AOTHOR	Boldt. Rotert F.
TITLE	Compazison of a Bayesian ard a least Squares Method of Educationai Fresiction.
INSTITUTION	Educational Testing Service. Princeton, A, J.
FEPOPT NO	ETS-RE-75-15
PUB DATE	Apr 75
NOTE	888.
EDRS PRICE	
DESCRIPTORS	* Bayesian Statistics; College mitrance Exarinations;
	Grade prediction; Graduate Study: figher fducation:
	*Multiple Reqression Analysis; *fzedictive Validity;
	Eredictor Variables; Test Validity
IDENTIEIERS	*Cross पaiidation; *Ieast squares Analysis: Sample Si ze

ABSTRACT

Least squares and Bayes methcds were used in a cross validation study conducted for comparison purposes. The study applies to situations with the following conditicss: predictor data are given on the same scales; criterion data may re given cn different scales; and it is necessary to pool data even though criterion scale differences exist. Such a system may te $n \in \in \mathbb{d} \boldsymbol{d}$ for \mathbb{f} inoriqy group prediction studies or araduate schocl predicticn studies bhere the qroup sizes are small. Data for the study were taken frce the files of the validity Study Service of the Ccllege Entrance Examination Board. Also a very limited amount of data.were supplicd ky aff Arerican graduate schools. The Bayes rethod was somewhat ketter, but it was found that both methods yielded negative regression wights; when the absol ute values of the weights were used, kcth the methods were improved and pielded results which were very similar in terms of evaluative statistics computed in the cross validaticn sample. (Author/CTM)

[^0]

NATIONALINSTIRU
EDUCATION
TH S DOTUNE:T HAS BEEN EDDO
OUTED EXCH AS QECENEU FRO:
OM ERE
THE PERSON OR ORGAMIIATIONOR:OR
ZING: POLIS OF VIENOROPINION
\therefore AE: DO OO NFCESSAELY QFOUF

COMPARISON OF A BAYESIAN AND A LEAST SQUARES
METHOD OF EDUCATIONAL PREDICTION

Robert F. Bold
-PERMISSION TO REPRODUCE THIS MATERIAL HAS GE EN GRANTED BY

R. F Bold -

to the educational resources INFORMATION CENTER (EPIC) AND USERS OF THE ERIC SYSTEM.

This Bulletin is a draft for interoffice circulation. Corrections and suggestions for revision are solicited.

Educational Testing Service
Princeton, New Jersey
April ! 775

COMPARISON OF A BAYESIAN and a least Squares

METHOD OF EDUCATIONAL PREDICTION

Abstract

Abstract

The prediction systems under discussion apply where the following conditions obtain: Predictor data are given on the same scale, criterion scores may be given on different scales, and it is necessary to pool data even though criterion scale differences exist. Such a system may be needed for minority group or graduate student prediction where the group sizes are small. Least squares and Bayes methods are used in a crossvalidation study conducted for comparison purposes. Data for the study were taken from the files of the Validity Study Service of the College Entrance Examination Board. A very limited amount of data were supplied by a few American graduate schools. The Bayes method was better, but it was found that both methods yield negative regression weights; when the absolute values of the weights were used, the methods were both improved and yielded results which were very similar in terms of evaluative statistics computed in the cross sample.

COAP.ARISON OF A BAYESIAN AND A LEAST SQUAPES METHOD OF EDUCATIONAL PREDICTION ${ }^{1}$

Introduction
Very often the evalation of the effectiveness of test scores for prediction is infeasibie because those interested in such evaluation are unable to assemble a group of examinees for whom comparable criterion scores are available. In some population segments, such as minority groups, graduate students, and possibly various occupational groups, one often cannot find enough people at a single place where an acceptable criterion exists to conduct a statistical study of the predictive validity of selection instruments, or at least a stucy in whose results one can have confidence. It is more common to find small groups from the population of interest interspersed through a variety of locations, performing tasks that seem reasonably similar. Evaluation of the performances is made with reference to the group at a location but without reference to performances outside of that group. Thus, the groups may iiffer from each other in terms of average performance or in the variation in performance, but these differences may not be inferable from the corresponding statistics calculated using quantitative evaluations of performances made at each location. This type of problem was encountered in a study oí the use of the Prueba de Aptitud Academica (PAA) in predicting the success of Spanish-speaking students in American universities (Gannon, Oppenheim, \& Wohlhueter, 1966). In that study, efforts to accumulate usable data from six locations that apparently promised a reasonable supply of Spanish-speaking students yielded Spanish-speaking U.S. citizens in group sizes of 72,8 , and 15 , and noncitizens in group sizes of $22,23,6,27$, and 32 . Because of such low numbers of available cases,
 each location were contemplated. In a later atempt to repeat the study be
 Sinitar nobions were encountered in the development of the comparative Guidance and Placement (cop) battery wi the college Drtrance Examination Board (CEEB), wheh is a battery of pswohologioal tests intended for guidance and placement use in American junior colleses. One research problem in the dovelopant of this batlery was to choose a set of tests that womld be valid for prodiating success in cach of a number of curricula. Nothough any one jundor coliege would have a freshman class large enough to use in conducting a study, that class, when broken down by curricula, would become highly fractionated. Restrictions in class size were also necessary in order to accommodate institutions with limited testing facilities or with other problems in producing data. In this research (Educational Testing Service, 1968), the median of the average class sizes for the curricula was 69 , but these average class sizes ranged down to 23 and 36 , with an administratively enforced lower bound of 20. In a later reconstitution of the curricula groups these problems were alleviated somewhat, though for sone new curricula groups it was necessary to use data from schools which couls supply as few as 25 cases.

The problen of few cases at many locations arises also in research on black students. © 3 eary (1969) and subsequently Temp (1971) have encountered this problem in cornection with the study of the validity of the Scholastic Aptitude Test when used for blacks and whites at raciaily integrated schools. The study was undertaken, in part, to determine whether one should use the : ame prediction system for forecasting grade point averages for blacks as for
whites, or, ineffect, whether the two regression lines are the same. To conduct the study, Cleary located schools with sufficient numbers of cases so that a school-by-achool approach could be used; Temp's study followed the cleary approach. In the opinion of the author, the Cleary approach is an excellent one, hut whether it leads to results that are applicable to most schools, or perhaps to most blacks is open to question. f a study is limited to schools winich enroll many blacks, then one has not observed schocls where there are few blacks, and in other phenomena of racial mixture the nature of outcomes to be observed may depend on chat mixture. A study of a large number of schools with few blacks remains of interest.

The problem of locating minority groups becomes even more difficult at a more selective level of education. In an as yet unpublished report, Schrader and Pitcher (1972) compared the regression functions for blacks and whites in American law schools. Of the five schools from which sufficient data were avilable for this study, one had data for only 44 blacks and the other firr only 31 ; these cases were accumulated only by combining data across three and two years, respectively. In another unpublished studiy, the author (Boldt, l971) reported a study of the validity of the Admissions Test fo: Graduate Schools of Business in which the group sizes
d from 7,10 , and 12 up to 31 . In this latter study, a large number of schools had been approached for data, and six thought they had sizable groups. When it came to producing usable cases, however, the very small groups listed abeve were all that were forthcoming.

Even without the complication of locating minority group students, the problem of conduel ing validity research on graduate education has been long exacerbated by a dearth of usable data. Summarizing attempts to do
 Lamholm (1968) reported 22 studies in which performance prediction research was done and the sample sizes by department are given. In these studies the
 was sometimes necessary to accumulate data over several years. The average group size per department in these studies was 51 , the smallest being 7 and the largest being 185. By far the largest of these groups were from the education area, the group of 185 being in secondary education, an area where the conirse work and majors are not interchangeable because different academic areas are involved. Indeed, as far as numbers of people are concerned, education is in a favorable position since graduate work is required for promotion or certification in many areas. But education also has many specialties with different requirements and very different course work. It is suspected that pooling people for a study because they are all in an education department may not be appropriate and, in any case, education departments are not representative of the rest of the graduate world. If the nine studies reported by Lannholm (1968) which deal with education departments are removed, the average size of the remaining group is 37 per department, the smallest stili being 7 and the largest being 96 . In 10 of these departments, 50 or fewer cases are involved.

Lannholm, Marco, \& Schrader (1968), being aware of the sample size problem, attempted to accumulate grachate school data by inviting 32 lepartments in 15 different miversities to participate in their research. As a result, data were received from 21 departments of 10 universities, with sample sizes ranging from 8 to 115 . The average size of the groups by department was 45 even thongh these authors made a good attempt to get better and more numerous data than had been made by other authors.

 In departments other than cducation, the arorage mumber wi wases reported was

Central Prediction Aproaches

Even though the problems of the avail bility of comp:rabie dat at well known to rescarchers in the sosial sciences, the commonly available regression models contain no provision for inclusion of sets oi criterion data that do not lie on the same scale. In addition, there are problems where sets of predictor data may not, lie on the same scale. For example, the grade point werage at one undergraduate institution may not be comparable to that from another semfing institution for predicting nerformance at the graduate level. Hoom and feters (1961) rere amone the early resea chers to investigate the probler of grade adjustment with very significant resialts, though results have not held wit in later studies. Tucker (1963) has mentioned certain technicai problems that might account for this and developed a number of formal models for central prediction. These models were developed in the context of prediction at the undergraduate level using empirically adjusted hegh school grade point avorages as well as empirically developed adjustments for the grade scales of the receiving colleges. Tucker's models are least sy. ires models, whereas these discmssed by Potthoff (laf, in ia a paper sponsored by the Educational Pesting Service (ETS) are models using maximum likelihood
estimation mader the rommonly made assimptions of joiat normality. Bashaw (1965a, 19650) ins ruported central prediction molels that are formally identical to that of Tuckr, thomgh with a somewhat differoue computational scheme. Linn (1966) in surveying, rescarch on grade adjustment in the sending institutions has; supplied a more detailed discussion ff these problems and models.

Tucker's paper includes a prediction model which is responsive to an (ven mure beneral formulation of the problem of prediction in allowing, in adaition to adjustment:; torades from the sending and receiving institutions, for differences in the types of institutions involved, e.g., an engineering school as opposed to an institution concerned primarily with liberal arts. The research problem to which the present paper is addressed is quite a bit more determined than the problem to which Tucker's predictive model is addressed leecause only one kind of sending, institution will be studied in a particular solution and wo adjustment of grades from sending institutions will be contemplated. Nevertheless, the least squares approach applied here is in the spirit of fucker's predictive model where the residuals whose squared sum is minimited contain no adjustment on the criterion. This is opposed to potthmit's maximum likelihood solution which determines a transformation on the riterion scores; i.e., the grades at the receiving institutions. The latst squares solntion used in the present paper is described in Appendix \therefore and was wribinally developed by the aththor for use in the fannon
 development of the (of batiory (firs, 1963). Appendix P contains a least Aquares solmtion that adjust the iriturion seores and, although it is not At desirable from a prediction point of view for that reason, it has ceitain computational advantages that would he useful in test selection procediares.

```
`. i
```

Bavesian Approach
The approach taken by some of the researchers in central plediction is to etain an assumption of structure similar to the linear form used in multiple regression but to allow additional linear adjustments that account for the source of the particular lata set. Thus, the large body of data is summarized in relatively few parameters, though more than would be required by a single regression model and less than would be used by the fitting of a whole set of individual constants to every data set. But the previonsly discussod centrai prediction procedures have ao way to take advantage of partial, or vague, information available prior to the estimation study. For example, if one were to estimate the regression of college grades on ACE scores, one could examile results from a variety of studies that would indicate something about the likely range of the coefficients to be Found. Reasonable ranges for the means and variances could be set up as well as for the correlation coefficients. Surely, such a study would not be the first of its kind with entirely new knowledge being made available, but it would be at least a partial affirmation of existing knowledge though applied in a slightly new context. Where several schools are involved, one would want to incorporate the notion that they are more or less similar. One wouid cerlainiy not want to proceed under the assumption that all schools are uniquely different, conceivably, and that no prior information is in existence. ${ }^{2}$

Being aware of these problems through discussion with M. R. Novick, Lindley has developed a Bayesian approach to the type of problem of interest in the current study. Indeed, a series of fducational Testing Service Research Bulletins (Jackson, Novick, \& Thayer, 1970; Lindley, 1969a, 1959b,
 the Bayesian approach to prob?ems in educational prediction and guidance. Lindley's approach has the incorporation of vague prior information, allows for logal diferenos in regressina emations, and produces a method of proper balancing of sparse local data against data from the entire set of schools under study. The estimation procedures use a likeliheod function weighted by a prior distribution, hence are more similar to Potthoff's (1964) methods than to least squares. Compared to that of Pothoff, lindley's method would clearly seem to be the method of choice, since it employs a predictive model in the sense of Tucker and because it incorporates the desirable Bayesian features mentioned above.

Lindley's model (1970a, 1970b) incorporates the following: the likelihood is characterized by grades and predicted grades for which linear regression holds and whose discrepancies are normally and independently distributed; coefficients of linear regression have independent priors across colleges but within colleges have joint normal priors which are, for a college, characterized by a vector of means and a dispersion matrix which is exchangeable with the veciors of means and dispersion matrices of other colleges; the priors for the exchangeable vectors of means and dispersion matrices are uniform and Wishart, respectively, in form; tie dispersion parameters fror the likehood are exchangeable and have independent inverse chi-square priors whose central tendency parameter has a prior which is chisquare in form.

Need for Comparative Experiment

The ist of assumptions above is rather loms and narts of it mav be untenable: the normali:y of errors of (b) is clearly incorrect because all of the

Wriables are bounded, beadue, wen if college arades were nommaly distributed, the test scores are not: and hecanse tise homoscedasticity implied by the independence assumption is incorrect. Purthemore, the assumption of inifora distribution on the fieans of (c) is ruite unreasonable considering the rather narrow range that can be involved. In fact one could probably reject any assumption cone could test, given enough data, and vet it is not proposed to abandun the approasin. Rather, the assumptions, fogether with the estimation procedure can be used for data for a back sample, and the prediction system Can be tested in a coss sample as is often done to ohserve the effects of shrink dur to capitalization on chance in the back sample. If one system works better than another, it is better even if arrived at through some questionable assumptions.

Novick, Jachson, Thayer, \& i.sle (1972) conducted such ari experiment using data from the Basic Research Sorvice of the American College Testing (ACI) Program. Their comparison of the Bayes prediction system was made with reference to the standard least sfuares procedure where estimates are made ac each location and independently from the others. In this study, 22 schools were chosen, and data from each provided a back and a cross sample. The back sample, which was; used to develop rogression parameters, was collected in 1968 ; the cross sample used to evaluate the prediction system, was collected in 196° from the same schools. The back sample sizes averaged 24f, with a hish of 739 and a 10 w of 113 ; these sizes are considerably in excess of the troublesone ones with which one often deals, and one might expect that shrink effects usually observed in the cross sample would be at a minimum. In fact, the irop in validity averaged over schools is very small, going from . 51 to . 47 . This sugerests that rapitalization on chance is not a
very potent factor and leads one to expect that the we of prior information

To compare the Bayesian and least squares results, Novick at al. (197?) used four indices. Fach of these indices usds a piedicted score and an actual score. The predicted score uses a prediction function whose parameters are computed in a back sample and whose argumenty are the four variables of the American College Test: there is a different set of parameters for each school, and Ncvick et al. (1972) presented the four indices for each college. The indices were (a) the familiar mean square error (MSE), which is the average of the squared differences between the predicted grade and the observed grade, (h) the average absolute error (AE), which is the average of the absolute values of the difference between the predicted grade and the observed grade; (o) the zuro-one loss (7OL), which is the average of a variable that is zero if the prediction $i s$ within half a standard deviation of the actuol grade on the observed grade scale and one otherwise; and (d) the correlation between the observed scores and the predicted scores (COR). The averages were of the indices, giving least squares results first and Bayes second, (a) . 56 and .55 for MSE, (b) . 58 and . 58 for AE, (c) . 56 and .56 for 70 L , and (d) .47 and .48 for COR. Although the sample sizes are not given for the 1 gr samples, the author seriously doubts that they are large enough to detect significance for the small differences shown; if they are different, the difference is certainly not of much practical interest.

Ln smaller samples, the effects of capitalization on chance are more marked, and one would expect to observe an thancement of the value of the Bayes approach over that of the usual regression approach in small samples.

To observe whether such might be the case, Novick et al. (1972) drew a 25% random sample of the 1968 data for use as a back sample and crossed the results into the 1969 data. The average values of the resulting goodness of fit indices are as follows, giving the least squares results first and the Bayesian results second: (a) . 62 and . 56 for MSE, (b) . 61 and . 59 for AE, (c) . 59 and . 56 for $Z C L$, and (d) . 42 and .47 for COR. A further advantage of the Bayes approach was that it did not yield negative regression coefficients as did the least squares method; except in special cases one does not usually accept negative coefficients in a system in this context. The average back sample size was 61, with a range from 26 to 184 , which is not as small as sometimes occurs but is small enough to indicate some superiority of the Bayesian method to which the indices above testify. Novick et al. (1972) point out that relatively more gain would be made with even smaller divisions, such as splitting the college groups by sex.

Least Squares vs. Bayes
Although the Bayes approach due to Lindley appears promisirg in the work of Novick et al. (1972) as described above, the question can be raised as to whether the superiority of the system as compared to the least squares system is because Bayes is better than least squares or whether a poor least squares approach wis used. Most researchers would not use a standard regrepsion in a situation like that of the 25% ACT sample. Indeed, Novick find Jickson (1974), wing (probably different but) exchangeable regression coefficients ncross schools, but with different intercepts at each school recently reported that the mean squiro error in a cross sample approached that of the Buyesian method. In bannon et al. (1966), Carlson (1967), the Cop battery (1968), and Boldt (1971), the lesit squares method of Appenclix A
was used in order to ret over the prohlem of the small number of cases at each location. In this method, the mabre wionametors to be fitted is equal to the nurber of predictors less one, plus twice the umber of schools; with a large numer of schools the relative weights for the predictors would be greatly overdetermined, and one would expect the system to be quite stable with few cases per school. Since a least squares approach which features more overdetermination would be more appropriate and would seemingly be competitive with the Bayes approach, a study comparing the two was undertaken.

$$
;
$$

Sample

In spite of the researcher's ineluctable confrontation with the sample size problem when attempting research at the graduate school level, it was hoped that th? present study could be accomplished usirg data from that source. The letter in Appendix C on (iRE Board letterhead was sent to the graduate deans of 95 American gradiate schools. The appropriate second page was included, depending on whether the school would be asked to contribute data on psychology or economics graduate students, or on both. Eightyone departments of psychology and 54 departments of economics were approached; these departments were listed by Lannholm (1967) as requiring the GRE aptitude examinations as well as the advanced examination in the field of specialization. Enclosed with the letters to the deans were copies of the GRE Validity Study Questionnaire and letters to the appropriate department Chairmen. Thest approaches were made in November 1970; four months later a follow-up letter, i second copy of the questionnaire, and a copy of the original letter to the department fhairnen were sent to each nonresponding department chairman. These solicitations emphasized intended convenience in
supplying data and solution to the common problems faced in doing research at the graduate level. In particular, the departments were urged to respond even though they might have few cases to supply. Fifty-seven or 70% of the psychology departments and 36 or 67% of the economics departments eventually replied. Of those who responded, 32 psychology departments and 15 economics departments either indicated an unwillingness or refusal to participate or stited tiat they world not be able to provide usefuldata. Reasons included the fact that no data vere available for Ph.D.'s, that no graduate krades would be made available becallse of confidentiality, that GRE score requirements were not actually enforced and were available on only a few people, and that no advanced tent scores would be available. Also, five economics and nine poychology departments indicated that to search the graduate files would work a hardship on their clerical staff. Two economics and five psychology departments frive buin kinds of reasons of the total who responded, 25 psychology departments and 21 economics departments were usable in the study. Of these, 16 of the psychology departments and eight of the economics departments actually computed routinely a graduate grade point average.

The eight largest of the 16 psychology departments were contacted. Based on response to the GRF Validity Study Questionnaire, data for approximately fo Ph. m^{\prime} 's and 6 or master's graduates should have been received, ranging fromi 40 to 80 for the Pfol. ${ }^{\prime}$:s, and from 15 to 105 for the master's. Of thase, only four supplied any asable data on students for whom grade point averages were also supplied, and these gave $4,21,8$, and 7 cases at the Ph. D. level and $35,30,60$, and 17 at the master's level. These four schools also sipiplied data for 31, 7,24 , and 4 students who got both the master's and the phe. etgrees. One school provided data for two doctoral candidates; arte school ram into dificulties when it came to actually accomplishing the
clerical work, and at the last school it proved impossibie to call \because get a return call from the appropriate contact.

Three of the largest economics departments were contacted based on responses to the GRE Validity Study Questionnaire data for approximately 45,40 , and $30 \mathrm{Ph} . \mathrm{D} . \mathrm{s}$ and 75,70 , and 60 master's candidates. Actuaily, roo data were received; one school would not respond to telephone calls, one required firancial support for the clerical work, and one reported it was "plodding."

Clearly, if the GRE data were to stand on their own, the project was in trouble; the remaining schools that provided graduate grade oint averages had only a few candidates and with similar attrition vould not be helpful, and the schools for whom transcript analysis would be required were also schools for whom few returns ould be forecasted. If the present study had been one with the main emphasis on the validity of the GRE, one would have seriously considered a course of action in which a large number of graduate schools with only a few students would be solicited for data; in doing so, one would be in the kind of situatina for which the models under discussíon are designed. Sinc: he foint of the prorent project is methodological. a better source of data v iequires.

Analysis of VSS Data

The files of the CEEB Validity Study Service (VSS) were examined to find data in which colleges had, on two successive occasions, participated in a validity study using comparable groups on both occasions. Data for 12 such colleges were obtained, with data for both males and females. The back sample consisted of 25 cases pulled at random (Tausworthe, 1965; Whittlesey, 1968) from data collected in the first year of participation by
the colleges in the VSS. Since there were samples for males and females for all but two schools, the randomization was done using a list of males separately, a list of females separately, and then a merged list with no control on the composition by sex. Two of the schools provided data for females only; henre, the back sample for the analysis of "combined" data consists of an independent random sample from the same group used in the analysis for female cases. The average cross sample sizes are 134,173 , and 285 , with lows of 48, 74, and 74, and highs of 204, 353, and 555 for the male, female, and combined groups respectively. The low for the female group is equal to the low for the combined group because the sample with 74 cases was not part of the male group, but was taken from one of the two colleges for which no data for maleswere available. Tables 1,2 , and 3 contain summary statistics for the schools involved for males, females, and combined groups, respectively.

As with the study of Novick et al. (1972), this analysis is concerned with the relations between a predicted grade calculated usjng a predicticn function whose parameters are developed in the back sample and whose arguments are the test scores (V and M) and a grade point average (UR) observed in the cross sample. For each student in the cross sample, there is a predicted and an observed grade point average. The correlation between these is COR, and the difference between these is called the "residual." These residuals are used to compute $A E$ and $20 L$, as defined earlier. In addition, an average residual (AR), the variance of the residuals (VR), atid the low and high residuals will be reported. All of these indices of goodness of fit of the prediction systems will be reported by school for both the Bayesian and leas: siquares systems as applied to the data of ingales, females, and the combir. d group. They will also be presented for various combinations
of the Scholasti: Aptitude Test verbal (V) and lathematios (il) and the high school record (if). No adjustment of tho H is included in the models considered.

Tables 4, 5, and 6 show the results for the index COR for males, females, and the combined sample. Notice that in these tables the Bayes and least squares predictions are about equally good with the exception of the negative entries. For these entries, the vagaries of the back sample are such that a negative multiplicative constant is needed to put the predictions on the grade point scale for the particular college because the predictions correlate negatively with the grade point average. For example, at college G the V scores of the males correlated -.O1; therefore, the sign of that, predictor will be reversed. But even if the back sample results indicate it, one does not accept that the correlation of V with grade point average is negative at this college or probably at any other unless the grade point scale is inverted; in practice, the negative reight would simply not be used on a priori grounds. The author is awat it this sort of reversal, havang encountered it in the data for black students at the graduate schools of business (Boldt, 1971), and feels that, where such sign reversals are found, : a reasonable practice to adopt would be one in which the ahsolute value of the multiplicative constant developed in the back sample is used in the cross sample together with an additive constant which is adjusted (as described in Appendix A) to account for the change in sign of the multiplicative constant. The additive constant would not affect Tables 4,5 , and 6 since the correlation coefficient is invariant undem an additive transformation, but the sign would be reversed and one can see that, with the sign reversal the Bayesian and least squares systems are about equally good. The author wants to stress that this change in the $s i g n$ was not a change suggested by the data but was
intended for use prior to the collection of any data in connection with this study. A further consideration of the sign change appears in the Discussion and Conclusion section of this Bulletin.

Tables 7,8 , and 9 contain the average values of the residuals (AR) found in the cross samples. Though the entries where the negative multiplicative constant occurred are footnoted in these tables, the values entered are calculated with the adjustments referred to in the paragraph above. Examination of Tables 7, 8, and 9 reveals a slightly larger number of cells in which the dverage residual from the Bayes system is smaller than the average residual from the least squares system. These errors are not trivial in all cases and are highly responsive to fluctuations in the additive constant, a matter which will be referred to later.

As in Tal: , 7, and 9, Tables 10 through 18 contain entries which are corrected for the neqative correlations of predictor sets with the criterion in the back sample. However, Tables 10,11 , and 12 contain as entries the variances of the residuals, VR. Like the data in Tables 7, 8, and 9, the advantage seems to be slightly to the Bayes system in terms of the frequency of cells in which the $V R$ is smaller for Bayes than for least squares. On examination it can be seen that cells which are footnoted c are not necessarily the one:; in which the least squares system fits less well than the Bayes; the use of the absolute value of the nultiplicative constant seems to have been reasonably successfui. It should be noted that the index VR does not provide information about the additive part of the transformation that puts the predictions on the college scale, since $V R$ is invariant under linear transformation of the variables.

Tables 13 , Lats and 15 contain the values of 7ola, and lables 16,17 , and 13 contain values of AE . Oo particular advantage for the Baves system is observed using the Zol measure.

Tables 19, 20, and 21 contain the parameters of the Bayes and least squares solutions. Note that in contrast to the study by Novick et al., some of the regression coefficients are negative in the Bayes system. Table 22 contains validities of the predictions using the Bayes solutions shown in Tables 19 through 21, as we 11 as the average Baves weights and the least squares weights. Table 22 also contains the validities that would be obtained if the Bayes solution were obtained merely by reversing the sign where the weights are negative. Note that a solution with positive weights is better than one with negative weights even for a cross sample on the same school from which the negative back sample weights were derived. This reversal of weights is treated further in the Discussion and Conclusions section of this bulletin.

Analysis of GRE Data

Despite the scarcity of data from the graduate schools, a back sample analysis of the data was conducted. In interpreting the results of this analysis, the reader should keep in mind that the returns are highly selective in the sense that the ability to supply data for the study classifies the participating institutions as atypical. Data were received from four schools and cases are identified as receiving, a doctorate or as terminating with a master's degree, allowing eight classifications of students. Table 23 contains descriptive data by school for these groups and for the combined educational groups, Prediction analyses were conducted for each school using all eicht classifications (Combined 8), the terminal master's only (Master's),
the doctorate only (Doctorate), and the school, ignoring the degree received (Combined 4). Validity coefficienis for these groups are presented for various combinations of system predictors in Table 24 . These system coefficients squared give the percent of variance accounted for over and above the group means by the predictors. The computation of the coefficients for the least squares system is described in Appendix A, equation (11), and for the Bayesian system the system coefficients are calculated by corbining correlations of weighted sums, the weights being the regression parameters estimated using the Bayes approach. Examination of Table 24 shows that the highest system validity coefficients are those in which the most parameters are fitted. For example, parameters are added as predictors, and one may note from Table 24 that the coefficients increase as one moves down the table. Also, the Bayesian system fits more parameters than does the least squares, especially as predictors are added. One may also note that the discrepancy between the least squares validities and the Bayesian validities increases as predictors are added; as each predictor is added, one parameter is added to the least squares system, hut to the Bayesian system as many parameters are added as there are schools (four in this case). Thereiore, the trends noted in Table 24 may be the restils of capitalization on chance, rather than reflections of reliable trencls in the data. As a check, Table 25 , which gives system validity coefficients in the back sample of CEEB Validity Study. Service data, is offered for comparison with Tables 4, 5, and 6. It can be seen that the least squares and Bayesian coefficients are about tho same for larger numbers of predictors. Bayesian coefficients are smaller for the single predictor case (the single predictor case involves more constraint for Bayes than for least squares). ${ }^{3}$ In Table 25 the validity of the Vlll composite
 about the same as in fable \therefore. Sirilarly in Table 2 the least samares vaideity of VQPE is about that of i alome: thus, if a similarity with CFEF Validity Study Service data holds, one may expect system cross-validities of about . 3 to . 35 using the least squares predictor:. An important question about the data in Table 24 is whether the large validity coefficients for the four predictor Bayes systems would hold up under cross-validation. It is the author's impression that they would not since the Bayesian system is adding only about 18 correlation points for an increase of almost 1 ? parameters. 4 It is, of course, a matter for additionel study whether the Bayesian system produces results that would stand up with such a paucity of data, but in the author's opinion it would be extremely optimistic to accept the validities in the range of .5 from the botom line of Tanle 24 . Tt may be reasonable to expect, however, validities in the mid-thirties, provided the undergraduate average is included.

A further reason to question the validity of the regression composites in a cross sample comes from examination of the regression coefficients. In the Bayesian solution for the Combined 8 groupings, only for U alone and for Q and U together were the regression coefficients positive for all schools. For the doctorate groups, the regression coefficients were positive for all schools only when U was used alone. For the combined grouping, regression coefficients were all positive only when using P or U alone, Q and U together, and P and U together. This means that, for all other combinations of variables, one would be using negative regression weights in a new sample, and these combinations include, frer example, the four variable predictor set that yielded the back sample sysiem coefficient of .52 in Table 24 . The author
does not accept the conclusion that negative coefficients are correct for other samples but considers them an accident of these data.

Discussion and Conclusions

Problems in data collection have been discussed in sone detail, where only a few cases are available which criterion data on a common scale, or at least on a scale which is known to be common. Minority group research is given as an example of a situation in which such problems arise, and the problems increase when graduate student populations are involved. The diffficulties encountered in this study definitely make it clear that improving, the state of knowledge in these very important areas will require the cooperation and effort and even some trouble on the part of many institutions that could provide data. To gain the cooperation of institutions probably requires convincing them that the solution of the problem to which the study is addressed is one in which they have an interest. Unfortunately, since the methodology under study is one designed to deal with small samples at many places, the sample size itself may preclude the development of a percaption by the parent institution that the group for which the data are collected constitute in themselves a cause for concern, or a reason to take the trouble. It is hoped that some effective approach to the data collection problem will be found in the context of graduate education.

The present study asks whether the Bayesian system and estimation procedures, used by Novick et al. (1972), would prove superior to the least squares system used here (Appendix A) which, in contrast to the usual regression system, allows pooling, of data across colleges. It was found that, if negative multiplicative parameters are developed using the least squares system are converted to positive and if the additive constants are adjusted
acoordinyly, the last sumares aystom and the Baves sy:tam are about equally
 Five indices were used to indierat the fit of the predietion in the cross sample: the validity (COR), the averare residual (AR), the variance of the residuals (VR), the zero-one loss (ZOH), and the average error (AE). The difference hetween astimation medons produced very little variation in these figures of merit.

The least squares estimates were subjected to sign reversals where negative multiplicative parameters oceurred (the entries where this happened α are noted in Tables 4,5 and 6). Cleariv, had the reversal in sign not occurred, the values of cok would have been negative-mpediction would have been backward. Other indices of fit in the back sample with the exception of $A R$ would have suffered as well. But in the tables the Bayes and least squares results appear to be about equally as good. Therefore, before the sign change Bayes was better.

Realizing that the treatment of the two methods had not been entirely symmetric, the author examined the Bayesian regression coefficients to see if some of them were neeative and might be changed. "Some were indeed found, their signs reversed, and the results of that reversal are presented in Tabie 22. It can be seen that reversal of the negative signs in the Bayes formulae improved the Bayes predictions, also, as the author expected. Symetric treatment, treatment which leaves the signs alone in both systems or treatment which changes the signs in both systems, seems to leave the Bayes system with a slight advantage.

Readers will undoubtedly differ on whether the sign changes are acceptable. The author justifies u em on severil srounds. First, experience
 regression weishts are overwhelmingly positive when samples are adequate. Second, the back samples are salll. [him, the chonges were possible without post hoc reliance on cros: sample criterion data, p westosary characteristic of any acceptable estimation procefure. Fourth, positive weights make better policy sense. These points are amplified below.

The least squares system used here is particularly prone to sign change errors by college as examination of Appendix Λ reveals. There it can be seen that the prediction formula is of the form $A z+B$ where z is a linear function of the predictors; the parameters of z do not depend on the particular college. Therefore, the coefficients of $A z+B$ are estimated by the formula for regression of grades on z at narticular colleges. These weights are based on only 25 cases so if one obtains a nerative multiplicative constant for one college and if one must recommend a prediction formula for that college, one has to believe that aptitudes and rrades predict backwards at that college to recommend the use of the negative value (in the present data all the scales are arranged so that "good" grade point averages are large ones). Therefore, in substantive terms a negative value for A means that increasing Verbal, Yath, and undergraduate, grade point average implies decreasing grade point averages. The author. declines to accept that the colleges here are that strange; therefore the sign reversal or a zero weight is indicated. Zero might be considered as a solution becatise one might think that a negative weight estimates a zero; the zuro misht also be accepted as the estimate for a least squares objective function like that of Appendix A but wit: the explicit constraint that multiplicative weights must be nonnegative; but ir
 grades with worbermins requence and the use of a multiplicative weight of zero whid lirit une tu cross validities of zero-one knows one can do better. Accepting that positive welghts are needed, what should their magnitude be? [ntuition says that the variance of the predictions should probably be somewhat less than that of the critioron; as a basis for producjng that variance one might assume that the correlation coefficient was about right in size but wror.j in sign. If so, the weight should be reversed in sign as was done with the results here. But other solutions in the form of other least squares objective functions were songht; only one appeared worth checking empirically. In this alternative least squares method the quantity w for a college was taken as proportional to the inverse of the multiplicative constant for that college thus ensuring the existence of a relative minimum for the objeative function in the region where the nultiplicative constants for the colleges are all positive. In this case the estimator of the multiolicative constant for a college turns out to be the ratio of the standard deviation of the grades at the college to the standard deviation of the : ?'s at the college; the astimator eates the variance of the predictions to that of the criterion. As one might expect from the intuition mentioned above, this estimate does not work as well as the simple sign change that was actually used. Results obtained using the ratio of the standard deviations were not tabled since the estimate is of no further interest.

The discussion above dcals with the least squares estimates. Bayes weights were also reversed to attain a symmetry of treatment of the two methods, since in the author's judgment lositive weights would improve

Prediction, in part because the overwhelming body of evidence indicates that such weights should be positive. The other part of the reason for rejectirg, negative weights can be appreciated if one supposes that a negative weight for math was obtained at a college, and that that weight was incorporated into the admissions policy. Then one would almost certainly encounter a candidate whose grades and verbal scores were good but whose math was so tiigh it offset his grades and verbal ability and led to his rejection. To explain to the parents and other institutional officials that the high math score makes him lose the admissions race would seem to the author to be exceedingly difficult. Especially would this be so where the : ights arise from imited quantitics of data for the college, a situation for which the current methods are intended. For political reasons one wouli want to be absolutoly sure that the negative weight is correct, and this certainty would be needed in a situation where the great bulk of evidence surgests that the weirfits are positive and that the negative weichts are a product of instablify due to the lirited samplo size. The author's indgment was that the nesat ive weights; are probisty not ripht, and that prediction would be improved if the sions were reversed. That proved to be the rase.

The sign reversals used in the present study could be applied in prediction contexts less familiar than that of educational prediction where sach :vell-known variahles as $v, \therefore, \therefore 1 \|$ are used. If one were using the 'least squares reeimod, one would merold reverse the signs of the few schools which seemed to work backwards from the rest. If one were using the Bayes method, one would reverse the sign of the predictors where only a few differed in sign from the others. In either case, if more than onty a few
parameters showed difference in sign, whe might suspect that institutions are being grouped which should not be. Where such sign reversals are done in the least squares system, the additive constant is determined by choosing a value so that the average back sample residual for a school is zero. This change is rather simple, but the change in additive constant for the Bayes model is more complicated and has yet to be worked out.

It is interesting to note that the arbitrary sign changes are much in agreement with that part of the philosophy of Bayesians which says that prior knowledge should reasonably be sxpected to influence the inferences one makes from sets of data. In this cas: one would prefer, of course, that the Bayes system be set up so that the occurreme of negative weights is unlikely or simply impossible. But lindioy and o er statisticians write for many applications and the generality of their methods would be limited if they included priors where neqative coefficients were not possible. It is reasonable to supproo that measurement specialists might seek prior distributions which are approprine to thoir special context of application and that such changes would improve estimation in that context, even though the results would not be an generally applicable as would Lindley's. Such change and improvement in the models for use in the data of interest to educational measurement would constitite progress in the science of the subject.

References

Bashaw, W. L. A FORTRAN program for a central prediction system. Educational and Psychological. Measurement, 1965, 25, 201-204. (a)

Bashaw, W. L. Central-irediction-system models. American Educational Research Journal, 1965, 2, 151-162. (b)

Bloom, B. S., \& Peters, F. R. Academic prediction scales. New York: The Free Press of Glencoe, 1961.

Boldt, R. F. Interim report: ATCSB Negro validity study. Report to the Research Committee of the Council of the ATGSB, 1971.

Carlson, A. B. Further results on the validity of the Prueba de Aptitud Academica in United States colleges and universities. Statistical Report 67-67. Princeton, N.J.: Educational Testing Service, 1967.

Cleary, T. A. Test bias: Prediction of grades of Negro and white students in integrated colleges. Journal of Educational Measurement, 1968, 5, 115-124.

Educational Testing Service. Progress Report: Comparative Guidance and Placement Program. Prepared for the College Entrance Examination Board, Princeton, N.J., September 1968.
(;annon, F. B., Oppenheim, D., ${ }^{\text {Whollhuter, J. F. A validity study of a }}$ Spanish Language Scholastic Aptitude Test in United States colleges and universities. Statistical Report 66.2. Princeton, N.J.: Educationál Testing Service, 1966.

Jackson, P. H., Novick, M. R., \& Thayer, D. T'. Bayesian inference and the classical test theory model II: Validity and prediction. Research Bulletin 70-32. Princeton, N.J.: Educational Testing Service, 1970.
 initial admission to graduate stme. Croduate Record Examinations Special Report 67-3. Princeton, \therefore. ${ }^{\text {. }}$: Educational Testing Service, 1967.

Lannholm, C. V. Review of studies employing (RE scores in predicting success in graduate study, 195?-1967. (iraduate Record Examinations Special Report 68-1. Princeton, N... : Educiational Testing Service, 1968.

Lannholm, G. V. Summaries of GRE validity studies 1966-1970. Graduate Record Examinations Special Report 72-1. Princeton, N.J.: Educational Testing Service, 1972.

Lannholm, G. V., Marco, G. L., \& Schrader, W. B. Cooperative studies of predicting graduate school success. (iraduate Record Examinations Special Report 68-3. Princeton, N. ${ }^{\text {. }}$: Educational Testing Service, 1968.

Lindley, D. V. A Bayesian solution for some educational prediction problems. Research Bulletin 69-57. Princeton, N.J.: Educational Testing Service, 1969. (a)

Lindley, 1). V. A Bayesian solution for some educational prediction problems, I. . Research Bulletin 69-91, Princeton, N.J.: Educational Testing Service, 1969. (b)

Lindley, D. V. The estimation of many parameters. Research Bulletin 70-16. Princeton, N.J.: Educational Testing Service, 1970. (a) Also, V. P. Godambe and D. A. Sprott (Eds.), Foundations of statistical inference. Toronto: Holt, Rinehart and Winston of Canada, Ltd, 1971. Pp. 435-453.

Lindley, 1 . V. A Bayesian solution for some educational prediction prob:ems, III. Research Bulletin 70-33. Princeton, N.J.: Educational Testing Service, 1970. (b)

Linn, R. L. (irade adjustments for prediction of academic performance: A review. Journal of Educational Measurement, 1966, 3, 313-329.

Novick, M. R., \& Jackson, P. H. Further cross-validation analysis of the Bayesian m-group regression method. American Educational Research Journal, 1974, 11(1), 77-85.

Novick, M. R., Jackson, P. H., Thayer, D. T., \& Cole, N. S. Estimating multiple regressions in $\underline{-}$-groups: A cross-validation study. British Journal of Mathemati =al and Statistical Psychology, 1972, 25, 33-50.
Potthoff, R. F. The prediction of college grades from College Board scores and high school grades. Institute of Statistics Mimeo Series 419. Chapel Hill: University of North Carolina, 1964.

Schrader, W. B., \& Pitcher, B. Predicting law school grades for blar.k American law students. Draft report to the Test Development and Research Committee of the iaw School Aptitude Test Council, 1972.

Tausworthe, R. C. Random numbers generated linear recurrence module two. Mathematical Computations, 1965, 19, 201-209.

Temp, G. Test bias: Validity of the SAT for blacks and whites in thirteen integrated institutions. Research Bulletin 71-2 and CEEB Research and Development Report 70-71, No. 6. Princeton, N.J.: Educational Testing Service, 1971.

Tucker, L. R. Formal models for a central prediction system. Psychometric. Monograph No. 10. Richmond, Va.: William Byrd Press, 1963.

Whittlesey, J. A comparison of the corvelational behavior of random number generators for the IBM 360. Committee of the ACM, 1968, 11, 641-644.

Fontmontos

$L_{\text {This }}$ research was supported by the iraduate kecord Examinations Board. Its conclusions are those of the author and not necessarily those of the Board or Board members.
${ }^{2}$ In practice, even researchers wh: use classical statistical methodology use available prior information quize often. For example, if a negative correlation of verbal test scores with college grades were found, the researcher would exarine the computation processes very closely, as he would the sample, probably until some reason were found to judge one or the other pathological. And his behavior is not entirely unreasonable because he "knows" that if a new sample were correctly drawn and correctly analyzed, the resulting validity would be positive. He would behave similarly if the analysis produced a validity of .95 , though he might be somewhat less reticent to record the result.
${ }^{3}$ For the single predictor cases, the least squares and the Bayes systems fit twice as many parameters as there are schools, but the Bayes paraneters are interconnected throug the prior distribution. There being no interconnection of the least squares parameters, one may regard the least squares validities as being more subject to shrink in a cross sample. But as predictors are added, the Bayes system adds one parameter per school per predictor while the least squares system adds only one parameter per predictor. Even though thé Bayes parameters have some interconnection through the prior distribution, it seems to the author that for larger numbers of predictors the Bayes system must be more subject to shrink.

```
    4}\mathrm{ It is commor: to compare correlation sa;ns to, the number of parameters
```



```
sample is gocatly intreased as the number of parameters is increased.
dlthough this; practice has grown up in a least squares context, it is sup- posed that the same comparison wonld apply with the gayesian syetem. A gain of 18 corre? ation points for 12 parameters is quite small from this point of view.
```

Table 1

Reported on one-tenth College Board scale.
\because

z or

$\begin{array}{lllllllllllll}\text { in. Cases } & 199 & 43 & 190 & 20 & 116 & 142 & 138 & 344 & 155 & 128 & 74 & 353\end{array}$

Standard
Deviations

V	9	j	8	8	9	8	10	8	8	10	8	9
M	4	6	9	9	9	9	9	8	9	8	9	9
H	.47	.44	.40	.35	.65	.47	.44	.62	.60	.67	.39	.46
H	.59	.57	.55	.43	.70	.62	.54	.70	.75	.78	.51	.52

Correlations

${ }^{7}$ Reported on ore-tench college Board scale.
rble 3

$$
\underline{A} \quad \underline{B} \quad \underline{C} \quad \underline{D} \quad \underline{E} \quad \underline{E} \quad \underline{G} \quad \underline{H} \quad \underline{I} \quad \underline{J} \quad \underline{K} \quad \underline{L}
$$

No. Cases	378	141	236	424	267	251	231	284	240	555
Means										
y^{2}	51	29	57	54	48	60	48	44	40	50
M^{2}	54	32	58	55	50	60	48	46	41	51
H	3.13	2.61	3.27	3.22	2.75	3.20	2.97	2.74	2.31	3.10
\mathbb{R}	2.50	1.93	2.64	2.90	2.31	2.10	2.53	2.20	2.09	2.67

Standard								N			\cdots	
Deviations								$\stackrel{4}{4}$			4	
V	9	6	9	10	9	8	9	8	9	9	$\stackrel{\square}{4}$	9
M	9	6	9	13	9	,	9	${ }_{\text {H }}$	8	8	H	9
H	. 44	. 50	. 53	. 49	. 65	. 46	. 44	㽞	. 63	. 71	甼	. 39
UR	. 60	. 61	. 64	. 46	. 70	. 71	.58	0	. 81	. 76	0	. 51

Correlarions									
V M	.42	.45	.43	.59	.58	.47	.56	.60	.54
V H	.23	.35	.20	.46	.50	.21	.32	.38	.38
VUR	.47	.49	.40	.22	.47	.23	.46	.45	
M H	.23	.23	.30	.42	.51	.31	.35	.45	.50
MUR	.30	.26	.25	.15	.40	.23	.31	.47	.33
H UR	.66	.41	.46	.41	.61	.48	.63	.40	.41

${ }^{\text {a Reported on one-tenth College Board scale. }}$

Table 4

Values of CoR in the Cross Sample: Males
\qquad

College	System Type	\underline{V}	M	H	$\underline{V}, \mathrm{M}$	V, H	M, ${ }^{\text {H }}$	$\underline{V}, \mathrm{M}, \mathrm{H}$	Sample Size
A	Bayes L.S.	$\begin{aligned} & .39 \\ & .39 \end{aligned}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{array}{r} .63 \\ .63 \end{array}$	$\begin{aligned} & .43 \\ & .43 \end{aligned}$	$\begin{aligned} & .60 \\ & .69 \end{aligned}$	$\begin{aligned} & .62 \\ & .64 \end{aligned}$	$\begin{aligned} & .69 \\ & .69 \end{aligned}$	179
B	$\begin{aligned} & \text { Bayes } \\ & \text { L..S. } \end{aligned}$	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{array}{r} .19 \\ -.19 \end{array}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{aligned} & .44 \\ & .36 \end{aligned}$	$\begin{aligned} & .48 \\ & .38 \end{aligned}$	$\begin{aligned} & .27 \\ & .33 \end{aligned}$	$\begin{aligned} & .40 \\ & .38 \end{aligned}$	48
C	Bayes L.S.	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{aligned} & .10 \\ & .16 \end{aligned}$	$\begin{aligned} & .43 \\ & .43 \end{aligned}$	$\begin{aligned} & .29 \\ & .27 \end{aligned}$	$\begin{aligned} & .48 \\ & .47 \end{aligned}$	$\begin{aligned} & .41 \\ & .42 \end{aligned}$	$\begin{aligned} & .47 \\ & .46 \end{aligned}$	116
D	Bayes L.S.	$\begin{aligned} & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & .08 \\ & .08 \end{aligned}$	$\begin{array}{r} .33 \\ .33 \end{array}$	$\begin{aligned} & .14 \\ & .12 \end{aligned}$	$\begin{aligned} & .29 \\ & .32 \end{aligned}$	$\begin{aligned} & .31 \\ & .30 \end{aligned}$	$\begin{aligned} & .30 \\ & .30 \end{aligned}$	204
E	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{array}{r} .43 \\ .43 \end{array}$	$\begin{aligned} & .54 \\ & .54 \end{aligned}$	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	$\begin{aligned} & .57 \\ & .56 \end{aligned}$	151
F	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .20 \\ & .20 \end{aligned}$	$\begin{aligned} & .14 \\ & .14 \end{aligned}$	$\begin{array}{r} .48 \\ .49 \end{array}$	$\begin{aligned} & .19 \\ & .20 \end{aligned}$	$\begin{aligned} & .48 \\ & .50 \end{aligned}$	$\begin{aligned} & .48 \\ & .48 \end{aligned}$	$\begin{aligned} & .50 \\ & .49 \end{aligned}$	109
G	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{array}{r} .34 \\ -.34^{\mathrm{c}} \end{array}$	$\begin{aligned} & .30 \\ & .30 \end{aligned}$	$\begin{aligned} & .58 \\ & .58 \end{aligned}$	$\begin{aligned} & .36 \\ & .36 \end{aligned}$	$\begin{aligned} & .50 \\ & .60 \end{aligned}$	$\begin{aligned} & .58 \\ & .58 \end{aligned}$	$\begin{array}{r} .60 \\ .60 \end{array}$	93
H	$\begin{aligned} & \text { Bayes } \\ & \text { L. S. } \end{aligned}$			OMEN	CNLY	,			
I	Bayes L.S.	$\begin{aligned} & .33 \\ & .33 \end{aligned}$	$\begin{array}{r} .33 \\ -.32^{\mathrm{c}} \end{array}$	$\begin{aligned} & .52 \\ & .53 \end{aligned}$	$\begin{array}{r} .37 \\ -.37 \end{array}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	$\begin{aligned} & .46 \\ & .55 \end{aligned}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	129
J	Bayes I. .S.	$\begin{aligned} & .41 \\ & .41 \end{aligned}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{aligned} & .44 \\ & .44 \end{aligned}$	$\begin{aligned} & .38 \\ & .40 \end{aligned}$	$\begin{aligned} & .48 \\ & .49 \end{aligned}$	$\begin{aligned} & .48 \\ & .47 \end{aligned}$	$\begin{array}{r} .50 \\ .49 \end{array}$	112
K	Bayes L.S.			MEN	ONLi'				
L	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .36 \\ & .36 \end{aligned}$	$\begin{aligned} & .32 \\ & .32 \end{aligned}$	$\begin{aligned} & .55 \\ & .55 \end{aligned}$	$\begin{array}{r} .39 \\ .39 \end{array}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	$\begin{aligned} & .56 \\ & .55 \end{aligned}$	$\begin{aligned} & .56 \\ & .56 \end{aligned}$	202^{8}

${ }^{\text {a }}$ COR is the correlation of predicted scores with observed scores.
${ }^{b}$ L. S. stands for leasi squares.
$\mathrm{C}_{\text {Multiplicative parameter was negative. }}$

Table 5

Values of Cor ${ }^{\text {a }}$ in the Cross Sample: Females
Predictor Combination

Co11ege	System Type	V	M	H	$\mathrm{V}_{2} \mathrm{M}$	V , H	M, H	$\underline{V}, \mathrm{M}_{2} \mathrm{H}$	Sample Size
A	Bayes	. 43	. 34	. 68	. 46 :	$.68$	$.66$		199
	L.S.S	. 43	$.34$	$.68$	$.45$	$.70$	$.69$	$.70$	
B	\%								93
	Bayes	. 49	. 28	. 50	. 49	. 55	. 51	. 55	
	L.S.	. 50	. 28	. 50	. 49	. 58	. 52	. 58	
C	Bayes	. 54	. 47	. 43	. 58	. 62	. 40	. 59	120
	L. S.	. 54	. 47	. 43	. 58	. 59	. 51	. 60	
D	Bayes	. 24	. 27	. 44	. 29	.30	. 42	. 43	220
	L. S .	-. $24^{\text {c }}$	$-.27^{\text {c }}$. 44	$-.29{ }^{\text {c }}$.43	. 45	. 43	
E	Bayes	. 53	. 50	. 66	. 58	. 70	. 67	. 70	116
	L.S.	. 53	. 50	. 66	58	. 70	. 67	. 70	
F	Eayes	. 27	. 37	. 48	. 36	. 50	. 45	. 47	142
	L.S.	. 27	. 37	. 48	. 36	. 49	. 50	. 50	
G	Bayes	. 57	. 44	. 62	. 58	. 73	. 64	$.72$	138
	L.S.	. 57	. 44	. 62	. 59	. 73	. 65	$.72$	
H	Bayes	. 40	. 43	. 60	. 47	. 62	. 63	. 63	344
	L. S.	. 40	. 43	. 60	. 47	. 62	. 63	. 63	
I	Bayes	. 56	. 52	. 72	. 60	. 76	. 75	. 77	155
	L.S.	. 56	. 52	. 72	. 60	. 76	.75	. 77	
J	Bayes	. 55	. 52	. 66	. 60	. 70	. 66	. 71	128
	L.S.	. 55	. 52	. 64	. 60	. 71	. 67	. 71.	
K	Bayes	. 40	. 40	. 39	. 46	. 47	. 46	. 50	74
	L.S.	. 40	. 40	. 39	. 46	. 47	. 47	. 49	
L	Bayes	. 52	. 46	. 65	. 56	. 68	.66	. 68	353
	L.S.	. 52	. 46	. 65	. 56	. 68	. 66	. 68	

—— - -
$a_{\text {CoR }}$ is the 'correlation of predicted scores with observed scores. bu.s. stands for least squares.
chultiplicative parameter was megative.

Table 6

Values of Cor $^{\text {a }}$ in the Cross Sample: Combined Males and Females

		Predictor Combination							
Co11ege	System Type	V	M	H	V, M	$\underline{\mathrm{V}, \mathrm{H}}$	M, H	$\mathrm{V}_{2} \mathrm{M}, \mathrm{H}$	Sample Size
A	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{array}{r} .30 \\ -.30^{c} \end{array}$	$\begin{aligned} & .66 \\ & .66 \end{aligned}$	$\begin{aligned} & .42 \\ & .42 \end{aligned}$	$\begin{aligned} & .70 \\ & .70 \end{aligned}$	$\begin{aligned} & .66 \\ & .67 \end{aligned}$	$\begin{aligned} & .70 \\ & .71 \end{aligned}$	378
B	Bayes L.S.	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .26 \\ & .26 \end{aligned}$	$\begin{aligned} & .41 \\ & .41 \end{aligned}$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .52 \\ & .50 \end{aligned}$	$\begin{aligned} & .45 \\ & .43 \end{aligned}$	$\begin{aligned} & .50 \\ & .50 \end{aligned}$	141
C	Bayes L.S.	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{array}{r} .25 \\ -.25^{c} \end{array}$	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{aligned} & .41 \\ & .41 \end{aligned}$	$\begin{aligned} & .51 \\ & .54 \end{aligned}$	$\begin{aligned} & .42 \\ & .47 \end{aligned}$	$\begin{aligned} & .53 \\ & .54 \end{aligned}$	236
D	Bayes L.S.	$\begin{aligned} & .22 \\ & .22 \end{aligned}$	$\begin{aligned} & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & .41 \\ & .41 \end{aligned}$	$\begin{aligned} & .22 \\ & .22 \end{aligned}$	$\begin{aligned} & .37 \\ & .39 \end{aligned}$	$\begin{aligned} & .38 \\ & .40 \end{aligned}$	$\begin{array}{r} .39 \\ .39 \end{array}$	424
E	Bayes L.S.	$\begin{aligned} & .47 \\ & .47 \end{aligned}$	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{aligned} & .61 \\ & .61 \end{aligned}$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .62 \\ & .64 \end{aligned}$	$\begin{aligned} & .59 \\ & .62 \end{aligned}$	$\begin{aligned} & .63 \\ & .64 \end{aligned}$	267
F	Bayes L.S.	$\begin{aligned} & .23 \\ & .23 \end{aligned}$	$\begin{aligned} & .23 \\ & .23 \end{aligned}$	$\begin{array}{r} .48 \\ .48 \end{array}$	$\begin{aligned} & .26 \\ & .25 \end{aligned}$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .48 \\ & .48 \end{aligned}$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	251
G	Bayes r.S.	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{aligned} & .6 j \\ & .63 \end{aligned}$	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{aligned} & .63 \\ & .69 \end{aligned}$	$\begin{aligned} & .64 \\ & .64 \end{aligned}$	$\begin{aligned} & .69 \\ & .68 \end{aligned}$	231
H	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{aligned} & .43 \\ & .43 \end{aligned}$	$\begin{array}{r} .60 \\ .60 \end{array}$	$\begin{aligned} & .45 \\ & .44 \end{aligned}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$\begin{aligned} & .64 \\ & .62 \end{aligned}$	$\begin{aligned} & .63 \\ & .62 \end{aligned}$	344
I	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$.45 .45	.40 .40	$\begin{aligned} & .65 \\ & .65 \end{aligned}$	$\begin{aligned} & .48 \\ & .47 \end{aligned}$	$\begin{aligned} & .68 \\ & .68 \end{aligned}$	$\begin{aligned} & .67 \\ & .67 \end{aligned}$	$\begin{aligned} & .68 \\ & .69 \end{aligned}$	284
J	Baves [..S.	$\begin{aligned} & .50 \\ & .50 \end{aligned}$	$\begin{array}{r} .41 \\ .41 \end{array}$	$\begin{array}{r} .60 \\ .60 \end{array}$	$\begin{array}{r} .51 \\ .52 \end{array}$	$\begin{array}{r} . \\ .66 \\ .66 \end{array}$	$.57$	$\begin{array}{r} .65 \\ .66 \end{array}$	240
K	Bayes L.S.	$\begin{aligned} & .40 \\ & .40 \end{aligned}$	$\begin{array}{r} .40 \\ .40 \end{array}$	$\begin{aligned} & .39 \\ & .39 \end{aligned}$	$\begin{aligned} & .45 \\ & .44 \end{aligned}$	$\begin{aligned} & .48 \\ & .47 \end{aligned}$	$\begin{aligned} & .49 \\ & .44 \end{aligned}$	$\begin{aligned} & .50 \\ & .48 \end{aligned}$	74
1.	$\begin{aligned} & \text { Bayes } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .44 \\ & .44 \end{aligned}$	$\begin{aligned} & .36 \\ & .36 \end{aligned}$	$\begin{aligned} & .63 \\ & .63 \end{aligned}$	$\begin{aligned} & .46 \\ & .46 \end{aligned}$	$\begin{aligned} & .57 \\ & .65 \end{aligned}$	$\begin{aligned} & .60 \\ & .64 \end{aligned}$	$\begin{aligned} & .65 \\ & .65 \end{aligned}$	555

[^1]Table 7

Values of $A R^{a}$ in the Cross Sample: Males

School	System Type	Predictor Combination						
		V	M	H	$\mathrm{V}_{2} \mathrm{M}$	V, H	M, H	$\underline{\mathrm{V}, \mathrm{M}, \mathrm{H}}$
A	Bayes	-. 20	$\therefore .06$	-. 20	-. 16	-. 27	-. 19	-. 20
	L.S. ${ }^{\text {b }}$	-. 38	-. 19	-. 27	-. 23	-. 30	-. 25	-. 28
B	Bayes	. 34	. 31	. 27	. 34	. 32	. 31	. 29
	I. S.	. 38	$.37^{\text {c }}$. 37	. 37	. 37	. 37	. 37
C	Bayes	. 02	. 06	. 09	-. 02	--. 02	. 06	. 01
	L.S.	-. 06	. 06	. 11	-. 02	. 07	. 09	. 06
D	Bayes	.23	. 31	. 16	. 27	. 18	. 19	. 21
	L. S.	. 18	. 15	. 12	. 21	. 15	. 1.6	. 16
E	Bayes	$-.12$	$-.05$	-. 09	-. 06	-. 08	-. 06	$-.07$
	L.S.	-. 13	-. 01	-. 12	-. 05	-. 11	-. 09	-. 10
F	Bayes	-. 35	$-.34$	-. 47	-. 34	-. 47	--. 45	-. 46
	L, S.	-. 32	-. 28	-. 47	-. 27	-. 45	-. 44	-. 44
G	Bayes	-. 02	. 08	-. 02	. 04	-. 02	. 00	. 00
	L.S.	$-.06^{\text {c }}$	-. 02	-. 05	-. 05	-. 06	$-.04$	$-.05$
H	Bayes	WOMEN ONLY						
	L.S.							
I	Bayes	. 06	. 11	-. 01	. 09	-. 06	. 02	-. 01
	L.S.	. 16	$.17{ }^{\text {c }}$. 04	$.17{ }^{\text {c }}$. 02	. 07	. 04
J	Bayes	. 03	. 07	. 21	. 14	. 27	. 31	. 29
	I..S.	. 09	. 20	. 24	. 21	. 28	. 28	. 30
只	Bayes	WOMEN ONLY						
	L.S.							
L	Bayes	. 10	. 20	. 14	. 16	. 14	. 19	. 15
	L.S.	. 08	. 18	. 21	. 14	. 18	. 24	. 20

[^2]Table 8

Values of $A R^{a}$ in the Cross Sample: Females

School	System Type			Predictor Combination				
		$\underline{\text { V }}$	M	H	$\underline{V}, \mathrm{M}$	$\underline{\mathrm{V}} \mathrm{H}^{\mathrm{H}}$	M, H	$\underline{V}, \mathrm{M}, \mathrm{H}$
A	Bayes	. 13	$-.03$	-. 02	. 08	. 02	-. 11	$-.03$
	L.S. ${ }^{\text {b }}$. 11	. 03	-. 07	. 05	-. 01	$-.10$	-. 02
B	Bayes	. 11	. 07	. 07	. 15	. 15	. 11	. 14
	L.S.	. 12	. 15	. 15	. 15	. 20	. 19	. 20
C	Bayes	. 21	. 19	. 23	. 20	. 29	. 26	. 27
	L.S.	. 30	. 22	. 28	. 29	. 33	. 28	. 33
D	Bayes	. 28				. 22	. 23	. 20
	L.S.	$.25{ }^{\text {c }}$. $26^{\text {C }}$. 17	$.26^{\text {c }}$. 20	. 20	. 20
E	Bayes	. 04	. 08	. 14	. 06	. 11	. 11	. 10
	L. S.	. 05	. 11	. 13	. 07	. 11	. 14	. 11
F	Bayes	$-.30$	-. 29	-. 31	-. 28	-. 28	-. 28	$-.27$
	L.S.	-. 16	. 2.2	. 28	-. 17	-. 23	-. 25	--. 22
G	Bayes	. 24	. 27	. 16	. 24	. 15	. 15	. 16
	L.S.	. 21	. 22	. 10	. 21		. 13	. 14
H	Bayes	-. 07	-. 01	$-.05$	-.	-. 08	-. 06	$-.10$
	L.S.	-. 05	-. 04	-. 06	-. .	-. 09	-. 06	-. 09
I	Bayes	. 09	. 09	. 06	. 08	. 00	-. 02	-. 01
	L.S.	. 04	. 07	. 02	. 04	-. 05	-. 01	$-.05$
J	Bayes	. 20	. 19	. 1.9	.23	. 21	. 21	. 22
	L.S.	. 26	. 30	. 22	. 27	. 21	. 24	. 22
K	Bayes	. 16	. 15	. 08	. 10	-. 13	1.46	-. 32
	L.S.	-. 10	-. 36	-. 15	-. 35	-. 27	-. 39	-. 34
L	Bayes	. 20	. 25	. 08	. 14	. 09	. 11	. 09
	L.S.	. 17	. 19	. 10	,	. 10	. 11	. 10

[^3]
Table 9

Values of $\mathrm{AR}^{\text {a }}$ in the Cross Samples: Combined Males and Females

School	System Type	Predictor Combination						
		V	M	H	V, M	$\underline{V}, \mathrm{H}$	M, H	V, M, H
A	Bayes	. 08	$.05$. 03	. 07	. 04	. 04	$.04$
	L.S.	$.04$	$-.01^{\text {c }}$. 02	. 03	. 04	$.02$	$.03$
B	Bayes	. 04	. 01	-. 02	. 06	. 04	. 00	.03
	L.S.	. 04	. 05	. 03	. 05	. 05	. 03	. 05
C.	Bayes	. 06	. 12	. 15	. 07	. 13	. 17	. 13
	L.S.	. 08	. $12^{\text {C }}$. 17	. 10	. 16	. 18	. 16
D	Bayes	. 26	. 25	. 20	. 24	.17	.17	. 18
	L.S.	. 20	. 19	. 17	. 19	. 17	. 17	. 17
E								
	Bayes	-. 04	. 04	. 01	-. 02	-. 05	. 00	-. 02
	L. S.	-. 04	. 09	.01*	-. 01	-. 01	. 02	. 00
F	Bayes	-. 53	-. 50	-. 54	-. 54	-. 55	-. 56	-. 55
	L. S.	-. 47	-. 52	-. 57	-. 47	-. 53	-. 57	-. 53
G	Bayes	. 24	. 29	. 25	. 26	. 25	. 24	. 25
	L. S.	. 32.	. 34	. 27	. 32	. 29	. 28	. 29
$\stackrel{*}{*}$								
	Bayes	-. 13	T. 14	$\cdots .16$	-. 14	-. 16	-. 17	-. 18
	L.S.	-. 22	$-.22$	-. 22	-. 22	$-.23$	-. 23	$\cdots .23$
I	Bayes	-.. 01	-. 05	. 00	. 00	.04	-. 02	. 02
	L.S.	. 02	$-.00$. 01	. 03 .	. 05	. 02	. 05
J	Bayes	. 18	. 16	. 30	. 21	. 37	. 33	. 31
	L.S.	. 29	. 23	. 39	. 30	. 40	. 40	. 40
K	Bayes	. 11	. 15	-. 09	. 09	-. 10	-. 15	-. 23
	L.S.	-. 07	-. 07	-. 09	-. 12	-. 28	-. 18	-. 29
L	Bayes	. 19	. 24	. 19	. 1.9	. 21	. 21	. 18
	L.S.	. 20	. 24	. 20	. 21	. 18	.21	. 19

[^4]Table 10

Values of $V R^{a}$ in the Cross Sample: Males

College	System Type	Predictor Combination						
		V	M	H	$\underline{V}{ }_{2} \mathrm{M}$	$\underline{V, H}$	$\mathrm{M}_{2} \mathrm{H}$	$\mathrm{V}_{2} \mathrm{M}_{2} \mathrm{H}$
A	Bayes	. 31	. 34	. 23	. 30	. 25	. 23	. 20
	$\text { L.S. }{ }^{\text {b }}$	$.36$	$.33$	$.24$	$.30$. 21	$.23$. 21
B	Bayes	. 38	. 44	. 42	. 39	. 36	. 43	. 39
	L.S.	. 37	$.45{ }^{\text {c }}$. 42	. 42	. 40	.42	. 41
C	Bayes	. 45	. 50	.41	. 46	. 38	. 43	. 39
	L.S.	. 51	. 51	. 41	. 51	. 39	. 43	. 40
D	Bayes	. 27	. 30	. 25	. 31	. 31	. 26	. 29
	L.S.	. 27	. 22	. 23	. 26	. 27	. 23	. 27
E	Bayes	. 38	. 37	. 33	. 36	. 32	. 32	. 32
	L.S.	. 38	. 38	. 33	. 37	. 32	. 32	. 32
F	Bayes	. 63	. 64	. 51	. 63	. 51	. 50	. 50
	L.S.	. 63	. 66	. 50	. .66	. 49	. 50	. 49
G	Bayes	. 30	$.31$	$.24$	$.30$	$.27$	$.25$	$.23$
	I.S.	$.34{ }^{\text {c }}$. 32	. 30	. 32	. 31	. 29	. 30
H	Bayes L.S.	WOMEN ONLY						
I	Bayes	. 63	. 65	. 53	. 63	. 50	. 58	. 51
	L.S.	. 68	. $69^{\text {C }}$. 56	$.70^{\text {c }}$. 53	. 56	. 53
J	Bayes	. 40	. 43	. 40	. 41	. 38	. 39	. $37 \times$
	L. S.	. 40	. 46	. 40	$.41^{\circ}$. 38	. 39	. 38
K	Bayes L.S.	WOMEN ONLY						
L	Bayes	. 27	. 28	. 22	. 27	. 22	. 22	-. 22
	L.S.	. 27	. 28	$\because 26$. 26	. 26	. 26	. 26

[^5]*alues of VR^{i} in the Ciross Sample: Fenales
\qquad
Predictor Combination

College	System Type	V	M	II	\underline{V}, M	V, H	\underline{M}, H	V, M, H
A	Bayes	. 23	. 31	. 19	. 27	. 18	. 19	. 18
	$\text { L.S. }{ }^{\text {b }}$. 29	. 32	. 18	. 28	. 18	. 19	$.17$
B	Bayes	. 26	. 30	. 25	. 26	. 24	. 25	. 23
	L.S.	. 27	. 30	. 26	. 26	. 22	. 2.5	. 22
C	Bayes	. 21	. 23	. 25	$.20^{\prime}$. 19	. 25	. 20
	L.S.	. 22	. 25	. 24	. 22	. 20	. 22	. 18
D				$.16$			$.17$	$.17$
	L.S.	$.18^{\mathrm{C}}$	$.19^{\text {C }}$	$.17$	$.18^{\mathrm{c}}$	$.15$	$.15$. 15
E	Bayes	. 36	. 37	. 28	. 34	. 26	. 27	. 26
	L.S.	. 36	. 37	. 29	. 34	. 27	. 28	. 26
F	Bayes	. 36	. 34	. 30	. 34	. 29	. 31	. 30
	L.S.	. 37	. 34	. 30	. 34	. 29	. 29	. 2.9
G	Bayes	. 20	. 23	. 18	. 19	. 14	.17	. 14
	L.S.	. 22	. 23	. 20	. 20	. 14	. 18	. 14
H	Bayes	. 42	. 40	. 31	. 39	. 33	. 31	. 30
	L.S.	. 47	. 41	. 38	.43	. 35	. 35	. 34
I	Bayes	. 40	. 43	. 28	. 38	. 24	. 25	. 23
	L.S.	. 38	. 41	. 30	. 36	. 28	. 29	. 27
J	Bayes	. 44	. 48	. 36	. 42	. 31	. 35	. 31
	L.S.	. 47	. 50	. 36	. 44	. 30	. 34	. 30
K^{-}	Bayes	. 22	. 23	. 23	. 21	. 22	. 37	. 25
	L.S.	. 27	. 44	. 25	. 31	. 23	. 26	. 23
L	Bayes	. 20	. 21	. 16	. 19	. 15	. 16	. 15
	L.S.	. 21	. 22	. 17	. 20	.16	. 16	.16

[^6]Valtes of $V R^{i}$ in the Cross Sample: Combined Males and Females
\qquad

College	System Type	Predictor Combination						
		V	M	\underline{H}	$\underline{V}, \mathrm{M}$	V, H	M, Hi	$\mathrm{V}_{2} \mathrm{M}_{2} \mathrm{H}$
A	Gayes	$.30$.33 c	. 22	. 30	. 20	. 23	. 20
	L.S. ${ }^{\text {b }}$	$.31$	$.34^{\text {c }}$. 23	. 31	. 20	. 22	. 20
B	Bayes	. 31	. 35	. 32	. 31	. 28	. 30	. 28
	L.S.	. 33	. 36	. 32	. 32	. 29	. 31	. 29
C	Bayes	. 34	. 38	. 32	. 34	. 30	. 33	. 29
	L.S.S.	. 37	$.38{ }^{\text {c }}$. 32	. 36	. 29	. 32	. 29
D	Bayes	. 23	. 22	. 19	. 24	. 25	. 21	. 22
	I. S.	. 27	. 24	. 19	. 31	. 23	. 20	. 23
E	Bayes	. 38	. 42	. 31	. 37	. 30	. 33	. 29
	L..S.	. 40	. 41	. 33	. 37	. 31	. 33	. 31
F	Bayes	. 48	. 48	. 39	. 48	. 38	. 39	. 39
	I..S.	. 51	. 48	. 42	. 51	. 40	. 41	. 40
(Bayes	. 27	. 31	. 22	. 27	. 21	. 21	. 19
	L. S.	. 31.	. 31	. 21	. 24	. 20	. 20	. 20
H	Bayes	. 42	. 42	. 32	. 40	. 30	. 29	. 30
	l.S.	. 42	. 44	. 31.	. 40	. 30	. 30	. 30
I	\therefore Bayes	. 54	. 58	. 41	. 52	. 37	. 38	. 37
	-	. 53	. 56	. 41	. 52	. 37	. 40	. 37
.	Bayes	. 44	. 51	. 38	. 43	. 34	. 41	. 34
	I..S.	. 45	. 56	. 39	. 43	. 34	. 37	. 34
K	Bayes	. 22	. $\because 2$. 22	. 21	. 20	. 20	. 19
	I..S.	. 2	20	. 22	. 21	. 20	. 21	. 20
I.	Bayes	. 84	. 26	. 18	. 24	. 21	. 20	. 18
	L. S.	. $\therefore 5$.27	. 19	. 25	. 19	. 19	. 19

${ }^{a} V R$ is the variance of the residuals.
bl.s. stands for latist square.s.
Colultiplicative parameter was mefrat ivo.

Table 13

Values of Zol. in the cross Simple: Males

School	System Type	Predictor Combination						
		\underline{V}	M	H	$V_{2} \mathrm{M}$	$\underline{V}, \underline{H}$	M, H	V, M, H
A	Bayes	. 36	. 42	. 45	. 40	. 37	. 45	. 4^{-}
	L.S.b	. 32	. 34	. 40	. 36	. 39	. 41	. 41
B	Bayes	. 35	. 25	. 23	. 31	. 31	. 31	. 25
	L.S.	. 33	. 23	. 25	. 25	. 27	. 25	.27
C	Bayes	. 49	. 39	. 41	. 49	. 46	. 41	. 42
	I..S.	.37	. 39	. 40	. 45	. 43	. 39	. 41
I)	Bayes	. 32	. 31	. 39	. 32	. 38	. 39^{\prime}	. 40
	I..S.	. 35	. 37	. 40	. 37	. 43	. 40	. 41
\because	Bayes	. 42	. 41	. 42	. 40	. 40	. 45	. 43
	L.S.	. 41	. 44	. 39	. 42	. 42	. 43	40
F	Bayes:	. 47	. 48	. 46		16		
	L.S.	. 45	. 45	4	. 41	. +6	44	. 46
G	Bayes	. 37	. 33	. 41	. 33	. 37	. 39	. 41
	L. S.	. 33	. 31	. 35	. 33	. 35	. 37	. 35
H	WOMEN ONLY							
I	Bayes	. 40	. 42	. 42	. 41	. 42	. 43	. 43
	L.S.	. 43	. 43	. 43	. 43	. 43	. 40	. 42
J	Bayes	. 46	. 46	. 46	$.46$. 43	. 44	. 40
	L.S.	. 39	. 42	. 44	. 44^{3}	. 42	. 44	. 42
K	WOMEN ONLY							
L	Bayes	. 44	. 40	. 44	. 38	. 45	. 39	. 40
	L. S.	. 43	. 41	. 38	. 41	. 42	. 33	. 39

[^7]Table: 14

Values of Zol a in the cooss Sample: Femaies

School	Sysiten Type	Predictor Combination						
		V	M	11	$\underline{V}, \mathrm{M}$	V, H	M, H	V, M, H
A	Bayes	. 38	. 42	. 50	. 37	. 52	. 51	. 51
	1.s. ${ }^{\text {a }}$. 37	. 43	. 49	. 37	. 51	. 48	. 48
B	Bayes	. 44	. 40	. 43	. 44	. 48	. 47	. 45
	I..S.	. 43	. 43	. 45	. 44	. 41	. 47	. 41
C	Baves	. 33	. 37	. 28	. 37	. 38	. 27	. 35
	1..s.	. 31	. 30	. 28	. 35	. 36	. 30	. 36
D	Baves	. 30	. 26	. 36	. 30	. 33	. 33	. 35
	1..S.	. 35	. 35	. 35	. 35	. 35	. 33	.35
F.	Rayes	. 47	. 49	. ${ }^{\prime}$ (. 11	. 53	. 54	. 53
	1..S.	. 47	. 47	. 49	. 48	. 54	. 52	. 55
F	bives	.42	.42	. 41	. 42	. 39	. 44	. 42
	1.8.	. 46	. 46	. 42	. 46	. 44	. 42	. 42
(Bayes	. 41	. 33	. 41	. 43	. 51	. 41	. 50
	I..S.	. 41	. 3.4	. 44	. 43	. 53	. 46	. 51
1	Bayes	. 41	. 42	. 51	. 42	. 47	. 47	. 50
	1..S.	. 35	. 40	. 43	. 38	. 46	. 46	. 47
1	Rayes	. 39	. 42	. 52	. 40	.. 58	. 55	. 58
	1..S.	. 39	. 44	. 54	. 43	. 54	. 57	. 54
1	Bayes	. 44	. 45	. 48	. 48	. 55	. 48	. 55
	I. . S.	. 4 ?	. 44	. 48	. 44	. 55	. 48	. 54
K	Paver	.	. 30	. 34	. 34	. 46	. 28	. 31
	I. . S.	. 39	. 35	. 38	. 26	. 38	. 34	. 36
1.	Rives	$\therefore 1$. 19	. 47	. 44	. 48	. 48	. 50
	i. . S.	. 6 ?	. 41	. 47	. 42	. 50	. 48	. 48

[^8]
Tahle 15

Values of Zol ${ }^{\text {a }}$ in the Cross Sample: Combined Males and Femaies

School	System Type Predictor Combination						
		$\stackrel{V}{\square}$	$!$	11	V, M	$\mathrm{V}_{2} \mathrm{H}$	M, H	$V, \mathrm{M}, \mathrm{H}$
λ	Bayes	.39	. 39	. 50	. 39	. 52	. 50	. 52
	l.s.s)	. 40	. 37	. 51	. 40	. 52	. 49	. 52
B	Bayes	.41)	. 41	. 38	. 42	. 41	. 41	. 41
	L.S.	. 42	. 41	. 37	. 41	. 38	. 38	. 39
r:	Bayes	. 42	. 37	. 36	. 42	. 39	. 33	. 40
	L.S.	. 39	. 32	. 35	. 42	. 41	. 36	. 39
I)	Bayes	. 32	. 33	. 39	. 35	. 36	. 38	. 38
	L.S.	. 35	. 32	. 39	. 33	. 38	. 39	. 39
E	Bayes	. 45	. 41	. 48	. 43	. 51	. 46	. 50
	I..S.	. 43	. 38	$.46{ }^{\circ}$.43	. 49	. 46	. 49
F	Bayes	. 35	. 32	. 32	. 35	. 32	. 32	. 32
	L.S.	. 41	. 31	. 30	. 42	. 34	. 31	. 34
(;	Bayes	. 38	. 32	. 40	. 37	. 41	. 40	. 39
	L. S.	. 31	. 32	. 41	. 33	. 40	. 41	. 40
H	Sayes	. 42	. 35	. 48	. 40	. 51	. 50	. 52
	L.S.	. 38	. 35	. 48	. 39	. 50	. 50	. 50
I.	Bayes	. 41	. 40	. 48	. 42	. 50	. 48	. 49
	I. S.	. 40	. 39	. 48	. 42	. 49	. 49	. 50
J	Bayes	. 48	. 43	. 46	. 48	. 41	. 44	. 47
	L.S.	. 41	. 41	. 42	. 43	. 40	. 40	. 41
K	Bayes	. 32	. 35	. 41.	. 34	. 46	. 41	. 46
	L.S.	. 34	. 35	. 41	. 39	. 43	. 42	. 42
L	Bayes	. 39	. 38	. 44	. 39	. 42	. 42	. 46
	L.S.	.40	. 37	. 43	. 39	. 45	. 42	. 44

[^9]Table 16

Values of AEA in the (iruss Sample: Fomales

School	System Type	V	M	$1!$	V, M	$\underline{\mathrm{V}, \mathrm{H}}$	M, H	$\underline{V}, \mathrm{M}, \mathrm{H}$
A	Bayes	. 44	. 44	. 35	. 42	. 35	. 35	. 34
	1.S. ${ }^{\text {b }}$, 44	. 44	. 35	. 43	. 34	. 35	. 34
is	Bayes	. 39	. 42	. 40	. 40	. 41	. 40	. 40
	L.S.	. 40	. 43	. 43	. 40	. 40	. 41	. 40
(Bayes	. 42	. 43	. 46	\bigcirc	. 42	. 48	. 42
	I..S.	. 47	. 46	. 48	. 45	$\therefore 5$. 46	. 44
1)	Baves	. 42	. 47	. 37	. 42	. 40	. 38	. 37
	L.S.	. 40	. 41	. 36	. 40	. 36	. 36	. 36
I:	Bayes	. 46	. 48	. 43	. 45	. 41	. 42	. 41
	L.S.	. 46	. 48	.44	. 45	. 42	. 43	. 42
1	Bayes	. 50	. 49	. 48	. 48	. 46	. 46	. 46
	I.S.	. 46	. 46	. 46	. 44	. 44	. 45	. 44
(;	Bayes	. 40	. 45	.37	. 39	. 33	. 35	.33
	L.S.	. 40	. 44	. 37	. 38	. 32	. 35	. 32
11	Bayes	. 51	. 51	. 42	. 49	. 45	. 44	. 42
	l..S.	.56	. 52	. 49	. 53	. 47	. 47	. 47
I	Bayes	. 53	. 53	. 42	. 51	. 37	. 39	. 37
	L.S.	. 50	. 53	. 42	. 49	. 41	. 41	. 40
J	Bayes	. 55	. 56	. 48	. 53	.45	. 48	. 45
	1..S.	. 57	. 60	. 49	. 56	. 45	. 48	. 45
k	Baytes	. 41	. 42	. 40	.39	. 38	. 62	. 49
	L. . S .	. 42	. 59	. 40	. 54	. 41	. 51	. 45
1.	Baycs	. 419	. 42	. 33	. 38	. 32	. 33	. 31
	I..S.	. 39	. + ()	. 34	. 38	. 33	. 33	. 33

[^10]Table 17

Values of AE in the Cross Sample: Vales

School		Predictor Combination						
	System Type	V	\therefore	\underline{H}	V, M	V, H	M, 11	V, M, H
A	Bayes	. 49	. 46	.42	. 45	. 47	. 41	. 40
	L.S. ${ }^{\text {b }}$. 58	. 49	. 46	. 48	. 45	. 44	. 45
B	Bayes	. 59	.62	. 60	. 60	. 57	. 62	. 59
	L. S.	. 60	. 65	. 63	. 63	. 62	. 63	. 62
C	Bayes	. 50	. 54	. 5.1	. 50	. 47	. 51	. 48
	L.S.	. 55	. 55	. 51	. 53	. 48	. 51	. 49
1)	Bayes	. 44	. 48	. 38	. 46	.41	. 39	. 40
	L. S.	. 42	. 40	. 37	. 42	. 38	. 38	$.38$
E	Bayes	. 50	. 48	. 47	. 49	. 46	. 45	. 45
	L. S.	. 51	. 19	. 48	. 49	. 47	. 46	. 46
F	Bayes	. 63	. 64	. 63	. 63	. 63	. 62	. 63
	L. S.	. 53	.64	. 64	. 64	. 62	. 62	. 62
G	Bayes	. 45	. 4 ?	. 41	. 46	. 44	. 42	. 40
	L. S.	. 50	. 48	. 47	. 49	. 48	. 46	. 47
H				WOMEN	ONLY			
I	Bayes	. 64	. 64	. 59	. 64	. 57	. 61	. 58 '
	L.S.	. 66	. 67	. 60	. 67	. 59	. 60	. 59
J	Bayes	$.48$	$.51$	$.52$. 51	. 53	. 54	. 53
	I. .S.	. 50	. 54	. 53	. 52	. 53	. 53	. 54
K				WOMEN	ONL.Y			
L	Bayes	. 42	. 46	. 39	. 43	. 40	. 42	. 40
	L.S.	. 42	. 45	. 44	. 43	. 43	. 47	. 44

[^11]
Table 18

Yables ni Nat in the Cross Sample: Combined Males and females

		Predictor Combination						
School	System Type	V	M	H	$V_{2} \mathrm{M}$	$\mathrm{V}_{2} \mathrm{H}$	M, H	V, M, H
A	$\begin{aligned} & \text { Bayes } \\ & \text { h.s. } \end{aligned}$	$\begin{aligned} & .44 \\ & .45 \end{aligned}$	$\begin{aligned} & .46 \\ & .50 \end{aligned}$	$\begin{aligned} & .37 \\ & .38 \end{aligned}$	$\begin{aligned} & .44 \\ & .45 \end{aligned}$	$\begin{aligned} & .35 \\ & .38 \end{aligned}$	$\begin{aligned} & .38 \\ & .37 \end{aligned}$	$\begin{aligned} & .36 \\ & .35 \end{aligned}$
B	$\begin{aligned} & \text { Bayes } \\ & \text { I.SS. } \end{aligned}$	$\begin{aligned} & .44 \\ & .45 \end{aligned}$	$\begin{aligned} & .47 \\ & .48 \end{aligned}$	$\begin{aligned} & .46 \\ & .45 \end{aligned}$	$\begin{aligned} & .44 \\ & .45 \end{aligned}$	$\begin{aligned} & .43 \\ & .44 \end{aligned}$	$\begin{aligned} & .45 \\ & .45 \end{aligned}$	$\begin{aligned} & .44 \\ & .44 \end{aligned}$
0	$\begin{aligned} & \text { Baves } \\ & \text { L.S. } \end{aligned}$	$\begin{aligned} & .45 \\ & .48 \end{aligned}$	$\begin{aligned} & .50 \\ & .57 \end{aligned}$	$\begin{aligned} & .48 \\ & .48 \end{aligned}$	$\begin{aligned} & .45 \\ & .47 \end{aligned}$	$\begin{aligned} & .45 \\ & .45 \end{aligned}$	$\begin{array}{r} .49 \\ .43 \end{array}$	$\begin{aligned} & .45 \\ & .45 \end{aligned}$
1)	Baves I. .S.	$\begin{aligned} & .43 \\ & .43 \end{aligned}$	$\begin{aligned} & .43 \\ & .42 \end{aligned}$	$\begin{aligned} & .37 \\ & .36 \end{aligned}$	$\begin{aligned} & .43 \\ & .44 \end{aligned}$	$\begin{aligned} & .39 \\ & .38 \end{aligned}$	$\begin{aligned} & .37 \\ & .36 \end{aligned}$	$\begin{aligned} & .37 \\ & .38 \end{aligned}$
E:	Bayes $1 . \mathrm{S} .$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .52 \\ & .53 \end{aligned}$	$\begin{aligned} & .44 \\ & .46 \end{aligned}$	$\begin{aligned} & .49 \\ & .49 \end{aligned}$	$\begin{aligned} & .43 \\ & .44 \end{aligned}$	$\begin{aligned} & .45 \\ & .46 \end{aligned}$	$\begin{aligned} & .42 \\ & .44 \end{aligned}$
!	$\begin{aligned} & \text { Bayeds } \\ & \text { L.S.S. } \end{aligned}$	$\begin{aligned} & .66 \\ & .63 \end{aligned}$	$\begin{aligned} & .64 \\ & .65 \end{aligned}$	$\begin{aligned} & .64 \\ & .69 \end{aligned}$	$\begin{aligned} & .66 \\ & .63 \end{aligned}$. 65	$\begin{aligned} & .67 \\ & .68 \end{aligned}$. 65
(;	Bayes L.S.	.47 .52	.52 .54	$\begin{aligned} & .43 \\ & .43 \end{aligned}$	$\begin{aligned} & .47 \\ & .52 \end{aligned}$.42 .44	$\begin{aligned} & .42 \\ & .43 \end{aligned}$	$\begin{aligned} & .41 \\ & .44 \end{aligned}$
H	$\begin{aligned} & \text { Bayes } \\ & \text { I..S. } \end{aligned}$	$\begin{aligned} & .52 \\ & .54 \end{aligned}$	$\begin{aligned} & .54 \\ & .56 \end{aligned}$.44 .45	.51, . .53,	.43 .44	$\begin{aligned} & .43 \\ & .45 \end{aligned}$.43 .44
I	Baves, l. S\%	.59 .59	.61 .60	.51 .57	.58 .58	.48 .49	.49 .50	.48 .48
	$\begin{aligned} & \text { Saves } \\ & 1.5 . \end{aligned}$	$\begin{aligned} & .53 \\ & .57 \end{aligned}$	$\begin{aligned} & .58 \\ & .62 \end{aligned}$	$\begin{aligned} & .53 \\ & .57 \end{aligned}$	$\begin{aligned} & .53 \\ & .56 \end{aligned}$	$\begin{aligned} & .37 \\ & .56 \end{aligned}$	$\begin{aligned} & .56 \\ & .57 \end{aligned}$	$\begin{aligned} & .52 \\ & .56 \end{aligned}$
K	$\begin{aligned} & \text { myes } \\ & \text { L. S. } \end{aligned}$	$\begin{aligned} & .4(1) \\ & .39 \end{aligned}$	$\begin{aligned} & .42 \\ & .19 \end{aligned}$	$\begin{aligned} & .38 \\ & .38 \end{aligned}$	$\begin{aligned} & .39 \\ & .39 \end{aligned}$	$\begin{aligned} & .36 \\ & .40 \end{aligned}$	$\begin{aligned} & .38 \\ & .38 \end{aligned}$	$\begin{aligned} & .38 \\ & .41 \end{aligned}$
1.	$\begin{aligned} & \text { Baves } \\ & \text { I.. } \because . \end{aligned}$	$\begin{aligned} & .42 \\ & .43 \end{aligned}$	$\begin{aligned} & .45 \\ & .46 \end{aligned}$	$\begin{aligned} & .38 \\ & .39 \end{aligned}$	$\begin{aligned} & .42 \\ & .43 \end{aligned}$	$\begin{aligned} & .40 \\ & .38 \end{aligned}$	$\begin{aligned} & .39 \\ & .39 \end{aligned}$	$\begin{aligned} & .37 \\ & .38 \end{aligned}$

[^12]\qquad

 Scomol paraters on lines marked are baves addive contants.

!
"

1.0
$:$
\[

$$
\begin{aligned}
& r^{1} \\
& y^{4} \\
& u^{4} \\
& n^{r} \\
& B^{\prime}
\end{aligned}
$$
\]

VII

nit

[^13]ERIC parameters man marked a are least squares multiplicative constants.

es where V, M, or appear give the multiplicative Bayesian coefficient for the parameter v, if, or $l l$.
oIl parameters on lines marked a are Bayes allative constants.
aol parameters on lines marked A are least squares multiplicative constants.
oo parameters on tines marked B art least squares additive constants.

Table 2：

Cross Sample Validities Obtained Using Various Regression Weights

Sehool	Predictor Set ${ }^{\text {a }}$	Least Squares	Bayes	$\begin{gathered} \text { Average }^{\mathrm{b}} \\ \text { Bayes } \end{gathered}$	Absolute Value of Bayes
Mal号		15	13	$\overline{13}$	！\square^{1}
School F	（V，H1）	． 50	.48	． 49	． 48
Sciowol ${ }^{\text {S }}$	（ $\mathrm{V}, \mathrm{H})$	． 60	． 50	． 59	． 60
School B	(\because, H)	． 33	． 27	． 33	． 34
School 1	（ M, H ）	． 55	． 46	． 55	． 55
School B	（V，Y，H）	． 38	． 40	． 33	． 41
School i	（V，M，H）	.56	.56	． 56	． 56

Females

SiChoml	（\％，H）	． 43	． 30	． 43	． 43
Sithoul（	（ソ，11）	． 51	． 40	． 52	． 45
School 10	（9，11）	． 4.3	． 45	－ 43	． 44
Schoul ！	（ $4, ~ 11)$	． 49	． 50	． 48	． 47
School R	（V，\because, H ）	． 58	． 55	． 58	． 56
School（	（V，Y，H）	． 60	． 59	． 60	． 61
Schoul 1）	（ $1, ~ \because, H$ ）	． 43	． 43	． 44	46
S－成以1	11）	． 50	47	50	

Combined

School	（ 1.11 ）	． 69	． 63	． 69	． 64
School 1.	（ $\mathrm{V}, \mathrm{H}, 1$ ）	． 65	． 57	． 65	． 65
School（：	（M，H）	． 47	． 42	． 47	． 47
School F ：	（4，11）	． 62	． 59	． 62	． 62
Schowl I	（ 9,11 ）	． 62	． 55	． 62	． 62
School I	（ $4,1 \mathrm{l})$	． 64	． 60	． 64	． 64
School A	（V，Y，11）	． 71	． 70	． 70	． 70
School 3	（ $1,4, H$ ）	． 50	． 50	． 50	50
School（	（1，\because, H ）	． 54	． 53	． 54	． 54
＊ichool F	（ $\because, ~ \ddots, ~ H 1)$	． 64	． 63	． 64	． 64
Sthool ${ }^{\text {S }}$	（i，M，H）	． 68	． 69	． 69	． 69
School J	（1，Y，H）	． 6 f	． 65	． 66	． 66
Situral I ．	（ $\because, ~ Y, H)$	． 65	． 65	． 65	． 65

[^14]Summary Stuistics for Graduate Student Data

No. Cases	34	30	60	17	35	28	32	11	69	58	92	28

Yeans
$\begin{array}{lllllllllllll}\text { GRE-V } & 579 & 605 & 576 & 608 & 600 & 617 & 603 & 639 & 589 & 611 & 586 & 620\end{array}$
$\begin{array}{lllllllllllll}\text { GRE-Q } & 581 & 588 & 560 & 577 & 582 & 591 & 574 & 572 & 582 & 590 & 565 & 575\end{array}$
$\begin{array}{lllllllllllll}\text { CRE-Psych. } & 581 & 595 & 601 & 584 & 596 & 614 & 642 & 655 & 588 & 604 & 615 & 612\end{array}$ $\begin{array}{lllllllllllll}\mathrm{v}^{\mathrm{a}} & 3.22 & 3.05 & 3.06 & 3.06 & 3.19 & 2.44 & 3.08 & 3.13 & 3.21 & 3.00 & 3.06 & 3.09 \\ \mathrm{c}^{\mathrm{b}} & 3.73 & 3.60 & 3.59 & 3.59 & 3.81 & 3.61 & 3.73 & 3.72 & 3.77 & 3.60 & 3.64 & 3.64\end{array}$

Standard

Deviations

Correlations

6,
${ }^{\text {a }}$ Undergraduate average.
$0^{\text {b }}$ Graduate grade point average.

able $-\cdots$

einstein Vanity Coefficients for GRE Data in the Back Sample

Table 15

System Validity Coefficients for CEEB VSS Data in the Back Sample

- least Squares

Predictors	II	F	C	M	F	C
V	.35	. 50	. 39	. 27	.46	.35
M	. 37	. 43	. 31	.30	. 39	. 23
H	. 58	. 63	. 56	. 55	. 60	. 54
Y!	.39	. 53	. +0	. 39	. 48	. 38
VH	. 59	.67	. 59	. 59	. 59	. 60
MH	. 58	. 64	. 57	. 59	. 67	. 59
V.PH	. 59	. 67	. 59	. 58	. 70	. 58

LPPENDIK A

In the present study, one hopes to produce numerical weights which can be
 point averages that would be achieved in graduate schoni. However, it is known ahead of time that there will not be enough cases to do a separate, stand-alone study at each school; pooling of data will be necessary, and this pooling will entail the use of some convention to relate the wejghts used for different schools. ln this Arpendix, the weights used at the different schools will be promrtional, let, that the ratio of weights will be preserved. In addition to the proportional adjustment of weights at each school, a shift of means will also be incorporated. The hope of this appendix as well as of dppendix B is that, rxept for differences in difficulty and reliability, the grades measure the same thinge

For estimation purposio: $i t$ is assumed chat data are available for samples of students trum eathoi a number of institutions. The weights to be used would be chosen so as to minimize the sums of squares of errors of estimation of the observid! grade point averages; by the weiphted sums of prediccors scores. That sum of sumares is written as follows:
whers
$i \quad i!s$ a subceript indicating; the school;
j is a sibbseript indicating student within school;
! is a iubscript indicating the predictor variable;
${ }^{w} \quad i s$ an arbitrary weight which was taken as unity in the
presime stadv;

Bi allows for a shift of means;
${ }^{b}$ ig is the weight used for the g,h variable at the ith school;
$X_{i j g}$ is the score achieved on the gtli predictor by the jth person at the ith school.

It i.s a well-known result in least squares analysis that the value of B_{i} " that minimizes is the mean of the rest of the values in the parerchrses of (1). That is,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{i}}=\ddot{\because} \quad \ddot{E}_{\mathrm{E}}^{\mathrm{Z}} \mathrm{~b}_{\mathrm{g}} \mathrm{X}_{\mathrm{i} \cdot g} \tag{2}
\end{equation*}
$$

where the bar-dot notation is the familiar one indicating the averaging process. If the right hand side of (2) is substituted into (1), the effect is to replace the observed predictor and criterion scores by their deviations from school means. Then (1) can be rewritten

$$
\begin{align*}
\phi= & \underset{i j}{ } w_{i}\left(y_{i j}-\sum_{g} b_{i g} x_{i j g}\right)^{2}+2 \sum_{i g} \lambda_{i g}\left(b_{i g}-a_{i g} \beta_{g}\right) \\
& +\theta\left(P-\sum_{g g^{\prime}} \beta_{g} \beta_{g}, r_{g g},\right) \tag{3}
\end{align*}
$$

including all of the desired constraints. The quantities λ are Larrange multipliers included to incorporate the constraints that the weights will be proportional. Note that the constraint includes a product of the value a_{1} which is the constant of proportionality, for school i, and the weight. B_{g} for the predictor variable. Then the a's could all be multiplied by some number and the B^{\prime} 's divided by the same number and equation (3) would
remain essentially unaffected. The choice of the sorale of the a's and fis is immaterial, but for'americal murposes one mast be chosen. This choice is made according to the relationship in parenthesos multiplied by θ in equation (3). 6 is also a Lagrange multiplier used to enforce the constraint. P i.s positive, and the r 's form a matrix of full rank.

To obtain (4); (5); (6), (7), and (8), rearrange the result of differentiating (i) with respect to $b_{i g}, a_{i}, \beta_{g}, \lambda_{i g}$, and θ respectively.

$$
\begin{equation*}
i_{y_{r}}{ }_{i}+\ldots g_{H^{\prime}}^{\prime}{ }_{g g^{\prime}}=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
b_{i P_{p}}=a_{i} \quad \therefore \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\because g_{g}{ }_{g} \ddot{g}^{\prime} \quad r_{g g^{\prime}}=P \tag{8}
\end{equation*}
$$

Yultiplying (6) by g, summing over g, and using (5) and (8) it can be seen that ." equals zero. Then multiplying (4) by ${ }^{\prime} g^{\prime}$, summing ovor s', amd using (5) and (7) yields

Sultiplying (A) by, a, summing over i , ising (6) and (7), and
romemberimpthat equalsaura, obtain

$$
\begin{align*}
& \therefore U_{g} \quad{ }_{\mathrm{g}}=0 . \tag{5}
\end{align*}
$$

Equations (8), (9), and (10) provide the iterations by which a solution is found. In the program which was used in the prosont study $r_{g g}$ was taken as unity if $g=g^{\prime}$, zero otherwise, and P was taken as unity. A starting point for the iterations is to set all the 's equal to unity divided by tiae square root of the number of predictors. Then (9) can be used to find the $a^{\prime} s$, the resultime a's can be used in (10) to get $e^{\prime} s$ which can be normed to satisf $\because(8)$ and the results substituted in (9) and $s 0$ on. When the ${ }^{\prime}$'s and a's cease to change from iteration to iteration, equations (7) and (2) mav be used to recover the b 's and $P^{\prime} s$. Une can develop an analog to the multiple correlation coefficient in that D is a sum of squares of residuals that can be subjected to a percentage comparison with the sum of squares around institutional means. \therefore systom coelficiont that has the desired property is

$$
\begin{equation*}
R=\sqrt{l-\left(: / \because_{i j} w_{i} y_{i j}^{2}\right)} \tag{11}
\end{equation*}
$$

The denominator of the quantity in parentheses in (11) is the sum of squares of residtals after fit ing the institutional means; the numerator of that quantity is the sum of squares of residuals after fitting the institutional means and the predictors. Unity minus that fraction can be interpreted as the percent of variance attributable to the predictors, and the square rooting completes the analogy to the multiple correlation cofficient.

On occasion, in some sets of data where a school is represented by very few cases, one will ocrasionally find a multiplicative constant, a , ion be nesative while the others arf positive. This may be dute to
 differemere between that school and ithe others in the amalysjs. Most
likely, if the criterion scale is not reversed reialive to the others, the reversal in simn is not to be believed, in the opinion of the autbor. If a prediction on the frade point soaje is to be recommended for that school, one should use the same sign displayed by the rest of the schools as a sign for the multiplicative constant for the school whose sign differs, then usine (2) to adjust B for that school. However, with so little data an attempt to put the predictions on the scale for the particular sciool would probablv avait the accumulation of more data, using only the relative weiphts, the $B^{\prime} s$, to get predictions which are in good order but not on the grade point scala.

APPENDIX B

As in the method of Appendix A, the present method accomplishes a pooling across institutions and does so by linear adjustments which differ at each institution. However, the adjustment is applied to the criterion score rather than to the prediction. It is assumed that the samples available are the same as those in Appendix A, and that the symbols $i, j, g, Y_{i j}, w_{i}$, and $X_{i j g}$ all have the same interpretation. The sum of squares to be minimized, however, is

$$
\begin{equation*}
\psi=Y_{i, j} w_{i}\left(A_{i} Y_{i j}-M_{i}-\vec{S}_{g} h_{g} X_{i, j g}\right)^{2} \tag{1}
\end{equation*}
$$

where the M 's allow for adjustment of the means, and the A 's adjust the criterion scores. The symbol h_{g} stands for the regression weights and only requires a single subscript since the step of partitioning the weight into regression coefficients and constants of proportionality is already, in a sense, accomplished. As in the method of Appendix A, the value of M_{i} is equal to the mean of the rest of the values in the parentheses of (1). That is,

$$
\begin{equation*}
M_{i}=A_{i} \bar{Y}_{i}-\ddot{i}_{g} h_{g} \bar{X}_{i \cdot g} \tag{2}
\end{equation*}
$$

If the right-hand side of (2) is substituted into (1), the effect is to replace the observed predictor and criterion scores by their deviations from school means. Then (2) can be rewritten

$$
\begin{equation*}
y=\ddot{i j}_{i}^{w_{i}}\left(A_{i} y_{i j}-\sum h_{g} x_{i j g} j^{2}+2 \gamma\left(Q-\sum_{i} w_{i} A_{i} \sum_{j} y_{i j}^{2}\right)\right. \tag{3}
\end{equation*}
$$

where \because is a Lagrange multiplier which imposes a scale constraint on the criterion scale. The constraint is needed because, as examination of the squared quantity in (3) shows, a trivial minimum of ψ can be

* obtained by defining all parameters equal to zero. The Lagrange constraint ensures that such a solution will not be obtained.

After differentiating the following, normal equations may be obtained:

$$
\begin{align*}
& A_{i} \quad i_{y y}^{C}-{ }_{i}^{C}{ }_{x y} H-\gamma \quad i_{y y}^{C}=0 \text {, } \tag{4}\\
& \begin{array}{ll}
\Gamma & w_{i} A_{i}{ }_{i} C_{x y}-\sum_{i} w_{i} i_{i x x}^{C} H=0
\end{array} \quad, \tag{5}\\
& \mathrm{Q}-\underset{\mathrm{i}}{\ddot{\mathrm{w}}{ }_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}{ }_{\mathrm{i}} \mathrm{C}_{\mathrm{yy}}=0}=0 \text {. } \tag{6}
\end{align*}
$$

The subscript C's are defined as follows:

$$
\begin{aligned}
& \left.i^{C}{ }_{x x}=\| \begin{array}{l}
\because x_{i j g} \\
x_{i j g}
\end{array} \right\rvert\, \quad \text {, } \\
& i^{C}{ }_{x y}=\left|\begin{array}{c}
\because x_{i j g} y_{i j} \\
\quad j
\end{array}\right| \quad, \\
& i_{V Y}^{C}=\quad \because y_{i}^{2}
\end{aligned}
$$

Multiplying equation (4) by w_{i} summing over i, and using equation (6) ylelds

$$
\begin{equation*}
,=\left(0-{ }_{i} w_{i} i^{(}{ }_{x y} H\right)\left(\because w_{i} \quad\left(i_{v y}\right)^{-1},\right. \tag{7}
\end{equation*}
$$

which may be substituted into (4) and the result solved for A_{i} to obtain

The expressions for A_{i} from (8) may be substicuted into (5) to obtain

$$
\begin{align*}
& \left.\left(\Gamma w_{i} i^{C}\right)^{\prime}\right) \cdot H=\frac{Q}{\sum w_{i} i^{C} y y} \sum_{i} w_{i} i^{C}{ }_{x y} . \tag{9}
\end{align*}
$$

The equations (9) can then be solved for H.
The advantage of this method comes when variables are to be added as in a test selection scheme. The matrix to the left of (9) musi be inverted in finding the vector H, but one could choose a method which could be worked a line at a time, such as the square rort method. As Variables are added successively to a problem, the repeated development of the matrix th be inverted is unnecessary, whereas the method in Appendix A requires storage of all the covariance matrices for each institution. Also, it can be shown merely by substituting in (3) for the A 's and h 's that $\psi=\gamma Q$, and since ψ is a sum of squares of residuals, $\sqrt{1-\gamma}$ is the analog to a multiple correlation coefficient. Reference to (7) shows that the computation of γ does not require acs to the covariance matrices by institution. Furthermore, the formula for the covariance, $C_{z \varepsilon}$, of an outside variable $?$, with the residuals ε, after predicting y with the variables x is:

If all possible predictor variables x included the variables x and z in (l0), the distinction being that x had been used in previous calculations as predictors and z had not, then the quantities reeded to compute $C_{z \varepsilon}$ would appear in matrices needed for (9) if all possible predictors were included. One needs also to keep a column whose entries are $\sum_{i} w_{i} i_{X y}{ }_{x}$.
 and choose as the next predictor to be selected the one that yields the largest value of K. More complex variables selection schenies could be formulated but this one seems simple and is analogous to the familiar Wherry-Doolittle.

To: Lr. if. F. Bolide
Senior lieztarin Poychologist
liduvational "eating service
Princeton, New Jersey 02534
GRE VALIDITY STITY GUEGTIOMAJd:

Institution:
Department:
Name and Title of Person to Be Contacted:
Name and Title of !epson Completing This Form:
I. Approximately how many applicants have you had, on the average per year, for the past three years?
II. h. Do you routinely compute a graduate grade point average? Yes No
B. If answer to A is No, would you be willing to make copies of transcripts available tu Git 5 Board for such computations? Yes No
C. Please indicate the number of quality points used in your grading system!. For example, a four point system without ['s and E's and in which withdrawls (iv's) are simply rot counted might look as follows:
 Please enter below the facts describing your system:

A \qquad 2 \qquad
\qquad D \qquad E \qquad F \qquad Other \qquad Otricr \qquad
I! H. Hon many cogrees we granted by your department last year?

TYPE CH REGEX
Incs.
ह. i. or : A.
"thar \qquad

NUMBER GRAVITy:
\qquad
\qquad
\qquad


```
hres twf.. ichaloscu excegt ine comsmcement.
```


IV. A. Are records for students who applied tor admission during the period 1965-00 and 1906-67 available now (including those rejected)? Yes No
B. If answer to A is No, what is the earliest date for which complete records including rejectees would be available? \qquad
V. For nurposes of the study, certain information will be needed for each student who was granted a degree or who successfully completed a final oral examination during the period September l, 1968 through August 31,1969 and for those who applied for admission in $1965-66$ and 1960-67 (or during the two years following. the date given in question IV B, or until the present). The first gronp will be called "eraditates" and the second group will be called "applicants." The final form ir wnich data will be sought on graduates and applicants will be highly depenitnt on the responses given by the institutions contacted. It is therefor: wred that you ndicate below whetiner you can supply each type of information regutcted. Flease do not hesitate io include extended conments on

I
i. Cucen! mame \qquad
\qquad
\because. mar Vale Vemale
i. Gid V score \qquad Wone recoived \square
i. MEAC Score \qquad None received \square
F. Area of advanced test (if' other than economics)
C. Idvancod area test score \qquad None received \square
H. Indergraduate grade point average on a 4 point scale (GPA), or rank in class (and number in class), or percentile rank in class

\square

h. Term to which the adnission decision applied \qquad
L. Nature of the first admissjuns decision Accepi heject
M. Date of first enrollment as a graduate student at your institation \qquad
N. Date of last enrollment \qquad
I Date of award (or expected award) of degree \qquad
\therefore Type o! degree awarded (to be awarded)
2. If ine agree is other thari a Ph.D., is graduate work toward a ductrate suggesteo? (In plainer words, is he generaily considered Ph.D. material!) Yes No

1. Undergraduate Institution \qquad
: Date of first application of candidate for graduate work at yo:- institution \qquad

Frillem Rowided by ERC

Institution:
Department:

ITEM NMMER COMMENT

Graduate Fiecond Examinations Boand

The members of the Graduate Record Examinations Board, which formulates policies guiding the Graduate Record Fxaminations (GRE), have been aware that research information supporting the use and interpretaiion of dita on which admissions decisions are based is indsed sparse. Suitable criteria for evaluating the cutcomes of graduate education need to be developed, and the relations between these criteria and information available for admissions decisions must be discovered. The Board is committrd to mount systematic criterion develoment and admissions research efforts.

To these ends, some steps have recently deen taken., he Board and the National Science Foundation have jointly begun an empirical search of data from Ph.D.'s in science areas to learn about special population effects on the relation between GRE scores and ite time needed to compiete the doctorate. A study has been conducted relating the Test of English as a Foreign Language (TOEFL) and the GRE with foreign stident success in graduate school. The development of a biographical. inventory to control the effects of motivation is being explored. The nature of the flow of graduating seniors to graduate and professional schools is being broadly surveyed under the auspises of the GRE Board, among others. However, these and other research effor 5 are complicated by the scarcity of clearly relevant evaluations of graduate school performance, and the limited applicability of standard research and statistical techniques in the face of the very imited amount of data available.

This letter has two purposes. The first is to inform you of some of the research efforts of the Roard as desciribed above. The second is to request your support in developing prediction techniques which are particularly applicable to graduate schools. Special new statisitical technigues are needed in graduate admissions research as a consequence of the relatively small numbers of graduates produced at individual institutions (as compared with, say, recipients of baccalaureate degrees). These small numbers are further reduced at the departmentai level. The techniques, being new, must be proven out on real data. Enclosed are some forms that will assist in the transier of data from your institution to the Educational Testing Service who will conduct this project for the Board. Two studies
will bf: exteuted, one in departments of psychology and the other in departments of economics. It : our lope that these departments will supply necessary information and participate in this study.

We would appreciate your forwarding the enclosed materials to the chairmen of the departrents of economics and psychology at your institution. Please' be assurec that every attempt will be made to minimize any inconvenience for your institution and its departments and to maximize the return to you of heipful and interestim results. Ail data received will be held in the strictest confidence and no institutional or student identification will appear in any reports.

We hope that the criterion studies and the statistical techniques will be successful. The need for better research information in graduat ϵ dirissions and graduate performance evaluation is urgent.

(3HO/jc
Enclosures

 If the wantinat \because : at, empt wil bemade t, minme ary inconvenience for your institution and its depar"merte ami"a racimiat the return ib you of hetptral and interesting results.

Sincerely,

Stephen H. Spurr Chairman
(3ti: /.jn
Ein: osures
will be executed, one in department:, psychology and the other in department: of economics. It is our hope that these departments will supply necessary information and participate in this study.

We would appreciate your forwarding the enclosed materials to the chairman of the department of psychology at your institution. Please be assured that every attempt, will be made to minimize any inconvenience for your institution and its department:; and to maximize the return to you of helpful and interesting results. All. data received will be held in the strictest confidence and no institutional or student identification will appear in any reports.

We hope that the criterion studies and the statistical techniques will be successful. 'lh need for better research information in graduate admissions and Graduate performance evaluation is urgent.

Sincerely,

Stephen H. Spur Chairman
(i) $\mathrm{H}_{\mathrm{i}} \mathrm{j} / \mathrm{hw}$

Erolsourea


```
        !.....l (..)
        \because\because. .(1,0)
```

H11 +1! 1 1/1:1
-

"ht members ut the G-antite heoord Examinations Buard, which fomulates bibico guiding she Gridute kerori Exaninations (GFE), have been aware that resrarch infomatin sumorting the use and interpretation of data on which dimissions decisions art basou is indeed sparse. Suitable criteria ior evaluating the outcones of graduate education reed tobe developed, and the relations between these criterid and information available for admissions decisions must be discovered. The Board is ormmitied to mount systematic criterton developmeri num ammasions research ỡorts.

I: eamly Noventer ly? , we contacted the Graduate School ai your University Mr. \because 引rimpes that certain recoras might be made available tor research purposes. mathifig incluling the enclosed letter and questionraire acompan : the letter \therefore initial contict ano we hoped that iniormation describing your department might be entered on the questionnaire and returned to us. We s^{t} ill hope so and urge you * suphiv us with the infimmation onlirited on the enclased questionnaire, and to firtipite in the atudy by making certion of your reoords available to us.

The infomation on the questionnare will be valuable lo us even though it

 Frnib: \because our parincirat - n. Of course, the information from vour department will. he heli in strictest emidience. Yoxr department will not be identified in any wity in ing reprt of ini: study without your permission.

La my Leitur af November of I emphasized that the transfer of daw would be arranged so that.it is at a minimum of difficulty for fou. I fully intended ana atill int,and that, tio be the case.

k. F. Boldt Chairman, Measurement iystems Research Group

IRE/ir.
Ericlus: res


```
        |
        1,..، 1.../.,".'
        ".l mon!
||:/1/1.1/\いい,
```

Mriehobionenlai Research Maratun

Ltiry inir:

The members of the Graduate Record Examinations Board, which formulates pilaied guiaing the Gruchate Record Examinations, have for some time been aware thait research f indinets on the validity of our examinations are inadequate, being ipw and not represtntative. We would like to see that more studies are accomplished, out. in attempting, $t: 0$ so encounter criterion problems ard problems arising from the scarcity of suírble data. Her, \exists we are developing plans for criterion research ind also initiating methodological studies on techniques for pooling data for use in diferent receiving institutions. This letter requests your perticipation in a \#iidation study heing conducted by the Educational Testing Service for the Graduate record Fxaminations thard. The study will compare a variety of complex regression ayitems, both Baye.il:n ind least, squares, and will be condicted in departments of f conomice.
the mothods na:- will, hopefully, prove to tolerate situations where very few

> Si. rrely,

K. F. Bo d t

Chairman, Measurement system:
research Group
Wr:

8

Dear Sir:
The members of the Graduate Record Examinations Board, which formulates policies guiding the Graduate Record Examinations, have for some time beer aware that research findings on the validity of our examinations are inadequate, being lew and not e presentative. We would like to see that more studies are accomplished, but in attempting to do so encounter criterion problems and problems arising from the scarcity of suitable data. Hence we are developing plans for criterion research and also initiating methodological studies on techniques for pooling data for use in diffezsnt receiving institutions. This letter requests your participation in a crossvalidation study being conducted by the Educational Testing Service for the Graduate Record Examinations Board. The study will compare a variety of complex regression systems, both Bayesian and least squares, and will be conducted in departments of psychology.

The methods used will, hopefully, prove to tolerate situations where very few cases are available per school.

We would like to use data reflecting your experience an ai e enclosing a form on which you car indicate the type and availability of data y may have available. We do have an interest in using your data even if there $3, \cdots$, t many cases. Based on your responses we will propose a means of transferring - a from your files to sure with a minimum of complication for you.

The need fir better research information in graduate admissions is urgent and this stucty may help us provide it. We hope you will participate in this study.

Sincerely,

R. F. Bold

Chairman, Measurement Systerrs Research Group
$[4: 3 / j h$

Finciourre

[^0]:
 Reproductions supplied by EDRS arethe best that car te made from the oriqinal document.

[^1]: ${ }^{\text {a CoR }}$ is the corrolation of predicted scotes with observed seores.
 ${ }^{b}$ L. . S. stands for least squares.
 Chul ?licative parameter was negative.

[^2]: ${ }^{a} A R$ is the average difference between predicted and observed grades. ${ }^{b}$ L. S. stands for least squares.

 CMultiplicative parameter was negative.

[^3]: ${ }^{a} A R$ is the average difference between predicted and observed grades. b
 L.S. stands for least squares.
 ${ }^{c}$ Multiplicative parameter was negative. *

[^4]: ${ }^{\mathrm{a}} \mathrm{AR}$ is the average difference between predicted and observed grades.
 ${ }^{b}$ L.S. stands for least squares.
 ${ }^{C}$ Multiplicative parameter was negative.

[^5]: ${ }^{2} \mathrm{VR}$ is the variance of the residuals.
 ${ }^{\mathrm{b}}$ L.S. stands for least squares.
 ${ }^{c}$ Multiplicative paraneter was negative.

[^6]: ${ }^{a}$ VR is the variance of the residuals.
 bl.S. stands for lcast squares.
 ${ }^{C}$ Multiplicative parameter was necative.

[^7]: ${ }^{\text {anol }}$ is the average of a variable.
 ${ }^{\mathrm{b}}$ L.S. stands for least squares.

[^8]: ${ }^{a}$ Zon is the average of a variable.
 ${ }^{\mathrm{h}}$ L.S. stands for least squares.

[^9]: ${ }^{a}$ Zol is the average of a variable.
 ${ }^{b}$ L.S. stands for least squares.

[^10]: a $A E$ is the average of the absulate value of the difference between the prodicted grade amd nbserved ertate.
 ${ }^{\text {b }}$ L.S. stands fur least squares.

[^11]: ${ }^{a} A F$ is the average of the absolute value of the difference between thic predicted grade and observed grade.
 ${ }^{b}$ L.S. stands for least squares.

[^12]: predicted grate and wherved grade.
 $b_{\text {L. S. stands for least squares. }}$

[^13]: School parameters on ines mark ul a ar: Bayes adillive constants.

[^14]: ${ }^{a}$ innly those sets are used where negat ive weights were obtained in the Bayes solution．
 The Baves weights used were those obtained by averaging over schools．

 CThe absolute value of the Bayes weights were used．

