
www.manaraa.com

American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

Spring 10-13-2020

DBKnot: A Transparent and Seamless, Pluggable Tamper Evident DBKnot: A Transparent and Seamless, Pluggable Tamper Evident

Database Database

Islam Khalil
ikhalil@aucegypt.edu

Follow this and additional works at: https://fount.aucegypt.edu/etds

 Part of the Computer and Systems Architecture Commons, and the Data Storage Systems Commons

Recommended Citation Recommended Citation

APA Citation
Khalil, I. (2020).DBKnot: A Transparent and Seamless, Pluggable Tamper Evident Database [Master's
Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1544

MLA Citation
Khalil, Islam. DBKnot: A Transparent and Seamless, Pluggable Tamper Evident Database. 2020. American
University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1544

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=fount.aucegypt.edu%2Fetds%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=fount.aucegypt.edu%2Fetds%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1544?utm_source=fount.aucegypt.edu%2Fetds%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1544?utm_source=fount.aucegypt.edu%2Fetds%2F1544&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

2-Background DBKnot

20/115

either before or after any INSERT, UPDATE, or DELETE operation, either once per modified

row, or once per SQL statement. If a trigger event occurs, the trigger’s function is called at

the appropriate time to handle the event.

2.1.7 Object-Relational Mapping (ORM)

Database management systems interact with databases using a query language. End users

use query languages related to the database model they are using. SQL is the standard query

language for relational databases. Cypher query language for example is used for a graph

database management system named Neo4j [23]. Even though it is relatively standard,

different database vendors have different “flavors” of their SQL implementations which

impacts the interoperability of an application across different vendors’ database

management systems.

Object-relational mapping is the idea of being able to write queries and manipulate data

inside a database using the object-oriented paradigm of the preferred programming

language. The idea is to abstract the database system so that switching from a DBMS like

MySQL to another one as PostgreSQL is possible without having to change the application

layer. Examples of ORM layers are SQLAlchemy[24], Hibernate, and Django ORM[25].

2.1.8 Replication and Transaction Streaming

Database replication is the best strategy towards achieving high availability during disasters

and providing fault tolerance against unexpected failures. Database replication can be done

in at least three different ways:

1. Snapshot Replication: data on one server is simply copied to another server or to

another database on the same server.

2. Merging Replication: data from two or more databases is combined into a single

database.

3. Transactional replication: user systems receive full initial copies of the database and

then receive periodic updates as data changes. Data is copied in near real-time from

the master or primary server called publisher to the receiving server/database which

called a subscriber.

www.manaraa.com

2-Background DBKnot

21/115

Figure 6 - Transactional Replication

In transactional replication, log shipping is the process of sending WAL (Write Ahead Log or

REDO logs) files from the master database to the replicas to execute the logged operations

at the replicas. Log shipping can be performed in multiple ways:

• File-based Log Shipping: sending the WAL file once it is filled with

changes/transactions records.

• Streaming Log Shipping: streaming/sending WAL records to the backup database as

they are generated, without waiting for the WAL file to be filled.

Streaming replication allows a backup server to stay more up to date than is possible with

file-based log shipping. Logical decoding extracts changes that are persistent inside a

database table into an easy format that can be interpreted without detailed knowledge of

the database’s internal state [26]. In PostgreSQL, logical decoding is implemented by

decoding the contents of the log (WAL) files, which describes changes on a storage level, into

an application-specific form such as a stream of tuples or SQL statements.

Some DBMS systems also have support for multi-master replication where users can write to

the different master database servers. This is done through implementing a certification

process by contacting the different masters for confirmation before performing the final

commit [27]. There is usually however a time-gap between affecting the change on a server

and on a secondary server. For this reason some call this a “virtually synchronous” replication

rather than “real synchronous” replication. To implement this for example, MySQL uses

“optimistic locking”[28] such an approach while being very effective in “low data contention”

contexts, it however introduces another layer of error checking on the application level[29].

www.manaraa.com

2-Background DBKnot

22/115

There are two primary topologies used in multi-master configuration[30]:

a) Active/Passive masters: in this case there is only one master active at a time and the

second one is on “hot-standby” this is primarily used as a failover scenario.

b) Active/Active: in this case, both masters are active at the same time. Both can read and

write to databases.

Generally, it is recommended to stay as much as possible away from active/active topologies

due to both the complexity of handling errors and inconsistencies not only on the database

but also on the application level, in addition to performance bottleneck caused [30].

2.2 Database Sharding

Sharding is a technique used by database management systems to slice database records

into different slices. Sharding is primarily used for load-balancing reasons among different

server instances.

The diagram below[31] describes horizontal and vertical database sharding:

Figure 7 - Horizontal and Vertical Database Sharding[31]

An example of another use of sharding techniques is the Hadoop’s HDFS (Hadoop

Filesystem). Hadoop is designed to help reliably distribute data as well as processing to a

large cluster of computing and storage resources. Hadoop’s is mostly optimized for high-

volume batch processing rather than interactive transactional applications [32]–[34].

www.manaraa.com

2-Background DBKnot

23/115

2.3 Web Services and REST APIs

A fundamental requirement of software development is sharing data between two or more

systems. APIs are application interfaces, meaning that it is a way for one application to share

data and interact with another application in a standardized way. Web services APIs which are

accessed through a network connection. Representational State Transfer (REST)[35] APIs are a

standardized architecture for building web APIs using HTTP methods [36] to communicate data

between applications or services. HTTP methods include POST, GET, PUT, PATCH, and DELETE

methods. These correspond to create, read, update, and delete (or CRUD) operations,

respectively as illustrated in Table 1.

Table 1 - HTTP Methods

A REST API request and response example is illustrated in Figure 8. The following are examples

of different requests performed using a REST API that handles a set of users inside a database

can:

• a “GET” request: /user/ returns a list of users inside the database

• a “POST” request: /user/123 creates a user with the ID 123

• a “PUT” request: /user/123 updates user 123

• a “GET” request: /user/123 returns the details of user 123

• a “DELETE” request: /user/123 deletes user 123

www.manaraa.com

2-Background DBKnot

24/115

Figure 8- REST API Request and Response

A set of standard recommendations and constraints are available for RESTful web services:

• Client-Server: The application makes a request for a specific URL that is routed to a web

server to return an HTTP response. The response might also include only data in a JSON

format or other data exchange formats.

• Stateless: REST is stateless meaning the client request should contain all the information

necessary to respond to a request. In other words, it should be possible to make two or

more HTTP requests in any order and the same actions will be performed.

• Cacheable: A response should be defined as cacheable or not.

• Layered: The requesting client need not know whether it is communicating with the

actual server, a proxy, or any other intermediary.

2.4 Reverse-Proxy Middleware

A proxy server is an intermediary server that forwards requests for content from multiple

clients to different servers within a cluster or even across the web. A reverse proxy server is

a proxy server that typically sits behind a firewall in a private network. The reverse proxy will

take hold of requests and send them to the appropriate backend server. This allows the

system administrator to use a server for multiple applications as well as to ensure smoother

flow of network traffic between clients and servers. The reverse proxy server simply

intercepts HTTP requests and redirects them to another server without the client knowing it.

Since reverse proxies rely primarily on the HTTP protocol which is stateless by nature, reverse

proxies are stateless too. State is managed by the HTTP server by means of exchanging a

www.manaraa.com

2-Background DBKnot

25/115

session identifier (cookie, token, etc.) between the server and clients (web browsers or API

consumers).

Common uses of reverse proxy server include load balancing, web acceleration, logging,

integration, and security. One of the important uses or a reverse proxy is easy scaling as well

as logging and auditing. Since all the incoming traffic is managed by the reverse proxy, it is

easier to log and monitor the flow of the traffic.

Examples of a reverse proxy server include Nginx [37], Apache [38], HAProxy[39], and Squid

[40]. An illustration of how a reverse proxy server works is presented in Figure 9.

Figure 9 - Reverse Proxy Server Interactions

A reverse proxy middleware intercepts the requests, performs some actions on the request, and

then forwards it to a server to get the response. An example of a middleware includes logging

that logs specific data from the request, adding location and security data to the request, and

can even involve some processing to the request before sending it back to the server to receive

the request.

2.5 Message Queues & Publish-Subscribe Models [41]–[44]

Communication between multiple applications can be performed using messaging queuing or

simply sending messages to each other. A message queue is considered a temporary message

storage medium between the sender and the receiver when the receiving program is busy or

not connected. A message contains the data that will be transported between a sender and a

receiver application. A message queue, as illustrated in Figure 10, provides an asynchronous

communications protocol that temporarily stores a message into a message queue and does not

Internet

Proxy Requests

Proxy Response

Rerverse Proxy Server
/myApp1 http://app1.domain.com
/myApp2 http://app2.domain.com
/myApp3 http://app3.domain.com

Internet Browser
www.domain.com/myApp1

Web Servers

www.manaraa.com

2-Background DBKnot

26/115

require an instantaneous action to continue processing. A benefit from using message queues

is that it provides asynchronity to the calling application so that execution does not hold until

the call is performed or the message is delivered. If a reply is expected, the calling application

can later choose to wait until a reply has been received from the called service.

Figure 10 - Message Queue

A publish-subscribe model is a form of a message queue that is used in serverless and

microservices architectures. In such model, subscribers subscribe to a topic and whenever a

message is published to that topic from a publisher, all subscribers to that topic will receive this

message. This model is usually used to decouple applications to increase performance,

scalability, and reliability. The publish-subscribe model broadcast messages to different parts of

a system asynchronously.

Some database management systems such as Oracle [45] and PostgreSQL [26] support a queue-

based publish-subscribe model where database queues act as a temporary store for messages

with the capability to allow publish and subscribe based on these queues.

IoT (Internet of Things) applications are a class of systems that often rely on message queues.

2.6 Blockchain

2.6.1 Brief

Blockchain is primarily a distributed ledger of transactions that aims to decentralize trust and

secure transactions by making the transactions immutable[46].

The Wikipedia definition of blockchain includes: “a growing list of records, called blocks,

which are linked using cryptography. Each block contains a cryptographic hash of the previous

block, a timestamp, and transaction data (generally represented as a Merkle tree).”[47]

The primary target of blockchain is to achieve the following capabilities:

Message Queue
Message Message

Application A Application B

www.manaraa.com

2-Background DBKnot

27/115

• Append only

• Immutable

• Decentralized (Peer-to-peer)

• Unmodifiable

• Verifiable

• Permanent

Being structured as a cryptographic hash chain[48] makes a node immune to changes unless

all following nodes are changed which is practically not feasible in large peer-to-peer

networks. Other work on sequential verification of integrity was looked at.[49]

2.6.2 Trust

Blockchains are designed to operate in a network of decentralized trust. A number of nodes

participate in a blockchain in which no node is required to trust another node. Transactions

are to be done in a manner that guarantees their security and reliability despite that lack of

a trust model. Based on Kevin Werbach in his book “Blockchain and The New Architecture

of Trust”[50] , there are four different trust architectures:

• Peer-to-peer trust

• Institutional trust (contracts)

• Intermediary trust (PayPal or credit cards)

• Distributed trust which is what blockchain enables without any individual

entities in the system trusting each other.

2.6.3 Blockchain Classes

There are two classes of a blockchain. A private (permissioned) blockchain and a public

(permissionless blockchain). In a permissioned blockchain, nodes are authenticated and

authorized before joining a network. Permissioned blockchains are usually owned/operated

by an organization. A permissioned blockchain is defined as “operating in environments

where participants have authenticated and verified identities”[46]. In a permissionless or

public blockchains, nodes can join and leave the network without authentication. Bitcoin and

most of the cryptocurrencies are considered permissionless blockchains.

2.6.4 Chaining of Blocks

Blockchain got its name from the fact that blocks are chained to each other. Each block

contains a set of transactions. Blocks are verified and synchronized with other computers on

www.manaraa.com

2-Background DBKnot

28/115

the network. Once verified, the blocks are chained to the last block in the blockchain as

illustrated in Figure 11 – Chaining of hashes into blocks. To ensure the correct order of the

blocks inside the blockchain, each block contains the hash of the previous block. Using the

hash of the previous block ensures integrity between transactions. The first block in a

blockchain is called the “Genesis block”. Each blockchain has its own genesis block.

Figure 11 – Chaining of hashes into blocks

Full nodes are computers that stores the blockchain, they ensure fault tolerance in the

network as there are no single points of failure due to having multiple full nodes in the same

network. Some of the full nodes crypto-currencies are known as miners, these are the nodes

that add blocks to the blockchain. Adding blocks to the Blockchain is considered completely

secured and verified and this is only made possible because of consensus protocols. A

consensus algorithm is a way to reach common agreement between all peers of the

Blockchain network. The consensus algorithm makes sure that every new block added to the

Blockchain is the only version of the truth that is agreed upon by all nodes in the Blockchain.

There are multiple consensus algorithms that exist including the following:

1. Proof of Work (PoW) is based on solving a complex mathematical puzzle. The first

node to solve that puzzle gets to mine the next block.

2. Practical Byzantine Fault Tolerance (PBFT) is designed to work efficiently in

asynchronous systems. Fault tolerance can be achieved if the correctly working

nodes in the network achieved an agreement while there is a default vote value

given to missing messages.

www.manaraa.com

2-Background DBKnot

29/115

3. Proof of Stake (PoS) is based on investing the coins of the system by keeping them

as stake. Validators after that validate blocks by placing bets if they discover a block

to be added to the chain. Based on the actual block added, all validators get

rewarded depending on the bets they did.

4. Other consensus algorithms include Proof of Burn (PoB), Proof of Elapsed Time,

Proof of Capacity, Proof of Activity, Proof of Weight, Leased Proof of Stake, Proof of

Importance, and others.

2.6.5 Drawbacks

2.6.5.1 51% Attack[51]
Although not practical in most real-life uses of block-chains specifically,

public/permissionless block-chains. If more than 50% of the nodes conspire, they can take

control of the whole network. They can monopolize the network, reverse transactions, and

take total controls. The 51% Attacks are rare because it needs a computing power that

competes with the rest of the network.

The cost of operating a blockchain is huge in terms of computing resources as well as the

power consumption of such resources. For example, in blockchain based currencies like

bitcoin, the power needed to mine a single coin is comparable (or even higher) than the

power used by a household. This is due to the reliance on satisfying constraints like the Proof-

Of-Work (PoW) in the process of generating a coin.

2.6.5.2 Performance

While the performance of most blockchain based systems is suitable for many applications,

database transactions performance requirements are much higher than what could be

satisfied by traditional and generic blockchain implementations[52]. One of the reasons for

that is that blockchains are designed to cater to problems that are not always applicable to

secure traditional transactional databases where using full blockchain features would be an

overkill and an unnecessary tradeoff of performance in order to satisfy unneeded constraints

that we can do without. According to[52]: “current block- chains’ performance is limited, far

below what a state-of- the-art database system can offer”. According to [52]: “Bitcoin

transaction throughput remains very low (7 transactions per second)” and “However, being

non-deterministic and computationally expensive, [PoW] is unsuitable for applications such

www.manaraa.com

2-Background DBKnot

30/115

as stock market, banking and finance which must handle large volumes of transactions in a

deterministic manner.”[53]

2.6.6 Relevance

Although the general concepts of blockchain provide features or solve problems different

from the subject of the research like distribution of trust, proof of work, distribution of data,

mining, peer-to-peer, etc. some of the underlying concepts will constitute some of the

building blocks of this work. The chaining of hashes is one example. Handling the granularity

in the form of blocks and optimization of the signed blocks is another example. Data integrity

and tamper resistance is another key common goal.

2.7 Merkle Trees and Merkle DAGs

2.7.1 Brief

A fundament part of a blockchain technology are Merkle trees. Merkle trees are data

structures that allow efficient and secure verification of data where non-leaf parent node is

a hash of its respective child nodes [54], [55]. A Merkle tree is a binary tree that requires an

even number of leaf nodes. A Merkle tree is a derivative of the concept of a Hash chain or a

Hash List. A Merkle tree summarizes all block transactions by producing a hash to the entire

set of transactions by repeatedly hashing pairs of nodes until the root of the tree. This

ensures the integrity of the data transactions. If any change/update happens in a transaction,

it will affect the root of the Merkle tree directly. The root of the Merkle tree, Merkle Root, is

considered a crucial piece of data as it allows the verification of information efficiently. Each

block in a blockchain has exactly one Merkle Root. Merkle trees work by structuring the

hashes of a large number of data blocks into a hierarchical successive hash trees.

As illustrated in Figure 12, a Merkle tree of four transactions A, B, C, and D in a block is

hashed. Pairs of leaf nodes are summarized in the parent nodes by hashing Hash A and Hash

B resulting in Hash AB and the same for Hash CD. Both nodes are hashed again to produce

the Merkle Root.

www.manaraa.com

2-Background DBKnot

31/115

Figure 12 - Merkle Tree

The achievement of Merkle trees is that they reduce the verification complexity to a

logarithmic order relative to the size of the data involved. For example, if a binary tree is used

verification complexity will grow at the order of log2(N) for a balanced tree.

A Merkle Distributed Acyclic Graph (DAG) is a graph where each node has an identifier that

is a result of hashing the node’s contents. Merkle DAGs can only be constructed from the

leaves. Every node in a Merkle DAG is the root of a Merkle DAG itself (sub graph) and the

subgraph is contained in the parent DAG. Merkle DAG nodes are immutable meaning any

change in a node would alter its identifier and affect all ascendants. It is similar to the Merkle

trees but there is no balance requirements and a node in this case can have several parents.

2.7.2 Relevance

In our research, we have looked into Merkle trees and similar variants to speed up the

verification process of transaction hashes.

2.8 Third Party Data Integrity Audit Techniques

2.8.1 Brief

The use of a third-party auditor (TPA) provides efficiency, transparency, and the fairness in

performing all the needed auditing tasks.

Using a third party to do or facilitate the audit process is not new. In their work “Auditing to

Keep Online Storage Services Honest”[56], the authors go over different audit techniques.

They define the role of internal and external audits.

Root Hash/
Merkle Root

Hash AB Hash CD

Hash A Hash B

Transaction A Transaction B

Hash C Hash D

Transaction C Transaction D

www.manaraa.com

2-Background DBKnot

32/115

Although the use of TPA provides several advantages, the fact that the TPA is an untrusted

entity and can turn into a malicious user cannot be ignored. Techniques to ensure integrity

of a TPA must also be taken into consideration.

2.9 Inter-Planetary Filesystem (IPFS)[57]–[59]

2.9.1 Brief

IPFS is a distributed file system. According to the IPFS GitHub account [57], [60], IPFS is a

hypermedia distribution protocol which enables the creation of completely distributed

applications. It is designed to connect all computing devices with the same system of files.

IPFS is similar to a single BitTorrent swarm exchanging Git objects [61]. IPFS uses Merkle DAGs

to verify the integrity of remotely stored data. IPFS allows data to be scattered in many

locations and be accessed while guaranteeing its integrity.

IPFS is considered a peer-to-peer storage network. IPFS locates what is needed by its content

address instead of its location. The fundamental principles behind IPFS are the identification

through content addressing, DAG content linking, and content discovery through distributed

hash tables.

2.9.2 Relevance

Although not targeting database applications, IPFS does the reverse of the problem at hand

but for a normal filesystem. It provides content addressable remote storage of data.

Performance is of great importance for IPFS. Different techniques that IPFS uses to handle

data will be looked into in order to see if any of them could be of help in the efficient

verification of database transactions.

2.10 Security by Design

According to the OWASP “Security By Design[18]” guidelines, the following are some of the

important core pillars that contribute towards having a secure information system and how

our work caters to them:

• Confidentiality: In the presented architecture, much of the integrity measures are

based on exchanging hashes and signatures rather than exchanging the actual data.

In fact, even the signatures and hashes themselves are never stored outside the data

owner’s facility.

www.manaraa.com

2-Background DBKnot

33/115

• Integrity: Integrity is the core goal of our work. Being able to detect any tampering

that occurs to the data.

• Availability: One of the primary advantages of our proposed work is that all

verification and checking is done at the same place with the data. No need to contact

any external parties/servers in order to verify data integrity. This means that the

architecture does not impact the availability of data access. In addition, all data is

stored locally meaning that the system will not be vulnerable to any external outages

that could impact data availability.

2.11 Data Governance[62]

Data governance on an organizational level focuses on guaranteeing data quality and

integrity throughout the data lifecycle.

The key focus areas for data governance include:

- Availability

- Consistency

- Usability

- Integrity

- Security

- Accountability

The goal of the proposed solution is to cover the accountability, integrity, consistency and

security requirements. More details on data governance strategies and lean data is provided

by[63].

The pillars of data governance[62] are:

- Data Stewardship: accountability for different portions of the data

- Data Quality: correctness, completeness, accuracy, and consistency.

- Master Data Management: Organization-wide data consistency

2.12 Continuous Auditing and Realtime Assurance

The concept of continuous audit as opposed to manual/periodic audit has a number of

benefits. As per D.Y. Chain[64], the following are among the primary differences/merits of

continuous auditing:

www.manaraa.com

2-Background DBKnot

34/115

• Frequency: Continuous audits are more frequent as opposed to periodic audits. This

means that any issues will be uncovered sooner and closer to the event itself rather

than later after time has passed.

• Proactive: Continuous audits are performed all the time (proactively) rather than

waiting until there is an issue that requires an audit and do it reactively.

• Automation: Automatic systems take care of the audits. This results in greater

efficiency and accuracy in comparison with manual audits.

• Extent: In continuous auditing, the whole population is checked which is more

reliable in comparison to sampling some of the data to audit.

• Testing: Does not require humans to do the testing because they are automated.

• Reporting: Continuous audits are constantly checking the data which means that the

reports are more frequent than traditional audits which provide periodic reports.

The solution we are presenting provides semantics that could be used as a base for

performing continuous auditing. One of the design decisions that need to be evaluated is

how to embed a continuous auditing process based on the proposed design without incurring

a large performance overhead.

2.13 Levels of Assurance and Audit Objectives: Where do we fit?

According to[65], auditing is divided into 4 different levels summarized as follows:

1. Level 1: Transaction level

2. Level 2: Compliance level

3. Level 3: Estimates level

4. Level 4: Judgement level

www.manaraa.com

2-Background DBKnot

35/115

Comparison: Source: [65]

Figure 13 – Levels of assurance and audit objectives

In the work presented, our target is to secure the first level (transactions level). In fact, we

could think of our work as securing level zero which is the database level prior to becoming

seen as a business transaction. Verifying transactions from the business standpoint is beyond

the scope of our work.

Database
• CRUD operations

Transaction

• Business Transactions
• Business Process and Rules

Compliance

• Compliance to Regulations
• Structural

Estimate

• Value-Chain Relationships
• Upstream-Downstream

Judgement
• Experts / Expert systems

www.manaraa.com

3-Related Work DBKnot

36/115

3 Related Work
A number of different solutions have been proposed to target the problem we are addressing.

Solutions vary in the way the problem is tackled. We have chosen to compare with work that

addresses the challenge matching two criteria: a) Solutions based on our approach of cumulative

serial hashing of transactions but that provide different functionality, have different

performance implications, or require different levels of effort/invasiveness to embed into

existing architectures. Such solutions are to be compared with our proposed solution to

illustrate different tradeoffs between different proposed architectures. And b) solutions that

tackle the same problem but using completely different approaches.

3.1 DRAGOON: An information accountability system for high-performance

databases[17][66][67]

DRAGOON is an information accountability system that relies on continuous cryptographic

hashing of transactions. DRAGOON primarily relies on an external “Digital Notarization

Service” rather than just a simple external transaction signer.

The digital notarization service is responsible for storing hashes of all the transactions made.

The diagram below[17] explains the architecture of the solution proposed where the use of

an external notarization service is included.

Figure 14 - DRAGOON Architecture[17]

www.manaraa.com

3-Related Work DBKnot

37/115

As Figure 14 shows, when a user application performs a transaction on the database, the

affected tuples are cumulatively hashed, and the hashes are sent to an external

notarization service (EDNS). The notarization service signs the hashes and sends them back

to the notarizer which in turn saves it into a MySQL database. The validator on the other

hand, traverses all the database, hashes all the records and then contacts the notarizer for

validation of the signed hashes.

3.2 Amazon QLDB (Quantum Ledger Database)

In March 2019, Amazon has announced that they are working on a blockchain database

system named QLDB.[68]

QLDB solves part of the problem addressed in our work. Due to the nature of the problem

we are targeting, the use-case is slightly different from that solved by Amazon.

Even though it targets a different use-case, we see the concept of QLDB as both a) An

indication of the industry’s need for integrity-verifiable ledger databases and b) Work that

could be looked at to see how similar issues are tackled and for future enhancements when

including updates and deletes.

QLDB provides the ledger database service based on the premise that there is a “central” and

“trusted” authority which in this case is Amazon. Amazon in this case provides the signing

and trust service as well as the hosting of the actual data. Which is exactly the model we are

trying to avoid and solve. Having both the storage of the data as well as the verifiability of its

integrity in the hands of the same party.

3.3 BigchainDB[69]

3.3.1 Brief

BigchainDB is a distributed database designed to leverage a blockchain network. BigchainDB

provides the following features:

- Decentralized control

- Immutable transactions

- Database-like semantics while relying on a blockchain backend

- Ability to query structured data

- High transaction throughput

- Low latency

www.manaraa.com

3-Related Work DBKnot

38/115

BigchainDB is byzantine fault tolerant with up to one third of the nodes failing gracefully. It

does so by leveraging Tendermint[69][70].

Tindermint is a language/technology agnostic framework for distributing databases. It relies

of bezantine-fault-tolerance (BFT) in addition to a blockchain implementation.

The objective of BigchainDB is to provide the following features in comparison to traditional

database systems and to blockchain networks.

Figure 15- BigchainDB Value Proposition (SRC: BigchainDB Whitepaper)[69]

3.3.2 Network Layout

BigchainDB utilizes different components to achieve the features required.

- A fully replicated mongoDB database exists at each node

- Tendermint is utilized for inter-node communication

Figure 16 - BigchainDB Network Layout (SRC: BigchainDB Whitepaper)[69]

www.manaraa.com

3-Related Work DBKnot

39/115

This research has proposed creating a tamper-evident model for databases. It has covered

CRUD operations as well as complex databases including aggregate operations. The authors

of the paper have designed a model for complex hierarchical structures as well as database

operations that follow a DAG structure.

3.4 The Case of The Fake Picasso[71]

The authors of the paper provide a good model for provenance tracking. Provenance is the

ownership of an item and where it is located. Provenance tracking is keeping record of the

object as it exchanges hands. The focus of the research however is on documents rather than

database transactions. The aim of the research is to provide a mechanism to track the

“creation, ownership, and workflow of documents and to ensure a certain level of trust”.

Typical applications for the proposed solution are financial and regulatory compliance

records, DNA and lab results, and tests of food and food additives by organizations like the

US FDA. Medical diagnosis and tracking of medical mal-practices across the work of different

doctors and medical institutes is also an application.

One special merit of this work is being able to track documents as they cross organizational

boundaries and move across different organizations while maintaining all their provenance

data.

A number of different techniques of the research are interesting for us. For example their

approach towards managing updates might open the door to having better support for

updatable databases that utilize our presented architecture.

3.5 Provenance-Aware Storage Systems

The research work targets quite a similar problem but on the filesystem level instead of

database transactions. The goal of the research is to track the lifecycle and “complete

history” of a piece of data (i.e.: file or document) throughout its lifetime.[71]

One of the goals of the referenced research is to store provenance data inside the filesystem

itself rather than using a separate external database to store it.

Provenance data is stored inside the filesystem in the form of metadata coherently that is

more convenience during data backups, archiving, and transfers.

	DBKnot: A Transparent and Seamless, Pluggable Tamper Evident Database
	Microsoft Word - DBKnot-Thesis-V17.docx

