mathematical optimization, 
machine learning, and artificial intelligence. Data mining has only recently become a topic in the 
database literature. We, therefore, mention only a few database-related works. Chen at al. (1996) give a 
good summary of the database perspective on data mining. Work at IBM Almaden research has 
produced a large number of early concepts and algorithms as well as results from some performance 
studies. Agrawal et al. (1993) report the first major study on association rules. Their a priori algorithm 
for market basket data in Agrawal and Srikant (1994) is improved by using partitioning in Savasere et 
al. (1995); Toivonen (1996) proposes sampling as a way to reduce the processing effort. Cheung et al. 
(1996) extends the partitioning to distributed environments; Lin and Dunham (1998) propose 
techniques to overcome problems with data skew. Agrawal et al. (1993b) discuss the performance 
perspective on association rules. Mannila et al. (1994), Park et al. (1995), and Amir et al. (1997) 
present additional efficient algorithms related to association rules. Srikant (1995) proposes mining 
generalized rules. Savasere et al. (1998) present the first approach to mining negative associations. 
Agrawal et al. (1996) describe the Quest system at IBM. Sarawagi et al. (1998) describe an 
implementation where association rules are integrated with a relational database management system. 
Piatesky-Shapiro and Frawley (1992) have contributed papers from a wide range of topics related to 
knowledge discovery.  

Adriaans and Zantinge (1996) and Weiss and Indurkhya (1998) are two recent books devoted to the 
different aspects of data mining and its use in prediction. The idea of genetic algorithms was proposed 
by Holland (1975); a good survey of genetic algorithms appears in Srinivas and Patnaik (1974). Neural 
networks have a vast literature; a comprehensive introduction is available in Lippman (1987).  

 
 

Footnotes 
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Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6 
Note 7 
Note 8 
Note 9 
Note 10

Note 1 

In Chapter 1 we defined database as a collection of related data and a database system as a database 
and database software together. A data warehouse is also a collection of information as well as a 
supporting system. However, a clear distinction exists. Traditional databases are transactional 
(relational, object-oriented, network, or hierarchical). Data warehouses have the distinguishing 
characteristic that they are mainly intended for decision-support applications. They are optimized for 
data retrieval, not routine transaction processing.  

 
 

Note 2 

Inmon (1992) has been credited with initially using the term data warehouse. 

 
 

Note 3 

Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting definition. 

 
 

Note 4 

Codd (1993) coined the term OLAP and mentioned these characteristics. We have reordered Codd's 
original list. 

 
 

Note 5 

The Gartner Report is one example of the many technology survey publications that corporate 
managers rely on to make their technology selection decisions. 

 
 

Note 6 

This discussion is largely based on Adriaans and Zantinge (1995). 
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Note 7 

See Savasere et al. (1995) for details of the algorithm, the data structures used to implement it, and its 
performance comparisons. 

 
 

Note 8 

See Cheung et al. (1996) and Lin and Dunham (1998). 

 
 

Note 9 

For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy. 

 
 

Note 10 

Holland's seminal work (1975) entitled "Adaptation in Natural and Artificial Systems" introduced the 
idea of genetic algorithms. 

 
 

Chapter 27: Emerging Database Technologies and 
Applications 
27.1 Databases on the World Wide Web 
27.2 Multimedia Databases 
27.3 Mobile Databases 
27.4 Geographic Information Systems 
27.5 Genome Data Management 
27.6 Digital Libraries 
Footnotes

Throughout this book we have discussed a variety of issues related to the modeling, design, and 
functions of databases as well as to the internal structure and performance issues related to database 
management systems. In the previous chapter we considered variations of database management 
technology, such as data warehouses that provide very large databases for decision support.  

We now turn our attention in this chapter to two categories of more recent developments in the 
database field: (1) emerging database technologies, and (2) the major application domains. The first 
deals with creating new environments and functionality in DBMSs so that a variety of new applications 
can be supported, including universal access to World Wide Web databases and databases over the 
Internet; multimedia databases providing additional functionality to support storage and processing of 
multimedia information; and mobile databases and intermittently connected databases allowing the end 
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user to extract and carry parts of a database while being mobile in the field. Section 27.1, Section 27.2 
and Section 27.3 will briefly introduce and discuss the issues and approaches to solving the specific 
problems that arise in three different emerging technologies.  

We next consider three application domains that have historically relied upon manual processing of file 
systems, or tailored system solutions. Section 27.4 discusses geographic information systems, which 
deal with geographic data alone or spatial data combined with non-spatial data, such as census counts. 
Section 27.5 discusses biological databases, particularly containing genetic data on different organisms, 
including the human genome data. Section 27.6 discusses digital libraries, large repositories of digital 
data in multiple media. This is a challenging application of taking the most unstructured, diverse, and 
unrelated collections of documents and other library items and making them available for efficient 
retrieval and search within one system. A common characteristic of all these applications is the 
domain-specific nature of data in each specific application domain. Furthermore, they are all 
characterized by their "static" nature—a situation where the end user can only retrieve from the 
database; updating with new information is limited to database domain experts who supervise and 
analyze the new data being entered.  

 
 

27.1 Databases on the World Wide Web 

27.1.1 Providing Access to Databases on the World Wide Web 
27.1.2 The Web Integration Option of INFORMIX 
27.1.3 The ORACLE WebServer 
27.1.4 Open Problems with Web Databases 
27.1.5 Selected Bibliography for World Wide Web Databases

The World Wide Web (WWW)—popularly known as "the Web"—originally developed in Switzerland 
at CERN (Note 1) in early 1990 as a large-scale hypermedia information service system for biological 
scientists to share information (Note 2). Today this technology allows universal access to this shared 
information to anyone having access to the Internet and the Web contains hundreds of millions of Web 
pages within the reach of millions of users.  

In Web technology, a basic client-server architecture underlies all activities. Information is stored on 
computers designated as Web servers in publicly accessible shared files encoded using HyperText 
Markup Language (HTML). A number of tools enable users to create Web pages formatted with 
HTML tags, freely mixed with multimedia content—from graphics to audio and even to video. A page 
has many interspersed hyperlinks—literally a link that enables a user to "browse" or move from one 
page to another across the Internet. This ability has given a tremendous power to end users in searching 
and navigating related information—often across different continents.  

Information on the Web is organized according to a Uniform Resource Locator (URL)—something 
similar to an address that provides the complete pathname of a file. The pathname consists of a string 
of machine and directory names separated by slashes and ends in a filename. For example, the table of 
contents of this book is currently at the following URL:  

 
 

http://cseng.aw.com/book/0,,0805317554,00.html

 
 

A URL always begins with a hypertext transport protocol (http), which is the protocol used by the 
Web browsers, a program that communicates with the Web server, and vice versa. Web browsers 
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interpret and present HTML documents to users. Popular Web browsers include the Internet Explorer 
of Microsoft and the Netscape Navigator. A collection of HTML documents and other files accessible 
via the URL on a Web server is called a Web site. In the above URL, "www.awl.com" may be called 
the Web site of Addison Wesley Publishing.  

 
 

27.1.1 Providing Access to Databases on the World Wide Web 

Today’s technology has been moving rapidly from static to dynamic Web pages, where content may be 
in a constant state of flux. The Web server uses a standard interface called the Common Gateway 
Interface (CGI) to act as the middleware—the additional software layer between the user interface 
front-end and the DBMS back-end that facilitates access to heterogeneous databases. The CGI 
middleware executes external programs or scripts to obtain the dynamic information, and it returns the 
information to the server in HTML, which is given back to the browser.  

As the Web undergoes its latest transformations, it has become necessary to allow users access not only 
to file systems but to databases and DBMSs to support query processing, report generation, and so 
forth. The existing approaches may be divided into two categories:  

1. Access using CGI scripts: The database server can be made to interact with the Web server via 
CGI. Figure 27.01 shows a schematic for the database access architecture on the Web using 
CGI scripts, which are written in languages like PERL, Tcl, or C. The main disadvantage of 
this approach is that for each user request, the Web server must start a new CGI process: each 
process makes a new connection with the DBMS and the Web server must wait until the 
results are delivered to it. No efficiency is achieved by any grouping of multiple users’ 
requests; moreover, the developer must keep the scripts in the CGI-bin subdirectories only, 
which opens it to a possible breach of security. The fact that CGI has no language associated 
with it but requires database developers to learn PERL or Tcl is also a drawback. 
Manageability of scripts is another problem if the scripts are scattered everywhere.  

2. Access using JDBC: JDBC is a set of Java classes developed by Sun Microsystems to allow 
access to relational databases through the execution of SQL statements. It is a way of 
connecting with databases, without any additional processes for each client request. Note that 
JDBC is a name trademarked by Sun; it does not stand for Java Data Base connectivity as 
many believe. JDBC has the capabilities to connect to a database, send SQL statements to a 
database and to retrieve the results of a query using the Java classes Connection, Statement, 
and ResultSet respectively. With Java’s claimed platform independence, an application may 
run on any Java-capable browser, which loads the Java code from the server and runs it on the 
client’s browser. The Java code is DBMS transparent; the JDBC drivers for individual 
DBMSs on the server end carry the task of interacting with that DBMS. If the JDBC driver is 
on the client, the application runs on the client and its requests are communicated to the 
DBMS directly by the driver. For standard SQL requests, many RDBMSs can be accessed this 
way. The drawback of using JDBC is the prospect of executing Java through virtual machines 
with inherent efficiency. The JDBC bridge to Object Database Connectivity (ODBC) remains 
another way of getting to the RDBMSs.  

 
 
 

Besides CGI, other Web server vendors are launching their own middleware products for providing 
multiple database connectivity. These include Internet Server API (ISAPI) from Microsoft and 
Netscape API (NSAPI) from Netscape. In the next section we describe the Web access option provided 
by Informix. Other DBMS vendors already have, or will have similar provisions to support database 
access on the Web.  
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27.1.2 The Web Integration Option of INFORMIX 

Informix has addressed the limitations of CGI and the incompatibilities of CGI, NSAPI, and ISAPI by 
creating the Web Integration Option (WIO). WIO eliminates the need for scripts. Developers use tools 
to create intelligent HTML pages called Application Pages (or App Pages) directly within the database. 
They execute SQL statements dynamically, format the results inside HTML, and return the resulting 
Web page to the end users. The schematic architecture is shown in Figure 27.02. WIO uses the Web 
Driver, a lightweight CGI process that is invoked when a URL request is received by the Web server. 
A unique session identifier is generated for each request but the WIO application is persistent and does 
not terminate after each request.  

 

 

 
 

When the WIO application receives a request from the Web driver, it connects to the database and 
executes Web Explode, a function that executes queries within Web pages and formats results as a Web 
page that goes back to the browser via the Web driver.  

Informix HTML tag extensions allow Web authors to create applications that can dynamically 
construct Web page templates from the Informix Dynamic Server and present them to the end users. 
WIO also lets users create their own customized tags to perform specialized tasks. Thus, without 
resorting to any programming or script development, powerful applications can be designed. Another 
feature of WIO helps transaction-oriented applications by providing an application programming 
interface (API) that offers a collection of basic services such as connection and session management 
that can be incorporated into Web application.  

WIO supports applications developed in C, C++, and Java. This flexibility lets developers port existing 
applications to the Web or develop new applications in these languages. The WIO is integrated with 
Web server software and utilizes the native security mechanism of the Informix Dynamic Server. The 
open architecture of WIO allows the use of various Web browsers and servers.  

 
 

27.1.3 The ORACLE WebServer 

ORACLE supports Web access to databases using the components shown in Figure 27.03. The client 
requests files that are called "static" or "dynamic" files from the Web server. Static files have a fixed 
content whereas dynamic files may have content that includes results of queries to the database.There 
is an HTTP demon (a process that runs continuously) called Web Listener running on the server that 
listens for the requests originating in the clients. A static file (document) is retrieved from the file 
system of the server and displayed on the Web browser at the client. Request for a dynamic page is 
passed by the listener to a Web request broker (WRB), which is a multi-threaded dispatcher that 
adheres to cartridges. Cartridges are software modules (mentioned earlier in Section 13.2.6) that 
perform specific functions on specific types of data; they can communicate among themselves. 
Currently cartridges are provided for PL/SQL, Java, and Live HTML; customized cartridges may be 
provided as well.  
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WebServer has been fully integrated with PL/SQL, making it efficient and scalable. The cartridges give 
it additional flexibility, making it possible to work with other languages and software packages. An 
advanced secure sockets layer may be used for secure communication over the Internet. The Designer 
2000 development tool (see Section 16.1) has a Web generator that enables previous applications 
developed for LANs to be ported to the Internet and Intranet environments.  

 
 

27.1.4 Open Problems with Web Databases 

The Web is an important factor in planning for enterprise-wide computing environments, both for 
providing external access to the enterprise’s systems and information for customers and suppliers and 
for marketing and advertising purposes. At the same time, due to security requirements, employees of 
some organizations are restricted to operate within intranets—subnetworks that cannot be accessed 
freely from the outside world. Among the prominent applications of the intranet and the WWW are 
databases to support electronic storefronts, parts and product catalogs, directories and schedules, 
newsstands, and bookstores. Electronic commerce—the purchasing of products and services 
electronically on the Internet—is likely to become a major application supported by such databases.  

The future challenges of managing databases on the Web will be many, among them the following:  

• Web technology needs to be integrated with the object technology. Currently, the web can be 
viewed as a distributed object system, with HTML pages functioning as objects identified by 
the URL.  

• HTML functionality is too simple to support complex application requirements. As we saw, 
the Web Integration Option of Informix adds further tags to HTML. In general, additional 
facilities will be needed to (1) make Web clients function as application front ends, integrating 
data from multiple heterogeneous databases; (2) make Web clients present different views of 
the same data to different users; and (3) make Web clients "intelligent" by providing 
additional data mining functionality (see Section 26.2).  

• Web page content can be made more dynamic by adding more "behavior" to it as an object 
(see Chapter 11 for a discussion of object modeling). In this respect (1) client and server 
objects (HTML pages) can be made to interact; (2) Web pages can be treated as collections of 
programmable objects; and (3) client-side code can access these objects and manipulate them 
dynamically.  

• The support for a large number of clients coupled with reasonable response times for queries 
against very large (several tens of gigabytes in size) databases will be major challenges for 
Web databases. They will have to be addressed both by Web servers and by the underlying 
DBMSs.  

Efforts are underway to address the limitations of the current data structuring technology, particularly 
by the World Wide Web Consortium (W3C). The W3C is designing a Web Object Model. W3C is also 
proposing an Extensible Markup Language (XML) for structured document interchange on the Web. 
XML defines a subset of SGML (the Standard Generalized Markup Language), allowing 
customization of markup languages with application-specific tags. XML is rapidly gaining ground due 
to its extensibility in defining new tags. W3C’s Document Object Model (DOM) defines an object-
oriented API for HTML or XML documents presented by a Web client. W3C is also defining metadata 
modeling standards for describing Internet resources.  

The technology to model information using the standards discussed above and to find information on 
the Web is undergoing a major evolution. Overall, the Web servers have to gain robustness as a reliable 
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technology to handle production-level databases for supporting 24x7 applications—24 hours a day, 7 
days a week. Security remains a critical problem for supporting applications involving financial and 
medical databases. Moreover, transferring from existing database application environments to those on 
the Web will need adequate support that will enable users to continue their current mode of operation 
and an expensive infrastructure for handling migration of data among systems without introducing 
inconsistencies. The traditional database functionality of querying and transaction processing must 
undergo appropriate modifications to support Web-based applications. One such area is mobile 
databases, which we focus on in Section 27.3.  

 
 

27.1.5 Selected Bibliography for World Wide Web Databases 

The idea of World Wide Web was proposed by Berners-Lee (1992, 1994) and his group at CERN in 
Geneva. The Informix Web Integration Option is described in Informix (1998a). Manola (1998) 
discusses the developments of new standards like XML and the document object model for integration 
of Web technology with object technology. Mendelzon (1997) describes concepts for query processing 
on the Web; Gravano and Garcia-Molina (1997) propose the notion of ranking answers to free-form 
queries on the Web; Atzeni et al. propose a data model named ARANEUS and two languages for 
querying, building hypertextual views, and deriving data. Fraternali (1999) provides a survey of 
approaches to supporting data intensive web applications. The area of electronic commerce will draw 
many benefits from and share many problems with the database development on the Web; a good 
overview is in Dogac (1998). Several white papers are available on the database vendors’ Web sites 
about their products providing Web access to databases (e.g., www.oracle.com, www.informix.com). 
The www consortium (W3C) has a Web site where up-to-date information on XML may be found: 
www.w3.org/XML/; protocols are described at www.w3.org/protocols/. For details on JDBC API 
specification, consult www.java.sun.com/products/.  

 
 

27.2 Multimedia Databases 

27.2.1 The Nature of Multimedia Data and Applications 
27.2.2 Data Management Issues 
27.2.3 Open Research Problems 
27.2.4 Multimedia Database Applications 
27.2.5 Selected Bibliography on Multimedia Databases

In the years ahead multimedia information systems are expected to dominate our daily lives. Our 
houses will be wired for bandwidth to handle interactive multimedia applications. Our high-definition 
TV/computer workstations will have access to a large number of databases, including digital libraries 
(see Section 27.6) that will distribute vast amounts of multisource multimedia content.  

 
 

27.2.1 The Nature of Multimedia Data and Applications 

Nature of Multimedia Applications

In Section 23.3 we discussed the advanced modeling issues related to multimedia data. We also 
examined the processing of multiple types of data in Chapter 13 in the context of object relational 
DBMSs (ORDBMSs). DBMSs have been constantly adding to the types of data they support. Today 
the following types of multimedia data are available in current systems:  
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• Text: May be formatted or unformatted. For ease of parsing structured documents, standards 
like SGML and variations such as HTML are being used.  

• Graphics: Examples include drawings and illustrations that are encoded using some 
descriptive standards (e.g., CGM, PICT, postscript).  

• Images: Includes drawings, photographs, and so forth, encoded in standard formats such as 
bitmap, JPEG, and MPEG. Compression is built into JPEG and MPEG. These images are not 
subdivided into components. Hence querying them by content (e.g., find all images containing 
circles) is nontrivial.  

• Animations: Temporal sequences of image or graphic data.  
• Video: A set of temporally sequenced photographic data for presentation at specified rates—

for example, 30 frames per second.  
• Structured audio: A sequence of audio components comprising note, tone, duration, and so 

forth.  
• Audio: Sample data generated from aural recordings in a string of bits in digitized form. 

Analog recordings are typically converted into digital form before storage.  
• Composite or mixed multimedia data: A combination of multimedia data types such as audio 

and video which may be physically mixed to yield a new storage format or logically mixed 
while retaining original types and formats. Composite data also contains additional control 
information describing how the information should be rendered.  

 
 

Nature of Multimedia Applications 

Multimedia data may be stored, delivered, and utilized in many different ways. Applications may be 
categorized based on their data management characteristics as follows:  

• Repository applications: A large amount of multimedia data as well as metadata is stored for 
retrieval purposes. A central repository containing multimedia data may be maintained by a 
DBMS and may be organized into a hierarchy of storage levels—local disks, tertiary disks and 
tapes, optical disks, and so on. Examples include repositories of satellite images, engineering 
drawings and designs, space photographs, and radiology scanned pictures.  

• Presentation applications: A large number of applications involve delivery of multimedia data 
subject to temporal constraints. Audio and video data are delivered this way; in these 
applications optimal viewing or listening conditions require the DBMS to deliver data at 
certain rates offering "quality of service" above a certain threshold. Data is consumed as it is 
delivered, unlike in repository applications, where it may be processed later (e.g., multimedia 
electronic mail). Simple multimedia viewing of video data, for example, requires a system to 
simulate VCR-like functionality. Complex and interactive multimedia presentations involve 
orchestration directions to control the retrieval order of components in a series or in parallel. 
Interactive environments must support capabilities such as real-time editing analysis or 
annotating of video and audio data.  

• Collaborative work using multimedia information: This is a new category of applications in 
which engineers may execute a complex design task by merging drawings, fitting subjects to 
design constraints, and generating new documentation, change notifications, and so forth. 
Intelligent healthcare networks as well as telemedicine will involve doctors collaborating 
among themselves, analyzing multimedia patient data and information in real time as it is 
generated.  

All of these application areas present major challenges for the design of multimedia database systems.  

 
 

27.2.2 Data Management Issues 
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Multimedia applications dealing with thousands of images, documents, audio and video segments, and 
free text data depend critically on appropriate modeling of the structure and content of data and then 
designing appropriate database schemas for storing and retrieving multimedia information. Multimedia 
information systems are very complex and embrace a large set of issues, including the following:  

• Modeling: This area has the potential for applying database versus information retrieval 
techniques to the problem. There are problems of dealing with complex objects (see Chapter 
11) made up of a wide range of types of data: numeric, text, graphic (computer-generated 
image), animated graphic image, audio stream, and video sequence. Documents constitute a 
specialized area and deserve special consideration.  

• Design: The conceptual, logical, and physical design of multimedia databases has not been 
addressed fully, and it remains an area of active research. The design process can be based on 
the general methodology described in Chapter 16, but the performance and tuning issues at 
each level are far more complex.  

• Storage: Storage of multimedia data on standard disklike devices presents problems of 
representation, compression, mapping to device hierarchies, archiving, and buffering during 
the input/output operation. Adhering to standards such as JPEG or MPEG is one way most 
vendors of multimedia products are likely to deal with this issue. In DBMSs, a "BLOB" 
(Binary Large Object) facility allows untyped bitmaps to be stored and retrieved. Standardized 
software will be required to deal with synchronization and compression/decompression, and 
will be coupled with indexing problems, which are still in the research domain.  

• Queries and retrieval: The "database" way of retrieving information is based on query 
languages and internal index structures. The "information retrieval" way relies strictly on 
keywords or predefined index terms. For images, video data, and audio data, this opens up 
many issues, among them efficient query formulation, query execution, and optimization. The 
standard optimization techniques we discussed in Chapter 18 need to be modified to work 
with multimedia data types.  

• Performance: For multimedia applications involving only documents and text, performance 
constraints are subjectively determined by the user. For applications involving video playback 
or audio-video synchronization, physical limitations dominate. For instance, video must be 
delivered at a steady rate of 60 frames per second. Techniques for query optimization may 
compute expected response time before evaluating the query. The use of parallel processing of 
data may alleviate some problems, but such efforts are currently subject to further 
experimentation.  

Such issues have given rise to a variety of open research problems. We look at a few representative 
problems now.  

 
 

27.2.3 Open Research Problems 

Databases versus Information Retrieval Perspectives 
Requirements of Multimedia/Hypermedia Data Modeling and Retrieval 
Indexing of Images 
Problems in Text Retrieval

Databases versus Information Retrieval Perspectives 

Modeling data content has not been an issue in database models and systems because the data has a 
rigid structure and the meaning of a data instance can be inferred from the schema. In contrast, 
information retrieval (IR) is mainly concerned with modeling the content of text documents (through 
the use of keywords, phrasal indexes, semantic networks, word frequencies, soundex encoding, and so 
on) for which structure is generally neglected. By modeling content, the system can determine whether 
a document is relevant to a query by examining the content-descriptors of the document. Consider, for 
instance, an insurance company’s accident claim report as a multimedia object: it includes images of 
the accident, structured insurance forms, audio recordings of the parties involved in the accident, the 
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text report of the insurance company’s representative, and other information. Which data model should 
be used to represent multimedia information such as this? How should queries be formulated against 
this data? Efficient execution thus becomes a complex issue, and the semantic heterogeneity and 
representational complexity of multimedia information gives rise to many new problems.  

 
 

Requirements of Multimedia/Hypermedia Data Modeling and Retrieval 

To capture the full expressive power of multimedia data modeling, the system should have a general 
construct that lets the user specify links between any two arbitrary nodes. Hypermedia links or 
hyperlinks have a number of different characteristics:  

• Links can be specified with or without associated information, and they may have large 
descriptions associated with them.  

• Links can start from a specific point within a node or from the whole node.  
• Links can be directional or nondirectional when they can be traversed in either direction.  

The link capability of the data model should take into account all of these variations. When content-
based retrieval of multimedia data is needed, the query mechanism should have access to the links and 
the link-associated information. The system should provide facilities for defining views over all links—
private and public. Valuable contextual information can be obtained from the structural information. 
Automatically generated hypermedia links do not reveal anything new about the two nodes, and in 
contrast to manually generated hypermedia links, would have different significance. Facilities for 
creating and utilizing such links, as well as developing and using navigational query languages to 
utilize the links, are important features of any system permitting effective use of multimedia 
information. This area is important to interlinked databases on the WWW. (See Section 27.1 for a 
discussion of WWW databases.)  

 
 

Indexing of Images 

There are two approaches to indexing images: (1) identifying objects automatically through image-
processing techniques, and (2) assigning index terms and phrases through manual indexing. An 
important problem in using image-processing techniques to index pictures relates to scalability. The 
current state of the art allows the indexing of only simple patterns in images. Complexity increases 
with the number of recognizable features. Another important problem relates to the complexity of the 
query. Rules and inference mechanisms, as discussed in Chapter 25, can be used to derive higher-level 
facts from simple features of images. This allows high-level queries like "find hotel buildings that have 
open foyers and allow maximum sunshine in the front desk area" in an architectural application.  

The information-retrieval approach to image indexing is based on one of three indexing schemes:  

1. Classificatory systems: Classifies images hierarchically into predetermined categories. In this 
approach, the indexer and the user should have a good knowledge of the available categories. 
Finer details of a complex image and relationships among objects in an image cannot be 
captured.  

2. Keyword-based systems: Uses an indexing vocabulary similar to that used in the indexing of 
textual documents. Simple facts represented in the image (like "ice-capped region") and facts 
derived as a result of high-level interpretation by humans (like permanent ice, recent snowfall, 
and polar ice) can be captured.  

3. Entity-attribute-relationship systems: All objects in the picture and the relationships between 
objects and the attributes of the objects are identified.  
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In the case of text documents, an indexer can choose the keywords from the pool of words available in 
the document to be indexed. This is not possible in the case of visual and video data.  

 
 

Problems in Text Retrieval 

Text retrieval has always been the key feature in business applications and library systems, and 
although much work has gone into some of the following problems, there remains an ongoing need for 
improvement, especially regarding the following issues:  

• Phrase indexing: Substantial improvements can be realized if phrase descriptors (as opposed 
to single-word index terms) are assigned to documents and used in queries, provided that these 
descriptors are good indicators of document content and information need.  

• Use of thesaurus: One reason for the poor recall of current systems is that the vocabulary of 
the user differs from the vocabulary used to index the documents. One solution is to use a 
thesaurus to expand the user’s query with related terms. The problem then becomes one of 
finding a thesaurus for the domain of interest.  

• Resolving ambiguity: One of the reasons for low precision (the ratio of the number of relevant 
items retrieved to the total number of retrieved items) in text information retrieval systems is 
that words have multiple meanings. One way to resolve ambiguity is to use an on-line 
dictionary; another is to compare the contexts in which the two words occur.  

In the first three decades of DBMS development—roughly from 1965 to 1995—the primary focus had 
been on the management of mostly numeric business and industrial data. In the next few decades, 
nonnumeric textual information will probably dominate database content. As a consequence, a variety 
of functionalities involving comparison, conceptualization, understanding, indexing, and 
summarization of documents will be added to DBMSs. We saw the use of the text datablade in Section 
13.2.6 for the INFORMIX DBMS. Multimedia information systems promise to bring about a joining of 
disciplines that have historically been separate areas: information retrieval and database management.  

 
 

27.2.4 Multimedia Database Applications 

Commercial Systems for Multimedia Information Management

Large-scale applications of multimedia databases can be expected to encompass a large number of 
disciplines and enhance existing capabilities. Some important applications will be involved:  

• Documents and records management: A large number of industries and businesses keep very 
detailed records and a variety of documents. The data may include engineering design and 
manufacturing data, medical records of patients, publishing material, and insurance claim 
records.  

• Knowledge dissemination: The multimedia mode, a very effective means of knowledge 
dissemination, will encompass a phenomenal growth in electronic books, catalogs, manuals, 
encyclopedias and repositories of information on many topics.  

• Education and training: Teaching materials for different audiences—from kindergarten 
students to equipment operators to professionals—can be designed from multimedia sources. 
Digital libraries are expected to have a major influence on the way future students and 
researchers as well as other users will access vast repositories of educational material. (See 
Section 27.6 on digital libraries.)  

• Marketing, advertising, retailing, entertainment, and travel: There are virtually no limits to 
using multimedia information in these applications—from effective sales presentations to 
virtual tours of cities and art galleries. The film industry has already shown the power of 
special effects in creating animations and synthetically designed animals, aliens, and special 
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effects. The use of predesigned stored objects in multimedia databases will expand the range 
of these applications.  

• Real-time control and monitoring: Coupled with active database technology (see Section 
23.1), multimedia presentation of information can be a very effective means for monitoring 
and controlling complex tasks such as manufacturing operations, nuclear power plants, 
patients in intensive care units, and transportation systems.  

 
 

Commercial Systems for Multimedia Information Management 

There are no DBMSs designed for the sole purpose of multimedia data management, and therefore 
there are none that have the range of functionality required to fully support all of the multimedia 
information management applications that we discussed above. However, several DBMSs today 
support multimedia data types; these include Informix Dynamic Server, DB2 Universal database 
(UDB) of IBM, Oracle 8.0 (see Chapter 10), CA-JASMINE, Sybase, ODB II. All of these DBMSs 
have support for objects, which is essential for modeling a variety of complex multimedia objects. One 
major problem with these systems is that the "blades, cartridges, and extenders" for handling 
multimedia data are designed in a very ad hoc manner. The functionality is provided without much 
apparent attention to scalability and performance. There are products available that operate either 
stand-alone or in conjunction with other vendors’ systems to allow retrieval of image data by content. 
They include Virage, Excalibur, and IBM’s QBIC. Operations on multimedia need to be standardized. 
The MPEG-7 and other standards are addressing some of these issues.  

 
 

27.2.5 Selected Bibliography on Multimedia Databases 

Multimedia database management is becoming a very heavily researched area with several industrial 
projects on the way. Grosky (1994, 1997) provides two excellent tutorials on the topic. Pazandak and 
Srivastava (1995) provide an evaluation of database systems related to the requirements of multimedia 
databases. Grosky et al. (1997) contains contributed articles including a survey on content-based 
indexing and retrieval by Jagadish (1997). Faloutsos et al. (1994) also discuss a system for image 
querying by content. Li et al. (1998) introduce image modeling in which an image is viewed as a 
hierarchical structured complex object with both semantics and visual properties. Nwosu et al. (1996) 
and Subramanian and Jajodia (1997) have written books on the topic. The following WWW references 
may be consulted for additional information:  

 
 

CA-JASMINE (Multimedia ODBMS): http://www.cai.com/products/jasmine.htm  

Excalibur technologies: http://www.excalib.com  

Virage, Inc (Content based image retrieval): http://www.virage.com  

IBM’s QBIC (Query by Image Content) product: http://www.ibm.com

 
 

27.3 Mobile Databases 
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27.3.1 Mobile Computing Architecture 
27.3.2 Types of Data in Mobile Applications 
27.3.3 Data Management Issues 
27.3.4 Intermittently Synchronized Mobile Databases 
27.3.5 Selected Bibliography for Mobile Databases

Recent advances in wireless technology have led to mobile computing, a new dimension in data 
communication and processing. The mobile computing environment will provide database applications 
with useful aspects of wireless technology. The mobile computing platform allows users to establish 
communication with other users and to manage their work while they are mobile. This feature is 
especially useful to geographically dispersed organizations. Typical examples might include traffic 
police, taxi dispatchers, and weather reporting services, as well as financial market reporting and 
information brokering applications. However, there are a number of hardware as well as software 
problems that must be resolved before the capabilities of mobile computing can be fully utilized. Some 
of the software problems—which may involve data management, transaction management, and 
database recovery—have their origin in distributed database systems. In mobile computing, however, 
these problems become more difficult to solve, mainly because of the narrow bandwidth of the wireless 
communication channels, the relatively short active life of the power supply (battery) of mobile units, 
and the changing locations of required information (sometimes in cache, sometimes in the air, 
sometimes at the server). In addition, mobile computing has its own unique architectural challenges.  

 
 

27.3.1 Mobile Computing Architecture 

 
Characteristics of Mobile Environments

The general architecture of a mobile platform is illustrated in Figure 27.04. It is a distributed 
architecture where a number of computers, generally referred to as Fixed Hosts (FS) and Base 
Stations (BS), are interconnected through a high-speed wired network. Fixed hosts are general purpose 
computers that are not equipped to manage mobile units but can be configured to do so. Base stations 
are equipped with wireless interfaces and can communicate with mobile units to support data access.  

 

 

 
 

Mobile Units (MU) (or hosts) and base stations communicate through wireless channels having 
bandwidths significantly lower than those of a wired network. A downlink channel is used for sending 
data from a BS to an MU and an uplink channel is used for sending data from an MU to its BS. Recent 
products for portable wireless have an upper limit of 1 Mbps (megabits per second) for infrared 
communication, 2 Mbps for radio communication, and 9.14 Kbps (kilobits per second) for cellular 
telephony. Ethernet, by comparison, provides 10 Mbps fast Ethernet and FDDI provide 100 Mbps and 
ATM (asynchronous transfer mode) provides 155 Mbps.  

Mobile units are battery-powered portable computers that move freely in a geographic mobility 
domain, an area that is restricted by the limited bandwidth of wireless communication channels. To 
manage the mobility of units, the entire geographic mobility domain is divided into smaller domains 
called cells. The mobile discipline requires that the movement of mobile units be unrestricted within 
the geographic mobility domain (intercell movement), while having information access contiguity 
during movement guarantees that the movement of a mobile unit across cell boundaries will have no 
effect on the data retrieval process.  
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The mobile computing platform can be effectively described under the client-server paradigm, which 
means we may sometimes refer to a mobile unit as a client or sometimes as a user, and the base stations 
as servers. Each cell is managed by a base station, which contains transmitters and receivers for 
responding to the information-processing needs of clients located in the cell. We assume that the 
average query response time is much shorter than the time required by the client to physically traverse 
a cell.  

Clients and servers communicate through wireless channels. The communication link between a client 
and a server may be modeled as multiple data channels or as a single channel.  

 
 

Characteristics of Mobile Environments 

In mobile database environments, data generally changes very rapidly. Users often query servers to 
remain up-to-date. More specifically, they often want to track every broadcast for their data item of 
interest. Examples of this type of data are stock market information, weather data, and airline 
information. The database is updated asynchronously by an independent external process.  

Users are mobile and randomly enter and exit from cells. The average duration of a user’s stay in the 
cell is referred to as residence latency (RL), a parameter that is computed (and continually adjusted) 
by observing user residence times in cells. Thus each cell has an RL value. User reference behavior 
tends to be localized—i.e., users tend to access certain parts of the database very frequently. Servers 
maintain neither client arrival and departure patterns nor client-specific data request information.  

Wireless networks differ from wired networks in many ways. Database users over a wired network 
remain connected not only to the network but also to a continuous power source. Thus, response time is 
the key performance metric. In a wireless network, however, both the response time and the active life 
of the user’s power source (battery) are important. While a mobile unit is listening or transmitting on-
line, it is considered to be in active mode. For current laptops with CD-ROM drives, estimated battery 
life in active mode is under 3 hours. In order to conserve energy and extend battery life, clients can slip 
into a doze mode, where they are not actively listening on the channel and they can expend 
significantly less energy than they do in active mode. Clients can be woken up from the doze mode 
when the server needs to communicate with the client.  

 
 

27.3.2 Types of Data in Mobile Applications 

Applications that run on mobile hosts have different data requirements. Users either engage in personal 
communications or office activities, or they simply receive updates on frequently changing 
information. Mobile applications can be categorized in two ways: (1) vertical applications and (2) 
horizontal applications (Note 3). In vertical applications users access data within a specific cell, and 
access is denied to users outside of that cell. For example, users can obtain information on the location 
of doctors or emergency centers within a cell or parking availability data at an airport cell. In 
horizontal applications, users cooperate on accomplishing a task, and they can handle data distributed 
throughout the system. The horizontal application market is massive; two types of applications most 
mentioned are mail-enabled applications and information services to mobile users.  

Data may be classified into three categories:  

1. Private data: A single user owns this data and manages it. No other user may access it.  
2. Public data: This data can be used by anyone who can read it. Only one source updates it. 

Examples include weather bulletins or stock prices.  
3. Shared data: This data is accessed both in read and write modes by groups of users. Examples 

include inventory data for products in a company.  
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Public data is primarily managed by vertical applications, while shared data is used by horizontal 
applications, possibly with some replication. Copies of shared data may be stored both in base and 
mobile stations. This presents a variety of difficult problems in transaction management consistency as 
well as integrity and scalability of the architecture.  

 
 

27.3.3 Data Management Issues 

From a data management standpoint, mobile computing may be considered a variation of distributed 
computing. Mobile databases can be distributed under two possible scenarios:  

1. The entire database is distributed mainly among the wired components, possibly with full or 
partial replication. A base station manages its own database with a DBMS-like functionality, 
with additional functionality for locating mobile units and additional query and transaction 
management features to meet the requirements of mobile environments.  

2. The database is distributed among wired and wireless components. Data management 
responsibility is shared among base stations and mobile units.  

Hence, the distributed data management issues we discussed in Chapter 24 can also be applied to 
mobile databases with the following additional considerations and variations:  

1. Data distribution and replication: Data is unevenly distributed among the base stations and 
mobile units. The consistency constraints compound the problem of cache management. 
Caches attempt to provide the most frequently accessed and updated data to mobile units that 
process their own transactions and may be disconnected over long periods.  

2. Transaction models: Issues of fault tolerance and correctness of transactions are aggravated in 
the mobile environment. A mobile transaction is executed sequentially through several base 
stations and possibly on multiple data sets depending upon the movement of the mobile unit. 
Central coordination of transaction execution is lacking, particularly in scenario (2) above. 
Hence, traditional ACID properties of transactions (see Chapter 19) may need to be modified 
and new transaction models must be defined.  

3. Query processing: Awareness of where the data is located is important and affects the 
cost/benefit analysis of query processing. The query response needs to be returned to mobile 
units that may be in transit or may cross cell boundaries yet must receive complete and correct 
query results.  

4. Recovery and fault tolerance: The mobile database environment must deal with site, media, 
transaction, and communication failures. Site failure at an MU is frequently due to limited 
battery power. If an MU has a voluntary shutdown, it should not be treated as a failure. 
Transaction failures are more frequent during handoff when an MU crosses cells. MU failure 
causes a network partitioning and affects routing algorithms.  

5. Mobile database design: The global name resolution problem for handling queries is 
compounded because of mobility and frequent shutdown. Mobile database design must 
consider many issues of metadata management—for example, the constant updating of 
location information.  

 
 

27.3.4 Intermittently Synchronized Mobile Databases 

A different scenario promises to become increasingly commonplace as people conduct their work away 
from their offices and homes and perform a wide range of activities and functions: all kinds of sales, 
particularly in pharmaceuticals, consumer goods, and industrial parts; law enforcement; insurance and 
financial consulting and planning; real estate or property management activities, and so on. In these 
applications, a server or a group of servers manages the central database and the clients carry laptops or 
palmtops with a resident DBMS software to do "local" transaction activity for most of the time. The 
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clients connect via a network or a dial-up connection (or possibly even through the Internet) with the 
server, typically for a short session—say, 30 to 60 minutes. They send their updates to the server, and 
the server must in turn enter them in its central database, which must maintain up-to-date data and 
prepare appropriate copies for all clients on the system. Thus, whenever clients connect—through a 
process known in the industry as synchronization of a client with a server—they receive a batch of 
updates to be installed on their local database. The primary characteristic of this scenario is that the 
clients are mostly disconnected; the server is not necessarily able to reach the client. This environment 
has problems similar to those in distributed and client-server databases, and some from mobile 
databases, but presents several additional research problems for investigation. We refer to this 
environment as Intermittently Synchronized Database Environment (ISDBE), and the 
corresponding databases as Intermittently Synchronized Databases (ISDBs).  

The following characteristics of ISDB’s make them distinct from the mobile databases we have 
discussed thus far:  

1. A client connects to server when it wants to receive updates from a server or to send its 
updates to a server or to process transactions that need nonlocal data. This communication 
may be unicast—one-on-one communication between the server and the client—or 
multicast—one sender or server may periodically communicate to a set of receivers or update 
a group of clients.  

2. A server cannot connect to a client at will.  
3. Issues of wireless versus wired client connections and power conservation are immaterial.  
4. A client is free to manage its own data and transactions while it is disconnected. It can also 

perform its own recovery to some extent.  
5. A client has multiple ways of connecting to a server and, in case of many servers, may choose 

a particular server to connect to based on proximity, communication nodes available, etc.  

Because of such differences, there is a need to address a number of problems related to ISDBs that are 
different from those typically involving mobile database systems. These include server database design 
for server databases, consistency management among client and server databases transaction and 
update processing, efficient use of the server bandwidth, and achieving scalability in the ISDB 
environments.  

 
 

27.3.5 Selected Bibliography for Mobile Databases 

There has been a sudden surge of interest in mobile computing, and research on mobile databases has 
had a significant growth for the last five to six years. Among books written on this topic, Dhawan 
(1997) is an excellent source on mobile computing. Wireless networks and their future is discussed in 
Holtzman and Goodman (1993). Imielinski and Badrinath (1994) provide a good survey of database 
issues. Dunham and Helal (1995) discuss problems of query processing, data distribution, and 
transaction management for mobile databases. Foreman and Zahorjan (1994) describe the capabilities 
and the problems of mobile computing and make a convincing argument in its favor as a viable 
solution for many information system applications of the future. Pitoura and Samaras (1998) describe 
all aspects of mobile database problems and solutions. Chintalapati et al. (1997) provide an adaptive 
location management algorithm while Bertino et al. (1998) discuss approaches to fault tolerance and 
recovery in mobile databases. The June 1995 issue of Byte magazine discusses many aspects of mobile 
computing. For an initial discussion of the ISDB scalability issues and an approach by aggregation of 
data and grouping of clients, see Mahajan et al. (1998).  

 
 

27.4 Geographic Information Systems 
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27.4.1 GIS Applications 
27.4.2 Data Management Requirements of GIS 
27.4.3 Specific GIS Data Operations 
27.4.4 An Example of a GIS: ARC-INFO 
27.4.5 Problems and Future Issues in GIS 
27.4.6 Selected Bibliography for GIS

Geographic information systems (GIS) are used to collect, model, store, and analyze information 
describing physical properties of the geographical world. The scope of GIS broadly encompasses two 
types of data: (1) spatial data, originating from maps, digital images, administrative and political 
boundaries, roads, transportation networks; physical data such as rivers, soil characteristics, climatic 
regions, land elevations, and (2) nonspatial data, such as census counts, economic data, and sales or 
marketing information. GIS is a rapidly developing domain that offers highly innovative approaches to 
meet some challenging technical demands.  

 
 

27.4.1 GIS Applications 

It is possible to divide GISs into three categories: (1) cartographic applications, (2) digital terrain 
modeling applications, and (3) geographic objects applications. Figure 27.05 summarizes these 
categories.  

 

 

 
 

In cartographic and terrain modeling applications, variations in spatial attributes are captured—for 
example, soil characteristics, crop density, and air quality. In geographic objects applications, objects 
of interest are identified from a physical domain—for example, power plants, electoral districts, 
property parcels, product distribution districts, and city landmarks. These objects are related with 
pertinent application data—which may be, for this specific example, power consumption, voting 
patterns, property sales volumes, product sales volume, and traffic density.  

The first two categories of GIS applications require a field-based representation, whereas the third 
category requires an object-based one. The cartographic approach involves special functions that can 
include the overlapping of layers of maps to combine attribute data that will allow, for example, the 
measuring of distances in three-dimensional space and the reclassification of data on the map. Digital 
terrain modeling requires a digital representation of parts of earth’s surface using land elevations at 
sample points that are connected to yield a surface model such as a three-dimensional net (connected 
lines in 3D) showing the surface terrain. It requires functions of interpolation between observed points 
as well as visualization. In object-based geographic applications, additional spatial functions are 
needed to deal with data related to roads, physical pipelines, communication cables, power lines, and 
such. For example, for a given region, comparable maps can be used for comparison at various points 
of time to show changes in certain data such as locations of roads, cables, buildings, and streams.  

 
 

27.4.2 Data Management Requirements of GIS 

Data Modeling and Representation 
Data Analysis 
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Data Integration 
Data Capture

The functional requirements of the GIS applications above translate into the following database 
requirements.  

 
 

Data Modeling and Representation 

GIS data can be broadly represented in two formats: (1) vector and (2) raster. Vector data represents 
geometric objects such as points, lines, and polygons. Thus a lake may be represented as a polygon, a 
river by a series of line segments. Raster data is characterized as an array of points, where each point 
represents the value of an attribute for a real-world location. Informally, raster images are n-
dimensional arrays where each entry is a unit of the image and represents an attribute. Two-
dimensional units are called pixels, while three-dimensional units are called voxels. Three-dimensional 
elevation data is stored in a raster-based digital elevation model (DEM) format. Another raster format 
called triangular irregular network (TIN) is a topological vector-based approach that models 
surfaces by connecting sample points as vertices of triangles and has a point density that may vary with 
the roughness of the terrain. Rectangular grids (or elevation matrices) are two-dimensional array 
structures. In digital terrain modeling (DTM), the model also may be used by substituting the 
elevation with some attribute of interest such as population density or air temperature. GIS data often 
includes a temporal structure in addition to a spatial structure. For example, traffic density may be 
measured every 60 seconds at a set of points.  

 
 

Data Analysis 

GIS data undergoes various types of analysis. For example, in applications such as soil erosion studies, 
environmental impact studies, or hydrological runoff simulations, DTM data may undergo various 
types of geomorphometric analysis—measurements such as slope values, gradients (the rate of 
change in altitude), aspect (the compass direction of the gradient), profile convexity (the rate of change 
of gradient), plan convexity (the convexity of contours and other parameters). When GIS data is used 
for decision support applications, it may undergo aggregation and expansion operations using data 
warehousing, as we discussed in Section 26.1.5. In addition, geometric operations (to compute 
distances, areas, volumes), topological operations (to compute overlaps, intersections, shortest paths), 
and temporal operations (to compute internal-based or event-based queries) are involved. Analysis 
involves a number of temporal and spatial operations, which were discussed in Section 23.2 and 
Section 23.3.  

 
 

Data Integration 

GISs must integrate both vector and raster data from a variety of sources. Sometimes edges and regions 
are inferred from a raster image to form a vector model, or conversely, raster images such as aerial 
photographs are used to update vector models. Several coordinate systems such as Universal 
Transverse Mercator (UTM), latitude/longitude, and local cadastral systems are used to identify 
locations. Data originating from different coordinate systems requires appropriate transformations. 
Major public sources of geographic data, including the TIGER files maintained by U.S. Department of 
Commerce, are used for road maps by many Web-based map drawing tools (e.g., 
http://maps.yahoo.com). Often there are high-accuracy, attribute-poor maps that have to be merged 
with low-accuracy, attribute-rich maps. This is done with a process called "rubber-banding" where the 
user defines a set of control points in both maps and the transformation of the low accuracy map is 
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accomplished to line up the control points. A major integration issue is to create and maintain attribute 
information (such as air quality or traffic density) which can be related to and integrated with 
appropriate geographical information over time as both evolve.  

 
 

Data Capture 

The first step in developing a spatial database for cartographic modeling is to capture the two-
dimensional or three-dimensional geographical information in digital form—a process that is 
sometimes impeded by source map characteristics such as resolution, type of projection, map scales, 
cartographic licensing, diversity of measurement techniques, and coordinate system differences. Spatial 
data can also be captured from remote sensors in satellites such as Landsat, NORA, and Advanced 
Very High Resolution Radiometer (AVHRR) as well as SPOT HRV (High Resolution Visible Range 
Instrument), which is free of interpretive bias and very accurate. For digital terrain modeling, data 
capture methods range from manual to fully automated. Ground surveys are the traditional approach 
and the most accurate, but they are very time consuming. Other techniques include photogrammetric 
sampling and digitizing cartographic documents.  

 
 

27.4.3 Specific GIS Data Operations 

Other Database Functionality

GIS applications are conducted through the use of special operators such as the following:  

• Interpolation: This process derives elevation data for points at which no samples have been 
taken. It includes computation at single points, computation for a rectangular grid or along a 
contour, and so forth. Most interpolation methods are based on triangulation that uses the TIN 
method for interpolating elevations inside the triangle based on those of its vertices.  

• Interpretation: Digital terrain modeling involves the interpretation of operations on terrain 
data such as editing, smoothing, reducing details, and enhancing. Additional operations 
involve patching or zipping the borders of triangles (in TIN data), and merging, which implies 
combining overlapping models and resolving conflicts among attribute data. Conversions 
among grid models, contour models, and TIN data are involved in the interpretation of the 
terrain.  

• Proximity analysis: Several classes of proximity analysis include computations of "zones of 
interest" around objects, such as the determination of a buffer around a car on a highway. 
Shortest path algorithms using 2D or 3D information is an important class of proximity 
analysis.  

• Raster image processing: This process can be divided into two categories (1) map algebra, 
which is used to integrate geographic features on different map layers to produce new maps 
algebraically; and (2) digital image analysis, which deals with analysis of a digital image for 
features such as edge detection and object detection. Detecting roads in a satellite image of a 
city is an example of the latter.  

• Analysis of networks: Networks occur in GIS in many contexts that must be analyzed and may 
be subjected to segmentations, overlays, and so on. Network overlay refers to a type of spatial 
join where a given network—for example, a highway network—is joined with a point 
database—for example, accident locations—to yield, in this case, a profile of high-accident 
roadways.  

 
 

Other Database Functionality 
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The functionality of a GIS database is also subject to other considerations.  

• Extensibility: GISs are required to be extensible to accommodate a variety of constantly 
evolving applications and corresponding data types. If a standard DBMS is used, it must allow 
a core set of data types with a provision for defining additional types and methods for those 
types.  

• Data quality control: As in many other applications, quality of source data is of paramount 
importance for providing accurate results to queries. This problem is particularly significant in 
the GIS context because of the variety of data, sources, and measurement techniques involved 
and the absolute accuracy expected by applications users.  

• Visualization: A crucial function in GIS is related to visualization—the graphical display of 
terrain information and the appropriate representation of application attributes to go with it. 
Major visualization techniques include (1) contouring through the use of isolines, spatial units 
of lines or arcs of equal attribute values; (2) hillshading, an illumination method used for 
qualitative relief depiction using varied light intensities for individual facets of the terrain 
model; and (3) perspective displays, three-dimensional images of terrain model facets using 
perspective projection methods from computer graphics. These techniques impose 
cartographic data and other three-dimensional objects on terrain data providing animated 
scene renderings such as those in flight simulations and animated movies.  

Such requirements clearly illustrate that standard RDBMSs or ODBMSs do not meet the special needs 
of GIS. It is therefore necessary to design systems that support the vector and raster representations and 
the spatial functionality as well as the required DBMS features. A popular GIS called ARC-INFO, 
which is not a DBMS but integrates RDBMS functionality in the INFO part of the system, is briefly 
discussed in the subsection that follows. More systems are likely to be designed in the future to work 
with relational or object databases that will contain some of the spatial and most of the nonspatial 
information.  

 
 

27.4.4 An Example of a GIS: ARC-INFO 

ARC/INFO—a popular GIS launched in 1981 by Environmental System Research Institute (ESRI)—
uses the arc node model to store spatial data. A geographic layer—called coverage in ARC/INFO—
consists of three primitives: (1) nodes (points), (2) arcs (similar to lines), and (3) polygons. The arc is 
the most important of the three and stores a large amount of topological information. An arc has a start 
node and an end node (and it therefore has direction too). In addition, the polygons to the left and the 
right of the arc are also stored along with each arc. As there is no restriction on the shape of the arc, 
shape points that have no topological information are also stored along with each arc. The database 
managed by the INFO RDBMS thus consists of three required tables: (1) node attribute table (NAT), 
(2) arc attribute table (AAT), and (3) polygon attribute table (PAT). Additional information can be 
stored in separate tables and joined with any of these three tables.  

The NAT contains an internal ID for the node, a user-specified ID, the coordinates of the node, and any 
other information associated with that node (e.g., names of the intersecting roads at the node). The 
AAT contains an internal ID for the arc, a user-specified ID, the internal ID of the start and end nodes, 
the internal ID of the polygons to the left and the right, a series of coordinates of shape points (if any), 
the length of the arc, and any other data associated with the arc (e.g., the name of the road the arc 
represents). The PAT contains an internal ID for the polygon, a user-specified ID, the area of the 
polygon, the perimeter of the polygon, and any other associated data (e.g., name of the county the 
polygon represents).  

Typical spatial queries are related to adjacency, containment, and connectivity. The arc node model has 
enough information to satisfy all three types of queries, but the RDBMS is not ideally suited for this 
type of querying. A simple example will highlight the number of times a relational database has to be 
queried to extract adjacency information. Assume that we are trying to determine whether two 
polygons, A and B, are adjacent to each other. We would have to exhaustively look at the entire AAT 
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to determine whether there is an edge that has A on one side and B on the other. The search cannot be 
limited to the edges of either polygon as we do not explicitly store all the arcs that make a polygon in 
the PAT. Storing all the arcs in the PAT would be redundant because all the information is already 
there in the AAT.  

ESRI has released Arc/Storm (Arc Store Manager) which allows multiple users to use the same GIS, 
handles distributed databases, and integrates with other commercial RDBMSs like ORACLE, 
INFORMIX, and SYBASE. While it offers many performance and functional advantages over 
ARC/INFO, it is essentially an RDBMS embedded within a GIS.  

 
 

27.4.5 Problems and Future Issues in GIS 

GIS is an expanding application area of databases, reflecting an explosion in the number of end users 
using digitized maps, terrain data, space images, weather data, and traffic information support data. As 
a consequence, an increasing number of problems related to GIS applications have been generated and 
will need to be solved:  

• New architectures: GIS applications will need a new client-server architecture that will 
benefit from existing advances in RDBMS and ODBMS technology. One possible solution is 
to separate spatial from nonspatial data and to manage the latter entirely by a DBMS. Such a 
process calls for appropriate modeling and integration as both types of data evolve. 
Commercial vendors find that it is more viable to keep a small number of independent 
databases with an automatic posting of updates across them. Appropriate tools for data 
transfer, change management, and workflow management will be required.  

• Versioning and object life-cycle approach: Because of constantly evolving geographical 
features, GISs must maintain elaborate cartographic and terrain data—a management problem 
that might be eased by incremental updating coupled with update authorization schemes for 
different levels of users. Under the object life-cycle approach, which covers the activities of 
creating, destroying, and modifying objects as well as promoting versions into permanent 
objects, a complete set of methods may be predefined to control these activities for GIS 
objects.  

• Data standards: Because of the diversity of representation schemes and models, formalization 
of data transfer standards is crucial for the success of GIS. The international standardization 
body (ISO TC211) and the European standards body (CEN TC278) are now in the process of 
debating relevant issues—among them conversion between vector and raster data for fast 
query performance.  

• Matching applications and data structures: Looking again at Figure 27.05, we see that a 
classification of GIS applications is based on the nature and organization of data. In the future, 
systems covering a wide range of functions—from market analysis and utilities to car 
navigation—will need boundary-oriented data and functionality. On the other hand, 
applications in environmental science, hydrology, and agriculture will require more area-
oriented and terrain model data. It is not clear that all this functionality can be supported by a 
single general-purpose GIS. The specialized needs of GISs will require that general purpose 
DBMSs must be enhanced with additional data types and functionality before full-fledged GIS 
applications can be supported.  

• Lack of semantics in data structures: This is evident especially in maps. Information such as 
highway and road crossings may be difficult to determine based on the stored data. One way 
streets are also hard to represent in the present GISs. Transportation CAD systems have 
incorporated such semantics into GIS.  

 
 

27.4.6 Selected Bibliography for GIS 
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There are a number of books written on GIS. Adam and Gangopadhyay (1997) and Laurini and 
Thompson (1992) focus on GIS database and information management problems. Kemp (1993) gives 
an overview of GIS issues and data sources. Maguire et al. (1991) have a very good collection of GIS-
related papers. Sarasua and O’Neill (1999) concentrate on GIS for transportation systems. The TIGER 
files for road data in the United States are managed by the U.S. Department of Commerce (1993). 
Laser-Scan’s Web site (http://www.laser-scan.com/) is a good source of information.  

Environmental System Research Institute (ESRI) has an excellent library of GIS books for all levels at 
http://www.esri.com. The GIS terminology is defined at 
http://www.esri.com/library/glossary/glossary.html.  

 
 

27.5 Genome Data Management 

27.5.1 Biological Sciences and Genetics 
27.5.2 Characteristics of Biological Data 
27.5.3 The Human Genome Project and Existing Biological Databases 
27.5.4 Selected Bibliography for Genome Databases

27.5.1 Biological Sciences and Genetics 

The biological sciences encompass an enormous variety of information. Environmental science gives 
us a view of how species live and interact in a world filled with natural phenomena. Biology and 
ecology study particular species. Anatomy focuses on the overall structure of an organism, 
documenting the physical aspects of individual bodies. Traditional medicine and physiology break the 
organism into systems and tissues and strive to collect information on the workings of these systems 
and the organism as a whole. Histology and cell biology delve into the tissue and cellular levels and 
provide knowledge about the inner structure and function of the cell. This wealth of information that 
has been generated, classified, and stored for centuries has only recently become a major application of 
database technology.  

Genetics has emerged as an ideal field for the application of information technology. In a broad sense, 
it can be thought of as the construction of models based on information about genes—which can be 
defined as basic units of heredity—and populations and the seeking out of relationships in that 
information. The study of genetics can be divided into three branches: (1) Mendelian genetics, (2) 
molecular genetics, and (3) population genetics. Mendelian genetics is the study of the transmission of 
traits between generations. Molecular genetics is the study of the chemical structure and function of 
genes at the molecular level. Population genetics is the study of how genetic information varies across 
populations of organisms.  

Molecular genetics provides a more detailed look at genetic information by allowing researchers to 
examine the composition, structure, and function of genes. The origins of molecular genetics can be 
traced to two important discoveries. The first occurred in 1869 when Friedrich Miescher discovered 
nuclein and its primary component, deoxyribonucleic acid (DNA). In subsequent research DNA and a 
related compound, ribonucleic acid (RNA), were found to be composed of nucleotides (a sugar, a 
phosphate, and a base, which combined to form nucleic acid) linked into long polymers via the sugar 
and phosphate. The second discovery was the demonstration in 1944 by Oswald Avery that DNA was 
indeed the molecular substance carrying genetic information. Genes were thus shown to be composed 
of chains of nucleic acids arranged linearly on chromosomes and to serve three primary functions: (1) 
replicating genetic information between generations, (2) providing blueprints for the creation of 
polypeptides, and (3) accumulating changes—thereby allowing evolution to occur.  

 
 

27.5.2 Characteristics of Biological Data 
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Biological data exhibits many special characteristics that make management of biological information a 
particularly challenging problem. We will thus begin by summarizing the characteristics related to 
biological information, and focusing on a multidisciplinary field called bioinformatics that has 
emerged, with graduate degree programs now in place in several universities. Bioinformatics addresses 
information management of genetic information with special emphasis on DNA sequence analysis. It 
needs to be broadened into a wider scope to harness all types of biological information—its modeling, 
storage, retrieval, and management.  

Characteristic 1: Biological data is highly complex when compared with most other domains or 
applications. Definitions of such data must thus be able to represent a complex substructure of data as 
well as relationships and to ensure that no information is lost during biological data modeling. The 
structure of biological data often provides an additional context for interpretation of the information. 
Biological information systems must be able to represent any level of complexity in any data schema, 
relationship, or schema substructure—not just hierarchical, binary, or table data. As an example, 
MITOMAP is a database documenting the human mitochondrial genome (Note 4). This single genome 
is a small, circular piece of DNA encompassing information about 16,569 nucleotide bases; 52 gene 
loci encoding messenger RNA, ribosomal RNA, and transfer RNA; 1000 known population variants; 
over 60 known disease associations; and a limited set of knowledge on the complex molecular 
interactions of the biochemical energy producing pathway of oxidative phosphorylation. As might be 
expected, its management has encountered a large number of problems; we have been unable to use the 
traditional RDBMS or ODBMS approches to capture all aspects of the data.  

Characteristic 2: The amount and range of variability in data is high. Hence, biological systems must 
be flexible in handling data types and values. With such a wide range of possible data values, placing 
constraints on data types must be limited since this may exclude unexpected values—e.g., outlier 
values—that are particularly common in the biological domain. Exclusion of such values results in a 
loss of information. In addition, frequent exceptions to biological data structures may require a choice 
of data types to be available for a given piece of data.  

Characteristic 3: Schemas in biological databases change at a rapid pace. Hence, for improved 
information flow between generations or releases of databases, schema evolution and data object 
migration must be supported. The ability to extend the schema, a frequent occurrence in the biological 
setting, is unsupported in most relational and object database systems. Presently systems such as 
Genbank rerelease the entire database with new schemas once or twice a year rather than incrementally 
changing the system as changes become necessary. Such an evolutionary database would provide a 
timely and orderly mechanism for following changes to individual data entities in biological databases 
over time. This sort of tracking is important for biological researchers to be able to access and 
reproduce previous results.  

Characteristic 4: Representations of the same data by different biologists will likely be different (even 
when using the same system). Hence, mechanisms for "aligning" different biological schemas or 
different versions of schemas should be supported. Given the complexity of biological data, there are a 
multitude of ways of modeling any given entity, with the results often reflecting the particular focus of 
the scientist. While two individuals may produce different data models if asked to interpret the same 
entity, these models will likely have numerous points in common. In such situations, it would be useful 
to biological investigators to be able to run queries across these common points. By linking data 
elements in a network of schemas, this could be accomplished.  

Characteristic 5: Most users of biological data do not require write access to the database; read-only 
access is adequate. Write access is limited to privileged users called curators. For example, the 
database created as part of the MITOMAP project has on average more than 15,000 users per month on 
the Internet. There are fewer than twenty noncurator generated submissions to MITOMAP every 
month. In other words, the number of users requiring write access is small. Users generate a wide 
variety of read-access patterns into the database, but these patterns are not the same as those seen in 
traditional relational databases. User requested ad hoc searches demand indexing of often unexpected 
combinations of data instance classes.  

Characteristic 6: Most biologists are not likely to have any knowledge of the internal structure of the 
database or about schema design. Biological database interfaces should display information to users in 
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a manner that is applicable to the problem they are trying to address and that reflects the underlying 
data structure. Biological users usually know which data they require, but they have no technical 
knowledge of the data structure or how a DBMS represents the data. They rely on technical users to 
provide them with views into the database. Relational schemas fail to provide cues or any intuitive 
information to the user regarding the meaning of their schema. Web interfaces in particular often 
provide preset search interfaces, which may limit access into the database. However, if these interfaces 
are generated directly from database structures, they are likely to produce a wider possible range of 
access, although they may not guarantee usability.  

Characteristic 7: The context of data gives added meaning for its use in biological applications. 
Hence, context must be maintained and conveyed to the user when appropriate. In addition, it should be 
possible to integrate as many contexts as possible to maximize the interpretation of a biological data 
value. Isolated values are of less use in biological systems. For example, the sequence of a DNA strand 
is not particularly useful without additional information describing its organization, function, and such. 
A single nucleotide on a DNA strand, for example, seen in context with nondisease causing DNA 
strands, could be seen as a causative element for sickle cell anemia.  

Characteristic 8: Defining and representing complex queries is extremely important to the biologist. 
Hence, biological systems must support complex queries. Without any knowledge of the data structure 
(see Characteristic 6), average users cannot construct a complex query across data sets on their own. 
Thus, in order to be truly useful, systems must provide some tools for building these queries. As 
mentioned previously, many systems provide predefined query templates.  

Characteristic 9: Users of biological information often require access to "old" values of the data—
particularly when verifying previously reported results. Hence, changes to the values of data in the 
database must be supported through a system of archives. Access to both the most recent version of a 
data value and its previous version are important in the biological domain. Investigators consistently 
want to query the most up-to-date data, but they must also be able to reconstruct previous work and 
reevaluate prior and current information. Consequently, values that are about to be updated in a 
biological database cannot simply be thrown away.  

All of these characteristics clearly point to the fact that today’s DBMSs do not fully cater to the 
requirements of complex biological data. A new direction in database management systems is 
necessary (Note 5).  

 
 

27.5.3 The Human Genome Project and Existing Biological Databases 

Genbank 
The Genome Database (GDB) 
On-line Mendelian Inheritance in Man 
EcoCyc

The term genome is defined as the total genetic information that can be obtained about an entity. The 
human genome, for example, generally refers to the complete set of genes required to create a human 
being—estimated to be between 100,000 and 300,000 genes spread over 23 pairs of chromosomes, 
with an estimated 3 to 4 billion nucleotides. The goal of the Human Genome Project (HGP) is to obtain 
the complete sequence—the ordering of the bases—of those nucleotides. At present only 8,000 genes 
have been identified and less than 10 percent of the human genome has been sequenced. However, the 
entire sequence is expected to be completed by the year 2002. In isolation, the human DNA sequence is 
not particularly useful. The sequence can however be combined with other data and used as a powerful 
tool to help address questions in genetics, biochemistry, medicine, anthropology, and agriculture. In the 
existing genome databases, the focus has been on "curating" (or collecting with some initial scrutiny 
and quality check) and classifying information about genome sequence data. In addition to the human 
genome, numerous organisms such as E.coli, Drosophila, and C.elegans have been investigated. We 
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will briefly discuss some of the existing database systems that are supporting or have grown out of the 
Human Genome Project.  

 
 

Genbank 

The preeminent DNA sequence database in the world today is Genbank, maintained by the National 
Center for Biotechnology Information (NCBI) of the National Library of Medicine (NLM). It was 
established in 1978 as a central repository for DNA sequence data. Since then it has expanded 
somewhat in scope to include expressed sequence tag data, protein sequence data, three-dimensional 
protein structure, taxonomy, and links to the biomedical literature (MEDLINE). Its latest release 
contains over 602,000,000 nucleotide bases of more than 920,000 sequences from over 16,000 species 
with roughly ten new organisms being added each day. The database size has doubled approximately 
every eighteen months for five years.  

While it is a complex, comprehensive database, the scope of its coverage is focused on human 
sequences and links to the literature. Other limited data sources (e.g. three-dimensional structure and 
OMIM, discussed below), have been added recently by reformatting the existing OMIM and PDB 
databases and redesigning the structure of the Genbank system to accommodate these new data sets.  

The system is maintained as a combination of flat files, relational databases, and files containing 
Abstract Syntax Notation One (ASN.1)—a syntax for defining data structures developed for the 
telecommunications industry. Each Genbank entry is assigned a unique identifier by the NCBI. 
Updates are assigned a new identifier, with the identifier of the original entity remaining unchanged for 
archival purposes. Older references to an entity thus do not inadvertently indicate a new and possibly 
inappropriate value. The most current concepts also receive a second set of unique identifiers (UIDs), 
which mark the most up-to-date form of a concept while allowing older versions to be accessed via 
their original identifier.  

The average user of the database is not able to access the structure of the data directly for querying or 
other functions, although complete snapshots of the database are available for export in a number of 
formats, including ASN.1. The query mechanism provided is via the Entrez application (or its World 
Wide Web version), which allows keyword, sequence, and Genbank UID searching through a static 
interface.  

 
 

The Genome Database (GDB) 

Created in 1989, the Genome Database (GDB) is a catalog of human gene mapping data, a process that 
associates a piece of information with a particular location on the human genome. The degree of 
precision of this location on the map depends upon the source of the data, but it is usually not at the 
level of individual nucleotide bases. GDB data includes data describing primarily map information 
(distance and confidence limits), and Polymerase Chain Reaction (PCR) probe data (experimental 
conditions, PCR primers, and reagents used). More recently efforts have been made to add data on 
mutations linked to genetic loci, cell lines used in experiments, DNA probe libraries, and some limited 
polymorphism and population data.  

The GDB system is built around SYBASE, a commercial relational DBMS, and its data are modeled 
using standard Entity-Relationship techniques (see Chapter 3 and Chapter 4). The implementors of 
GDB have noted difficulties in using this model to capture more than simple map and probe data. In 
order to improve data integrity and to simplify the programming for application writers, GDB 
distributes a Database Access Toolkit. However, most users use a Web interface to search the ten 
interlinked data managers. Each manager keeps track of the links (relationships) for one of the ten 
tables within the GDB system. As with Genbank, users are given only a very high-level view of the 
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data at the time of searching and thus cannot easily make use of any knowledge gleaned from the 
structure of the GDB tables. Search methods are most useful when users are simply looking for an 
index into map or probe data. Exploratory ad hoc searching of the database is not encouraged by 
present interfaces. Integration of the database structures of GDB and OMIM (see below) was never 
fully established.  

 
 

On-line Mendelian Inheritance in Man 

On-line Mendelian Inheritance in Man (OMIM) is an electronic compendium of information on the 
genetic basis of human disease. Begun in hard-copy form by Victor McCusick in 1966 with 1500 
entries, it was converted to a full-text electronic form between 1987 and 1989 by the GDB. In 1991 its 
administration was transferred from Johns Hopkins University to the NCBI, and the entire database 
was converted to NCBI’s Genbank format. Today it contains more than 7000 entries.  

OMIM covers material on five disease areas based loosely on organs and systems. Any morphological, 
biochemical, behavioral, or other properties under study are referred to as phenotype of an individual 
(or a cell). Mendel realized that genes can exist in numerous different forms known as alleles. A 
genotype refers to the actual allelic composition of an individual.  

The structure of the phenotype and genotype entries contains textual data loosely structured as general 
descriptions, nomenclature, modes of inheritance, variations, gene structure, mapping, and numerous 
lesser categories. The full-text entries were converted to an ASN.1 structured format when OMIM was 
transferred to the NCBI. This greatly improved the ability to link OMIM data to other databases and it 
also provided a rigorous structure for the data. However, the basic form of the database remained 
difficult to modify.  

 
 

EcoCyc 

The Encyclopedia of Escherichia coli Genes and Metabolism (EcoCyc) is a recent experiment in 
combining information about the genome and the metabolism of E. coli K-12. The database was 
created in 1996 as a collaboration between Stanford Research Institute and the Marine Biological 
Laboratory. It catalogs and describes the known genes of E.coli, the enzymes encoded by those genes, 
and the biochemical reactions catalyzed by each enzyme and their organization into metabolic 
pathways. In so doing, EcoCyc spans the sequence and function domains of genomic information. It 
contains 1283 compounds with 965 structures as well as lists of bonds and atoms, molecular weights, 
and empirical formulas. It contains 3038 biochemical reactions described using 269 data classes.  

An object-oriented data model was first used to implement the system, with data stored on Ocelot, a 
frame knowledge representation system. EcoCyc data was arranged in a hierarchy of object classes 
based on the observations that (1) the properties of a reaction are independent of an enzyme that 
catalyzes it, and (2) an enzyme has a number of properties that are "logically distinct" from its 
reactions.  

EcoCyc provides two methods of querying: (1) direct (via predefined queries) and (2) indirect (via 
hypertext navigation). Direct queries are performed using menus and dialogs that can initiate a large 
but finite set of queries. No navigation of the actual data structures is supported. In addition, no 
mechanism for evolving the schema is documented.  

Table 27.1 summarizes the features of the major genome-related databases, as well as HGMDB and 
ACEDB databases. Some additional protein databases exist; they contain information about protein 
structures. Prominent protein databases include SWISSPROT at the University of Geneva, Protein Data 
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Bank (PDB) at Brookhaven National Laboratory, and Protein Identification Resource (PIR) at National 
Biomedical Research Foundation.  

 
 

Table 27.1  Summary of the Major Genome-Related Databases  

 
 
Database 
Name  

Major 
Content  

Initial 
Technology  

Current 
Technology  

DB Problem 
Areas  

Primary Data 
Types  

 
 
Genbank  DNA/RNA 

sequence, 
protein  

Text files  Flat-file/ 
ASN.1  

Schema browsing, 
schema evolution, 
linking to other dbs  

Text, numeric, 
some complex 
types  

OMIM  Disease pheno 
types and 
geno 
types, etc.  

Index 
cards/text 
files  

Flat-file/ 
ASN.1  

Unstructured, free 
text entries linking 
to other dbs  

Text  

GDB  Genetic map 
linkage data  

Flat file  Relational  Schema expansion/
evolution, complex 
objects, linking to 
other dbs  

Text, numeric  

ACEDB  Genetic map 
linkage data, 
sequence data 
(non-human)  

OO  OO  Schema expansion/
evolution, linking 
to other dbs  

Text, numeric  

HGMDB  Sequence and 
sequence 
variants  

Flat file—
application 
specific  

Flat-file—
application specific 

Schema expansion/
evolution, linking 
to other dbs  

Text  

EcoCyc  Biochemical 
reactions and 
pathways  

OO  OO  Locked into class 
hierarchy, schema 
evolution  

Complex types, 
text, numeric  

 
 

Over the past ten years, there has been an increasing interest in the applications of databases in biology 
and medicine. Genbank, GDB, and OMIM have been created as central repositories of certain types of 
biological data but, while extremely useful, they do not yet cover the complete spectrum of the Human 
Genome Project data. However, efforts are under way around the world to design new tools and 
techniques that will alleviate the data management problem for the biological scientists and medical 
researchers.  

 
 

27.5.4 Selected Bibliography for Genome Databases 

Bioinformatics has become a popular area of research in recent years and many workshops and 
conferences are being organized around this topic. Robbins (1993) gives a good overview while 
Frenkel (1991) surveys the human genome project with its special role in bioinformatics at large. 
Cutticchia et al. (1993), Benson et al. (1996), and Pearson et al. (1994) are references on GDB, 
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Genbank, and OMIM. Wallace (1995) has been a pioneer in the mitochondrial genome research, which 
deals with a specific part of the human genome; the sequence and organizational details of this area 
appear in Anderson et al. (1981). Recent work in Kogelnik et al. (1997, 1998) and Kogelnik (1998) 
addresses the development of a generic solution to the data management problem in biological sciences 
by developing a prototype solution. The MITOMAP database developed in Kogelnik (1998) can be 
accessed at http://www.gen.emory.edu/mitomap.html. The biggest protein database SWISS-PROT can 
be accessed from http://www.expasy.ch/sprot/sprot-top.html. The ACEDB database information is 
available at http://www.acedb.org/

 
 

27.6 Digital Libraries 

27.6.1 The Digital Libraries Initiative 
27.6.2 Selected Bibliography on Digital Libraries

Digital libraries are an important and active research area. Conceptually, a digital library is an analog 
of a traditional library—a large collection of information sources in various media—coupled with the 
advantages of digital technologies. However, digital libraries differ from their traditional counterparts 
in significant ways: storage is digital, remote access is quick and easy, and materials are copied from a 
master version. Furthermore, keeping extra copies on hand is easy and is not hampered by budget and 
storage restrictions, which are major problems in traditional libraries. Thus, digital technologies 
overcome many of the physical and economic limitations of traditional libraries.  

The introduction to the April 1995 Communications of the ACM special issue on digital libraries 
describes them grandly as the "opportunity . . . to fulfill the age-old dream of every human being: 
gaining ready access to humanity’s store of information." In Chapter 1, we defined a database quite 
broadly as a "collection of related data." Unlike the related data in a database, a digital library 
encompasses a multitude of sources, many unrelated. Logically, databases can be components of digital 
libraries (see Table 27.2).  

 
 

Table 27.2  Databases and Digital Libraries: Similarities and Differences  

 
 
Similarities  

 
 

• Both collect, organize, store, search, retrieve, process, and provide data.  
• Both contain and handle multiple media.  
• Both contain and handle heterogeneous data types and complex objects.  

 
 
Differences  

 
 
Digital Libraries  Databases  
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No centralized manager (management by agreed 
interfaces)  

Centralized manager (DBA)  

Uncontrolled/less controlled data quality  Controllable data quality  

 
 

The Digital Library Initiative (DLI), jointly funded by NSF, DARPA, and NASA, has been a major 
accelerator of the development of digital libraries. This initiative provided significant funding to six 
major projects at six universities in its first phase covering a broad spectrum of enabling technologies 
(as will be discussed below). The Initiative’s Web pages (see dli.grainger.uiuc.edu/national.htm) define 
its focus as "to dramatically advance the means to collect, store, and organize information in digital 
forms, and make it available for searching, retrieval, and processing via communication networks—all 
in user-friendly ways."  

The magnitude of these data collections as well as their diversity and multiple formats provides 
challenges on a new scale. The future progression of the development of digital libraries is likely to 
move from the present technology of retrieval via the Internet, through Net searches of indexed 
information in repositories, to a time of information correlation and analysis by intelligent networks. 
Techniques for collecting information, storing it, and organizing it to support informational 
requirements learned in the decades of design and implementation of databases will provide the 
baseline for development of approaches appropriate for digital libraries. Search, retrieval, and 
processing of the many forms of digital information will make use of the lessons learned from database 
operations on those forms of information.  

 
 

27.6.1 The Digital Libraries Initiative 

The University of Illinois at Urbana–Champaign is coordinating national synchronization of the six 
DLI projects underway at six participating universities. The projects illustrate major aspects of digital 
library development requirements. The participants and their focuses are as follows:  

• University of California at Berkeley: Environmental Planning and Geographic Information 
Systems (see Section 27.4 above for details on GIS). This project will implement a digital 
library as a collection of distributed information services, emphasizing automated indexing, 
intelligent retrieval, support by distributed databases, a better client-server retrieval protocol, 
better data acquisition technology, and a new interaction paradigm.  

• University of California at Santa Barbara: The Alexandria Project. Spatially referenced map 
information. This project will develop distributed library services for spatially indexed and 
graphical information collections (see Section 23.3 on spatial modeling and Section 27.4 on 
GIS).  

• Carnegie Mellon University: Informedia Digital Video Library. Using digital video libraries, 
this project will focus on full-content search and retrieval.  

• University of Illinois at Urbana-Champaign: Federating Repositories of Scientific Literature. 
This project will scale up a digital library for thousands of users and documents.  

• University of Michigan: Intelligent Agents for Information Location. This project will focus 
on agent technology, including use of user-interface agents, mediation agents to coordinate 
searches, and collection agents.  

• Stanford University: Interoperation Mechanisms Among Heterogeneous Services. This project 
will develop enabling technologies for an integrated digital library providing uniform access 
to novel services using networked information collections.  

 
 

27.6.2 Selected Bibliography on Digital Libraries 
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The April 1995 issue of Communications of the ACM is devoted to digital libraries. In it, Wiederhold 
(1995) discusses the importance of digital libraries in increasing human productivity in finding new 
knowledge. The April 1998 issue of Communications of the ACM is devoted to giving global scope and 
unlimited access to digital libraries. Schatz (1995, 1997) provides excellent coverage of information 
retrieval, search, and analysis as it relates to information on the Internet. The various universities in the 
Digital Libraries Initiative can be reached through the following URLs:  

 
 

Digital Libraries Initiative: dli.grainger.uiuc.edu/national.htm  

University of Berkeley: elib.cs.berkeley.edu

University of Santa Barbara: http://www.alexandria.ucsb.edu/

Carnegie-Mellon University: www.informedia.cs.cmu.edu

University of Illinois Urbana-Champaign: dli.grainger.uiuc.edu/default.htm  

University of Michigan: www.si.umich.edu/UMDL

Stanford University: http://diglib.stanford.edu/  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5

Note 1 

CERN stands for the French term "Conseil European pour la Recherche Nucleaire" or the European 
Council for Nuclear Research.  

 
 

Note 2 

Berners-Lee and his team are credited with this phenomenally successful idea; see Berners-Lee et al. 
(1992, 1994).  

 
 

Note 3 

This classification of applications and type of data is proposed by Imielinski and Badrinath (1994).  
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Note 4 

Details of MITOMAP and its information complexity can be seen in Kogelnik et al. (1997, 1998) and 
at http://www.gen.emory.edu/mitomap.html.  

 
 

Note 5 

A database environment called GENOME (Georgia Tech Emory Network Object Management 
Environment) to address the above issues is prototyped in Kogelnik (1998); see also Kogelnik et al. 
(1997, 1998).  
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Appendix A: Alternative Diagrammatic 
Notations 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

Figure A.01 shows a number of different diagrammatic notations for representing ER and EER model 
concepts. Unfortunately, there is no standard notation: different database design practitioners prefer 
different notations. Similarly, various CASE (computer-aided software engineering) tools and OOA 
(object-oriented analysis) methodologies use various notations. Some notations are associated with 
models that have additional concepts and constraints beyond those of the ER and EER models 
described in Chapter 3 and Chapter 24, while other models have fewer concepts and constraints. The 
notation we used in Chapter 3 is quite close to the original notation for ER diagrams, which is still 
widely used. We discuss some alternate notations here.  

 

 

 
 

Figure A.01(a) shows different notations for displaying entity types/classes, attributes, and 
relationships. In Chapter 3 and Chapter 24, we used the symbols marked (i) in Figure A.01(a)—
namely, rectangle, oval, and diamond. Notice that symbol (ii) for entity types/classes, symbol (ii) for 
attributes, and symbol (ii) for relationships are similar, but they are used by different methodologies to 
represent three different concepts. The straight line symbol (iii) for representing relationships is used 
by several tools and methodologies.  

Figure A.01(b) shows some notations for attaching attributes to entity types. We used notation (i). 
Notation (ii) uses the third notation (iii) for attributes from Figure A.01(a). The last two notations in 
Figure A.01(b)—(iii) and (iv)—are popular in OOA methodologies and in some CASE tools. In 
particular, the last notation displays both the attributes and the methods of a class, separated by a 
horizontal line.  

Figure A.01(c) shows various notations for representing the cardinality ratio of binary relationships. 
We used notation (i) in Chapter 3 and Chapter 24. Notation (ii)—known as the chicken feet notation—
is quite popular. Notation (iv) uses the arrow as a functional reference (from the N to the 1 side) and 
resembles our notation for foreign keys in the relational model (see Figure 07.07); notation (v)—used 
in Bachman diagrams—uses the arrow in the reverse direction (from the 1 to the N side). For a 1:1 
relationship, (ii) uses a straight line without any chicken feet; (iii) makes both halves of the diamond 
white; and (iv) places arrowheads on both sides. For an M:N relationship, (ii) uses chicken feet at both 
ends of the line; (iii) makes both halves of the diamond black; and (iv) does not display any 
arrowheads.  
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Figure A.01(d) shows several variations for displaying (min, max) constraints, which are used to 
display both cardinality ratio and total/partial participation. Notation (ii) is the alternative notation we 
used in Figure 03.15 and discussed in Section 3.7.4. Recall that our notation specifies the constraint 
that each entity must participate in at least min and at most max relationship instances. Hence, for a 1:1 
relationship, both max values are 1; and for M:N, both max values are n. A min value greater than 0 
(zero) specifies total participation (existence dependency). In methodologies that use the straight line 
for displaying relationships, it is common to reverse the positioning of the (min, max) constraints, as 
shown in (iii). Another popular technique—which follows the same positioning as (iii)—is to display 
the min as o ("oh" or circle, which stands for zero) or as | (vertical dash, which stands for 1), and to 
display the max as | (vertical dash, which stands for 1) or as chicken feet (which stands for n), as shown 
in (iv).  

Figure A.01(e) shows some notations for displaying specialization/generalization. We used notation (i) 
in Chapter 14, where a d in the circle specifies that the subclasses (S1, S2, and S3) are disjoint and an o 
specifies overlapping subclasses. Notation (ii) uses G (for generalization) to specify disjoint, and Gs to 
specify overlapping; some notations use the solid arrow, while others use the empty arrow (shown at 
the side). Notation (iii) uses a triangle pointing toward the superclass, and notation (v) uses a triangle 
pointing toward the subclasses; it is also possible to use both notations in the same methodology, with 
(iii) indicating generalization and (v) indicating specialization. Notation (iv) places the boxes 
representing subclasses within the box representing the superclass. Of the notations based on (vi), some 
use a single-lined arrow, and others use a double-lined arrow (shown at the side).  

The notations shown in Figure A.01 show only some of the diagrammatic symbols that have been used 
or suggested for displaying database conceptual schemes. Other notations, as well as various 
combinations of the preceding, have also been used. It would be useful to establish a standard that 
everyone would adhere to, in order to prevent misunderstandings and reduce confusion.  
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Appendix B: Parameters of Disks 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 
 

The most important disk parameter is the time required to locate an arbitrary disk block, given its 
block address, and then to transfer the block between the disk and a main memory buffer. This is the 
random access time for accessing a disk block. There are three time components to consider:  

1. Seek time (s): This is the time needed to mechanically position the read/write head on the 
correct track for movable-head disks. (For fixed-head disks, it is the time needed to 
electronically switch to the appropriate read/write head.) For movable head disks this time 
varies, depending on the distance between the current track under the read/write head and the 
track specified in the block address. Usually, the disk manufacturer provides an average seek 
time in milliseconds. The typical range of average seek time is 10 to 60 msec. This is the main 
"culprit" for the delay involved in transferring blocks between disk and memory. 

2. Rotational delay (rd): Once the read/write head is at the correct track, the user must wait for 
the beginning of the required block to rotate into position under the read/write head. On the 
average, this takes about the time for half a revolution of the disk, but it actually ranges from 
immediate access (if the start of the required block is in position under the read/write head 
right after the seek) to a full disk revolution (if the start of the required block just passed the 
read/write head after the seek). If the speed of disk rotation is p revolutions per minute (rpm), 
then the average rotational delay rd is given by  

rd = (1/2)*(1/p) min = (60*1000)/(2*p) msec  

 
 

A typical value for p is 10,000 rpm, which gives a rotational delay of rd = 3 msec. For fixed-head 
disks, where the seek time is negligible, this component causes the greatest delay in transferring a disk 
block. 

3. Block transfer time (btt): Once the read/write head is at the beginning of the required block, 
some time is needed to transfer the data in the block. This block transfer time depends on the 
block size, the track size, and the rotational speed. If the transfer rate for the disk is tr 
bytes/msec and the block size is B bytes, then  

btt = B/tr msec  

 
 

If we have a track size of 50 Kbytes and p is 3600 rpm, the transfer rate in bytes/ msec is  
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tr = (50*1000)/(60*1000/3600) = 3000 bytes/msec  

 
 

In this case, btt = B/3000 msec, where B is the block size in bytes.  

 
 

The average time needed to find and transfer a block, given its block address, is estimated by  

 
 

(s + rd + btt) msec  

 
 

This holds for either reading or writing a block. The principal method of reducing this time is to 
transfer several blocks that are stored on one or more tracks of the same cylinder; then the seek time is 
required only for the first block. To transfer consecutively k noncontiguous blocks that are on the same 
cylinder, we need approximately  

 
 

s + (k * (rd + btt)) msec  

 
 

In this case, we need two or more buffers in main storage, because we are continuously reading or 
writing the k blocks, as we discussed in Section 4.3. The transfer time per block is reduced even further 
when consecutive blocks on the same track or cylinder are transferred. This eliminates the rotational 
delay for all but the first block, so the estimate for transferring k consecutive blocks is  

 
 

s + rd + (k * btt) msec  

 
 

A more accurate estimate for transferring consecutive blocks takes into account the interblock gap (see 
Section 5.2.1), which includes the information that enables the read/ write head to determine which 
block it is about to read. Usually, the disk manufacturer provides a bulk transfer rate (btr) that takes 
the gap size into account when reading consecutively stored blocks. If the gap size is G bytes, then  
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btr = (B/(B + G)) * tr bytes/msec  

 
 

The bulk transfer rate is the rate of transferring useful bytes in the data blocks. The disk read/write head 
must go over all bytes on a track as the disk rotates, including the bytes in the interblock gaps, which 
store control information but not real data. When the bulk transfer rate is used, the time needed to 
transfer the useful data in one block out of several consecutive blocks is B/btr. Hence, the estimated 
time to read k blocks consecutively stored on the same cylinder becomes  

 
 

s + rd + (k * (B/btr)) msec  

 
 

Another parameter of disks is the rewrite time. This is useful in cases when we read a block from the 
disk into a main memory buffer, update the buffer, and then write the buffer back to the same disk 
block on which it was stored. In many cases, the time required to update the buffer in main memory is 
less than the time required for one disk revolution. If we know that the buffer is ready for rewriting, the 
system can keep the disk heads on the same track, and during the next disk revolution the updated 
buffer is rewritten back to the disk block. Hence, the rewrite time Trw, is usually estimated to be the 
time needed for one disk revolution:  

 
 

Trw = 2 * rd msec  

 
 

To summarize, here is a list of the parameters we have discussed and the symbols we use for them:  

 
 

seek time: s msec  

rotational delay: rd msec  

block transfer time: btt msec  

rewrite time: Trw msec  

transfer rate: tr bytes/msec  

bulk transfer rate: btr bytes/msec  

block size: B bytes  

interblock gap size: G bytes  
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Appendix C: An Overview of the 
Network Data Model 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

C.1 Network Data Modeling Concepts 
C.2 Constraints in the Network Model 
C.3 Data Manipulation in a Network Database 
C.4 Network Data Manipulation Language 
Selected Bibliography 
Footnotes

This appendix provides an overview of the network data model (Note 1). The original network model 
and language were presented in the CODASYL Data Base Task Group’s 1971 report; hence it is 
sometimes called the DBTG model. Revised reports in 1978 and 1981 incorporated more recent 
concepts. In this appendix, rather than concentrating on the details of a particular CODASYL report, 
we present the general concepts behind network-type databases and use the term network model rather 
than CODASYL model or DBTG model.  

The original CODASYL/DBTG report used COBOL as the host language. Regardless of the host 
programming language, the basic database manipulation commands of the network model remain the 
same. Although the network model and the object-oriented data model are both navigational in nature, 
the data structuring capability of the network model is much more elaborate and allows for explicit 
insertion/deletion/modification semantic specification. However, it lacks some of the desirable features 
of the object models that we discussed in Chapter 11, such as inheritance and encapsulation of structure 
and behavior.  

 
 

C.1 Network Data Modeling Concepts 

C.1.1 Records, Record Types, and Data Items 
C.1.2 Set Types and Their Basic Properties 
C.1.3 Special Types of Sets 
C.1.4 Stored Representations of Set Instances 
C.1.5 Using Sets to Represent M:N Relationships

There are two basic data structures in the network model: records and sets.  
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C.1.1 Records, Record Types, and Data Items 

Data is stored in records; each record consists of a group of related data values. Records are classified 
into record types, where each record type describes the structure of a group of records that store the 
same type of information. We give each record type a name, and we also give a name and format (data 
type) for each data item (or attribute) in the record type. Figure C.01 shows a record type STUDENT 
with data items NAME, SSN, ADDRESS, MAJORDEPT, and BIRTHDATE.  

 

 

 
 

We can declare a virtual data item (or derived attribute) AGE for the record type shown in Figure C.01 
and write a procedure to calculate the value of AGE from the value of the actual data item 
BIRTHDATE in each record.  

A typical database application has numerous record types—from a few to a few hundred. To represent 
relationships between records, the network model provides the modeling construct called set type, 
which we discuss next.  

 
 

C.1.2 Set Types and Their Basic Properties 

A set type is a description of a 1:N relationship between two record types. Figure C.02 shows how we 
represent a set type diagrammatically as an arrow. This type of diagrammatic representation is called a 
Bachman diagram. Each set type definition consists of three basic elements:  

• A name for the set type.  
• An owner record type.  
• A member record type.  

 
 
 

The set type in Figure C.02 is called MAJOR_DEPT; DEPARTMENT is the owner record type, and 
STUDENT is the member record type. This represents the 1:N relationship between academic 
departments and students majoring in those departments. In the database itself, there will be many set 
occurrences (or set instances) corresponding to a set type. Each instance relates one record from the 
owner record type—a DEPARTMENT record in our example—to the set of records from the member 
record type related to it—the set of STUDENT records for students who major in that department. 
Hence, each set occurrence is composed of:  

• One owner record from the owner record type.  
• A number of related member records (zero or more) from the member record type.  

A record from the member record type cannot exist in more than one set occurrence of a particular set 
type. This maintains the constraint that a set type represents a 1:N relationship. In our example a 
STUDENT record can be related to at most one major DEPARTMENT and hence is a member of at 
most one set occurrence of the MAJOR_DEPT set type.  
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A set occurrence can be identified either by the owner record or by any of the member records. Figure 
C.03 shows four set occurrences (instances) of the MAJOR_DEPT set type. Notice that each set 
instance must have one owner record but can have any number of member records (zero or more). 
Hence, we usually refer to a set instance by its owner record. The four set instances in Figure C.03 can 
be referred to as the ‘Computer Science’, ‘Mathematics’, ‘Physics’, and ‘Geology’ sets. It is customary 
to use a different representation of a set instance (Figure C.04) where the records of the set instance are 
shown linked together by pointers, which corresponds to a commonly used technique for implementing 
sets.  

 

 

 

 

 
 

In the network model, a set instance is not identical to the concept of a set in mathematics. There are 
two principal differences:  

• The set instance has one distinguished element—the owner record—whereas in a 
mathematical set there is no such distinction among the elements of a set.  

• In the network model, the member records of a set instance are ordered, whereas order of 
elements is immaterial in a mathematical set. Hence, we can refer to the first, second, ith, and 
last member records in a set instance. Figure C.04 shows an alternate "linked" representation 
of an instance of the set MAJOR_DEPT. In Figure C.04 the record of ‘Manuel Rivera’ is the 
first STUDENT (member) record in the ‘Computer Science’ set, and that of ‘Kareem Rashad’ 
is the last member record. The set of the network model is sometimes referred to as an owner-
coupled set or co-set, to distinguish it from a mathematical set.  

 
 

C.1.3 Special Types of Sets 

System-owned (Singular) Sets

One special type of set in the CODASYL network model is worth mentioning: SYSTEM-owned sets.  

 
 

System-owned (Singular) Sets 

A system-owned set is a set with no owner record type; instead, the system is the owner (Note 2). We 
can think of the system as a special "virtual" owner record type with only a single record occurrence. 
System-owned sets serve two main purposes in the network model:  

• They provide entry points into the database via the records of the specified member record 
type. Processing can commence by accessing members of that record type, and then retrieving 
related records via other sets.  

1 Page 788 of 893



www.manaraa.com

• They can be used to order the records of a given record type by using the set ordering 
specifications. By specifying several system-owned sets on the same record type, a user can 
access its records in different orders.  

A system-owned set allows the processing of records of a record type by using the regular set 
operations that we will discuss in Section C.4.2. This type of set is called a singular set because there 
is only one set occurrence of it. The diagrammatic representation of the system-owned set 
ALL_DEPTS is shown in Figure C.05, which allows DEPARTMENT records to be accessed in order 
of some field—say, NAME—with an appropriate set-ordering specification. Other special set types 
include recursive set types, with the same record serving as an owner and a member, which are mostly 
disallowed; multimember sets containing multiple record types as members in the same set type are 
allowed in some systems.  

 

 

 
 

C.1.4 Stored Representations of Set Instances 

A set instance is commonly represented as a ring (circular linked list) linking the owner record and all 
member records of the set, as shown in Figure C.04. This is also sometimes called a circular chain. 
The ring representation is symmetric with respect to all records; hence, to distinguish between the 
owner record and the member records, the DBMS includes a special field, called the type field, that 
has a distinct value (assigned by the DBMS) for each record type. By examining the type field, the 
system can tell whether the record is the owner of the set instance or is one of the member records. This 
type field is hidden from the user and is used only by the DBMS.  

In addition to the type field, a record type is automatically assigned a pointer field by the DBMS for 
each set type in which it participates as owner or member. This pointer can be considered to be labeled 
with the set type name to which it corresponds; hence, the system internally maintains the 
correspondence between these pointer fields and their set types. A pointer is usually called the NEXT 
pointer in a member record and the FIRST pointer in an owner record because these point to the next 
and first member records, respectively. In our example of Figure C.04, each student record has a NEXT 
pointer to the next student record within the set occurrence. The NEXT pointer of the last member 
record in a set occurrence points back to the owner record. If a record of the member record type does 
not participate in any set instance, its NEXT pointer has a special nil pointer. If a set occurrence has an 
owner but no member records, the FIRST pointer points right back to the owner record itself or it can 
be nil.  

The preceding representation of sets is one method for implementing set instances. In general, a DBMS 
can implement sets in various ways. However, the chosen representation must allow the DBMS to do 
all the following operations:  

• Given an owner record, find all member records of the set occurrence.  
• Given an owner record, find the first, ith, or last member record of the set occurrence. If no 

such record exists, return an exception code.  
• Given a member record, find the next (or previous) member record of the set occurrence. If no 

such record exists, return an exception code.  
• Given a member record, find the owner record of the set occurrence.  

The circular linked list representation allows the system to do all of the preceding operations with 
varying degrees of efficiency. In general, a network database schema has many record types and set 
types, which means that a record type may participate as owner and member in numerous set types. For 
example, in the network schema that appears later as Figure C.08, the EMPLOYEE record type 
participates as owner in four set TYPES—MANAGES, IS_A_SUPERVISOR, E_WORKSON, and 
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DEPENDENTS_OF—and participates as member in two set types—WORKS_FOR and 
SUPERVISEES. In the circular linked list representation, six additional pointer fields are added to the 
EMPLOYEE record type. However, no confusion arises, because each pointer is labeled by the system 
and plays the role of FIRST or NEXT pointer for a specific set type.  

Other representations of sets allow more efficient implementation of some of the operations on sets 
noted previously. We briefly mention five of them here:  

• Doubly linked circular list representation: Besides the NEXT pointer in a member record 
type, a PRIOR pointer points back to the prior member record of the set occurrence. The 
PRIOR pointer of the first member record can point back to the owner record.  

• Owner pointer representation: For each set type an additional OWNER pointer is included in 
the member record type that points directly to the owner record of the set.  

• Contiguous member records: Rather than being linked by pointers, the member records are 
actually placed in contiguous physical locations, typically following the owner record.  

• Pointer arrays: An array of pointers is stored with the owner record. The ith element in the 
array points to the ith member record of the set instance. This is usually implemented in 
conjunction with the owner pointer.  

• Indexed representation: A small index is kept with the owner record for each set occurrence. 
An index entry contains the value of a key indexing field and a pointer to the actual member 
record that has this field value. The index may be implemented as a linked list chained by next 
and prior pointers (the IDMS system allows this option).  

These representations support the network DML operations with varying degrees of efficiency. Ideally, 
the programmer should not be concerned with how sets are implemented, but only with confirming that 
they are implemented correctly by the DBMS. However, in practice, the programmer can benefit from 
the particular implementation of sets, to write more efficient programs. Most systems allow the 
database designer to choose from among several options for implementing each set type, using a 
MODE statement to specify the chosen representation.  

 
 

C.1.5 Using Sets to Represent M:N Relationships 

A set type represents a 1:N relationship between two record types. This means that a record of the 
member record type can appear in only one set occurrence. This constraint is automatically enforced 
by the DBMS in the network model. To represent a 1:1 relationship, the extra 1:1 constraint must be 
imposed by the application program.  

An M:N relationship between two record types cannot be represented by a single set type. For example, 
consider the WORKS_ON relationship between EMPLOYEEs and PROJECTs. Assume that an 
employee can be working on several projects simultaneously and that a project typically has several 
employees working on it. If we try to represent this by a set type, neither the set type in Figure C.06(a) 
nor that in Figure C.06(b) will represent the relationship correctly. Figure C.06(a) enforces the 
incorrect constraint that a PROJECT record is related to only one EMPLOYEE record, whereas Figure 
C.06(b) enforces the incorrect constraint that an EMPLOYEE record is related to only one PROJECT 
record. Using both set types E_P and P_E simultaneously, as in Figure C.06(c), leads to the problem of 
enforcing the constraint that P_E and E_P are mutually consistent inverses, plus the problem of dealing 
with relationship attributes.  
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The correct method for representing an M:N relationship in the network model is to use two set types 
and an additional record type, as shown in Figure C.06(d). This additional record type—WORKS_ON, 
in our example—is called a linking (or dummy) record type. Each record of the WORKS_ON record 
type must be owned by one EMPLOYEE record through the E_W set and by one PROJECT record 
through the P_W set and serves to relate these two owner records. This is illustrated conceptually in 
Figure C.06(e).  

Figure C.06(f) shows an example of individual record and set occurrences in the linked list 
representation corresponding to the schema in Figure C.06(d). Each record of the WORKS_ON record 
type has two NEXT pointers: the one marked NEXT(E_W) points to the next record in an instance of 
the E_W set, and the one marked NEXT(P_W) points to the next record in an instance of the P_W set. 
Each WORKS_ON record relates its two owner records. Each WORKS_ON record also contains the 
number of hours per week that an employee works on a project. The same occurrences in Figure 
C.06(f) are shown in Figure C.06(e) by displaying the W records individually, without showing the 
pointers.  

To find all projects that a particular employee works on, we start at the EMPLOYEE record and then 
trace through all WORKS_ON records owned by that EMPLOYEE, using the FIRST(E_W) and 
NEXT(E_W) pointers. At each WORKS_ON record in the set occurrence, we find its owner PROJECT 
record by following the NEXT(P_W) pointers until we find a record of type PROJECT. For example, 
for the E2 EMPLOYEE record, we follow the FIRST(E_W) pointer in E2 leading to W1, the 
NEXT(E_W) pointer in W1 leading to W2, and the NEXT(E_W) pointer in W2 leading back to E2. 
Hence, W1 and W2 are identified as the member records in the set occurrence of E_W owned by E2. 
By following the NEXT(P_W) pointer in W1, we reach P1 as its owner; and by following the 
NEXT(P_W) pointer in W2 (and through W3 and W4), we reach P2 as its owner. Notice that the 
existence of direct OWNER pointers for the P_W set in the WORKS_ON records would have 
simplified the process of identifying the owner PROJECT record of each WORKS_ON record.  

In a similar fashion, we can find all EMPLOYEE records related to a particular PROJECT. In this case 
the existence of owner pointers for the E_W set would simplify processing. All this pointer tracing is 
done automatically by the DBMS; the programmer has DML commands for directly finding the owner 
or the next member, as we shall discuss in Section C.4.2.  

Notice that we could represent the M:N relationship as in Figure C.06(a) or Figure C.06(b) if we were 
allowed to duplicate PROJECT (or EMPLOYEE) records. In Figure C.06(a) a PROJECT record would 
be duplicated as many times as there were employees working on the project. However, duplicating 
records creates problems in maintaining consistency among the duplicates whenever the database is 
updated, and it is not recommended in general.  

 
 

C.2 Constraints in the Network Model 

C.2.1 Insertion Options (Constraints) on Sets 
C.2.2 Retention Options (Constraints) on Sets 
C.2.3 Set Ordering Options 
C.2.4 Set Selection Options 
C.2.5 Data Definition in the Network Model

In explaining the network model so far, we have already discussed "structural" constraints that govern 
how record types and set types are structured. In the present section we discuss "behavioral" constraints 
that apply to (the behavior of) the members of sets when insertion, deletion, and update operations are 
performed on sets. Several constraints may be specified on set membership. These are usually divided 
into two main categories, called insertion options and retention options in CODASYL terminology. 
These constraints are determined during database design by knowing how a set is required to behave 
when member records are inserted or when owner or member records are deleted. The constraints are 
specified to the DBMS when we declare the database structure, using the data definition language (see 
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Section C.3). Not all combinations of the constraints are possible. We first discuss each type of 
constraint and then give the allowable combinations.  

 
 

C.2.1 Insertion Options (Constraints) on Sets 

The insertion constraints—or options, in CODASYL terminology—on set membership specify what is 
to happen when we insert a new record in the database that is of a member record type. A record is 
inserted by using the STORE command (see Section C.4.3). There are two options:  

• AUTOMATIC: The new member record is automatically connected to an appropriate set 
occurrence when the record is inserted (Note 3).  

• MANUAL: The new record is not connected to any set occurrence. If desired, the programmer 
can explicitly (manually) connect the record to a set occurrence subsequently by using the 
CONNECT command.  

For example, consider the MAJOR_DEPT set type of Figure C.02. In this situation we can have a 
STUDENT record that is not related to any department through the MAJOR_DEPT set (if the 
corresponding student has not declared a major). We should therefore declare the MANUAL insertion 
option, meaning that when a member STUDENT record is inserted in the database it is not 
automatically related to a DEPARTMENT record through the MAJOR_DEPT set. The database user 
may later insert the record "manually" into a set instance when the corresponding student declares a 
major department. This manual insertion is accomplished by using an update operation called 
CONNECT, submitted to the database system, as we shall see in Section C.4.4.  

The AUTOMATIC option for set insertion is used in situations where we want to insert a member 
record into a set instance automatically upon storage of that record in the database. We must specify a 
criterion for designating the set instance of which each new record becomes a member. As an example, 
consider the set type shown in Figure C.07(a), which relates each employee to the set of dependents of 
that employee. We can declare the EMP_DEPENDENTS set type to be AUTOMATIC, with the 
condition that a new DEPENDENT record with a particular EMPSSN value is inserted into the set 
instance owned by the EMPLOYEE record with the same SSN value.  

 

 

 
 

C.2.2 Retention Options (Constraints) on Sets 

The retention constraints—or options, in CODASYL terminology—specify whether a record of a 
member record type can exist in the database on its own or whether it must always be related to an 
owner as a member of some set instance. There are three retention options:  

• OPTIONAL: A member record can exist on its own without being a member in any 
occurrence of the set. It can be connected and disconnected to set occurrences at will by 
means of the CONNECT and DISCONNECT commands of the network DML (see Section 
C.4.4).  

• MANDATORY: A member record cannot exist on its own; it must always be a member in 
some set occurrence of the set type. It can be reconnected in a single operation from one set 
occurrence to another by means of the RECONNECT command of the network DML (see 
Section C.4.4).  
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• FIXED: As in MANDATORY, a member record cannot exist on its own. Moreover, once it is 
inserted in a set occurrence, it is fixed; it cannot be reconnected to another set occurrence.  

We now illustrate the differences among these options by examples showing when each option should 
be used. First, consider the MAJOR_DEPT set type of Figure C.02. To provide for the situation where 
we may have a STUDENT record that is not related to any department through the MAJOR_DEPT set, 
we declare the set to be OPTIONAL. In Figure C.07(a) EMP_DEPENDENTS is an example of a 
FIXED set type, because we do not expect a dependent to be moved from one employee to another. In 
addition, every DEPENDENT record must be related to some EMPLOYEE record at all times. In 
Figure C.07(b) a MANDATORY set EMP_DEPT relates an employee to the department the employee 
works for. Here, every employee must be assigned to exactly one department at all times; however, an 
employee can be reassigned from one department to another.  

By using an appropriate insertion/retention option, the DBA is able to specify the behavior of a set type 
as a constraint, which is then automatically held good by the system. Table C.1 summarizes the 
Insertion and Retention options.  

 

Table C.1  Set Insertion and Retention Options  

 
 
    Retention Option 

 
 
  OPTIONAL  MANDATORY  FIXED  

MANUAL  Application program is in 
charge of inserting member 
record into set occurrence.  

Not very useful.  Not very useful.  

  Can CONNECT, 
DISCONNECT, 
RECONNECT  

    

AUTOMATIC  DBMS inserts a new member 
record into a set occurrence 
automatically.  

DBMS inserts a new member 
record into a set occurrence 
automatically.  

DBMS inserts a 
new member 
record into a set 
occurrence 
automatically.  

  Can CONNECT, 
DISCONNECT, 
RECONNECT.  

Can RECONNECT member 
to a different owner.  

Cannot 
RECONNECT 
member to a 
different owner.  

 
 

C.2.3 Set Ordering Options 

The member records in a set instance can be ordered in various ways. Order can be based on an 
ordering field or controlled by the time sequence of insertion of new member records. The available 
options for ordering can be summarized as follows:  

• Sorted by an ordering field: The values of one or more fields from the member record type are 
used to order the member records within each set occurrence in ascending or descending 
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order. The system maintains the order when a new member record is connected to the set 
instance by automatically inserting the record in its correct position in the order.  

• System default: A new member record is inserted in an arbitrary position determined by the 
system.  

• First or last: A new member record becomes the first or last record in the set occurrence at 
the time it is inserted. Hence, this corresponds to having the member records in a set instance 
stored in chronological (or reverse chronological) order.  

• Next or prior: The new member record is inserted after or before the current record of the set 
occurrence.  

The desired options for insertion, retention, and ordering are specified when the set type is declared in 
the data definition language. Details of declaring record types and set types are discussed in Section 
C.3 in connection with the network model data definition language (DDL).  

 
 

C.2.4 Set Selection Options 

The following options can be used to select an appropriate set occurrence:  

• SET SELECTION IS STRUCTURAL: We can specify set selection by values of two fields 
that must match—one field from the owner record type, and one from the member record 
type. This is called a structural constraint in network terminology. Examples are the 
P_WORKSON and E_WORKSON set type declarations in Figure C.08 and Figure C.09(b).  

• SET SELECTION BY APPLICATION: The set occurrence is determined via the application 
program, which should make the desired set occurrence the "current of set" before the new 
member record is stored. The new member record is then automatically connected to the 
current set occurrence.  

 

 

 

 

 
 

C.2.5 Data Definition in the Network Model 

After designing a network database schema, we must declare all the record types, set types, data item 
definitions, and schema constraints to the network DBMS. The network DDL is used for this purpose. 
Network DDL declarations for the record types of the COMPANY schema shown in Figure C.08 are 
shown in Figure C.09(a). Each record type is given a name by using the RECORD NAME IS clause. 
Figure C.09(b) shows network DDL declarations for the set types of the COMPANY schema shown in 
Figure C.08. These are more complex than record type declarations, because more options are 
available. Each set type is given a name by using the SET NAME IS clause. The insertion and 
retention options (constraints), discussed in Section C.2, are specified for each set type by using the 
INSERTION IS and RETENTION IS clauses. If the insertion option is AUTOMATIC, we must also 
specify how the system will select a set occurrence automatically to connect a new member record to 
that occurrence when the record is first inserted into the database. The SET SELECTION clause is 
used for this purpose.  
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C.3 Data Manipulation in a Network Database 

C.3.1 Basic Concepts for Network Database Manipulation

In this section we discuss how to write programs that manipulate a network database—including such 
tasks as searching for and retrieving records from the database; inserting, deleting, and modifying 
records; and connecting and disconnecting records from set occurrences. A data manipulation 
language (DML) is used for these purposes. The DML associated with the network model consists of 
record-at-a-time commands that are embedded in a general-purpose programming language called the 
host language. Embedded commands of the DML are also called the data sublanguage. In practice, 
the most commonly used host languages are COBOL (Note 4) and PL/I. In our examples, however, we 
show program segments in PASCAL notation augmented with network DML commands.  

 
 

C.3.1 Basic Concepts for Network Database Manipulation 

Currency Indicators 
Status Indicators

To write programs for manipulating a network database, we first need to discuss some basic concepts 
related to how data manipulation programs are written. The database system and the host programming 
language are two separate software systems that are linked together by a common interface and 
communicate only through this interface. Because DML commands are record-at-a-time, it is necessary 
to identify specific records of the database as current records. The DBMS itself keeps track of a 
number of current records and set occurrences by means of a mechanism known as currency 
indicators. In addition, the host programming language needs local program variables to hold the 
records of different record types so that their contents can be manipulated by the host program. The set 
of these local variables in the program is usually referred to as the user work area (UWA). The UWA 
is a set of program variables, declared in the host program, to communicate the contents of individual 
records between the DBMS and the host program. For each record type in the database schema, a 
corresponding program variable with the same format must be declared in the program.  

 
 

Currency Indicators 

In the network DML, retrievals and updates are handled by moving or navigating through the database 
records; hence, keeping a trace of the search is critical. Currency indicators are a means of keeping 
track of the most recently accessed records and set occurrences by the DBMS. They play the role of 
position holders so that we may process new records starting from the ones most recently accessed 
until we retrieve all the records that contain the information we need. Each currency indicator can be 
thought of as a record pointer (or record address) that points to a single database record. In a network 
DBMS, several currency indicators are used:  

• Current of record type: For each record type, the DBMS keeps track of the most recently 
accessed record of that record type. If no record has been accessed yet from that record type, 
the current record is undefined.  

• Current of set type: For each set type in the schema, the DBMS keeps track of the most 
recently accessed set occurrence from the set type. The set occurrence is specified by a single 
record from that set, which is either the owner or one of the member records. Hence, the 
current of set (or current set) points to a record, even though it is used to keep track of a set 
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occurrence. If the program has not accessed any record from that set type, the current of set is 
undefined.  

• Current of run unit (CRU): A run unit is a database access program that is executing (running) 
on the computer system. For each run unit, the CRU keeps track of the record most recently 
accessed by the program; this record can be from any record type in the database.  

Each time a program executes a DML command, the currency indicators for the record types and set 
types affected by that command are updated by the DBMS.  

 
 

Status Indicators 

Several status indicators return an indication of success or failure after each DML command is 
executed. The program can check the values of these status indicators and take appropriate action—
either to continue execution or to transfer to an error-handling routine. We call the main status variable 
DB_STATUS and assume that it is implicitly declared in the host program. After each DML command, 
the value of DB_STATUS indicates whether the command was successful or whether an error or an 
exception occurred. The most common exception that occurs is the END_OF_SET (EOS) exception.  

 
 

C.4 Network Data Manipulation Language 

C.4.1 DML Commands for Retrieval and Navigation 
C.4.2 DML Commands for Set Processing 
C.4.3 DML Commands for Updating the Database 
C.4.4 Commands for Updating Set Instances

The commands for manipulating a network database are called the network data manipulation 
language (DML). These commands are typically embedded in a general-purpose programming 
language, called the host programming language. The DML commands can be grouped into 
navigation commands, retrieval commands, and update commands. Navigation commands are used to 
set the currency indicators to specific records and set occurrences in the database. Retrieval 
commands retrieve the current record of the run unit (CRU). Update commands can be divided into 
two subgroups—one for updating records, and the other for updating set occurrences. Record update 
commands are used to store new records, delete unwanted records, and modify field values, whereas 
set update commands are used to connect or disconnect a member record in a set occurrence or to move 
a member record from one set occurrence to another. The full set of commands is summarized in Table 
C.2.  

 

Table C.2  Summary of Network DML Commands  

 
 
Retrieval   

 
 
GET  Retrieve the current of run unit (CRU) into the corresponding user work area 

(UWA) variable.  
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Navigation   

 
 
FIND  Reset the currency indicators; always sets the CRU; also sets currency 

indicators of involved record types and set types. There are many variations 
of FIND.  

 
 
Record Update   

 
 
STORE  Store the new record in the database and make it the CRU.  

ERASE  Delete from the database the record that is the CRU.  

MODIFY  Modify some fields of the record that is the CRU.  

 
 
Set Update   

 
 
CONNECT  Connect a member record (the CRU) to a set instance.  

DISCONNECT  Remove a member record (the CRU) from a set instance.  

RECONNECT  Move a member record (the CRU) from one set instance to another.  

 
 

We discuss these DML commands below and illustrate our discussion with examples that use the 
network schema shown in Figure C.08 and defined by the DDL statements in Figure C.09(a) and 
Figure C.09(b). The DML commands we present are generally based on the CODASYL DBTG 
proposal. We use PASCAL as the host language in our examples, but in the actual DBMSs in use, 
COBOL and FORTRAN are predominantly used as host languages. The examples consist of short 
program segments without any variable declarations. In our programs, we prefix the DML commands 
with a $-sign to distinguish them from the PASCAL language statements. We write PASCAL language 
keywords—such as if, then, while, and for—in lowercase. In our examples we often need to assign 
values to fields of the PASCAL UWA variables. We use the PASCAL notation for assignment.  

 
 

C.4.1 DML Commands for Retrieval and Navigation 

DML Commands for Locating Records of a Record Type
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The DML command for retrieving a record is the GET command. Before the GET command is issued, 
the program should specify the record it wants to retrieve as the CRU, by using the appropriate 
navigational FIND commands. There are many variations of FIND; we will first discuss the use of 
FIND in locating record instances of a record type and then discuss the variations for processing set 
occurrences.  

 
 

DML Commands for Locating Records of a Record Type 

There are two main variations of the FIND command for locating a record of a certain record type and 
making that record the CRU and current of record type. Other currency indicators may also be affected, 
as we shall see. The format of these two commands is as follows, where optional parts of the command 
are shown in brackets, [ ... ]:  

• FIND ANY <record type name> [USING <field list>]  
• FIND DUPLICATE <record type name> [USING <field list>]  

We now illustrate the use of these commands with examples. To retrieve the EMPLOYEE record for 
the employee whose name is John Smith and to print out his salary, we can write EX1:  

 

  EX1: 1 EMPLOYEE.FNAME := ‘John’; EMPLOYEE.LNAME := ‘Smith’; 
  2  $FIND ANY EMPLOYEE USING FNAME, LNAME; 
  3  if DB_STATUS = 0 
  4  then begin 
  5  $GET EMPLOYEE; 
  6  writeln (EMPLOYEE.SALARY) 
  7  end 
  8  else writeln (‘no record found’);  

 
 

The FIND ANY command finds the first record in the database of the specified <record type name> 
such that the field values of the record match the values initialized earlier in the corresponding UWA 
fields specified in the USING clause of the command. In EX1, lines 1 and 2 are equivalent to saying: 
"Search for the first EMPLOYEE record that satisfies the condition FNAME = ‘John’ and LNAME = 
‘Smith’ and make it the current record of the run unit (CRU)." The GET statement is equivalent to 
saying: "Retrieve the CRU record into the corresponding UWA program variable." The IDMS system 
combines FIND and GET into a single command, called OBTAIN.  

If more than one record satisfies our search and we want to retrieve all of them, we must write a 
looping construct in the host programming language. For example, to retrieve all EMPLOYEE records 
for employees who work in the Research department and to print their names, we can write EX2.  

 

  EX2:  EMPLOYEE.DEPTNAME := ‘Research’;  

$FIND ANY EMPLOYEE USING DEPTNAME;  

while DB_STATUS = 0 do  
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begin  

$GET EMPLOYEE;  

writeln (EMPLOYEE.FNAME, EMPLOYEE.LNAME);  

$FIND DUPLICATE EMPLOYEE USING DEPTNAME  

end;  

 
 

The FIND DUPLICATE command finds the next (or duplicate) record, starting from the current 
record, that satisfies the search.  

 
 

C.4.2 DML Commands for Set Processing 

For set processing, we have the following variations of FIND:  

• FIND (FIRST | NEXT | PRIOR | LAST | ...) <record type name>  
• FIND OWNER WITHIN <set type name>  

Once we have established a current set occurrence of a set type, we can use the FIND command to 
locate various records that participate in the set occurrence. We can locate either the owner record or 
one of the member records and make that record the CRU. We use FIND OWNER to locate the owner 
record and one of FIND FIRST, FIND NEXT, FIND LAST, or FIND PRIOR to locate the first, 
next, last, or prior member record of the set instance, respectively.  

Consider the request to print the names of all employees who work full-time—40 hours per week—on 
the ‘ProductX’ project; this example is shown as EX3:  

 

  EX3:  PROJECT.NAME := ‘ProductX’;  

$FIND ANY PROJECT USING NAME;  

if DB_STATUS = 0 then  

begin  

WORKS_ON.HOURS:= ‘40.0’;  

$FIND FIRST WORKS_ON WITHIN P_WORKSON USING HOURS;  

while DB_STATUS = 0 do  

begin  

$GET WORKS_ON;  
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$FIND OWNER WITHIN E_WORKSON; $GET EMPLOYEE;  

writeln (EMPLOYEE.FNAME, EMPLOYEE.LNAME),  

$FIND NEXT WORKS_ON WITHIN P_WORKSON USING HOURS  

end  

end;  

 
 

In EX3, the qualification USING HOURS in FIND FIRST and FIND NEXT specifies that only the 
WORKS_ON records in the current set instance of P_WORKSON whose HOURS field value matches 
the value in WORKS_ON.HOURS of the UWA, which is set to ‘40.0’ in the program, are found. 
Notice that the USING clause with FIND NEXT is used to find the next member record within the 
same set occurrence; when we process records of a record type regardless of the sets they belong to, 
we use FIND DUPLICATE rather than FIND NEXT.  

We can use numerous embedded loops in the same program segment to process several sets. For 
example, consider the following query: For each department, print the department’s name and its 
manager’s name; and for each employee who works in that department, print the employee’s name and 
the list of project names that the employee works on.  

This query requires us to process the system-owned set ALL_DEPTS to retrieve DEPARTMENT 
records. Using the WORKS_FOR set, the program retrieves the EMPLOYEE records for each 
DEPARTMENT. Then, for each employee found, the E_WORKSON set is accessed to locate the 
WORKS_ON records. For each WORKS_ON record located, a "FIND OWNER WITHIN 
P_WORKSON" locates the appropriate PROJECT.  

 
 

C.4.3 DML Commands for Updating the Database 

The STORE Command 
The ERASE and ERASE ALL Commands 
The MODIFY Command

The DML commands for updating a network database are summarized in Table C.2. Here, we first 
discuss the commands for updating records—namely the STORE, ERASE, and MODIFY commands. 
These are used to insert a new record, delete a record, and modify some fields of a record, respectively. 
Following this, we illustrate the commands that modify set instances, which are the CONNECT, 
DISCONNECT, and RECONNECT commands.  

 
 

The STORE Command 

The STORE command is used to insert a new record. Before issuing a STORE, we must first set up the 
UWA variable of the corresponding record type so that its field values contain the field values of the 
new record. For example, to insert a new EMPLOYEE record for John F. Smith, we can prepare the 
data in the UWA variables, then issue  

1 Page 800 of 893



www.manaraa.com

 
 

$STORE EMPLOYEE;  

 
 

The result of the STORE command is insertion of the current contents of the UWA record of the 
specified record type into the database. In addition, if the record type is an AUTOMATIC member of a 
set type, the record is automatically inserted into a set instance.  

 
 

The ERASE and ERASE ALL Commands 

To delete a record from the database, we first make that record the CRU and then issue the ERASE 
command. For example, to delete the EMPLOYEE record inserted above, we can use EX4:  

 

   EX4:  EMPLOYEE.SSN := ‘567342793’;  

$FIND ANY EMPLOYEE USING SSN;  

if DB_STATUS = 0 then $ERASE EMPLOYEE;  

 
 

The effect of an ERASE command on any member records that are owned by the record being deleted 
is determined by the set retention option. A variation of the ERASE command, ERASE ALL, allows 
the programmer to remove a record and all records owned by it directly or indirectly. This means that 
all member records owned by the record are deleted. In addition, member records owned by any of the 
deleted records are also deleted, down to any number of repetitions.  

 
 

The MODIFY Command 

The final command for updating records is the MODIFY command, which changes some of the field 
values of a record.  

 
 

C.4.4 Commands for Updating Set Instances 

We now consider the three set update operations—CONNECT, DISCONNECT, and RECONNECT—
which are used to insert and remove member records in set instances. The CONNECT command 
inserts a member record into a set instance. The member record should be the current of run unit and is 
connected to the set instance that is the current of set for the set type. For example, to connect the 
EMPLOYEE record with SSN = ‘567342793’ to the WORKS_FOR set owned by the Research 
DEPARTMENT record, we can use EX5:  
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  EX5:  DEPARTMENT.NAME := ‘Research’;  

$FIND ANY DEPARTMENT USING NAME;  

if DB_STATUS = 0 then  

begin  

EMPLOYEE.SSN := ‘567342793’;  

$FIND ANY EMPLOYEE USING SSN;  

if DB_STATUS = 0 then  

$CONNECT EMPLOYEE TO WORKS_FOR;  

end;  

 
 

Notice that the EMPLOYEE record to be connected should not be a member of any set instance of 
WORKS_FOR before the CONNECT command is issued. We must use the RECONNECT command 
for the latter case. The CONNECT command can be used only with MANUAL sets or with 
AUTOMATIC OPTIONAL sets. With other AUTOMATIC sets, the system automatically connects a 
member record to a set instance, governed by the SET SELECTION option specified, as soon as the 
record is stored.  

The DISCONNECT command is used to remove a member record from a set instance without 
connecting it to another set instance. Hence, it can be used only with OPTIONAL sets. We make the 
record to be disconnected the CRU before issuing the DISCONNECT command. For example, to 
remove the EMPLOYEE record with SSN = ‘836483873’ from the SUPERVISEES set instance of 
which it is a member, we use EX6:  

 

  EX6:  EMPLOYEE.SSN := ‘836483873’;  

$FIND ANY EMPLOYEE USING SSN;  

if DB_STATUS = 0 then  

$DISCONNECT EMPLOYEE FROM SUPERVISEES;  

 
 

Finally, the RECONNECT command can be used with both OPTIONAL and MANDATORY sets, 
but not with FIXED sets. The RECONNECT command moves a member record from one set instance 
to another set instance of the same set type. It cannot be used with FIXED sets because a member 
record cannot be moved from one set instance to another under the FIXED constraint.  
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Other popular network model-based systems include VAX-DBMS (of Digital), IMAGE (of Hewlett-
Packard), DMS-1100 of UNIVAC, and SUPRA (of Cincom).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4

Note 1 

The complete chapter on the network data model and about the IDMS system from the second edition 
of this book is available at http://cseng.aw.com/book/0,,0805317554,00.html. This appendix is an 
edited excerpt of that chapter. 

 
 

Note 2 

By system, we mean the DBMS software. 

 
 

Note 3 

The appropriate set occurrence is determined by a specification that is part of the definition of the set 
type, the SET OCCURRENCE SELECTION.  

1 Page 803 of 893



www.manaraa.com

 
 

Note 4 

The CODASYL DML in the DBTG report was originally proposed as a data sublanguage for COBOL.  

 
 

© Copyright 2000 by Ramez Elmasri and Shamkant B. Navathe 
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Appendix D: An Overview of the 
Hierarchical Data Model 
(Fundamentals of Database Systems, Third Edition) 

 

 

 

 

D.1 Hierarchical Database Structures 
D.2 Integrity Constraints and Data Definition in the Hierarchical Model 
D.3 Data Manipulation Language for the Hierarchical Model 
Selected Bibliography 
Footnotes

This appendix provides an overview of the hierarchical data model (Note 1). There are no original 
documents that describe the hierarchical model, as there are for the relational and network models. The 
principles behind the hierarchical model are derived from Information Management System (IMS), 
which is the dominant hierarchical system in use today by a large number of banks, insurance 
companies, and hospitals as well as several government agencies. Another popular hierarchical DBMS 
is MRI’s System-2000 (which was later sold by SAS Institute).  

In this appendix we present the concepts for modeling hierarchical schemas and instances, the concept 
of a virtual parent-child relationship, which is used to overcome the limitations of pure hierarchies, and 
the constraints on the hierarchical model. A few examples of data manipulation are included.  

 
 

D.1 Hierarchical Database Structures 

D.1.1 Parent-Child Relationships and Hierarchical Schemas 
D.1.2 Properties of a Hierarchical Schema 
D.1.3 Hierarchical Occurrence Trees 
D.1.4 Linearized Form of a Hierarchical Occurrence Tree 
D.1.5 Virtual Parent-Child Relationships

D.1.1 Parent-Child Relationships and Hierarchical Schemas 

The hierarchical model employs two main data structuring concepts: records and parent-child 
relationships. A record is a collection of field values that provide information on an entity or a 
relationship instance. Records of the same type are grouped into record types. A record type is given a 
name, and its structure is defined by a collection of named fields or data items. Each field has a certain 
data type, such as integer, real, or string.  
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A parent-child relationship type (PCR type) is a 1:N relationship between two record types. The 
record type on the 1-side is called the parent record type, and the one on the N-side is called the child 
record type of the PCR type. An occurrence (or instance) of the PCR type consists of one record of 
the parent record type and a number of records (zero or more) of the child record type.  

A hierarchical database schema consists of a number of hierarchical schemas. Each hierarchical 
schema (or hierarchy) consists of a number of record types and PCR types. 

A hierarchical schema is displayed as a hierarchical diagram, in which record type names are 
displayed in rectangular boxes and PCR types are displayed as lines connecting the parent record type 
to the child record type. Figure D.01 shows a simple hierarchical diagram for a hierarchical schema 
with three record types and two PCR types. The record types are DEPARTMENT, EMPLOYEE, and 
PROJECT. Field names can be displayed under each record type name, as shown in Figure D.01. In 
some diagrams, for brevity, we display only the record type names.  

 

 

 
 

We refer to a PCR type in a hierarchical schema by listing the pair (parent record type, child record 
type) between parentheses. The two PCR types in Figure D.01 are (DEPARTMENT, EMPLOYEE) 
and (DEPARTMENT, PROJECT). Notice that PCR types do not have a name in the hierarchical 
model. In Figure D.01 each occurrence of the (DEPARTMENT, EMPLOYEE) PCR type relates one 
department record to the records of the many (zero or more) employees who work in that department. 
An occurrence of the (DEPARTMENT, PROJECT) PCR type relates a department record to the 
records of projects controlled by that department. Figure D.02 shows two PCR occurrences (or 
instances) for each of these two PCR types.  

 

 

 
 
 

D.1.2 Properties of a Hierarchical Schema 

A hierarchical schema of record types and PCR types must have the following properties:  

1. One record type, called the root of the hierarchical schema, does not participate as a child 
record type in any PCR type.  

2. Every record type except the root participates as a child record type in exactly one PCR type.  
3. A record type can participate as parent record type in any number (zero or more) of PCR 

types.  
4. A record type that does not participate as parent record type in any PCR type is called a leaf of 

the hierarchical schema.  
5. If a record type participates as parent in more than one PCR type, then its child record types 

are ordered. The order is displayed, by convention, from left to right in a hierarchical 
diagram.  

The definition of a hierarchical schema defines a tree data structure. In the terminology of tree data 
structures, a record type corresponds to a node of the tree, and a PCR type corresponds to an edge (or 
arc) of the tree. We use the terms node and record type, and edge and PCR type, interchangeably. The 
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usual convention of displaying a tree is slightly different from that used in hierarchical diagrams, in 
that each tree edge is shown separately from other edges (Figure D.03). In hierarchical diagrams the 
convention is that all edges emanating from the same parent node are joined together (as in Figure 
D.01). We use this latter hierarchical diagram convention.  

 

 

 
 

The preceding properties of a hierarchical schema mean that every node except the root has exactly one 
parent node. However, a node can have several child nodes, and in this case they are ordered from left 
to right. In Figure D.01 EMPLOYEE is the first child of DEPARTMENT, and PROJECT is the second 
child. The previously identified properties also limit the types of relationships that can be represented 
in a hierarchical schema. In particular, M:N relationships between record types cannot be directly 
represented, because parent-child relationships are 1:N relationships, and a record type cannot 
participate as child in two or more distinct parent-child relationships.  

An M:N relationship may be handled in the hierarchical model by allowing duplication of child record 
instances. For example, consider an M:N relationship between EMPLOYEE and PROJECT, where a 
project can have several employees working on it, and an employee can work on several projects. We 
can represent the relationship as a (PROJECT, EMPLOYEE) PCR type. In this case a record describing 
the same employee can be duplicated by appearing once under each project that the employee works 
for. Alternatively, we can represent the relationship as an (EMPLOYEE, PROJECT) PCR type, in 
which case project records may be duplicated.  

 
 

EXAMPLE 1:  Consider the following instances of the EMPLOYEE:PROJECT relationship:  

 

Project  Employees Working on the Project  

 
 
A  E1, E3, E5  

B  E2, E4, E6  

C  E1, E4  

D  E2, E3, E4, E5  

 
 

If these instances are stored using the hierarchical schema (PROJECT, EMPLOYEE) (with PROJECT 
as the parent), there will be four occurrences of the (PROJECT, EMPLOYEE) PCR type—one for each 
project. The employee records for E1, E2, E3, and E5 will appear twice each as child records, however, 
because each of these employees works on two projects. The employee record for E4 will appear three 
times—once under each of projects B, C, and D and may have number of hours that E4 works on each 
project in the corresponding instance.  

To avoid such duplication, a technique is used whereby several hierarchical schemas can be specified 
in the same hierarchical database schema. Relationships like the preceding PCR type can now be 
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defined across different hierarchical schemas. This technique, called virtual relationships, causes a 
departure from the "strict" hierarchical model. We discuss this technique in Section D.2.  

 
 

D.1.3 Hierarchical Occurrence Trees 

Corresponding to a hierarchical schema, many hierarchical occurrences, also called occurrence 
trees, exist in the database. Each one is a tree structure whose root is a single record from the root 
record type. The occurrence tree also contains all the children record occurrences of the root record and 
continues all the way to records of the leaf record types.  

For example, consider the hierarchical diagram shown in Figure D.04, which represents part of the 
COMPANY database introduced in Chapter 3 and also used in Chapter 7, Chapter 8, and Chapter 9. 
Figure D.05 shows one hierarchical occurrence tree of this hierarchical schema. In the occurrence tree, 
each node is a record occurrence, and each arc represents a parent-child relationship between two 
records. In both Figure D.04 and Figure D.05, we use the characters D, E, P, T, S, and W to represent 
type indicators for the record types DEPARTMENT, EMPLOYEE, PROJECT, DEPENDENT, 
SUPERVISEE, and WORKER, respectively. A node N and all its descendent nodes form a subtree of 
node N. An occurrence tree can be defined as the subtree of a record whose type is of the root record 
type.  

 

 

 

 

 
 

D.1.4 Linearized Form of a Hierarchical Occurrence Tree 

A hierarchical occurrence tree can be represented in storage by using any of a variety of data structures. 
However, a particularly simple storage structure that can be used is the hierarchical record, which is a 
linear ordering of the records in an occurrence tree in the preorder traversal of the tree. This order 
produces a sequence of record occurrences known as the hierarchical sequence (or hierarchical 
record sequence) of the occurrence tree; it can be obtained by applying a recursive procedure called 
the pre-order traversal, which visits nodes depth first and in a left-to-right fashion.  

The occurrence tree in Figure D.05 gives the hierarchical sequence shown in Figure D.06. The system 
stores the type indicator with each record so that the record can be distinguished within the hierarchical 
sequence. The hierarchical sequence is also important because hierarchical data-manipulation 
languages, such as that used in IMS, use it as a basis for defining hierarchical database operations. The 
HDML language we discuss in Section D.3 (which is a simplified version of DL/1 of IMS) is based on 
the hierarchical sequence. A hierarchical path is a sequence of nodes N1, N2, ..., Ni, where N1 is the 
root of a tree and Nj is a child of Nj-1 for j = 2, 3, ..., i. A hierarchical path can be defined either on a 
hierarchical schema or on an occurrence tree. We can now define a hierarchical database occurrence 
as a sequence of all the occurrence trees that are occurrences of a hierarchical schema. For example, a 
hierarchical database occurrence of the hierarchical schema shown in Figure D.04 would consist of a 
number of occurrence trees similar to the one shown in Figure D.05, one for each distinct department.  
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D.1.5 Virtual Parent-Child Relationships 

The hierarchical model has problems when modeling certain types of relationships. These include the 
following relationships and situations:  

1. M:N relationships.  
2. The case where a record type participates as child in more than one PCR type.  
3. N-ary relationships with more than two participating record types.  

Notice that the relationship between EMPLOYEE and EPOINTER in Figure D.07(a) is a 1:N 
relationship and hence qualifies as a PCR type. Such a relationship is called a virtual parent-child 
relationship (VPCR) type (Note 2). EMPLOYEE is called the virtual parent of EPOINTER; and 
conversely, EPOINTER is called a virtual child of EMPLOYEE. Conceptually, PCR types and VPCR 
types are similar. The main difference between the two lies in the way they are implemented. A PCR 
type is usually implemented by using the hierarchical sequence, whereas a VPCR type is usually 
implemented by establishing a pointer (a physical one containing an address, or a logical one 
containing a key) from a virtual child record to its virtual parent record. This mainly affects the 
efficiency of certain queries.  

 

 

 
 

Figure D.08 shows a hierarchical database schema of the COMPANY database that uses some VPCRs 
and has no redundancy in its record occurrences. The hierarchical database schema is made up of two 
hierarchical schemas—one with root DEPARTMENT, and the other with root EMPLOYEE. Four 
VPCRs, all with virtual parent EMPLOYEE, are included to represent the relationships without 
redundancy. Notice that IMS may not allow this because an implementation constraint in IMS limits a 
record to being virtual parent of at most one VPCR; to get around this constraint, one can create 
dummy children record types of EMPLOYEE in Hierarchy 2 so that each VPCR points to a distinct 
virtual parent record type.  

 

 

 
 

In general, there are many feasible methods of designing a database using the hierarchical model. In 
many cases, performance considerations are the most important factor in choosing one hierarchical 
database schema over another. Performance depends on the implementation options available—for 
example, whether certain types of pointers are provided by the system and whether certain limits on 
number of levels are imposed by the DBA.  
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D.2 Integrity Constraints and Data Definition in the Hierarchical Model 

D.2.1 Integrity Constraints in the Hierarchical Model 
D.2.2 Data Definition in the Hierarchical Model

D.2.1 Integrity Constraints in the Hierarchical Model 

A number of built-in inherent constraints exist in the hierarchical model whenever we specify a 
hierarchical schema. These include the following constraints:  

1. No record occurrences except root records can exist without being related to a parent record 
occurrence. This has the following implications:  

a. A child record cannot be inserted unless it is linked to a parent record.  
b. A child record may be deleted independently of its parent; however, deletion of a 

parent record automatically results in deletion of all its child and descendent records.  
c. The above rules do not apply to virtual child records and virtual parent records.  

2. If a child record has two or more parent records from the same record type, the child record 
must be duplicated once under each parent record.  

3. A child record having two or more parent records of different record types can do so only by 
having at most one real parent, with all the others represented as virtual parents. IMS limits 
the number of virtual parents to one.  

4. In IMS, a record type can be the virtual parent in only one VPCR type. That is, the number of 
virtual children can be only one per record type in IMS.  

 
 

D.2.2 Data Definition in the Hierarchical Model 

In this section we give an example of a hierarchical data definition language (HDDL), which is not the 
language of any specific hierarchical DBMS but is used to illustrate the language concepts for a 
hierarchical database. The HDDL demonstrates how a hierarchical database schema can be defined. To 
define a hierarchical database schema, we must define the fields of each record type, the data type of 
each field, and any key constraints on fields. In addition, we must specify a root record type as such; 
and for every nonroot record type, we must specify its (real) parent in a PCR type. Any VPCR types 
must also be specified.  

In Figure D.09, either each record type is declared to be of type root or a single (real) parent record 
type is declared for the record type. The data items of the record are then listed along with their data 
types. We must specify a virtual parent for data items that are of type pointer. Data items declared 
under the KEY clause are constrained to have unique values for each record. Each KEY clause 
specifies a separate key; in addition, if a single KEY clause lists more than one field, the combination 
of these field values must be unique in each record. The CHILD NUMBER clause specifies the left-to-
right order of a child record type under its (real) parent record type. The ORDER BY clause specifies 
the order of individual records of the same record type in the hierarchical sequence. For nonroot record 
types, the ORDER BY clause specifies how the records should be ordered within each parent record, 
by specifying a field called a sequence key. For example, PROJECT records controlled by a particular 
DEPARTMENT have their subtrees ordered alphabetically within the same parent DEPARTMENT 
record by PNAME, according to Figure D.09.  
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D.3 Data Manipulation Language for the Hierarchical Model 

D.3.1 The GET Command 
D.3.2 The GET PATH and GET NEXT WITHIN PARENT Retrieval Commands 
D.3.3 HDML Commands for Update 
D.3.4 IMS - A Hierarchical DBMS

We now discuss Hierarchical Data Manipulation Language (HDML), which is a record-at-a-time 
language for manipulating hierarchical databases. We have based its structure on IMS’s DL/1 
language. It is introduced to illustrate the concepts of a hierarchical database manipulation language. 
The commands of the language must be embedded in a general-purpose programming language called 
the host language.  

The HDML is based on the concept of hierarchical sequence defined in Section D.1. Following each 
database command, the last record accessed by the command is called the current database record. 
The DBMS maintains a pointer to the current record. Subsequent database commands proceed from the 
current record and may define a new current record, depending on the type of command.  

 
 

D.3.1 The GET Command 

The HDML command for retrieving a record is the GET command. There are many variations of 
GET; the structure of two of these variations is as follows, with optional parts enclosed in brackets [ ... 
]:  

• GET FIRST (Note 3) <record type name> [WHERE <condition>]  
• GET NEXT <record type name> [WHERE <condition>]  

The simplest variation is the GET FIRST command, which always starts searching the database from 
the beginning of the hierarchical sequence until it finds the first record occurrence of <record type 
name> that satisfies <condition>. This record also becomes the current of database, current of 
hierarchy, and current of record type and is retrieved into the corresponding program variable. For 
example, to retrieve the "first" EMPLOYEE record in the hierarchical sequence whose name is John 
Smith, we write EX1:  

 
 

EX1:$GET FIRST EMPLOYEE WHERE FNAME =’John’ AND LNAME=’Smith’; 

 
 

The DBMS uses the condition following WHERE to search for the first record in order of the 
hierarchical sequence that satisfies the condition and is of the specified record type. If more than one 
record in the database satisfies the WHERE condition and we want to retrieve all of them, we must 
write a looping construct in the host program and use the GET NEXT command. We assume that the 
GET NEXT starts its search from the current record of the record type specified in GET NEXT (Note 
4), and it searches forward in the hierarchical sequence to find another record of the specified type 
satisfying the WHERE condition. For example, to retrieve records of all EMPLOYEEs whose salary is 
less than $20,000 and obtain a printout of their names, we can write the program segment shown in 
EX2:  
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  EX2: $GET FIRST EMPLOYEE WHERE SALARY < ‘20000.00’;  

while DB_STATUS = 0 do  

begin  

writein (P_EMPLOYEE.FNAME, P_EMPLOYEE.LNAME);  

$GET NEXT EMPLOYEE WHERE SALARY < ‘20000.00’  

end;  

 
 

In EX2, the while loop continues until no more EMPLOYEE records in the database satisfy the 
WHERE condition; hence, the search goes through to the last record in the database (hierarchical 
sequence). When no more records are found, DB_STATUS becomes nonzero, with a code indicating 
"end of database reached," and the while loop terminates.  

 
 

D.3.2 The GET PATH and GET NEXT WITHIN PARENT Retrieval Commands 

So far we have considered retrieving single records by using the GET command. But when we have to 
locate a record deep in the hierarchy, the retrieval may be based on a series of conditions on records 
along the entire hierarchical path. To accommodate this, we introduce the GET PATH command:  

 
 

GET (FIRST | NEXT) PATH <hierarchical path> [WHERE <condition>]  

 
 

Here, <hierarchical path> is a list of record types that starts from the root along a path in the 
hierarchical schema, and <condition> is a Boolean expression specifying conditions on the individual 
record types along the path. Because several record types may be specified, the field names are 
prefixed by the record type names in <condition>. For example, consider the following query: "List the 
lastname and birthdates of all employee-dependent pairs, where both have the first name John." This is 
shown in EX3:  

 

  EX3:  $GET FIRST PATH EMPLOYEE, DEPENDENT  

WHERE EMPLOYEE.FNAME=’John’ AND DEPENDENT.DEPNAME=’John’;  

while DB_STATUS = 0 do  

begin  

writeln (P_EMPLOYEE.FNAME, P_EMPLOYEE.BDATE,  
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P_DEPENDENT.BIRTHDATE);  

$GET NEXT PATH EMPLOYEE, DEPENDENT  

WHERE EMPLOYEE.FNAME=’John’ AND  

DEPENDENT.DEPNAME=’John’  

end;  

 
 

We assume that a GET PATH command retrieves all records along the specified path into the user 
work area variables (Note 5), and the last record along the path becomes the current database record. In 
addition, all records along the path become the current records of their respective record types.  

Another common type of query is to find all records of a given type that have the same parent record. 
In this case we need the GET NEXT WITHIN PARENT command, which can be used to loop through 
the child records of a parent record and has the following format:  

 
 

GET NEXT <child record type name>  

WITHIN [VIRTUAL] PARENT [<parent record type name>] (Note 6) 

[WHERE <condition>]  

 
 

This command retrieves the next record of the child record type by searching forward from the current 
of the child record type for the next child record owned by the current parent record. If no more child 
records are found, DB_STATUS is set to a nonzero value to indicate that "there are no more records of 
the specified child record type that have the same parent as the current parent record." The <parent 
record type name> is optional, and the default is the immediate (real) parent record type of <child 
record type name>. For example, to retrieve the names of all projects controlled by the ‘Research’ 
department, we can write the program segment shown in EX4:  

 

  EX4:  $GET FIRST PATH DEPARTMENT, PROJECT  

WHERE DNAME =‘Research’;  

(* the above establishes the ‘Research’ DEPARTMENT record as current parent of type 
DEPARTMENT, and retrieves the first child PROJECT record under that DEPARTMENT 
record *)  

while DB_STATUS = 0 do  

begin  
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writeln (P_PROJECT.PNAME);  

$GET NEXT PROJECT WITHIN PARENT  

end;  

 
 

D.3.3 HDML Commands for Update 

The HDML commands for updating a hierarchical database are shown in Table D.1, along with the 
retrieval command. The INSERT command is used to insert a new record. Before inserting a record of 
a particular record type, we must first place the field values of the new record in the appropriate user 
work area program variable.  

 

Table D.1  Summary of HDML Commands  

 
 
RETRIEVAL     

 
 
GET  Retrieve a record into the corresponding program 

variable and make it the current record. Variations 
include GET FIRST, GET NEXT, GET NEXT 
WITHIN PARENT, and GET PATH.  

 
 
RECORD UPDATE     

 
 
INSERT  Store a new record in the database and make it the 

current record.  

 
 
DELETE  Delete the current record (and its subtree) from the 

database.  

REPLACE  Modify some fields of the current record.  

 
 
CURRENCY RETENTION     

 
 
GET HOLD  Retrieve a record and hold it as the current record 

so it can subsequently be deleted or replaced.  
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The INSERT command inserts a record into the database. The newly inserted record also becomes the 
current record for the database, its hierarchical schema, and its record type. If it is a root record, as in 
EX8, it creates a new hierarchical occurrence tree with the new record as root. The record is inserted in 
the hierarchical sequence in the order specified by any ORDER BY fields in the schema definition.  

To insert a child record, we should make its parent, or one of its sibling records, the current record of 
the hierarchical schema before issuing the INSERT command. We should also set any virtual parent 
pointers before inserting the record.  

To delete a record from the database, we first make it the current record and then issue the DELETE 
command. The GET HOLD is used to make the record the current record, where the HOLD key word 
indicates to the DBMS that the program will delete or update the record just retrieved. For example, to 
delete all male EMPLOYEEs, we can use EX5, which also lists the deleted employee names <before> 
deleting their records:  

 

  EX5:  $GET HOLD FIRST EMPLOYEE WHERE SEX=‘M’;  

while DB_STATUS=0 then  

begin  

writeln (P_EMPLOYEE.LNAME, P_EMPLOYEE.FNAME);  

$DELETE EMPLOYEE;  

$GET HOLD NEXT EMPLOYEE WHERE SEX=‘M’;  

end;  

 
 

D.3.4 IMS - A Hierarchical DBMS 

IMS is one of the earliest DBMSs, and it ranks as the dominant system in the commercial market for 
support of large-scale accounting and inventory systems. IBM manuals refer to the full product as 
IMS/VS (Virtual Storage), and typically the full product is installed under the MVS operating system. 
IMS DB/DC is the term used for installations that utilize the product’s own subsystems to support the 
physical database (DB) and to provide data communications (C).  

However, other important versions exist that support only the IMS data language—Data Language One 
(DL/1). Such DL/1-only configurations can be implemented under MVS, but they may also use the 
DOS/VSE operating system. These systems issue their calls to VSAM files and use IBM’s Customer 
Information Control System (CICS) for data communications. The trade-off is a sacrifice of support 
features for the sake of simplicity and improved throughput.  

A number of versions of IMS have been marketed to work with various IBM operating systems, 
including (among the recent systems) OS/VS1, OS/VS2, MVS, MVS/XA, and ESA. The system comes 
with various options. IMS runs under different versions on the IBM 370 and 30XX family of 
computers. The data definition and manipulation language of IMS is DL/1. Application programs 
written in COBOL, PL/1, FORTRAN, and BAL (Basic Assembly Language) interface with DL/1.  
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Selected Bibliography 

The first hierarchical DBMS—IMS and its DL/1 language—was developed by IBM and North 
American Aviation (Rockwell International) in the late 1960s. Few early documents exist that describe 
IMS. McGee (1977) gives an overview of IMS in an issue of IBM Systems Journal devoted to ims. 
Bjoerner and Lovengren (1982) formalize some aspects of the IMS data model. Kapp and Leben 
(1986) is a popular book on IMS programming. IMS is described in a very large collection of IBM 
manuals.  

Recent work has attempted to incorporate hierarchical structures in the relational model (Gyssens et al., 
1989; Jagadish, 1989). This includes nested relational models (see Section 13.6).  

 
 

Footnotes 

Note 1 
Note 2 
Note 3 
Note 4 
Note 5 
Note 6

Note 1 

The complete chapter on the hierarchical data model and the IMS system from the second edition of 
this book is available at http://cseng.aw.com/book/0,,0805317554,00.html. This appendix is an edited 
excerpt of that chapter.  

 
 

Note 2 

The term "virtual" is not used in the IMS system, but it is used here to simplify the distinction between 
hierarchical relationships within one hierarchy (called Physical in IMS) and across hierarchies (called 
Logical in IMS).  

 
 

Note 3 

This is similar to the GET UNIQUE (GU) command of IMS.  

 
 

Note 4 

IMS commands generally proceed forward from the current of database, rather than from the current 
of specified record type as HDML commands do.  
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Note 5 

IMS provides the capability of specifying that only some of the records along the path are to be 
retrieved.  

 
 

Note 6 

There is no provision for retrieving all children of a virtual parent in IMS in this way without defining a 
view of the database.  

 
 

© Copyright 2000 by Ramez Elmasri and Shamkant B. Navathe 
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