Algorithm Design Strategies |

Joaquim Madeira

Version 0.1 — September 2019

U. Aveiro, September 2019

Overview

Deterministic vs Non-Deterministic Algorithms
Problem Types and Design Strategies
Algorithm Efficiency and Complexity Analysis
Counting basic operations

U. Aveiro, September 2019

Algorithms

Algorithm

o Sequence of non-ambiguous instructions
o Finite amount of time

Input to an algorithm
o An instance of the problem the algorithm solves

How to classify / group algorithms?
o Type of problems solved

o Design techniques

o Deterministic vs non-deterministic

U. Aveiro, September 2019

Deterministic Algorithms

A deterministic algorithm

o Returns the same answer no matter how many
times it I1s called on the same data.

o Always takes the same steps to complete
the task when applied to the same data.

The most familiar kind of algorithm !

There Is a more formal definition in terms of
state machines...

U. Aveiro, September 2019

Non-Deterministic Algorithms

A non-deterministic algorithm

o Can exhibit different behavior, for the same input
data, on different runs.

o As opposed to a deterministic algorithm !

Often used to obtain approximate solutions to
given problem instances

o When it is too costly to find exact solutions using a
deterministic algorithm

U. Aveiro, September 2019 5

Non-Deterministic Algorithms

How to behave differently from run to run ?

Factors of non-deterministic behavior

o External state other than the input data
User input / timer values / random values

o Timing-sensitive operations on multiple processor
machines

o Hardware errors might force state to change in
unexpected ways

U. Aveiro, September 2019

Problem Types

Searching

Sorting

String Processing

Graph / Network problems
Combinatorial problems
Bioinformatics

Examples of algorithms ?

U. Aveiro, September 2019

Searching

Which items?
o Numbers, strings, records (key?), etc.

Possible representations?
o Arrays, lists, trees, etc.

Ordered vs. non-ordered items
Dynamically changing set?

Sequential vs. binary search
Others?

U. Aveiro, September 2019

Sorting

Which items?
o Numbers, strings, records (key?), etc.

Possible representations?
o Arrays, lists, trees, etc.

Use an indexing array?

Which ordering? Repeated items?
Stable? In-place?

How many algorithms do you know?
Which ones are the “most efficient”? When?

U. Aveiro, September 2019

String Processing

Text strings, bit strings, gene seguences, etc.

String matching?
Longest-common substring?
String-edit distance?

Other problems / algorithms?

U. Aveiro, September 2019

10

Graph / Network Problems

Modeling the real-world!

Dense vs. sparse graphs / networks

Representations
o Adjacency matrices vs. lists
o Forward-star and reverse-star forms

Depth vs. breadth traversals
Shortest path? K-shortest paths?
Minimum spanning tree?
Traveling salesman !

Other problems?

U. Aveiro, September 2019

11

Combinatorial Problems

Find a permutation, combination or subset !!

What are the constraints?
Are we optimizing some property?
o Max value, min cost, etc.

The most difficult problems in computing !!
No (known?) polynomial algorithms for some problems !!

Instance size vs. execution time
o Exhaustive search?
Optimal solutions vs. approximations

Examples
o N-Queens / Knapsack / Traveling salesman

U. Aveiro, September 2019

12

Bioinformatics
Applications in molecular biology

Dealing with sequences (DNA or proteins)

o Storing
o Mapping and analyzing
o Aligning

U. Aveiro, September 2019

13

Algorithm Design Techniques

Design technigues / strategies / paradigms

General approaches to problem solving

Apply to
o Various problem types
o Different application areas

U. Aveiro, September 2019

14

Algorithm Design Techniques

Brute-Force
Divide-and-Conquer
Decrease-and-Conquer
Transform-and-Conquer
Dynamic Programming
Greedy Algorithms

Examples of algorithms ?

What about problems / instances that cannot be
solved within a reasonable amount of time ?

U. Aveiro, September 2019

15

Brute-Force

Direct approaches
o Selection sort
o Sequential search

g ...

Exhaustive search

o Problem instances of small (?!) size
o Traveling salesman

o Knapsack

a ...

U. Aveiro, September 2019

16

Divide-and-Conquer

Recursive decomposition into “smaller” prob. instances
Solve them all !

Sorting
o Mergesort
o Quicksort

Multiplication

o Multiplying large integers
o Strassen matrix multiplication

U. Aveiro, September 2019

17

Decrease-and-Conquer

Successive decomposition into a “smaller” problem instance

How small is it?

o Decrease-by-one

o Decrease by a constant factor
o Variable-size decrease

Examples

o Binary search

o Interpolation search
o Fake-coin problem

U. Aveiro, September 2019

18

Transtorm-and-Conquer

Solve a different problem and get the desired result
o Problem reduction

Sometimes, perform some kind of pre-processing on
the data

Examples

o Searching on ordered and balanced trees
AVL and 2-3 trees

o Heapsort

U. Aveiro, September 2019 19

Dynamic Programming

Decomposition into overlapping (smaller !) sub-problems
o Avoid solving them all !

o Proceed bottom-up

o Store results and use them !!

Simple examples

o Computing Fibonacci numbers
o Computing binomial coefficients
a

Other

o Graphs: Warshall alg.; Floyd alg; etc.
o Knapsack

U. Aveiro, September 2019 20

Greedy Algorithms

Construct a solution through a sequence of steps
o Expand a partially constructed solution

The choice made at each step is

o Feasible : satisfies constraints

o Locally optimal : best choice at each step
o lrrevocable

Examples
o Coin-changing problem

o Graphs
Dijkstra’s shortest-path algorithm
Prim’s minimum-spanning tree algorithm
Kruskal’s minimum-spanning tree algorithm

U. Aveiro, September 2019

21

Limitations ot Algorithmic Power

= How to cope?

= Backtracking
o N-Queens problem
a ...

= Branch-and-Bound

o Assignment problem
Knapsack problem
TSP

U 0O O

= Approximation algorithms for NP-hard problems

o Knapsack problem
o TSP

a ..

U. Aveiro, September 2019

22

Fundamental Data Structures

Algorithms operate on data !

How to organize and store related data items?
o Data structures (DS)

Which operations should be provided?
o Abstract data types (ADT) or classes (in OO languages)

How to choose?
o ldentify the most common operations on the data
o Identify the needs of particular algorithms

Different algorithms for the same problem often require different
data structures

o Efficiency !

U. Aveiro, September 2019 23

Fundamental Data Structures

Arrays
o 1D, 2D, ...

Linked Lists

o Single pointer vs. two pointers per node
o List of lists
a ...

Trees
o Binary tree

o Quaternary tree
Q ...

U. Aveiro, September 2019

24

Common Abstract Data Types

Stack
Queue

Priority Queue
Ordered List

Binary Search Tree

Graph / Network

U. Aveiro, September 2019

25

Algorithm Etticiency

Analyze algorithm efficiency
o Running time ?
o Memory space ?

Time
o How fast does an algorithm run?

Space
o Does an algorithm require additional memory?

U. Aveiro, September 2019

26

Eftficiency Analysis

How fast does an algorithm run ?
o Most algorithms run longer on larger inputs !

How to relate running time to input size ?

How to rank / compare algorithms ?
o If there is more than one available...

How to estimate running time for larger
problem instances ?

U. Aveiro, September 2019

27

Running Time vs. Operations Count

Running time Is not (very) useful for
comparing algorithms

o Speed of particular computers

o Chosen computer language

o Quality of programming implementation
o Compiler optimizations

Evaluate efficiency in an independent way

a2 Count the "basic operations™ !
Contribute the most to overall running time

U. Aveiro, September 2019 28

Input Size

Relate operations count / running time to
iInput size !
o Number of array / matrix / list elements

a ...

Relate size metric to the main operations

of an algorithm

o Working with individual chars vs. with words

o Number of bits in binary rep., when checking if n
IS prime

a ...

U. Aveiro, September 2019

29

Worst, Best and Average Cases

Running time depends on input size

BUT, for some algorithms, it might also
depend on particular data configurations !

Sequential search on a n-element array
2 Non-ordered array ?

o Ordered array ?

o Increasing vs. decreasing order

o Probabillity of a successful search ?

U. Aveiro, September 2019

30

Worst, Best and Average Cases

Worst case : W(n)

o Input(s) of size n for which an algorithm runs longest
o Upper bound for operations count

Best case : B(n)

o Input(s) of size n for which an algorithm runs fastest
o Lower bound for operations count
o Not very useful...

Average case : A(n)

o Behavior for “typical” or “random” inputs

o Establish assumptions about possible inputs of size n
o For some algorithms, much better than worst case !!

U. Aveiro, September 2019

31

Growth Rate

|dentify algorithm efficiency for large input sizes

How fast does the running time (i.e., number of
operations) of an algorithm grow, when input
size becomes (much) larger ?

What happens when the input size

o doubles ?
o Increases ten-fold ?

a ...
How to represent such growth rate?

U. Aveiro, September 2019

32

Orders of Growth

Approximate values for some common functions

n log, n n nlog, n n2 n3 2" n!

10 3.3 10 | 3.3x10% | 102 | 108 103 3.6 x 10°
102 6.6 102 | 6.6 x10% | 104 | 10° |1.3 x10%9|9.3 x 101>/
103 10 103 104 10 | 10° ? ?
104 13 104 | 1.3 x10° | 108 | 10% ? ?
10° 17 10> | 1.7 x 106 | 1010 | 10%° ? ?
10°© 20 10 | 2.0x 107 | 10%2 | 10%8 ? ?

U. Aveiro, September 2019

33

Asymptotic Notations

Order of growth of operations count indicates
efficiency

How to compare / rank algorithms for the
same problem?

o Compare their orders of growth !!

Useful notations: O(n), €2(n), B(n)

U. Aveiro, September 2019 34

Big-Oh Notation

Asymptotic upper bound

[Wikipedia]

O(g(n)) : set of all functions with smaller or
same order of growth as g(n)

o t(n) < c g(n), for all n = n,, positive constant c

o t(n), g(n) : non-negative functions on the set of
natural numbers

U. Aveiro, September 2019 35

Big-Omega Notation

Asymptotic lower bound

[Wikipedia]

Q2(g(n)) : set of all functions with larger or
same order of growth as g(n)

o t(n) = c g(n), for all n = n,, positive constant ¢

U. Aveiro, September 2019 36

Big-Theta Notation

Asymptotic tight bound

[Wikipedia]

B(g(n)) : set of all functions with the same
order of growth as g(n)

a0 ¢, g(n) =t(n) < c, g(n), for all n =2 n,, positive
constants ¢, , C,

o t(n) in O(g(n)) and t(n) in (g(n))

U. Aveiro, September 2019 37

Asymptotic Notation

Hide unimportant details about how fast a
function grows

o Forget constants and lower-order terms

T,(n)=2n2+3000Nn+5

T,(nN)=10n?+ 100 n - 23

For large values of n, T,(n) grows faster than
T,(n)

BUT, both grow quadratically : ®(n?)

U. Aveiro, September 2019 38

Asymptotic Notation — Example
T(n)=10n%?+100n - 23
T(N)=0M?) TM)=0(MN3 T(n)# O(n)
T(n)=Q(MN?%) Tn)#MN3) T(n)=8(n)

TnN)=0M?) T(M)#0O(M3) T(n)# O(N)

Etficiency Classes

O(1) : constant
2 Which algorithms?

O(log n) : logarithmic
o E.g., decrease-and-conquer

O(n) : linear
o Processing all elements of an array, list, etc.

O(n log n) : n-log-n

o E.g., divide-and-conquer

U. Aveiro, September 2019

40

Etficiency Classes

O(nX) : polynomial (quadratic, cubic, etc.)
o k nested loops

O(2") : exponential
o Generating all subsets of an n-element set

O(n!) : factorial

o Generating all permutations of an n-element
set

U. Aveiro, September 2019

41

Formal Analysis — Pencil and paper

Understand algorithm behavior

o Count arithmetic operations / comparisons
o Find a closed formula !

o ldentify best, worst and average case situations, if that
Is the case

Iterative algorithms

o Loops : how many iterations ?
o Set a sum for the basic operation counts

Recursive algorithms

2 How many recursive calls ?
o Establish and solve appropriate recurrences

U. Aveiro, September 2019 42

Empirical Analysis

Run the algorithm on a sample of test inputs
o Input data should represent all possible cases

o Input data should encompass large (set) sizes

o Pseudo-random data

Record and analyze — Tables
0 operation counts
o running times (?)

ldentify best, worst and average case behavior
o If that is the case...

ldentify complexity classes

U. Aveiro, September 2019

43

Example — Table of operations count

n

16

32

64

128

256

M(n)

10

36

136

528

2080

8256

32896

M(n) : the number of operations carried out

Complexity order ?

Closed formula for the number of operations ?

U. Aveiro, September 2019

44

Another table of operations count

n

10

M(n)

15

31

63

127

255

011

1023

M(n) : the number of operations carried out

Complexity order ?

Closed formula for the number of operations ?

U. Aveiro, September 2019

45

Empirical Analysis

Problems

o Inadequate sample input data
Size? Configurations?
o Dependence of running times

Advantages
o Avoid difficult formal analysis

o Allow predicting the running time for different input data
sets

Interpolation and extrapolation (?)

BUT, some problems / instances cannot be solved
quickly enough...

U. Aveiro, September 2019

46

Return value? — Number of iterations?

Int f1(int n) {
Int 1,r=0;
for(i=1;i<=n;i++)
r+=1;
return r;

}

int f3(int n) {
inti,j,r=0;
for(i=1;i<=n; i++)
for(j=1;j<=n; j++)
r+=1;
returnr;

}

U. Aveiro, September 2019

int f2(int n) {
inti,j,r=0;
for(i=1;i<=n; i++)
for(j=1;j<=n;j++)
r+=1;
returnr,;

}

int f4(int n) {
inti,j,r=0;
for(i=1;i<=n; i++)
for(j=1;j<=1i; j++)
r+=j;
returnr;

}

47

Tasks

Implement the functions of the previous slide
iIn Python

Check the correctness of the previously
obtained closed formulas

U. Aveiro, September 2019

48

' Closed formulas? — Comput. tests?

w» flInN)=n(n+1)/2 n_itersl(n) =n
= f2(n) = n? n_iters2(n) = f2(n)
w f3(N)=n(n+1)/2 n_iters3(n) = f3(n)

m fAnN)=n(n+1)(n+2)/6
m N itersd(n)=n(n+1)/2

= Use WolframAlpha to get / check results !

U. Aveiro, September 2019

49

https://www.wolframalpha.com/

Return value? — Number of calls?

unsigned int unsigned int
rl(unsigned int n) { r2(unsigned int n) {
If(n == 0) return O; If(n == 0) return O;
return 1 + rl(n — 1); if(n == 1) return 1;
} return n + r2(n — 2);
}
unsigned int unsigned int
r3(unsigned int n) { r4(unsigned int n) {
If(n == 0) return O; If(n == 0) return O;
return 1 + 2 *r3(n — 1); return 1 + r4(n—1) + r4(n — 1);

} }

U. Aveiro, September 2019 50

‘ Tasks

= Implement the functions of the previous slide
iIn Python

= Solve recurrences and check the correctness
of the obtained closed formulas

U. Aveiro, September 2019 51

' Closed formulas? — Comput. tests?

= rl(n) =n n_callsl(n) =rl(n)

m 12n)=n(n+2)/4,ifnis even
= r2N)=1+(n-1)(n+3)/4,ifnis odd

= n_calls2(n) = floor(n / 2)

= Use WolframAlpha to get / check results !

U. Aveiro, September 2019 52

https://www.wolframalpha.com/

Closed formulas? — Comput. tests?

r3(n) =2" -1 n_calls3(n) =n_calls1(n)
r4(n) =r3(n) =2" - 1

n _calls4(n) =2 x (2"-1) =2 x r4(n)

r3 and r4 compute the same result

BUT, r4 will take much more time...
o How far can you go with your computer?

U. Aveiro, September 2019

53

Retfterences

A. Levitin, Introduction to the Design and Analysis of
Algorithms, 3 Ed., Pearson, 2012

o Chapter 1 + Chapter 2

D. Vrajitoru and W. Knight, Practical Analysis of
Algorithms, Springer, 2014
o Chapter 1 + Chapter 3 + Chapter 5

T. H. Cormen et al., Introduction to Algorithms, 3"
Ed., MIT Press, 2009

o Chapter 1 + Chapter 2 + Chapter 3

U. Aveiro, September 2019 54

