7 EDO 12397

Maryland Elementary Mathematics
Inservice Program

Contract No. OEC2-7-061737-0068
United States Office of Education

Final Report of Study-Demonstration Phase
March 1, 1967

MARYLAND ELEMENTARY MATHEMATICS INSERVICE PROGRAM REPORT Study-Demonstration Phase

Summer, 1966. The Maryland Elementary Mathematics Inservice Frogram (NEMIP) initiated the develepmental phase of its work during the summer of 1966. The work was conducted at the University of Maryland by a summer staff consisting of the Director, two Assaciate Directors, one Research Associate, two Graduate Assistants, and twe Research Assistants. The project team included two college professors in mathematics education, the state supervisor of mathematics in Maryland, two graduate students in mathematics education, and two elementary school teachers from the Frederick, Maryland, public school system. A list of the staff members is contained in Appendix A.

The unique commitment of MEMIP is to a conceptual structure whose axioms of organization are psychological -- the organizing unit for a set - instructional materials can be reliably observable human behavior. Efforts directed at the development and implemonteition if instructional materials in mathematics up to the time of the MEMIP effort have nou specified the desired behavioral outcomes of instruction. Make no mistake, objectives are often stated, but these descriptions are not behavioral descriptions. Furthermore, content has been the building block for curriculum. One need fnly ask how the decisions are made to include c "exclude topics to make the case for the dominant role of content. Content selected for "historical" reasons, or "logical" reasons, or "practical" reasons, or "updating" reasons have domirated the organization of instructional materials in mathematics.

The behavioral orientation of NEMIP focuses the instructional programs unequivocally upon learner outcomes. This is not to argue that a content organization will not also accomplish this fecusing upen the joarner, it is merely an acknouledgment that the poychological structuring makes such an orientation inevitable. Once the behavioral expectations are specified, success or failure rests entirely upon whether the learners are able to exhibit the desired behavior after instruction. Another benefit which is realized from the behavioral description of instructional outcrmes is the potential for organizing the desi" ad behaviors in sequences designed for the high probability acquisition by the learners.

It is one thing to postulate that behavioral description for inservice mathematics instruction can be constructed and quite another to actually demonstrate suck a product. Of the summer staff which began working in 1966, only twe members had ever actually constructed a behavioral objective. The staff was for the most part naive as to the mechanics of behavioral description, its benefits, and its proposed relationship to the development of the instructional materials -- at the same time their mathematical sophistication was more than adequate to the proposed level of mathematical development.

The first task of the project was to help each staff member acquire the behaviors related to being able to make a behavioral description and being able tio construct a behavioral hierarchy (sequence of dependent behaviors intended to optimize acquisition). The program for acquisition of these beiaviors was initiated by viewing and responding to a selfinstructional program on behavioral objectives. The program was presented
in the form of a synchronized filmstrip and tape recording. A concurrent reading assignment included Mager's ${ }^{l}$ programmed text on preparing behavioral nbjectives and Gagne's ${ }^{2}$ volume on learning. As a result of this audio-visual program and the supplementary readings, the staff membeis were now able to distinguish between the description of a behavioral objective and a non-behavioral objective. This first and simplest of the behaviors prerequisite to beginning the development phase was acquired by each staff member during one working session. So much for the simplest task.

The potential use of behavioral objectives was now raised with the staff. The expected, and obtained responses, were related to minimizing the likelihood of misinterpretation in the intent of an objective and providing an observer with a means of being able to identify the learners who have successfully acquired whatever the instruction intended the learners to acquire.

The behavior oî being abie to construct behavioral objectives -- the basic performance which each staff member needed to perform if the project was to succeed -- was the next behavior to be acquired by each of the MEMIP staff. The first recognition elicited in the acquisition of the construction behavior was to recall that performance in English is described by means of a particular part of speech -- verbs, of course. Hence, if behavioral objectives are to be descriptions of reliably observable human performance, then every objective must contain a verb. In fact, since it is performance or action which is being described, the verb must be an active verb. The identification of active (or action) verbs as the principal source of performance description followed quickly on the heels of the verb acknowledgment. At this point, the staff had begun to actively play the "behavioral game."

But how many action verbs are there in English? Certainly there are a finite number, since the set of action verbs is a proper subset of the set of English words which is itself a finite set. Although the number of action verbs is finite, it is still a rather large number. If the purpose of behaviorally stated objectives is t, reduce the amount of misinterpretation by describing specific behavior, then it would be useful to reduce the number of action verbs to a minimum collection and provide an operational definition of each verb. An added constraint on this reduction is that the consolidation must occur without reducing the variety of learner behavior it is possible to include as instructional purpose. This task was accomplished by confronting the staff with a series of structured instructional settings. Each of the instructional segments included: (l) providing a set of materials for each staff member,
(2) requesting each individual to exhibit some specific performance,
(3) requesting one or more additional performances using the same materials but different verbs, (4) asking the staff to identify and name the verbs which initiated each of the performances they made, (5) obtaining the acknowiedgment that the performances exnibited were similar,
(6) listing the action verbs which could serve as behavioral synonyms for one another, (7) operationally defining a behavioral class by selecting
${ }^{1}$ Robert F. Mager, Preparing Instructional Objectives, Palo Altos
Fearon Publishers, 1962.
2.

Fiobert M. Gagné, The Conditions of Learning, New York: Holt, Rinehart and \bar{W} inston, Inc., 1965.
one verb as the class name for all of the behavioral synonyms listed, and (8) repeating the sequence of (1) through (7) with a new collection of action verb synonyms.

The action verb classes of behavior developed with the staff were adapted from the collection described by Walbesser. ${ }^{3}$ An approximation of the procedures used to develop the behavioral action verbs is described as Sessions I and II of the Instructional Program for Teachers found in Appendix B. The operationa definitions currently being used by NEMIP are described on pages six through eight of Session II. All objectives of this project now contain one of the action verbs from this list.

The construction of behovioral hierarchies remained the only benavior yet to be acquired bur the working staff before the development stage could begin. One small hierarchy was constructed by each staff member who was first given six stated behavicual objニctives. mhe six itjectives were related to the description and identification of two dimensional projections of three dimensional objects. The intent of this activity was to illustrate of objectives.

Now the MEMIP staff was ready to begin the identification and descripfion of terminal tasks for the inservice instructional program. The question which confronted the MEMIP staff at this point was what terminal tasks would have the highest yield for inservice elementary teacher instruction. The first few discussions attempted to describe terminal tasks which would encompass much, if not all, of the mathematical competencies an elementary teacher should posseis.

The staff activity at this time was devoted to snall group (two or three individuals) or individual effort directed at the construction of a behavioral hierarchy, presentation to the entire group at one of the meetings, critical analysis of each hypothesized dependence, and termination in the rejection of the proposed hierarchy.

This strategy of exploration led to a number of specific excursions. These excursions are best characterized by saying they were attempts to construct behavioral hierarchies related to the performance of specific arithmetic operations. Although these efforts did not yield usable hierarchies, they did provide the staff with valuable experience in constructing behavioral descriptions and sequences of behavioral dependence. As is so often true in an experiment, these first attempts might be termed failures, since they did not yield behavioral hierarchies used in the program. These "failures", however, did pay handsome dividends. As a consequence of these initial probings, the first terminal tasks and the allied collection of subordinate behaviors were identified, constructed, and ordered.

The first terminal task accepted by the staff related to the presen- tation and explanation of algorithms. This is a reasonable choice when one considers the instructional time devoted to algorithms in the elementary grades.

3"Science Curriculum Evaluation: Observations on a Position," The Science Teacher, 33:34-39, February, 1966.

A first approximation of the algorithms nierarchy was presented tu the staff late in the summer of 1966. The analysis, discussion, and challenges that followed its first presentation put the hierarchy through a thorough examination which led to numerous revisions. The current working edition of the algorithms process hierarchy is presented as Appendix C .

The terminal task of the algorithms hierarchy is actually a triple of behaviors that the teacher will be able to exhibit after being exposed to the algorithms instructic al sequence. The three behaviors which constitute this terminal task represent the desired instructional output of the subordinate behavioral sequence. This triple includes (I) demonstrating the procedures of an algorithm as they would be carried out by a machine, (2) constructing a convincing explanation for each procedure of an al.gorithm which appeals to observations based upon physical situations, and (3) eonstructing an explanation for each procedure of an algorithm that appeals tu agreed upon rules of the "convinaitae game.i

The first of this triple of terminal task behaviors describes a familiar activity of elementary teachers -- the literal demonstration of the procedures of an algorithm with no explanation of how or why it works. Unfortunately some instruction in algorithms at the elementary school level never proceeds beyond this mechanical level. The second behavior describes the activity of explaining how an algorithm works by relating the explanation of each procedure t observations of physical situations. This i.s another familiar activity of the elementary teacher when teaching an algorithm. The third behavior, explaining the procedures of an algorithm by means of rules of the convincing game, represents those behaviors more characteristic of a contemporary mathematics curriculum with its appeal to the field properties and mathematical structure. This third behavior is the one whic'i the elementary teacher has most likely not acquired and yet, in many ways, it is the most critical to successful instruction in elementary mathematics today.

The subordinate behaviors in the algorithms hierarchy reflect this same triple of constructing and demonstrating behaviors, but are associated with a particular operation within a specified number system. The final task differs from the subordinate ones in that ary algorithm could be presented tw the teacher and he would be expected to be able to exhibit these specified behaviors withnut instruction.

Subordinate to the algorithms hierarchy behaviors are the convincing game rule behaviors. The behaviors associated with the identification and naming of the field properties are develcped in the context of game rules for two reasuns. First, games provide a vehicle for identifying the properties in a setting which promotes individual investigation and immediate application of the identified rules. Second, the departure from a formal mathematical presentation to a game presentation reduces the "mathematical anxiety" which often accompanies mathematical instruction for the elementary teacher. The development of the game rules are found as Sessions IV and V in Appendix B .

The initial development plan which was proposed and adopted by NEMIP was first to identify the terminal tasks for the instructional materials. The identification would then be followed by the construction of a behavioral hierarchy for each terminal task. Once a hierarchy was constructed the instructional sequence would be determined by beginning with the least complex behaviors in the hierarchy, designing instructional materials to help the learner acquire the specified behaviors, and repeating the process up through the sequence until the terminal task is reached. The instructional materials were to be selected by adoptifg existing materials from commercially published volumes and available experimental volumes. A collection of possible sources was: gathered as a library of resource volumes. A partial list of these volumes are Iisted as ippendix $\overline{\mathrm{D}}$.

The search of the resource volumes has not proven to be as useful as was anticipated. It soon became apparent ir the search for appropriate algorithms material that little or no instructional material is provided in the available volumes about elementary school mathematics which would aid the elementary teacher in acquiring either of the constructing behaviors. What is more, little variety was found in the material devoted to the demonstrating algorithm behavior for any of the operations specified as the setting for the subordinate behaviors in the algorithm hierarchy. What could be done to add the needed richness in the algorithms to be used for instruction? This problem was resolved by expanding the search of the literature to include historical sources (principally mathematical texts which are not contemporary or algorithms which have historical curiosity) and the periedical literature.

Fall Semester, 1966-j7. The field tryout phase of the pilot study was initiated during the fall semester of the 1966-67 school year. The first major decision to be made with respect to the field tryout phase concerned the scope of the investigation. Two strategies were considered. One called for the investigation of the validity of the entire algorithms hierarchy. The second strategy called for the investigation of select segments of the algorithms hierarchy. The purpose of the more limited investigation would be to evaluate the format of presentation and the design of the immediate assessment measures. The staff decided to adopt the second tactic since it possessed a variety of obvious advantages. Perhaps the most important one was that such an investigation would permit an adequate trial of the instructional and immediate assessment formats. Once this step was completed it would be possible to test the validity of the behavioral hierarchy without the confounding error of difficulties with the instructional format.

Segments of the algorithms process hierarchy were selected as the trial behaviors to be studied. The sections selected were the sessions on the game rules, the acquisition of the triple of behaviors related to the addition of whole numbers algorithms, and the acquisition of the triple of behaviors related to the addition of integers algorithms.

The instructional decision mas made that for each algorithm triple (the two constructing behariors and the demonstrating behavior) two different algniablims for the operation would be presented to the teachers and a third algorithm for the same operation would be used as an assessinent measure.

The next decision to be made was concerned with the format of the instructional material. The instructional materials could be presented in a variety of forms, each with some advantages. After discussion and examincicion of various alternatives by the staff, it was decided that the instructional materials would be written in a narrative and conversational form rather than the more formal textbook dialog. A second characteristic agreed upon was that the reader would be required to respond at various intervals. The responses would not be as frequent as a self-instructional program, but would rather focus upon the key decilsions to be made during instruction by the learner. The advantages of this form are two-fold: (1) the active rather than passive participation of the learner is promoted, and (2) the learner (the elementary teacher) will be able to reviout the area if surbucuion weeks or months later with the key decisions contained instructionally in the body of the text. These instructional materials could be used after a session had been taught to the elementary teacher, or the instructional mater:Lals could be used independently. Each of the sessions used in the pilot study. are included in Appendix B as second experimental editions. Four additional sessions are included in Appendix B as first experimental editions.

The critical involvement of behavioral description led to the decision that the first three sessions for teachers be devoted to the description and construction of behavioral statements, the operational definitions of the action verbs used by the project, and the construction of behavioral hierarchies. The rules of the convincing game are developed in the next two sessions with the use of two games. The remainder of the sessions for the tryout consist of the algorithms for adding whole numbers and adding integers. For each of these operations on sets of numbers two different algorithms are demonstrated along with the constructing of convincing explanations based upon physical situations and the rules of the conrincing game. A third algorithm is then used for assessment of each operation.

An assessment of behavioral acquisition is provided after each instructional segment. These measures of behavioral acquisition involve new materials so as to provicie a change of stimulus. Direct recall of the materialss in the instructional segment is not tested. The behavioral acquisition of the learner is assessed, since the concern is with behavioral acquisition.

The fall staff of MEMIP consisted of the summer staff and two new graduate assistants. The two elementary teachers from Frederick met once a week with other members of the staff before the tryout of materials. Two classes of elementary teachers from the Frederick schools were taught most of the pilot study materials by the two Frederick teachers who served as project staff members. Their performance was observed by another member of the project and a recording of various participation dimensions was tallied, A copy of the instructional observation data sheet is included as Appendix E. The data provided by these observations served as one source of objective feedback which has helped to guide the revision of the instructional materials.

Characteristics of the 28 Frederick teachers participating in the pilot study are summarized in the following data descriptions. The median number of semester hours of mathematics courses was 5 hours with a range from 0 hours to 27 hours. The mathematics methods hours revealed a median
of 2 hours and a range from 0 hours to 6 hours. the last mathematics course was taken was 1964. Tr.s median year in which years of teaching experience varied finally, the number of of 8 years. The teacher deta elementary teachers was reasonably representa pilot study sample of mathematics preparation and teaching throughout the State of Maryland.

The instructional materials were used in two different ways. Session I was distributed to both groups of elementary teachers without instruction. Session II was distributed to one group without instruction while a member of the staff tanght the materiai to the other group. The elementary teachers reacted much more favorably to the staff instruction.

The format of the instructional materials was also very useful for the two elementary teachers who taught the remaining sessions in the pilot study. However, the two elementary teachers also felt that it was important that the sessions be taught to them by other members of staff before they taught the two groups of elementary teachers.

The sessions which were assessed included those which were developed for instruction in the following areass behavioral objectives, the game rules, and the addition of whole numbers. The results of these assessments are presented in Table I. The evaluation data for the behevioral objectives sessions are interesting in that almost 80% of the teachers did acquire the behavior of being able to distinguish between behavioral and non-behavioral objectives, but the 20% level of acquisition suggests most teachers did not acquire the behavior of being able to construct a behavioral objective. Revisions have been made in the second experimental edition of these sessions so as to provide additional experiences in helping the teacher to acquire these competencies.

The three objectives associated with the game rules sessions are (1) being able to identify and name examples of each of the game rules given the game, (2) being able to demonstrate each of the game rules by moves from a given game, and (3) being able to construct data which support the presence or absence of a given game rule for a particular game. The results of the behavioral assessment for the first objective are reasonably encouraging for a first trial with a 65% level of acquisition. The results on the assessment for the second and third objectives are not as encouraging with approximately 5% and 30% acquisition levels observed for Objectives 2 and 3 respectively. These data led to the development of a second game rule assessment in order to determine whether the tasks were not clear on the first measure or the low level of acquisition was actually attributable to the failure of the teachers to acquire the desired behaviors. This second game rule assessment is included in Appendix B after Session V. The second set of game rule data reports approximately 40% and 50% levels of acquisition for Objectives 2 and 3. The second testing woulo appear to support both the hypotheses that the difficulty was in the failure of acquisition and in the lack of clarity of the first measure. On the basis of this information as well as the tryout feedback, it was decided to develop a new game which should enhance the acquisition of the desired behaviors. This game is included as Session IV in Appendix B.
SNOISSAS TVNOILONHLSNI

I ATAVI

Objectives 1 and 2, the demonstrat g behavior and the constructing explanations behavior with physical situations related to whole number addition, were attained by more than half of the teachers. This is not unacceptable as a level of acquisition for the first trial although revision is clearly needed. The constructing behavior related to the application of the game rules did not meet with equivalent success. The level of acquisition for Objective 3 was about 5% and such result can only be described as a disaster. As anyone who has withed with elementary teachers might have hypothesiond, this is the most difficult of the behaviors for the elementary teacher to acquire and, therefore, such a result on a first trial is not unexpected. Copies of the immediate assessment instruments are included at the end of the appropriate sessions in Appendix B.

The second experimental edition makes use of these behavioral acquisition data to correct weaknesses identified in the desired behavioral acquisitions intended of this collection of instructional materials.

The progress of the pilot study teachers toward accuiring the desired behaviors of the tryout sessions was also assessed by a terminal measure administered at the final pilot study session. The presence or absence of the behaviors described as instructional objectives for the sample sessions was tested by means of tasks on this terminal measure. A copy of this instrument i_{i} included as the last item of Appendix B. The behavioral acquisition data for this measure is reported in Table II. The level of acquisition for each of the behaviors was greater than 50%. These data indicate that the teachers demonstrated substantial progress toward acquiring the desired behaviors.

II सTavu
STOIA VHGTB
Algorithm

PILOT STUDY DATA ON TERMINAL ASSESSMENT MEASURE

Verbs
Verbs
Percentage
of Learners
Acquiring
the Desired
Behaviors

APPENDIX A

Maryland Elementary Mathematics Inservice Program (MEMIP) Staff

Director	- Dr. James Henkelman, Asst: Professor Mathematics and Education, University of Maryland
Associate Directors	- Mr. Thomas Rowan, State Supervisor of Mathematics, State of Maryland
	Dr. Henry Walbesser, Asst. Professor Mathematics and Education, University of Maryland
Research Associate	- Dr. Robert Ashlosk, Asst. Professor Early ChildhoodElementary Education, University of Maryland
Research Assistants	- Mrs. Sandra Shockley, Teacher, Frederick County, Maryland Mrs. Carol Young, Teacher, Frederick County, Maryland
Research Assistants	- Mr. Thomas Bennett, Graduate Assistant Mathematics Education, University of Maryland
	Mrs. Sada Chernick, Graduate Assistant Mathematics Education, University of Maryland
	Miss Arline Engel, Graduate Assistant Mathematics Education, University of Maryland
	Miss Roberta Engel, Graduate Assistant Mathematics Education, University of Maryland
Consultants	- Dr. John R. Mayor, Professor Mathematics and Education, University of Maryland
Mathematics Education	
Seminar	- Mildred Cole, Marvin Cook, William Gray, Rufus Jones, Genevieve Knight, Ilene Lasher, Ronald McKeen, William Moody, Neil Seidl

ORIGINATTNG THE PROBLEM

Note: On this page you may respond by writing on the blanks provided.
Do you recall the word association game? You know, the game is played hy someone saying one word, and then you respond by saying the first word which occurs to yon.

For example, someone says table, and you would say -

Write somethingt You must participate to derive maximum benefit from this activity. Now read each of the following words and write down the first word which occurs to yous

SUN: \qquad
KNIFE; \qquad
RED: \qquad
FREEDOMz
OBJECTIVES:
Did you say "useless" or "ambiguous" or "unimportant" in response to objectives? These are common responses to the word objective.

ACTIVITY ONE

Just what purpose do stetements of objectives serve? Do you use the statements of objectives found in text books or courses of study tn plan your instructional program?

Yes or no?
Be honest now, no one is going to collect your responses. Suppose you plan an instructional session from a teacher's commentary which contains the usual statements of objectives. Now suppose all the statements of objectives in your book were eliminated, for example, by covering them with tape. How could your instructional planning be observably affected?

Would your planning be different? Yes or no?
From your responses to the last two questions, it would appear that the acscription of curriculum objectives does not usually serve an instructicnal purpose.

There are lew teachers from the inexperieneed to the experienced who would say that statements of curriculum objoctives (as they are usually constructed) actually contribute to their planning for, or execution of, instruction. Why is this? Is it simply that objectives can serve no useful instructional purpose? Must curriculum objectives remain an instructional window dressing or can they ie translated into a functional purpose?

You are about to participate in an instructional program which identifies certain of the critical decisions needed in order to accomplish the transformation from vague, ambiguous descriptions of objectives to instructionally functional descriptions of objectives.

For the remainder of session you will be asked to respond at various intervals by writing ("A mon se shot which you have been provided. If you are to acquire the competency encoded $x \cdot m$ this portion of the exercise, you must respond when asked to do so in the program. Plan on responding quickly; for most of the tasks, plan on making a response in about fifteen seconds. It is important that you be an active participant. Be certain that you have your response sheet and a pencil.

The objective, of actuctional materials should ba stated in a clear, unambiguous manruf. Certainly there are few who would refuse to acknowledge this as an important characteristic, applicable to all statements of curriculum objectives. Do the statements of objectives for mathematics programs satisfy this requirement of specificity and clarity? What if the statements of mathematics objectives don't meet these criteria-owhat is lost? For one thing, the intended meaning of an objective may be jeopardized by a variety of interpreta.tions.

Consider the following illustration with the statement of a familiar objective-one common to many experimental and commercial modern mathematics curricula.

Illustration I

What characteristics would you ascribe to an instructional program in matinematics if it is attempting to achieve this objective? Is the statement of the objective phrased in such a manner that several other mathematics teachers, working independently, would arrive at the same interpretation of the meaning of this objective? Yes or no? (1)

Have you made your selection? Go ahead write down a choice! Good! You will find the correct selection on page 4, line 4, word 4.

Illustration II identifies a stated objective of numerous modern mathermatics programs which you are almost certain to recognize.

The learner will acquire an appreciation of the STRUCTLURE of mathematics.

Illustration II

What activities would be necessary to aunieve this objective in mathem 4 curriculum? Do you supposa other mathematios edveators wjective in a mathematics components as necessary to achlaving this objective?
Respond yes or no? (2)
He you made a
Have you made a written response? Fine! To see if your response is acceptable turn to page 5, line 4, word 3. Are the wariety of possible interpretations for specificity. In fact, that whic Not at all, when one considers their lack of innovators and textbook authors have demonstrarkable is the skill which curriculum ments of objectives! Perhaps the most startiling in constructing ambiguous state-wide-spread use of these statements, but rather observation, however, is not the accept these statements! As teachers, we acknowledge, most teachers so complacently these statements as reasonable descriptions of ledge, or at least tacitly accept, f_{1} : justifying the selection of certain instruction goals and use them as the basis of particular instructional acts. Each of these deal materials or the performance initiated even though there is this diferse "agreement" is made or actions objectives. Consider the following statements ageement" as to the meaning of these modern mathematics curriculum.

What specific instructional mativitias in mathematics would you design to ūhifve tunis objective? Do you suppose other mathematics instructors would reach a similar decision to the meaning of this objective?

Yes or no? (3)
Come on now, make \& choice. All right. When you have made your choice and you have written it dswa, look on page G_{2} line 8, word 3 to Ind the acceptable. retponee。

Certainly this third objective 1.5 uni like the first two in that it names a particular field of study in mathematics, namely arthmetio skills. However, narrowing the content from all of mathematics to arithmetic skills in obviously not an adequate solution to the interpretation dilemma. This is so because of the large number of varied interpretations mich still ain be made for the meaning of the objective. Such specification is useful but is not sufficient.

The three previous illustrations suggest that the description of an objatire needs to be specific if there fa to be any hope of attaining uniform interpretation. The need for each mathematics objective to be uniformly interpretable is especially important for those charged with the construction and/or implementation of an instructional programs objectives.

However, implementers of mathematics ourriouia are not alone is the acooptance of ambiguous objectives. Consider this tenement of a favorite objective of contemporary mathematics curriculum developers.

The learner will acquire a familiarity with the properties of a field. numbers.

Illustration IV

Now suppose you are one of four committee member e charged with the tat of fndupandently observing students who haves beam exposed to instructional materials des:Lgned to aid the learners in acquiring this objective. Further, let ts suppose that based upon these observations, you are to make decision as to whether each student you observed had or had not been successful. Does the description of the objective in Illustration IV identify the specific performances winch you would tools for tn yow r observations?

Yes or no:
(4) \qquad
Just what performances one would be expected to observe ins learners who had acquired a familiarity with these properties is certainly mot contained in the statement of the previous objective. Therefore, the appropriate response to the question ecmearning what performances yous are directed to observe is an emphatic HO.

The description of an objective mast identify the observable behavior which a learner, who has sumeessfully achieved the objective, is expected to have acquired. Head the objective stated in Illustration with the purpose of identifying the observable behaviors a student should be able to exhibit if he has achieved the competency described by the objective.

The purpose is to help the learner gain
an appreciation the structure of positive fractions.
Illustration Z

Are there observable beheriors idantirisd in the statement of this objective? Are there behaviors described in way that would enable you to separate the successful from the unsuccessinl ones?

Yes or no:

Since you decked yes, the description does iderafy the desired observable behaviors, and you can, of course, name them. Oh?! Fou say you decided tho. Good for you! The statement does not, contain w ny such performance specification and therefore, the appropriate response is mo.

The statement of an objective should describe desired learner behaviors. In order to" bs able to interprets an obiention these behaviors should bs clearly described. The intent of az objective is reliably communicated by descriptions of observable behavior. Consider this nat t objective int the context of how effectively the statement commaniontes the desired biarior of the objective.

The purpose of this material is to clecribe long division.

Tilustration II

Does this objective describe the behwior to be acquired by the learner?
Yes or no? (6) \qquad
Should you reed confirmation of the competes of your response to this question for such an objective at this point, your best course of action would be to omit the remainder of the material in Session t I_{0}

Does the statement in the previous illustration describe an environment which requires the presence of a learner\%

Yes or mo?
(7) \qquad
Have you made a written response f Der reed in anvil you have 。
As you likely concluded already, this objective's description does not identify the behaviors the learner is to anguine Nor, peculiarly enough, is the learner even necessary, since one might describe without any learner being present.

Read the description of the objective contained in FRustration VII and decide whether the learner is necessary to the achievement of this objective

ni, jer.
Inistration III

What did you decide about the necessity of a learner in the achievement of this objective? Is ha necessary oz is he mot necessary?
(B)

Cleraly, a learner is necessary to the acquisition of the behaviors described in Illustration VII. You don't agree? Good for you. Obviously a detailed analysis might be given even though no learner is present.

Objectives must be constructed so as to be specific descriptions of what a learner is to do or say. Only fulfilling this descriptive requirement of learner performance can objectives become functional for the innovator, planner, developer, teacher, and learner. Objectives must be constructed so as not to allow for the exclusion of a learner under any interpretation.

Ambiguity is often cloaked in the garment of prestigous words. The next illustration contains statements of objectives for modern mathematics curricula which reflect examples of the "i ni words of this decade. The fund of ambisuous words which frequent the pages of newer and older organizations of instructional materials for mathematics are legion. A few of the mos common of these phrases are identified in Illustration VIII together with a ringer-one grease which does not belong because it conveys specifically a desired behavior.

builds an understanding appreciating developing a feeling for pointing to conveys the concept

Illustration VIII

Did you identify the phrase which does describe an observable performance? Which one was it? (9)
Select one. Don't.hesitate, write it down Now!
Did you select "builds an understanding"? No. Good for you. Perhaps you picked out the "appreciating" phrase, or the "feeling" phrase, or the "awareness" phrase, or the "conveys" phrase. No. Good! "Pointing to" is the appropriate choice and should have been identified without difficulty.

Suppose a variety of three dimensional objects such as those in the next illustration were placed in front of you.

Ilustration IX

Let's suppose you have been asked to identify the cone. Would identifying be interpreted as demanding some sort of an observable or a vague action on your part? Observable or vague? (10) \qquad
It is an observable action of course. You might carry out the identifying by pointing to an object, or by placing your finger on an abject, or by actually picking up an object.

Up to now we have merely examined statements of objectives as they are usually written for mathematics curricula. The descriptions are usually ambiguous and tend to have a large number of possible interpretations. We also have seen that a description of an objective which is more specific must specify the performances which the learner is expected to exhibit.

In Illustration X two objectives are described. Read them carefully and select the description of the objective which is behavioral.

The learner will comprehend and fully understand the procedures used in the division of fractions.

The learner will be able to identify the closure property in finding the quotient of two fractions.

Did you select statement A or statement B ? (11)
Should you have any doubt about which of these descriptions is behavioral you will find the acceptable response on page 14, line 2 , word 2 , list letter of the word.

Illustration XI suggests four verbs which might be used in the description of behavioral objectives. Two of the verbs are action verbs (which describe learner performances) and two of them are verbs which do not describe reliably observable performances. Select the two verbs which describe reliably observable performances. (12) \qquad , (13)
understanding naming
demonstrating
comprehending

Illustration \bar{X}

If you selected the words "understand" and "comprehend" you are just no" with it today! The two action verbs which describe reliably observable performances are clearly "naming" and "demonstrating".

Read Illustration XII and identify the verbs which are action verbs. That is identify those verbs which could be used in a description of reliably observable performance.

$$
\begin{aligned}
& \text { identifying } \\
& \text { constructing } \\
& \text { distinguishing } \\
& \text { ordering }
\end{aligned}
$$

Illustration XII

Which of the words did you select? (14) \qquad

The correct choices are the lastword on page 18 and the 7 th word on page 6 .
:Illustration XIII contains a description of two objectives--one of the objectives is behavioral. Identify the behavioral objective by selecting A or B.
(15) \qquad

The learner will be able to demonstrate examples of the commutative with sums of whole numbers.

A

The learner will acquire appreciation of the discovery method of teaching mathernatics.

B

Illustration XIII

Did you identify the appreciating objective as the behavioral one? No. Good! Obviously the deionstrating objective is the behavioral one.

Examine Illustration XIV which contains two descriptions of objectives. Which of these objectives is a behavioral description of desired learner performance? A or B? (16)

The learner will be able to identify names for ten.

The learner will be able to demonstrate a procedure for finding the sum of two integers using the number line: B

Illustration XIV

I suppose that you decided that neither of these were behavioral objectives No? Oh! You made a choice the only statement A was behavioral description or that only statement B was behavioral description. No\% Good! Did you decide both A and B are behavioral descriptions of desired student performance? If so, you have acquired the behavior of being able to identify behavioral objectives.

ACMTTITY TWO

If you are to acquire the competency expected from this portion of the exercise, you must again respond when asked to do so. Plan on responding quickly's for most of the tasks plan on making a response in about 15 seconds. It is important that you continue to be an active participant.

What functions do behavioral objectives fulfill thet nom-behavioral objectives do not?
(17)

Certaimly the previous collection of illustrations make the point that non-behevioral objectives tend to be ambiguous and generel, while behavioral objectives seek clarity by specificity. But of whet use is this specificity to the teacher? One important instructional benefit of this specificity is thet the teacher would possess a description of the observable behaviors all studemts should minimslly be able to exhibit after instmation.

Let's suppose for the sake of argument, you are convinced of the need to come municate specific instructional purposes, and further that behavioral objectives are means you have settled on for accomplishing this communcation. Eut how do you construct behavioral objectives? What makes the description of an objective behavioral? Consider the tasks you have just performed in Activity One. What are the characteristics of a beharioral objective as they were described in the program? Name as many as you can. (18) \qquad

Is there an action identified in the description of a beharioral objective? Yes or no? (19) \qquad - It wovid seom after even the most cursory examination that each description of a behevioral objective does contain some action Ford or phresse. What class of words most ofton describes action in English-anouns, verbs, adjectives, or what? (20) \qquad - Cif course, most often action is cummunicated by varbs.

It seems rather obrious, ther, that ond necessary componert in the description of a behawioral objective is an action werb. Eut now just wait a minute! How many
possibie action werbs are there in English-w few or great many" (21) \qquad -
You could decide to use any of this large variety of action werbs. The pariety itself, however, contributas mora to maintainimg the ambiguity than to facilitating clarity.

The problem would now appear to be one of reducing the mumber of possiole action verbs used in the description of objectives without reducing the wariety of learner performances being amiled fox by the cbjectives.

Frich individual hes been given number oi packets of material. Spread out the materials in packet A. You will be asked to make several performances. Carry out each tesk as best you can:
(1) Pick up a triangle.

Go ahead, don't be bashful, pick it up. What's better:
(2) Now select a square.

Have you made a selection? Goods
(3) Identify the ellipse.

Notice that three different action verbs were used in initiating the three performances you made. One of the action varbs was selectine. What were the other two action verbs? (22) \qquad and (23) \qquad $-$ Did you write picking up and identifying? Wonderîul! Do the three performances you were asked to make have some common action characteristic? Yes or no? (24) \qquad
\qquad - Of courses they do!

Why use all three of these gctuon wexbs? If behavioral objectives are to be specific and deseribe observable behavior, wowld it seem sensible or not sensible to use one part in place of sll three? (25) \qquad
The sensible thing to do is to have many different varbs describe the ame action。 No, of course it's not!! The sansible thing is to agree upon one action verb and use it. Which one of the thres werbs shail we agree to use? Since it does not seem to make much difference, let's agree to use identifying.

Identify all of the triangular regions from packet A. Do you have them all? Arrange the triangular regions from the one with the leastarea to the one with the greatesto area.

As soon as fua hawe completed this task, identriy all of the square regions. Order the square regions from the one with the longest side to the one with the shortest side.

After identifying the two sets of objects, you performed two tasks. The instruction for each involved an action verb.

One of thel action verbs was arranging. Name the other action vervo (26) \qquad - Were the performances you exhibited allke or different? (27)
\qquad - What do you comalude about the actions called for by these two action verbs arrenging and ordering? (28) \qquad

If you are reading this before you have written \& response to the last question, you are not playing the game. Go back and try to write a response to the question. The conclutilom which seems justified is the these two action werbs are behavioral synonym (wall for a similar action). Let's agree to use ordering whenever such a behavior is called for in the description of a behaviora objective.

What do you call an object shaped like this ? (29)
What is the mame of a three dimensionsl cbject shaped like this (30) -
Tell the maber of triangles pietured here. $\triangle \triangle \Delta$ (31) Are the performances required by these three tasks similar or different? (32) \qquad $=0$
Similar, of course. What action werb would you use to describe these behaviors? (33) \qquad - Any number of different action verbs are possible
candidates. A few of these behavioral sywonym are telling, starting, calling for, and numing. Let's agree to use naming.

Heturn the shapes to packet A 。
The agrements about action verbs made up to now would mean that wen you describe behavioral objective and the performance is

1. " "ohoosing the rectangles" you would write
" $(34) \quad$ the rectangles ${ }^{2}$
2. "classifying the objects from heaviest to lightest" you would say
r(35) \qquad the objects from heawiest to lightest"
3. "tolling the colors in this pointing you would write "(36) \qquad the solors in this painting ${ }^{n}$
If' you ${ }^{\prime}$ re riading this before you here responded to the previous four tasks, go back and respond. Did you write idemtifying, ordering. and naming? That's a collection of acceptabile responses. Now youire resily certoing on!

MATERIALS FOR SESSION I

Packet A

11 felt pieces:
rectangles, 4 squares, 1 circle, 1 ellipse, 3 triangles

SESSION II

At the end of our first sessiom, we were able to identify benarioral objectives which describe the specific action that is desired th the learmeno We also agreed on scine of the action verbs we are to use to describe a desimed cetiono the procedure today will be similar to the procedure used in our last sessioza Be sure to write each response on the response sheet you have been giver. Letis see how many of the action verbs you remember frem Session I。

If I asked your to pick out pencil from a collection of duriterent objects, you would be (1) \qquad the peribil. Dia you suy identifying? Goods

If I required you to tell me the color of the pemein your are using, you would beg (2) \qquad the colowo If you said mang, you are remembering correctly from the last session. Goodr Kesp going.

When I arrange a set of objects accordirg to sime, I am (3) the objects. Did you use the word arranging No? Good for you. We agreed to use the werd ordering.

Today we will learm the remaining actiots watd.
Take gut the materials in packet A ana place them on the table. Show how you would decide which of the line segresnts o a er b a is longer using the rectangular felt shape. to ahead and do something. Now deanstrate how you wisuld deaide whether the sheet of paper is a square by scme foiding procedure. Name the action verbs whith initiate aach of these performarces.
(4) \qquad and (5) \qquad - Are these two action verbs behavioral symonyms? Yes or mes
(6) - Of course they areo :atos agree tr use demonstra-
ting as the action verb for this set of behavicus.
Returra the moterials to packet Bg then wake ant the graph from packet C and place it oat the table. The graph records data obtaired on the number of ace cream cones sold at various air temperatures. Make prediction coneernizg the number of ice cream cones which will be sold if the temperature is 110°.
\qquad - Go ahead, unake some predietiono

Now examine the two viais with spheres in themo Invert the two wiels and watch what happens. Construct an explaxation which accounts for the difisuence in
the beharior of the spheres. (8) \qquad - Now name the action verbs which initiated each of these performaness.

[^0]
U-

and (10) \qquad - Are these two action verbs behaviaral synonyms?

Yes or no? (11) \qquad - Letis agree to use the action verb constructirig in descriptions of objectives involving such bshaviors. Return the graph to packat C.

Consider the objecs which is in pecket D。Suppose someone has a group of objects in front of him, one of which is similar to the object you have taken from packet D. This person is able to hear you, bat cannot gee you. Your task is to identify and name as many characteristies of the object as you came The description should enable the second person to identify a similar object in his collec-
tion. Start namingя (12) \qquad

If you said red and round, your description is not, adequate for it lits most all of the objects which the second person has in fremto of himo Add a few more characteristics. If you added mass, volume, diameter, and thickness you would be much closer to a satisfactory deseription.

Take the tablet in packet E and drop it in glass of water. Observe what happens. Describe what happened so that another individual would be êle to pich out (identify) the similar event if he were comfromted with the various situations shown in IIlustration XV.

Illustration XII

Descrictions (13)

What shail we call such behavior? Wrat actior verb should we use" could we
 (15) \qquad。

Shace Identifying requires the indivinaz to seieet an object which has been named for $h m_{\text {, }}$ this action verb dues $r 00$ segm satisfiactory. Irs the same way, naming does not seem an oppropriate choice simee the name of the object on action which is used has been previously suppined by yoneone other than the learuser. The distinctive characteristic of this rew benevowl ciass is that the learmer identifies and names the characteristics or prepertises vore than one ohameteristic is usually included, and there must be a sufticiezt nurber or these characteristies so that a sccond individual will be abile to demtily whaty is being diseussed.

How them shall we name this class ox behaviors: Suggest a possibility? (16) \qquad - Many chofies: could have been made. The particular ation verb which seems most arareprite is desmebingo mins desaribing
 of an object or ention so that a second persom would be able to identify it without haring it pointed out to rimo

Sometimes the behavior is the descripton of a particular procedure for exampie, a procedure for findirg the spees il ar abject might be stated as followse ?How fast an object ctanges positsom is aistaree moved per mit at tive which cen be fouad by dividing tie distaree " y the tyes:

Arother procedurt might be ort deareng with fractionso For example, in order to find the sum of two fractions wich hate the same denomirator you add the numerators tor the new numerator and keep the comor demomimator.

The two previous paragraphe eskrive a prosedure or ruge for duing something. Could the behavior of stating prosedures ans as these be descrives by nemine or identifying? It so, which one? (:7)。 Naming esuld be used, but the statemeats of rilise, suh as given by the two examples, ame spesiel. For this reason it is equerient to ceseribe this ciass of behavior by calling the category, statity pispmiteo

Supose a boy waik 140 meters in sever minnes. How fest is the object changins position it yof use the spees ruIs previously stated?
\qquad - Juts when fid you do to obtain the result?

You rese (19) the speed rule. Insing or appiying would be the most commorly acceptable response.

Given the fractional names $3 / 17$ and $5 / 17$ find the sum. the sum is
(20) \qquad - For your own information, the acceptable response is $\frac{3+5}{17}$ oi $\frac{8}{17}$.

In each of the last two tasks, would you describe your performance as naming or demonstrating? (21.) \qquad - The correct response is, of
course, demonstrating. However, since the demonstration is special, in that it is based upon a stated rule, this behavior might warrant a separate name. Let's agree to call these applications of stated rules, applyjng a rule behavior.

Suppose you were asked to find the density of an object such as a marble. Let's aiso suppose that you were told that the density of an object is found by determining the mass of the object, the volume of the object, and finally the quotient of mass divided by volume. This description of how the density of an object is obtained is an example of which of the following behaviorss identifying, constructing, stating, or applying a rule?
(22) \qquad - Since the description deals with using a procedure, the most acceptable choice ls applying a ruie. Was a single rule applied, $c:$ was it necessary to apply more than one? (23) \qquad -

Yes, more than one rule was used--in fact, three rules are stated, one each for mass, volume, and quotient. Now if you are asked to use the three procedures to arrive at the quotient (density), what kind of behavior would it be? Applying a rule would be too simple, since this is a sequence of three rules, interrelated in the process of finding density. The entire behavior might be described as a serfes of related applying a rule behaviors and for this serial task performance, letls adopt the action verb interpreting.

The agreements about action verbs made up to now mean that whenever you describe a behavioral objective you will use one or more of the action verbs we agreed upon, r it no other.

Rewrite the following performances using our list of action verbs:

1. Telling how to get to ycur house.
(24) \qquad how to get to your house.
(Check your response with the 1st underlined word on page 3 or the 2nd underlined word on page 3.)
2. Showing how you could decide that the rock is limestone.
(25) \qquad that the rock is limestone.
(Check your re, ponse with the underlined word on page 1.)
3. Maling a definition for an action varb.
(26) \qquad a definition for an action verb.
(Cheok your response with the underlined word on page 2.)
4. Following a procedure for finding the product of two fractions. (27) \qquad finding the product of two fractions.
(Check your response with the lst underlined word on page 4 or the underlined word on page 1.)
5. Definiag a prime number as a whole number which has exactly two different whole number factors.
(28) \qquad a prime number.
(Check your response with the 2nd underlined word on page 3 or the lst underlined word on page 3.j

6p Building the graph of a relation.
(29) \qquad the graph of a relation.
(Check your response with the underlined word on page 2.)
7. Identifying and naming the reasoms which justify the steps in the long division process.
(30) \qquad the long division process.
(Cheok your response with the 2nd underlined word on page 4.)
In performances 1, 4 and 5 two possible answers were given because the action verb denended upon what the writer had in mind. In 1 , for example, if you were telling how you, yourself, get hone, you would be describing your journeys on the other hand, if you are giving someone a route to follow in getting to your house, you would be stating a rule.

Oca Lonally when the identifying behavior is called for and the stimuli are higniy conrusabie, it ís uśefull to hãve a speefal action verk. whenever this situation arises, the action verb distinguishing is used in the behavioral description in the place of identifying.

Each of the action verbs we have agreed upon is described on the following thrse sheets, This may prove useful as reference material for the naxt activity.

The action words which are used in the construction of behavioral instructional objectives are:

1. IDENTIFYING. The learner selects (by pointing to, touching, or picking up) the correct object of a class name. For example: Upon being asked, "Which animal is the frog?" when presented with a set of smai animals, the learner is expected to respond by picking up or clearly pointing to or touching the frog; if the learner is asked to "pick up the red tri.angle" when presented with a set of paper cutouts representing different shapes, he is expected to pick up the red triangles. This class of performances also includes identifying object properties (such as rough, smooth, straight, curved) and, in addition, kinds of changes such as an increase or decrease in size.
2. DISTINGUTSHING. Identifying ob-
jects or avants which are potentially confusable (square, rectially confusable (square, rec-
tangle), or when two contrasting identifications (such as right, left) are involved.
3. CONS TRUCTING。 Generating a construction or drawing which identifies a designated object or set of conditions. Example: Beginning with a line segment, the request is made, "Complete this figure so that it represents a triangle."

4．NAMING。 Supplying the correct， name（orally or in written form） for a class of objects or events． Example：＂What is this three－ dinensioñal object cailed？${ }^{\text {i }}$ Ke－ sponses＂A cone。＂

5．ORDERING。 Arranging two or more objects or events in proper order in accordance with a stated cate－ gory．For example：＂Arrange these r．oving objects in order of their speeds．＂

6．DESCRIBING。 Generating and naming all of the necessary cate－ gories of objects，object proper－ ties，or event properties，that are relevant to the description of a designated situation．Ex－ ample：＂Describe this object，＂ and the observer does not limit the estegories which may be gem－ erated by mentioning them，as in the question＂Describe the color and shape of this object．＂The learner＇s description is considered sufficiently complete when there is a probability of approximately one that any other individual is able to use the description to identify the object or event．

7. STATING A RULE. Makes a verbal statement (not necessarily in technical terms) which conveys a rule or a principle, including the names of the proper classes of objects or events in their correct order. Example: "What is the test for determining whether this surface is flat?" The acceptable response requires the mention of the application of a straightedge, in various directions, to determine touching all along the edge for each position.
8. APPLYING A RULE. Using a learned principld or rule to derive an answer to a question. The answer may be correct identification, the supplying of a name, or some other kind of response. The question is stated in such a way that the individual must employ a rational process to arrive at the answer. Such a process may be simple, as "Property A is true, property B is true, therefore property C must be true."
9. DEMONS TRATING. Performing the operations necessary to the application of a rule or principle. Example: "Show how you would tell whether this surface is flat." The answer requires that the individual use a straightedge to determine touching of the edge to the surface at all points, and in various directions.

10. INTERPRETING. The learner should be able to identify objects and/ or events in terms of their consequinces. There will be a set of rules or principles always connected with this behavior.

Now that we have agreed upon a set of operational definitions for some action words in the construction of behavioral objectives, let's turn our attention to the problem of constructing a few behavioral objectives. Read the objective in Illustration XVI 。

The leaner will understand place value.

Illustration XVI

Is the objective described in Illustration XVI behavioral? Yes or no?
(31) \qquad No, of course it is not; With the use of our agreed upon set of verbs rewrite the non-behavioral objectives described in Illustration XVI and make it a behavioral objective. (32)

```
(32)
```

If you have not completed rewriting the objective, do not read this section. Go back and do it now. When you have completed the task of rewriting the objective, read it over to see whether you have: 1) used one of the action verbs, 2) described the situation in which the learner should exhibit this particular behavior, and 3) indicated the nature of the product the learner is to produce. Learner products may be quite varied: a sentence, a word, a drawing, a series of check marks, etc.

Illustration XVII contains a few of the possible descriptions of behavioral objectives which could have been constructed from the non-behaviorai objective.

The learner will identify the units, tens, and hundreds place, given a numeral.

The learner will idemitify the position of the 5121s place for base eight numerals.

Illustration XVIL

The learner will be able to measure the width of an object.

Illustration XViII

Notice that the non-behavioral objective appeals to a word which in general is supposedly "well understood" by all teachers. When one says "measure the width of a desk," the statement does not suffer from the same lack of specificity as did the non-behavioral objective in the previous example. However, the objective does suffer from the fact that it is not a description of what the learner is asked to do. How would you recognize whether a learner had acquired this behavior? (33) \qquad

Notice that it is not a difficult task to translate this particular objective into a behavioral objective. The translation could be accomplished merely by stating what one would look for in terms of learner performance rather than in terms of the non-performance description which the word measure conveys.

Examine the objective described in Illustration XIX。

The learner will acquire a familiarity with the commutative property.

Illustration XIX

Rewrite this objective so that it is behavioral.
(34)
\qquad
\qquad

When you have completed the task of rewriting the objective and making it a behavioral objective, read these next statements.

1. Did you use one of the action verbs we have agreed upon?

Yes or no? (35) \qquad
2. Is the situation in which the learner is to exhibit this
performance clearly specifiled? Yes or no? (36) \qquad
3. Is the nature of the output which the learner is to provide clearly specified as well as any restrictions on that
particular output? Yes or ne? (37) \qquad
If you were not able to respond "Yes" to each of the three questions, go back and correct whatever difficulties you have identified. Does the description of the objective in Illustration XIX identify the specific performances which you woulcl
look for in your observations? Yes or no? (38) \qquad
Just what performances would one be expected to observe in learners who had acquired a familiarity with commutativity? It is certainly not contained in the statement of the previous objective. Therefore, the appropriate response to the question concerning observable performances in the objective is an emphatic "No, it does not identify them."

MATERIAIS FOR SESSION II

Packet B

folder containing:
felt rectangle paper square sheet witis lines a and b.

Packet C

- folder containing:
graph - nNumber of Ice Cream Cones sold in one day"

Packet D
1 red chip

Packet E

1 alka-seltzer
2 vials -
1 contafning marble and water
1 conta:ning marble and Karo syrup

SESSION ITI

ACTIVTTI THREE

Here is an example of an instructional astivity. leead it over carefully and decide what actions describe the desired instructional outcomes.

Select two or three objects thet contain the various two odimensional shapes. Have the children point out and name the circles, ellipses, triangles, rectangles, and squares for one object at a time.

Hold up the pyramid in warious positions. Ask: What two-dimensional shapes can be seen in the pyramid?" (Triangles, square on the base.) Have them trace the shapes with their fingers.

Pick up the cone and let the children pick out the shapes they see. If the children have difficulty selecting the triangles, hold the cone next to the chalkboard and trace its edges. When the cone is removed, ask: "What shape is drawn on the board? This same procedure may be helpful in identifying the rectangle that may be associated with a cylinder.

Use our action verbs to name at least two actions which are part of this instructional activity。 (1) \qquad and (2) \qquad -

Write one behavioral objective for this activity. Remember to use one of the ten action verbs. At the end of this instructional astivity the learner will be
(3)

Have you written a behavioral objective? If not, don ${ }^{8}$ t read beyond this sentence and go back and try! If your description of a behavioral objective resembles one of the following statements, you're on the right track.

1. Identifying and naming the following three-dimensional shapes: sphere, cube, cylinder, pyramid, and cone.
2. Identifying and naming two dimensional shapes that are part of regular three dimensional shapes.

Now let's suppose you are given a description of a behavioral objective such as:
"The child should be able to name the primary colors."
What does such an objective communicate about instruction and how will you know when you have been successful? Letis take the instructional question first, but in the cuntext of comparing it to another objective which said "identifying each of the primary colors." What would be different in the instructional activity trying to
help children acquire the naming behevior as opposed to acquiring the identifying behavior? Whet do you think? (4) \qquad

Write something. The important thing is to commit yourself. One could conclude that the "naming objective" would have children saying the names of primary colors when shown an object, while the "identifying objective" would probably see the children pointing to or pioking up objscts having bean asked something such as: "Find a red object in the room."

In which of the following beherfioral objectives would you expect to see small groups or individual children doing things?

1. Constructing a bar graph.
2. Ordering objects on the basis of similarity: for example, most like a circle, somewhe like a circle, least like a circle.
3. Demonstrating the comparison of volume of containers by determining how many unit volumes are required to fill each of the containers.
(5)

In which ones would you expect only a teacher demonstration? (6)

If you responded that all objectives suggest small groups or individual instructional activities, yourre with it. None of the descriptions of the beiavioral objestives are suggastive of only teacher demonstrations.

Ocossionally, behavioral obectives are reiated to one another in that they can be sequenced so as to construct an ordering from less complex behaviors to more come plex reiated heinviors. For exemple, consider the three behavioral objectives:
(1) identifying and maming the primary and secondary colors
(2) describing an object in terms of charactoristics such as
color and two dimensional shetpe
(3) identifying and naming common two dimenaional shapes.

Which of these thrte behavioral objectives do you think describes the most complex behavior? (7)
Make a choies. The second one is correct. Are the other two behaviors related to this more complex behavior?

Yes or nc? (B)

And are the other two behaviors subordinate, less complex behaviors? Yes or no?
(9) Is either of these subordinate to the other? Yes or no? (10) \qquad - You might imagine constructing a diagram to show this relationship and it would look something like

Remove the contents of packet F and place them on the table. The five behavioral objectives represent a collection thet cen also be ordered into several levels. Arrange the statements of the behevioral objectives in an ordering from most complex on top to least complex on the bottom. Your instrucitional sequence should look like the one in Tllustration XX.

Just how did you proceed with your anmlysis? Did you attenipt to identify the least complex behavior? Yes or no? (11) \qquad - You say you did! Well, most pnople do, the first time they try. Why not? Well, recall that one is interested in identifying those behaviors which may need to be acquired before attempting to acquire a complex behavior. That is, the procedure is one of trying to identify the subordinate behaviors for a given learning task. How is one to hunt for aubordimate behaviors whon the teminal task is not identified? So, it would seem, that the most cimplex task should be identified first. Whioh of these five tasksis the most complex? $1,2,3$, 4 , or 5 ? (12) \qquad $-$
One looks like a good candidate, but let's examine the others. Centsinly two, three and five are not as complicated as one since only correspondence or matching of some kind is invoived. I guess that leaves only four.

Considering that one demands at most 99 naines axd four demands at most nine names which one mast be the most complex: 1 or 4% (13) \qquad - Naturally the
acceptable response is one. What must the learreer be able to do before be can acquire the behavior labeled 1? What is the mext most complex behavior? 2, 3, 4 , or 5 ? (14) \qquad - Of comrse, ficur is the next most complex bohavior and a reasonable subordinate behavior to one. What is the next most complex pair of behatiors? An examination of the three remaining possibilities suggests which ones as the next most complex pair". 2, 3, or 5'?
\qquad and (16) \qquad - Since ardering three sets
and identifying sets with the same number of objects both require one-toonae matching, two and five appear to be the most likely candidates. That leaves three as the least complex behavior.

Just making these decisions, does not make the instructional sequence valid. The sequence is a series of hypotheses. One now tries out the sequence of instruction and determines if it works-does the learner acquire the desired behaviors if one follows the instructional sequerce? Modifications are then made in the instructional sequence on the basiss of observations.

Thus, whenever all of the behaviors described in the varions objectives for a task are arranged in such an ordering and the relationships between levels are show, the ordering is called a behaviomal hierarchy. Behavioral hierarchies are useful in that they describe the behavioral development within a process. Packet G contains the behavioral kierarchy which follows from the amalyeis for the tasks described in packet F.

Suppose we were interested in providing instruction that would help a learner acquire the most complex behavior among these fivew-idertifying and naming the number of objects in any set with zero to 99 menbers. How might we proceed instructionally? Oh8 that's one of the fascinating applications of behaviorel hierarchies. The behavioral hierarchies suggest oze possible instructional path. For those learners who did not already possess the most complex behariors, would we begin instruction with the least or most complex task which the learner does
xant exhibit? Least or most? (17) \qquad - Naturally instruction would begin by helping those learners acquire the simplest behaviors, the least complex which they have not already acquired. Then iastructions would proceed to the next level of complexity and so on through each of the behaviors considered prerequisite to the final task. A rather delightful consequence of having stated each instruc. tional task as a behavioral objective is that you can thea identify when your instruction has been successful. All that you as an instructor need to do is to give the learner a task representative of the described behavior and then observe whether or not the learner exhibits the desired behavior.

MATERIALS FOR SESSION III

Packet F

Hierarchy in 5 pieces
Packet G
Hierarchy
Packet H
List of Objectives

Appraisal

Construct a description of the behavioral objectives suggested by the instructional activity in the first three sessions. In writing these behavioral objectives, consideration should se given to the action words which were defined. When you have completed this task, look at the statement of behavioral objectives which were used in order to write the first three sessions. The statement of these beharioral objectives is in packet H 。

SESSION IV

THE GAME OF SUMS

OBJECTIVES:

At the end of this session the learner should be able to:
(1) identify and name examples of each of the game rules given the game, elements, and operations of the game.
(2) demonstrate each of the game rules using the elements and operations from a given game.
(3) construct data which support the presence or absence of a given game rule for a particular game.

This is a game called Sums. Any number of players could play, but welll start with two players. The play begins with each player spinning the spinner. The player spinning the iargest number is first. In the event of a tie, each player spins again. The first player then draws a card from the blue pack. Play alternates until one player has reached the end.

If the player draws a one spin card, he spins the spinner. The player then moves his piece the indicated number of spaces on the board.

If the player draws a one spin card, he spins the spinner, records the result, spins the spinner again, records the second result, and combines the two results. To combine the two results construct their sum. If their sum is zero to nine, make the move; if the sum is ten or greater, the player moves the number of spaces named by the units digit. For example, suppose the first spin was 6 and the second spin was 8. Their sum is $6+8$ or 14. Now since 14 is greater than 9, the number of spaces to move is given by the units digit or 4. So the player who spins a 6 and then an 8 would move 4 spaces.

If the player draws a three spin card, he spins the spinner, records the result, spins the spinner a second time, records the second result, spins the spinner a third time, records the third result, and combines the three results. To combine the results construct their sums. If their sum is zero to nine, make the move; if the sum is ten or greater, the player moves the number of spaces named by the units digit, which will be zero to nine. For example, suppose the results of the three spins were 6, 9, and 7. Their sum is $6+9+$ 7 or 22. Now since 22 is greater than 9, the n:mber of spaces to move is given by the units digit or 2. So ihe player wis spins 6,9 , and 7 wou- 1 move 2 spaces.

If the player draws one 01 the special cards from the blue pack which is labelled "l spin repeated twice", he spins the spinner, records the result twice, and" then combines the twi results in the same way they were combined when a two spin card was drawn. For example, suppose the spin was 8 . Now since the sum of 8 and 8 is 16 , the number of spaces to move is 6 .

Another special kind of card in the blue pack is labelled M量 spin rapeeten twic followed by another spin repeated 'twice." If a player drawe this oard, 40 apins the apinner and gets his result in the same way he does when directed to take one spin repeated twice. Then he takes asecond apin and does the amo thing. Finally he combines the two resulte. Porhaps an example here would help. Suppose the first spin was a 8. Since the sum of 8 and 8 is 16 , the player would record a 6. Now suppose the second spin was a 9. Since the sum of 9 and 9 is 16 , the player would recordian 8 . He would then combine the 6 and 8 for a move of 4 spaces.

The last kind of card in the blue pack is one labelled "2 spins repeated twice." If the player draws such a card, he spins the spinner, records the result, spins the spinner again, records the second result and combines the two results in the seme way they were combined when a two spin card was drawn. Then this combined result is rocorded tiries, and the texo combined results are combined again in the same way they were combined when a two spin card was dram. For example, suppose the two spins were 4 and 3 . Now since the sum of 4 and 3 is 7 , the 7 is recorded twice. But combining 7 and 7 we find that the number of spaces to move is 4.

NOW PLAY THE CAME FOR AWHILE. When you land on a space on which directions for you are written, be sure and do as you are told. If you encounter the word identity or inverse, be sure and read the eppropriate section which follows.

THIS SECTION IS NOT TO BE READ UNTIL ONE OF THE PLAYERS MUST ADVAMCE THE IDMNTITY OR A PLAYER IS INSTRUCTED TO READ THIS SECTION.

The identity is easy to find in the game of Sums. In order to find it we look at two spin moves. Letis say the first spin was a 4 . Now is there anecond spin that is possible so that the combined number of opaces to move is still 4 ? Yes or no? (1) - What would the second apin be? (2) - If you wrote 9, you are close since the combined number of spaces to move would be 3 since the sum of 4 and 9 is 13 . The only number which is possible for the second move is 0 since the sum of 4 and 0 is 4 .

Fill in the following table and match the way the number 0 acts．

Table I

First Spin	Second Spin	Result
5	0	-
8	0	-
0	0	-
9	0	-
3	-	7
7	-	1

Among all the elements－ $0,1,2,3,4,5,6,7,8,9$－there is a second spin which will always make the result of a two spin move the same af if the first spin was a one spin move．We call such an element the identity．Which
is the element that appears to work out as an identity？（3） \qquad The sorrect response is on page 2 ，last lines word 8 。 Since we can find an identity in this game，we say that the identity game rule holds for the game of Sums 。

Now you can continue your play．
this section is not to be read until one of the players lands on a space OR DRAWS A CARD WHICH MENTIONS THE WORD INVERSE．

Read the identity section first．Now that you have found that zero is the identity，let＇s fill in some of the blanks in Table II。

Read the identity section first. Now that you have found that zero 18 the identity, let's fill in some of the blanks in Table II.

Table II

First Spin	Second'Spin	Result
3	7	-
6	4	-
0	0	-
2	1	0
0		0
5	6	0

The responses in order should be $0,0,0,0,8,0,5,2,4$, and 7. Notice in the first four examples in Table II that the result of two spins was a move of zero spaces. R call that zero is the identity. Now from the other examples were we able to $f^{4} \times d^{\prime}$ two spine ouch that the result of the two spins is the identity?

Yes or no? (4) \qquad - Letis try another example. If the first spin was a 1 , what would the second spin have to be in order to have the result the identity? \qquad - Since the sum of 1 and 9 is 10 , the number of spaces to move is 0 - the identity. We call 9 the inverse' of 1 。 Can we find an inverse for each of the elements $-0,1,2,3,4,5,6,7,8,9$? Yes or no? (6) \qquad . Latin systematically try them all.

The inverse of: 0 is (7) \qquad , 1 is (8) \qquad , 2 is (9) \qquad ,
3. is (10) \qquad , 4 is (11) \qquad , 5 is (12) \qquad , 6 is (13) \qquad , 7 is (14) \qquad , 8 is (15) \qquad , and 9 is (16) \qquad
When each element has an inverse in this game, we say that the inverse game rule holds for the game of sums. Now go back to the game and continue your play.
 TO THE FOLLOWING QUESTIONS 6

There are many intereating patterne which we Identliy when we have played the ceme awile. Let's look at ome.

Whea you make a two spin move with 7 the first ispin and 5 the aecorad soing you reoc dide the numbers and combined. Sirace the sum of 7 and 5 in 12, the number oir epacse moved was 2. How many spaces would yoin nove if the filist apin
was 5 and the second spin 7? (17) \qquad - Surprieing, ien't it. Do jou suppose a similar observation can be made for any other pair of apine\% Try a fow.

Did you find that reversing the spins always seemals to give you the same romult?
Yee or no? (18) \qquad - The answer is on page 2 , line 27 , word 1 。

Whon such e characteristic holds for all possible pairs, we any that roveraibilitit
 as the commutative characteristic, but we will use the name reversible to raalad us that we reversed the order of the two spins.

There is another characteristic of the two spin move which warrants a look, Was the result of a two spin move ever a number which was not the rosult of ane spin move? Yes or no? (19) \qquad - The answ is on page 2 , line 27 , word 3 . This is thought provoking, Even tho ; we take two spinss the result is always a move of 0 。 $1,2,3,4,5,6,7,8$, or 9 spaces. When a game has this characterisific, we say that closure holds. Saying that the game has closure would mean that combining numbers for two spin mowies does not introduce any elements whioh we didn't already have for one spin moves.

Let's take a look at three spin moves. Suppose the resuits of three spinis were 7, 6, and 8. The result could be found this way, thinking about the first two spins as a two spin move.

The player would make a move of 1 space.
. The result could be found by thinking about the second and third spins as a two spin move.

The player would again make a move of 1 space. That's interesting! The result is the same. Do you suppose thet uecully happens? Try some throe spins.

Some people describe this particular characteristic of three spin movas as the associative characteristic since it seems to associate two of the thres in atme sort of an arrangement. Others simply call it an arranging game rale Either ef these is a perfectly good name. For the sake of consi-tency among the varioua game which we discuss and describe, it would be useful to settle on one ame Let us agree to call it the arranging game rule.

Now recall those special cards with the unusual directions in tine bilu pack which say - "I spin repeated twice followed by another spin repeated twice" and "2 spins repeated twice." Notice that there seems to be a curious characteristic of these moves. Look at the following example where the first player drelw a card which instructed him to take a spin repeated twice followed by another apin repeated twice and he spun a 3 and a 9 . A second player drew card which said to take two spins repeated twice, and he spun a 3 and a 9.
lst Player - 1 Spin Repeated Twice Followed by Another Spin Repeated Iwice

Both players end up with the same move. It doesn't seem to make any difference which card is chosen. Does this characteristic work for other spins? Try a few.

Did you find thot thim eharactoristic wes almge twos Yee or mep f20) - The answor id on page 2,1 ino 27 , wurd 1 。 Pathagr bloo card

 arect moves. This game rule involves more than combining minberis it also ispolves
 sule.

We have found that there are aix came rulee wioh appan 40 hold for the and of 3was. Liet them.
(21) \qquad
(22) \qquad
(23) \qquad
(24) \qquad
(25) \qquad
(26) \qquad
If you can't remember the names, look back throuch the acsaicon for fine roderlined woris.

MAIHEATS FOR SESSION IV

```
    Panket A Gams of' Sums
        1 game board
        spinner (0-9) and pieces (2)
        Pack of 15 cards in NNumber of Spins"
        pack labelled as follows:
    3 each nl spinn
    3 each "2 spins"
    3 each n3 spinan
        2 each "l spin repeated twice"
        2 each "l spin repeated twice followed by another spin
                                repeated twicen
        2 each "2 spins repeated twice"
        Fack of 15 cards in "Special" pack labelled as follows:
    Blue
        Hang from the Tree of Ambiguity
        Enjoy Swimming in the Land of Clear Water
        Get Lost in the Castle of Confusion
        Advance the Inverse of }
        Retreat the Inverse of 8
        Advanca the Inverse of 5
        Retreat the Inverse of 4
        Advance the Inverse of 3
Yellow Advance the Result of }7\mathrm{ and }
        Retreat the Result of 6 and 9
        Advance the Result of 4, 7, and 9
        Rerreat the Result of 2, 5, and 8
        Advance the Inverse of 1
        Advance the Identity
        Advance the Inverse of the move you have just made
```


SESSION V

THE GAME OF FLIP THE CHIP
OBلWCTITES:
At the ead of this session the learner should be able to:
(1) Identufy and asme examples of esch of the game rules given the game, elements, and oper*tions of the game.
(2) demonstrate each of the game rules using the elements and operations from a given game。
(3) construct data which support the presence or absence of a given game rule for a particular game.

ACTITITMY ONE

We are going to play the game of Flip The Chip. You say you do not know how to play this game? Would it help to know the elements and operations of the game? Open packet B.

This game is played with two playersg one sitting to the lept of the other. Each player menipulates one piece, a chip which is white on one side and brown on the opposite side. The two players filip their chips together. The elements of the game are the flipped chips which of course will have either a brown or a white side which are showing. The operation of the game involves a consideration of the pattern formed by the two filipped chips. The objyct of the game is to win ten points before your oppoment。 Are you ready to start playing? No, what's the matter? Oh, I see. You don't know how to win a point. fiere is the wey you can win points. If two brown chips are showing at the end of a tirm, then both players win a point. If two white chips are showing, then neither player wins a point. If che chips show different colors and the right player has a brown chip showing, then the player on the left wins a pointo If the chips show different colors and the right player has a white chip showing, then the player on the right wins a point.

If you have any trouble while playing, you may refer to the table below.
Table T

Left Player	Right Player	Who Wins Point
White	White	No One
Brown	Brown	Both
White	Brown	Left Player
Brown	White	Right Player

Now go thead and play until one player wins the game. Have you made any
observations about which player had the adwantage in this game? (i) \qquad You're absolutely correct if you think that you have a $50 / 50$ chance of winning a point.

We can say that at the and of each turing a resultant chip was determined by observing the cclor of the chips which had just been flipped. The "resultant chip will show the same color as the color of the chip of the player who won the point. Remamber., when both players had a white chip showing, neither player won a point. Now, can you nam the color of the resultant chip? (2)
The resultant ohip had to be brownt When both players had frown chips showing, both players won a point. You can easily name the color of the resultant chip.
(3) \qquad - Of course, it was brown. When the player on the right had a brown chip showing, and the player on the left had a white chip showing, we saw that the left player always won a pcint. Therefore, the resultant chip was white。

Now yov try the fourth possibility. The player on the right has a white chip showing the player on the left has a brown chip showing. We observed that the right player won a point. Now you name the eolor of the resultant chip.
(4) \qquad - Very good: The resuitant chip must be white.

Let's summarize our observations in a table.
Table II

Lert Chip	hight Chip	Resultant Chip
White	White	Brown
Erown	Brown	Brown
White	Brows	White
Brown	Whice	White

Observations of the abowe petterns in Table II should enable you to identify certain generalizations. For example, if the right chip is brown, what color is the resultant chip? Brown, white, the same color as the left chip, the color different from the left chip, or can't decide? (5)
You say, you can't decide? Notice that if the right chip is brown, the resultant chip is the same color as the left chip.

If the right chip is white, then what color is the resultant chip? Brown, white, the seme color as the left chip, the color different from that of the left chip, or can't decide? (6)

Don't be bashful. You can observe that if the right ohip is white, then the color of the resultant chlp is different fron that of the left chip.

Now consider the task of identifying the color of the left, right, or resultant chip given information about two of the three chips. But first, let's consider certsir questions related to our previous obsecvations.

What is the color of the resultant chip when the right chip is brown? The resultant chip is the same color the right chip, the resultant chip is the same color as the left chip, the resultant chip is not the same color as the right chip, or the resultant cnip is not the same color as the left chif?
(7) \qquad

You may find it helpril to review the data presented in Table II.
What is the color of the resultant chip when the right chip is white? Again, it may be helpful to review the data from Table II.
(8)

Having consolidated some of your observations about the left chip, the right chip, and the resultant chip, consider Table III, Complete as many of the patterns as you oan.

Table III

Color of Left Chip	Color of Right Chip	Color of Resultant Chip
brown	browa	
white	brown	
whown	white	-
white	white	-
brown	white	brown
brown		white
brown		brown

The accoptable responses to the pattern in Table III reading from botton to top in the table, are winite, brown, brown, brown, brown, white, white, brown.

Since there are only two colors for the chips, the description of what results if the left and right are identified and named can now be fully described. The characteristics of verious resultant chips can be sumnarized by saying:
(1) If the richt chip is brown, then the resultent chip is the (same, opposite) (9) color as the left chip.
(2) If the right chip is white, then the resultant chip is the (same, opposite) (10) \qquad color as the left chip. The acceptable responses are opposite for (2) and same for (1).

ACTIVITY TWO

With the set of elements for the game of Flip The Chip and the method of operating with these elements identified, there is a subsequent task to set for oneself. The task is one of investigating which, if any, of the game rules hold for the game.

First, perhaps you should attempt to recall from Session IV as many of the game rules which we have identified and named as you can.
(11) \qquad (14)
(16) \qquad

Your list should have included closure, reversibility, arranging, identity, invorse and distributivity,

Let's see which of these game rules do hold in the game of Flip The Chip. Recall that there are two spin moves in the game of Sums for which the player arrives at the same position he started. What did we name the game rule illustrated by these two spin moves? (17) \qquad - Yes, of course, that was was our inverse game rule. Was there also a one spin move which accomplished the same thing? Was it a $0,1,2,3,4,5,6,7,8$, or 9 move? (18) The 0 move fits this requirement. It is a move that keaps a player in identically the same position. This is our identity game rule. In the game fof Sums when we spin a 3 and then a 0 in a two spin move, the result of the move is the same as the result of a one spin move of 3 。

Is there a right chip (color) which aiways makes the resultant chip identical to the left chip? Yas or no? (19) \qquad - Let's see if we can find one Consider your performances with the tasks of Activity One。 Try working with various chips such as the patterns provided table IV.

Table IV

Left Chip	Right Chip	Resultant Chip
brown	-	brown
white		white

The candidate for the identity is (20) \qquad - The acceptable response is brown. Hence, the identity game rule holds in the game of Flip The Chip.

Is the game closed in some way? Does the game rule of closure apply? Yes or no? (21) \qquad - How could you investigate this question? What does it mean to say the closure game rule applies? (22) \qquad

Are there any resultant chips which are not brown or white chips? Yes or no? (23) \qquad - Why, of course not: The only resultant chips are brown or white. So, the closure game rule applies.

How about the reversibility game rule? What would have to be true for this game rule to hold? (24) \qquad

If you said something like the following you are on the right track. For each color for a left chip and each color for a right chip the resultant chip's color would have to be the same if we reversed the left, and right chips.

So, this would need to be the case:

Are they the same in this case? Yes or no? (25) \qquad - What is the resultant chip in each case? (26) \qquad - The correct answer is a white chip. Try to construct one pair with colors reversed which does not have the same resultant chip.

Left
Right
Left
Right

Were you able to find a pattern for which the reverse of the pattern gives a different result? Yes or no? (27) \qquad - Since your answer to this question is no, what can you say about the reversibility game rule with some degree of confidence? Reversibility holds or reversflofility does not hold? (cu) \qquad - The acceptable response fis reversibility holds.

There is a aystemmio way you could have investigated all the possibilities for various color arrangements. Construct as many of the different color arrangements es you can in rable ∇_{0} The first exartple wo triod is already included.

Table V

Pattern Left Color BrownRight Color		Resultant Color	Left Color	Right Color	Resultant Color

There are four possible arrangements which you should have examined. Now you can conclude without any reservations that the reversibility game rule does hold in the game of Flip The Chip.

Now turn your attention to the arranging game rule Does it hold in this game? How can you investigate it? We haven't constructed any rules for having three people play the game。 Let's try it now that we are familar with the game for two.

If we have three players, they will sit in a row and all flip their chips at the same time. We will let the final resultant chip determine which players get points. A player urill get a point if his chip is the same color as the final resultant chip. But how will we determine the color of the final resultant chip? We will observe the pattern of the chips for the first two players and use the resultant chip which the rules for two players prescribed. Then we will look at the pattern of the resultant chip and the third player's chip once again using the rules sat forth for two players. Here is an example. Suppose the three players flipped the following pattern of chips. This is the way the final resultant chip would be determined.

Brown

Using rules for two players on pattern for lst and 2nd player

Resultant
White

Using rules for two players on pattern for re sultant chip and 3rd player

Naturally, the lst player is the only one who wins a point since he has a chip the same
color as the final resultant chip.
Now does the arranging game rule hold? Could we find the result for the 2nd and 3rd player first? Try fiilling in the following pattern.

The final resultant is the same as when we found the result for the lst and 2nd player first. The final resultant chip was brown. At least the arranging game rule works for this particular pattern of chips. There is a systematic.way you could investigate all the color paiterns in order to see if the final resultant chip is the same color regardless of whether the lst and 2nd players or the 2nd and 3rd players are arranged tegether rirst.

Construct as many of the different color arrangements as you can in Table VI. The example we tried is already included.

Table VI

What decision did you reach? Does the arranging game rule hold in the game of Flip The Chip? Yes or no? (29) \qquad - The acceptable response is yes since you did not find any examples for whic. the arranging game rule pattern was not true. If you checked all eight possible examples and found them true, then your answer is final.

How about inverse? Is there an inverse for each of the left chips? If the right and left chips are inverses, the resultant chip will be the identity, a
(30) \qquad chip. We observed that the identity is the brown chip.

Letis try one example. Suppose that the left chip is white。 What must the right chip be in order that the resultant chip be the identity, a brown chip? (31) \qquad - You are correct if you said that the right chip should be a white chip. Now we have an inverse when the left chip is white.

But in order for the inverse game rule to hold, each chip must have an inverse. Consider the partial data presented in Table VII and try to supply the missing data.

Table VII

Left Chip	Fight Chip	Resultant Chip
brown	-	brown
white		brown
	white	brown
	brown	brown

What did you decide about the existence of inverses for every left chip? Does the inverse game rule hold? Yes or no? (32) \qquad - Excellentb The acceptable response is yes.

Stince the distributive game rule requires two ways of operating with or manipulating objects and there has been only one way described up to now, it does not make sense to explore tinis game rule. And so, we end up with which game rules holding in Flip The Chip? (33) \qquad

And which not holding? (34) \qquad

MATERIAIS FOR SESSION ∇

Packet B

10 chips

Appraisal - Game Rules
We are going to begin today's session by talking about water Tinging that there are four pitchers of water on the desk in front of you. Ara you thirsty? Be careful!. Two of the pitchers are filled with dirty wear and the others are filled with clean water. We are going to investigate the process of pouring water from one pitcher into another pitcher and we gre going to observe the resultant water to see if it ie drinkable We might note that there me four courses of action for us to the. We could pour clean water into clean water or we could pour clean water into dirty water. On the other hand, we could pour dirty whiter into dirty water or we could pour dirty water into ellen water 。 Are we ready to consiúar a few or these?

Name the game rale which best desaribes each of the fiollowing actions
(Objective 1) (1) The water that results from pouring direy weter into the ciem water is the same as the weter that resulits If we ware to pour clean water finto the dirty weter"

Gams runies
By the way whet is the rasultant water like?
You are right. Ugh! We woulo not went to drent this dirty wetero
(Objective I) (2) If we pour water from cne pitcher ento my other pitchor cum ressultant wator is always aither clean or dirty water. Nofice that we can newer geib Lemonads ase result:

Game rule 8
(Objective 1) (3) The combined acticas of pouring olean watar into dirty weter and then pouriag this resuit into clann wiesr is the same as the combimed sations of pouring clean water into the water that results from pouring dirty water into clean water. In both cases the resultant weter sa dirty!

Game rules
(Objective 2) (4) Using the pitcham of water, describe how you would Illuatroete the identity game rulo.
(Objeotive 3) (5-9) Dotermine winioh of the game rules hold for the pouring of weter (clean or dirty) from one pitcher into another. For each decision which you make, describe the data wifich leads you to your decision. Remember every game rule does not necessarily have to hold. You might find it helpful to look at Tabla I.

Table I

Pour from this pitcher。 Wateri is 8	Pour into this pitoher. Water is 8	The resultant witer is8
Clean	Clean	Clean
Dirty	Dirty	Dirty
Clean	Dirty	Dirty
Dirty	Clean	Dirty

Closure 8

\qquad
\qquad
\qquad
\qquad
Reversibilitys \qquad
\qquad
\square
\qquad
Arranging

Identity:

Inverse:

SESSION VI

EXPANDED NOTATTON - ADDING WHOLE NUMBERS

OBJECTIVES:

At the end of this session the learner should be able to:
(1) demonstrate each step of the expanded notation algorithm for constructing the sum of any two whole numbers of two or more digits as they would be carried out by a machine.
(2) construct a convinving expianaizoon that appeals to observations based on a physical situation for sach step in the expanded notation algorithm for constructing the sum of any two whole numbers of two or more digits.
(3) construct an explanation that axpeals to agreed-upon game rules for each step in the expanded notation algorithm for constructing the sum of any two whole numbers of two or more digits.

ACTIVITY ONE

In today's session, we will investigate an old procoss used to construct the sum of whole numbers of two or more digits. This process is closely related to our familiar base ten number system.

In front of you, you should have packet A. open it now and place the sontents of $\begin{aligned} & \text { bag } i \text { io } y \text { your left and the contents of bag } 2 \text { to your right. }\end{aligned}$ How many objects, letts call them chips, are in the pile to your left?
(1) \qquad - How many in the pile to your right? (2) -

There should be 24 in the left pile and 18 in the right pile. Now, as you might expect, our process is one way that we can arrive at the answer to the question "How many chips were in packet A?"

You could easily count the twenty-four chips and then continue counting for eighteen more units to find the answer to this question, but we want a process that will be easy for combiring any whole numbers, even quite large ones, and counting could be a trifle laborious. Letts agree at the start of the process to define a group of ten of our chips as one stack. This will make combining large numbers a good deal easier, as you will see.

Now that we have this new definition, let!s use it. Can you express your pile of chips which has twenty-four chips in it in terms of stacks? Arrange your chips so they reflect the new term, stacks. What does your original pile of twenty-four chips look like now? (3)

Since you all know that twemty-four has two tans in it, you should have no trouble making two stacks end ther heving four single chips left over. Now go on to the pile of eighteen chips. Arrange these chips using the idea of stacks. How did
this pile and up? (4)

Fine: Sine oighteen has only one ten in it, you could form only one stege and so had aight chips left over.

Now that we have our chips in groups roplenting our new torm, wo car proceed on our way to finding out how masy chips thera are. We said that we formad
\qquad stack (s) from the origimal pile of twentyofour chips and (6) \qquad stack (s) from the originel pile of eighteon chips. You should have no problem remembering two stacks in twentyofour and one in eighteen. Now look at the chips in front of you. Move the stacks together. How mayy stacks are there?

(7)

\qquad - Tou have formeds so far, 思 total of tinree stacks. How inany single ehips are there that are not part of any stack? (8) \qquad - You can assily sae that you hawe four single chips left from the original pile of twentye. four chips and eight single chips from the original pile of eighteen chips. None of theo chips ars in etack. So we have twelve chips that are not in stacks. Can you form any more stacks out of these "extran chips? Ies or no?
\qquad - We're mot trying to trick you, certainly you can. How many? (10) \qquad - No problem here, aither, is there? One more stack can be formed out of the twelve "extren caips. Now are there any chips thet are still "oxtrer? Yas or no, if yes, how many? (Il)
Since we agreed thet one stack had ten chips in it and not twelve, there are two chips that are still not in any stack.

Let's now see where we stand. We had two stacks in one place and one stack in another and we combined them and had three stacks. At the same time we had twelve "extrai chips. Arrange the stacks together. How many stacks do you have in front of your now? (12) \qquad - Righte, one more than your had lais ine you checked. For onily had three last time and ome more makes four. Arter the last time we looked at the number of stacks we had, we asked how many chips were not in stacks. it soems like a sensibls thing to do hara, too. how many mextra
chips did we say we sey we had? (13) \qquad - $A h_{,}$yes! It was
only two, wasnit it. So onx question is mawered. There ware (I4)

Yes, four stacks ard two chips. If you were asked, by someone who didn't know our terms, what the answer to the problem was, what would you tell him? (16) \qquad
\qquad - Certainly, you world say forty-two chips.

Let's quickly summarize the steps we t. . k 。

2 stacks and 4 chips
1 tack and 3 chips
3 stack and 12 chips
3 stacks
1 stack and 2 chips
4 stacis a.d 2 chips

Just take a momen+ now to line-up your stacks and chips like this:

One thing we want n o is to get cur stacks together, but like any game, we must follow the rulec. Are t: e an game rules that allow us tc reverse the positions of the single steck and the :o: cips? Yes or no, and if tes, name it? (17) \qquad
\qquad - Sure, ne have eversibilit, But we skipped
something. Remerber the four chips really are arranged with the two stacks, and the one stack goes with the eirht chips. What game rile may we use to take the four chips and one stack out of heir arrangements and get thein together before we
reverse? (18) \qquad - Good! The arranging game rule will
do it. Let's see what our line-up of the chips would look like after using the arranging game rüle:

Then uaing the reversing game rule, the line up of chips would look sorething like this 8

The next atep involves arranging the four chips and oight chips together What geme rule aro we using? (19) \qquad - Once again we are using the arranging game rule and our linemp will lock like this 8

But now the twelye chips can be formed into a stack and two ${ }^{n}$ extra" chips. The ling-up will look like this:
 we would have the following line-up:

ACTIVITY TWO

Let us now take a look at what this process looks like in regular numerical notation.

$$
\begin{aligned}
& \text { Step 1. } 24+18=(10+10+4)+(10+8) \\
& \text { Step 2. }(10+10+4)+(10+8)=(10+10+4+10)+8 \\
& \text { Step 3. }(10+10+4+10)+8=(10+10+10+4)+8 \\
& \text { Step } 4 \cdot(10+10+10+4)+8=(10+10+10)+(4+8) \\
& \text { Step } 7 \cdot(10+10+10)+(4+8)=(10+10+10)+12 \\
& \text { Step 6. }(10+10+10)+12=(10+10+10)+(10+2) \\
& \text { Step 7. }(10+10+10)+(10+2)=(10+10+10+10)+2 \\
& \text { Step 8. }(10+10+10+10)+2=40+2=42
\end{aligned}
$$

Where do you think our came rules were used in this process? Look at the eight steps above and ask yourself why each step was permitted.

Now, was closure used? Why or why not? (20)

Closure means that we can find the results with our system. Here we begin with whole numbers, and our answer is a whole number. So closure was used.

Was the arranging rule involved in our eight steps above? Yes or nos in yes, in which step or steps? (21) \qquad
The answer to this question is quite clear since the arranging rule wa used in three different steps, 2, 4, and 7.

Probably the next rule to be investigated should be the reversibility rule. Did we use it anywhere? If so, where? (22) \qquad - Good for you, step three is correct.

If you look at the remaining four steps, 1, 5, 6, and 8 you will see that you can justify them merely by appealing to the renaming of numbers.

Notice that we have used our game rules as a convincing argument for the algorithm.

ACTIVITY THREE

Let's examine this expanded notation algorithm in its usual form when we don't use chips to explain it. The addition problem would usually be written like this:

24 ; or this: $24+18$. Since we are using the expended notation algorithm, we 18
will rewrite 24 in expanded notation. What will it look like? (23)

18 would be writtion in the same way. The whole algorithm would look like one of these:

42
The vertical procedure is probably easier to keep track of from the standpoint of bookkeeping. The horizontal procedure better fits an explanation based on the game rules.

PRACTICE EXERCISE

In case you should feel the need, at some future time, to review this session, here is a practice problem for you to work out.

Use the expanded notation algorithm to demonstrate the sum of 39 and 59. Use the idea of the stacks, or some other physical situation to explain adding 39 and
59. What game rules did you use to justify the different steps? (21) .

ANSWERS

For your Activity One, you should have something that looks like thise

$$
\begin{aligned}
& \begin{array}{l}
39= \\
59 \\
59 \\
= \\
5 \text { stacks and } 9 \text { chips } \\
8 \text { stacks and } 9 \text { chips } \\
8
\end{array} \\
& 8 \text { stacks and } 8 \text { chips } \\
& \frac{1}{9} \text { stack and } 8 \text { stacks and } 8 \text { chips }
\end{aligned}
$$

Your Activity Two should have the same steps as we had for our example today, but with different numbers. Since the steps are the same, your rules to justify each ster will be the same as we used to justify ours. Refer to the material in Activity Two after the listing of the eight steps.

MATERIALS FOR SESSSION VI

Packet A

bag 1-24 chips
bag 2-18 chips

RULE OF COMPENSATION - ADDING WHOLE NUMBERS

OBJECTIVES:

At the end of this session the learner should be able to:
(1) demonstrate each step in the algorithm of compensation for constructing the sum of whole numbers as they would be carried out by a machine.
(2) construct an explanation based on a physical situation for the algorithm of compensation for constructing the sum of whole numbers.
(3) construct an explanation based on the game rules for the algorithm of compensation for constructing the sum of whole numbers.

Recall that there are many names for the same n nber, such as $5=3+2,3+1+1,4+1,1+4,2+2+1$, and +3 . This is quite a few names, so, for the present, let us limit the number of names by restricting ourselves to names with no more than two addends greater than zero. What other name can you think of for the number 4?
(I) \qquad - Are there any other possibilities?
(2) \qquad - If so, list them.
(3) -
Did you list $3+1,2+2$, and $1+3$? These are common acceptable responses.
ACTIVITY ONE
Place the materials from packet B on the table. Now before you is a group of phyeical objects. How many are in the total group?
(4) \qquad - You should have 8 objects. Regroup these objects so they express one of the other names for 8 . Write how you regroup them. (5) \qquad - What other possible regroupings
are there? Regroup the objects and write your answers. (6) \qquad

All the possible regroupings are: $7+1,6+2,5+3,4+4,3+5$, $2+6$, and $1+7$. Return the materials to packet B after you have finished.

AC TIVITY TWO

Since we are going to base the phyoical representation of our algorithm on regroupinc of objects, let's try a second example of regrouping. Place the contents of packet C on the table. There are 16 objects this time. Regroup these 16 cojects so they express another name for 16. Now write down all tio possibilities as you idertify them. (7)

Check to be sure your answers are complete. The iorrect regrcupings ares $1+15,2+14$, $14+2$, and $15+1$. Please replace the objects \therefore nacket C 。

ACTIVITY THREE
Place the materials from packets D and E in separate groups on the table. How many objects are in each group? (8) \qquad - We want to construct the sum for these groups of 13 and 18 objects. The procedureswe might ordixarily use to combine these groups are not necessarily th eaciest ones. What way of ragrouping these objects can rou think of so as to ma.e t.... ombi'ing easier? (9) \qquad It is usually quite easy to worl wits muitiples of ten, isntt it? how coild you regroup one of your groups so as to make the oth ar group a multiple of ten? (10) \qquad - There seem to be two possibilities, aj egroup the 13 group as $. L I+2$ and then combine the 2 with the 18 group, or (b) regop 18 as $11+7$, and then combine the 7 with the 13 . Since (a) makes it necessary tic ove rnly two objects, let's inse it.

We now have a group of 20 objects. Er. t hat is the advantage of anjng 20? (11) \qquad

Don't you think that having that zero to work with is easier than worning with the 8 you had before in 18. What is the total number of objects? (12)
The answer is obviously 31. Please return the objects to the packets before going on!

ACTIVITY FOUR

Let's identify how this regroup:"g facilitates finding the sum with . ire than two addends. Place the contents of pacet. F, G, H, and I in seprate group on the table. One packet has 28 objects in it, one 772, one 94, and th. last 79. You will notice that we have three types of objects, nelred bundles, ten buas, and units. Using the ee objects in groups, let's work a pirtiom step jy step an : ste the procedures we
through. go through.

The problem is $28+172+94+79$. (We will use the horizon.al form to :ake identifying the game mles easier.) How could yu regroup to make some of the addends a multiple of ten? Don't hesitate to try it. it i:n't really very hard. (13)

Did you get $30+170+100+73$? Good!
Can we regroup this new set of addends to com up with some addends that are multiples of a hundred? Try it! What was you corclusion? Yes or no? (17) When you regrouped did you get the result $(30+1 ; 0)+100+73$? Fine! Why was the 30 grouped with the 170? (18)

Naturally, the 30 was regrouped with the 170 to get addend of a multiple of a hundred. What do you get when you regroup 30 and 170 ? (19)
Naturally, you get 200. Now then, what will the final addenus be? (20)
\qquad - Right! 373.

If you were skeptical as to the advantage of our regrouping when we used only two addends, the advantage should be clearer now. Compare the ease of seeing the final answer in the original problem: $28+172+94+79$ with $200+100+73$. You should agree that the answer is seen much easier with the zeroes than without. Flease return the materials to the packets.

ACTIVITY FIVE

Let's now discuss the game rules. Did we use the game rule of closure? If so, how? (22) \qquad

Of course, when we combine two groups of objects each of which has a whole number of objects in it, we will always get the result of a third group that also ha a whole number of objects in it. Did we use arrangement any place? If so, where? (23) \qquad

We used the arrangement gama rule to put the 2, which was originally within the 170 , with the 28, and also to put the 6, which was first with the 73, with the 94. This is shown in more detail in the example below.

$$
\begin{aligned}
28+172+94+79 & =28+(2+170)+94+(6+73) \\
& =(28+2)+170+(94+6)+73 \\
& =30+170+100+73 \\
& =(30+170)+100+73 \\
& =200+100+73 \\
& =373
\end{aligned}
$$

Renaming is not a game rules; but did we use it? Yes $\neg \mathbf{r}$.o? (24) Where did we use renaming? (25) \qquad

We renamed where we regrouped, so we renamed 172 as 170 and 2 and also we renamed 79 as 6 and 73. Did we use any other game rules? (26)
Since we are not interested :in whether or not any other game rules hold for this method of combining, but whether or not any others were actually used, the answer is no.

PRACTICE EXERCISE

I. Place the contents of packet J on the table. Physically regroup the 18 objects which are in front of you. Write down as many different regroupings as you can.
2.- Demonstrate the algorithm of compensation as shown in the example in Activity Five using $276+454+82+69$. Show all steps.
3. Identify each step in which you used a game rule in the demonstration of the algorithm in part two above. Name the game rules and list the steps in which they were used.

ANSWERS

1。 $17+1,16+2,15+3,14+4,13+5,12+6,11+7,10+8,9+9,8+10$ ， $7+11,6+12,5+13,4+14,3+15,2+16$ ，and $1+17$ 。

2．This is a possible procedure：
$276+454+82+69=$
Step 1。 $276+(4+450)+(81+1)+69=$
Step 2。 $(276+4)+450+81+(1+69)=$
Step 3． $280+450+81+70=$
Step 4． $280+(20+430)+81+70=$
Step 5。 $(280+20)+430+(81+70)=$
Step 6．$(280+20)+430+(70+81)=$
Step 7．$(280+20)+(430+70)+81=$
Step 8． $300+500+81=$
Step 9。 881

3．Arranging was used in order to get steps 2，5，and 7。
Reversibility was used in order to get step 6．
Closure was actually used in order to write all the steps since closure is needed to be sure the sum of whole numbers is a whole number．

MATERIAIS FOR SESSION VII

Packet B

8 chips
Packet C
16 chips
Packet D
13 chips
Packet E
18 chips
Packet F
2 bundles of 10 toothpicks +8 single toothpicks
Packet G
1 bundle of 100 toothpicks, 7 bundles of 10 toothpicks, +2 single toothpicks

Packet H

9 bundles of 10 toothpicks +4 single toothpicks
Packet I
7 bundles of 10 toothpicks +9 single toothpicks

Packet J

18 chips
Packet K
4 bundles of 100 toothpicks, 13 bundles of 10 toothpicks,
+13 single toothpicks

Appraisal - Adding Whole Numbers

Have you ever seen people solving arithmetic problems in ways that looked quite unusual to you? There are many unique procedures for the arithmetic we usually take for granted. The interesting and valuable fact, thou n, is that these procedures can all be explained in terms of the game rules. This is one reason these rules are so useful and important.

Consider the following algorithm:

The steps taken in performing the above algorithm might have looked iike this:

1. 168
91
$+47$
2. 168
$\begin{array}{r}91 \\ +47 \\ \hline 1\end{array}$
3. $1 \not 188$

4. 188

5. 188

6. $2 \not 28$

1
7. 188
8. $18 \not \subset$

This is called tra scratch method for adding whole numbers.

Now look at this example:

1. 49 $\frac{+884}{3}$
2. $4 / 9$
$\frac{+884}{32}$ 1
3. 49
$\frac{+284}{52}$
4. 49
504
823
5. 449

6. 49
$+884$ 873 12 $\frac{43}{433}$
(Objective 1) (2) Demonstrate this example in horizontal form:
(Objective 1) (3) Now name the game rules that were used in going from one step to another in your horizontal form. This response can be recorded below or beside the steps in your horizontal example above 。
(Objective 2) (1) Open packet K. Use the objects that you find in Whis packet to construct an explanation for the algorithm you have just seen. Draw pictures and/or write an explanation below to tell what your explanation is.
(Objective I) (4) Solve the Pollowing problem, demonstrating the saxe algorithm (seratch mothod) as we used at the beciming of the appraisels

328
169
$+43$

SESSTON VIII

WHERE?
OBJEC TIVES:
At the end of this session the learner should be able to:
(1) demonstrate the addition of ordered pairs of whole numbers.
(2) construct a physical explanation for the algurithm for adding ordered pairs of whole numbers.
(3) demonstrate some of the game mules for adding ordered pairs of whole numbers.

Last week I took a trip to a fascinating town with some rather unusual features. It is called "Where", and there are several outstanding sights to see there; but before we were able to see any of them, we had some problems to solva. The bus had let us out at the corner formed by the intersection of two streets, both of which seemed to be named "O". We hailed a cab and then took a look at the map we had been given. The map indivated the locations of some of the places to see, and \because decided we would like to go first to the Cathedral; that's when our troubles began. The streets were laid out and labeled as show below. What should we have told our driver?

Cathedral Museum Art Jallery Catacombs Old Castie X

How would you have directed someone to get to the Cathedral?
(I)

Sure, I know; and we did try by-passing directions and said, "Take us to the Cathedral." The cabdriver answered, "Which one?" Of course, at that point we almost resorted to pointing to the map, but somehow that didn't seem fair. Anyway, it wouldrlt help for the next time. The result was that everyone tried a different set of directions and no one understood anyone else. By this time we weren't even sure of East-West, so that suggestion went down the drain. Then came the gripping. Why didn't they letter or name one set of streets??? We couldn't even use going "ahead" or "left" since we didn't know how to say which was our position. However, in our discussion, the reason for having two sets of names for two sets of streets did become apparent.
A.?ter all, everyone would know how to go to 2nd and B Sts. Our driver, who had been taking all this in as he smoked and lounged, suddenly stuck his oar in and asked "What is clearer about telling a place by a letter and number rather than using 2 numbers? It's perfectly clear to us: What kind of rule or clue do you think they had that made it clear to them? (2) \qquad

Come on, guess. And what would you have said th the driver? Everyone turned on him and demanded "How do you know whech of the two strusts with the same name to go to?" To our chagrir, he aughed till he wept and said, "De:it tell me no one remembered to tell you?" "Tell us? Tell us what?", we cried in fury. I guess he decided it would be safer to tell us the secret. What do you think he said? ..ny of a number of methods might work,
so list a few and see if one agrees with the people of "Whers". (3)

When they spoke of an intersection, the natives us:d the numbers of the two streets, but they always gave first the number designating tine labels on the horizontal of the grid shown below. Sometimes this direction is called 'uver', and the second direction "Up". SO, for the remainder of our stay in "Where", wien we saw something like "five, three": or (5,3), we knew we first went five street. in the direction of the arrow.

$\cdots \quad \rightarrow$ First number

Despite the wasted time, we had a lovely visit, and what's more we learned to receive and give directions for getting around "Where".

Just in case you decide to visit this delightful place, letis practice getting around there. First, this notation has a name, and since it involves a pair of numbers written in a specific order, what is more natural than "ordered pair". The ordered pairs (1,2) and $(4,3)$ have been graphed below.

fro the packet of graph papers，take Grad and on it mark（3，1）。Come on，don＇t hold back．Geve it a try and if neressa，ress．When you have marked it，look It Grid Ia to see if you agree．Tf your d：rit in the same place，go to Grid III and tiy some rore。 If yc！were roshts 00 ．

Using th：ordered pair nota＂：，is ake af trips．Inis notetion allows moving on stresta only（no crossing mpty jotsi）。 Before we start，take our Grid IV。
 becarse w ha e to make a stop on the wh a lete ge to（ 2,5 ），which can also be read as 2 ＇Ove：a d 5 ＂Upi．Youll see this part of the trip marked on Grid IV． Tr：e sacon p i of the trip to（ 8,7 ？will be writiten in the same way．What trip would
you thike from $(2,5)$ to get to $(8,7)$ ？（ 4 ） \qquad ＂Oyex and（5） \qquad
＂Jp＂．Do we agroc？Did you get $(6,2)$ ？Gcods yoalve sarned the trip；starting where se marking encis at（2，Grid IV，you put in the second part of the trip．Te made this urip to $(8,7)$ in two parts，but what if we didn${ }^{8} t$ need to make a stop on the Way？What single Over and Up trip would you take？
\qquad －Was＂t（ 8,7 ）？Of course．Mark it on Grid IV．

You＇re doin so well，it＇s time fer a sol：Us：gid IV and starting $24(0,0)$ áaiz：mark thi two－part trip on the trent plens（ l_{3} ）and then（4，4）．

And where did you end this time？＂i） \qquad Same placa $(8,7)$ ？

Very gcod．Wetve only taken two trips nith different stopovers but the same destination． Now look at the Giid and just think of the number of trips ou could take in two parts and a weys enc on（8，7）．Quite a few，ar，it theref and ive been woadering，did we cravel an funther，or perhaps less，in a two part irsp tn n a one－part trip to the same place？，l） \qquad －If we look t the Gring，it shows that you travel the same number cf streets over and the same number up whther we go there in the most direct manner o：mske a stopover on the way．Thene ought tc be some big discovery we can make frcm this！Letli look again at the ordared pairs．

First trip：$\quad(2,5: 9$ then $(0,2)$ ，to $(8,7)$
Second trip：$(4,3)$, d $\quad(4,4)$ ，to $(3,-)$

Our markings on tine grid and t＇e ordered peirs seem to be caying the same thing．Take a crac＇at wo dir；what you see．（9）

How does the ollowing compare with wat you ail？＂ne sum of the＂Ovens＂in the two－ part trin equalstre reri＂on the one＂part trips and the same is true of the＂Ups＂）。 No？Y i don＇t agres lease，say i．t isn＇t so，but if you s＂lly think tee statement is false，please ge over the last souple of paragrapis．Whes this is clear，see if your agreesent will include replacement of the word then with plus and the word to with equals？

This world give us $(2,5)+(6,2)=(8,7)$ and $(4,3)+(4,4)=(8,7)$. Has this been true for every example you have tried? Yas or no. (10)
Then, for the time being, can we agree that for two ordered pairs o whole numbers:
$(a, b)+(c, d)=(a+c, b+d)$? Yes or no? (Il) \qquad - If you would like to test more or just practice use Grid to praph some of the trips l'sted there。 Be sure to fill in the blanks for the trips and compare with the orip checks at the bottom of the grid A FTER you graph and write each trip.
ini all of this exploration today what, have ee been working with? What elements? (12) \qquad

\qquad - What, all this time and we' :e still on addition! So our objects or elements are ordered pairs and our overatioa is addition. When we add two or rore of oxi elements will we always get arother element? Or pat another way when we adr tw crdered pairs will we always get anot er pair? Yes or no? (14) \qquad。
It is trut that we have not tried all pairs or carrisd out a formal procf, so we must hedge cur answer and say that as far as our experience goes, we alzays got anotheri ordered pair when we add two or more ordered piirs. Hence, we can say that the game rule of closure appear 3 to hold for adding ordered pairs.

Now add $(3,2)$ and $(5,8)$. (15) \qquad - Try it in leverse by adding $(5,8)$ and $(3,2)$. Does it matter in which order you do the addition? Yes or no? (I6) \qquad - Try at least o re rexample with otl:er pairs and cherk. (IT)

Which game rule are you testing? (-8)
The reversible game rule is being testea here Ca: rou find an example of addition of ordered pairs which is not reversib:e Yes or no? (19) Since your answer is no, you probabl, feel that the reversibility game rule holds for adding ordered pairs. We do have a fairly good argument, but we cannot be sure that an example will not turn up sometime later which vill force us to a different conclusion.

Try adding any three ordered pairs. Ded the answer depend upon which two pairs you arranged together and added first? Yes or ro? (20) \qquad - What support do you have for your answer? (2I) \qquad
on i example pr ably look something like this:
$[(2,3)+(4,7)]+(1,5)$

What game rule ace you testing? (22) \qquad
Does this gamy r: le hold for addition of ordered pairs? 23) \qquad

Did you place an: restrictions on y ur conclusions
(24) \qquad
\qquad - If yes, which rest fictions? \qquad
\qquad

You can a. as support your answers by trying sore examples. However, our use of a few examples does not prove that it holes for all case s, so again it is best to add restrictions. Thin lets say, until we find evidence to the contrary, the reversibility and arrangement game rules hold. In that case, we have construe ted the sur of ordered pairs; we have cons rusted a convincing explanation of the addition using the physical representation: of the \hat{i} rid; we have demo: strateci some of the game ruses for the operation of addition.

Conc:atiJ.aさions!

Performarce Tasks

(Using the algorithm for addition of oxdered pairs of whole numberso)

1) $(20,12)+(72,91)=$
2) $(13,16)+(7,8)+(22,41)$
3) $(4132,271)+(2,3)+(7,30)+(21,420)=$
4) Which "game ruies" can we demonstrate in this addition?
5) Can ycu think of ancther way to physically represent this algorithm? If you can, construet an outiline of the procedure.

Answers to Peiformance Tasks

1) $(92,103)$
2) $\left(42,65^{\prime}\right)$
3) $(4162,724 ;$
4) An additife identity exists; every element has an additive inverses the "olosure", "armangement" and "reversibijity" zame rules apply.
5) We cannot state a "correct" answer for this itom since there may be many answers. If you could not think of an answer, just keep in mind the grid idea which we used.

ERİC

GRID III

Remember: The first component of an ordered pair means "go to the right along the horizontal line". Go to 5 along the horizontal o-line on the grid belows now ge "up" from there 3 lines. You just plotted $(5,3)$. Try anothers (2,4). Want, mores Okays $(12,7),(4,6),(8,2)$. Answers are on Grid III-A.

$G R I D$ III $-A$

GRID IV

'GRID \bar{Z} Fill in blanks for the 6 trips to the right of the gride graph each trip; check trip notation at bottom.

Checks I. $(2,1),(8,2),(10,3)$
2. $(0,2),(10,1),(10,3)$
3. $(8,4),(5,8),(13,12)$
4. $(6,6),(7,6),(13,12)$
5. $(1,8),(11,1),(12,9)$
6. $(7,3),(5,6),(12,9)$

Second Eyperimental Edition

MATERTATS FOR SESSION VIII
6 grids attached to last page of Session.

SESSION IX

MORE WHERE?

OBJECTIVES:
At the end of this session the learner should be able tos
(1) demonstrate the addition of integers ramed by ordered pairs of whole rumbers.
(2) construct physical exp anatior fo\% the algorithm row adding integers named as ondered pairs oii whole number..
(シ) demonstrate the game rules for a ins integers named as ordered pairs of w.:.? numbers.
 discoverse about the streets and trips t it could be mad on them. Look at Grid VI and lets review briefly. If we wanter to maks atrip tr ex on
this gr:d, ould do it by naming ar. (1)
which woind teil us how it ge here if we started at the point of intersec-
tion (2) \qquad - You are remembering accurately if you said we wouid came ax: "ordered pair: ano that our starting point would be (0,0) 。 What ordered pair would name $t=$ eatan of the Δ or Grid VI? (3)3)
\qquad - We should keep $\because m, r t$ ar ordered pain can be used in two ways; it can name the parts $\because 2$ or ar name a particular location on the grid or map. If you said the Δ loc so: culd be ramed by $(10,5)$ you were correct.

Another thing we did with the Jrips last session to combine jwo or more trips to get to some specific geation and to study the varicus ways this could be done. For example, on Grid VI again a trip of (4,I) followed by a trip of (1,3) would get you to which point on the grid? (4) - The correct point is ins cirr a po.nt on the grid.othe ordered pair (5,4). We represen be tr $4, \therefore 1$ trip as $(4,1)+(1,3)=(5,4)$ and rotice that $(a, b)+(c, d)=, 5)$ \qquad for any case of adding ordered pairs or making two consecutive trips with the first one starting at (0,0). The last answe: should have been ($a+c, b+d$). If you did not get this it might be weil to get out Session VIIII again and review the first few pages.

There are some other interesting characteristics of travelling in "Where" that can be brought out more clearly in we study the map or gisd which we have been using to indicate our trip. Liok at frid VII. This is a grid of the town on which some diagonal lines have been dramn. We shall call these diagonal lines, "avenues", but they shall ditifer from ordirary avenues in that we
shall not travel on them. We shall use them only to call our atterstion to the particular street intersections which they connect. Choose any one of the avenues; say perhaps the one through the point $(2,0)$. Have you located it?
(6) \qquad - If not, you may notice that there is an arrow pointing to it along the lower edge of the grid. Is that the one you had already picked? Goodl Write ordered pairs which name two of the points on the avenue.
(7) \qquad - You may have written $(2,0)$, or $(3,1)$, or $(4,2)$; or $(5,3)$,
or (10,8), or any of many other choices. Now, use the two points $(4,2)$ and $(5,3)$ to take two trips; first, use one of the ordered pairs to take your first trip, then the other for your second trip as we heve done previous:y by starting at
$(0,0)$. What is the orclered paic? \qquad - What avenue did you land on? (9) \qquad - Illl bet ! can teli youb I'll bet you
landed on the avenue which goes through the point na d by the ordsred pair (9,5). Right? Now pick any other two points on thes avenue chrough (2,0) and use them to make two more trips in t'e same fastion. 10) \qquad - What a enue did you 'and on this time?
(11) \qquad - You maj not slieve it, but IPll bet I can still tell
you. You landed on the avenue througis the point (4,0) didn't you?
(12) \qquad - Reme ber I am just naming the arenue, not the
specific pointl Now, am I right? (13) \qquad - Goodl ItIs the
same avenue as the previously landed on, isn't it? (14) \qquad -
Do you wonder how I guessed that since I didn't now ho partisular points you had named? No, it's not magic, and I didret peec over your shcuider. Let'stry some other cases. Consider the avenue through the point (3,2). Name any point on that avenue. Have you made your choice? Now name any point on the avenue
through the point $(7,4)$. (15) \qquad - U"ing tine ordered
pairs that name the points you have chosm, take the indica ed ...s and decide which avenue you land on. Remember that yo... may actually coun. \because the trips on the grid or you may add the ordered pairs as we did last sessic. . hich avenue did you land on? (16) \qquad - III bet itts tire same avenue that the location $(10,6)$ is on. Is it? How could I predrct your answer not knowing the specific points you started with? (17)

[^1]avenues. Say $(8,3)$ and $(3,2)$. Add the trips or add the orderea pairs. (19) \qquad - Is your answer the same as mine?

I got (11,5). Goodl Now try two other locations on the same two avenues. Let's use $(2,4)$ and (1,0). This time the sum or result of the trips is
(20) \qquad - I got $(10,4)$. Did you? Goods

Now, what were the three answers? (21)
Right! We have (8,2), (11,5), and (10,4). Locate these three points in the grid if you haven't already done so. What do you notice about them?
(22)

Did you notice that all three answers lite on the same avenue? Gocdl Now do you see how i knew what your answers were in the previous examples? Can you make a statement about these results? (23)

You should have said something like the followizgs Any time you are allowed to name points from a given pair of avenues or a single avenue and add them the resulting locations or points will be on the same avenue, whatever the choice of ordered pairs. Let's see theng if we add ordered pairs on the avenue thrcugh $(4,7)$ to ordered pairs on the averue through $(4,3)$, the result will be on the动辛 avenue through (24)
Did you give as an answer (8,10) or some cther ordered pair on that same avenue? It is as though we were acually adding the arenues when we added the representative ordered pairs. We actrally can think of $\dot{\mathrm{i}} \mathrm{t}$ in that way. Do you see why the avenues seemed rather interesting to me?

Last session we added ordere pairs and discovered what seemed to be some appropriate game rules for the add:tion. What were these game rules?
(25) \qquad

Did you write down just three game rules? !hey were :iosure, reirersibility and arranging. Consider the following examples. Write the name of the game rule which each example illustrates.

1. $(8,6)+(3,2)=(11,8)=(3,2)+(8,6)(26)$
2. $[(3,1)+(4,2)]+(5,3)=(7,3)+(5,3)=(12,6)$ and $(3,1)+[(4,2)+(5,3)]=(3,1)+(9,5)=(12,6)$
(27)
3. $(3,5)+(6,1)=(9,6)$
and $(a, b)+(c, d)=(a+c, b+d)$
for all ordered pairs ($a, b j,(0, d)$
and $(a+c, b+d)$
(28)

Did you write in your answers? If net be sure to do so before looking at my answers. The first one is an example of reversibility and the rule of closure. The second one illustrates arrangemert aid the rule of closure. The last one illustrates the rule of closure.

Do you think that these same game riles would hold if we were thinking of avenues instead of just the ordered pairs? (29)
How could we distinguish between addirg ardered pairs which represent avenues and just adding ordered pairs? Welly we míght make a speaial mark on the ordered pairs representing avenues. For exampe, we might say the ordered pair $(3,2)$ represents the avenue when we write it this ways ($\overline{3,2}$). Now, if we put these marks over the ordered pairs which represent averues, will the previcus three examples hoid for avenues as they did fir ordered pairs?

$$
\begin{aligned}
& \text { I. }(\overline{8,6})+(\overline{3,2})=(\overline{11,8})=(\overline{3,2})+(\overline{8,6}) \\
& \text { 2. }[(\overline{3,1})+(\overline{4,2})]+(\overline{5,3})=(\overline{3,1})+[(\overline{4,2})+(\overline{5,3})] \\
& \text { 3. }(\overline{a, b})+(\overline{c, d})=(\overline{a+3, b+d})
\end{aligned}
$$

Has the reasomableness of the answers changed? Yes or no? (30)
No! It appears that everytning stiril holds. Does this prove that olosure, reversibinity and arranging hold Lor the addition of avenues? (3I) \qquad - Well, we weild have to say it does not really prove the fact, but it does give us evidence to make us confident that they probably hol.d. As a matter of fact, until somesre proves they do not hold we shall accept them and use them as if tiey do raid.

Now, do we have any other i"teresting properties when we add these averues? Get cut Grid VII again. Considor the following examples and find the answers by taking the trips or by addacg the ordered pairs and then locating the resulting avenue.

$$
\begin{align*}
& (\overline{3,1})+(\overline{2,2})=(32) \\
& (\overline{5,2})+(\overline{1,1})=(33) \\
& (\overline{7,2})+(\overline{5,5)}=(34)
\end{align*}
$$

Did you get the answers $(\overline{5,3})$, $(\overline{6,3})$, and $\overline{12,7}$) respectively? Compare ine avenue you started on in each case to the avenue you landed on. What seems to be true? (35)

Did you find yourself ending up on the same avenue as was named by your first ordered pair? In other words $(\overline{5,3})$ is the same avenue as ($\overline{3,1}$) and ($\overline{6,3}$)
is the same avenue as (36) \qquad -

Did you write ($\overline{5,2}$)? Good Finally ($\overline{12,7}$) is the same avenue as (37)
\qquad - Yes, it is the same as the one we started with in that example, $(\overline{7,2})$. Now what about the avenues named by $(\overline{2,2}),(\overline{1,1})$ and $(\overline{5,5}) ?$ (38)
Did you notice that these names were all for points on the same avenue? Goodl Let's summarize what we have seer in the last paragraph. We started with an avenue and we landed on \qquad
Yes, we landed on the same avenue. Ir each case we were adding the same avenue to the avenue we started with. This avenue could be identified by the fact that the first and second numbers in the ordered pair were (40) \qquad - Yes, they were the same. We could put these two facts together and say: (4I) \qquad
\qquad
i
In the above statement you might. represented by ordered pairs avenue the result is the (42)

When we added a number to another number, and the result was the same number we started with, we called this the ideatity game rule. We might call the avenue with this same characteristic, "identity avenue". Try some morea

$$
\begin{aligned}
& \overline{(2,5})+(\overline{8,8})=(43) \\
& \text { named by }(\overline{2,5}) \text { ? Yes, since the resul is }(\overline{10,13}) . \\
& (\overline{4,4})+(\overline{3,3})=(44) \\
& \text { named by }(\overline{4,4}) \text { ? Yes, the result is }(\overline{7,7}) \text { which represents the same avenue } \\
& \text { avenue. }
\end{aligned}
$$

Now, with "identity avenue" which game rules hold? (45) \qquad .

What other game rule did we know which involved a single operation?
\qquad - Remember it was closely tied in with the idemtiti game rule. Does that hint help? Yes, we had an inverse game rule for some of our games. Did the inverse game rule hold for the addition of whole numbers? Yes or re? (47) \qquad - Write an example to illustrate what's we would look for if we were trying to find an inverse for
a whole number.
(4.8) \qquad
\qquad
Did you write something like $3-\square=0$? What can go in the box? (49) That is right. There is no whole number which will go in the box and give us a true sentence. Therefore, we say that the inverse game does not hold for addition of whole numbers. Io have an inverse we must
get the (50) \qquad for our sum. Did you write "identity"
in the blank? Goods
Do we have inverses in this new system of avenues? What is the "identity avenue'? (51) \qquad - Yes, we recognize that "identity avenue" is ($\overline{8,8}$) or we ovid name it by any other ordered pair whose first and second elements are the same. Could we get "identity avenue" as a result when we add two other avenues? Consider (2,3) in the following examples

$$
(\overline{2,3})+(52 ; \ldots \sqrt{5,5} \ldots \text { We used one of the ames for }
$$ "identity avenue", but we know we could have chosen from many other names Did you fill in the blank? Go back and tiny if you haven vt done so. The blank could be filled in with (3,2) couldst it? Try another examples

$$
(\overline{5, \overline{2}})+(53 ;
$$

$=(7.7)$ This time the blank can be filled in with (2,6)。

Do you suppose we can always get "identity avenue" as a result, no matter what avenue we start on? If you are uncertain, try several examples like the ones just given.

Sine we can start with any avenue and find an avenue to add to it and get "identity avenue" as a result which game rale appears to hold for these avenues. (54) \qquad - Yes, the inverse game rule, which we did not have for the whole numbers, appears to hold for these avenues.

We can now summarize again by listing ali the game rules which appear to hold for addition of these avenues (55)

```
55:
```

Did you list closure, arranging, reversibility, identity, and Inverse? Good

PRACTICE EXERCISE

1. Show the following exampies as trips on Grid VIII。
a) $(\overline{3}, 6) \div(\overline{4,7})=(\overline{4,7}) \div(\overline{3,6})$
b) $[(\overline{1,2})+(\overline{3,1}!]+\overline{2,4})=(\overline{2,2})+[(\overline{3,1})+(2,4)]$
c) $(\overline{8,6})+(\overline{2,2})=(\overline{10,8})$
d) $(\overline{5,1})+(\overline{1,5})=(\overline{6,6})$
2. Find the sum of the two avenues by using the algorithm for adding avenues named by ordered pairs.
a) $(17,9)+(72,91)=$
b) $(\overline{11,14})+(\overline{7,8})+(\overline{21,40})=$
c) $(\overline{432,27 \mathrm{i}}):(\overline{1,2})+(\overline{7,30})+(\overline{17,416})=$
d) Which game rules can we demonstrate hold for this addition of avenues?
3) Can you think of another way to physically represent this algorithm? If you can, ourstruct an cutine of the procedure.

ANSWERS

2. a) $(89,100)$
b) $(37,62)$
c) $(4.57 .719)$
d) An identity eists for additicreg every element has an inverse for additiong the closure, arranging, and reversibilitiy game rules apply for addition.
GRID DI

\therefore GRID VII

Second Experimental Edition

MATERIALS FOR SESSION IX

3 grids attached to last page of Session

SESSTON X

ADDIN'i ARROWS

BJECTIVES:

At the end of this session the learner should be able to
(1) demonstrate tre procedures of an algorithm for finding the sum of two p.sitive integers, чwo negative injegers, a positive and a negative integer when they have the same magnitude, and a positive and a iegative integer when the positivs intoger has the greater magnitude.
(2) construct a convincing explanation that appeals to observations based upon the manipulation of arrows for each procedure in the algori' hm for constructing the sum of two integers.
(3) construct a convincing explanation that appeals to the game rules for each procedure in the algorithm for constructing the sum of two integers.

When ta were exmmining some of the algorithms for adding whole numbers, we made se of three of the game rules. The game rules of closure, arranging, and reversibility rere all used to explain the algorithms with whole numbers. There are three other game ulas which we didn't mention in connection with the algorithms for addition with whole uumbers: identity, inverse, and distributive. However, we have observed that the identity same rule holds for addition of whole numbers.

That is the identity for addition of whole numbers? (1)
The number is zero of course. In the last session we observed thet the inverse game rule did not hold for adding whole numbers. The whole number 5 does not have an inverse for the operation of addition since there is no whole number which we could find which wen added to 5 results in zero - the ideatity for addition.

Well, this takes care of the identity and inverse game rules. The identity game cule holds and the inverse game rule doesn't hold for whole numbers. What about the distributive game rule? Does this game ruie hold for addition of whole numbers?

Les or no? (2). \qquad - We can't answer yes to this because the
distributive game rule involves more than addition of whole numbers. It involves $t: 0$ operations.

We can see that our set of whole numbers is deficient for the operation of addition. One of the game rules simply doesn't hold for addition of whole numbers - the inverse game rule. Notice something else. One of the following number senteices cannot oe made into a true sentence by writing the nams of a whole number in the box:

$$
2+\square=8 \quad \square+5=8 \quad \square+5=7 \quad 3+\square=7 \quad 3+\square=2
$$

Which ones eannot be made into true sentences? (3)
$3+\square=7$ can be made into a true senterce by writing 4 in the box. However, you are right if you said that there was no whole number which you could add to three so that the resuli would be two.

What we need is a better number system than the whole numbers. The addition of avenues named by ordered pairs which we looked at in the last session doesn't give us this trouble. For instance, examine (2,1) $\square=(4,5)$. What is the ordered pair which we would write in the box in order to name an avenue that makes the sentence a true sentence? (4) \qquad - ($\overline{4,2}$) wouldn't be correct, but ($\overline{2,4}$) would be.: There are other names for the avenue named by ($\overline{2, T})_{\text {. }}$ ($\overline{4,6}$) would be one of those names since $(\overline{2,1})+(4,6)=(\overline{6,7})$ and $(\overline{6,7})$ is another name for the avenue named by (4,5). In fact, we can always find an ordered pair that will make any sentence involving addition true.

The system of numbers involving avenues named by ordered pairs with addition seems to be superior to whole numbers with addition. Can you recall what game rules appeared to hold for adding avenues named by ordered pairs? Examples for these game rules are given below. See if you can supply the names.

There is an avenue named by $(\overline{2,2})$ such that $(\overline{3,4})+(\overline{2,2})=(\overline{5,6})$ where $(\overline{3,4})$ and $(5,6)$ name the same avenue. (5)

The sum of two avenues, such as $(\overline{2,1})$ and $(\overline{3,8})$, is an avenue, $(\overline{5,9}) \ldots(6)$

$$
\therefore(\overline{3,6})+(\overline{2,8})=(\overline{2,8})+(\overline{3,6})
$$

For each avenue such as $(\overline{3,7})$, there is an avenue \square such that $(\overline{3,7})+\cdots=$ ($\overline{9,7}$). (8)

$$
\begin{equation*}
(\overline{2,1})+(\overline{3,9})+(\overline{1,4})=(\overline{2,1})+(\overline{3,9})+(\overline{1,4}) \tag{9}
\end{equation*}
$$

\qquad -
The correct responses in reverse order are: arranging, inverse, reversibility, closure,

All of the game rules which held for the whole numbers a remember we listed them earlier: closure, arranging, reversibility, and identity - also hold for addition of avenues named by ordered pairs. Since the inverse game rule also holds for addition of avenues named by ordered pairs, it looks like these avenues are really superior to
whole numbers.

We call this new set of numbers which we created in the last session integers. All the game rules hold for addition of integers

Last session we talked about integers as avenues named by ordered pairs. Another way we can represent integers is to use arrows. There are a number of arrows in packet A. Take them out and welll see how we can use them. First, arrange them by size。 Welll call the shortest arrow a one arrow. What is the relationship between the shortest arrow and the next longer arrow? (10)
Since the next longer arrow is twice as long as the shortest arrow, we will call it a two arrow. The next longer we will call a three arrow, the next a four arrow, and the longest

In the packet you should have found two each of the following: one arrow, two arrow, three arrow, four arrow, and five arrow. There is another kind of arrow in the packet. Since it didn't take up any room, we slipped in a zero arrow. It might be handy to have an arrow which has no length at all.

Now let's try to add two of these arrows. Take a three arrow and point it to the right. Now place a two arrow with its tail at the head of the three arrow and point it to the right as in the diagram below.

What arrow could be used in place of both of these arrows so that it begins at the tail of the three arrow and ends at the head of the two arrow? (11) \qquad
You are right that the five arrow could be used to replace the three arrow and the two arrow laid end to end. But since we have introduced the idea of direction for the three arrow and the two arrow, we must consider the direction of the five arrow. Naturally, we would want it to point to the right. Hence, when we add a three arrow pointing to the right, and a two arrow pointing to the right, the resultant arrow is a five arrow pointing to the right.

What would be the resultant arrow if we added a two arrow pointing to the right and a one arrow pointing to the right? (12) \qquad - You are right. This is a three arrow pointing to the right. What would be the resultant arrow if we added a three arrow pointing to the right and a zero arrow? (13)
Note that we did not have to supply the direction of the zero arrow. You just can't tell which way a zero arrow is pointing. Hence, the sum of a three arrow pointing to the right and a zero arrow is a three arrow pointing to the right. Of course the question can be asked the other way around. What two arrows could be added to give a resultant three arrow pointing to the right? (14)

Naturally, one of the possible pairs of arrows would be a three arrow pointing to the right and a zero arrow. Other possible pairs would be a two arrow pointing to the right and a one arrow pointing to the right, a one arrow pointing to the right and a two arrow pointing to the right, and a zero arrow and a three arrow pointing to the right.

The two arrow pointing to the right represents an integer. We could write the 1 infeger in a shorthand notation. We need to talk about two things in connection with the integer. What are they? (15)

[^2]and a two arrow pointing to the right as a five arrow pointing to the right?
(16) \qquad
Write in the integer in shorthand actation which will make each of the following sentences trues
\[

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{4}+\vec{I}=\left[\begin{array}{l}
1
\end{array}\right] \\
\left.\overrightarrow{2}+\vec{e}=\frac{1}{1}\right]
\end{array} \\
& \bar{B}=\overrightarrow{1}+\overrightarrow{4} \\
& \overline{7}+\bar{L}=1 . \\
& \underline{\Gamma}=\overrightarrow{2}+0 \\
& 0+\overrightarrow{2}=[1
\end{aligned}
$$
\]

The correct responses are $\overrightarrow{5}, \overrightarrow{4}, \overrightarrow{5}, \overrightarrow{11}, \overrightarrow{2}$ and $\overrightarrow{\mathbf{z}_{0}}$
Write in the names of a pair of integers in shorthand notation which will make each of the following sentences true:

There are many pairs of integers for tach sentence. We could say $\overrightarrow{3}=\overrightarrow{3}+0$ or $\overrightarrow{3}=\overrightarrow{2}+\overrightarrow{1}+\overrightarrow{2}$ for the first one. We could write $\overrightarrow{4}=3^{3}+\overrightarrow{1}, \overrightarrow{4}=\vec{I}+\overrightarrow{3}$, or even $\overrightarrow{4}=\overrightarrow{2}+\overrightarrow{2}$ for the third one. We could call all of these number sentences examples of adding right numbers.

Did wo need any game rules in order to add a couple of right numbers? If st, hem. (17) \qquad

If you think about it carefully, yon will realize that the only game rule that was used wen closure. When you add two integers, you always end up with an integer. Tin race, in this case when you add two right numbers, you get a right number as a

However, we can observe the cher game rules bold for addition of right numbers. Give an example of a number sentence involving addition of right numbers using the reversing game rules in shorthand notation.
\qquad

 the strangane game rule? Tos or rei (19) \qquad - Yoar mather shoula onoo agon be youg and you shcild by abis to write the oxample uatiag the wherthend notaticn。 (20) \qquad
There are mazy examples you might have ox vo. home fertapa you pleked an example like this: $\overrightarrow{3}+\overrightarrow{2}+\overrightarrow{\underline{l}} ;=\sqrt{3}+\overrightarrow{2}+\vec{l}$ or $\overrightarrow{(\overrightarrow{4}}+\overrightarrow{3}+\overrightarrow{2}) j+\vec{I}=\overrightarrow{4}+(\overrightarrow{3}+\overrightarrow{2})$ $+\vec{j}$. Here in the last oxample $\overrightarrow{3}+\overrightarrow{3}$) was considered as a elngie rumber in the arrungtis pare rule.

$\because \quad . \quad$ as, you wer probably thinking of zero since zerc 23 the number
 no, you were probably not thinkirey of zere es kil integar. in any caed, we realiy want to have zero as an thteger even though we oannot determine the airection of zero. Thus, zerc is the identity when adding intogers.
 ordered padrs ever thoagn it did rot hold for whole numuers. What weas the
pame ruta' 22$\}$ \qquad - The oaly game rule whtohy les
 cif woje numbers is the hrverse game. lo. fiow civid we snow thats game a le

$$
\text { U. irith arrows? } 25
$$

\qquad

Did you sxating go sometnize lis "s"? If you are looking for the dnverse an arere, pou want to ind an arrer w anten added to we glven arrow resulte In t, wero arrow. If there wes : to arrow peintire do the right, you cou' plag: a two errow pointing to ot is. wh order to rave a rosolt shat is the armi. at indicated in the diacom in io

 coul. \because acide to it in ordect ger trezo aco \because a result (24) \qquad - Tf there wer a three arrow pointing to the left,
 (25) \qquad。

If there were a zero arrow，what arrow could be added to it in order to got the zero arrow for a result？（26） \qquad －Ins correct responses to these last three questions are foar arrow pointing to the left，${ }^{\text {p }}$＂three arrow pointing to the right＂，and＂ero mrrow＂。

How could you write these expressions of the inverse game rule in short－ hand notation？Lot＇s try with the first exmple when you searched for the
inverse of a two arrow pointing to the right．（27） \qquad The number sentence which you start with looks like this $\overrightarrow{2}+\square=0$ 。 The number which makes this number sentance true is the inverse of a right two．The inverse of a right two is left two．This could be written ${ }_{2} \quad \overrightarrow{2}+\frac{\leftarrow}{2}=0$ expresses an example of the inverse game rule．

Write in the integer in shorthend notation which will make each of the following sentences trues

$$
\begin{aligned}
\overrightarrow{4}+\square & =0 \\
3+\square & =0 \\
0+\square & =0 \\
\sqrt{2}+\square & =0
\end{aligned}
$$

Write in the names of parr of $4 n t \in g e x s$ in shorthand notation which will make cach of the following aentences trues

$$
\begin{aligned}
& 0=\Delta+\square \\
& \square+\nabla=0
\end{aligned}
$$

There are many pairs which could be chosen。 $0=\overrightarrow{5}+\overrightarrow{5}$ is one true sentence． $0=\overrightarrow{7}+\overrightarrow{7}$ is another．

We can now constrmet the sum of ny two right numbers．Wo siso can add a right number and a left number as long as they con be represented by arrows thes are the same longth．Let＇s try some of the examples for adding arrows when we have one crrow pointing to the right and one errow pointing to the left．

Take five arrow azd popnt fto the righto Now gid o three arrow
 at the head of the five arrow．Wha resultant arrow is an arrow which could be placed such that its tail would be at the tail of the fige arrow and its head at the head of the three arrow Δs in whe diagram below．

\qquad . What is the magnitude? (29) \qquad - What is the direction? (30)

Let's systematically write down how you would use arrows to explain this result. $F: s$, since the three arrow is pointing to the lef's, is there an arrow

I car put vith it which will result in only the zero arrow? 31 .
Naturally, ucn an arrow is a three arrow pointing to the aght。 Could I then replace ti: five arrow pointlongto the right witi a farrows .. one of which is the thee arrow pointing to the right? Try cren. grar for :he
replaceme tor the five arrow pointed to the $: \dddot{c}_{1} \mathrm{c}$.

The five arrow could be replaced by a two arrow and a three as, in as in the diagram
below.

 What is the result of adding tie pair of tince a. 3 wss? (3 ; Since the pair are pointing in cpposite directiv:, the result : $\because:$?ro arrow. Now tioe only remaining arrow is the tru row pointing \because ies ight This is the resulting arrow when a five arrow ang to the rita in added to a theee arrow pointing to the left.

Not go throuph this algoritinm again un tio example an: wa. ti. ee arrow piinting to the left and a iour arrow pointing to the right as \div : the diagram below.

Which arrow would be replaced with two separate arrows this tare? (34)
\qquad - The four arrow should 1. replaced. The longe t obvious hoice fo: replacing. What wo ld you replace in't
\qquad - Since you want ore of the replacement a
be a three arrow, you should replace the four arrow with a three arrow and a one arrow both pointing to the right. Now arrang the two three arrows in a frouping. What is the result of adding a three arruw pointing to the left ard a three arrow pointing to the right? (36) \qquad - Your !erult is the zero arrow just as planned.

And now what is the remaining arrow? (37) \qquad - You have a resultant arrow which is a one arrow pointing to the right.

We can also expect to write examples of adding arrows using our ehorthand notation. Let's look at the last example. How would you write the example in shorthand notation? (38) \qquad Your response should be similar to this $\underset{3}{ }+\overrightarrow{4}=\square$. The first thing that you did when you added the arrows was to replace the four arrow with a three arrow and a one arrow both pointing to the right. We could now write $\sqrt{3}+\overrightarrow{4}=\stackrel{\leftarrow}{3}+(\overrightarrow{3}+\overrightarrow{1})$. The next move you made with the arrows was to arrange the $\stackrel{\leftarrow}{3}$ and the $\overrightarrow{3}$ together. How would you write this? (39) The best way to show the 5 and the $\overrightarrow{3}$ together is to use parentheses. We could write $\stackrel{4}{3}+(\overrightarrow{3}+\overrightarrow{1})=(\overrightarrow{3}+\overrightarrow{3})+\overrightarrow{1}$. But we know 'st the two three arrows added together result in the zero arrow. Therefore, we could write $(\overrightarrow{3}+\overrightarrow{3})+\overrightarrow{1}=$ $0+\vec{l}$. And finally the remaining arrow is the one arrow pointing to the right. We could write $0+\vec{I}=\vec{I}$.

If we summarized the steps aboce they might look like this:

$$
\begin{aligned}
& \text { Step 1. } \sqrt{3}+\overrightarrow{4}=\sqrt[3]{3}+(\overrightarrow{3}+\overrightarrow{1}) \\
& \text { Step 2. } \sqrt[3]{3}+\overrightarrow{(3}+\overrightarrow{1})=(\sqrt{3}+\overrightarrow{3})+\overrightarrow{1} \\
& \text { Step 3. }(\sqrt{3}+\overrightarrow{3})+\overrightarrow{1}=0+\overrightarrow{1} \\
& \text { Step 4. } 0+\overrightarrow{1}=\overrightarrow{1}
\end{aligned}
$$

What are the game rules for integers which we are using in firding the sum of two integers? Let's look at each step. In the first step $\mathbb{4}$ was renamed as $\overrightarrow{3}+\overrightarrow{1}$. This is not a game rule, but notice that this depends on our being able to add two right numbers. In the second stap what is the game rule involved? (40)

Here we used the arranging game rule to group the two threes together. In the third step, the two threes were added. Since one is a left number and the other is a right number, they are inverses of each other and their sum is zero. Hence,
we ar: using the inverse game rule in the third step. What is the game rule in the fourth step? (41)
Here we used the identity game rule. Remember that 0 is the identity for integers.

Now use the algorithm we have developed in shorthand notation to add
(42)

Now go back and supply the game ru?es for each step.
Your steps should look something like this:

1) $\overrightarrow{3}+\vec{I}=(\overrightarrow{2}+\vec{i})+\vec{I} \quad$ Renaming $\overrightarrow{3}$
2) $(\overrightarrow{2}+\vec{I})+\stackrel{\leftarrow}{1} \cdots \overrightarrow{2}+(\overrightarrow{1}+\stackrel{\leftarrow}{1})$

Arranging
3) $\left.\overrightarrow{2}+\vec{I}+\frac{\leftarrow}{1}\right)=\overrightarrow{2}+0$

Inverse
4) $\overrightarrow{2}+0=\overrightarrow{2}$

Identity
Let's see hos we would add to arrows when they both point to the left. Take a bwo arjow nd point it to the left. Now place a three arrow pointing to the left with its tail at the head of tne two arrow as in the diagram below.

What arrow could be used in place of both of these arrows so that it begins at the tail of the two arrows and ends at the head of the three arrow? (43) \qquad
\qquad - You are right if you said a fiye arrow pointing to thee left would do the job.

What would $\because s$ the resultant arrow if we added a three arrow pointing to the left and ane arrow pointing to the left? (L:L) \qquad
What would the resultant arrow if we added a two arrow pointing to the left and a zero ar 0\% (45) \qquad
These are easy. The first answer was a four arrow poinuing to the left and the second answer was a two arrow pointing to the left.

Naturally, these addition examples can be written in our shorthand notation. Try writing the addition ex mple in the last diagram in this form。 (46) \qquad

$$
-+\overleftarrow{2}=5 \text { However, this is not }
$$

correct. ve actually sta ted with the two arrow, $\frac{\leftarrow}{2}+\frac{4}{3}=\frac{4}{5}$ is the correct response.

Just as when we added right numbers, the only game rule used was closure for integers. When you add two integers, you always end up with an integer. In this case we added two left numbers, and the result was a left number.

We have now added several different combinations of integers. We have added two left numbers, two right numbers, a right number and a left number which can be represented by arrows of the seme length, and a right number and a left number with the arrow for the right number longer than the arrow for the left number. We have also presented an argument for these algorithms besed upon arrows as well as the game rules.

Try a few of these:

In this session we mentioned that the avenues named by ordered pairs that you learned to add are called integers. Certainly if both ordered pairs and arrows represert integers, we should be able to show the relationship between them. En let's look. We demonstrated that the same game rules hold for addition as for integers expressed as ordered pairs and integers expressed as arrows. Now letls play around a little and see if we can figure out which adrow belongs to which avenue named by an ordered pair.

$$
\begin{array}{rlrl}
\overrightarrow{6}+\overrightarrow{2} & =\overrightarrow{8} & \overrightarrow{6}+\frac{4}{2} & =\overrightarrow{4} \\
(\overrightarrow{2,8})+(\overline{1,3}) & =(\overline{3,11}) & (\overline{2,8})+(\overrightarrow{3,1}) & =(\overline{5,9}) \\
\overrightarrow{4}+\overleftarrow{4} & =0 & \overrightarrow{4}+0 & =\overrightarrow{4} \\
(\overline{3,7})+(\overline{7,3}) & =(\overline{10,10}) & (\overline{3,7})+(\overline{0,0}) & =(\overline{3,7}) \\
& (\overline{3,7})+(\overline{5,5})=(\overline{8,12})
\end{array}
$$

As you look at these puzzles, can you see that the pair of sentences in each bracket says the same thing? This is also true of the three sentences in the last beacket, because an integer can be named by more than one ordered pair: $\overrightarrow{6}$ and $(\overrightarrow{2,8})$ are simply two different names for the same integer which is often called ${ }^{+6}$, positive six. Similarly, ${ }^{\leftarrow} \sqrt{2}$ and (3,I) are just different names for the integer ${ }^{-} 2$, negative two. of course $(\overrightarrow{3,7}),(\overline{8,12})$ and $\overrightarrow{4}$ are different names for the integer ${ }^{\dagger} 4$, positive four.

$$
(\overline{3,4})+(\overline{8,7})=(\overline{11,11}) . \text { How would you write this sentence using arrows? }
$$ (48)

$\vec{I}+\underset{I}{ }=0$ is correct. How would you write this sentence using positive and negative integers? (49)
$+1+-1=0$ is correct. Try another, $(\overline{3,7})+(\overline{4,1})=(\overline{7, \overline{8}})$ using arrows. (50) \qquad
This would be $\overrightarrow{4}+\overleftarrow{3}=\overrightarrow{1}$
Now, reverse the process and go from arrows to ordered pairs. $\overrightarrow{3}+\overrightarrow{2}=\overrightarrow{5}$. Express this sentence about integers using ordered pairs. (51)

Can't decide which pairs to use? Just pick any unat name arrows. Although it is true that many ordered pairs can be used to name each integer, in this case any one will do, so long as your result agrees with the integer named by the resultant arrow. Also express this sentence using positive and negative
integers. (52)
How about $\overleftarrow{6}+\overrightarrow{7}=\overrightarrow{1}$ expressed as a sentence u.sing cidered pairs? (53) \qquad

What you just did indicates that anything you can wr 's with arrows that name integers, you can also write with ordered pairs and wace varsa. Erery arrow can be named by an order^d pair and vice versa.

MATERIALS FOR SESSION X

Packet A

10 arrows:

2 orange	5 inch arrows
2 yellow	4
inch arrows	
2 green	3 inch arrows
2 red	2 inch arrows
2 blue	1 inch arrows

SESSION XI

IHE CASE OF THE MISSING ARROW

OETECTIVES:

At the end of this session the learner should be able to
(1) demonstrate the procedures of an algorithm for finding the difference of two integers.
(2) construct a convincing explanation that appeals to observations based upon the manipulation of arrows for each procedure in the algorithm for constructing the difference of two integers.
(3) onnstruct a convincing explanation that appeals to the guis rules for each procedure in the algorithm for constructing the difference of two integers.

Last session we represented integers by arrows and constructed the sums of different combinations of integers. Let us review briefly. What would be the resultant arrow if we added a three arrow pointing to the right and a two arrow pointing to the right? (1)_Y You are remembering correctiy if you said a five arrow pointing to the right. Don't forget. We were concerned with not only the magnitude of the arrow but also its direction. A three arrow pointing to the right was represented by $\overrightarrow{3}$. Wers there any cther arrows? (2) \qquad Sure. Remember the arrow in the packet that you couldn't find. This was the zero arrow. If there was a three arrow pointing to the right, what ariow could be added to it to get the zero arrow for a result? (3) \qquad response is a three arrow pointing to the left. So we see that we also have left arrows. A four arrow pointing to the left was represented by $\overleftarrow{4}^{\leftarrow}$ The resultant of a one arrow pointing to the ifight and a five arrow pointing co the left is (4) \qquad ? Good. The resultant is a four arrow pointing to the left.

In shorthand notation, our three above problems would look like the following:

> (a) $\overrightarrow{3}+\overrightarrow{2}=\overrightarrow{5}$
> (b) $\overrightarrow{3}+\overleftarrow{3}=0$
> (c) $\overrightarrow{1}+\stackrel{\leftarrow}{5}=\overleftarrow{4}$

We should note that in sentence (b) above, \leftarrow
We ars now gcing to introduce a new operation into our set of integers. We are already familiar with the operation of addition which assigns to a pair of integers, a third integer called the sum: Subtrsction is the operamtion of finding the missing addend when the sum and other addend are known. We agree to call the missing addend the difference; So we can see that solving a subtraction problem is really undoing an addition problem. It is said that subtraction and addition are inverse oparaticns. We already said that we can represent integers with arrows. Now let's try to find the difference of two arrows. Remember, the difference was out name for the missing addend. In working with arrows, let us agree to name the difference, the missing arrow. Take out our familiar packet A. In it, you will find arrows of different sizes. Don't forget about the zero arrow. They get lost among the larger arrows In finding the difference of two arrows, it will be helpful to keep in mind what we learned from out experiences of adding arrows. When we add two arrows, the second arrow is placed at the head of the first arrow, and the resultant arrow begins at the tail of the first arrow, and ends at the head of the second arrow.

Consider the problem of finding the difference of a three arrow pointing to the right and a one arrow pointing to the right. Let us agree to name the first arrow in a given subtraction problem the resultant arrow and the second arrow the known addend.

We already agreed that the difference is the missing arrow. Our definition for subtraction tells us that our problem is to find the arrow, such that when added to the one arrow pointing to the right we obtain the resultant three arrow pointing to the right. Take the resultant three arrow and point it to the right. Now take the one arrow pointed to the right, and place it at the tail of the resultant three arrow.

Now what arrow can we place at the head of the one arrow so that its head is at the head of the resultant arrow? (5) \qquad You are doing great if you saic that the missing arrow is a two arrow pointed to the right.

Let's try another problem. We want to find the difference of a three arrow pointed to the right and a five arrow pointed to the right. Again, our problem is finding the arrow sucl. that when added to the five arrow pointing to the right, we obtain the resultant three arrow pointing to the right. Take the resultant three arrow and point it to the right. Now take the five arrow pointed to the right and place it at the tail of the resultant three arrow. Now what arrow can we place at the head of the five arrow so that its head is at the head of the resultant arrow? (6)

Excellent! The missing arrow $2<$ a two arrow pointed to the left.

4

In shorthand notation, our problems look like this:
(1) $\overrightarrow{3}-\vec{i}=\square$
(2) $\overrightarrow{3}-\overrightarrow{5}=\square$

Note: We represent the operation of finding the difference of two arrows by the symbol ' - '. Did we need any game rules in order to find the difference of two arrows? Let us consider what we have done in problem (1). Our first step was to change the form of our subtraction problem to a form which uses the familiar operation, addition. How would you rewrite our subtraction problem using the operation of addition? (7)
Your response should be similar to this: $\vec{I}+\square=\overrightarrow{3}$. Our problem is now one of finding the missing arrow, represented by \square, which will make the statement $\overrightarrow{1}+\square=\overrightarrow{3}$ true. We might note the similarity betweon such a statement as $\overrightarrow{1}+\square=\overrightarrow{3}$ and a balance scale. The sum of $\overrightarrow{1}+\square$ balances $\overrightarrow{3}$ as do the weights on a balance scale. If we add some quantity to the left side of our statement we muet add the same quantity to the right side in order to "keep things balanced." Since we are looking for the missing arrow represented by \square, it might be helpful to do something to the left side of our statement to gat \square to stand alone. What arrow can we add to the left side of our statement so that \square is sill that remains on the left side? (8) Oh, so you say we should get rid of $\overrightarrow{1}$. We can't just make it disappear! Now you are thinking. If

If we add the inverse of $\overrightarrow{1}$, namely $\stackrel{\leftarrow}{1}$ to \vec{l} we get the zero arrow for: a result. Doit think you're finished. What heven't we done? (9) \qquad

Right. We must also add $\leftarrow \mathcal{L}$ to the right side of our statement to balance the left side. Our move would look something like this:

$$
\overleftarrow{I}+\overrightarrow{(1}+\square)=\overleftarrow{I}+\overrightarrow{3}
$$

The next move you made was to arrange the \overleftarrow{I} and the \vec{I} together. We could write $\overleftarrow{I}+(\vec{I}+\square)=(\overleftarrow{I}+\vec{I})+\square$. But we know that the two one arrows added together result in the zero arrow. Therefore, we could write $(\overline{1}+\overrightarrow{1})+\square=0+\square$. We could write $0+\square=\square$. Our final statement is $\square=\overleftarrow{I}+\overrightarrow{3}$. Were almost done now.
You can easily name the missing arrow. The missing arrow would be a (10) _The correct response is $\overrightarrow{2}$ since the sum of $\overleftarrow{1}$ and $\overrightarrow{3}$ is $\overrightarrow{2}$.

If we summarized the above steps they might look like this:

Problem:	$\overrightarrow{3}-\overrightarrow{1}=\square$
Step 1	$\overrightarrow{1}+\square=\overrightarrow{3}$
Step 2	$\overleftarrow{1}+\overrightarrow{1}+\square)=\overleftarrow{1}+\overrightarrow{3}$
Step 33	$\overleftarrow{(1}+\overrightarrow{1}+\square=\overleftarrow{I}+\overrightarrow{3}$
Step 4	$0+\square=\overleftarrow{1}+\overrightarrow{3}$
Step 5	$\square=\overleftarrow{I}+\overrightarrow{3}$
Step 6	$\square=\overrightarrow{2}$

What are the game rules for integers which we are using in fanding the difference of two integers? Lat's look at each step. In the first step we risrote our problem using the definition of subtraction. What game rules are involved in the second step? (11) \qquad Very Good. We used the game rule of closure. In the third step what game rule is involved? (12) \qquad Here we used the arranging game rule to group the two ones together. In the fourth step, the two ones are added and their sum is zero. Which game rule is involved here? (13) \qquad Right. We are using the inverse game rule in the fourth step since the two ones are inverses of each other. In the fifth step, we used the identity geme rule. Finally, what did we use in the sixth step? (14) We used the algorithm we developed for the addition of arrows.

Now use the algorithm we have just developed in shorthand not tion to find the difference of $\overrightarrow{3}$ and $\overrightarrow{5}$. Also, supply the game rules for each step. (15)

Your steps should look something like this:
Problem: $\overrightarrow{3}-\overrightarrow{5}=\square$

1) $\overrightarrow{5}+\square=\overrightarrow{3} \quad$ Definition of subtraction
2) $5+\overrightarrow{(5}+\square)=\stackrel{\leftarrow}{5}+\overrightarrow{3} \quad$ Closure
3) $(5+\overrightarrow{5})+\square=5+\overrightarrow{3} \quad$ Arranging
4) $0+\square=\underset{5}{\leftarrow}+\overrightarrow{3}$
5)

6) $\square=\overleftarrow{\leftarrow}$

Let's consider the problem of finding the difference of two arrows when they both point to the left. Suppose we are given the problem of finding the difference of a two arrow pointing to the left and a four arrow pointingi to the left. Can you restate the problem using the definition of subtraction? (16) \qquad Exactly. Our problem is finding the arrow such that when added to the four arrow pointing to the left, we obtain the lesultant two arrow pointing to the left. Take the resultant two arrow and point it to the left. Now take the four arrow pointed to the left and place it at the tail sf the resultant two arrow. Now what arrow can we place at the head of the four arrow so that its head is at the head of the resultant arrow? (17) \qquad You say you're not sure. Then take a peek at the picture below.

The missing arrow is a two arrow pointed to the right.
What would be the missing arrow if we found the difference of a one arrow pointing to the right and a four arrow pointing to the left? (18) \qquad
The correct response is a five arrow pointing to the rigint. For those of you who had some difficulty, refer to the diagram below.

Try writing the subtraction example in the last diagram in shorthand
notation (19)
Your response should look J. ike this: $\overrightarrow{1}-\stackrel{4}{4}=\overrightarrow{5}$.
We might summarize by looking at the game rules rilich hold for the subtraction of integers. We will show that although certain of the game rules hold for the addition of integers, it is not true that these game rules will. also hold for the subtraction of integers. Since the difference of two integers is always an integer, we know that closure holds for subtraction. In one of our examples we found that $\overrightarrow{3}-\overrightarrow{5}=\stackrel{\leftarrow}{2}$. What is $\overrightarrow{5}-\overrightarrow{3}$? (20) The answer is not 2! The correct answer is $\overrightarrow{2}$. Therefore, we see that $\overrightarrow{3}-\overrightarrow{5} \overrightarrow{75}-\overrightarrow{3}$, and subtraction is not reversibility in the integers. Look at the problem: $\overrightarrow{3}-\overrightarrow{(4}-\overrightarrow{2})$. The resultant arrow is $\overrightarrow{l_{0}}$ Do we get the same result when we consider $\overrightarrow{(3}-\overrightarrow{4)}-\overrightarrow{2 ?}$ (21)__ of curse not! The resultant arrow is $\stackrel{-}{3}$. Since $\overrightarrow{3}-(\overrightarrow{4}-\overrightarrow{2}) \neq \overrightarrow{3}-\overrightarrow{4})-\overrightarrow{2}$, we can conclude that the game rule of arranging does not hold for the subtraction of integers.

What is the identity for subtraction of integers? (22) \qquad The zero arrow of course.

Before we conclude this session, let's take a look at the statement $\vec{a}-\vec{b}=\square$ where a and b are positive integers. Restating this problem, using the definition of subtraction we get $\vec{b}+\square=\overrightarrow{a_{0}}$ Recall. to find \square, we must add $\frac{b}{b}$ to both the left side and the right side of our statement.

$$
\stackrel{\leftrightarrow}{b}+\overrightarrow{(b}+\square)=\stackrel{\leftarrow}{b}+\vec{a}
$$

By the associativity of integers $(\stackrel{\leftarrow}{b}+\vec{b})+\square=\stackrel{\leftarrow}{b}+\overrightarrow{a_{0}}$ Since $\underset{\mathrm{b}}{\stackrel{\rightharpoonup}{b}}+\overrightarrow{\mathrm{b}}=0$, we are left with \square on the left side and that $\square=\stackrel{\square}{\square}+$ a.

By the reversibility of addition of integers we get $\square=\vec{a}+\stackrel{\leftarrow}{b}$. The original statement and our final step show us that $\vec{a}-\vec{b}=\square$ $=\vec{a}+\stackrel{\leftarrow}{b}$. We can get a similar result by taking any combination of integers which leads us to the general statement: (2.3) \qquad

Very Good. Subtracting an integer is the same as adding its additive inverse.

Performance tasks

Use the algorithm we have just developed in shorthand notation to find the difference of $\overrightarrow{1}$ and \leftrightarrows. Also, supply the genie rules for each step.

Problem:

> Answers to Performance Tasks

SO, WHATIS THE DIFFERENCE?

ODJECTIVES:

At the end of today!s sossion, the learner will ba:
(1) demonstrating each step of the equal-additions method of subtraciion algorithm.
(2) constructing an explanation for tine algorithm using whole numbers and based on a physical situation.
(3) constructing an explanotion for the algorithm usiag whole numbers and based on the rules of the "convincing gamen.

In our last session we observed that solving a subrraction problem is very similar to solving an addition problem. We deifned subtraction as the operation of finding the missing addend when we are given the sum and the other addend. The given sum was named the resultant and the given addend was named the known addend. The number we are interested in finding, the missing addend, was named the differsnce. In our last session we stated that the set of integers is closed under the operation of subtraction. Since we are working within the set of whole numbers in this session we must note one very important limitation. We are not always able to subtract within the set of whole numbers. Can you say why not? An example would bs fine. (1) \qquad Fractly. Consider the example 2-4. The difference la not a whole number, When will the difference be a whole number? ($\hat{\text { a }}$) Tou roelly are sharp today. We are able to perform the operation of subtraction within the set of whole numbers, when tine resultant is greatar'than or equal to the given adderd.
then we were working with the rule of compensation, we arranged numbers so that we could construct a sum in an easier manner, Let's look once again at the total arrangement in this problem.

$$
\begin{aligned}
28+172+94+89 & =28+(2+170)+94+(6+83) \\
& =(28+2) \div 170+(94+6)+83 \\
& =30+170+100+83 \\
& =(30+170)+100+83 \\
& =200+100+83 \\
& =383
\end{aligned}
$$

Constructing the sum was made easier by regrouping the numbers to the nearest ten and to the nearest hundred. Where did the six that we added to the ninety-four in order to regroup to the nearest hundred come from? (3) \qquad Come on, we didn't pull them out of : hat. Good! The six came from eighty-nine. In order to add six to ninetymfour we had to take the same number, namely six, from eighty-nine.

Similarly, the rule of equal-additions will enable us to solve a subtraction problem more easily. The result of a subtraction problem remains unchanged if the same number is added to both the resultant and the given addend. Consider the following examplea:

$$
76-18=(76+2)-(18+2)=78-20=58
$$

How are we using the rule of equal -additions? (4) \qquad You are absolutely correct if you said that we added two to both the resultant and the given addend. Let's try one on your own now. Show an easy way to compute 421-97. What number did you add to both the resultenti and the given addend? (5) \qquad - If you saíd throe, you are doing fine.

$$
421-97=(421+3)-(97+3)=424-100=324 .
$$

The method of equal-additions is based on the principle that if the same number is added to two numbers, the difference between them remains unchanged. Activity I
In Packet A you will find red, blue, and yellow chips. Let us agree to name a blue chip "a unit" and a red chip "a ten." One red chip is equivalent to how many blue chips? (6) \qquad - Thatis the ideal Since one ten is thite same as ten units, the correct response is ter. We are now going to set up a subtraction problem using our chips in whion our resultant is forty-three and our given addend is sixteen. Maike sure that you have working space in front of you. Set up the resultant by placing three blue chips to the right of four red chips. Let us set up the given addend right below the resultant. Place six blue chips below the three blue chips of the resuitant and one red chip below the four red chips of the resultant.

We are ready to begin. Note that the blue chips form a units column and the red chips form a tens column. If we look at the units column, we observe that the upper digit is smaller than the lower digit. In order to subtract six, we are going to have to place dditional blue chips with the three blue chips we started with. Place ten additional blue chips with the three blue chi.ps. Suppose we all do this now. According to our principle of increasing the resultant and given addend by the same number, we are going to have to add ten to the given addend. We could join ten blue chips with the six blue chips, but we would again have more blue chips in the given addend than in the resultant. How can we add ten to the given addend? Could we join one red chip to the one red chip that we started with? Would this be adding ten to the given addend? Surel Add one red chip to the one red chip that we started with in the given addend.

In order to subtract we must compare the number of chips in the resultant with the number of chips in the given addend. Pair each of the blue chips in the resultant with a blue chip in the given addend. What is the remainder? (7) \qquad - Pair each of the red chips in the resultant with a red chip in the given addend. What is the difference? (8) \qquad - If you are with us, you should be left with two red chips and seven blue chips or twenty-seven.

Activity II

In addition to what we previously said, let us agree to name a $\bar{j} \in l l o w$ chip "a hundred." One yellow chip is equivalent to how many red chips? (9) \qquad - Since, one hundred is the same as ten "tens," the correct answer is ten. Now let us take a look at a more complicated example in which our resultant is 304 and our given addend is 167. Set up the resultant above the given addend, as we did in the previous example. Note that the yellow chips form a hundreds column. Once again we observe that the upper digit in the units column is smaller than the lower digit. In order to subtract seven, we are going $; 0$ have to place ten blue chips with the four that we started with in the resultant. Let us do it together. We know that we must also add ten w, the given addend; so let us join one red chip to the six red chips that we started with. But now we observe that there are no :ed chips in the resultant but there are seven red chips in the given addend. In crder to proceed with our subtraction, we are going to have to add ten red chipe to whet we already have in the resultant. How much did we add to the resultant? (10) Goo_ Godl Since we joined ten red chips or one hundred to the resultant, we must also add one hundred to the given addend. Go ahead. Place one yellow chip with the yellow chip in the given addend. We are finally able to subtract. Again, we must compare the number of chips in the resultant with the number of
chips in the given addend. Pairing the fourteen blue chips of the resultant with the seven blue chips of the given addend leaves us with a remainder of seven blue chips. Similarly, pairing the ten red chips of the resultant with the seven red chips of the given addend leaves us with a remainder of three red chips. Last but not least, pairing the three yellow chips of the resultant with the two yellcw chips of the given addend leaves us with a remainder of one yellow chip. Our difference is I yeilow chip, 3 red chips and ? hlno ships or 13?.

Activity III

Look at the steps we have taken in the problem in order to discuss the game rules.
xample 1: 43
(1) $43-16=(40+3)-(10+6)$
$=20+7$
$=27$

Renaming
Rule of Equal-Additions
Addition
Rule of Subtraction and Reversibility \& Arrangement for Addition

Subtraction
Addition

Now, let us look at our second example:
(1) $\left.304-107 \frac{\frac{-167}{}}{=(300}+0+4\right)-(100+60+7)$
(2)
(3)
$=(300+0+(10+4))-(100+(10+60)+7)$
$=(300+0+14)-(100+70+7)$
(4)
$=(300+(100+0)+14)-((100+100)+70+7)$
$=(300+100+14)-(200+70+7)$
$=(300-200)+(100-70)+(14-7)$
(7)
$=100+30+7$
(8)
$=137$

In what way did we use renaming? (11) \qquad - In Step (1) e.g., we renamed 167 as $100+60+7$. In what way did we use the rule of equaladditions? (12) -
In Step (2) we added ten to the resultant and to the given adderd. In Step (4) we added a hundred to the resaltant and to the given addend. In Step (6) we used what "game rules" in addition to the rule of subtraction? (13) \qquad - Yes, we used reversibility and arrangement for addition. Finaily, what process did you use to get an answer? (14) \qquad - Of course you constructed the sumb Performance Task

Demonstrate the solution to this problem using the algorithm of equaladditions. Make use of your chips. Also, demonstrate the solution in horizontal form and identify the game rules that you used.

$\begin{array}{r} 416 \\ -277 \\ \hline \end{array}$	
Answers for the Performance Task	
$416-277=(400+10+6)-(200+70+7)$	Renaming
$\begin{aligned} & =(400+10+(10+6))-(200+(10+70)+7) \\ & =(400+10+16)-(200+80+7) \end{aligned}$	Rule of EqualAdditions Addition
$\begin{aligned} & =(400+(100+10)+16)-((100+200)+80+7) \\ & =(400+110+16)-(300+80+7) \end{aligned}$	Rule of EqualAdditions Addition.
$=(400-300)+(110-80)+(16-7)$ $=(100+30)+9$	Rule of Subtraction and Reversibility \& Arrangement for Addition Subtraction
$=130+9$	Addition
$=139$	Addition

The foilowing is an illustration of one method of finding the product of any Wholc numbers. Suppose we wished to find the product of 24 and 3. This is low we would proceeds

$$
\begin{aligned}
& \begin{array}{c}
24 \\
\times 3
\end{array} \\
&=(20+4) \times 3 \\
&=(20 \times 3)+(4 \times 3) \\
&= 60+(10 \div 2) \\
&=(60 \div 10) \div 2 \\
&= 70 \div 2 \\
&= 72
\end{aligned}
$$

Now show how you would use this same procedure to find the product of 14 and 6 。

14
x 6

Suppose you were now called upon to provide an explanation of this method of multiplication using some kind of physical objects such as blocks or chips. Make a series of drawings to illustrate your explanation. The first drawing, showing the objects, might look something like thiss
$\mathrm{x} \times \mathrm{x} \mathrm{x} \times \mathrm{x} \mathrm{x}$
$\mathbf{x} \times \mathrm{xx} \times \mathrm{x} \mathrm{x}$
$\mathrm{x} \times \mathrm{xxxx} \mathrm{x}$
x $\mathrm{x} \times \mathrm{x} \times \mathrm{x} \mathrm{x}$
$\mathrm{x} \times \mathrm{xXxx} \mathrm{x}$
$\mathrm{x} \times \mathrm{x} \times \mathrm{x} \mathrm{x} \mathrm{x}$
$\mathrm{x} \times \mathrm{xXx} \mathrm{x} \mathrm{x}$
$\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$
$\mathrm{x} \times \mathrm{xxxx} \mathrm{x}$
$\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$
$\mathrm{x} \times \mathrm{xx} \mathrm{xx} \mathrm{x}$
$\mathrm{x} \times \mathrm{x} \times \mathrm{x} \mathrm{x} \mathrm{x}$

First Drawing

We would be able to agree that the product of 14 and 6 is a whole number bee cause 14 and 6 are each whole numbers and because we have a certain game rule. Which game rule would we be using?

An explanation of this multiplication procedure was provided by someone else and his explanation in terms of our game rules is given below. However, there is one game rule which has not been identified. Your task is to supply the missing information.

24×3	Given
$(20+4) \times 3$	Writing an expanded numeral for 24
$(20 \times 3)+(143)$	Mintupplication is aistiftutiva over a.ddition
$60+(10 \div 2)$	Writing another name for products
$(60+10)+2$	*
$70+2$	Writing another name for sum of $(60+10)$
72	Writing contractod numeral
*Note: Regrouphing fis not to use include clo assooiativity, iden	rule. The game rules we have acried y or commatativity, arranging or。

There are few adults who heve not observed the unusual oharacter of the number zero when performing the operation of addition. For example, $6+0=6$ and $0+27=27$. What have we named this particular game rule?

Suppose we were constructing sums with integerag mombers such an $0,{ }^{4}{ }^{4}$ ，${ }^{\circ} I_{g}$ ${ }^{+}{ }_{2},{ }_{2}$ ，and so on．Someone was aisked to show how to eonotruet the ein of ${ }_{4}$ and an． This 1s the procedure he wrotés
f．

$$
{ }^{+} 4 \cdot-3
$$

4

$$
\begin{aligned}
& \left({ }^{+} 1+{ }^{+} 3\right)+-3 \\
& { }^{+} 1+\left({ }^{+}+{ }^{-}-3\right) \\
& { }^{+} 1+0 \\
& { }^{1} 1
\end{aligned}
$$

勖 which of the geme mules wotlu

Whon asked to provide an explanation of this addition procedure in terms of the githe rales，this is what was providede

$$
\begin{aligned}
& +_{4}+-3 \\
& \left({ }^{+} 1\right. \\
& \left.{ }^{*}+3\right)+-3 \\
& \left.{ }^{+}+3+-3\right) \\
& { }^{+}+0 \\
& +_{1}
\end{aligned}
$$

Your task is to supply the missing game rules．

Read the following descriptions of objectives and identify those which are behavioral objectives by placing a check（ $\sqrt{ }$ ）before those which are behavioral．
＿1．The student will acquire a better understanding of the addition processo
2．The atudent will demonstrate a precess for finding the 耳ritiont en to natural numbers．
\qquad 3．The stiudent will construct a bar graph given a table of data。
4．The student will gain insight into the solution of equations．
5．The student will inductively discover and use the properties of numbers．

Read the following description of a student performance and then insert the correct action verb in the statemer of the objective.

1. The student is asked to illustrate a procedure for finding the product of 12 and 7. The student said nothing but did writee

$$
\begin{array}{r}
12 \\
\times 7 \\
\hline 70 \\
\frac{14}{84}
\end{array}
$$

Objectives The student will be able to finding the product of two whole numbers. a 2rocedure for
2. The student is asked to select the largest number, given the set $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and 5°. \ln. student says nothing but writes $\frac{7}{2}$. Objectives The student will be able to \qquad the largest fraction given several fractional numerals。

The aotion verbs we have agreed to use include identify, name, construct, demonstrate, order, describe, applying a rule, stating a rule, interpret, and
distinguish.

APPENDIX C
 ALGORITHiMS PROCESS HIERARCHY

APPENDIX D

Partial List of Resource Volumes

1. Banks, J. Huston, Elementary School Mathematics, A Modern Approach for Teachers. Boston, Mass.: Allyn and Bacon, Inc., 1966.
2. Brumfiel, Eicholz, Shanks, O'Daffer, Principles of Arithmetic. Reading, $\overline{\text { Mass.: }}$, ddisen-Wesley Press, 1963.
3. Crouch and Baldwin, Mathematics for Elementary School Teachers. New York: John Wiley and Sons, 19064.
4. Crouch, Baldwin, and Wisner; Preparatory Mathematics for Elementary School Teachers. New York: Tohn Wive and Sons; 1905.
5. DeValt (ed.), Improving Mathematics Programs. Columbus, Ohìo: Merrill Books, 1961.
6. Fehr and Hill, Contemporary Mathematics for Elementary Teachers. Boston, Mass.: D. C. Heath and Company, 1966.
7. Hartung, Van Engen, Knowles, and Gibb, Charting the Course for Arithmetic. Chícago: Scott; Foresman and Co., 1960.
8. Heddens, James W., Today's Mathematics: A Guide to Conrepts and Methods in Elementary School Mathematics. Science Restarch $\overline{\text { Associates, } 1964 .}$
9. Keedy, Mervin L., A Modern Introduction to Basic Mathematics. Reading, Mass.: Addison-Wesley Press, 1963.
10. Keedy, Mervin L., Number Systems: A Modern Introduction. Reading, Mass.: Addison-Wesley Press, 1965.
11. Moise, E. E., Number Systems, Measurement ana Coordinates. Reading, Mass.: Addison-Wesley Press, 1966.
12. National Council of Teachers of Mathematics, Instruction in Arithmetic, 23 th Yearbc 1 Washington: National Council of Teachers of Mathematics, 1963.
13. Ohmer, Aucoin, and Cortez, Elementary Contemporary Mathematics. New York: Blaisdell Publishing Company, 1964.
14. Osborn, DeVault, Boyd, and Houston, Extending Mathematics Understanding. Columbus, Ohio: Merrill Books: 1961.
15. Peterson and Hackisaki; Theory of Arithmetic. New York: John Wiley and $\overline{3}$ ons, 1960.
16. University of Maryland Mathematics Project. Mathematics for Elementary School Teachers, Books I and II. College Park: University of Maryland Mathematics Project, 1964.
17. Webber and Brown, Basic Concepts of Mathematics. Reading, Mass.: Addison-Wesley Press, 1963.

APFENDIX E

Instrucional Observation Data Shee \ddagger

me in								
nutes	Instructor's Questions	Instructor's Responses	Instructor and Directions	Student Quest.	Student Resp.	Nothing	Comment	

Tine in	Instructor's	Instructor's	Instructor Lecture	Student	Student	Nothing	comment
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40	!						
41							
42							
43							
44							
45							
46							
47							
48							
$L 9$							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59	,						
60	,						

[^0]: (9)

[^1]: Do you still have some uncertainty as to my method? If so, letis look at another example. Consider the avenue through (6,1) and the avenue through (2,1). Name a point from each one. We could use $(6,1)$ and $(2,1)$ themselvas. Take the trips or
 add the ordered pairs. (i8) \qquad - Did you write
 $(6,1)+(2,1)=(8,2)$? Good Try two sther locations on these same

[^2]: We are concerned with both the magnitude of the arrow and the direction. There are many ways in which we could express this. One way would be to write $\overrightarrow{2}$. How could we write the number sentence which expresses the sum of a three arrow pointing to the right

