Algorithm Design Strategies I

Joaquim Madeira
Version 0.1 - September 2019

Overview

- Deterministic vs Non-Deterministic Algorithms
- Problem Types and Design Strategies
- Algorithm Efficiency and Complexity Analysis
- Counting basic operations

Algorithms

- Algorithm
- Sequence of non-ambiguous instructions
- Finite amount of time
- Input to an algorithm
- An instance of the problem the algorithm solves
- How to classify / group algorithms?
- Type of problems solved
- Design techniques
- Deterministic vs non-deterministic

Deterministic Algorithms

- A deterministic algorithm
- Returns the same answer no matter how many times it is called on the same data.
- Always takes the same steps to complete the task when applied to the same data.
- The most familiar kind of algorithm !
- There is a more formal definition in terms of state machines...

Non-Deterministic Algorithms

- A non-deterministic algorithm
- Can exhibit different behavior, for the same input data, on different runs.
- As opposed to a deterministic algorithm !
- Often used to obtain approximate solutions to given problem instances
- When it is too costly to find exact solutions using a deterministic algorithm

Non-Deterministic Algorithms

- How to behave differently from run to run?
- Factors of non-deterministic behavior
- External state other than the input data
- User input / timer values / random values
- Timing-sensitive operations on multiple processor machines
- Hardware errors might force state to change in unexpected ways

Problem Types

- Searching
- Sorting
- String Processing
- Graph / Network problems
- Combinatorial problems
- Bioinformatics
- Examples of algorithms ?

Searching

- Which items?
- Numbers, strings, records (key?), etc.
- Possible representations?
- Arrays, lists, trees, etc.
- Ordered vs. non-ordered items
- Dynamically changing set?
- Sequential vs. binary search
- Others?

Sorting

- Which items?
- Numbers, strings, records (key?), etc.
- Possible representations?
- Arrays, lists, trees, etc.
- Use an indexing array?
- Which ordering? Repeated items?
- Stable? In-place?
- How many algorithms do you know?
- Which ones are the "most efficient"? When?

String Processing

- Text strings, bit strings, gene sequences, etc.
- String matching?
- Longest-common substring?
- String-edit distance?
- Other problems / algorithms?

Graph / Network Problems

- Modeling the real-world!
- Dense vs. sparse graphs / networks
- Representations
- Adjacency matrices vs. lists
- Forward-star and reverse-star forms
- Depth vs. breadth traversals
- Shortest path? K-shortest paths?
- Minimum spanning tree?
- Traveling salesman!
- Other problems?

Combinatorial Problems

- Find a permutation, combination or subset !!
- What are the constraints?
- Are we optimizing some property?
- Max value, min cost, etc.
- The most difficult problems in computing !!
- No (known?) polynomial algorithms for some problems !!
- Instance size vs. execution time
- Exhaustive search?
- Optimal solutions vs. approximations
- Examples
- N-Queens / Knapsack / Traveling salesman

Bioinformatics

- Applications in molecular biology
- Dealing with sequences (DNA or proteins)
- Storing
- Mapping and analyzing
- Aligning

Algorithm Design Techniques

- Design techniques / strategies / paradigms
- General approaches to problem solving
- Apply to
- Various problem types
- Different application areas

Algorithm Design Techniques

- Brute-Force
- Divide-and-Conquer
- Decrease-and-Conquer
- Transform-and-Conquer
- Dynamic Programming
- Greedy Algorithms
- Examples of algorithms ?
- What about problems / instances that cannot be solved within a reasonable amount of time?

Brute-Force

- Direct approaches
- Selection sort
- Sequential search
$\square \quad . \cdot$
- Exhaustive search
- Problem instances of small (?!) size
- Traveling salesman
- Knapsack

Divide-and-Conquer

- Recursive decomposition into "smaller" prob. instances
- Solve them all !
- Sorting
- Mergesort
- Quicksort
- Multiplication
- Multiplying large integers
- Strassen matrix multiplication

Decrease-and-Conquer

- Successive decomposition into a "smaller" problem instance
- How small is it?
- Decrease-by-one
- Decrease by a constant factor
- Variable-size decrease
- Examples
- Binary search
- Interpolation search
- Fake-coin problem

Transform-and-Conquer

- Solve a different problem and get the desired result - Problem reduction
- Sometimes, perform some kind of pre-processing on the data
- Examples
- Searching on ordered and balanced trees
- AVL and 2-3 trees
- Heapsort

Dynamic Programming

- Decomposition into overlapping (smaller !) sub-problems
- Avoid solving them all !!
- Proceed bottom-up
- Store results and use them !!
- Simple examples
- Computing Fibonacci numbers
- Computing binomial coefficients
- ...
- Other
- Graphs: Warshall alg.; Floyd alg; etc.
- Knapsack

Greedy Algorithms

- Construct a solution through a sequence of steps
- Expand a partially constructed solution
- The choice made at each step is
- Feasible : satisfies constraints
- Locally optimal : best choice at each step
- Irrevocable
- Examples
- Coin-changing problem
- Graphs
- Dijkstra's shortest-path algorithm
- Prim's minimum-spanning tree algorithm
- Kruskal's minimum-spanning tree algorithm

Limitations of Algorithmic Power

- How to cope?
- Backtracking
- N-Queens problem
- ...
- Branch-and-Bound
- Assignment problem
- Knapsack problem
- TSP
- ...
- Approximation algorithms for NP-hard problems
- Knapsack problem
- TSP
- ...

Fundamental Data Structures

- Algorithms operate on data !
- How to organize and store related data items?
- Data structures (DS)
- Which operations should be provided?
- Abstract data types (ADT) or classes (in OO languages)
- How to choose?
- Identify the most common operations on the data
- Identify the needs of particular algorithms
- Different algorithms for the same problem often require different data structures
- Efficiency !!

Fundamental Data Structures

- Arrays
- 1D, 2D, ...
- Linked Lists
- Single pointer vs. two pointers per node
- List of lists
- Trees
- Binary tree
- Quaternary tree

Common Abstract Data Types

- Stack
- Queue
- Priority Queue
- Ordered List

Binary Search Tree

- Graph / Network

Algorithm Efficiency

- Analyze algorithm efficiency
- Running time?
- Memory space?
- Time
- How fast does an algorithm run?
- Space
- Does an algorithm require additional memory?

Efficiency Analysis

- How fast does an algorithm run?
- Most algorithms run longer on larger inputs !
- How to relate running time to input size ?
- How to rank / compare algorithms ?
- If there is more than one available...
- How to estimate running time for larger problem instances?

Running Time vs. Operations Count

- Running time is not (very) useful for comparing algorithms
- Speed of particular computers
- Chosen computer language
- Quality of programming implementation
- Compiler optimizations
- Evaluate efficiency in an independent way
- Count the "basic operations" !!
- Contribute the most to overall running time

Input Size

- Relate operations count / running time to input size !!
- Number of array / matrix / list elements
- Relate size metric to the main operations of an algorithm
- Working with individual chars vs. with words
- Number of bits in binary rep., when checking if n is prime

Worst, Best and Average Cases

- Running time depends on input size
- BUT, for some algorithms, it might also depend on particular data configurations !!
- Sequential search on a n-element array
- Non-ordered array?
- Ordered array?
\square Increasing vs. decreasing order
- Probability of a successful search ?

Worst, Best and Average Cases

- Worst case : W(n)
- Input(s) of size n for which an algorithm runs longest
- Upper bound for operations count
- Best case : B(n)
- Input(s) of size n for which an algorithm runs fastest
- Lower bound for operations count
- Not very useful...
- Average case : A(n)
- Behavior for "typical" or "random" inputs
- Establish assumptions about possible inputs of size n
- For some algorithms, much better than worst case !!

Growth Rate

- Identify algorithm efficiency for large input sizes
- How fast does the running time (i.e., number of operations) of an algorithm grow, when input size becomes (much) larger ?
- What happens when the input size
- doubles?
- increases ten-fold?
- How to represent such growth rate?

Orders of Growth

- Approximate values for some common functions

n	$\log _{2} n$	n	$\mathrm{n} \log _{2} \mathrm{n}$	n^{2}	n^{3}	2^{n}	$\mathrm{n}!$
10	3.3	10	3.3×10^{1}	10^{2}	10^{3}	10^{3}	3.6×10^{6}
10^{2}	6.6	10^{2}	6.6×10^{2}	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
10^{3}	10	10^{3}	10^{4}	10^{6}	10^{9}	$?$	$?$
10^{4}	13	10^{4}	1.3×10^{5}	10^{8}	10^{12}	$?$	$?$
10^{5}	17	10^{5}	1.7×10^{6}	10^{10}	10^{15}	$?$	$?$
10^{6}	20	10^{6}	2.0×10^{7}	10^{12}	10^{18}	$?$	$?$

Asymptotic Notations

- Order of growth of operations count indicates efficiency
- How to compare / rank algorithms for the same problem?
- Compare their orders of growth !!
- Useful notations: $\mathrm{O}(\mathrm{n}), \Omega(\mathrm{n}), \Theta(\mathrm{n})$

Big-Oh Notation

- Asymptotic upper bound

- $\mathrm{O}(\mathrm{g}(\mathrm{n}))$: set of all functions with smaller or same order of growth as $g(n)$
- $\mathrm{t}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$, for all $\mathrm{n} \geq \mathrm{n}_{0}$, positive constant c
- $\mathrm{t}(\mathrm{n}), \mathrm{g}(\mathrm{n})$: non-negative functions on the set of natural numbers

Big-Omega Notation

- Asymptotic lower bound

- $\Omega(\mathrm{g}(\mathrm{n}))$: set of all functions with larger or same order of growth as $g(n)$
- $\mathrm{t}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n})$, for all $\mathrm{n} \geq \mathrm{n}_{0}$, positive constant c

Big-Theta Notation

- Asymptotic tight bound

- $\Theta(g(n))$: set of all functions with the same order of growth as $\mathrm{g}(\mathrm{n})$
- $c_{1} g(n) \leq t(n) \leq c_{2} g(n)$, for all $n \geq n_{0}$, positive constants $\mathrm{C}_{1}, \mathrm{c}_{2}$
- $\mathrm{t}(\mathrm{n})$ in $\mathrm{O}(\mathrm{g}(\mathrm{n})$) and $\mathrm{t}(\mathrm{n})$ in $\Omega(\mathrm{g}(\mathrm{n})$)

Asymptotic Notation

- Hide unimportant details about how fast a function grows
- Forget constants and lower-order terms
- $T_{1}(n)=2 n^{2}+3000 n+5$
- $T_{2}(n)=10 n^{2}+100 n-23$
- For large values of $n, T_{2}(n)$ grows faster than $\mathrm{T}_{1}(\mathrm{n})$
- BUT, both grow quadratically : $\Theta\left(n^{2}\right)$

Asymptotic Notation - Example

$$
T(n)=10 n^{2}+100 n-23
$$

$$
T(n)=O\left(n^{2}\right) \quad T(n)=O\left(n^{3}\right) \quad T(n) \neq O(n)
$$

$$
\mathrm{T}(\mathrm{n})=\Omega\left(\mathrm{n}^{2}\right) \quad \mathrm{T}(\mathrm{n}) \neq \Omega\left(\mathrm{n}^{3}\right) \quad \mathrm{T}(\mathrm{n})=\Omega(\mathrm{n})
$$

$$
T(n)=\Theta\left(n^{2}\right) \quad T(n) \neq \Theta\left(n^{3}\right)
$$

$$
\mathrm{T}(\mathrm{n}) \neq \Theta(\mathrm{n})
$$

Efficiency Classes

- $\mathrm{O}(1)$: constant
- Which algorithms?
- $\mathrm{O}(\log \mathrm{n})$: logarithmic
- E.g., decrease-and-conquer
- O(n) : linear
- Processing all elements of an array, list, etc.
- $\mathrm{O}(\mathrm{n} \log \mathrm{n}): n-\log -n$
\square E.g., divide-and-conquer

Efficiency Classes

- $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$: polynomial (quadratic, cubic, etc.)
- k nested loops
- $\mathrm{O}\left(2^{n}\right)$: exponential
- Generating all subsets of an n-element set
- $\mathrm{O}(\mathrm{n}!)$: factorial
- Generating all permutations of an n-element set

Formal Analysis - Pencil and paper

- Understand algorithm behavior
- Count arithmetic operations / comparisons
- Find a closed formula !!
- Identify best, worst and average case situations, if that is the case
- Iterative algorithms
- Loops : how many iterations?
- Set a sum for the basic operation counts
- Recursive algorithms
- How many recursive calls ?
- Establish and solve appropriate recurrences

Empirical Analysis

- Run the algorithm on a sample of test inputs
- Input data should represent all possible cases
- Input data should encompass large (set) sizes
- Pseudo-random data
- Record and analyze - Tables
- operation counts
- running times (?)
- Identify best, worst and average case behavior - If that is the case...
- Identify complexity classes

Example - Table of operations count

n	1	2	4	8	16	32	64	128	256
$M(n)$	1	3	10	36	136	528	2080	8256	32896

- $M(n)$: the number of operations carried out
- Complexity order ?
- Closed formula for the number of operations ?

Another table of operations count

n	1	2	3	4	5	6	7	8	9	10
$M(n)$	1	3	7	15	31	63	127	255	511	1023

- $M(n)$: the number of operations carried out
- Complexity order ?
- Closed formula for the number of operations ?

Empirical Analysis

- Problems
- Inadequate sample input data
- Size? Configurations?
- Dependence of running times
- Advantages
- Avoid difficult formal analysis
- Allow predicting the running time for different input data sets
- Interpolation and extrapolation (?)
- BUT, some problems / instances cannot be solved quickly enough...

Return value? - Number of iterations?

```
int f1(int n) {
    int i,r=0;
    for(i = 1; i <= n; i++)
        r += i;
    return r;
}
int f3(int n) {
    int i,j,r=0;
    for(i = 1; i <= n; i++)
        for(j = i; j <= n; j++)
        r+= 1;
    return r;
}
```

```
int f2(int n) {
    int i,j,r=0;
    for(i=1; i <= n; i++)
        for(j = 1; j <= n; j++)
        r+= 1;
```

 return \(r\);
 \}
int f4(int n) \{
int $\mathrm{i}, \mathrm{j}, \mathrm{r}=0$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
for ($\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$)
$r+=j ;$
return r;
\}

Tasks

- Implement the functions of the previous slide in Python
- Check the correctness of the previously obtained closed formulas

Closed formulas? - Comput. tests?

- $\mathrm{f} 1(\mathrm{n})=\mathrm{n}(\mathrm{n}+1) / 2$
n_iters1 $(\mathrm{n})=\mathrm{n}$
- $\mathrm{f} 2(\mathrm{n})=\mathrm{n}^{2}$
n _iters2 $(\mathrm{n})=\mathrm{f} 2(\mathrm{n})$
- $\mathrm{f} 3(\mathrm{n})=\mathrm{n}(\mathrm{n}+1) / 2$
n _iters3(n) = f3(n)
- $\mathrm{f} 4(\mathrm{n})=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2) / 6$
- n_iters4(n) $=\mathrm{n}(\mathrm{n}+1) / 2$
- Use WolframAlpha to get / check results !

Return value? - Number of calls?

unsigned int
r3(unsigned int n) \{
if($\mathrm{n}==0$) return 0 ;
return $1+2$ * r3($n-1$);
\}
unsigned int
r2(unsigned int n) \{
if($\mathrm{n}==0$) return 0 ;
if($n==1$) return 1;
return $n+r 2(n-2)$;
\}
unsigned int
r4(unsigned int n) \{
if $(\mathrm{n}==0)$ return 0 ;
return $1+r 4(n-1)+r 4(n-1) ;$
\}

Tasks

- Implement the functions of the previous slide in Python
- Solve recurrences and check the correctness of the obtained closed formulas

Closed formulas? - Comput. tests?

- $\mathrm{r} 1(\mathrm{n})=\mathrm{n} \quad \mathrm{n}$ _calls1 $1(\mathrm{n})=\mathrm{r} 1(\mathrm{n})$
- $r 2(n)=n(n+2) / 4$, if n is even
- $r 2(n)=1+(n-1)(n+3) / 4$, if n is odd
- n _calls2(n) = floor($\mathrm{n} / 2$)
- Use WolframAlpha to get / check results !

Closed formulas? - Comput. tests?

- $\mathrm{r} 3(\mathrm{n})=2^{\mathrm{n}}-1 \quad \mathrm{n}$ _calls3(n$)=\mathrm{n}$ _calls1(n$)$
- $\mathrm{r} 4(\mathrm{n})=\mathrm{r} 3(\mathrm{n})=2^{\mathrm{n}}-1$
- $n _$calls4(n) $=2 \times\left(2^{n}-1\right)=2 \times r 4(n)$
- r3 and r4 compute the same result
- BUT, r4 will take much more time...
- How far can you go with your computer?

References

- A. Levitin, Introduction to the Design and Analysis of Algorithms, $3^{\text {rd }}$ Ed., Pearson, 2012
- Chapter 1 + Chapter 2
- D. Vrajitoru and W. Knight, Practical Analysis of Algorithms, Springer, 2014
- Chapter 1 + Chapter $3+$ Chapter 5
- T. H. Cormen et al., Introduction to Algorithms, $3^{\text {rd }}$ Ed., MIT Press, 2009
- Chapter 1 + Chapter $2+$ Chapter 3

