
www.manaraa.com

Departm

SOF

Thesis sub

ment of Co

JA

DESI

INST

FTWARE

COMP

bmitted in f

DOC

omputer Sc

AYPEE INST
A-

IGN OF I

TRUCTI

E DEVEL

PETENC

fulfillment

CTOR O

Sa

cience & E

TITUE OF I
-10, SECTO

 Ap

INTERV
FOR

IONAL R
 IN

LOPME
FOR
Y ENHA

of the requ

OF PHILO

By

njay Goel

ngineering

INFORMAT
R-62, NOID

pril, 2010

VENTION

REFORM

NT EDU

ANCEME

uirements f

OSOPHY

g and Infor

TION TECH
DA, INDIA

NS

M

UCATION

ENT

for the Deg

Y

rmation Te

HNOLOGY

N

gree of

echnology

www.manaraa.com

www.manaraa.com

Depa

SOF

Thesis sub

artment of

JA

DESI

INST

FTWARE

COMP

bmitted in f

DOC

Computer

AYPEE INST
A-

IGN OF I

TRUCTI

E DEVEL

PETENC

fulfillment

CTOR O

Sa

Science &

TITUE OF I
-10, SECTO

Ap

ii

INTERV
FOR

IONAL R
IN

LOPME
FOR
Y ENHA

of the requ

OF PHILO

By

njay Goel

& Engineer

INFORMAT
R-62, NOID

pril, 2010

VENTION

REFORM

NT EDU

ANCEME

uirements f

OSOPHY

ing and Inf

TION TECH
DA, INDIA

NS

M

UCATION

ENT

for the Deg

Y

formation

HNOLOGY

N

gree of

Technologgy

www.manaraa.com

iii

Copyright JAYPEE INSTITUE OF INFORMATION TECHNOLOGY, NOIDA
March, 2010
ALL RIGHTS RESERVED

www.manaraa.com

iv

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled “Design of Interventions

for Instructional Reform in Software Development Education for Competency

Enhancement” submitted at Jaypee Institute of Information Technology, Noida,

India, is an authentic record of my work carried out under the supervision of Prof. J.P.

Gupta and Dr. Mukul K. Sinha. I have not submitted this work elsewhere for any other

degree or diploma.

(Sanjay Goel)

Department of Computer Science & Engineering and Information Technology

Jaypee Institute of Information Technology, Noida, India

April 9th, 2010

www.manaraa.com

v

www.manaraa.com

vi

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “Design of Interventions

for Instructional Reform in Software Development Education for Competency

Enhancement”, submitted by Sanjay Goel at Jaypee Institute of Information

Technology, Noida, India is a bonafide record of his original work carried out under our

supervision. This work has not been submitted elsewhere for any other degree or diploma.

(Prof. J.P. Gupta) (Mukul K. Sinha)
Jaypee Institute of Information Technology Expert Software Consultants Ltd.

April 9th, 2010 April 9th, 2010

www.manaraa.com

vii

www.manaraa.com

viii

In revering memory of my grandparents,

Sh.(late) Chiranji Lal Goel, a dedicated teacher, who taught me that work is its own reward, and

Smt.(late) Shanti Devi Goel, who personified simplicity and patience.

www.manaraa.com

www.manaraa.com

vii

TABLE OF CONTENT

DECLARATION BY THE SCHOLAR iv
SUPERVISOR’S CERTIFICATE vi
ACKNOWLEDGEMENTS xiv
ABSTRACT xvi
LIST OF FIGURES xviii
LIST OF TABLES xix

CHAPTER-1

INTRODUCTION 1

1.1 BASIS FOR THE NEED FOR REFORMS IN COMPUTING 5
 EDUCATION
1.2 EVOLUTION OF SOFTWARE DEVELOPMENT EDUCATION 9
1.3 RESEARCH APPROACH 28
1.4 THESIS LAYOUT 33

CHAPTER-2

IDENTIFICATION OF CORE COMPETENCIES FOR 35
SOFTWARE ENGINEERS

2.1 STUDY REPORT ON CORE COMPETENCIES FOR ENGINEERS 35
 WITH SPECIFIC REFERENCE TO SOFTWARE ENGINEERING
2.2 NECESSARY COMPETENCIES AS EDUCATIONAL OUTCOMES 39

FOR SOFTWARE ENGINEERS AS RECOMMENDED BY
ACCREDITATION BOARDS, PROFESSIONAL SOCIETIES’
AND OTHER APPROACHES
2.2.1 IMPACT ON CURRICULUM AND FUTURE DIRECTIONS 40
2.2.2 INDIAN SCENARIO 41

2.3 SOME OTHER CONTEMPORARY RECOMMENDATIONS 42
ABOUT DESIRED COMPETENCIES OF ENGINEERING
GRADUATES

2.4 RECOMMENDATIONS OF SOME INTERNATIONAL 44
 PROFESSIONAL SOCIETIES RELATED TO COMPUTING
2.5 SOME CONTEMPORARY RECOMMENDATIONS ON DESIRED 47

COMPETENCIES OF SOFTWARE DEVELOPERS
2.6 A PERSPECTIVE FROM THE PROFESSIONAL CODES OF 51

CONDUCT, ETHICS, AND/OR PRACTICE

www.manaraa.com

viii

2.7 CLASSICAL AND CONTEMPORARY RECOMMENDATIONS 53
 ON DESIRED COMPETENCIES OF GRADUATES
2.8 A COMPREHENSIVE DISTILLED VIEW ON DESIRED 56

COMPETENCIES
2.9 FURTHER EMPIRICAL INVESTIGATIONS ON REQUIRED 56

CORE COMPETENCIES FOR ENGINEERING GRADUATES
WITH REFERENCE TO THE INDIAN IT INDUSTRY

2.10 CLASSIFYING THE CORE COMPETENCIES FOR 58
SOFTWARE DEVELOPERS

2.11 CHAPTER CONCLUSION 61

CHAPTER-3

DISTINGUISHING FEATURES OF SOFTWARE 64
DEVELOPMENT AND REQUISITE TAXONOMY
OF CORE COMPETENCIES

3.1 PROGRAMMING AS AN ART TO SOFTWARE ENGINEERING 65
3.2 DEBUGGING AS A CORE ACTIVITY IN 67
 SOFTWARE DEVELOPMENT
3.3 PROCESS CENTRIC SYSTEM DEVELOPMENT AND 68
 MAINTENANCE IN SOFTWARE ENGINEERING
3.4 SOFTWARE AS INTEGRAL PART OF BUSINESS, AND
 NEED FOR COMPREHENSION FOR SOFTWARE MAINTENANCE 68
3.5 ROLE OF EMPATHY AND SOCIAL SENSITIVITY IN 69
 SOFTWARE DEVELOPMENT
3.6 PROJECT SCOPING AND ESTIMATION FOR SOFTWARE 71
 CONTRACT
3.7 LEARNING NEW DOMAIN AND KNOWLEDGE STRUCTURING 71
 IN SOFTWARE DEVELOPMENT
3.8 SOFTWARE DEVELOPMENT PROCESS FOR ILL-DEFINED 72
 PROBLEMS
3.9 EMPIRICAL AND QUALITATIVE APPROACHES IN 74
 SOFTWARE DEVELOPMENT RESEARCH
3.10 SOFTWARE DEVELOPMENT: WHOLE-BRAIN ACTIVITY 75
3.11 REVISED TAXONOMY OF CORE COMPETENCIES 76
 FOR SOFTWARE DEVELOPERS

CHAPTER- 4

SOFTWARE DEVELOPERS’ EDUCATION FOR 82
DEVELOPMENT OF BASIC COMPETENCIES

4.1 SOFTWARE DEVELOPERS’ EDUCATION FOR 83

 DEVELOPMENT OF TECHNICAL COMPETENCE

www.manaraa.com

ix

4.2 SOFTWARE DEVELOPERS’ EDUCATION FOR 91
 DEVELOPMENT OF COMPUTATIONAL THINKING
4.3 SOFTWARE DEVELOPERS’ EDUCATION FOR 98
 DEVELOPMENT OF DOMAIN COMPETENCE
4.4 SOFTWARE DEVELOPERS’ EDUCATION FOR 106

 DEVELOPMENT OF COMMUNICATION COMPETENCE
4.5 SOFTWARE DEVELOPERS’ EDUCATION FOR 112
 DEVELOPMENT OF COMPLEX PROBLEM SOLVING
 COMPETENCE

 4.5.1 EXPERT PROBLEM SOLVERS 118
4.6 CHAPTER CONCLUSION 123

CHAPTER-5

SOFTWARE DEVELOPERS’ EDUCATION FOR 125
DEVELOPMENT OF COMPETENCY DRIVER-HABITS
OF MIND

5.1: SOFTWARE DEVELOPERS’ EDUCATION FOR 126
 DEVELOPMENT OF ATTENTION TO DETAILS
5.2: SOFTWARE DEVELOPERS’ EDUCATION FOR 130
 DEVELOPMENT OF CRITICAL AND REFLECTIVE THINKING
5.3: SOFTWARE DEVELOPERS’ EDUCATION FOR 138
 DEVELOPMENT OF CREATIVITY AND INNOVATION
5.4: CHAPTER CONCLUSION 144

CHAPTER-6

SOFTWARE DEVELOPERS’ EDUCATION FOR 145
DEVELOPMENT OF COMPETENCY CONDITIONING
ATTITUDES AND PERSPECTIVES

6.1 SOFTWARE DEVELOPERS’ EDUCATION FOR 146
 DEVELOPMENT OF CURIOSITY
6.2 SOFTWARE DEVELOPERS’ EDUCATION FOR 154
 DEVELOPMENT OF DECISION MAKING PERSPECTIVE
6.3 SOFTWARE DEVELOPERS’ EDUCATION FOR 165
 DEVELOPMENT OF SYSTEMS-LEVEL PERSPECTIVE
6.4 SOFTWARE DEVELOPERS’ EDUCATION FOR 175
 DEVELOPMENT OF INTRINSIC MOTIVATION
 TO CREATE/IMPROVE ARTIFACTS
6.5 CHAPTER CONCLUSION 181

www.manaraa.com

x

CHAPTER-7

THE PHENOMENON OF ‘LEARNING’ 182

7.1 EMPIRICAL INVESTIGATIONS FOR ASSESSING 182
 EFFECTIVENESS OF EDUCATIONAL METHODS
 WITH RESPECT TO THE REQUIREMENTS OF
 SOFTWARE DEVELOPMENT

7.1.1 EMPIRICAL STUDIES ON EFFECTIVENESS 182
 OF TEACHING METHODS AND EDUCATIONAL
 EXPERIENCES OF COMPUTING STUDENTS
 AND SOFTWARE DEVELOPERS
7.1.2 EMPIRICAL EXAMINATION OF SOFTWARE 187
 DEVELOPMENT EDUCATION THROUGH
 BLOOM’S TAXONOMY
7.1.3 QUALITATIVE STUDY OF EFFECTIVE LECTURES 191

7.1.3.1 PERCEPTIONS OF COMPUTING STUDENTS 191
 AT SENIOR AND JUNIOR LEVELS
7.1.3.2 PERCEPTIONS OF FACULTY MEMBERS 192
 IN ENGINEERING INSTITUTES

7.1.4 QUANTITATIVE STUDY OF EFFECTIVE LECTURES 193
 7.1.4.1 PERSPECTIVE OF COMPUTING STUDENTS 194

7.2 REFLECTIONS ABOUT THE PHENOMENON OF ‘LEARNING’ 197
7.3 IMPLICATIONS FOR SOFTWARE DEVELOPMENT 199
 EDUCATION
7.4 STUDENT ENGAGEMENTS FOR FACILITATING 201
 DEEP LEARNING THROUGH HIGHER EDUCATION
 7.4.1 CURRICULUM INTEGRATION 202
 7.4.2 SOLO TAXONOMY 205
 7.4.3 COLLABORATIVE LEARNING 206
 7.4.3.1 PAIR PROGRAMMING 209
 7.4.4 CROSS-LEVEL PEER MENTORING 211
 7.4.4.1 POSSIBILITY OF CROSS-LEVEL 214

 PEER MENTORING IN
 SOFTWARE DEVELOPMENT EDUCATION

7.5 CHAPTER SUMMARY 215

CHAPTER-8

A FRAMEWORK OF PEDAGOGIC ENGAGEMENTS 216
IN SOFTWARE DEVELOPMENT EDUCATION
8.1 THREE-DIMENSIONAL KNOWLEDGE DOMAIN FOR 218
 DESIGNING COMPUTING COURSES
8.2 TWO CORE PRINCIPLES RELATED TO LEARNING 221
 8.2.1 COGNITIVE DISSONANCE 221

www.manaraa.com

xi

 8.2.2 COGNITIVE FLEXIBILITY 222
8.3 FOUR-DIMENSIONAL TAXONOMY OF PEDAGOGIC 223
 ENGAGEMENTS IN SOFTWARE DEVELOPMENT EDUCATION

8.3.1 DIMENSION 1- LEVELS OF ACTIVE ENGAGEMENTS 227
 (EXTENSION OF BLOOM’S TAXONOMY)
8.3.2 DIMENSION 2- LEVELS OF INTEGRATIVE 237
 ENGAGEMENTS (EXTENSION OF SOLO TAXONOMY)
8.3.3 DIMENSION 3- LEVELS OF REFLECTIVE ENGAGEMENTS 240
8.3.4 DIMENSION 4- LEVELS OF COLLABORATIVE 241
 ENGAGEMENTS

8.4 CHAPTER SUMMARY 243

CHAPTER-9

SOME INTERVENTIONS FOR ENHANCING THE 245
QUALITY OF SOFTWARE DEVELOPMENT EDUCATION

9.1 INCREASING COGNITIVE DISSONANCE THROUGH 246
 A PROBLEM-CENTRIC APPROACH IN
 SOFTWARE DEVELOPMENT EDUCATION

9.1.1 INQUIRY TEACHING IN SOFTWARE 246
 DEVELOPMENT EDUCATION

9.1.1.1 SERO MODEL FOR INQUIRY 247
TEACHING IN SOFTWARE DEVELOPMENT
 EDUCATION

9.1.2 PROJECT-INCLUSIVE TEACHING IN 251
 SOFTWARE DEVELOPMENT EDUCATION
9.1.3 CREATING CONDITIONS FOR REFLECTIVE 254
 ENGAGEMENTS IN SOFTWARE DEVELOPMENT
 EDUCATION

9.2 INCREASING COGNITIVE FLEXIBILITY THROUGH 256
 A MULTIFACETED INTEGRATED APPROACH IN
 SOFTWARE DEVELOPMENT EDUCATION

9.2.1 MULTILEVEL INFUSION FOR CONTINUOUS 256
 INTEGRATION IN SOFTWARE DEVELOPMENT
 EDUCATION

9.2.2 INTEGRATIVE CAPSTONE COURSES IN SOFTWARE 263
 DEVELOPMENT EDUCATION
9.2.3 GROUP AND COMMUNITY ORIENTED ENGAGEMENTS 265
 IN SOFTWARE DEVELOPMENT EDUCATION
 9.2.3.1 COLLABORATIVE PAIR AND 266

QUADRUPLE PROGRAMMING
 9.2.3.2 CROSS-LEVEL PEER MENTORING IN 269

SOFTWARE DEVELOPMENT EDUCATION
9.3 REFLECTIVE WORKSHOP ON PEDAGOGY FOR 275
 ENGINEERING FACULTY

www.manaraa.com

xii

9.4 CHAPTER SUMMARY 277

CHAPTER-10

SUMMARY AND FUTURE SCOPE OF WORK 279

REFERENCES 283

APPENDICES 305
A1 SPINE-LIKE SURVEY ON IMPORTANCE OF COMPETENCIES 305
A2 A COMPREHENSIVE DISTILLED VIEW ON 310
 DESIRED COMPETENCIES
A3 REVISED SURVEY ON REQUIRED COMPETENCIES, 2007 312
A4 MAPPING OF THIRTY-FIVE COMPETENCIES (APPENDIX A3) 314

WITH FINAL SET OF TWELVE CORE COMPETENCIES
A5 CATALOGUE OF TECHNICAL AND TECHNICALLY 316

ORIENTED ACTIVITIES RELATED TO SOFTWARE
 DEVELOPMENT

A6 TAXONOMY OF COMMON SOFTWARE BUGS 317
A7 PROPOSED CURRICULUM FOR MASTERS IN 318
 ARCHAEO-HERITAGE INFORMATICS
A8 SOME SUGGESTIONS FOR BREADTH COURSES 319
A9 INADEQUATE DEVELOPMENT OF CURIOSITY IN 320

SOFTWARE DEVELOPMENT EDUCATION
A10 SURVEY: “SOFTWARE DEVELOPERS - (HOW) DID YOUR 321

COLLEGE HELP YOU IN YOUR DEVELOPMENT?”
A EFFECTIVENESS OF TEACHING METHODS: SURVEY OF 321

SOFTWARE DEVELOPERS (2009)
 A1 EFFECTIVENESS OF TEACHING METHODS-II: 323

EFFECT ON DESIRED COMPETENCIES
B EFFECTIVENESS OF TEACHING METHODS: 328

SURVEY OF STUDENTS (2009)
A11 EMPIRICAL EXAMINATION OF SOFTWARE DEVELOPMENT 331

EDUCATION THROUGH BLOOM’S TAXONOMY
A12 ANECDOTES OF MOST EFFECTIVE LEARNING 337

EXPERIENCES/LECTURES
A13 QUANTITATIVE STUDY OF COMPUTING 341

STUDENTS’ PERSPECTIVE OF EFFECTIVE LECTURES
A14 SUMMARY OF SERO STYLE LECTURES IN TWO COURSES 344
A15 EVOLUTIONARY STAGES OF STUDENT PROJECTS 345
A16 REFLECTIVE ENGAGEMENTS 346
A17 FEEDBACK FROM THE CROSS-LEVEL MENTORS ON INFUSION 348

OF SOME PERVASIVE TOPICS IN FOUNDATION COURSES

www.manaraa.com

xiii

A18 MULTI-LEVEL INFUSION OF SECURITY RELATED ASPECTS 354
A19 DESCRIPTION OF THE NOTATION FOR CONCEPT MAPPING 355
A20 SOME PROPOSED INSTRUCTIONAL INTERVENTIONS FOR 357

INFUSING DEBUGGING IN COMPUTING LABORATORIES
A21 COLLABORATIVE PAIR PROGRAMMING 359
A22 SAMPLE COLLABORATIVE QUADRUPLE PROGRAMMING 361

ASSIGNMENTS FOR J2EE
A23 ALUMNI’S FEEDBACK ON LEARNING GAINS THROUGH 362

CROSS-LEVEL MENTORING
A24 ADVANTAGES OF MENTORING AS IDENTIFIED BY 365

FINAL YEAR STUDENTS INVOLVED IN CROSS-LEVEL
MENTORING OF JUNIORS, 2009

ANNEXURES
AN1 IMPORTANT THEORIES ABOUT HUMAN LEARNING, 366

INTELLIGENCE, AND THINKING
AN2 COMPETENCY RECOMMENDATIONS BY ACCREDITATION 368

BOARDS OF SOME COUNTRIES
AN3 SOME MODELS FOR CLASSIFICATION OF COMPETENCIES 372
AN4 METZGER’S OBSERVATIONS ABOUT DEBUGGING 375
AN5 LETHBRIDGE’S STUDY ON MOST IMPORTANT AND 377

INFLUENTIAL TOPICS IN SOFTWARE DEVELOPMENT
EDUCATION

AN6 SOME IMPORTANT MODELS ON PROBLEM SOLVING 378
AN7 SOME THEORIES ON ATTENTION 381
AN8 SOME IMPORTANT PERSPECTIVES ON CURIOSITY 382
AN9 SOME IMPORTANT PERSPECTIVES ON SYSTEM THINKING 383
AN10 SOME IMPORTANT PERSPECTIVES ON INTRINSIC 386

MOTIVATION
AN11 SUCCESSFUL PRACTICES IN INTERNATIONAL ENGINEERING 388

EDUCATION (SPINE) STUDY
AN12 SOME THEORETICAL PERSPECTIVES ABOUT LEARNING 390

 AND TEACHING

LIST OF AUTHOR’S PUBLICATIONS 394

www.manaraa.com

xiv

ACKNOWLEDGEMENTS

This work is the result of a long personal journey across a variety of professional experiences:

learning, designing, teaching, and also leading teams. This work has humbled me and has made

me realize the magnitude of my ‘ignorance’ about ‘learning,’ and also many intricacies of

software development. During this journey, I have had the good fortune of wonderful and

engaging interactions with experts and scholars of diverse disciplines.

To top the list, I am highly grateful to hundreds of software professionals from all over the world

who have participated in many surveys, polls, and discussions during the course of this research.

I am thankful to all my past, present, and future students, who are my main inspiration for this

work. Some of the past students are my most valued professional consultants, collaborator, and

critiques. I also want to express my gratitude to all my enthusiastic colleagues in the Department

of Computer Science and Engineering at the Jaypee Institute of Information Technology for their

confidence, support, and active collaboration in contextualizing and administering many ideas in

their various courses.

I am most indebted to Dr. Mukul K. Sinha, my mentor for the last twenty years, for innumerable

professional lessons and values that I have learnt from him. His systems thinking approach,

ability to take risks, commitment for excellence, and coaching has been a great source of strength

for sustaining this long and personally enriching inquiry. Only a few blessed people have the

good fortune of receiving such selfless mentoring.

I am highly thankful to Prof. J.P. Gupta for his affection, generosity, and patience. But for his

blessings and whole-hearted support, it was not possible to try out many instructional

interventions that have provided very useful insights for this thesis.

Numerous discussions with Prof. M.N. Faruqui encouraged me to maintain my enthusiasm for

carrying out this research. His critique and wisdom reflected the depth and breadth of his vision,

as well as multifaceted and rich experience in higher education. I am also thankful to Prof. S.K.

Kak for his interest and motivation. He introduced me to the SPINE project that became a very

www.manaraa.com

xv

important reference for this work. I have also learnt many lessons about curriculum design, and

also critical inquiry, from Prof. S.L. Maskara. Several discussions with Prof. A.B. Bhattacharyya

and Mr. H.S. Dagar were very enriching. Few Indian researchers get the benefit of such

comprehensive editorial support, as was extended by Mr. Dagar. Moral support extended by

Prof. S.K. Khanna, Prof. (Late) Prof. C.S. Jha, and Dr. Y. Medury has been very encouraging in

this journey. I am also highly grateful to the co-authors, reviewers, and editors of all my papers.

It will not be proper if I forget to acknowledge the lessons I learnt about the value of context and

holistic thinking at the Indira Gandhi National Centre for the Arts (IGNCA) during my tenure

there from 1995 to 2002. My way of thinking and perceptions about excellence, diversity,

scholarship, aesthetics, education, and its relationship with human life evolved significantly

during the process of innumerable interactions with Dr. Kapila Vatsyayan, Prof. P.S. Filliozat,

Prof. T.S. Maxwell, Prof. Saskia Kersenboon, Prof. R. Nagaswamy, Prof. Aditya Malik, Dr. V.

Filliozat, Prof. B.N. Saraswati, Prof. Frits Stall, Prof. Anil K. Jain, Prof. Sutcliffe, Prof. Gary

Marchionini, Prof. S.P. Mudur, Prof. Ranade, Pierre Pichard, Prof. John Emigh, and many others

during the course of designing several interactive multimedia learning systems at the IGNCA.

Lastly, and equally importantly, I am highly thankful to my parents, wife, brothers, sister, and

two sons for their care, love, and also tolerance for my carelessness. Not many people get as

much pampering at home as has been extended to me since my childhood. Their generosity to

take care of all my responsibilities at home enables me to focus more on my studies and work.

www.manaraa.com

xvi

ABSTRACT

Community and culture significantly influence value orientation, perceived needs, and

motivation as well as provide the ground for creating shared understanding. All disciplines have

their own cultures, and all cultures evolve through cross-cultural exchanges. The computing

community has created and documented a sound body of knowledge of software engineering

(IEEE SWEBOK). It is one of finest examples of multi-cultural synthesis of many disciplines

especially engineering, computer science, and even social sciences. With the very large scale

worldwide endeavor on computing or software engineering education, it is now time to leverage

education and ‘learning’ related research to create and document a theoretically sound body of

knowledge of software developers’ education. Such a body of knowledge should naturally

require us to synthesis the evolving disciplines of software engineering and higher education.

In this thesis, we discuss our study and investigations about the following types of questions:

1. How has software development education evolved, specifically with reference to educational

research?

2. What is meant by competent and professionally oriented computing engineers, especially

with respect to software engineering? What are the essential attributes? What is the relative

importance of these attributes?

3. What is the degree with which the various components of traditional processes of

engineering education succeed in creating opportunities for enhancing these competencies?

What students think about their educational experiences? What students think works well for

them? What processes do professional engineers recommend?

4. What pedagogical practices succeed in developing competencies, and under what

circumstances? What comes in the way of implementing these strategies? What kinds of

lectures are effective for learning in the views of students and faculty? What factors block

students from effective learning? How to overcome these difficulties?

5. What kind of instructional interventions are required? How can the existing education

theories/strategies/methodologies be used to educate competent computing engineers? Do we

need new theories of learning for software development education? If so, what would be

main aspects of such a theory of learning?

www.manaraa.com

xvii

In this study, the research processes included a wide-ranging survey of published literature in

diverse areas of software development, computer science and IT education, engineering

education, professional and higher education, learning theories, thinking, instruction design, and

human development. The research also included a study of a large number of comments written

by professional software developers about contemporary issues related to software development

processes, required competencies, endorsements, etc., in various professional forums. More than

three hundred professionals of more than sixty organizations from various countries have been

consulted and/or surveyed on various issues. More than one thousand undergraduate computing

students, and more than one hundred faculty members, have also been surveyed on selected

issues.

We have proposed a three-tier taxonomy of twelve competencies and a comprehensive unified

framework of pedagogic engagements in software development education. We have also

discussed some instructional interventions developed by us, manifesting some aspects of this

framework. All these interventions were administered in a chosen set of existing computing

courses. Some new courses have also been developed in the process. The development of the

framework of pedagogic engagement, and these interventions for instructional reform of

software development education, has been an intertwined and highly spiral process.

We hope that our proposed framework of pedagogic engagement in software development

education will help the community of software development educators and researchers to create

a variety of interventions that will help in extending the ‘Software Engineering Body of

Knowledge’ (SWEBOK) to ‘Software Development Education Body of Knowledge’

(SDEBOK). Designers of educational programs for other professions can also adapt this

framework and methodology.

www.manaraa.com

xviii

LIST OF FIGURES

Fig 8.1 A schematic view of four-dimensional taxonomy of 225
 pedagogic engagements
Fig 9.1 Group exercise during the evolutionary phase of SERO 249
 style lecture
Fig A20.1 Debugging tool evaluation matrix 357

www.manaraa.com

xix

LIST OF TABLES

CHAPTER-1

Table 1.1 Some important reports on computing curriculum 9

CHAPTER-2

Table 2.1 Most important engineering and general 37

 professional competencies, as rated by Indian engineers and
 managers working in Indian and multi-national IT companies (2004)

Table 2.2 Comparative analysis of some common competencies 40
 distinguished and identified by some accreditation agencies

Table 2.3 Most important competencies as rated by Indian engineers and managers 57
 working in Indian and multi-national software companies

 (Revised Study 2007)
Table 2.4 The most important competencies for software development work 58

 related to software services and product development
Table 2.5 Taxonomy of core competencies for software developers- ver.1 60

CHAPTER-3

Table 3.1 Core competencies for software developers 77
Table 3.2 Three-tier taxonomy of core competencies for software developers 78

CHAPTER-4

Table 4.1 Most important activities that must be included in the main goals 86

 for a new software curriculum
Table 4.2 Biglan’s classication of disciplines 102
Table 4.3 Kolb’s learning styles 104
Table 4.4 Perceived importance of communication skills by programmers 109
 and systems analysts
Table 4.5 Profiles of the respondents for the two polls about communication 110

 competence among software developers
Table 4.6 Summary of responses for these two polls about communication 110

 competence
Table 4.7 Competency ladder (Integrating the ladders by Gordon Institute, 119
 Dreyfus and Dreyfus, and Denning)
Table 4.8 A Comparison of typical academic and real life problems 121
Table 4.9 Some techniques for solving complex ill-defined problems 122

www.manaraa.com

xx

CHAPTER-5

Table 5.1 Some common errors in logical and analytical reasoning 132
Table 5.2 Some key aspects of Schön’s perspectives on ‘design’ as 136

 ‘reflective action’
Table 5.3 Principles of Theory of Inventive Problem Solving (TRIZ/TIPS) 142

CHAPTER-6

Table 6.1 Re-interpreting Perry’s nine stage model of intellectual development 151

 as nine stage model of curiosity development
Table 6.2 Four decision styles proposed by Rowe and Boulgarides 158
Table 6.3 Multifaceted definition of engineering systems thinking by 168

 Frank and Waks, 2001
Table 6.4 Levels of systems thinking (derived from Boulding and Sanford) 169
Table 6.5 Shifting the focus for systems thinking (Capra’s criteria) 169
Table 6.6 Systems thinking approaches by Checkland and Jacobs 170
Table 6.7 Senge’s toolbox for cultivating systems thinking 172
Table 6.8 Kohlberg’s six stage model of human development 173
Table 6.9 Maslow’s Hierarchy of Human Needs 176

CHAPTER-7

Table 7.1 Importance of teaching methods as rated by Indian engineers 183

 and managers working in Indian and multi-national IT companies
Table 7.2 Perceived effectiveness of pedagogical engagements with respect 185

 to enhance of competencies: perceptions of software professionals
Table 7.3 Effectiveness of educational experiences for competency 186

 enhancement of computing students
Table 7.4 Comparison of Bloom level-specific normalized consolidated ratings 189
Table 7.5 Correlation between different consolidated ratings 189
Table 7.6 Attribute category-wise consolidated ratings by computing students 194
Table 7.7 Correlation matrix between attributes of different lecture formats 195

 based on computing students responses
Table 7.8 Selected catalogue of learning engagements for deep learning from 202

 the NSSE study
Table 7.9 Harden’s taxonomy of curriculum integration 204
Table 7.10 Salmon’s levels of collaborative e-learning 208
Table 7.11 Dillenbourg’s four conditions for collaborative learning 209
Table 7.12 Software professionals’ reflections about advantages of first 214

 mentoring experience

CHAPTER-8

Table 8.1 Three-tier taxonomy of core competencies for software developers 216
Table 8.2 Five-dimensional ladder of professional and human development 218

www.manaraa.com

xxi

Table 8.3 A novel three-dimensional taxonomy of knowledge domain for 220
 software developers

Table 8.4 Perceived effectiveness of pedagogical engagements 224
 with respect to enhance of competencies: perceptions of
 software professionals

Table 8.5 Levels of active engagements (first of four dimensions of our 229
 taxonomy of pedagogic engagements)
Table 8.6a Some selected models for supporting student engagements at 231

 Analyze level
Table 8.6b Some selected models for supporting student engagements at 234
 Create and Evaluate levels
Table 8.7 Discipline integration sub-levels based on Biglan’s classification 238
 of disciplines
Table 8.8 Levels of integrative engagements (second of four dimensions of 239
 our taxonomy of pedagogic engagements)
Table 8.9 Levels of reflective engagements (third of four dimensions of 241
 taxonomy of pedagogic engagements)
Table 8.10 Levels of collaborative engagements(last of the four dimensions 242
 of taxonomy of pedagogic engagements)

CHAPTER-9

Table 9.1 Benefits of PSP as perceived by Students 259
Table 9.2 Application of Dillenbourg's principles 266
Table 9.3 Comparison of pre- and post-workshop consolidated ratings 276

 by faculty

APPENDICES

Table A1.1 Importance of twenty-three core engineering and general 307

professional competencies, as rated by Indian engineers and
managers working in Indian and multi-national IT companies

Table A1.2 Importance of teaching methods as rated by Indian engineers and 309
managers working in Indian and multi-national IT companies

Table A3.1 Comparison of competencies examined in SPINE-based and 312
revised study

www.manaraa.com

xxii

Table A3.2 Importance of thirty-five competencies as rated by Indian engineers 313
 and managers working in Indian and multi-national software companies
(Revised Study 2007)

Table A4.1a Mapping of thirty-five competencies with the Final set of twelve core 314
 competencies, part –I

Table A4.1b Mapping of thirty-five competencies with the Final set of twelve core 315
 competencies, part-II
Table A9.1 A summary of students’ responses on ‘questioning in the class’ 320
Table A10.1 Effectiveness of educational experiences for competency enhancement 322

of software developers
Table A10.2 Perceived effectiveness of pedagogical engagements 324
 (i) part-I with respect to enhance of specific competencies – basic competencies:
 perceptions of software professionals
Table A10.2 Perceived effectiveness of pedagogical engagements 325
 (i) part-II with respect to enhance of specific competencies – basic competencies:
 perceptions of software professionals
Table A10.2 Perceived effectiveness of pedagogical engagements
 (ii) with respect to enhance of specific competencies – habits of mind: 326
 perceptions of software professionals
Table A10.2 Perceived effectiveness of pedagogical engagements 327
 (iii) with respect to enhance of specific competencies – attitudes and values:
 perceptions of software professionals
Table A10.3 Effectiveness of educational experiences for competency enhancement 329

of computing students
Table A11.1 List of verbs used for assessing engineering education wrt Bloom’s 331

taxonomy
Table A11.2 Ordered lists of activity verbs 334
Table A11.3 Comparison of Bloom level-specific normalized consolidated ratings 336
Table A11.4 Correlation between different consolidated ratings 336
Table A12.1 Anecdotes about the best lectures offering most effective learning 337
 experience, as recalled by senior computing students
Table A12.2 Anecdotes about the best lectures offering most effective learning 338
 experience, as recalled by sophomore computing students at the
 beginning of their 3rd semester
Table A12.3 Anecdotes about the best lectures offering most effective learning 339

 experience,as recalled by faculty members of engineering institutes
 from their student life

Table A12.4 Anecdotes about the best lectures delivered by the faculty members 340
 of engineering institutes, as recalled by them
Table A13.1 Attributes to characterize variety of lecture format in 341
 engineering/software development education
Table A13.2 Comparison of computing students’ perception of effectiveness 343

and usage rate of lecture format attributes
Table A13.3 Attribute category-wise consolidated ratings by computing students 343
Table A16.1 Format for reflective report on final year project 346
Table A16.2 Reflective assignments in three final year elective course 346

www.manaraa.com

xxiii

Table A16.3 Two sample assignments in ‘software arteology,’ emphasizing 347
on reflection

Table A16.4 Some sample responses to last sub-question (now what?) of 347
 some assignments (Table A16.5)

Table A17.1 Mentor feedback on infusion of web technology 348
Table A17.2 Mentor feedback on infusion of multimedia technology 348
Table A17.3 Mentor feedback on infusion of mobile technology 349
Table A17.4 Mentor feedback on infusion of security aspects 349
Table A17.5 Mentor feedback on infusion of systems design aspects 350
Table A17.6 Mentor feedback on infusion of PSP (time logs) 351
Table A17.7 Mentor feedback on infusion of open source 352
Table A17.8 Mentor feedback on infusion of PSP (Bug log) 353
Table A21.1 Sample laboratory assignment for introduction to programming 359
Table A21.2 Comments of students on their experience with collaborative 360
 peer programming
Table A23.1 Alumni reflections on the effect of mentoring on mentors’ 363

competencies
Table A23.2 Advantages of mentoring as identified by alumni 364

ANNEXURES

Table AN1.1a A chronological list of some important theories about 366

human learning, intelligence, and thinking (pre 1990)
Table AN1.1b A chronological list of some important theories about 367

human learning, intelligence, and thinking (1990 onwards)
Table AN1.1 Accreditation Criteria and Weights defined by NBA, India for

Diploma (Dip.), Undergraduate (UG), and Postgraduate (PG) 371
Engineering Programs

Table AN6.1 Polya’s recommended cognitive engagement of mathematical 378
problem solving

Table AN9.1 Senge’s laws of systems thinking 383
Table AN9.2 Characteristics of systems thinkers 383
Table AN9.3 Levels of systems thinking expertise (Dennis Meadows) 384
Table AN9.4 Boulding’s hierarchy of real world complexity 385
Table AN9.5 Schwartz Value Categories 385

www.manaraa.com

xxiv

1

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

Creativity combined with our understanding of nature, material, medium, other humans, and

artifacts has always helped us in devising new processes for performing old tasks, and also

devising new tasks in our personal, social, professional, and organizational lives. New processes

and tasks require the use of existing artifacts in new ways, and also the creation of new artifacts.

Often new processes bring advantages in terms of increased speed, reliability, scale, safety,

comfort, or flexibility and/or savings in effort, energy, material as well as costs. In addition,

humans have also used themselves both as the source of raw energy through physical labor, and

as controllers through psychomotor skills to perform these tasks. Taming of animals, tapping of

natural energy, steam engine, electricity, etc., helped to reduce our role as energy suppliers.

Mankind could focus more on the other two tasks of being the controller and process designers.

With the availability of control systems in the last century, our role as controllers has also

reduced significantly, and more human energy is now available for the creative work of devising

new processes and new tasks. Artisans, engineers, designers, and technologists play a key role in

identifying the opportunities and developing new processes and tasks in diverse domains of

human activities. Strength, malleability, expected life, and various other affordances of the

material and medium influence and constrain our design activities. The digital computer is the

most malleable artifact created so far, and it can be further used as a material and a medium to

rapidly create a large variety of new artifacts in a very flexible way. This power has given an

unprecedented boost to the development of new processes, as well as new tasks in all domains of

human activities.

Engineers and technologists plan, design, develop, test, integrate, deploy, maintain, improve,

reverse engineer, re-engineer, as well as evaluate components, products, applications, systems,

services, standards, processes, and methodologies encompassing various artifacts. Their

disciplines are differentiated with each other on the basis of the artifacts they build and focus on.

In order to identify and create opportunities of devising new processes and ways in various

domains, they need to understand the needs and nuances of those domains as well as humans’

individual as well as social behavior. This is often the most critical and creative task, especially

when the subsequent engineering processes are very rapid and fairly stabilized. US Accreditation

www.manaraa.com

2

Board for Engineering and Technology (ABET) defines engineering as follows: “Engineering is

the profession in which knowledge of the mathematical and natural sciences gained by study,

experience, and practice is applied with judgment to develop ways to utilize, economically, the

materials and forces of nature for the benefit of mankind.”

Unlike science, engineering and technology are oriented towards conception, design, invention,

development, application, improvement, and production with an emphasis on current and future

needs of society. They require holistic thinking involving integration of many competing

demands, theories, data, and ideas as well as decision making based on incomplete data and

approximate models. The theorizing attempts go beyond the search of causes, and are focused on

new processes and applications. Engineering is not just applied science; it is as much about

process as it is about technical knowledge. An engineer’s task involves conceiving and

designing products, processes, and systems, and to predict their behavior using science.

Scientists create models to understand natural phenomenon with known outcomes, whereas

engineers create models to predict outcomes for systems. The use of heuristics distinguishes

engineering methods from scientific methods. Engineering is further distinguished from

Technology by its focus on more complex problems that involve use of more diverse resources,

more diverse groups of stakeholders with varying needs, wider range of conflicting technical,

engineering and other issues, more abstract thinking, originality, infrequently encountered issues,

and work progress in spite of insufficiency of standards and codes of practice. Technological

work needs mastery of discipline and context specific current knowledge, techniques, skills, and

tools. A higher focus on quality and timeliness are its distinctions. Broadly, the educational

programs of engineering and technology recognize many of these distinguishing aspects of the

discipline and respond in various ways through their curriculum and educational methods.

As per the ACM-IEEE joint report [1], Computing means any goal-oriented activity requiring,

benefiting from, or creating computers. It includes: designing and building hardware and

software systems for any of a wide range of purposes, processing, structuring and managing

various kinds of information, doing scientific studies using computers, making computer

systems behave intelligently, creating and using communications and entertainment media,

finding and gathering information relevant to any particular purpose, etc. Computing engineers

www.manaraa.com

3

are concerned with four kinds of artifacts: (i) software, (ii) digital ICs and other hardware, (iii)

embedded systems, and (iv) digital content. For the last four decades the demand of software

developers has been increasing at an accelerated rate. Jalote [2] summarizes the growth of Indian

software industry as follows: “It started primarily as a subcontractor for technical manpower. …

shifted to doing complete parts or phases of projects, usually the later phases of coding and

testing. … matured to providing complete solutions offshore. …most leading companies are

operating in the high-end software services business. … a large number of software companies

matured to CMM level 4 or level 5…”

In the last few years, there has been an exponential growth in engineering education, especially

in India and China. This growth has led to an era where fresh graduates of computer science

related disciplines are easily absorbed in the industry. Indeed, to satisfy the growing demand for

software, very large volumes of engineers from other engineering disciplines are also absorbed

as well. All engineering graduates are considered to be ready for a direct fit with the

requirements of the IT industry [3]. The core competencies developed in all engineering

disciplines are considered to be sufficient, and the companies rely more on their own finishing

schools for specialized computer science and IT knowledge.

With the advent of the Internet, it has become possible to outsource software development tasks

to remote sites, making India an attractive destination, both technically as well as financially.

This has resulted in an exponential increase in the demand of software developers in India,

especially in the last decade. It has become a challenging opportunity for Indian academic

institutions to provide an adequate pool of software professionals of desired quality to the rapidly

growing Indian software industry.

To meet this challenge, the Indian academic institutions have been able to expand fast and satisfy

the industry’s need of software professionals quantitatively. However, the quality of ‘most of’

the professionals they generate is below the desired industry expectation. The software industry

associations, as well as the academic regulatory bodies, have repeatedly shown their concern

emphatically about the sub-standard quality of ‘the majority of’ fresh software professionals [4].

Most of the software houses spend around six months to one year in their post-induction, in-

www.manaraa.com

4

house software development education and training of fresh engineers. It clearly indicates that

there is a significant gap in the technical education that academic institutions impart to their

software graduates, and what technical expertise the industry expects in them. A competence

mismatch exists between academic technical offering and software industry employability. We

elaborate upon this in the second and third chapters.

It is not proper to consider software industry as monolithic group. Even in India, there are

different kinds of companies, those involved in software services, and those involved in new

product development in large or small companies. There are huge differences in the

requirements of these categories. Often, India’s highly dominant software service industry’s

immediate requirements dwarf other requirements, which are more futuristic and even more

compatible with the goals of excellence in higher education. In sections 2.9 and 2.11, we

especially examine the needs different kind of software industry. A NASSCOM-KPMG study

[5] argues that key skills required by the industry are not met by the current educational system.

It quotes the following observations from a World Bank study on science and technology

manpower in India published in 2001: (i) faculty lacks industry rigor, R&D background, and

exposure to tools, (ii) students lack opportunity and encouragement for creative thinking, (iii)

inflexible and rigid curriculum is not exposed to innovation/industry, (iv) teaching is

examination oriented without focus on communication and problem solving skills, (v)

continuous evaluation is often not systematized, and (vi) examinations are often memory based,

and encourage partial studying through ample choice.

Organizations and their clients have limited tolerance for inept performance. Often engineers

engage directly with clients in complex interactions. Educators are expected to teach

competencies that are relevant and enhance an organization's performance [6]. Stephen says,

“Anyone not aware that this is a time of change in higher education is asleep at the helm” [7].

Universities around the world have become increasingly aware of the need to be able to

demonstrate, in a quantifiable manner, the skills and attributes that their graduates are imbued

with during their learning experience [8].

www.manaraa.com

5

State of Indian Contribution in Computing Research

There are over a million software engineers working in India. Further, there are over two

thousand colleges offering degree level educational programs in computing. The IT industry’s

share in India’s GDP is more than 7%. Seven Indian IT companies have been listed in the top 15

technology outsourcing companies of the world. However, Indian organizations’ contribution to

computing research literature remains very meager. The ACM digital library gives access to

almost 0.3 million papers. Less than 0.7% papers have been contributed by authors having

Indian affiliations. Before 2005, this fraction was only 0.3%. During 2005 to Feb 2010, it

increased to 1.3%, which still is a very small number, given the huge number of software

engineers and colleges offering computing degrees in India.

A focused search (using affiliation option under advanced search) in March 2010 showed that

some of the largest India-based IT companies, i.e., TCS, Infosys, Wipro, HCL, Satyam, Oracle

India, have together so far collectively published less than 100 papers that are indexed on this

digital library. This library does not include a single paper from other very large Indian IT

companies like Tech Mahindra, Patni Computers, and Birlasoft. On the other hand, Microsoft

India and IBM India have published approximately 300 papers, and Microsoft and Google have

contributed 3,885 and 582 papers respectively. This highlights that the mismatch is not just in

terms of immediate specific needs of industry, but also long term goals of professional

excellence. This numbers highlight the gross mismatch between published contributions and the

size of India’s IT industry, and the number of computing professionals in the industry or

academia. In addition to meeting industry’s short term needs, software development education

can also stimulate the overall growth of India-based computing research contributions by

arousing interest among future software developers.

Section 1.1: Basis for the Need for Reforms in Computing Education
This thesis attempts to contribute towards bridging this competence mismatch by providing ideas

for instructional reforms in computing education with special reference to software development.

Unlike other disciplines of engineering, computer scientists have always remained interested in

understanding the phenomenon of ‘learning.’ Artificial intelligence and computer based teaching

were the earlier sub-disciplines within computing that required and encouraged computer

www.manaraa.com

6

scientists to understand various issues associated with ‘learning’. The International Federation

for Information Processing (IFIP) established a technical committee on education in 1963. In its

very early years, The ACM also founded special interest groups SIGCSE (Special Interest Group

on Computer Science Education) and SIGCUE (Special Interest Group on Computer Uses in

Education). More recently, the ACM has started SIGITE (Special Interest Group on Information

Technology Education).

Reforms in engineering education have a long but slow history. Felder [9] remarked, “We teach

primarily mechanics, and not reasoning methods; memorization and routine application, and not

analysis, synthesis and evaluation. We don’t encourage creativity and independence of thought,

and in fact often do our best to discourage them.” Sadly nothing much has changed on the

ground. The community that is responsible for transforming the lifestyle of the world has not yet

transformed its own educational process.

Many engineering faculty have never practiced engineering [10]. The curriculum’s focus on

content is disconnected from engineering practices [11-12]. Felder and Brent [13] reported on

some recent studies that measured the intellectual growth of engineering students during their

studies using Perry’s model of epistemological development [14]. It was observed that the

engineering education failed to elevate a significant number of students to level 5 as per Perry’s

nine-level model, and the average growth after four years of college was only one level, with

most of the change occurring in the last year.

Our exploratory study has shown that the kind of activities that a typical engineering student is

generally engaged in, does not help in enhancing creativity, critical thinking, and innovative

problem solving [11-12]. However, the last decade has seen an increasing recognition of the need

for transformation. A certain section of policy makers, universities, accreditation agencies, and

faculty members have made tremendous contributions to bring the much needed transformation.

Many accreditation agencies have even transformed their accreditation criteria in the last few

years. This is expected to drive an unprecedented transformation of instructional programs in

responding institutes. This challenge can only be met by undertaking large scale research in

engineering education.

www.manaraa.com

7

Recognizing the need to re-engineer the engineering education a recent report ‘Educating the

Engineer of 2020’ [15] suggests that “the engineering education establishment should endorse

research in engineering education as a valued and rewarded activity for engineering faculty as a

means to enhance and personalize the connection to undergraduate students, to understand how

they learn, and to appreciate the pedagogical approaches that excite them.”

One of the founding fathers of modern education, Franklin Bobbitt observed that curriculum

should aim to teach those subjects that are not sufficiently learnt as a result of normal

socialization. In 1920s, he proposed a five step process for curriculum design: analysis of human

experiences in a field, job analysis to identify specific activities, deriving objectives to identify

the abilities required for specific activities, selecting objectives as the basis of students’

activities, and planning in detail. Paulsen and Peseau [16] proposed a framework of Zero Based

Curriculum Review process that starts with first operationalising the curriculum goals as

categories of required professional competencies, and then identifying appropriate knowledge

base learning objectives and also behavioral objectives in terms of professional practices, and

skills with respect to required professional competencies.

Woods et al [17] proposed the following process for engineering faculty: (i) identify the skills

you wish your students to develop and communicate their importance to the students, (ii) use

research, not personal intuition, to identify the target skills, share some of the research with the

students, (iii) make explicit the implicit behavior associated with successful application of the

skills, (iv) provide extensive practice in the application of the skills, using carefully structured

activities, and provide prompt constructive feedback on the students’ efforts, (v) encourage

monitoring, (vi) encourage reflection, (vii) grade the process, not just the product, and (viii) use a

standard assessment and feedback form.

An exploratory informal discussion with large number of faculty members of engineering

institutes with teaching experience ranging from a few months to several decades, and coming

from different departments of engineering, sciences and management, it was found that most

were not aware of any literature in educational research. Hence, by and large engineering

www.manaraa.com

8

education methods have remained unaffected by such research. In 1982, Professor Richard

Felder [9] presented a revolutionary thought that ‘does engineering education have anything to

do with either one.’ The curriculum and educational committees of the ACM, IEEE, AIS,

AITP, LACS, IFIP, etc. have mostly ignored the rich educational literature related to curriculum

design, instruction design, assessment methods, theories of learning, human development,

epistemology, and sustainable development. Only a few of the available theoretical models and

frameworks in these education related areas have been examined, reviewed, and/or used by the

researchers of software development education.

UNESCO has labeled 2005-2015 as the decade of education for sustainable development. In this

decade, bodies like National Science Foundation (NSF), USA and the National Academy of

Engineers (NAE), USA have emphasized the need of systematic research in ‘learning’ to

transform engineering education. In 2006, NAE identified the following research areas for

engineering education [18]:

1. Engineering Epistemologies: Research on what constitutes engineering thinking

and knowledge (technical, social, and ethical aspects) within social contexts now,

and into the future.

2. Engineering Learning Mechanisms: Research on engineering learners’ developing

knowledge and competencies in context.

3. Engineering Learning Systems: Research on the instructional culture, institutional

infrastructure, and epistemology of engineering educators.

4. Engineering Diversity and Inclusiveness: Research on how diverse human talents

contribute solutions to the social and global challenges and relevance of our

profession.

5. Engineering Assessment: Research on, and the development of, assessment

methods, instruments, and metrics to inform engineering education practice and

learning.

www.manaraa.com

9

Section 1.2: Evolution of Software Development Education
In this section, we discuss the evolution of software engineering education. Table 1.1 gives a list

of some of important reports examined in this discussion.
Table 1.1: Some important reports on computing curriculum

1. ACM curricula committee for CS (1965)
2. ACM Curricula for CS (UG and PG) (1968)
3. COSINE’ IEEE for CS in EE (1968)
4. COSINE’ IEEE for CS in EE (UG) (1971)
5. ACM curriculum on IS (UG) (1972)
6. ACM curriculum on IS (PG) (1973)
7. IEEE Model Curricula for CSE (UG) (1975)
8. IEEE Model Curricula for CSE (UG) (1977)
9. ACM Health Computing Curriculum (UG and PG)

(1978)
10. ACM Curricula for CS (UG) (1978)
11. ACM Curricula for CS (PG) (1981)
12. ACM curriculum on IS (UG and PG) (1982)
13. IFIP curriculum for CS (1984)
14. CMU curriculum for CS (UG) (1985)
15. LACS Model Curriculum for CS (UG) (1986)
16. ACM report on Computing as a discipline (UG and

PG) (1989)
17. SEI model curriculum for SE (UG) (1990)

18. ACM/IEEE (UG and PG) (1991)
19. Model Indian curriculum for CSE (UG) (1993)
20. IFIP curriculum for CS (UG) (1994)
21. LACS curriculum for CS (UG) (1996)
22. ACM curriculum on IS (UG) (1997)
23. IFIP curriculum for Informatics (UG) (2000)
24. AICTE curriculum for CSE (UG) (2000)
25. AICTE curriculum for IT (UG) (2000)
26. ACM IEEE curriculum on computing (2001)
27. SEI-CMU Software Engineering Body of

Knowledge Ver 1.0 (1999)
28. ACM/AIS/AITP curriculum for IS (2002)
29. IEEE SWEBOK (2004)
30. ACM-IEEE curriculum for SE (2004)
31. ACM-IEEE curriculum for CE (2004)
32. ACM- IEEE curriculum for CS (2005)
33. ACM-IEEE curriculum for IT (2005)
34. LACS curriculum for CS (UG) (2007)

Beginning of Computing and Computing Education

Computing in the form of processing: understanding, creation, manipulation, communication,

expression, and rendering of symbols has always been a very important natural activity of human

mind. Though the use of the term computing is not limited to be used in the limited context of

processing of formal mathematical symbols, computer software transcends such boundaries to

support processing of diverse range of symbols. With the invention of computing machines, the

field of computing has advanced beyond one’s imagination. Computing has transformed many

aspects of everyday lives for a vast majority of mankind. The role of computing has been

evolving from enhancing efficiencies through otherwise by-passable support systems to creating

real-time mission critical systems. The initial application domains driving computing till 1960s

were code breaking, engineering calculations, scientific simulation, as well as repetitive data

processing in defense, space, government, insurance, banking, and some other large business

organizations. Some attempts of language translation and information retrieval were also made

even in 1950s. Outgrowing the initial goal of doing repetitive mathematical calculations,

computers have already permeated almost all spheres of human activities even including arts and

www.manaraa.com

10

sports. The socio-cultural effect of computing and communication technology is much wider,

deeper, and faster than the effect of other technologies. Computing has also been used to expand

our understanding of mind and reasoning.

India’s decimal number system inspired ninth century Persian mathematician Mohammed ibn

Musa al-Khowarizmi to write a book on calculating using this number system. Based on his

name, Algorism slowly started referring to arithmetic operations in this number system. These

algorisms were strictly mechanical procedures to manipulate symbols. They could be carried out

by an ignorant person mechanically following simple rules, with no understanding of the theory

of operation, requiring no cleverness and resulting in a correct answer. The word Algorithm was

introduced by Markov in 1954 [53]. Before the 1920s, the word computer was used for human

clerks that performed computations. In 1936, Turing and Zuse independently proposed their

models of the computing machine that could perform any calculation that can be performed by

humans. In the late 1940s, the use of electronic digital computing machinery based on stored

program architecture became common.

In the late 1950s saw the arrival of high level languages. The Association of computing

Machinery (ACM) was founded by Berkeley in 1947. It started its first journal in 1954.

Mathematical logic and electrical engineering provided the foundation for building modern

computers. The personnel training responsibility was largely taken up by the manufacturers

themselves. Most early programmers were math graduates, many of them were women. In the

1950s, a large numbers of private computer schools emerged to fill the burgeoning demand [19].

The word software was coined by John Tukey, famous statistician, in 1958. The words computer

science, information systems, information technology, system analysis, and system design were

being used even before. Dunn of Boeing [20] defined Information Technology as a body of

related disciplines which lead to methods, techniques, and equipment for establishing and

operating information processing systems. He also provided a simple definition of information

systems as a connective link between five basic management functions of defining objectives,

planning, gathering resources, execution, and control. In 1968, the computer science study group

of NATO Science Committee coined the word software engineering to imply the need to

transform software design and development into an engineering-type discipline.

www.manaraa.com

11

Till 1970’s, computing was often regarded as a subfield of one or more of a mixture of

disciplines of mathematics, operation research, electrical engineering, statistics, industrial

engineering, and management. Many of existing undergraduate programs of these disciplines

were modified to accommodate some of the naturally fitting aspects of computer science.

Mathematics departments taught practice and science of programming and numerical analysis.

The electrical engineering department emphasized on design and construction of electronic

digital computer, and management schools paid more attention of design of information systems.

Initially, masters and later undergraduate degree programs and departments of computer science

were emerging as offshoots of the mathematics departments in colleges of science and arts.

Stanford established its computer science department in 1962, and by the late 1960s many

universities in United States had started computer science departments. Concurrently, the

management schools and others interested in business data processing applications focused on

information systems, and started developing these programs. The engineering schools offered

computer technology and computer science programs, and also computer as an option in various

existing programs.

Early Curriculum Recommendations by ACM

The Association of Computing Machinery (ACM) unified the pioneering efforts of several

universities and stimulated the process through its two independent curriculum committees

established in the mid 1960s. The International Federation for Information Processing (IFIP)

established a technical committee on education, TC-3, in 1963. Simultaneously, Various other

professional agencies like the Computer society of the Institute of Electrical and Electronics

Engineers (IEEE), and Data Processing Management Association (DPMA) made significant

contributions in these efforts.

The first ACM Curriculum Committee on Computer Science (C3S) was formed in 1964. In its

preliminary recommendations [21], the committee posited that computer science is concerned

with information in much the same way as physics is concerned with energy. It mainly identified

careers in systems programming and application programming for computer science students. It

distinguished computer science from mathematics by highlighting that while mathematician is

www.manaraa.com

12

interested in discovering the syntactic relation between elements based on a set of axioms which

may have no physical reality, the computer scientist is interested in discovering the pragmatic

means by which information can be transformed to model and analyze the information

transformation in the real world. The final report, Curriculum’68, considered development of

programming skills as an important by-product rather than the main purpose of the computer

science programs. It emphasized that computer science programs must provide the student with

the intellectual maturity to stay abreast of their discipline, and also interact with other disciplines

through liberal education. The curriculum recommendation [22] identified three major categories

of computer sciences subject areas. These were information structures and processes,

information processing systems, and methodologies. The first category of information structures

and processes concerned with representations and transformations of information structures, and

theoretical models for such representations and transformations. It included data structures,

programming languages, and models of computation. The second category of information

processing systems included computer organization, translators and interpreters, computer and

operating systems, and special purpose systems. The last division of methodologies focused on

broad areas of applications of computing which have common structures, processes, and

techniques. It incorporated numerical mathematics, data processing, symbol manipulation, text

processing, computer graphics, simulation, information retrieval, artificial intelligence, process

control, and instructional systems. The committee recommended the inclusion of at least two

courses from each of three categories for a masters program in computer science. For the

undergraduate program, the essential computer science courses included introduction to

computing, computers and programming, introduction to discrete structures, numerical calculus,

data structures, programming languages, computer organization, and systems programming.

The committee recommended the inclusion of at least two of the following computer science

courses for indicated specialization: (i) compiler construction for applied systems programming

and data processing application programming, (ii) switching theory for all other than scientific

application programming, (iii) sequential machines for computer organization and design, (iv)

numerical analysis-I for scientific application programming, and (v) numerical analysis-II for

scientific application programming.

www.manaraa.com

13

Early Engineering Perspectives

Electrical engineering departments identified computers as one of their main components. The

Committee on Computer Science in Electrical Engineering (COSINE Committee), National

Academy of Engineers (NAE), USA published recommendations for infusing computer science

in electrical engineering curriculum. This led to the formation of computer engineering programs

in electrical engineering departments. Developments in computers started to help in developing

new methods of solving engineering problems. The COSINE committee strongly recommended

[23] a total reorientation of electrical engineering curricula from analog and continuous to digital

and discrete. In 1968, the computer science study group of NATO science committee coined the

word software engineering to imply the need to transform software design and development into

an engineering type discipline. This, however, was given legitimate attention as an academic

discipline in the late 1970s.

In 1971, the COSINE committee recommended the start of a new undergraduate program called

computer engineering within electrical engineering departments. This program was conceived as

an engineering program with emphasis on the concepts of design of software, hardware, and

systems. It proposed three specialization options under this program: (1) digital systems

engineering, (2) software systems engineering, and (3) theoretical computer science and

engineering. A juxtaposition of the COSINE subject list with the list suggested in C3S’

Curriculum’68 for computer science shows that, while on one hand, C3S recommendations had

ignored the hardware and design aspects, the COSINE recommendations ignored discrete

structures and data structures. In 1975, IEEE computer society education committee identified

and addressed this dichotomy in their recommendations, and proposed a new undergraduate

program on computer science and engineering integrating courses in hardware systems, software

systems, and theory of computing [24]. These courses were expected to constitute approximately

50% course requirement. The remaining 50% courses were to be in the areas of humanities and

social sciences, physics, chemistry, communication, mathematics, economics, electronics, and

engineering sciences as per Engineers Council for Professional Development (ECPD) guidelines.

Sloan [25] and Engel [26] compared the new evolving recommendations of C3S and model

curriculum of the IEEE Computer society and concluded that the two were virtually same with

www.manaraa.com

14

respect to their recommendations in the area of software engineering and program design. Their

emphasis differed with respect to hardware and logic design on one hand and theory on another.

Early Information Systems Perspective

The Curriculum Committee on Computer Education in Management (C3EM) of ACM published

a position paper in 1971 [27]. Education for improving organizational productivity through

information technology was the main motivation for this and subsequent committees in this area.

This committee felt concerned about the unfavorable attitude of computer science departments

towards applied problems. A few years later, this committee evolved into the ACM Curriculum

Committee in Information Systems (C2IS). In its recommendation report submitted in 1972 and

1973 [28-29], it identified requisite knowledge and abilities of information system graduates and

grouped these into six categories of people, models, systems, computers, organization, and

society. The ACM curriculum committee of computer science did not pay specific attention to

this aspect until 1980s, and depended on general liberal education to provide the necessary

breadth without specifying their specific recommendations.

These two C3EM reports explicitly recognized two categories of information system programs at

masters as well as undergraduate level: (1) technically trained systems designers, and (2)

managerially oriented information analysts. The committee recommended the inclusion of five

major topic areas of computer science, information systems, management, operations research,

and systems design techniques. In 1973, this committee published its recommendations for

undergraduate programs, and strongly argued for starting undergraduate programs in information

systems in the light of very high manpower requirement at programmer and systems analyst

level. It encouraged the computing centers as well as departments of computer science, business,

electrical engineering, and industrial engineering to start undergraduate programs with their

chosen concentration options on technology or organization. The committee also recommended

one-year masters program in information systems for these students.

A few years later, this committee evolved into the ACM curriculum committee in information

systems (C2IS). It is not clear why the committee chose not to explicitly include computer

www.manaraa.com

15

programming as a compulsory course in the technology concentration. This anomaly was

corrected in the 1982 recommendations of C2IS.

In later decades, a new trend of domain specific computing programs emerged. This trend

resulted in establishment of many programs like medical or health informatics, geo-informatics,

bio-informatics, chem-informatics, social informatics, and so on. In 1978, the ACM curriculum

committee on health computing published its recommendations [30]. In many of these domain

specific programs, up to 50% of the course content was related to domain specific foundations

and domain specific aspects of informatics. The remaining courses focused on generic

mathematics, statistics, information systems, computer science, and general education. ACM

curriculum committee cautioned against somewhat frivolous proliferation of specialized

programs [31]. However, in current era, specialized programs addressing the needs of specific

domains are becoming important.

The 1981 report of C2IS [32] emphasized that the demand of personnel with technical and

organizational skills is relatively much greater than the demand for solely technical skills or

organizational skills. It expressed its general concern over the ad-hoc basis of instruction of

systems analysis and design. In its 1982 report [33], this committee proposed separate MS and

MBA programs for the two streams of information systems.

As per the 1982 recommendations of C2IS, considering the nature of the professional work of

information system specialists, a strong emphasis (more than 20%) was placed on social sciences

and humanities including economics, psychology, and English. It was argued that such a

background helps in development of many essential attributes of requirement and systems

analysts. The hiring of computing professionals in India has always been highest for information

systems and software engineering related work. However, it is surprising that such undergraduate

engineering programs have not been developed in India. The three year Master of Computer

Application (MCA) programs also have a relatively heavier dominance of computer science and

management related courses, and pay only little attention to these aspects related to the

computing profession. The lack of strong industrial participation in curriculum design,

www.manaraa.com

16

professional inclinations of curriculum designers, and educational politics in India may have

contributed to this phenomenon.

Liberal Arts Perspective

The model curriculum recommended by Liberal Arts Computer Science Consortium (LACS)

attempted to define computing program in terms of their approach towards data structures and

algorithms [34]. It proposed that a computer science program is more interested in the formal

properties of data structures and algorithms, a computer engineering program focuses more on

their realization, and an information systems program is more orientated towards applications.

Even after two decades with many changes in computing arena, in its 2007 model curriculum,

LACS has only slightly modified their original definition of computing programs. The

realization part has now been partitioned into two categories of linguistic and hardware

realization.

The 1986 report and all subsequent reports of LACS, put more emphasis on discrete mathematics

and place it along with first introductory computing course before other mathematics courses. In

addition to two introductory computing courses, the 1986 report proposed four core computing

courses on computer organization, algorithms, theory of computation, and principles of

programming languages. These recommendations were only marginally revised by the

consortium even after ten year [35]. In its 2007 recommendations, software development has

been added to this category.

A typical liberal arts computer science program is more broad-based than specialized programs,

and it includes more than 50% non science courses in the area of humanities, social sciences,

etc., [36]. It is unfortunate, that such programs do not exist in India, and software development

education is mainly linked with engineering programs. This possibly has contributed to a nearly

non-existing or marginal inter-disciplinary activity between computer science and these areas. In

the west, it is not uncommon to have a degree in computing and philosophy, computing and art,

and so on. Perhaps, it is time to consider the option of a liberal arts oriented design degree with

specialization in computing in India.

www.manaraa.com

17

Changing Role of Mathematics in Computing Curriculum Recommendations

In the first decade, the computer science curriculum was lesser oriented towards business data

processing needs. Interestingly, discrete structures and three courses in numerical methods were

not considered as part of mathematics courses. Instead they were included as essential computer

science courses. The committee further suggested a minimum of six mathematics courses for

undergraduate programs. The committee proposed essential inclusion of courses in related areas

of mathematics, statistics, electrical engineering, philosophy, linguistics, industrial engineering,

and management. Overspecialization at undergraduate level was discouraged by the committee,

and it also encouraged the deep involvement of computer science faculty in computer

applications. Scientific simulation and engineering calculation oriented applications encouraged

to put a strong emphasis on numerical methods.

The strong emphasis on numerical methods decreased gradually through subsequent

recommendations, and it was eliminated from the core in nearly all subsequent recommendations

of the ACM, IEEE Computer society, as well as other bodies except International Federation of

Information Processing (IFIP). Computing curricula [37] does not specify any minimum

required weight of numerical techniques for any of the five computing discipline – computer

science, computer engineering, information systems, software engineering, or information

technology. It is not recommended even as an elective course for the later three disciplines.

On the other hand, discrete mathematics was increasingly being recognized as more central and

fundamental for computer science than calculus [38-40]. There were proposals to teach discrete

mathematics as the first mathematics course, and the model curriculum for liberal arts degree in

computer science responded favorably [41] [34]. In 2001, 76% faculty members are reported to

have felt that discrete mathematics should be a prerequisite to data structures [42]. However,

many universities and institutions were slow to respond to this change. A survey [43] showed

that even in late 1980s, nearly 30% universities and institutions in USA did not include discrete

mathematics, and nearly 27% maintained numerical algorithms in the core curriculum of

computer science.

www.manaraa.com

18

Possibly because of IFIP influence, for quite some time, numerical techniques continued to be

part of the core curriculum of many computing programs in India for some time. The current

model curriculum recommended by the All India Council for Technical Education, India [44-45]

has not included numerical mathematics as a core course for both the commonly offered

undergraduate computing programs of engineering institutes: (1) computer science and

engineering, (2) information technology. Unfortunately, even discrete mathematics is excluded

from the list of AICTE’s information technology curriculum.

Over the decades, with the advent of faster, cheaper, smaller, reliable, networked, and mobile

hardware, as well as user friendly and multi-layered software, the computer applications have

rapidly expanded much beyond the scope of computational science around numerical techniques,

modeling and simulation, and operation research. Lethbridge [46-48] found that in the list of the

most important twenty-five subject topics of the university curriculum, professional software

engineers did not include a single topic of mathematic. Though computational science is

recognized as an extremely valuable closely related discipline, the recommended core body of

knowledge of computing curricula with specialization in computer science, computer

engineering, software engineering, information systems, or information technology, do not

include these courses any more [49-50].

Further, the ACM-AIS-IEEE joint report [51] has recommended a lowered minimum

requirement for mathematical foundation for programs in software engineering, information

systems, and information technology. ACM-IEEE joint curriculum recommendation on software

engineering [52] has included only one topic of mathematics ‘discrete mathematics’ as part of

the essential core. Recently, differentiating computer science from mathematics, Fant [53]

argues that rather than computational issues, computer science is more concerned with issues

related to creation and actualization of process expressions.

Human and Social Aspects in Computing Curriculum

Till the 1970s, sociological, economic, and educational implications of developments in

computer science were not considered as major responsibility of computer science. The report

www.manaraa.com

19

recommended that computer science faculty should cooperate with concerned departments to

develop courses in these areas, and computer science students should be encouraged to take these

courses. However, computers were been increasing recognized as agents of social change.

Professional bodies started paying more attention to understanding the social impact of

computing.

In 1976, IFIP added a new technical committee, TC-9: Relationship between Computers and

Society. The ACM curriculum committee also responded to this trend, and included computers

and society as a strongly recommended elective in Curriculum’78 [54]. It was also suggested that

such a course should be taught by computer science faculty. The committee recommended that

meaningful computer applications should be cited and reviewed throughout the elementary

material. The committee posited that structured programming along with social, philosophical,

and ethical considerations are of such importance to the development of computer scientists that

they must permeate the instructions at elementary levels. In all subsequent recommendations of

the ACM, IEEE, IFIP, and others this proposal was further strengthened and this course was

often included in the core. Most of the subsequent recommendations provided a more central

position to this area. IFIP [55] recommended computer and society as part of the core for six

variants of computing programs. Computing curricula [37] specifies ‘2’ as the minimum weight

of legal, professional, ethical, and social aspects on a scale of 0-5 for all their five forms of

undergraduate computing discipline. However, some studies [46-48] showed that in spite of

strong recommendations from professional bodies, this area received lesser than required

attention during formal education in the opinion of responding practitioners.

The C3S published a survey of computer science education [56]. This report was a mere catalog

of various reports and papers without any observations or conclusions. It badly failed to critically

review the previous literature or propose future trends. A year later the committee on computer

science published their new recommendations, Curriclum’78. Mathematics requirements were

mostly unchanged, and the report was criticized for being retrogressive in this aspect. The

committee posited that structured programming along with social, philosophical, and ethical

considerations are of such importance to the development of computer scientist that they must

permeate the instructions at elementary levels. The core computer science and mathematics

www.manaraa.com

20

courses constituted less than 50% of course requirement. Additional course requirements were

proposed to be fulfilled through electives and courses in humanities, sciences, engineering, and

social sciences. General liberal arts requirements were expected to give breadth to the program.

The report was criticized for taking a fragmented approach [38].

In 1981, the C3S submitted its recommendations for master’s level program in computer science.

It prescribed that the basic intention of master program is to develop students’ critical and

professional thinking and intuition to enable the graduates to take sound professional decisions

with awareness of ACM code of ethics. Development of written and oral communication skills,

cognizance with pertinent literature in their field of choice, teamwork, and leadership skills were

also included among the prescribed goals. However, the committee did not make any specific

recommendations to ensure that the curriculum meets the stated objectives. It recommended a list

of thirty masters level courses, and classified into following five categories: (i) programming

languages (six courses), (ii) operating systems and computer architecture (seven courses,

including computer communication networks), (iii) theoretical computer science (four courses),

(iv) data and file structures (four courses), and (v) other topics (nine courses). The C3S failed to

use this opportunity to make a defining and novel contribution towards curriculum design

through these reports of late 1970s and early 1980s. The curriculum committee’s reports of late

70s and early 80s have been later criticized for being reactive rather than proactive [57].

In the last few years, with the emergence of new specialization tracks of human computer

interaction and also entertainment computing, sociology, art, philosophy, and psychology related

courses have become even more important. Some of the recent programs include many courses

from these areas by replacing courses of natural science, management, and electronics [58].

Currently, out of thirteen technical committees of International Federation for Information

Processing (IFIP), four committees directly relate to human aspect of computing: (1) Education

(working since 1963), (2) Relationship between Computer and Society (established in 1976), (3)

Human-Computer Interaction (working since 1989), and the most recent (4) Entertainment

Computing (founded in 2002). These committees seek to promote use of models, theories, and

methods of social science, human sciences, ethics, psychology, culture, education, and aesthetics

www.manaraa.com

21

in both design and evaluation of user orientated computer systems and humanization of system

design process.

The AICTE model curricula for computing disciplines [44-45] have not taken cognizance of

these developments and place the curricula only in the limited context of natural science,

mathematics, physical aspects of engineering, and business. The important and pervasive context

of human culture and society has not even been included in the agenda.

Beginning of Consolidation

The 1980s was the period of maturation and organized growth of computer science programs in

many countries, including India. United Nations Educational, Scientific and Cultural

Organization (UNESCO) commission IFIP to propose a modular curriculum especially for

developing countries. IFIP submitted its first recommendations in 1984, and revised

recommendations in 1994. The IEEE Computer society and ACM jointly specified criteria for

the computer science curriculum [59-60]. It mandated a broad based computer science core

giving even emphasis on computer theory, algorithms, data structures, programming concepts

and languages, and computer elements and architecture. It insisted on inclusion of social

implications of computing within the core computer science segment of the program.

Mathematics and science were recognized as supporting disciplines, and the criteria sought to

provide breadth through humanities, social sciences, and other disciplines. Advanced computer

science topics were recommended to be addressed through electives.

The ACM task force in cooperation with Computer society of IEEE [61] started to define the

computing discipline and observed that the three paradigms of theory, abstraction, and design are

equally important and fundamental to computing. Computer science mainly deals with theory

and abstraction, whereas computer engineering deals with abstraction and design. The task force

identified two broad area of competency development: (1) discipline oriented thinking, and (2)

tool usage, with the first being the primary goal of curriculum. It felt concerned about the neglect

of laboratory exercises, team projects, and inter-disciplinary studies. The task force identified

three purposes of laboratories in computing courses: (1) demonstrate how principles covered in

lectures apply to design, implementation, and testing of software and hardware, (2) emphasize

www.manaraa.com

22

the use of tools and processes, and (3) introduce experimental methods. Further, the task force

provided a novel curriculum design framework by dividing each of these sub-areas into three

parts of theory, abstraction, and design. The task force identified nine sub-areas of computing. It

observed the need of diversity and well-intentioned experimentation in computing curricula.

The joint ACM/IEEE-CS curriculum task force published its report in 1991. The report [62]

represented a unified set of recommendations from two major societies in a variety of academic

contexts, including liberal arts, sciences, and engineering. This task force chose to exclude

information systems from its agenda, and included all other variants like computer science,

computer engineering, computer science and engineering, informatics and other similar program

under the single title of computing. It emphasized the importance of breadth, laboratories, social,

ethical, and professional issues, theoretical foundations, communications skills, design

experience, and teamwork. It strongly advocated the integration of social and professional

context of computing along with theory, abstraction, and design into the curriculum. The task

force also identified twelve unifying and recurring concepts that are pervasive throughout the

discipline.

In 1990s that accreditation agencies of engineering programs in some countries, mainly USA,

UK, Australia, Canada, Singapore, and Japan, became explicitly concerned about desired

educational outcome. USA’s Accreditation Board for Engineering and Technology (ABET)

played a stimulating role in this movement.

Goldweber et al [57] reviewed the previous curriculum related literature incorporating some

educational literature. They classified the various pedagogical approaches into six different

categories of viewing computing as (i) mathematics, (ii) engineering and design, (iii) art, (iv)

science, (v) social science, and (vi) inter-disciplinary. They identified anthropology, applied

psychology, computer science, cultural studies, economics, ergonomics, ethics, history,

linguistics, management, mathematics, philology, philosophy, semiology, sociology, and politics

as relevant disciplines. It criticized the Curriculum’91 for its coverage of social and professional

context as an afterthought. This group considered the development of truly inter-disciplinary

computing curriculum as the next challenge.

www.manaraa.com

23

Software Engineering Perspective

Wassermann and Freeman [63] argued that computer science forms only a small portion of

necessary education of a software engineer, and software engineering differed from other

engineering that have their foundation in natural sciences. This was a novel observation that

deserved more attention. This observation may have encouraged the subsequent committees to

integrate more content about social and human sciences into mainstream computing courses, as

was observed in some of the later recommendations. They considered a software engineer as a

generalist, and drew an interesting analogy with a family physician who must have wide range of

skills in addition to the core knowledge of medicines and diseases. They posited that a software

engineering is an applied computer scientist, and the curriculum content must include problem

solving, design, implementation, management, and communication skills. In addition to writing

and speaking, the recommended communication skills included willingness to listen to others

and sensitivity to the viewpoints and value systems of others. They also recommended the

inclusion of accounting or economics or business administration, psychology, industrial

engineering practices, and history or political science in the software engineering curriculum.

In his much debated talk called “On the cruelty of really teaching computing science,” Dijkastra

emphasized on formalism [64]. He declared software engineering as a self-contradictory doomed

discipline. He called for banning the anthropomorphic metaphor in computer science, and

insisted that programmer must also give formal proofs for the correctness of their programs. He

advised that an introductory programming course should be taught as a formal mathematics

course, and students should not be required to test their programs through implementation.

Certainly, mathematics education helps in developing some type of problem solving skills.

However, by reducing computer science to formal mathematics, one of the founding fathers of

computer science was under-estimating the huge growth of the software industry, and the

important role software was to play in everyday life. In this debate, some supported him and

others like Hamming, Parnas, Karp, Sherlis and Winograd criticized his ‘extremism’ and

reminded that proofs are tedious and fallible, and engineering is not about optimality or

perfection, it is reasonableness in terms of reliability, cost, time, and effort.

www.manaraa.com

24

The serious shortfall of manpower and software crisis provided the necessary enabling

conditions for the fast emergence of the ‘doomed discipline’ of software engineering as applied

computer science that called for an engineering approach. The Software Engineering Institute

(SEI) was founded in 1984 at the Carnegie Mellon University. This institute made significant

contributions to the development of educational programs in software engineering. This was the

start of some specialized programs in software engineering in USA, and also in Europe [65-66a].

In 1990, SEI presented a model curriculum for undergraduate engineering program in software

engineering. As compared to ABET’s accreditation criteria of engineering program, in this

curriculum, the humanities and social sciences requirement was increased by reducing electives

and mathematics and science components. Further, two ABET categories of engineering science

and engineering design were merged into a single category of software engineering sciences and

design. None of basic engineering science course was retained in this curriculum. In many ways,

this curriculum was a reflection of a twelve year old proposal [63].

A new kind of engineering discipline was finally beginning to get its recognition, which claimed

its foundations in the science of artificial constructs, mind, society, and engineering methods

rather than material. This is a phenomenon that has been largely ignored by Indian engineering

educators, even after so many decades. The curriculum recommendations categorized computing

courses into four categories: (1) software analysis, (2) software architectures, (3) computer

systems, and (4) software process. This indicated the signs of the beginning of integrated

curriculum in computing.

In 1999, SEI-CMU published a report to define the discipline of Software Engineering [67]. The

mathematics requirements included mathematical logic and proof systems, discrete mathematical

structures, formal systems, combinatorics, and probability and statistics. Topics in numerical

methods or calculus were not included. This report also included the computing topics of data

structures and algorithms, computer architecture, operating systems, and programming

languages. The software product engineering related areas were identified as software

requirement, design, coding, testing, and operation and maintenance. Software management

www.manaraa.com

25

areas encompassed management of process, risks, quality, configuration, process, and

acquisition.

Based on a long industry-academia consultative process, SWEBOK [68] provided an excellent

document that elaborates upon ten main knowledge areas under the categories of software

requirements, software design, software construction, software testing, maintenance, software

configuration management, software engineering management, software engineering process,

software engineering tools and methods, and software quality. In a very sketchy manner,

SWEBOK also elaborates upon the desirable topics of related disciplines of mathematics,

computer science, computer engineering, management, project management, quality

management, software ergonomics, and systems engineering.

For the first time in its history of nearly forty years, a computing curriculum recommendation

made some reference to some education theories. SWEBOK elaborates upon technical

competencies that software engineers with four years of experience should have. It identifies ten

knowledge areas. Appendix D in their report suggest the desired level of competence as per

Bloom’s taxonomy to classify various knowledge areas with reference to ten knowledge areas of

software requirements, design, construction, testing, maintenance, configuration management,

engineering management, engineering process, tools and methods, and quality. This report is

currently undergoing a revision exercise, and some more knowledge areas like software

engineering economics are being considered for inclusion.

Deficient Educational Perspective Till the End of Last Century

The 1991 report of the ACM/IEEE-CS curriculum task force was seminal as it approached the

issue with broader educational objectives and looked at the curriculum as a unified artifact.

Leaving the former fragmented approach to curriculum design, this committee tried to create a

connected curriculum [69]. However, this as well as all earlier mentioned curriculum

recommendations related to computer science and engineering, appear to have over-sighted or

ignored the simultaneously growing literature in educational research and curriculum design to

theoretically ground their approach and broaden their perspective.

www.manaraa.com

26

In the absence of such a theoretically grounded perspective of ‘education,’ the recommendations

were highly skewed towards content and application with academic and technology orientation

for curriculum design. These recommendations did not pay sufficient attention to other aspects of

education that are better addressed through incorporation of complementary orientations for

curriculum design. These orientations were cognitive process, society centered, and humanistic

approach for curriculum design [70]. Scragg et al [71] called for developing insight based

curriculum through insight-building activities. They argued that computer science is a

fundamentally creative endeavor, and expressed concern at the lack of appropriate vocabulary in

computer science curriculum.

Gersting and Young [72] in their paper “Content + Experience = Curriculum” proposed

experiential aspect of computer science curriculum to complement the content part, and argued

that providing and evaluating experiences is a major responsibility of the faculty. However, even

they did not ground their proposal into educational theories. Meanwhile, Carson [73] argued that

it is not its application, but effect on thinking that makes sciences relevant. He suggested that

teaching within the discipline needs to be subordinated to the central task of teaching about the

whole culture. He expressed concern at the substitution of liberal education’s curriculum goals

of humanism and citizenship with economic and political goals. Clarke and Reichgelt [74]

examined the curriculum of sixty universities and colleges and found that most provided only a

list of the courses, and a summary of the objectives.

Indian Approach

Recognizing the growth potential, Government of India sponsored Indian Society for Technical

Education (ISTE) to propose the first model curriculum in this area. The ISTE interacted with

academia, industry, and professional bodies like Computer Society of India (CSI) and Institution

of Electronics and Telecommunication Engineers (IETE) and proposed a curriculum in 1987.

The group over-sighted most of the important international up-to-date recommendations and

manpower requirement projections with respect to computing education, especially with respect

to information systems and software engineering. It nearly failed to foresee the tremendous

growth of offshore and outsourcing software service industry that already existed even in the

www.manaraa.com

27

1970s, started to take off in the mid 1980s, and was growing fast in the late 1980s and the early

1990s.

The model curriculum proposed by this committee and published by Rajaraman [75] did not

make a mention of this growth or any up-to-date study related to manpower requirement. It only

included an outdated report of 1980 on manpower requirement by the Indian Planning

Commission. He did not mention any rational reasons or arguments for this retrogressive

curriculum that did not find it suitable to put even a single computing course in the first year, and

chose to put discrete mathematics in the fourth semester. The committee ignored the already well

recognized developments in database management and software engineering. This paper also did

not relate itself with the large body of educational research literature. Most surprisingly, none of

the ACM or IEEE reports related to curriculum recommendations are included in the reference

list. Instead only one UNESCO-IFIP [55] recommendation was included as a reference.

However, possibly as an afterthought, for comparison purpose, Denning et al [61] was referred.

Rajaraman [75] distinguished the proposed Indian curriculum from the western model [61] as

one with a bias towards electrical engineering. He did not respond well to the real demands and

trends of the local or global industry. The growth of undergraduate computing education was

slow till the early 1990s. Even in 1993, approximately 3000 students were completing their

undergraduate engineering degree in this discipline. However, the growth of Indian education

programs in this area has been phenomenal in the subsequent years, and this number has

multiplied by more than fifty times in the last last fifteen years. Availability of low-cost desktop

computers is the main contributing factor to this growth. It has fuelled the demand for more

software, and hence trained manpower, especially in the software sector. The setting up of

computational facilities in educational institutes became much cheaper. This phenomenon was

largely over-sighted or under-estimated by the curriculum designers. Even today, the curriculum

of many universities has not deviated much from the earlier model curriculum. Rajaraman’s

paper raised the issue of faculty shortage; the issue is much more serious today. Every year, more

than 2,00,000 undergraduate students enter colleges to study computing courses. However, most

of the required knowledge related to information systems and software engineering is picked up

on the job.

www.manaraa.com

28

The model curricula designed by AICTE, India [44-45] for undergraduate engineering programs

in computer science and engineering and information technology totally ignore the integration

and experiential aspects of curriculum design. Most carelessly, the curricula even failed to

project basic working definitions of either of the disciplines. With reference to humanities and

social studies courses, the committee seems to have totally succumbed to the short sighted

economic goals. There is only one language/communication course in the first semester that can

qualify as a non-management humanities course. All other humanities courses have been

replaced by management courses. It seems that to the curricula have been designed without

seriously examining any of the earlier recommendations of any of the educational research

literature or even specific curriculum related recommendations of international professional

bodies, like the ACM, IEEE, or IFIP.

Section 1.3: Research Approach
Community and culture significantly influence value orientation, perceived needs, and

motivation as well as provide the ground for creating shared understanding. All disciplines have

their own cultures, and all cultures evolve through cross-cultural exchanges. The computing

community has created and documented a sound body of knowledge of software engineering

[68]. It is one of finest examples of multi-cultural synthesis of many disciplines especially

engineering, computer science, and even social sciences. In the last decade, the disciplines of

design and aesthetics are also providing very interesting enrichment opportunities for this body

of knowledge. With the very large scale worldwide endeavor on computing or software

engineering education, it is now time to leverage education and ‘learning’ related research to

create and document a theoretically sound body of knowledge of software developers’ education.

Such a body of knowledge should naturally require us to synthesis the evolving disciplines of

software engineering and higher education.

The phenomenon of ‘learning’ has been extensively studied by psychologists, educationists,

sociologists, philosophers, engineering educators, and even computer scientists working in

artificial intelligence and e-learning. Computing educators take very important curricular and

educational decisions without referring the rich theories of curriculum design or education. This

www.manaraa.com

29

oversight is analogous to the misconception that "software engineering = programming” which

just requires knowledge of some programming language.

In late 1980’s, engineering methods had to be combined with the elements of computer science

to create large scale software systems. Similarly, now with the exponential growth of education

in computing disciplines, the scale of the impact of the computing faculty’s decisions is far

reaching. The computing student community is no more limited to highly gifted few any more.

The scale of computing faculty’s educational responsibilities is continuously expanding. Quality

of software development education is an important issue that needs to be urgently addressed.

Hence, there is an urgent need to enrich the culture of software development education with the

help of educational research. For sustaining this unprecedented expanding scale of computing

education, we now need theoretically sound educational frameworks. More so because of severe

shortage of experienced faculty, especially in countries like India where this expansion has been

exponential, resulting in quality difference between the best and worst programs to be even more

than an order of magnitude.

The published research in computing education or software engineering education does not

sufficiently leverage this research in education. In the various curriculum reports of 1960s to

1980s by the ACM as well as IEEE, there is no reference to educational models or theories. Even

in the 1990s, we find few such attempts. In the absence of such references, it is not surprising

that the curriculum committees limited their goal to cataloguing various content areas and

describing and sequencing the required courses, resulting in a fragmented curriculum. They did

not attempt to argue or propose curriculum models for holistic education of computing

professionals.

An attempt of this type may have encouraged the curriculum designers and educators to create an

integrated curriculum, as was happening in some other disciplines. Aning et al [76] have

observed that in general, engineering faculty is not aware of cognitive science research that has

potential to improve engineering pedagogy and mention about recent efforts by NSF to bring

together engineering and education faculty. It is not surprising that the computing curriculum

www.manaraa.com

30

designers not only ignored the pure education research, but also applied educational research

such as science education.

Subsequently, the trend started changing, and some authors at annual computing education

conferences like the ACM SIGCSE, ACM SIGITE, ASEE-IEEE FIE, etc., started examining,

reviewing, and/or using some well established theoretical models and frameworks like Bloom’s

taxonomy and Kolb’s experiential learning. However, the papers presented at IEEE CSEE&T

show a very poor record of leveraging even such highly popular theories. Interestingly, some

learning theories have also been used by the HCI, Information systems, and multimedia

communities for guiding their design objectives and processes. A large number of papers in the

ACM SIGCSE, ACM SIGITE, IEEE CSEE&T, or IEEE Transaction of Education are like

experience reports, and do not make a good attempt to theoretically ground their work in

educational research. However, many other streams of higher education, including engineering

and science education, have leveraged educational research to enrich their research.

A meta-analysis [77] of computer science education research posits that the majority of the work

done in the past has been done by computer scientists reflecting on their own teaching practice.

These authors stress that there is a need for more dedicated researchers in computer science

education. They observe that in more established educational research, like science education

research, the studies carried out are not limited to researchers’ own teaching practices so much

as on other teachers’ practices. Not many such studies have been reported in computer science

and engineering education. The research method developed and used in this research is an

attempt to fill this gap.

The data collection and analysis goals have gone much beyond the boundaries of the courses

taught by the researcher. An attempt has been made to integrate the techniques of qualitative as

well quantitative research methods to take the advantages of both. Research processes included a

wide-ranging survey of published literature in diverse areas of Software development, computer

science and IT education, engineering education, professional and higher education, learning

theories, instruction design, and human development. Research also included study of a large

number of comments written by professional software developers about contemporary issues

www.manaraa.com

31

related to software development processes, required competencies, endorsements, etc., in various

professional forums. More than three hundred professionals of more than sixty organizations

from various countries have been consulted and/or surveyed on various issues. More than one

thousand undergraduate computing students, and more than one hundred faculty members, have

also been surveyed on selected issues.

This dissertation is concerned with understanding and suggesting ways to expand the context of

software development education with the help of existing theories on ‘learning’, epistemology,

human development, education, and instruction by applying analytical, qualitative, and

quantitative methods to investigate the following types of questions:

1. How has software development education evolved, specifically with reference to

educational research?

2. What is meant by competent and professionally oriented computing engineers,

especially with respect to software engineering? What are the essential attributes?

What is the relative importance of these attributes?

3. What is the degree with which the various components of traditional processes of

engineering education succeed in creating opportunities for enhancing these

competencies? What students think about their educational experiences? What

students think works well for them? What processes do professional engineers

recommend?

4. What pedagogical practices succeed in developing competencies, and under what

circumstances? What comes in the way of implementing these strategies? What

kinds of lectures are effective for ‘learning’ in the views of students and faculty?

What factors block students from effective ‘learning’? How to overcome these

difficulties?

5. What kind of instructional interventions are required? How can the existing

education theories/strategies/methodologies be used to educate competent

computing engineers? Do we need new theories of ‘learning’ for software

development education? If so, what would be main aspects of such a theory of

‘learning’?

www.manaraa.com

32

In this thesis, we propose a comprehensive framework of pedagogic engagement in computing

courses for developing multi-dimensional competencies with respect to the requirements of

software development. We have fairly comprehensively examined the published record of major

developments and ideas in the history of evolution of computing curriculum since the 1950s.

Further, we have identified the distinguishing characteristics of software development. We

referred to published literature, and also carried out several exploratory surveys and polls among

software developers to understand the profession from their perspectives. We take a position

that software development is not an extension of any single discipline.

With respect to the needs of this distinguished profession, we have studied and collated the

published recommendations by several accreditation boards, professional bodies, and

researchers. We have also carried out several surveys among working professionals to

understand their perspectives about the required competencies that must be emphasized by the

educational process of software developers.

Based on these studies and surveys, we have identified twelve core competencies for software

developers from various approaches, and organize these in the form of a three-tier taxonomy. We

then elaborate upon the context and meaning of each of the twelve core competencies in the light

of various multi-disciplinary theories and findings, and also our own reflections, empirical

results, and interpretations.

During the course of this study, we have studied a large number of theories of education,

‘learning’, intelligence, human development, curriculum design, and thinking. Tables A’1.1a and

A’1.1b in Annexure AN1 list some of these important theories and modes. We have selected

some of these, and used them for designing our generic framework of pedagogic engagements as

well as specific interventions for instructional reform in software development education.

Our proposed framework of pedagogic engagements in software development

education includes (i) core activities of software development, (ii) distinguishing

characteristics of software development profession, (iii) three-tier taxonomy of twelve

core competencies, (iv) five-dimensional ladder of professional and human

www.manaraa.com

33

development, (v) three-dimensional perspective of the knowledge domain of software

development, (vi) two core principles for facilitating deep learning, and (vii) a four-

dimensional taxonomy of pedagogic engagements over (v).

Finally, as exemplar case studies, we also elaborate upon some instructional interventions

designed and administered by us in some chosen set of computing courses. These interventions

are manifestations of some aspects of our proposed framework of pedagogic engagements for

software development education. Some new courses have also been developed in the process.

Investigations related to curricular aspects like specific programming languages, methodologies,

or formalism are not included within the scope of this work. We believe that the proposed

framework is fairly comprehensive, reusable, and robust. It can be used to design many more

interventions in software development education. Designers of educational programs for other

professions can also use this framework and methodology.

Section 1.4: Thesis Layout
The first chapter of the thesis gives an overview of the motivation, objective, background,

research method, and results of the reported work. In addition, we also discuss the evolution of

computing curriculum in the last five decades.

 In the second chapter, the required core competencies for software developers are explored with

the help of published recommendations of accreditation agencies, professional societies, and

published research. Fresh survey has also been carried out for this investigation. These

competencies are then consolidated into a three-dimensional taxonomy. More literature is

explored to consolidate the competency requirements of the software services and software

product companies.

The third chapter analyzes the distinguishing features and multidimensional aspects of software

development with a view to further analyze the required competencies. In this process, a large

number of software professionals were consulted on various issues related to software

development and required educational inputs. The three-dimensional taxonomy of competencies

www.manaraa.com

34

proposed in the second chapter is distilled and revised into a three-tier taxonomy of twelve

competencies.

In the fourth to sixth chapters, we discuss the meaning of the identified twelve competencies in

the context of software development work. The basic competencies are discussed in fourth

chapter. The competency driver-habits of mind are elaborated in fifth chapter and competency

conditioning attitudes and perceptions are discussed in sixth chapter. We draw upon multi-

disciplinary published literature and empirical studies in the process. Each of these chapters deals

with a different category of competencies as per our taxonomy.

The seventh chapter gives an overview of various quantitative and qualitative surveys among

computing students, software developers, and faculty of engineering institutes. We conducted

these surveys to empirically investigate the phenomenon of ‘learning’ in computing/engineering

disciplines. In this chapter, we essentially discuss the rationale for student-centric active

learning.

The eighth chapter gives the most significant theoretical contribution in this work. We

consolidate all our earlier findings discussed in the earlier chapters with the results of carefully

chosen classical and contemporary ‘learning’ theories. These theories have been chosen with

respect to their applicability for software development education. We propose a unified

framework of pedagogic engagements in software development education. This framework

focuses on development of required core competencies for software development as consolidated

in the third chapter and discussed in the fourth, fifth, and sixth chapters.

Some aspects of this framework are manifested in some instructional interventions discussed in

the ninth chapter. The tenth chapter provides a summary, and suggests future scope of research.

www.manaraa.com

35

CHAPTER 2: IDENTIFICATION OF CORE COMPETENCIES

FOR SOFTWARE ENGINEERS

Education programs seek to develop certain generic and discipline specific competencies of

students. Educationists, accreditation agencies, professional societies, as well as forums of

industry often engage in discourse about the essential and desired competencies as outcomes of

education programs. Passow [78] has interpreted the competencies to mean the skills, abilities,

knowledge, attitudes, and other characteristics that enable a person to perform skillfully (i.e., to

make sound decisions and take effective action), in complex and uncertain situations such as

professional work, civic engagement, and personal life. Further, she has viewed expertise as the

proficient coordination of multiple competencies that leads to consistently effective performance

in a variety of complex, unique, and uncertain situations.

Section 2.1: Study Report on Core Competencies for Engineers

with Specific Reference to Software Engineering
We first discuss the various studies related to the core competencies required for general

engineering graduates, and come up with the set of general engineering competencies normally

accepted among the researchers [78a]. With this set of competencies as a starting point, we did

an extensive survey among software engineering practitioners, to find out which subset of

engineering competencies are more important for the software engineering graduates.

Bordogna [79] quotes an NSF report (published in 1989) which identified integration, analysis,

innovation and synthesis, and contextual understanding as key capabilities for engineering

students. He also posits that the essence of engineering is the process of integrating different

forms of knowledge to some purpose, and an engineering student must experience the ‘functional

core of engineering’- the excitement of facing an open-ended challenge and creating something

that has never been. He proposes that a 21st century engineer must have the capacity to:

i. design, in order to meet safety, reliability, environmental, cost, operational, and

maintenance objectives,

ii. realize products,

www.manaraa.com

36

iii. create, operate, and sustain complex systems,

iv. understand the physical constructs and the economic, industrial, social, political,

and international context within which engineering is practiced,

v. understand and participate in the process of research, and

vi. gain the intellectual skills needed for lifelong learning.

Dodridge [80] classifies the attributes of engineers into two broad categories of (i) knowledge

and understanding and (ii) skills. Dodridge (2003) as well as Mason [81] refer to a 1998 survey

by the EMTA (Engineering and Marine Training Authority) that identified practical skills,

multiskilling, computer literacy, communication skills, management skills, personal skills, and

problem solving skills as the most important skill deficiencies among engineers. Hoscette [82]

and Erlendsson [83] have identified some workplace defects and leading causes of failures in

engineering. As per their observation, the major concerns are passivity, non-responsiveness,

uncritical thinking, technical incompetence, inept or poor communication skills, poor relations

with the supervisor, inflexibility, poor and lax working habits, and too much independence.

Successful Practices in International Engineering Education (SPINE) is a benchmark study [78a]

focusing on the analysis of successful practices in engineering education in ten leading European

and U.S. universities including MIT, CMU, and ETH, Zurich. The study attempted to measure

the perceived importance and assessment of fifty-one parameters on quality of education,

teaching methods, engineering competencies, general professional skills, and aspects of

reputation of institute through a quantitative analysis. In the SPINE project, 543 professors of

these universities, 1372 engineers and 145 managers of European and US companies were

questioned. A summary of their findings is given at Annexure AN11.

We administered a survey among Indian engineers and managers working in Indian and

multinational IT companies to obtain their perceptions on the importance of forty-nine

parameters of engineering education. For the purpose of our first empirical study [84]

conducted in 2004-06, we added two additional general professional competencies: (i) awareness

of environmental issues, and (ii) sensitivity towards socio-economic aspects for sustainable

technological development.

www.manaraa.com

37

The abovementioned twenty-three competencies were included in this list. Other parameters on

teaching methods, quality of education, and aspects of reputation of institutes were the same as

in the SPINE survey. The results of this survey with reference to the teaching methods are

discussed in Chapter seven. The other two set of surveyed parameters are not included in this

thesis. Respondents were requested to assign numeric ratings to these parameters on a scale of 0

to 10, with 10 being the highest importance in terms of the parameter’s criticality and potential

contribution in preparing students for a successful professional career.

Fifty-four experts working in fifteen companies responded. The responding experts had

industrial experience ranging from 1.5 years to 35 years with an average experience of 7.5 years,

which is inferred to be slightly higher than the industry average, given the average age of

employees in the Indian IT industry is only 27-30 years [5]. The Collection of these responses

was spread over a period of approximately one year from 2003 to 2004. Table 2.1 provides a

brief summary of the survey results about the importance of competencies. More details are

provided in Appendix A1.

Table 2.1: Most important engineering and general professional competencies, as rated by
Indian engineers and managers working in Indian and multi-national IT companies (2004)

No Competency

Category

1 Problem solving Pivotal

2 Analysis/Methodological skills Critical

3 Basic engineering proficiency Critical

4 Development know-how Critical
5 Teamwork skills Critical

6 English language skills Critical
7 Presentation skills Critical
8 Practical engineering experience Critical

9 Leadership skills Critical
10 Communication skills Critical

Problem solving skill was also identified as the most important competency by the responding

engineers in the SPINE project [78a], as well as a University of Arkansas study [85]. Problem

www.manaraa.com

38

solving is the ability to identify and solve problems, when and where they occur. Domelen [86]

quotes Steward (1982), “... all problem solving is based on two types of knowledge: knowledge

of problem-solving strategies, and conceptual knowledge.” Gary [87] argues that curriculum

should provide opportunities for transforming a problem statement into a model, conjecturing

solutions, selecting or developing the appropriate mathematics, examining the analysis, and

continuing to transform the conjecture into a solution. Bruner [88] proposed that preparing

students for solving real-life problems require a different paradigm of education and learning

skills, including self-directed learning, active collaboration, and consideration of multiple

perspectives. Problems of this nature do not have “right” answers, and the knowledge to

understand and resolve them is changing rapidly, thus requiring an ongoing and evolutionary

approach to ‘learning’.

The findings of this study, based on the ratings assigned by Indian engineers and managers

working in the Indian and multinational IT companies, as summarized in Table 2.1, are highly

compatible with the findings of the SPINE project, which examined the requirements for Europe

and the USA in a more general context of the engineering industry. However, importance of

development know-how, practical engineering experience, research know-how, and specialized

engineering proficiency have been rated at a higher level by the respondents of the current study,

as compared to the respondents of the SPINE project. We can explain this difference by

examining the nature of the Indian IT industry. This difference may perhaps be partially

attributed to the fast obsolescence in the IT industry. Further, the Indian IT industry is mainly a

“service industry.” Many companies want to have “industry ready” engineers. Often some

companies mention some specific IT skills like the ability to program in specific computer

languages, and the use of development tools as recruitment criteria for fresh engineers.

Interestingly, the importance of other language skills has been rated very low as compared to the

SPINE rating. As Indian IT companies begin to play a larger role in non-English speaking

countries, this is likely to change marginally. Some companies have already started

recommending potential recruits to acquire skills in languages like Japanese. There are some

noticeable differences with respect to the NASSCOM-KPMG and also Indian Task Force reports

www.manaraa.com

39

[89] that classified spoken English, team-working, initiative/enthusiasm, and motivation/drive as

desirable skills rather than necessary skills.

Two competencies not examined by the SPINE project, and introduced in this study, were

awareness of environmental issues and sensitivity towards socio-economic aspects for

sustainable technological development. The first among these has come out as ‘obligatory’ while

the second has been rated as a desirable competency.

Hence, we find conclude that the identified core competencies for general engineering graduates

were also required by software engineers, but there were major difference in their order of

importance.

Section 2.2: Necessary Competencies as Educational Outcomes for Software

Engineers as Recommended by Accreditation Boards, Professional Societies’

and Other Approaches
Curriculum content is no longer the key as the accreditation agencies in many countries have

transformed their accreditation criteria and standards in terms of core competencies. A major

shift has taken place from input-based criteria to outcome-based approach. NAE in their vision

report for 2020 [15] recommends that engineering schools should vigorously exploit the

flexibility inherent in the outcome-based accreditation approach to experiment with novel

models for baccalaureate education. Subsequently, we carried out an extensive study of the

recommended outcomes by accreditation boards of some countries. We examined the

recommended outcomes by Accreditation Board for Engineering and Technology (ABET)

(United States) [90-92], United Kingdom Standards for Professional Engineering Competence

(UK-SPEC) [93], Institution of Engineers, Singapore (IES) [94], Engineers Australia

Accreditation Board [95], and Japan Accreditation Board for Engineering Education (JABEE)

[96]. These are summarized in Annexure AN1.

There are great similarities in the competency set identified by the accreditation agencies of the

US, UK, Australia, Japan, and Singapore. Nine out of the eleven competencies identified by the

ABET, US continue to reappear with some modifications in the competency list prescribed by

accreditation agencies of all of these countries. However, some agencies have broadened the

www.manaraa.com

40

scope of some of these competencies to be more comprehensive. For example, the JABEE has

broadened ability to work in multi-disciplinary teams into ability and intellectual foundation for

considering issues from a global and multi-lateral viewpoint, and also has put it at the first

position of their list. We considered these competency lists to be ordered on importance as

perceived by respective agency. While there are many similarities in the order proposed by these

agencies, the JABEE has ordered their list differently. It gives highest importance to the ability

and intellectual foundation for considering issues from a global and multi-lateral viewpoint and

understanding of the effects and impact of technology on society and nature, and of engineers’

social responsibilities (engineering ethics). Table 2.2 gives a summarized and composite view

of some of the most commonly distinguished and identified competencies by the ABET, UK-

SPEC, EA, JABEE, and IES. We use these results to further expand and refine our initial set of

competencies (Annexure A1) for further investigations.

Table 2.2: Comparative analysis of some common competencies distinguished and identified by some accreditation

agencies

S.No Competency Position in the respective list
ABET

EC2000
UK-

SPEC
IES EA JABEE Average

position
1 Ability to apply knowledge 1 2 1 1 3 1.6
2 Design skills 3 2 3 5 5 3.6
3 Problem solving skills 5 -- 4 4 4 4.25
4 Technical competence 11 1 5 3 4 4.8
5 Ability to work in multi-disciplinary teams 4 4 9 6 1 4.8
6 Sensitivity towards ethical and professional

issues
6 5 10 9 2 6.4

7 Communication skills 7 4 6 2 6 5
8 Sensitivity towards global, societal, and

environmental issues
8 5 8 7 2 6

9 Readiness for life-long learning 9 5 7 10 7 7.6

Section 2.2.1: Impact on Curriculum and Future Directions

The recommendations of the various accreditation agencies in the US, UK, Singapore, Australia,

and Japan have already affected educational programs, not only in their respective countries, but

also in other countries. Many universities have redefined their program objectives, delivery

mechanism, and assessment systems to incorporate graduate attributes in teaching programs [97-

97a]. For example, as per National Academy of Engineers (NAE) report, Olin College of

Engineering [15] has identified the following characteristics for their graduates:

www.manaraa.com

41

a. Superb command of engineering fundamentals.

b. Broad perspective on the role of engineering in society.

c. Creativity to envision new solutions to problems.

d. Entrepreneurial skills to bring these visions to reality.

Macro level reforms are being realized through micro level redesigning of every course with a

focus on fostering specific competencies [8]. Curriculum now gives more emphasis on design,

practice, collaborative learning, humanities, social sciences, and sustainable engineering [98].

Faculty development programs have been organized to help them understand the underlying

pedagogical issues [99]. Learning theories and epistemological frameworks are being used to

shift the focus of teaching, learning, and assessment processes on competency development

[100-100a].

Section 2.2.2: Indian Scenario

One of the nine Indian inventors included in the list of top 100 inventors under 35, Vikram Sheel

Kumar, thinks that the biggest challenge an Indian student faces is finding the space to develop

an independent mind [101]. Some of the senior industry managers in some industrial sectors feel

concerned about the lack of positive attitude, behavioral aspects, ability to cope up with

challenges, sincerity, integrity, ethics, self-analysis, discipline, and independent thinking among

fresh engineering graduates [102]. It is very ironic that while ‘availability of highly skilled

manpower’ has been identified as the most important factor that is driving the increasing

momentum of R&D off-shoring/outsourcing industry in India; ‘quality of higher education’ has

been identified as one of the main inhibitors [103].

The accreditation criteria defined by the National Board of Accreditation (NBA) of the All India

Council of Technical Education (AICTE) [104], has not yet responded to the abovementioned

contemporary models that emphasize carefully identified attributes and competencies based on

national and global needs. One of the major objectives of NBA is to encourage the institutions to

continually strive towards the attainment of excellence. The details of the parameters and their

weights as prescribed by the NBA are given in Annexure A1 (Table AN1.1). This clearly shows

the NBA is still silent about the core competencies, and continues to assess undergraduate and

www.manaraa.com

42

postgraduate engineering programs with respect to several inputs rather than focusing and

encouraging the institutes to develop a set of carefully identified competencies.

Section 2.3: Some other Contemporary Recommendations About Desired

Competencies of Engineering Graduates

According to the Engineering Professors Council (EPC), United Kingdom, the key skills for

engineering are communication skills, general IT user abilities, application of numbers, working

with others, problem solving, and improving own learning and performance. It also identified the

following primary competencies for engineers [105]:
a. Transform existing systems into conceptual models
b. Transform conceptual models into determinable models.
c. Use determinable models to obtain system specifications.
d. Select optimum specifications and create physical models.
e. Apply the results from physical models to create real target systems.
f. Critically review real target systems and personal performance.

The National Academy of Engineers (NAE) suggests that the essence of engineering—the

iterative process of designing, predicting performance, building, and testing—should be taught

from the earliest stages of the curriculum, including the first year [15]. Further, the NAE [106]

has identified the following attributes for engineers of 2020:
a. Strong analytical skills.
b. Practical ingenuity: skill in planning, combining, and adapting.
c. Creativity (invention, innovation, thinking outside the box, art).
d. Communication.
e. Business and management.
f. Leadership.
g. High ethical standards and professionalism.
h. Dynamism, agility, resilience, and flexibility.
i. Lifelong learners.

Rugarcia et al [107] proposed the following categories of necessary skills for engineers:
a. Independent, interdependent and lifetime learning skills,
b. Problem solving, critical and creative thinking skills,
c. Interpersonal and teamwork skills,
d. Communication skills,
e. Self-assessment,
f. Integrative and global thinking skills, and
g. Change-management skills.

www.manaraa.com

43

Cabrera et al [108] classified the professional competencies for engineers into three main

categories of group skills, problem solving skills and professional awareness. The group skills

include developing ways to resolve conflict and reach agreement, being aware of the feelings of

members in group, listening to ideas of others with open mind, working on collaborative projects

as member of a team. The problem solving skills encompass ability to do design, solve an

unstructured problem, identify knowledge, resources, and people to solve problem, evaluate

arguments and evidence of competing alternatives, apply an abstract concept or idea to a real

problem, divide problems into manageable components, clearly describe a problem orally,

clearly describe a problem in writing, develop several methods to solve unstructured problems,

identify tasks needed to solve an unstructured problem, visualize what the product of a design

project would look, weigh the pros and cons of possible solutions to a problem. The third

category of professional awareness comprises of an understanding about what engineers do, the

language of design, the non-technical side of engineering, and the process of design.

Passow [78] collated some of the earlier research on competencies and expertise in the context of

engineering education. She cites Stark et al [110] who surveyed faculty members of nearly 400

universities to find the faculty’s perception of adequate emphasis in different professions, and

found that the engineering faculty viewed conceptual competency, as the most important

competency closely followed by integrative competency (melding multiple competences to make

informed judgments), and communication competency. Professional ethics, technical

competence, motivation for continued learning, career marketability, and contextual competence

(examining the context from a variety of view points) further expanded this list. This study

showed that adaptive competence (propensity of modify, alter, or change elements of

professional practice), professional identity, and scholarly concern for improvement were also

viewed as reasonably important by responding faculty members.

She has carried out a meta-analysis of twelve empirical studies that had collectively surveyed

more than ten thousand engineering graduates about the importance rating of competencies. She

has classified the competencies in three groups of top, intermediate, and bottom clusters. The top

cluster includes problem solving, communication, and data analysis. The intermediate cluster

includes ethics, life-long learning, teamwork, engineering tools, design, and math, science, and

www.manaraa.com

44

engineering knowledge. The bottom cluster comprises of contemporary issues, experiments, and

understanding the impact of one’s work.

Further, Passow’s meta-analysis showed that in addition to the competencies identified by

ABET, decision-making, commitment to achieving goals, the ability to integrate theory and

practice effectively in work settings, leadership skills, and project management are also

extremely important competencies. This study also concluded that respondents from computer

science, computer engineering, and software engineering background rated design and

engineering tools at a relatively higher level as compared to other engineering disciplines.

We use these recommendations and results to further expand and refine our initial set of

competencies (Annexure A1) for further investigations.

Section 2.4: Recommendations of Some International Professional Societies

Related to Computing

Recommendations for Computer Science

The Joint Task Force on computing curricula of the IEEE Computer Society and the ACM has

published several reports related to computing curricula. These reports make clear

recommendations on this issue with reference to specific undergraduate programs in computer

science, software engineering, computer engineering, and information technology. The final draft

on computing curricula, 2001, suggested the following broad level characteristics of computer

science graduates [1]:
a. Systems-level perspective.
b. Appreciation of the interplay between theory and practice.
c. Familiarity with common themes.
d. Significant project experience.
e. Adaptability.

This report also suggested the following general skills for computer science graduates:

a. Communication.
b. Teamwork.
c. Numeracy.
d. Self-management.
e. Professional development.

www.manaraa.com

45

Recommendations for Software Engineering

In 2004, the same task force made specific recommendations about undergraduate degree

programs in software engineering [52]. It suggested that graduates of an undergraduate software

engineering program must be able to:
a. show mastery of the software engineering knowledge and skills, and professional issues

necessary to begin practice as a software engineer,
b. work as an individual and as part of a team to develop and deliver quality software

artifacts,
c. reconcile conflicting project objectives, finding acceptable compromises within

limitations of cost, time, knowledge, existing systems, and organizations,
d. design appropriate solutions in one or more application domains using software

engineering approaches that integrate ethical, social, legal, and economic concerns,
e. demonstrate an understanding of and apply current theories, models, and techniques that

provide a basis for problem identification and analysis, software design, development,
implementation, verification, and documentation,

f. demonstrate an understanding and appreciation for the importance of negotiation,
effective work habits, leadership, and good communication with stakeholders in a typical
software development environment, and

g. learn new models, techniques, and technologies as they emerge and appreciate the
necessity of such continuing professional development.

Recommendations for Computer Engineering

In their final report ‘Curriculum guidelines for undergraduate degree programs in computer

engineering’ [111], the task force identified the following characteristics for computer

engineering graduates:
a. System Level Perspective.
b. Depth and Breadth (of knowledge).
c. Design Experience.
d. Use of Tools.
e. Professional Practice.
f. Communication Skills.

Recommendations for Information Technology

In April 2005, the same task force also proposed a draft computing curricula for information

technology. This report suggested [112] that pervasive themes for IT program outcome should

be user centeredness and advocacy, information assurance and security, the ability to manage

complexity, a deep understanding of information and communication technologies and their

associated tools, adaptability, professionalism, and interpersonal skills. This report also

recommends that an IT graduate must acquire the ability to:
a. use and apply current technical concepts and practices in the core information

technologies,

www.manaraa.com

46

b. analyze, identify, and define the requirements that must be satisfied to address problems
or opportunities faced by organizations or individuals,

c. design effective and usable IT-based solutions and integrate them into the user
environment,

d. assist in the creation of an effective project plan,
e. identify and evaluate current and emerging technologies and assess their applicability to

address the users’ needs,
f. analyze the impact of technology on individuals, organizations and society, including

ethical, legal and policy issues,
g. demonstrate an understanding of best practices and standards and their application,
h. demonstrate independent critical thinking and problem solving skills,
i. collaborate in teams to accomplish a common goal by integrating personal initiative and

group cooperation,
j. communicate effectively and efficiently with clients, users and peers both verbally and

in writing, using appropriate terminology, and
k. recognize the need for continued learning throughout their career.

Recommendations for Information Systems

In 2004, the ACM, Association for Information Systems (AIS), and Association of Information

Technology Professionals (AITP) published a joint report on ‘Model curriculum and guidelines

for undergraduate degree programs in information systems,’ and characterized this discipline as

‘Technology-enabled Business Development.’ They have divided the representative capabilities

and knowledge expected for Information System graduates into the following categories [113]:
a. Analytical and critical thinking: organizational problem solving, ethics and

professionalism, and creativity.
b. Business fundamentals.
c. Interpersonal, communication, and team skills.
d. Technology.

Indian Recommendations

NASSCOM-KPMG [5] and the Government of India Task Force [114] identify written English,

logical reasoning, problem solving and numerical ability, programming skills,

listening/empathy, assertiveness and confidence, integrity, values and discipline, sociability,

dependability, and reliability as necessary skills for IT professionals. These reports identify

spoken English, foreign language, accent understanding, comprehension/creativity,

initiative/enthusiasm, team-working, multitasking and time management, and motivation/drive as

desirable skills.

It may be noted that the recommendation of NASSCOM as well as that of Government of India

Task Force are more influenced by the over emphasized requirements of software service

www.manaraa.com

47

industry, as shown later in Table 2.4. It sadly ignores the requirements of product development

related work in small or large companies.

Hence, we conclude that, not only Indian engineering education accreditation agency, the

AICTE (ref: Section 2.2.2), but also the premier trade body and the chamber of commerce of

Indian IT industry, NASSCOM, and also the task force created by the central government’s

ministry of communication and information technology, have also not yet shown futuristic

directions in this regard. The mammoth growth of IT education in India has and continues to

take place in an eco-system that is conditioned by serious absence of futuristic vision in the apex

institutions.

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure A1) for further investigations.

Section 2.5: Some Contemporary Recommendations on Desired

Competencies of Software Developers
The US based Professional Aptitude Council (PAC) conducts a pre-employment aptitude

examination for IT professionals. This has also been recently launched in India [115]. This

examination consists of questions on nine parameters of problem solving, linear logic,

mathematical ability, technical knowledge, applied technical skills, coding skills, creativity, work

style, and personality composite. It identifies attention to detail, interpersonal skills,

adaptability/flexibility, persistence, sense of urgency, and creativity as IT related personality

constructs. Listening, adaptability to new technology, time management, visualize/conceptualize,

multi-tasking, business culture, “be the customer” mentality, constructive criticism,

organizational skills, stress management, idea initiation, and project management are also

highly valued skills in the IT industry [85]. Chang [116] and Erlendsson [117] suggest

additional competencies like knowing how to learn rapidly, ability to advocate and influence

(persuasion), mentoring, decision making, and ability to manage complexity.

Kelley and Caplan [118] carried out a comparative study of star and average performers at Bell

Labs, which showed that taking initiative was ranked as the most important strategy by star

www.manaraa.com

48

performers, while it was least important for average performers. On the other hand, ability to

give good presentations was a core strategy for average performers, while it was peripheral for

the top engineers.

Turley and Bieman [119] studied the competencies of software engineers in a Fortune 500

computing company. They found concern for reliability/quality, focus on user needs, algorithmic

and structured thinking, pride in quality/productivity, emphasis on elegant and simple solutions,

mastery of skills/techniques, help other, innovative, maintenance of “big picture” view, enjoy

challenges, seek help from other, lack of ego, attention to detail, pro-active nature, team

orientation, reuse, desire to improve things, perseverance, and strength of conviction are more

common competencies of these software engineers.

They further identified that the top 30% software engineers demonstrated significantly higher

levels in competencies like help others, pro-active role with management, strength of

convictions, mastery of skills/techniques, and maintenance of “big picture” view.

The exceptional software engineers in this study distinguished themselves in terms of their result

orientation and sense of mission, whereas non-exceptional software engineers distinguished

themselves in terms of higher perseverance and methodological approach.

They also cited and highlighted the following observations made in earlier behavior oriented

software engineering research:

a. The development process was not linear: designers operated simultaneously at various levels

of abstraction and details.

b. Experienced designers took the users view before proceeding to design. … high-rated

systems analysts were more likely to work for a productive relationship with the users and

specify more requirement than the low-rated analysts. They would reject more hypotheses,

try several strategies, apply heuristics, set more goals, and look for analogies to prior

problems.

www.manaraa.com

49

Armour [120] suggested that software developers need domain specific training, learning to

learn, and structuring mechanism of the representation form.

Connor et al [121] have identified new and specific technical skill, computer literacy and IT

skills, multi-skilling and greater flexibility, the ability to deal with change, an ability to continue

learning, re-skilling, and the greater importance of personal and generic skills as key themes in

their assessment of skill trends.

eXtreme Programming (XP) principles, rules, and practices are based on five core values:

communication, simplicity, feedback, courage, and respect [122]. Shore and Warden have further

elaborated upon these values [123]. Communication is aimed at giving the right information to

right people when they can use it to its maximum advantage. Simplicity means to be able to

discard unnecessary things. Feedback is to learn the appropriate lessons at every possible

opportunity. Courage is required to make the right decisions, even when they are difficult, and to

tell the stakeholders when they need to hear it. Respect implies treating oneself and others with

dignity, and to acknowledge expertise and mutual desire for success.

Hazzan and Tomakyo [124] highlight the importance of mental habit of abstraction and the

ability to make transitions between levels of abstraction as an important skill for software

developers. Further, relating software engineering to Schön’s work on reflective thinking and

professions [125], they also posit that mental habit of reflection and the ability to move across

the ladders of reflections are closely associated with software engineering processes. Agile

methods like eXtreme Programming draw their strength from the possibility of continuous

improvement through reflection.

Sodiya et al [126] expanded Goldberg’s Big Five personality factors by adding a sixth factor of

cognitive ability, and collected the personality traits of nearly 500 software engineers working in

different stages of software engineering: requirement engineering, system design, coding,

testing/implementation, and delivery/maintenance in Nigeria.

www.manaraa.com

50

Their findings showed that agreeableness: the tendency to be compassionate and not

antagonistic towards others, was a universal personality trait among high performing software

engineers. This tendency includes being pleasant, tolerant, tactful, helpful, trustworthy,

respectful, sympathetic, and modest. The high performing software engineers further showed

high levels of cognitive ability of abstract thinking, analysis, concentration, and visualization.

The other common personality trait among this group was found to be conscientiousness: the

tendency to be self-disciplined, to be dutiful, achievement and competence oriented, thorough,

consultative, and orderly. Openness to experience: the tendency to enjoy new intellectual

experiences and ideas, imaginative, curious, and broadmindedness was also found to be a

common trait of high-performing software engineers, particularly involved in systems testing and

integration, management of software process, and deliver/maintenance. Extraversion: the

tendency to seek stimulation and enjoy the company of others was not found to be a common

personality trait of high performing software engineers. Neurotocism: the tendency to experience

unpleasant emotions relatively easily was found to be universally low among this high

performing group.

Recommendations for Software Architects

Bass et al [127] have identified that in addition to the knowledge of architectural concepts,

software engineering, design, programming, technologies and platforms, the following general

competencies are important for software architects:
a. Communication skills: Oral and written communication skills, presentation and

convincing skills, see and address multiple viewpoints, consulting skills, negotiations
skills, understand and express complex topics, listening skills, approachable, and
interviewing skills.

b. Interpersonal skills: Team player, diverse team environment, creative collaboration,
consensus building, balanced participation, diplomatic, mentoring, conflict resolution,
respects for people, committed to others success.

c. Leadership skills: decision making, initiative, innovative, self-motivated and directed,
committed, dedicated, passionate, independent judgment, influential, ambitious,
mentoring, coaching, training.

d. Workload management: work under pressure, time management, priority assessment,
result oriented, estimation, ability to concurrently work well on multiple complex
projects and systems.

e. Skills to excel in corporate environment: passion for quality, art of strategy, work under
supervision and constraints, organizational and work flow skills, process oriented,
entrepreneurial, assertive without being aggressive, open to constructive criticism.

f. Information handling: detail oriented while maintaining overall vision and focus, see the
larger picture, good at working at an abstract level.

g. Personal qualities: credible, accountable, responsible, insightful, visionary, creative,
perseverant, practical, confident, patient, empathetic, work ethics.

www.manaraa.com

51

h. Skills for handling unknown and unexpected: tolerant to ambiguity, risk
taking/management, problem solving, reasoning, analytical skills, adaptable, flexible,
open mindedness, resilient, and compromising.

i. Learning: good grasping power, investigative, observation power, adept at using tools.
j. Domain knowledge.
k. Knowledge of industry’s best practices and standards.
l. Knowledge of business practices.

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure A1) for further investigations.

Section 2.6: A Perspective from the Professional Codes of Conduct, Ethics,

and/or Practice

Many professions have established professional societies that continuously help and guide their

members to understand their professions not only in terms of technical advancements, but also

evolving understanding of their profession’s context. Professional codes are often designed to

motivate members of an association to behave in certain ways. Codes of ethics are ‘aspirational,’

because they often serve as mission statements for the profession, and thus can provide vision

and objectives. Codes of conduct are oriented more toward the professional, and the

professional's attitude and behavior. Codes of practice relate to operational activities within a

profession. These codes also help them to face and handle professional dilemmas. Primarily,

these codes are designed and used to inspire, guide, educate, and discipline the members. Codes

‘sensitize’ members of a profession to ethical issues and alert them to ethical aspects they

otherwise might overlook. Codes inform the public about the nature and roles of the profession.

Codes also enhance the profession in the eyes of the public. These codes of conduct, practice,

and ethics are not static, and keep on evolving to respond to new challenges and understanding.

All professional societies related to engineering and computing have defined a code of ethics

and/or professional practice. Professional societies like the ACM and IEEE also insist that the

professional education programs must also educate students with these prescribed codes. The

IEEE-ACM joint computing curricula task force on software engineering [52] takes the position,

“to help insure ethical and professional behavior, software engineering educators have an

obligation to not only make their students familiar with the Code, but to also find ways for

students to engage in discussion and activities that illustrate and illuminate the Code’s eight

www.manaraa.com

52

principles, including common dilemmas facing professional engineers in typical employment

situations.” SWEBOK [68] includes the software ethics under the knowledge area of software

quality.

We have examined the codes of conduct, ethics, and/or practice of following societies:

1. American Council of Engineering Companies, 1980

2. National Society of Professional Engineers (NSPE), 1993

3. The Institution of Engineers, Australia

4. American Association of Engineering Societies, 2000

5. American Society of Civil Engineers, 1996

6. American Society of Mechanical Engineers

7. American Institute of Chemical Engineers, 2003

8. IEEE (Institute of Electrical and Electronics Engineers), 1990

9. ACM (Association of Computing Machinery), 1993

10. Information Processing Society of Japan, 1996

11. ACM-IEEE Code for Software Engineers Ver 5.2, 2002

The ACM-IEEE Code for Software Engineers Ver 5.2 has eight clauses that address issues

related to public, client and employer, product, judgment, management, profession, colleagues,

and self. The codes of all the above mentioned societies including ACM-IEEE Code for

Software Engineers Ver 5.2, have following common features:

1. The first and the most important recommendation in all these codes is that concerned

professional shall fulfill their professional duties by holding paramount the safety, health

and welfare of the public. Several clauses of ACM-IEEE Code for Software Engineers

Ver 5.2 reflect this concern and objective. These are clause number 1 (1.01 to 1.08), 2

(2.07), and 4 (4.01).

2. The second very important commonly address issue in all these codes is the directive

advising their members to undertake technological tasks for others only if qualified by

training or experience, or after full disclosure of pertinent limitations. Several clauses of

the ACM-IEEE Code for Software Engineers Ver 5.2 reflect this concerned and

objective. These are clause number 2(2.01), 3(3.04), 4(4.02), 5(5.04), and 7(7.08).

www.manaraa.com

53

3. The third uniformly occurring instruction to their members is to act for each employer or

client as faithful agents or trustees. Clause no 2 (2.01 to 2.09) of ACM-IEEE Code for

Software Engineers Ver 5.2 expresses this concern in several ways.

4. The fourth identical facet in all these codes is an advice to their members to issue public

statements only in an objective and truthful manner. Clause no 1 (1.06) and 6 (6.07) of

ACM-IEEE Code for Software Engineers Ver 5.2 are expressions of this desired virtue.

5. The fifth regular feature of all these codes is a guidance to avoid improper solicitation of

professional assignments.

6. The sixth common element of these codes is the suggestion that the members shall

continue to develop relevant skill, knowledge, and expertise throughout their careers and

shall actively assist and encourage those under their direction to do likewise. Clause no 8

(8.01 to 8.06) of ACM-IEEE Code for Software Engineers Ver 5.2 are expressions of this

desired trait of software professionals.

7. The seventh common aspect of these codes is about promoting an ethical approach

among colleagues. Clause no. 5 (5.01 to 5.12) of ACM-IEEE Code for Software

Engineers Ver 5.2 are expressions of this desired trait of software professionals.

8. The eighth regular tenet of these codes is guiding the members to continuously strive for

quality, excellence, and adherence to highest professional standards.

We use the spirit of these recommendations to further expand and refine our initial set of

competencies (Annexure A1) for further investigations.

Section 2.7: Classical and Contemporary Recommendations on Desired

Competencies of Graduates
In the above sections, we notice a high emphasis on human and social related competencies that

go much beyond the scope of technical competencies. Hence, in order to get a better insight into

these aspects from the perspective of university education, in this section, we look at the classical

as well as contemporary recommendations about university graduates in general. In the 1850s, a

pioneer philosopher of modern higher education, John Henry Newman, wrote a seminal work

‘The Idea of a University Defined and Illustrated’ [128]. As part of this work, he included a

www.manaraa.com

54

discourse on ‘Knowledge Viewed In Relation To Professional Skill.’ In this discourse, he

insisted that
University training aims at raising the intellectual tone of society, at cultivating the public
mind, at purifying the national taste, at supplying true principles to popular enthusiasm and
fixed aims to popular aspiration, at giving enlargement and sobriety to the ideas of the age, at
facilitating the exercise of political power, and refining the intercourse of private life. education
should give the ability to see things as they are, to go right to the point, to disentangle a skein of
thought, to detect what is sophistical, and to discard what is irrelevant … to fill any post with
credit and to master any subject with facility, to accommodate himself to others … to throw
himself into their state of mind, how to bring before them his own, how to influence them, how to
come to an understanding with them, how to bear with them, … to be at home in any society …
[to have] common ground with every class … [to know] when to speak and when to be silent …
to ask a question pertinently … [to] be able to converse and gain a lesson seasonably ,,, [and to
enjoy] the repose of a mind that lives in itself, while it lives in the world.

Franklin Bobbitt posited that because of unpredictability of future roles, the curriculum should

insist on general education and developing individuals’ intellect rather than just aiming to train

them for specific work. He also insisted that education must aim at developing a respect for

many of the classic authors of “great books.” These thoughts were also resonated in Robbins

Report (1963) [129] that suggested that the purpose of higher education is not simply the

“instruction of skills suitable to play a part in the general division of labour” and “the

advancement of learning,” but also, “to promote the general powers of the mind … and

transmit … a common culture and common standards of citizenship.” Martha Nussbaum

[130] posited that the purpose of liberal education is to cultivate humanity (world citizenship),

and she suggested that to achieve this goal, three capacities need to be cultivated. The first

among these is capacity for critical self-examination and critical thinking about one’s own

culture and traditions through logical reasoning: consistency of reasoning, correctness of facts,

and accuracy of judgment. The second capacity is to see oneself as a human being who is

bound to all humans with ties of recognition and concern. The third capacity is for narrative

imagination: the ability to empathize with others and to put oneself in another’s place through

imagination.

The American Association of College and University [131] has declared the following learning

outcomes as essential for all college graduates:
a. Knowledge of human cultures and the physical and natural world by engagement

with big questions, both contemporary and enduring

www.manaraa.com

55

b. Intellectual and practical skills: Inquiry and analysis, critical and creative thinking,
written and oral communication, quantitative literacy, information literacy, teamwork
and problem solving

c. Personal and social responsibility through active involvement with diverse
communities and real-world challenges: civic knowledge and engagement—local and
global, Intercultural knowledge and competence, ethical reasoning and action,
foundations and skills for lifelong learning

d. Integrative learning through the application of knowledge, skills, and responsibilities to
new settings and complex problems

García-Aracil and Van der Velden [132] have proposed their competency classification based on

six categories of organizational, methodological, participative, specialized, generic, and socio-

emotional competencies. The organizational competencies incorporate working under pressure,

accuracy, attention to detail, time management, working independently, and the power of

concentration. The methodological competencies comprise of foreign language proficiency,

computers skills, understanding social, organizational/technical systems, documenting ideas and

information, problem-solving ability, analytical competencies, and learning abilities. The

participative competencies encompass planning, coordinating and organizing, economic

reasoning, negotiating, assertiveness, decisiveness, persistence leadership, as well as taking

responsibilities and decisions. The fourth category of specialized competencies essentially means

knowledge of field specific theories and methods. The fifth category of generic competencies

include broad general knowledge, cross-disciplinary thinking/knowledge, critical thinking,

documenting ideas and information, problem-solving ability, and written as well as oral

communications skills. The final category of socio-emotional competencies incorporate

reflective thinking, assessing one’s own work, economic reasoning, working in a team,

negotiating initiative, assertiveness, decisiveness, persistence, adaptability, leadership, getting

personally involved, taking responsibilities, decisions, loyalty, integrity, tolerance, appreciating

of different point of view.

Their study showed that the best paid jobs required high levels of participative and

methodological competencies, the worst paid jobs emphasized on organizational competencies,

and high specialized knowledge contribute to higher wages in some professions like medical

science, mathematics (including computing), and engineering. They finally concluded that new

emerging work situations require individuals with enhanced levels of participative,

methodological, and socio-emotional competencies.

www.manaraa.com

56

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure A1) for further investigations.

Section 2.8: A Comprehensive Distilled View on Desired Competencies

We have consolidated the abovementioned competencies recommended by engineering

accreditation boards, engineering and computing professional agencies (including the code of

ethics), and various thinkers of higher education, engineering education, and computing

education. These recommendations were have been made with reference to graduates,

engineering graduates, and computing graduates. Appendix A2 gives a comprehensive summary

of these competencies in an alphabetical order of competencies. The importance of so many

competencies with reference to software developers education has not been empirically

examined in the earlier ranking studies, e.g., SPINE [78a], Bailey and Stefaniak [85], and our

own [84]

Section 2.9: Further Empirical Investigations on Required Core Competencies

for Engineering Graduates with Reference to the Indian IT Industry

Our earlier SPINE based empirical study (Appendix A1) discussed above had its own

limitations. It mainly suffered from two deficiencies: (i) The examined competencies were

generic in nature that were applicable to all fields of engineering, and these were not grounded in

the specific competency literature related to software development. (ii) The software industry

was considered a homogeneous entity and did not distinguish between the product based small or

large companies and/or large companies mainly involved in offering software services to their

clients.

Hence, in 2007, we took another survey. Based on the findings of our first study and various

published recommendations about the desired recommendations as proposed by accreditation

boards, professional bodies, as well as researchers, we significantly revised and expanded the list

of surveyed competencies from twenty-three to thirty-five. Table A3.1 in Appendix A3 maps the

competencies of the old (Appendix A1, Table A1.1) and the new list.

www.manaraa.com

57

Some important competencies, listed in Appendix A2, were still not distinguished in our

empirical study, conducted in 2007 (Appendix A3). Some of the important competencies of

Appendix A2 that were not examined in 2007 included - curiosity, domain competence,

abstraction, algorithmic thinking, knowledge of physical and natural world and intercultural

knowledge, reflection, self acceptance and self regulation, and workload management.

Seventy-one experts working in thirteen companies with additions like Accenture, Borland

Software, SUN, and TCS responded. The responding experts had industrial experience ranging

from 1 year to 22 years, with an average experience of 5.6 years. The data was analyzed in a

similar manner to our earlier SPINE-based study. For classification of competencies we added

another category at the top to distinguish the topmost recommendation and termed it as

‘Existential.’ Table 2.3 provides the summary of the 2007 results.

Table 2.3: Most important competencies as rated by Indian engineers and managers working in Indian and multi-

national software companies (Revised Study 2007) (More details in Table A3.2, Appendix A3)

Category S.No. Competency (SNo as per Appendix A2)
Existential 1 Perseverance, commitment, and hard work (13)

2 Ability to work in teams (1)
Pivotal 3 Ability to apply knowledge (2)

4 Integrity and authenticity (25)
5 Analytical skills (6)
6 Accountability and responsibility (25)
7 Technical competence (31)
8 Problem solving skills (22 and 23)

Critical 9 Listening skills (1)
10 Attention to detail (15)
11 Project planning and management (24)
12 Quality consciousness and pursuit of excellence (25)
13 Critical thinking (26)
14 Readiness for lifelong learning (9)
15 Design skills (11)

Table 2.4 enumerates the important competencies of Table A3.2 (Appendix A3) that were rated

with higher importance, differently for three different segments of software industry: (i) software

services related work at large companies, (ii) product development related work at large or mid-

size companies, and (iii) product development related work at small companies. In Section 2.11,

we interpret the implications of these findings.

www.manaraa.com

58

Table 2.4: The most important competencies for software development work related to software services and
product development

Category Software services

related work in large
companies
(SNo as per Table
A3.2, Appendix A3)

Product development work
in large/mid-size companies
(SNo as per Table A3.2,
Appendix A3)

Product development work in small
companies
(SNo as per Table A3.2, Appendix
A3)

Existential Ability to work in
teams (2)

Ability to work in teams (2) Perseverance, commitment, and
work (1) Ability to apply knowledge (3)

Pivotal Perseverance, commitment,
hard work (1)

Accountability and responsibility (6)

Ability to apply knowledge (3)
Problem solving skills (8)

Research skills (17)
Critical Perseverance,

commitment, and
work (1)

Accountability and
responsibility (6)

Attention to detail (10)

Analytical skills (5) Analytical skills (5)

Problem solving skills (8) Integrity and authenticity (4)

Research skills (17) Readiness for lifelong learning (14)
Technical competence (7)

Obligatory Listening skills (9)

Integrity and authenticity (4)

Quality consciousness and pursuit
of excellence (12)

Critical thinking (13) Critical thinking (13)

Design skills (15) Design skills (15)
Technical competence (7)

Section 2.10: Classifying the Core Competencies for Software Developers

Using Marzano’s Dimensions of Learning for Classifying the Competencies

Dimensions of Learning [138], is a comprehensive model of learning and learning process. It

structures the various aspects of learning along the following dimensions: (1) attitudes and

perceptions, (2) acquire and integrate knowledge, (3) extend and refine knowledge, (4) use

knowledge meaningfully, and (5) productive habits of mind. As per this model, all learning takes

place against the backdrop of learners’ attitudes and perceptions and their use of productive

habits of mind. Dimension 4 subsumes dimension 3, which in turn subsumes dimension 2. This

means that when learners extend and refine knowledge, they continue to acquire knowledge, and

when they use knowledge meaningfully, they are still acquiring and extending knowledge.

www.manaraa.com

59

In 2006, we adapted this model to design a three-dimensional taxonomy of desired

competencies. Dimensions 2, 3, and 4 represent different aspects of learning in three hierarchical

levels. As there are no orthogonal relations among them, in this discourse, they are merged into

one. The new merged dimension can be viewed as having three internal hierarchical sub-levels.

We suggested that, in essence, there are only three dimensions of learning:

a. Dimension 1: Attitudes and Perceptions,

b. Dimension 2: Productive Habits of Mind, and

c. Dimension 3: Acquisition, Integration, Extension, and Meaningful Usage of

Knowledge.

Learners’ attitudes and perceptions about the purpose of learning, as well as roles of teacher,

self, and peers determine their motivation, and very significantly influence depth and

performance of their learning.

Productive habits of mind: critical thinking, creative thinking, and self-regulation facilitate their

learning process.

Acquisition, Integration, Extension, and Meaningful Usage of Knowledge is directly manifested

in the software developers’ work. It includes competencies like technical competency, problem

solving, and communication skills.

The core competencies (for software engineers) studied and identified by us till that time

(starting with the set of competencies for general engineers) were mapped in these three

dimensions of learning. We posited that attitudes and perceptions affect a professional’s ability

to practice. The most important element of education should be to develop required attitudes and

perceptions. Under the conditions of the right attitudes and perceptions, professionals use their

productive habits of mind to acquire and integrate knowledge. Attitudes, perceptions, and

productive habits help them to extend, refine and use knowledge for meaningful tasks. The first

version of our taxonomy was published in 2006 [139]. It is summarized in Table 2.5.

www.manaraa.com

60

Table 2.5: Taxonomy of core competencies for software developers - ver. 1, 2006

Dimension 1
Attitudes and perceptions
(S. No. as per Table A3.2, Appendix A3)

Dimension 2
Productive habits of
mind
(S. No. as per Table
A3.2, Appendix A3)

Dimension 3
Meaningful usage, extension, and
acquisition of knowledge
(S. No. as per Table A3.2,
Appendix A3)

1. Perseverance (1)
2. Sense of urgency and stress management (29)
3. Adaptability and ability to multi-task (18)
4. Ability to work in homogeneous, multi-

disciplinary, multi-locational, and
multicultural teams (2)

5. “Be the customer” mentality (19)
6. Listening (9)
7. Sensitivity towards global, societal,

environmental, moral, ethical and
professional issues and sustainability (34)

8. Systems-level perspective (including
knowledge integration, consideration for
multilateral viewpoint, and user-
centeredness) (20)

9. Ability to assist others through mentoring
and philanthropic donations (30)

10. Entrepreneurship (35)
11. Readiness for lifelong learning. (14)

12. Attention to detail
(10)

13. Numerical ability
(26)

14. Critical thinking
(13)

15. Creativity and idea
initiation (22)

16. Technical competence (7)
17. Ability to apply knowledge (3)
18. Analytical skills (5)
19. Design skills (15)
20. Decision making skills (21)
21. Problem solving skills (8)
22. Communication skills (16)
23. Organizational skills (23)
24. Project planning and

management (11)
25. Persuasion skills (28)
26. Experimentation skills (25)
27. Constructive criticism (27)
28. Knowledge of contemporary

issues (32)
29. Research skills (17)
30. Mentoring skills (24)
31. Wealth creation skills (31)

Additional Competencies

Four important competencies of Table A3.2 (Appendix A3), later identified by us, were not

distinguished in this taxonomy. These were – Integrity and authenticity (No 4 in Table A3.2),

Accountability and responsibility (No 6 in Table A3.2), Quality consciousness and pursuit of

excellence (No 12 in Table A3.2), and Cost consciousness (No 33 in Table A3.2).

Some other very important competencies, listed in Appendix A2, were also not distinguished in

this taxonomy. Some of main competencies of Appendix A2 that were not classified in 2006

included - curiosity, domain competence, abstraction, algorithmic thinking, knowledge of

physical and natural world and intercultural knowledge, reflection, self acceptance and self

regulation, and workload management.

In Annexure AN3, we briefly discuss the details of some others models about classification of

competencies. These include Bloom’s taxonomy of educational objectives [133], Anderson and

Krathwohl modification of Bloom’s taxonomy [134], Costa’s model of intellectual functioning

[135], Kennedy’s four perspectives on professional expertise [136], The classification of college

www.manaraa.com

61

graduate’s competencies as proposed by Stark et al [137], Marzano’s revised taxonomy [140],

earlier classifications cited by García-Aracil and Van der Velden [132], and Kelly Coate [141]

schema for curriculum design

In Section 3.11, we will discuss a revised version of our taxonomy of competencies.

Section 2.11: Chapter Conclusion
The overall findings of the revised study, as summarized in Table 2.3 and Appendix A3, gave

new insights into the importance of desired competencies in software industry. The respondents

gave highest importance rating to many newly added competencies that related to attitude and

values rather than skill or knowledge. These include perseverance, commitment, and hard work,

integrity and authenticity, accountability and responsibility, quality consciousness and pursuit of

excellence, “be the customer” mentality, and systems-level perspective. Similarly newly added

generic cognitive skills of attention to detail, critical thinking, decision making skills, and

creativity and idea initiation were also rated very high by our respondents. Very interestingly,

contrary to the popular interpretation of communication ability, listening skill was rated much

higher than the communication, presentation, or persuasion skills.

Further, the findings of the revised study, as summarized in Table 2.4, are especially useful for

curriculum designers and computing faculty.

For the Software Services Industry, the ranked list of top competencies

recommended were: (i) ability to work in team, (ii) abilities related to perseverance,

commitment and hard work, and (iii) listening skills. Interestingly, all these

competencies require development of attitude and perspectives, usually not the

focused goal of the commonly prevailing academic process.

For large and mid-size IT Product Development Industry, the required

pivotal/critical competencies were: (i) ability to work in teams, (ii) ability to apply

knowledge, (iii) abilities related to perseverance, commitment and hard work, (iv)

accountability and responsibility, (v) analytical skills, (vi) problem solving skills,

www.manaraa.com

62

and (vii) research skills. Here again, all these competencies also relate to attitude,

perspectives, and thinking habits, that are usually not focused upon the commonly

prevailing academic process.

For small IT Product Development Industry, the required pivotal/critical

competencies comprise of all that are required for a large product company (with

some minor change in their ranks), along with a few additional critical

competencies: (i) attention to detail, (ii) readiness for lifelong learning, (iii) quality

consciousness and pursuit of excellence.

It clearly indicates the nature of the gap which needs to be filled. These finding create a strong

case for overhauling the software development education system in every aspect. The

educational programs have to be conceptualized very differently from the training programs.

Education has two goals of nurturing as well as training. Webster defines ‘educate’ as “to

develop mentally, morally, or aesthetically especially by instruction,” “to provide with

information,” and also “to condition to feel, believe, or act in a desired way.” Hence, the

education, especially higher education, is expected to help in growth of human beings to

advanced levels. Training is concerned with development of ‘skills.’ Education on the other

hand, has a wider goal of cultivating ‘valuable competencies’ to develop wise and competent

professionals and citizens.

It is not sufficient to only aim to train technically skillful software engineers. The education

system has to aim to develop competent software development professionals. Consequently,

while development of skill and technical knowledge is certainly important, the development of

attitude, perspective, and thinking ability is even more important. It is also imperative to

understand that these learning outcomes can be achieved mostly through changes in academic

process, and also inclusion of a few additional courses.

Further, the findings of the revised study, as summarized in Table 2.4, give even more interesting

inputs, especially for educators in India, where the software service industry is currently

dominating the software industry. Table 2.4 also shows that the competency needs for the usual

www.manaraa.com

63

work in very large companies, who are currently the largest recruiters from engineering campus,

are very limited. Because of very high visibility and recruitment potential, these companies are

currently in a position of influencing the management of educational institutes. The finding of

Table 2.4 show that if Indian software educators try to orient the goals of their educational

programs for this sector, their students will not be suitable for the other two sectors that are

growing silently. Based on our finding, we take a position that in order to inculcate excellence,

the educational community should create more partnerships and communication channels with

the companies that are involved in product development in large, mid-size or even small sector.

We also need to educate our students that the software industry is not monolithic, and the most

dominant voice is not the most futuristic voice. With increasing pressures on profit margins in

the post-recession period, and fast growing software service industry in many other countries, we

cannot hope to run our software industry solely as a service industry with the current nature of

less challenging low cost work. The most natural allies for educational institutes, that will help

us bring excellence by being more demanding users of our product, i.e., students, are small sector

product development companies. There is an increasing trend of start-up companies. The

educational institutes should create partnership and even facilitate their growth. The students also

need to be motivated to aspire to work for such companies, and prepare themselves accordingly.

How to forge such partnerships and communication channels is beyond the scope of this

dissertation.

Further, in the light of several other identified competencies and deeper reflections about

learning, we have recently revised our thinking about this classification scheme as well as the

core competencies. We believe that these dimensions have interdependence and are not

orthogonal. In our new taxonomy, we do not consider our three categories as independent

dimensions. As there is an inter-dependence of these categories, we model these competencies as

a three-tier taxonomy of twelve core competencies. The details of this revised and

comprehensively distilled taxonomy are discussed in the third chapter after discussing the

distinguishing features of software development.

www.manaraa.com

64

CHAPTER 3: DISTINGUISHING FEATURES OF

SOFTWARE DEVELOPMENT AND

REQUISITE TAXONOMY OF CORE COMPETENCIES

As our study and investigations showed, most of competencies required for general engineering

are also required for software engineering, but the latter does require additional competencies

that are critical for their profession. This prompted us to investigate the distinguishing features of

software development, so that we would be able to propose what types of instructional reforms

would result in addressing the competency mismatch. It would also help formulate what changes

in curricula (deletion/modification/addition of courses) would be necessary to facilitate the

changes.

Technology professionals are expected to serve human needs through designing, building,

evaluating, maintaining, testing, and modifying systems, processes, and components. In the

process, they engage in creation, operation, maintenance, application, and destruction of forms of

matter or energy, and/or information. Software developers are concerned with information

aspects of such endeavors. Software provides support to acquire, store, search, filter, transfer,

transform, and/or destroy information. The transformation may involve content transformation,

form transformation, composition, and/or decomposition. Software is not just enabling people to

do their activities in newer ways.

It is also empowering them to do new activities to satisfy their needs at multiple levels of

Maslow’s need hierarchy [141a], and also seek happiness through expanded levels of positive

relatedness, and also enhanced levels of autonomy and competence. Software-enabled newer

ways of self-expression are helping people to experience higher levels of self acceptance.

Hence, software-based artifacts are also reshaping the cultural landscape of society.

It is not proper to call software engineering an extension to any single discipline. Like languages

and mathematics, the problem domains and solution possibilities are unlimited, and hence,

software engineers can find opportunities to integrate their disciplinary knowledge with any

www.manaraa.com

65

other discipline, and also grow in that domain. The discipline of computing is inherently highly

inter-disciplinary and is continuously expanding through collaborations with other disciplines of

human understanding. Surely, concepts are shared back and forth, but software engineering has

its own distinguishing features. It, without doubt, shares many common practices like project

management, and making design tradeoffs with other engineering disciplines. However, some of

the following distinctive aspects distinguish it from many other engineering disciplines.

Section 3.1: Programming as an Art to Software Engineering
In the initial days, programs were mostly written by individuals, and the programming tasks were

handled more like an art. A set of mathematical and algorithmic courses formed the major

portion of computing education.

As computer programs started handling more complex tasks of various applications, their size

increased. Large programs need modifications and enhancements throughout the period of their

active use. The development and maintenance of large programs was no more an individual

effort, but a teamwork which requires disciplined engineering processes with systematic

documentation of activities of analysis, design, coding, testing, deployment, and maintenance.

This was a qualitative jump in the software development process, and by the mid 1980s various

courses covering different aspects of Software Engineering became an integral part of computing

education. Software development evolved out of a mathematical art to an engineering activity for

handling complex tasks. Similar to the other engineering activities, problem solving and

technical competence would be the key core competencies required for software engineering.

Engineering with a Difference

Software engineers do not manage high volume manufacturing, or mandatory repeated

implementations. Unlike other artifacts, replication of software artifacts is easy, and often

without any costs. A much larger number of skilled developers and testers have to collaborate to

create and evolve many software artifacts. Therefore, only skilled workers are required for

software engineering related activities, and group work is much more important. Software

engineering is comparatively much younger to other engineering disciplines and the theories,

best practices, and essential development tools are still evolving. Further, the obsolescence and

www.manaraa.com

66

technological changes are very rapid. Consequently, disciplined lifelong learning is a must, for

software engineers.

While all other engineering disciplines aim to create physical products by combining material

and physical processes, software is created from ideas and existing software, and is largely

independent of the material and physical processes. Hence, it has much lesser dependence on

physical sciences and constraints. This gives them the freedom to create imaginative virtual

spaces and services limited only by human thinking. Hence, there is considerable room for

variant approaches to defining and solving problems and creative thinking.

Designs often involve a large number of layers of discrete abstractions and complex interactions

among a very large number of components. The methods of dealing with this complexity are not

mature and effective enough. Consequently, projects face higher uncertainty factor, and a design

cycle often requires several iterations. According to estimates, 80% of software projects fail to

meet their original objectives, schedules, and budgets due to a failure to manage this complexity

[142].

Because of the underlying digital phenomenon, noise, fluctuations, uncertainties, or errors can

result in unpredictable outcomes and software crashes. Further, the inherent invisibility makes is

vulnerable to failures and unpredictable behavior. This often causes the absence of indicators of

failure before total catastrophic failure. Hence, the designer’s task to create and manage “soft

failure modes” becomes more complex.

A lot of available software is highly vulnerable to failures. With exponentially expanding size

and complexity of software, its reliability is becoming an even more challenging issue.

Fortunately, most software artifacts are not potentially life threatening or a source of human

injury. This, however, has unfortunately has contributed to insufficient sensitivity towards risks

and reliability among developers. In the last two decades, more attention is being given to

developing and following good engineering practices to minimize software risks. This issue is

further elaborate in Section 6.2.

www.manaraa.com

67

In this section, we discussed how the software development process evolved from an individual’s

art to a large team’s engineering effort. However, some characteristics like knowledge intensive

nature of the work, much lesser dependence on physical sciences and constraints, inherent

invisibility, discrete abstractions, and complex interactions, etc., make it a significantly different

from all other forms of engineering. Hence, we posit that while many elements of traditional

model of engineering education are not in alignment with the requirements of software

development.

Section 3.2: Debugging as a Core Activity in Software Development
A software bug is an anomaly in behavior of running program [142a]. Detection and fixing of

bugs is an ongoing process in software development and evolution. Every phase of testing in

Software Development Life Cycle (SDLC) i.e. unit testing, integration testing, system testing

and customer testing is typically followed by bug fixing. According to Humphrey [371], more

than half a typical software organization’s effort is devoted to finding and fixing defects. Indeed,

such is the emphasis on debugging that many software companies test their prospective

employee with buggy code. Proficiency in debugging is integral to deep understanding of

software development. Though the possibility of bug introduction lies in every phase of Software

Development Life Cycle, but a majority of them can be traced to either design or implementation

issues. A significant amount of research has been and continues to carried out on debugging. In

March 2010, a word search on “debugging” in ACM Guide showed approximately 23,000

papers. Out of these, approximately 11,000 papers have been published since 2005. In no other

developmental activity including engineering, an exactly analogous activity does not play such a

central role.

IEEE Standard Classification for Software Anomalies [142a] provides comprehensive

methodology for classifying bugs in each phase of bug life cycle. It presents customizable

framework for software organizations which serves two objectives. First, it facilitates effective

bug tracking by enforcing bug classification in each phase of bug life cycle i.e. Recognition,

Investigation, Action and Disposition. Second, it provides with data of bug classification which

can be analyzed to identify problematic areas responsible for common bugs. Additionally, a

www.manaraa.com

68

reflective analysis of bug related data of project and/or release, can help in measuring impact of a

process change followed for a particular release or project.

Section 3.3: Process Centric System Development and Maintenance in

Software Engineering

The term ‘engineering’ in the context of software development refers to having a systems

approach to problem solving, and also following a disciplined process-centric/oriented

approach for assuring the quality of the deliverable software system, and their maintenance and

evolution throughout their life cycle. The traditional approach of engineering education does not

pay much attention to user interaction and evolution, and hence, is not completely suitable for

software.

The various aspects of the system development process mainly deals with human processes and

engineering management processes. Due to the absence of physical material, the software

maintenance activity is not about managing wear and tear. Instead, it is focused on learning

about the misunderstood and changing requirement, removing development errors, and

continued development. Consequently, it is imperative for software developers to develop the

process-centric system development approach as well as the competencies for software

maintenance and continuous evolution.

Section 3.4: Software as an Integral Part of Business, and Need for

Comprehension for Software Maintenance
The engineering approach to software development, coupled with continuous exponential

advancement in computer hardware technology, brought a higher level confidence among its

users, and they started to look at this integrated field as ‘information technology.’ Software has

now become an integral part of business processes of a large number of organizations. Today,

any development of business/application software must presume that the developed software

would go through repeated changes. To satisfy their clients by the quality of their service,

software professionals must be capable of comprehending the existing client software, and then

performing the required modifications/enhancements as per their evolving requirements.

www.manaraa.com

69

Often a good amount of very old program and/or open source code is re-used, and is blended

with new code in the enhanced and newer versions of software. A very large number of

developers are engaged in maintaining and evolving the work of other developers. Reuse-based

development methodologies are becoming more popular. Hence, a good familiarity with existing

components, open source, and the ability to comprehend programs are very important. This is

presently not at all addressed by computing educational curricula. Therefore, software

developers need to develop the ability to comprehend the software developed by others, and also

write software that can be easily comprehended by other developers. Increasing dependence on

large amounts of Free and Open Source Software (FOSS) makes it even more crucial.

Section 3.5: Role of Empathy and Social Sensitivity in Software

Development
Software development in many ways is all about people: users, customers, developers, and

managers [143]. All other engineering disciplines attempt to boost human performance by

building tools, programs, and systems for supporting physical processes, but on the contrast the

software engineers do so by supporting their cognitive processes.

User Empathy

Many artifacts and services created by software engineers offer a much higher level of cognitive,

social, and emotional engagement opportunities to users. Unlike all other engineers, software

developers do not spend much time building their systems, instead they spend more time trying

to figure out what the systems should do. The activity of software development is like ‘writing,’

where the real task is actually knowledge acquisition, construction, structuring, and

representation.

Software design solutions and approaches are often manifestations of the designer’s thinking

process, rather than the expressions of a physical phenomenon. Hence, an understanding of

people’s cognitive processes like how they think, how they plan, how they assess situations, how

they represent and structure information, how they decide, and other related mental processes is

not only helpful but often an essential requirement of their work. This makes their task of

www.manaraa.com

70

requirement elicitation much more complex. The analysts and designers often have to understand

the difference between what clients and users ask, want, and actually need. Designs that are

suitable for a context are not necessarily as suited for other contexts. Software developers need to

understand users’ requirements from multiple perspectives. Software projects usually require a

significantly higher level of ‘communication’ for customer interaction and support. Therefore the

analysis, design and architectural part of the software calls for an integrative balance of

structured as well as unstructured thinking. The implementation part is easier and mostly

depends upon structured thinking.

The main concern of software developers has been gradually shifting from making ‘inexpensive’

software to ‘quality’ software to ‘appropriate’ software. In order to create such software,

developers have to acquire the mental adaptability to clearly understand the nuances of

processes, and identify the automation possibilities in various application domains.

Consequently, they need to have not only an interest in the work of other human beings, but also

an ability to understand their experiences as well as beliefs.

Because of the people-centric nature of the activity, the software developers have to deal with

professional challenges related to intellectual property, security, privacy, anonymity, offensive

content, and cyber regulation, etc. It is crucial for software engineers to respect cultural

diversity, and appreciate the conflicts and complexities of the human mind. User empathy: seeing

things from users’ perspective, and aptitude for ‘narrative reasoning’ are essential for those

software engineers who analyze and design the software requirements specifications.

Group work

As compared to the other kinds of engineering industries, the software industry places a much

deeper level emphasis on group work. Large multi-locational, multi-cultural global teams

concurrently work in different parts of the world to meet the requirements of clients of varied

cultural backgrounds. The majority of an engineer’s time in the software industry is spent

working with other programmers. The nature of group work among software engineers is not

limited to process-centered coordination. Whitehead [144] observes that software engineering

projects require many software engineers to collaboratively create a large number of artefacts

www.manaraa.com

71

incorporating code, requirement specifications, architecture descriptions, design models, test

plans, etc. In the software industry, many tools have become popular for facilitating process-

centered coordination, ensuring mutual awareness, traceability and consistency, and also

collaborative creation of software development related artifacts [145].

Shared development environment, engagement with the team, constant feedback, reviews, and

continuous testing and integration are some of the hallmarks of software development methods

[146]. All this require a significant amount of group work. eXtreme Programming strongly relies

upon practices like daily meetings and pair programming. It uses the practice of pairing not just

for code development, but also for design, refactoring, as well as testing [147].

Thus, empathy and social sensitivity and are the core competencies required for development of

appropriate and quality software. Development of social sensitivity is not to be taken at the

periphery, but at the core of the software developers’ education program. Good exposure to

‘human and social sciences’ as well as arts, particularly literature, can help in this regard.

Engagement (comprehension, analysis, and so on) with well constructed literary narratives,

requires the person to imagine characters’ position and experiences. Hence, it can be a great help

in nurturing these abilities. These aspects are discussed further in Sections 4.4 and 6.3.

Section 3.6: Project Scoping and Estimation for Software Contract
Usually, the software projects are based on contracts between the clients and vendors of

software services. Earlier, in most of the on-shore projects, the clients were charged on the basis

of manpower engagements. The software industry is now ready to take up software contract on a

fixed-cost basis. Project scoping and estimation are the two most challenging tasks of the

software development process, which are not adequately covered by current computing

educational curricula.

Section 3.7: Learning New Domain and Knowledge Structuring in Software

Development
The software development processes essentially try to map the application domain

requirements to programming constructs. Application domain training and even certifications

www.manaraa.com

72

have become a common part of continuous training programs of software developers. Software

projects require a higher emphasis on abstraction, reflection, modeling, and information

organization of various distinct application domains. Therefore, the opportunity of inter-

disciplinary work is higher, and is further increasing. A deep understanding of various functions

in specific application domains is highly valued in the software engineering industry. The

software development education program needs to expose the students to diverse types of

domains, and also nurture the ability to learn nuances of newer domains.

Software as a Medium to Store Knowledge

Armour [148] argued that software is not a product, but the fifth medium to store knowledge

after DNA, brain, hardware (artifacts), and books. For storage, it represents the knowledge in

space and expresses the stored knowledge in space and time. He posited that all kind of human

knowledge is now being transcribed into software, because software has a wider range of

valuable storage and structuring characteristics as compared to all the previous medium: quite

persistent like books, update frequency is only slower than that of brain, intentionality (our

ability to change it deliberately) is higher than the hardware and books, ability to self-modify is

higher than DNA, hardware, and, books, and activeness (ability to affect the outside world) is

relatively unlimited.

He took the position that the difficult and time consuming part in software development is not

transcribing the already acquired knowledge into an active form, but acquiring and structuring

the knowledge with concern of completeness, consistency, and usability. He viewed software

development as a learning activity, rather than a production activity, and advocated that software

developers need more training in learning, and knowledge structuring mechanisms rather than in

software itself. Hence, exposure to disciplines like cognitive psychology that try to understand

human understanding and learning becomes much more relevant for software developers.

Section 3.8: Software Development Process for Ill-defined Problems
A very large number of software developers face new problems every day. As application

domain requirements are embedded in real experiences, it is usually very difficult to map and

concisely describe it as a software problem. Therefore, real-life software problems are mostly ill-

www.manaraa.com

73

defined problems. Often multiple iterations and representations are required to define the

problems. Projects usually require at least an incremental innovation, and significant amount of

development. Further, usually there are no unique best solutions, only multiple acceptable

solutions to partially solve the real-life problems. Software developers need to explore new

opportunities, identify hidden requirements, generate new concepts, incorporate novel elements,

innovate new user interfaces, functional and architectural designs, reuse components, uncover

hidden faults, derive new use, and do many other such tasks. Accordingly, there is higher focus

and challenge on integration, continued evolution, reuse, creativity, and flexibility. In Section

4.5, we shall further elaborate upon ill-defined problem solving.

This characteristic of software problems, and the development process, also contributes to make

it a multi-dimensional activity. Agile methods are increasingly being accepted to develop

software primarily to address this aspect of software problems. Reflective thinking, multi-

perspective thinking, critical thinking, creative thinking, and innovative problem solving

significantly contribute in transforming complex ill-defined problems into simpler well-defined

problems.

This requires them to be not just skilled, but also reflective and creative. Familiarity with a

variety of creative works can help in enhancing individuals’ creativity. Hence, reflective

engagements with the discipline of aesthetics, arts, literature, and design can play a significant

role in nurturing reflective thinking and creativity of software engineers. Reflective thinking is

discussed later in Section 5.2

Problem-centric learning methods have been found to be more effective for developing the

competence to solve ill-defined problems [156]. Further, software problems are not only ill

defined, they are also socio-technical soft problems (discussed in Section 6.3) that require a soft

systems approach. Consequently a systems-level perspective becomes very important for

software developers.

www.manaraa.com

74

Section 3.9: Empirical and Qualitative approaches in Software Development

Research
Software engineering in many ways is all about people: users, customers, developers, and

managers [143]. Unlike many other disciplines of engineering, for their regular day-to-day

practice, often software engineers have to collect and analyze qualitative data. They collect such

data through brainstorming, interviews, conceptual modeling, and observation for activities like

requirement engineering, project planning, use case and task analysis, etc. Usage logs,

documentation, static and dynamic analysis, bug tracks, etc. are used for activities of program

comprehension, testing, reverse engineering, etc., [149].

Further, researchers in software engineering often investigate extremely complex processes in

software developments involving a large number of professionals who use highly complex skills.

The questions related to cognitive, behavioral, and social aspects of developers and other

stakeholders, are also of immense importance and interest to software engineering researchers.

The analytical and quantitative research paradigm, which is otherwise well accepted in other

disciplines of engineering, is not sufficient for investigating real-life issues involving humans as

well as their interactions within themselves and also with technology [150].

Many a times, experimentation is not even possible, and qualitative data is the main, and

sometimes, the only source of information. Hence, the researchers in many computing areas,

e.g., information systems, software engineering, human computer interaction, and entertainment

computing are increasingly relying upon the empirical and qualitative research methods like case

studies, action research, survey, etc. These research methods are already very popular in fields

like business, social work, psychology, sociology, political sciences, education, information

systems, urban planning, architecture, and so on. Like information systems, urban planning, and

architecture researchers, the software engineering research community mostly uses these

methods with a pragmatic and result-oriented view, rather than from a philosophical stand.

Consequently, an understanding of these methods is becoming increasingly important for

software engineering researchers, as well as practitioners.

www.manaraa.com

75

Acceptable data sources and research methods characterize different disciplines. The differences

in the two cultures of natural science and humanistic research were highlighted by Snow in 1959

[151]. Qualitative data and methods are not used in science and engineering disciplines. They

confine themselves to analytical and quantitative approaches. Qualitative approaches are used in

social sciences. However, software engineering practitioners as well as researchers use

analytical, quantitative, and also qualitative approaches, and give the opportunity to integrate

these two cultures. A heavy dependence on qualitative data and increasing currency of

qualitative methods among software engineering practitioners as well as researchers is a

distinction that further distinguishes the field from other disciplines of engineering. This brings it

relatively closer to disciplines like architecture and information systems. We include the

quantitative as well as qualitative data analysis techniques in our proposed framework of

pedagogical engagements in software development education (Table 8.6).

Section 3.10: Software Development: Whole-Brain Activity
Diverse activities of software development are not confined to any single type of thinking style.

Diverse types of left- as well as right-brain thinking skills are integrated to create good software.

Abstraction, logic, reduction, critical thinking, etc., are considered as left-brain activities whereas

concretization, intuition, creativity, holistic thinking, etc., constitute right-brain thinking. Only

interesting persons can develop interesting software. Usually software programs are complex

systems. They are executed on computing environments that are examples of complex systems.

Software is usually a critical subsystem of a larger technical and/or organizational/social system.

Further, the development life cycle of software is another example of a very complex social

system. Hence, like all long-term system development activities, software development also

requires several cycles of left- and right-brain activities: abstraction and concretization, logic

and intuition, critical thinking and creativity, reflection and experimentation, micro-scoping and

macro-scoping, as well as reduction and holistic thinking respectively. Software development is

a whole-brain activity.

The whole process requires an integration of the ability of abstract conceptualization, and an

active experimentation with concrete experiences and reflective observation [152]. Software

development leverages developers’ strengths in varied types of intelligences as identified in

www.manaraa.com

76

Sternberg’s Theory of Triarchic Intelligence [153], Herrmann’s Four Quadrant Model of the

Brain [154] and also Gardner’s Multiple Intelligence Theory [155].

In addition, to the ability to solve ill-defined problems, it is imperative to develop diverse types

of thinking skills, comprising whole-brain activity, among software professionals. Our proposed

framework of pedagogical engagements in software development education, discussed in Section

8.3, aims to offer such whole brain engagement.

Section 3.11: Revised Taxonomy of Core Competencies for Software

Developers
Integrating all our earlier theoretical and empirical studies about core competencies,

recommendations of various organizations as well as researchers, the first version of our earlier

taxonomy, and our latest understanding of the distinguishing features of the software

development activity, we have further revised our list of desired core competencies for software

developers. With reference to the specific context of software development, we created a

comprehensive set of thirty-three competencies (Appendix A2). It subsumed and expanded the

thirty-five competencies of Table A3.2 (Appendix A3). Some additional very important

competencies were also included in this comprehensive set of Appendix A2. These included -

curiosity, domain competence, abstraction, algorithmic thinking, knowledge of physical and

natural world and intercultural knowledge, reflection, self acceptance and self regulation, and

workload management.

Through further grouping based on logical closeness, hierarchy, and/or dependency, we have

further reduced the set from thirty-three to twelve core competencies (Table 3.1) each with

extended meanings. The competencies in the comprehensive set are subsumed within one or

more of the revised set of twelve competencies. We have dropped ‘wealth creation skills’ from

our revised core set, as this was categorized in the lowest ranked category of competencies based

on the rank given by our respondents, and it also does not integrate well within our final twelve

competencies.

www.manaraa.com

77

Table 3.1: Core competencies for software developers

Twelve core competencies
1. Technical competence
2. Computational thinking competence
3. Domain competence
4. Communication competence
5. Complex problem solving competence
6. Attention to details
7. Critical and reflective thinking
8. Creativity and innovation
9. Curiosity
10. Decision making perspective
11. Systems-level perspective
12. Intrinsic motivation to create/improve artifacts

Annexure A4 gives the mapping of thirty-five competencies of Table A3.2 (Appendix A3) with

this reduced inclusive set of Table 3.1. The popular beliefs about the competencies, and also

curriculum, place maximum importance on technical, communication competencies, and/or

problem solving competencies. This table very strongly brings out the utmost importance of the

development of a systems-level perspective among software developers. Seventeen out of the

thirty-five of our earlier identified competencies relate to it. Ten out of thirty-five competencies

relate to reflective thinking and nine relate to critical thinking. Eight out of thirty-five

competencies relate to decision making perspective. Seven competencies relate to

communication competence and also intrinsic motivation to create/improve artifacts. Six

competencies relate to computational thinking, curiosity, and domain competence. Attention to

detail and Creativity and innovation relate with five competencies. All these are emerging as

important goals for education programs for future software developers.

These results are significantly different from all earlier results, including our own. Surely, like

other engineers, problem solving skills are important for software developers (ref: Table 2.1).

However the nature of the problems they are required to solve are significantly different from

other engineering disciplines. Hence, their problem solving skills needs to be driven and

conditioned by a systems-level perspective, critical and reflective thinking, decision making

perspective, curiosity, intrinsic motivation to create/improve artifacts, curiosity, attention to

detail, and creativity and innovation.

www.manaraa.com

78

Based on several models of organizing the competencies and models related of learning and

human development, we have also revised the structure of our taxonomy of core competencies.

We posit that the three categories of our earlier taxonomy, given in Table 2.5, have

interdependence and are not orthogonal. Consequently, in our revised taxonomy, we do not

consider these three categories of competencies as orthogonal dimensions. As there is an inter-

dependence of these categories, we model these competencies as a three-tier taxonomy of core

competencies. We have also classified the revised set of twelve core competencies into three-tier

taxonomy, as given in Table 3.2. It includes five basic competencies, three competency driver-

habits of mind, and four competency conditioning attitudes and perspectives. This is also

reproduced as Table 8.1. The arrows in this table indicate the direction of influence.

Table 3.2: Three-tier taxonomy of core competencies for software developers

Basic Competencies

Competency Driver-Habits of

Mind
Competency Conditioning
Attitudes and Perspectives

1. Technical competence
2. Computational thinking

competence
3. Domain competence
4. Communication competence
5. Complex problem solving

competence

6. Attention to details
7. Critical and reflective thinking
8. Creativity and innovation

9. Curiosity
10. Decision making perspective
11. Systems-level perspective
12. Intrinsic motivation to

create/improve artifacts

With reference to our three-tier taxonomy given in Table 3.2, the basic competencies are

necessary for software developers to contribute to the development of useful and quality

software. The highly pervasive core competency driver-habits of mind are necessary to

continuously develop, refine, and enhance the basic five competencies. These in turn also help in

developing even more useful and high quality software. The most pervasive and enduring

competency conditioning attitudes and perspectives create necessary conditions for creating

meaningful software and wiser professional software developers. Thus, these competency

conditioning attitudes and perspectives guide and regulate the application of competency driver-

habits of mind. This in turn helps to create meaningful, appropriate, ethical, and very high

quality software. The competency driver-habits of mind are also necessary to continuously

develop, refine, and evolve the highest level competency conditioning attitudes and perspectives.

www.manaraa.com

79

Basic Competencies

The basic competence for software developers includes skill, rules, and knowledge related to

various technical activities of software development, computational thinking, application

domains, communication, and general purpose complex ill-defined problem solving. These

contribute to the development of useful and quality software.

Technical competence is manifested in the practical as well as intuitive understanding required

for the executing various technical tasks related to software development. Computational

thinking as an approach to problem solving, creating services, interfaces, and behaviors, and also

understanding human behavior. Understanding layers of data and process abstraction forms the

core for computational thinking.

Since, application domains of software include all kinds of domains, it is imperative for software

developers to understand the concerns, focus, aim, knowledge structures, and thinking

approaches of application domains. The communication competence for software developers is

significantly different from the communication competence for sales professionals. It is essential

for understanding the needs of the consumers, the difficulties of their clients and co-developers.

It is required for knowledge acquisition as well as knowledge sharing.

Software development is not about finding answers to well defined problems but solving

complex ill-defined problems. Performance on well-defined problems is not correlated with

performance on ill-defined problems. Hence, education processes need to give special emphasis

on this.

Competency Driver-Habits of Mind

Software development is more of a cognitive activity rather than a construction activity. With

respect to the multifaceted activities of software development, three mental habits: attention to

details, critical and reflective thinking, and creativity and innovation, have been identified as the

most important for software developers. These habits contribute to continuously develop, refine,

and enhance the basic competencies and create more useful and high quality software.

www.manaraa.com

80

Inconspicuous nature of software and the necessity of thoroughness, long attention spans,

consistency, etc., make ‘attention to detail,’ the most essential mental habit for soft developers.

Critical thinking is necessary for controlling errors in logical and analytical reasoning at various

stages of software development. Software development is essential an evolutionary activity that

requires continuous reflection about the product as well as processes to uncover and alter the

limitations of both. Much of software is increasingly becoming concerned about user’s

experience.

Creative people are needed to design of new innovative software products for users and new

procedures and tools for software developers, as well as management of software development.

Development of these habits has to be put as a core learning outcome of all courses.

Competency Conditioning Attitudes and Perspectives

Attitudes and perspectives affect a professional’s motivation, expectation, and also ability to

practice. Curiosity, decision making perspective, systems-level perspective, and intrinsic

motivation to create/improve artifacts are especially important with reference to the requirements

of the profession of software development. These attitudes and perspectives guide and regulate

the application of competency driver-habits of mind to create meaningful, appropriate, ethical,

and very high quality software.

Curiosity is recognized as a source of critical thinking and also creativity. Software developers

are required to have a high level of curiosity to learn ‘how things work,’ ‘how to create things

that work,’ and also find out ‘what may be consequences and risks.’ Today’s software developers

need to be deeply interested in learning not only about the power of information and software

technology, but also needs and even possibilities of human beings.

Decision making is about choosing intelligently among less than perfect possibilities. The

decision making process requires software teams to blend short term as well as long term

perspectives. Long term perspective focuses on sustainability that includes concerns for stability,

efficiency, and scalability.

www.manaraa.com

81

Systems thinking is seeing wholeness, seeing interrelationships rather than individual things.

Software developers use systems to develop systems for supporting systems. Many software

systems are socio-technical systems and the software development systems are essentially social

systems.

Intrinsically motivated state has been found to more conducive to creativity. Hence, computing

students’ intrinsic motivation for creativity needs to be enhanced for creating conditions for self

actualization through creation.

In the next three chapters we discuss the meaning and relevance of these twelve competencies in

the context of software development and the education of software developers.

www.manaraa.com

82

CHAPTER 4: SOFTWARE DEVELOPERS’ EDUCATION FOR

DEVELOPMENT OF BASIC COMPETENCIES

BusinessDictionary.com defines competence as “knowledge of, and skill in the exercise of,

practices required for successful accomplishment of a business, job, or task.” Competence is

manifested as performance. In 1980’s Rasmussen, Reason, and Norman elaborated upon a three

level hierarchy of human performance: skill based, rule based, and knowledge based. As per

this model, the lowest level of human performance is skill-based at which the behavior is

controlled by a stored sequence of action in space and time. Expert programmers can create low

level programming constructs without conscious engagement, whereas novices have to think

about such compositions [157]. The expert programmers can make skill-based errors in routine

actions because of intrinsic factors of inattention or over-attention. The middle level of human

performance is rule-based at which the behavior is controlled by stored if-then rules. The highest

level of human performance is knowledge-based at which the behavior is controlled by

deliberate logical and analytical reasoning. This behavior is invoked by beginners who start

performing a task or by experienced persons who face a novel situation. The errors at this level occur

either because of resource limitation of conscious mind or incomplete/incorrect knowledge.

For developing software, the developers have to engage themselves at all these three levels with

respect to following five basic competency domains.

1. Technical Competence

2. Computational thinking competence

3. Domain Competence

4. Communication Competence

5. Complex Problem Solving Competence

Software developers’ performance is result of integration of skills-based aspects with rule-based

and knowledge-based reasoning. Practice sharpens skills-based aspects of their professional

tasks. Rich experiences with varied cases enrich their rule-based reasoning. Knowledge-based

reasoning requires critical and reflective thinking. Under the enabling conditions created by

www.manaraa.com

83

‘competency conditioning attitudes and perceptions,’ software developers use their ‘competency

driver - habits of mind’ to acquire, integrate, apply, refine, and extend their competence, i.e.,

skill, rules, and knowledge in all these five competency domains.

Section 4.1: Software Developers’ Education for Development of Technical

Competence

Technical competence of professionals is manifested in the practical as well as intuitive

understanding required for the executing various technical tasks of a profession. Mosby's dental

dictionary defines technical competence for dental care professional as “the ability of the

practitioner, during the treatment phase of dental care and with respect to those procedures

combining psychomotor and cognitive skills, consistently to provide services at a professionally

acceptable level.” A professional’s technical competence requires a coherent and integrated

understanding of factual, conceptual, and procedural knowledge in the subject area. It needs the

ability to use tools, techniques, procedures, best practices, and standards to solve problems.

Further, it requires an intuitive understanding of what is technically feasible, scalable, and

reusable.

Engineering and design professionals need to understand the current state of the art, and

emerging technologies. Further, they need to be able to use this understanding to assess

tractability of the problems [158]. They need to have the patience and wisdom to consider a

restricted subset of the problems, till the technology advances to a level where a solution of the

original unconstrained problem can be attempted. As experience and technology matures, the

focus shift shifts from short term goals to higher long term goals which expand to encompass an

entire class of problems. It is imperative for them to have a good understanding of the limitations

and risks associated with each piece of work.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘technical/domain competency’ and ‘analytical/design skills’ an average

rating of 2.95 and 3.0 respectively on a scale of 0-4. A majority of these responses, 60% and

63% respectively recommended these to be critical or very important competencies.

www.manaraa.com

84

With reference to Appendices A2 and A3, Technical competence of software developers also

includes the following:

1. Ability to apply knowledge

2. Technical competence to solve the software solvable problems using tools and

techniques

3. Use of open source software

4. Knowledge of industry’s best practices and standards

5. Appreciation of what is technically feasible

6. Ability to identify the risk level of each piece of work

7. Design skills

8. Numerical ability

Curriculum designers continuously face and address the challenge of identifying the required

technical competencies suitable for their respective industries. However, often this process gets

disengaged from the real continuously evolving industrial requirements. With reference to

professional courses like engineering, it is critical to continuously collect required inputs from

relevant industry and update the curriculum. The computing industry is evolving faster than the

academic discipline of computing. There is a continuous complaint from the industry about

severe shortage of well prepared graduates. The continuously evolving work profile of

computing engineers is not appropriately reflected in the educational programs. Most of large

software companies have their own education wings to train and retrain their developers.

Typically large companies have mandatory technical training for their staff every year. The

training programs are focused on several aspects like core technologies, development

methodologies, project management, etc.

Based on a long industry-academia consultative process, SWEBOK [68] provided an excellent

documentation of required technical competencies that software engineers with four years of

experience should have. The SWEBOK report gives details about the ten knowledge areas

related to software engineering: software requirements, design, construction, testing,

maintenance, configuration management, engineering management, engineering process, tools

and methods, and quality. With reference to different topics in these areas, Appendix D of the

www.manaraa.com

85

SWEBOK report specifies the desired level of competence out of the six levels as Bloom’s

taxonomy: Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation.

Important Technical Activities in Software Development

We have attempted to further understand the full spectrum of required technical competencies

from the perspective of real technical work profiles in the software industry. We first catalogued

the various technical and technically oriented activities through a consultative process. Sixteen

professional engineers in the software industry with high quality and rich industry experience as

well as strong academic background were consulted. Collectively, these experts have a rich

work experience of over 330 man-years in various activities of software development. We have

grouped various technical activities under seven major categories. Appendix A5 catalogues all

these technical and technically oriented activities related to software development activities.

These categories relate to planning, design, realization, evaluation, and client interface activities.

Our classification also includes two categories of ubiquitous and over-arching activities.

Planning activities relate to project and risk planning. The design related activities encompass

diverse design activities at various stages and multiple levels. The design activities are followed

by realization activities. Realization refers to the class of activities that relate to implementation

and maintenance. Evaluation activities relate to selection and evaluation of tools, technology,

products, and process. Many activities require intense interfacing with the client. These client

interface activities relate to requirements and support.

Some activities are embedded within almost every function. These ubiquitous activities include

process support activities that apply across all phases of a project. The activities in

abovementioned six categories need the support of certain overarching activities that are apples

companywide across the projects.

Based on this catalogue of activities, we administered a survey among another group of software

developers. Fifty-seven software professionals responded to our survey. About 14% of these

experts have more than fifteen years of experience in software development, 11% have worked

for more than 10 years, 42% have more than five years experience, and 21% have more than two

www.manaraa.com

86

years of work experience. They work in companies like IBM, Oracle, Cadence, EBSCO, TCS,

HCL, Wipro, Mahindra Satyam, Bloomberg, LGSoft, Samsung, Deloitte Consulting, and CRIS,

etc. The views of our respondents on the most important activities that must be included in the

main goals for new curriculum for the future generation of software developers are given in

Table 4.1.
Table 4.1: Most important activities that must be included in the main goals

for a new software curriculum
1. Algorithm/Computational Procedure/Component and Interface Design (79% respondents)
2. Application/Product/System Design/Prototyping (75% respondents)
3. Product/Requirement Definition and Specification/Requirement Engineering/Visualization/Consulting (75%

respondents)
4. Code Analysis, Program Comprehension, Re-documentation (68% respondents)
5. Innovation and research (66% respondents)
6. Application, Component Development/System Integration (65% respondents)
7. Group work, people management, and leadership (65% respondents)
8. Estimation and Costing, Project Scheduling (63% respondents)
9. Product/Process Quality Assurance and Control (60% respondents)
10. Validation and Verification (Testing) (58% respondents chose)
11. Technical Documentation, Presenting Ideas and Insights (54% respondents)
12. Test Design (52% respondents)
13. User Interface Design (47% respondents)
14. User Acceptance, End-user Documentation, Deployment and Roll-out, Customer support (45% respondents)
15. Security Architecture Design, Architecting, Component Selection (42% respondents)
16. Project Monitoring and Control (40% respondents)
17. Tools and Technology Selection and Evaluation (40% respondents)
18. Usability/Value/Impact Analysis (39% respondents)
19. Resource Planning and Management, Staffing and Team Development (36% respondents)
20. Risk Planning and Mitigation (36% respondents)
21. Build and Release, Configuration Management (36% respondents)

Many activities of Appendix A5 received the support of less than 35% professionals. We have not

included such activities in Table 4.1. This list is part of our proposed framework of pedagogical

engagements in software development education (Table 8.3, first column).

Pedagogical Perspective

In order to perform these activities, software developers need to have an integrated

understanding that hardware and software are two extreme ends of the possible solution space,

with the possibility of varying levels of interaction and exploitation between two. The correct

identification of the system/environment boundary to define the system/environment interface is

crucial to the ability to successfully define, design, and develop a functional system. This often

requires a tradeoff in decomposition and allocation of functionality to hardware and software

www.manaraa.com

87

sub-systems. The need to define interfaces early is critical in order to support modularity, multi-

team development, and testability.

There is a distinction between a hierarchical decomposition for project management vis-à-vis

decomposition for driving development. The managers and the developers need to understand

this distinction, and also the corresponding mapping between the two views. They also need

clarity about the system-environment boundary, interface, system metrics, constraints, and

acceptance criteria.

Given the drastic reduction in the time to market a product, it is essential that the product is

brought to the market the earliest. This forces a designer/developer to exploit all means possible,

including third-party tools, libraries, and sub-systems. Today, software development does not

only require logic building ability, but also hugely depends upon system/platform knowledge.

Efficient development requires inclusion of available in-house source code, commercial off the

shelf components (COTS), and also open source software. Hence, good awareness and ability to

select, include, and modify, the available software components and subsystems into new systems

are now imperative for software developers.

They also need to have theoretical, practical, and intuitive understanding of the entire

programming stack that includes hardware (CPU, memory, cache, interrupts, microcode),

operating system APIs, binary code, assembly, static and dynamic linking, libraries, compilation,

interpretation, garbage collection, heap, stack, memory addressing, processes and threads,

understanding of space-time tradeoff, and data structures and algorithms.

They must have hands-on experience with at least two different instances of each of the

following: architectures, operating systems, programming languages, programming paradigms,

compilation systems, DBMSs, glue/scripting languages, IDEs and productivity tools like

profiling, testing, CASE tools, version control systems, etc.

They need to learn code optimization, performance tuning, defensive programming, assertions,

and mixed paradigm programming. The curriculum should address code organization within and

www.manaraa.com

88

across files, source code tree organization, source code version control, build automation,

deployment, and roll out. Creating awareness and appreciation of upcoming technologies and

standards is strongly recommended as an agenda for curriculum designers for software

development education.

Pervasive Knowledge Areas

Today, web and multimedia (including graphics) nearly have omnipresence in computing

systems. Hence, the students must learn multimedia and graphics programming, including use of

special APIs for the purpose. All computing students must be given some practice with web-

database architecture and programming.

Embedded systems place special requirements on interfacing peripheral and communication

protocols. Exposure to peripheral interfacing and communication protocols is highly

recommended. Security has emerged as a big concern for users and a challenge for computing

professionals. The education program must give good experience with secure programming and

security APIs. Use of mobile phones as a computing platform is growing exponentially. Students

must be exposed to developing software for at least one such platform.

Use of open source for developing software has become very popular in recent years. Therefore

students must be comfortable with identifying, evaluating, modifying, and integrating open

source for their work.

In Section 9.2.1, we discuss our experience in infusing some of these elements in regular

computing courses.

Need for higher focus on debugging
Many characteristics like significant work in new development in every project, discrete

abstractions, complex interactions among a very large of components, inherent invisibility, large

groups of developers, continuous evolution, etc., make software highly vulnerable to errors.

Software errors (bugs) result because of lack of attention and also because of misconceptions

related to programming, operating systems, compiler, and tools, libraries, etc. Software errors

www.manaraa.com

89

can be reduced by developing proper technical competence. The students need to learn to avoid,

anticipate, identify, track, and remove bugs that often arise due to their misconceptions in their

as well as others’ source code.

Debugging activity is by and large ignored by curriculum. SWEBOK [68] refers to debugging in

a casual manner, and does not include it at all in its appendix D of specific topics. Debugging has

been more seriously attention in interim revision of CS2001 [159]. We take a position that

computing curriculum need to address this issue more seriously. Students need to be well versed

in the use of tools and techniques for identifying and rectifying errors. The students also need to

be exposed to common bugs, their consequences, and remedies. The computing curriculum and

education programs need to give much more emphasis on debugging. In our proposed

framework of pedagogical engagements for software development education, we include this

aspect in Section 8.1. They need to learn to use debugging tools for interactive debugging, static

analysis, and dynamic analysis.

Debugging activity requires lot of analytical effort. Metzger draws an analogy between

programmer and safety analysts who seek to prevent future problems by doing a root-cause

analysis of significant events, e.g., accidents, near misses and potential problems. For effective

debugging, he suggests the usage of root-cause analysis techniques like ‘cause and event

charting’ and ‘faulty tree analysis.’ We include these as part of proposed framework in Table

8.6.

Metzger observes that design errors may occur because of errors in data-structure, algorithm, or

interface specifications related to user-interface, software-interface, or hardware-interface

[157]. Annexure AN4 gives a summary of his observations.

We have created a taxonomy of software bugs based on misconceptions related to programming,

operating systems, compiler, and software architecture [159a]. Our taxonomy of software bugs

is given in Appendix A6. We propose to enrich the courses with sufficient exposure to some of

these bugs from each category.

www.manaraa.com

90

Education program needs to give them opportunities to acquire, apply, extend, refine, and

integrate their technical competence. Technical competence includes skill, rules, knowledge

related to various technical activities as discussed in this section. Much of the routine behavior

of experienced programmers is rule-based. These rules are often implicit and unarticulated by

them. They use their rules to organize things into patterns [160]. Experienced software developers

encode their rules in such a way that enables them to apply their rules with much lesser effort

than a novice for solving the same problem. However, their rules depend upon their expertise,

and may not cover all cases.

Metzger [157] catalogues the software errors because of rule-based reasoning into two broad

categories: (i) misapplication of good rules occur when a time-tested rule is applied by

overlooking the additional conditions that warrant another rule, (ii) application of a bad rule

occurs when conditions are wrongly represented, or ineffective/inefficient action is chosen. More

details of these are discussed in Annexure AN4. Hence, it is necessary for them to understand

the scope and limitations of their rules.

Traditional methods of teaching fail to take such a comprehensive perspective of technical

competence. In our recently concluded survey “Software developers - (How) Did your college

help you in your development?” (Table A10.2 (i) part-I, Appendix A10), huge proportion of the

respondents felt that as compared to all other academic engagements, their projects did much

better to develop their design skills (92% respondents felt so), implementation skills (90%),

debugging skills (84%), technical competence (76%), and analytical skills (75%). Laboratory

work (70%), knowledge transmission oriented lectures (54%), and homework and tutorials

(48%) were considered as effective for developing technical competence. Laboratory work and

industrial training (84% and 49% respectively) were found to effective for implementation skills.

Laboratory work, industrial training, and mentoring of juniors (86%, 35%, and 31% respectively)

were found to effective for debugging skills. Laboratory work (63%), research literature survey

(58%), thinking oriented lectures (54%), homework and tutorial assignments (42%), discussion

with other students (38%), and industrial training (33%) nurtured the analytical skills.

Laboratory work (61%), industrial training (49%), and thinking oriented lectures (47%) were

found to be the main contributor for development of design skills. Traditional knowledge

www.manaraa.com

91

transmission oriented lectures and discussions with others were found to be least effective for

development of analytical skills whereas written examinations were found to be least effective for

development of design skills.

Section 4.2: Software Developers’ Education for Development of

Computational Thinking
Traditionally, software was regarded as belonging to the domain of ‘applied mathematics.’ Many

experts view software development as a special type of mathematical problem solving activity

which requires the developers to use various mathematical thinking processes like step-by-step

approach to decomposition, abstraction, pattern recognition, spatial and temporal modeling,

deduction and induction, and synthesis.

In his much debated talk called ‘On the cruelty of really teaching computing science,’ in 1989,

Dijkastra emphasized on formalism [64]. He further identified the following two radical

novelties of programming: (i) conceptual hierarchies deeper than a single mind ever needed to

face before, and (ii) in a discrete world small changes do not imply small effect. In 1991, the

joint ACM/IEEE-CS curriculum task force [62] identified twelve unifying and pervasive

concepts of computing - binding, complexity of large programs, conceptual and formal models,

consistency and completeness, efficiency, evolution, levels of abstraction, ordering in space,

ordering in time, reuse, security, and trade-off and consequences.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned abstraction thinking and algorithmic thinking an average rating of 2.9

and 2.8 respectively on a scale of 0-4. An overwhelming majority of these respondents (70%)

recommended these to be critical or very important competencies with respect to the

requirements of software developers' multi-faceted professional activities.

With reference to Appendices A2 and A3, computational thinking of software developers also

relates to the following:

1 Abstraction and transition between levels of abstraction, representation skills

spatial and temporal modeling skills, structuring skills, and theorizing

www.manaraa.com

92

2 Algorithmic and structured thinking. Logic, pattern matching, logical what-if

analysis, problem decomposition and synthesis, etc.

3 Analytical skills

4 Attention to detail: breadth, depth, clarity, accuracy, preciseness, specificity,

relevance, significance, completeness, consistency

5 Problem solving skills

6 Critical thinking

7 Design skills

8 Creativity and idea initiation

Algorithmic problem solving activities

Expert programmers think and develop algorithms rather than think in specific language syntax

[179]. In 1979, Kowalski postulated that an algorithm consists of logical and control components

[180]. The logic components define the knowledge that is needed to solve the problem. The

control component determines how to use and sequence such knowledge to do so. Muller and

Haberman [181] have enumerated algorithmic problem solving activities.

Problem comprehension is the first activity that involves reformulation of the problem statement

in terms of data items, initial state, goal, assumptions, constraints, and scale. This is the most

critical thinking stage for designing algorithms. For five consecutive years (2002-07), in data

structure and algorithm courses, we emphasized on this aspect by engaging students to generate

examples of increasing complexity in terms of scale, diversity, assumptions, goals, initial state,

constraints, tolerance, and exceptions. The students were required to first develop the algorithms

for the simplest possible case of each problem. With each additional case of increasing

complexity of the problem, they were required to identify the limitations of the existing solution,

and then modify the same to meet more complex demands. A comparison of problem solving

strategies of best performing students of one such class with the best performers of a later class

where the faculty used a more traditional textbook oriented approach, showed that the students of

the first group showed a much higher level of sophistication in their approach to solve

algorithmic problems.

www.manaraa.com

93

The second activity of decomposition is the identification, naming, and listing of subtasks and

data items with attributes, objectives, and roles. Analogical reasoning, generalization and

abstraction are used for identifying similarities between problems, and extracting prototypes of

problems from analogical problems in different contexts. This helps in identifying a problem's

prototype for its categorization.

This is followed by the problem's structure identification, i.e., composition, identifying the

relation between subtasks, data items, state transitions, data flow, and distinguishing between

logic and control. Schematizing a problem's structure using diagrams helps a great deal in this

process. Flow chart has great limitations in terms of its inability to show data or states.

A new diagramming technique called ‘concept mapping’ (Appendix A19) has been developed

and used in various classes as mentioned above. The students who were exposed to concept

mapping in their introductory data structures course continued to use it, or a self-modified

notation, even after graduating. Based on this analysis, this notation has been re-introduced in an

introductory data structure course, and the concerned faculties as well as students are finding it

useful.

Finally, algorithm thinking requires evaluation and appreciation of efficiency and elegancy,

reflecting on problem-solving processes and strategies to draw conclusions for the future, and

verbalization of ideas and differentiating between an idea and its implementation.

Lethbridge’s Study on Most Important and Influential Topics

Lethbridge et al [46-48] surveyed approximately 200 practicing software engineers and

managers. Their report shows that five out of the thirteen subject categories did not contribute

even a single topic to the list of twenty-five most important and influential topics, while these

categories were felt by the respondents to be over emphasized in the curriculum. These subject

categories are theoretical computer science, mathematical topics in computer science, other

hardware topics, general mathematics, and basic science.

www.manaraa.com

94

Computational Thinking: Beyond Traditional College-level Mathematics and Algorithmic

Thinking

In 2009, we initiated an online discussion among the online community of software professionals

on LinkedIn. Nearly 30% respondents felt that proficiency in mathematics indicates a high

capability to handle abstractions, the ability to go into detail, ability to plan and approach a

problem in a methodical/structured fashion. On the contrary, the other majority suggested that

this relationship between mathematics and software has been exaggerated, and gave reasons like

mathematics education does not necessarily enhance lateral thinking for problem solving.

However, many respondents grounded software development competency into puzzle-solving

ability.

Wing [183] viewed computational thinking as an approach to problem solving, system

designing, and also understanding human behavior, by drawing on the concepts fundamental to

computer science. Isbell et al [182] shift the emphasis from algorithm to interaction and suggest

that computing problem solving is not so much about finding answers but more about creating

services, interfaces, and behaviors. Fant [53] argues that, unlike mathematics, computer science

is more concerned with issues related to creation and actualization of process expressions.

In our experience, students without good background in school level mathematics, especially in

topics like algebra, geometry, trigonometry, functions, etc., have been found to perform poorly in

software development oriented courses. However, performance in college level mathematics

courses like higher calculus, differential equations, and linear algebra, etc., seem to have no

correlation with the performance in software development skills of college level engineering

students. There are many exceptional programmers whose performance in college level

mathematics has been poor, and there are many poor programmers with very good performance

in college level mathematics.

According to Wing [183], computational thinking is about producing executable descriptions,

i.e. automable or automatically manipulatable models. She strongly recommended that

computing faculty teach courses on computational thinking which includes thinking in terms of:

constraints, abstraction, decomposition, heuristics, algorithms, recursion, concurrency,

www.manaraa.com

95

synchronization, efficiency, elegance, tradeoffs between processing and storage, caching,

interpreting code as data and data as code, and prevention, detection and recovery from worst-

case scenarios. Two relevant intuitions for computing are the concepts of having something and

being in a state [184]. In 1975, the chief designer of many programming languages, e.g., Pascal

and Modula, Nicklaus Wirth, wrote a book titled, ‘Algorithms + Data Structures = Programs.’

There is a need to review the college level mathematics content from this perspective. Whenever

mathematics courses succeed in engaging students in representing real-life problems into

mathematical or computable problems, and then solving those problems using mathematical

tools, they provide direct help in enhancing the analytical thinking skills required for software

development. Courses on puzzle-solving and mathematical modeling have a higher potential to

make such direct contribution. We include this aspect in our propose framework of pedagogical

engagements (Table 8.6). In 1999, SEI- CMU published a report to define the discipline of

software Engineering [67]. The mathematics requirements included ‘mathematical logic and

proof systems,’ ‘discrete mathematical structures,’ ‘formal systems,’ ‘combinatorics,’ and

‘probability and statistics.’

Isbell et al [182] also take a position that though computing overlaps with various disciplines like

mathematics, science, engineering, arts, humanities, and social sciences, it is neither of these

and is a discipline in itself that requires a distinguished kind of mindset which they term

computationalist thinking. They posit that the equivalence of model, language and machine is

the key idea of computing. According to them, computing marries the representations of some

dynamic domain and dynamic machine to provide theoretic, empirical, or practical

understanding of domain or machine.

Computational thinking requires thinking in terms of data attributes, data flow, relationships,

and state transitions. It also involves thinking about system-environment boundary, interface,

system metrics, scale, sequence flows, transactions, composition, exception handling, testability,

evolution, and documentation. Today, user interaction has become equally important. Isbell et al

[182] posit that computationalist thinking focuses on model, abstraction, interpretation, scales

www.manaraa.com

96

and limits, simulation, and automation. They insist that computationalists must understand how

to create, analyze, and critique models.

Abstraction as an Integral Part of Computational Thinking

Hazzan and Tomakyo [124] highlight the importance of mental habit of abstraction and the ability to

make transitions between levels of abstraction as an important skill for software developers.

Computational thinking involves stepwise refinement with different notations at different levels.

It involves thinking about reality at different levels of abstractions and to model the same

through executable formalisms. The fundamental feature of computational thinking is abstraction

of a situation/system/problem in such a way that the selected details in the model make it

executable by a machine. The choice of the selected executable abstractions of the problem is

driven by its purpose [185]. The purpose may be: (i) automation, or (ii) simulation either to get

deeper insights or to create virtual worlds.

Abstraction is informally described as the process of mapping a representation of a problem onto

a new representation. Philosophers like Aristotle, Hume, and Locke have taken a reductive

perspective of the abstraction process and see it in terms of the filtering-away of irrelevant

components and specifics, with the aim of extracting content or meaning. Constructivist

perspective of abstraction emphasizes selection and combination of relevant constituents. Each

new abstraction identifies a new phenomenon and becomes a potential constituent for further

abstraction [186]. Abstraction concepts include association, aggregation, composition,

classification, or generalization.

The computing worlds consist of things (objects), events, and actions (activities, processes, and

operations). Kramer viewed computational abstraction as generalization to identify the common

core or essence, manipulating symbolic and numerical formalisms, and also moving from an

informal and complicated real world to a simplified abstract model [187]. Wing [183] sees it first

as a process of deciding what details we need to highlight/ignore, and then choosing an

appropriate representation to model the relevant aspects of a problem. It takes several iterations

to fine tune computational abstractions. The maximum challenge is to gather a ‘complete’

overview of the given problem.

www.manaraa.com

97

Computational abstractions are to be discovered by balancing creation against reuse, with a

strong preference for reuse of things that are already tried and tested.

Abstraction of Real World

Nicholson et al [188] caution that since software developers solve problems that exist in the real

world, their solutions must ultimately succeed in the real world, not just on the abstract level

used to define the solution. They also suggest critical evaluation of computational abstractions

because abstractions may become too generic/specific. The details removed in an abstraction

may reemerge in a way that requires that they be considered. Any representation can have

consequences for how the subject of the abstraction is understood. The existing computational

abstractions may cross into new contexts by accident or default, and the same subject may recur

at multiple layers of abstractions with different aspects and context. They insist on identification

of the context of use and then defining the computational abstraction accordingly. For

identification of the context of use, their recommendation is to understand the abstractions that

are already used within the relevant context, and the socio-political context thereof. Software

developers also need to identify the reusable ideas/components in the application and technology

domain. Finally, regarding simultaneously working with multiple layers of abstractions, it is

important to understand how the different layers of abstraction relate to each other, and always

clearly indicate the layers being currently dealt with.

A Key Principal for Designing Hierarchy of Abstractions

In his classic paper, Miller had suggested that humans have an upper limit of the number of items

that they can simultaneously hold in their temporary memory for further cognitive processing.

This is in the range of seven plus/minus two [189]. Software developers should keep this in mind

as they develop their hierarchy of abstractions.

Pedagogic Perspective

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (i) part-II, Appendix A10), a majority felt that as compared to

all other kind of academic engagements, their student projects did much better to develop their

www.manaraa.com

98

algorithmic (72%) and abstraction (57%) thinking respectively. Algorithmic thinking was felt to

improve through engagements of thinking oriented lectures (60%), laboratory work (58%),

research literature survey (40%), and knowledge transmission oriented lectures (36%).

Abstraction competence was felt to improve through engagements of research literature survey

(40%), thinking oriented lectures (38%), and laboratory work (32%). Discussion with others,

knowledge transmission oriented lectures and written examinations were felt to be least effective

with respect to development of abstraction competence. Discussions with others, faculty as well

as other students were found to be ineffective with respect to development of algorithmic

thinking.

Student assignments need to be designed keeping the objectives of strengthening various aspects

of computational thinking as discussed in this section. These assignments can be designed as per

our proposed framework of pedagogic engagements in Chapter 8.

Section 4.3: Software Developers’ Education for Development of

Domain Competence
All professional societies, including those that are associated with the professions of engineering

or software development, strongly advocate that their profession’s main aim is to work for the

welfare of society. Welfare requires a balanced fulfillment of the human needs at multiple levels

of need-hierarchy as per Maslow’s need-hierarchy [141a], in compliance with concerns of

sustainable development. Many technologies have mainly been supporting human activities that

facilitate fulfillment of lower level human needs as per Maslow’s model of need hierarchy.

Potentially, software can even support some human activities that facilitate fulfillment of

people’s needs in various domains even at upper levels of Maslow’s hierarchy. Outgrowing the

initial goal of doing repetitive mathematical calculations, computers have already permeated

almost all spheres of human activities. Software not only supports, but also facilitates the

reorganization of business and/or production process itself. Similarly, the social networking is

now helping to transform and create new form of human-social interactions.

After decades of experience in creating and using software solutions, few domains, especially

those that are related to science, engineering, governance and business, are more mature than

www.manaraa.com

99

many others in terms of understanding of domain specific software possibilities both by software

developers as well as concerned domain experts. Many new domains are fast emerging as big

users of software. Both domain as well as IT experts are exploring new possibilities of creating

IT enabled operations and services in these domains. A large number of new users and

applications are emerging in the domains of business analytics, mass communication, customer

relationship management, social marketing, security, energy management, environment

management, compliance governance and risk management, healthcare, life sciences, and

collaborative work. A significant number of novel applications are being developed for arts and

sports as well.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘technical/domain competency’ an average rating of 2.95 on a scale of 0-

4. A majority of 60% of these respondents recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities. In order to acquire required domain knowledge in varied application domains, a broad

understanding of various processes and diverse human tasks is very helpful for software

designers.

With reference to Appendices A2 and A3, domain competence of software developers also

relates to the following:

1 “Be the customer” mentality

2 Analytical skills

3 Design skills

4 Imagination: storyboarding, extrapolation, visualization, cognitive flexibly:

ability to transfer and models of solutions of one situation/field to another, multi-

perspective thinking, lateral thinking, creativity and idea initiation, and

innovation

5 Problem solving skills

6 Project planning

www.manaraa.com

100

Armour [120] [148] viewed software development as a learning activity, rather than a production

activity, and advocated that software developers need more training in domains, learning, and

knowledge structuring mechanisms rather than in software itself. Effort to acquire required

domain knowledge varies from few days to several decades depending upon the complexity of

the problems. Domain training, and even certifications, have become common part of continuous

training programs of software developers. Since the application domains are now virtually

encompassing all kinds of human activities, it should be presumed that a fresh graduate is

required to work in a new domain, to start with.

It is very common for software teams to do lot of rework because of insufficient understanding

of the application domain. Lack of domain knowledge is a very significant problem in software

projects and because of his deficiency, the requirements appear to fluctuate [168]. Domain

specific knowledge enables developers to identify problems in logic [157]. Most software

developers generally have a tendency to blame the users for fluctuating requirements. Hence,

domain knowledge is well recognized as the key contributor to enhancing productivity of

software development processes.

The software development processes essentially try to map the application domain requirements

to programming constructs. Shirley identified four levels of skill in student programmers’ work:

expedient, constructional, operational, and structural. Using the structure of the problem to

devise the solution is considered the most sophisticated approach to programming [169]. A

student at the structural level of programming skill first carries out an interpretation of the

problem within its domain, then structures the problem before coding.

Many domain specific languages (DSLs) have been developed and continue to evolve for various

domains. Domain driven design approach is becoming increasing popular among software

designers. It is based on the premise that primary focus of software designers should be on the

domain and domain logic, rather than on the particular technology used to implement the system.

In general, students need to learn to capture the processes involved in a domain, identify the

actors, events, schedules, compliances, etc., map the information flow, decision making based on

information, identify the gaps and redundancies, optimize the processes through business and

www.manaraa.com

101

process re-engineering, and most importantly, substantiate the value delivery of IT in the

enterprise.

Domain specific conceptual knowledge and technical skills are important aspects of the domains.

However, domains are characterized by prominent thinking processes. Different kinds of

thinking processes are prominent in different domains. Increasingly, software is being developed

to support the cognitive processes of domain specialists both for analytical as well as creative

tasks.

Software is no more limited to only providing rapid and reliable data storage/transfer/access. It

is increasingly transforming computers as cognition support systems through various devices for

data transformation, analysis, and synthesis. In order to develop domain specific cognition

support systems, an understanding of domain specific cognitive tasks is essential for the software

developers. A sound understanding of a specific domain enables software developers to look for

problem cases, failure modes, and benefits to the actual users.

Computing does not just open new ways of doing domain specific activities; it also requires new

conceptualizations of the domain that require automated processing. The opportunities of

automated processing in turn further open new ways of re-conceptualization in application

domains [176]. Sometimes, software developers can also help in inventive problems solving in

specific domains by infusing different thinking patterns developed through their experience in

other domains.

Breadth and Diversity

Diversity of Disciplines

In 1973, Biglan classified academic disciplines along three dimensions. Each of these

dimensions were broadly classifies into two categories - hard vs soft, pure vs applied, and life vs

non-life [170-173a]. Hence, for our purpose, we will treat these dimensions as bi-level. As per

this classification, hard disciplines follow a single common paradigm, whereas the experts of soft

disciplines differ in their methodologies and concepts. Table 4.2 summarizes this classification.

www.manaraa.com

102

Table 4.2: Biglan’s classification of disciplines

 Hard Soft

 Life Non-life Life Non-life

Pure Biology,
Biochemistry,
Genetics,
Physiology, etc.

 Mathematics, Physics,
Chemistry, Geology,
Astronomy,
Oceanography, etc.

Psychology,
Sociology,
Anthropology,
Political Science,
Area Study, etc.

Linguistics, Literature,
Communications, Creative
Writing, Economics,
Philosophy, Archaeology,
History, Geography, etc.

Applied Agriculture,
Psychiatry,
Medicine,
Pharmacy,
Dentistry,
Horticulture, etc.,

Civil Engineering,
Telecommunication
Engineering, Mechanical
Engineering, Chemical
Engineering, Electrical
Engineering, Computer
Science, etc.

Recreation, Arts,
Education,
Nursing,
Conservation,
Counseling, HR
Management, etc.

Finance, Accounting,
Banking, Marketing,
Journalism, Library And
Archival Science, Law,
Architecture, Interior Design,
Crafts, Arts, Dance, Music,
etc.

The hard-pure disciplines are concerned with universals and simplification, whereas soft-pure

disciplines are concerned with particular cases. The thinking approaches significantly differ for

these categories. The hard-pure disciplines have an atomistic approach and rely more on linear

logic, facts, and concepts whereas soft-pure disciplines have a holistic approach, and rely more

on the breadth of intellectual ideas, creativity and expression. The hard-applied disciplines focus

on problem solving and application of knowledge to create products and techniques, whereas,

soft-applied disciplines focus on personal growth, reflective practice, and lifelong learning to

create protocols and procedures. The hard-pure disciplines are concerned with mastery of

physical environment, whereas soft-applied are concerned with enhancement of professional

practice.

As per this classification, computer science is classified in hard, non-life, applied category of

disciplines. The algorithm design and programming part of software development surely belongs

to this category. However, software development also includes many other tasks like project

management, requirement analysis, user interface design, and usability analysis. These tasks

relate to people, and hence software developer like engineering or computer science cannot be

classified to the single category as per this classification.

Application domains of software include all disciplines and hence are well spread over all

categories of Biglan’s classification. Hence, it is imperative for software developers to

www.manaraa.com

103

understand the concerns, focus, aim, knowledge structures, and thinking approaches of

application domains that belong to all categories of Biglan classification.

Unlike traditional engineering based waterfall model, evolutionary approaches to software

development view users’ requirements as tentative, evolving, and open to change. Paulsen and

Wells [174] found that as compared to the students of pure fields like science, fine arts, social

science, and humanities, the students of applied areas like business and engineering hold more

naïve beliefs about the structure of knowledge and speed of learning. Engineering students were

also found to have more naïve views about certainty of knowledge. Theirs, and earlier, research

showed that as compared to engineering students, the students of soft fields like social science,

fine arts, humanities, education, and business are more likely to view knowledge as diverse,

tentative, and open to change. Hence, a good grounding in soft disciplines becomes even more

important with respect to current and emerging trends of software development methodologies.

The teaching of computing courses also needs to be restructured in order to develop these

epistemological beliefs.

Because of the nature of their curriculum, engineering students in computing disciplines are

already well over-exposed to the approaches of hard-pure and hard-applied disciplines. This

tends to limit their perspective and approach. Hence, it is strongly recommended that

engineering students of computing disciplines are well exposed to soft-pure and soft-applied

disciplines also, especially as application domains. We have further developed and included this

approach in our proposed framework of pedagogical engagements in software development

education (Table 8.7 and Table 8.8).

Good observation skills, enquiring mind, diversity of interests, empathy, and reflection skills, are

the prerequisites for building the required domain understanding. The software development

education program needs to expose the students to diverse types of domains and domain

categories as per Biglan’s classification. It also needs to nurture the ability to learn nuances of

newer domains. This exposure to application domains needs to introduce the students to specific

attributes: (i) context: users, functions, concerns, constraints, compliance requirements, (ii)

operations: procedures, practices, methods, evolution of IT applications, (iii) domain specific

www.manaraa.com

104

vocabulary and its semantics, (iv) domain experts’ cognitive tasks, and (v) challenges:

complexities, risks, uncertainties, and complications.

Diversity of Learning Styles

Kolb [152] identified four main learning styles. Kolb also discovered prominent patterns of

correlation of the styles with respect to domains, and also with concerned persons’ functions

[175]. These four styles are given in Table 4.3. Rather than following the commonly popular

perspective that subjects are linked with specific learning styles, we take a position, that different

styles are relatively more suitable for learning different aspects of a single subject. Hence, an

integration of these styles enhances learners’ ability to learn different aspects of any domain.

Kolb proposed ‘experiential learning cycle’ for facilitating deeper learning.

A liberal arts kind of broad based educational model that includes exposure to diverse

disciplines, not just science, mathematics, engineering, or management is potentially suited to

make the students more ready for developing software for diverse domains. Breadth of multi-

disciplinary exposure also offers the opportunity to enrich and diversify students’ repertoire of

learning style. However, such multi-disciplinary courses will be effective, only if they succeed in

engaging the students in prominent cognitive tasks with the domain experts to some extent. We

use Kolb’s style to enrich our proposed framework of pedagogic engagements in section 8.3.1.

Table 4.3: Kolb’s learning styles

1. Divergent: involves reflection on concrete experience, requires abilities of concrete experience as well as

reflective observation. This style is associated with valuing skills: relationship, helping others, and sense
making. Such people have broad interests and tend to be imaginative and specialize in arts, literature,
psychology, etc. Effective communication and relation building requires this style.

2. Convergent: involves active experimentation to test/apply abstractions, requires abilities of abstract
conceptualization as well as active experimentation. This style is associated with decision skills like
quantitative analysis, use of technology, and goal setting. Such people like to deal with technical rather than
people related aspects, and tend to specialize in technology and medicine. Bench engineering and production
requires this style.

3. Accommodative: involves active experimentation on concrete experiences, requires abilities of concrete
experience as well as active experimentation. This style encompasses a set of competencies that can best be
termed acting skills: leadership, initiative, and action. Such people tend to specialize in education, social
service, sales, communication, nursing, etc. Decision making in uncertain situations requires this style.

4. Assimilative: involves reflection on abstractions; requires abilities of abstract conceptualization as well as
reflective observation. This style is related to thinking skills: information gathering, information analysis, and
theory building. Such people tend to specialize in mathematics and physical sciences. Planning and research
activities require this style.

www.manaraa.com

105

Pedagogic Perspective

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (i) part-II, Appendix A10), a large fraction of 61% felt that as

compared to all other kind of academic engagements, their projects did much better to develop

their domain competence. This was followed by research literature survey and knowledge

transmission oriented lectures (51% each), laboratory work (39%), homework (35%), written

examinations and mentoring juniors (31% each).

Many universities have started domain specific computing degree programs at master’s level

e.g., bio-informatics, digital arts, computational finance, computational economics, health

informatics, computational mathematics, computational physics, computational social science,

computational psychology, archive and museum informatics, etc. In such programs the non-

computing discipline is strongly shaped and heavily influenced by computing principles.

Typically, the students in such programs have an undergraduate degree in the domain. In 2005,

we also proposed the design of a two year master’s program in Archaeo-heritage Informatics

[177], given in Appendix A7.

Recommendations for Breadth Courses for Developing Domain Competence

Training in general systems thinking helps in quickly understanding even unfamiliar areas [178].

Weinberg considered that linguistic and mathematical competencies are essential foundations for

general systems thinking. In Section 6.3, we further elaborate upon system thinking.

Broad based education in diverse disciplines is likely to enrich linguistic sensibility and

competence. While computing courses need to bring a higher focus on a systems approach in

their delivery, the breadth courses in other disciplines can also very significantly contribute to

develop general systems thinking by specifically bringing it as one of the prominent learning

objectives. In order to help in general systems thinking, the courses need to be selected and

redesigned with this aim. In order to develop system thinking and ability to learn a new domain,

the breadth courses too should try to enhance their focus on: (i) diversity and multi-perspective

thinking, (ii) inter-disciplinary integration and applications, (iii) and systems approach.

www.manaraa.com

106

Repeated exposure to complexity, complications, nonlinearity, uncertainties, and risks, and as

highlighted and illustrated within the context of each of the specific breadth courses is likely to

significantly enhance their ability to understand the nuances of unfamiliar domains, and also to

orient their mindset to decision making in complex situations.

Within the context of many knowledge disciplines in sciences, mathematics, engineering,

management, social sciences, and humanities, a body of knowledge has already been created

around systems and systems thinking. Appendix A8 suggests some such breadth courses that can

develop and reinforce systems thinking and help in developing the ability to learn new domains.

Section 4.4: Software Developers’ Education for Development of

Communication Competence
There are several kinds of communication in a software development project [161]. These

include communications (i) between the development team and the customers, (ii) between the

developers and the project manager, and (iii) among the developers. A typical project manager in

IT spends about 90% of the time in communication with various stakeholders. Often

communications competence is misinterpreted as making exciting presentations or impressive

speaking or writing skills. However, the communication needs of software developers are very

different from the communications needs of sales or marketing professionals. Communications

skills do not make up for the deficiency in thinking ability. Good communication requires

keeping track of who, what, when, and why. It mainly involves listening with understanding and

empathy.

The communication competence of software developers encompasses the need to communicate

their difficulties and vision to their clients, management, colleagues, and end-users, and also

preparing technical documentation, and also end-user documentation. One needs to keep himself

in the shoes of the end-user to give a useful product. Communication encourages the exchange

of ideas and project related knowledge among the people engaged in the project: clients,

managers, and developers.

www.manaraa.com

107

Communication among project participants is formalized through various documents. The forms

of documentation include requirements, specifications, architectural documents, detailed design

documents, quality documents, and also low-level design information such as source code

comments. Hence, effective verbal and written communication skills are also essential for

software developers.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘communication skills’ an average rating of 2.75 on a scale of 0-4. A

majority of 65% of these respondents recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities.

With reference to Appendices A2 and A3, communication competence of software developers

also relates to the following:

1 Ability to work in teams

2 Listening skills

3 “Be the customer” mentality

4 Persuasion, negotiation, consensus building, and conflict resolution skills.

5 Mentoring, coaching, and training skills

6 Organizational skills

Agile manifesto emphasizes face-to-face communication over written documents. Extreme

Programming (XP) relies on four values: simplicity, communication, testing and courage. Chau

et al [162] posit that software engineering is a knowledge-intensive process with a very strong

need for knowledge sharing support to enable software organizations to:

7 effectively share domain expertise between the customer and the development

team,

8 identify the requirements of the software system,

9 capture non-externalized knowledge of the development team members,

10 bring together knowledge from distributed individuals to form a repository of

organizational knowledge, and

www.manaraa.com

108

11 retain knowledge that would otherwise be lost due to the loss of experienced

staff; and

12 improve organizational knowledge dissemination.

They observe that while traditional software development approaches support knowledge

sharing primarily by documents or repositories, agile approaches rely heavily on socialization

through communication and collaboration.

Cockburn [163], one of original authors of the agile manifesto, highlighted the following

principles regarding communication in setting and running of software projects:

1 Larger teams need more communication elements.

2 Interactive, face-to-face communication is the cheapest and fastest channel for

exchanging information.

3 Increased communication and feedback reduces the need for intermediate

work products.

Outsourcing and offshore development has added to the communication related challenges in the

software development process. Documentation becomes more important with offshore

development. Xiaohu et al [161] cite previous research that had shown that because of

communication and coordination issues, distributed projects take about two and half times

longer to complete as similar projects where the project team is centralized.

Today’s software development situation sees two types of trends: document driven outsourcing,

and offshore project and agile approaches emphasizing a lot of face-to-face communication.

Attempt to blend these two are also underway.

Responding to our online polls (results summarized in Table 4.6), one of the senior-level

respondents wrote, “Software development life cycle is completely dependent on the

communication effectiveness. Communication tends to break at every stage of the software

development life cycle. Hence communication skills (mainly comprehension and listening) are of

paramount importance in software engineering.” Another senior level respondent recalled his

www.manaraa.com

109

customer saying “being convinced about giving the work to you is a challenge because we are

not sure if your team has accurately understood our requirements.”

Christiansen [164] has concluded that these additional challenges arise because of factors like

different cultures, different languages and accents, thin communication channels, different

platforms, and different time zones. Christiansen has also given some suggestions to overcome

these challenges: put stress on synchronous communication, adapt to and understand other

cultures, put emphasis on spoken language skills, rotate people between shores, use artifacts

properly, align IT infrastructure, use requirement specifications with care, and invest time and

money in transferring implicit knowledge.

Backer et al [165] had studied aspects related to competency requirements for computing

professionals with respect to various micro-level communications skills: writing, reading,

speaking, listening, presentation, and nonverbal. They had also studied extent of engagement of

technical professionals in these micro level communications. With reference to software

developers, communication involves frequent translations between the domain/business

descriptions to/from technological descriptions, in both directions.

The braintrack.com provides the summary of responses of the perceived importance of

communication abilities for various professionals. Table 4.4 summarizes their finding with

respect to programmers and systems analysts.

Table 4.4: Perceived importance of communication skills by programmers and systems analysts

(Source: braintrack.com)

Communication skill Respondent programmers who find
it important for their work

Respondent systems analysts who
find it important for their work

Written comprehension 77% 66%
Oral comprehension 66% 63%
Oral expression 60% 60%
Written expression 56% 56%

In order to understand the relative importance of micro-level communication skills for software

developers, we conducted two polls among software developers.

www.manaraa.com

110

 The first poll, Poll-A, asked the respondents to choose the most important micro-level

communication skill with reference to the requirements of software development work. The

micro level communication skill considered included: (i) speaking with clarity, (ii) making

impressive presentations, (iii) writing with clarity (iv) reading with comprehension, and (v)

listening with understanding and empathy.

With respect to these micro level communication skills, the second poll, Poll-B, asked them to

identify most serious weakness of typical Indian engineering graduates. We respectively received

84 and 69 responses for these two polls. Table 4.5 gives the summary of the profile of the

respondents.

Table 4.5: Profiles of the respondents for the two polls about communication competence among software

developers

 Poll-A
Importance
(84 responses)

Poll-B
Weakness
(69 responses)

Age >55 years Nil 5%
 35-54 years 42% 26%
 25-34 years 54% 58%
 18-24 years 4% 11%
Company size Enterprise 29% 36%
 Large 29% 29%
 Medium 21% 14%
 Small 21% 21%
Job function Consulting 21% 38%
 Engineering 37% 31%
 Product 21% 15%
 Sales 14% Nil
 Academics 7% 8%
 IT Nil 8%

Table 4.6 summarizes their responses.

Table 4.6: Summary of responses for these two polls about communication competence

Micro level communication skill Poll-A Importance

(84 responses)
Poll-B Weakness

(69 responses)
Listening with understanding and empathy 55% 37%
Writing with clarity 16% 14%
Speaking with clarity 15% 33%
Reading with comprehension 7% 5%
Making impressive presentations 4% 8%

www.manaraa.com

111

The responses show a very interesting aspect. All the respondents who identified “making

impressive presentations” as the most serious communication skill related weakness of Indian

engineering graduates, belong to the youngest age group of 18-24 years. It is further very

interesting to note that 50% of the respondent in this age group thought so. In the last few years,

there has been a sudden increase in the emphasis on communication skills; often this is

misunderstood in terms of making impressive presentations. Our poll shows the extent of this

misconception among our fresh engineers.

One of the responding enterprise IT architect from India commented, “Indian engineering

graduates tend to just skim the surface and are not that well prepared during discussions and

meetings.”

Pedagogic Perspective

Many studies have showed that multi-paradigm disciplines like humanities, social sciences, and

psychology had a positive influence on self-reported growth in communication skills by students.

However, Li et al have found that self-perceived gains in communication skills most

significantly depended upon the degree of their integration into the social community of the

university rather than their discipline of study [166]. Further, the quality of curriculum was

found to be the most significant factor for influencing their social integration.

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (i) part-II, Appendix A10), a large fraction of 84% felt that, as

compared to all other kind of academic engagements, their discussions with other students did

much better to develop their communication skills. This was followed by mentoring juniors and

discussions with faculty (71% each), discussion with others (51%), and industrial training

(45%). All other engagements were found to be inadequate in this regard by the respondents.

Etlinger [167] has suggested a framework for teaching communication skills to computing

students. This framework has three concentric circles. The inner circle is about the critical ideas:

(i) purpose - inform, instruct, or persuade, (ii) strategy- form of communication, organization of

information, and tone of communication, and (iii) audience- hostile or receptive, supportive or

www.manaraa.com

112

neutral, internal or external, interested in the entire artifact or only in part of it. The middle

circle of skills includes: reading and writing, listening and speaking, reviewing and evaluating,

and, thinking. The outer circle focuses on process issues, more general traits, and quality.

Rather than only depending upon the communication skill related courses offered by humanities,

language or management department, many authors have experimented with the strategy of

including improvement of communication skills as one of desired learning outcome of their

regular computing courses and also project work. Many view project work as an effective way

of improving desirable kind of communication skills. At some universities, special courses on

technical communication have been offered by the computing faculty.

The communication competence for software developers is significantly different from the

communication competence for sales professionals. It is essential for understanding the needs of

the consumers, the difficulties of their clients and co-developers. It is required for knowledge

acquisition as well as knowledge sharing. We posit that active and collaborative engagements as

included in our proposed taxonomy of pedagogical engagements in Sections 8.3.1 and 8.3.4

respectively contribute towards developing the required communication competence of

computing students.

Section 4.5: Software Developers’ Education for Development of Complex

Problem Solving Competence

Programming and Problem Solving

Gomes and Mendes view programming as problem solving [190]. Booth identified conceptions

of programming and ‘learning to program’ generally held by students [169]. As per her model, a

student’s conception about programming grows in sophistication from the initial level of

computer related activity to problem oriented activity to product oriented activity. She also

identified the stages of increasing sophistication in a student’s conceptions of ‘learning to

program’: (i) learning a programming language, (ii) learning to write a program in a

programming language, (iii) learning to solve problems in the form of programs, and (iv)

becoming part of the programming community.

www.manaraa.com

113

Further, the conceptions related to programming languages grow in sophistication from simplest

levels of viewing a programming language as a utility program that enables programs to be

written, to the second level of code as a set of instructions, commands, symbols, and constructs.

The third level in this order is viewing programming language as a means of communication

between programmer and computer to enable communication between computer and user. The

highest level views programming language as a medium of expression for the programmer to

express solutions.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘problem solving ability’ an average rating of 3.2 on a scale of 0-4. A

large majority these respondents (80%) recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities.

With reference to Appendices A2 and A3, complex problem solving of software developers also

relates to the following:

1 Ability to convert ill-defined problematic situations into software solvable

problem

2 Problem orientation, problem definition and formulation, generations of

alternatives

3 Emphasis on elegant and simple solutions

4 Ability of infusing different thinking patterns developed through their experience

in other domains

5 Inclination for reuse and synthesis by integration

6 Solution implementation and verification

7 Project planning and management

8 Sense of urgency and stress management

Good Solutions

Conceptualizing programming to become part of the programming community and

conceptualizing programming language as a medium of expression of solution are indicators of

the possibility of multiplicity of solutions for the same problem. The solutions may suffer from

www.manaraa.com

114

shortcomings like over-simplification, over decomposition, under-decomposition, or disordered

management of complexity in a disordered manner. It is not sufficient to somehow solve

complex problems. The need of elegance, i.e., ordered management of complexity, increases

with increasing number and diversity of items, relations, correlations, and systems of relations.

Elegant management of complexity affords overall comprehension and continuous orientation.

Like good literature, architecture, or some other work of art, elegant software exhibits clarity,

simplicity, precision, minimized interfaces, orderliness, coherence, and consistence, without

compromising on integrity and performance. Avoiding unnecessary complications is a necessary

requirement for elegant solutions. Software developers’ aesthetical sense, urge for elegance,

patience, and systems–level perspective are necessary driving force for imbibing elegance in

their solutions.

Developing elegant software also requires good understanding of the specific problem and also

its context. Multidimensional complexity of application domains has to be registered, facilitated,

and expressed in software constructs. Hence, not just technical and computational thinking

competence, but domain competence is also necessary for developing elegant software.

Good software also includes defense, error-handling, and recovery mechanisms for various kinds

of errors: hardware-level, programming, or user induced. It also affords testability and

portability.

Problem Solving

In a study [191], almost unanimously, i.e., 97.7% of 1023 experts rated ‘problem solving’ as an

important element of human intelligence. In its most simplistic interpretation, a problem is

something that cannot be solved in a single, obvious step. Gomes and Mendes also provide some

of the following interesting definitions of problem and problem solving:

Pérez et al. - problem is a situation for which there isn’t an evident solution.

Perales - problem is any situation that produces, on one hand, a certain degree of uncertainty

and, on the other, behavior in search of a solution.

www.manaraa.com

115

Gagné - problem solving is a process where the apprentice/learner discovers a combination of

rules previously learned that he/she can apply to reach a solution for a new problematic

situation.

Nickols [192] opines that what characterizes a problem is uncertainty about action, having a goal

and not knowing how to achieve it. Problem solving depends upon cognitive processes of

problem anticipation and identification, problem understanding, problem definition, problem

formulation, problem representation, generations of alternatives, decision making and planning,

implementation and integration, monitoring, evaluation, improvisation, and solution

communication.

Jonassen [193] has proposed a taxonomy of problems based on variations in problem types and

representations. The problem types vary in a three dimensional continuous space of three factors:

structured-ness, complexity, and degree of domain specificity. Software problems are domain

specific, complex, and ill structured. Based on the cognitive task analysis of various kinds of

problems, Jonassen has identified eleven different kinds of problems. Software developers

typically deal with all these kind of problems. Nickols’ typology of problem solving approaches

[198] comprises of (1) repair approach, (2) improvement approach, and (3) engineering

approach. Software developers mainly adopt the later two approaches, because seemingly, repair

problems in software systems are actually improvisation problems. Annexure AN6 gives more

details of these models.

Expert programmers are found to be good at logical thinking; many of them also enjoy puzzle-

solving [194]. Metzger [157] has viewed debugging as a search problem like mathematical

problem solving that is solved using a variety of search strategies like binary search, greedy

search, depth-first search, and breadth-first search. In his classic, ‘How to solve it,’ famous

mathematician Polya [195] listed four phases of problem solving: (i) understand the problem,

(ii) plan the solution, (iii) execute the plan, and (iv) review the results. More details are given in

Annexure AN6.

Drawing analogies between debugging and mathematical problem solving, Metzger [157]

explains many heuristics for solving debugging problems: (1) stabilize the problem, (2) create a

www.manaraa.com

116

standalone test case, (3) categorize the problem with reverence to correctness, completion,

robustness, and efficiency, (4) describe the problem according to a standard methodology, (5)

explain the problem to someone else, (6) recalling a similar problem, (7) drawing diagrams like

control flow graph, data flow graph, and complex data structures with pointers, and (8) choosing

a hypothesis from historical data. Further, he has also suggested some strategies like program

slice strategy, deductive reasoning strategy, and inductive reasoning strategy for debugging.

Cognitive psychologists have studied problem solving methods for the last few decades. Galotti

collates some general domain independent techniques for puzzle-like problems [196]. These

include: generate and test, means-ends analysis, working backward backtracking, reasoning by

analogy. Annexure AN6 gives more details of these.

Creative Problem Solving

Stoycheva and Lubart [197] have elaborated upon a creative problem solving process. This

process involves five main activities of data finding and mess finding, problem finding, idea

finding, solution finding, and acceptance finding. The first activity of data and mess finding is

carried out by collecting data from the senses, experiences, knowledge, feelings, opinions,

emotions, memories, fantasies, future projections, interaction with others, information on the

social roles, and situation. Data collection can also be purposefully unstructured, random, and

divergent. Data and mess finding also involves evaluation of relevance, interconnectedness, and

importance of collected data. Through the analysis of this data, mess is discovered, created, or

recreated.

The second activity of problem finding (or problem defining) is most creative in the problem

solving process. Creative people try out many formulations and interpretations until one is found

that best fits the data and offers the best opportunities for solving the problem. In this reference,

Nickols [198] insists on defining the problem and also the solution state. He recommends to

clearly detailing out the boundaries, distinguishing characteristics, the nature, and meaning of

solution state. He [199] also insists on defining objectives and goals through inquiring about

what are we trying to achieve, preserve, avoid, or eliminate?

www.manaraa.com

117

The third activity of creative problem solving, idea finding, aims to filter out the most promising

options which are identified for further elaboration. It involves multi-perspective thinking about

concepts and experience. The fourth activity of solution finding is about examining selected

alternatives from multiple perspectives for their pluses, minuses, and other interesting aspects. It

involves exploring and finalizing the criteria for evaluation of alternatives. Further, alternatives

are evaluated using the chosen criteria, and the most appropriate is chosen for implementation.

Finally, the activity of acceptance finding is about successful implementation. It also requires

envisaging how different stakeholders will react to the innovation.

With reference to abovementioned creative problems solving process, we recently conducted a

LinkedIn Poll among software professionals. Seventy-six software professionals responded to

this poll. The respondent professionals were well distributed in terms of age and job functions. In

all, 7% respondents were older than 55 year, 33% were in the age group of 35- 54, 47% were in

the age group of 25- 34, and 13% belonged to the age group of 18-24 years. In terms of job

function, their distribution was: 13% in consulting, 38% in engineering, 38% in product, and

13% in creative functions. All respondents belonged to large or enterprise organizations.

With respect to the problem solving skills for software work, the respondents identified the most

serious weakness of Indian engineering graduates as follows:

a. Idea and/or solution finding (36%),

b. Problem (re)formulation (22%),

c. Implementing (18%),

d. Mess identification (12%), and

e. Stakeholders’ acceptance (12%).

Some respondents also commented as follows:
“…engineers tend to assume the cause of the problem and jump to solutioning. This usually leads to
compounding the situation. Engineers tend to overlook the importance of problem assessment,
analysis and ascertation.”
“…our grads are enthusiastic and want to provide a quick fix to the problem, which is preventing
them from thinking in terms of the "5 Why's"…”

It shows the importance of creativity with reference to problem solving through software development.

This issue is discussed in details again in Section 5.3.

www.manaraa.com

118

Section 4.5.1: Expert problem Solvers

Research on expertise has shown that it takes approximately ten years to turn a novice into an

expert. Hence, the four year undergraduate education needs to prepare the student to make the

rest of the progress. In early 1970s, Gordon Institute proposed a famous four-stage conscious

competence theory. As per this theory, the competence has four stages: unconscious

incompetence, conscious incompetence conscious competence, and unconscious competence.

Nonaka added a fifth stage to this and called it reflective competence [200].

Winslow [201] refers to the five levels of expertise as suggested by Dreyfus and Dreyfus in

1985. These are the levels of novice, advanced beginner, competence, proficiency, and expert.

In the specific context of computing professionals, Denning [202] has refined Dreyfus levels, has

added two more levels (master and legend) after expert. We have merged Gordon Institute’s and

Denning’s levels into a single ladder. The merged levels are shown in Table 4.7. First seven

levels of this are included in our proposed framework of pedagogical engagements in software

development education (ref: Table 8.2, first column).

www.manaraa.com

119

Table 4.7: Competency ladder (Integrating the ladders by Gordon Institute, Dreyfus and Dreyfus, and Denning)

Level Description with respect to software professionals
1 Unconscious

incompetence
Does not recognize the competency deficit, nor desires to learn.

2 Conscious
incompetence

Recognize the competency deficit, without addressing it.

3 Novice
(beginner)

Aims to learn objective facts, features, and rules for determining actions without being context
sensitive. Focus on syntax etc. Learn through memorization and drill.

4 Advanced
beginner

Recognizes common situations that help in recalling which rules should be exercised, starts to
recognize and handle situations not covered by given facts, features and rules Learns through
problem solving and repeated practice with common situations.

5 Entry-level
Professional
(competent)

Performs most standard actions without conscious application of rules after considering the
whole situation. Handles new situations through appropriate application of rules, can design
systems. May lead. Learns through advanced problem solving, projects, extensive practice in
common and exception situations, and participation in professional networks.

6 Proficient
professional

Effortlessly deals with complex situations, no longer has to consciously reason through all the
steps to determine a plan, appropriate actions come from experience and intuition. Design and
mange complex systems, ingenious solutions. Learns through apprenticeship to experts,
coaching, putting self into wide range of situations, membership and contributions to
professional networks. Teaches others.

7 Expert Consistently inspiring and excellent performance. An expert generally knows what to do, base
upon mature and practical understanding. Performance standards are well beyond those of
most practitioners. Extensive experience with large systems, appreciate subtle and indirect
design issues and customer concerns, leads well. High productivity. Learns through
apprenticeship to masters, advanced coaching, and development of breadth. Years/decades of
experience.

8 Master Capacity for long range strategic thinking and action. Sees historical drifts and shifting
clearings. Has developed a distinctive style. Has produced innovations, altered the course of
history in the field. Teaches others to be experts and masters. Develops new methods, admired
for long. Learning by working with other masters. Creates and leads professional networks.

9 Legend Has attained high standing. Work has widely accepted impact. Shapes directions of the field.

Costa and Kallick [203] have identified sixteen characteristics of what intelligent people do

when they are confronted with problems, the resolution to which is not immediately apparent.

These are listed in Annexure AN6.

Problem solving requires cognitive and meta-cognitive processes and also affective and conative

elements of self-confidence, perseverance, open-mindedness, motivation, and mindful effort.

Meta-cognitive aspects have been discussed under ‘critical and reflective thinking.’ The

affective and conative elements are elaborated in sixth chapter.

Galotti [196] describes some findings related to factors that hinder problems solving. Mental set

is the tendency to adapt a certain framework, strategy, or procedure, or more generally, to see

things in a certain way instead of another. It causes people to make certain unnecessary

www.manaraa.com

120

assumptions even without awareness. Incomplete or incorrect representations make problems

solving much harder.

Jonassen [193] and Galotti [196] have discussed the individual differences in problem solvers.

The prior experiences of problem solvers enrich their mental corpus of problem schemas,

enabling them to recognize different problem states, and move faster towards implementation.

Expert programmers have been found to have this characteristic [204]. They are persistent, and

their mental models of their program comprehension exhibit the following five characteristics:

hierarchical and multilayered, explicit mapping between layers, recognition of basic patterns,

well-connected internally, and well-grounded in the program text. They also choose and mix

their richer mental models in an opportunistic way [201].

Experts in any domain are able to more easily pick up more perceptual information, recognize

more patterns, create more hypotheses, perform skills, and also represent the problems at more

deeper and abstract levels. Expert programmers have good problem solving skills,

determination, and persistence. They gather clues, in the form of facts and information to help in

problem solving, and are also efficient planners [194]. They are also more likely to reflect and

check errors in their thinking. Expert programmers have the habit of breaking down the problems

into minor sub-problems [205].

Problem solvers with higher cognitive flexibility [206] and cognitive complexity can consider

more alternatives, and hence, are better experts. The epistemological beliefs of the problem

solvers about the nature of problem solving also affect their natural ways of approaching the

problems. The stages of cognitive development discussed later in Section 6.1 effect these beliefs.

Pedagogic Implications

Jonassen [193] and Linda S. Gottfredson [207] have consolidated earlier research on problem

solving and highlighted the distinctions between academic and practical problems. These

differences are given in Table 4.8.

www.manaraa.com

121

Table 4.8: A Comparison of typical academic and real life problems

Academic Problems Real life practical problems

1. Tend to be formulated by other people
2. Well-defined or well-structured
3. Tend to be complete. Presented with all the

parameters and constraints. Usually consist of
a well-defined initial state, a known goal state,
and a constrained set of logical operators.

4. Typically posses only a single answer
5. Tend to encourage single method of obtaining

a correct answer
6. Require application of a finite number of

concepts, rules, and principles

7. Divorced from ordinary experience

8. Tend to be of little or no intrinsic interest

1 Require (re)formulation.
2 Ill-defined or ill-structured
3 Require information seeking. One or more elements of the

ill-defined problem are unknown or not known with
certainty. The goals of real-life practical problems are
usually vaguely defined with unstated constraints.

4 Usually possess multiple acceptable solutions.
5 Allow multiple paths to solution.

6 Present uncertainty about useful and usable concepts, rules,

and principles as well. Further, in case of ill-defined
problems, the relationships between concepts, rules, and
principles may be inconsistent between cases.

7 Embedded in and require prior experience. This requires the
problem solver of ill-structured problem to distinguish
important from irrelevant, and construct a problem space for
generating solutions.

8 Require motivation and personal involvement

Real-life ill-defined problems are not constrained by the content domain, may require the

integration of several content domains, their solutions are not predictable or convergent, possess

multiple criteria for evaluating solutions, and no explicit means for determining appropriate

action. They require the solver to express personal opinion or belief, make judgments, and also

defend them. Earlier it was believed that experiences with well-defined problem solving easily

transferred to solving ill-defined problems. However, research in problem solving has

demonstrated that performance on well-defined problems is not correlated with performance on

ill-defined problems.

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (i) part-II, Appendix A10), a large fraction felt that as

compared to all other kind of academic engagements, their student projects (78%) did much

better to develop their problem solving skills. This was followed by laboratory work (59%),

thinking oriented lectures (51%), discussions with other students (49%), homework (37%),

research literature survey (36% each), industrial training (33%), and discussions with faculty

(31%). Discussions with others and traditional knowledge transmission oriented lectures were

found to be least effective in this regard by the respondents.

www.manaraa.com

122

Complex Problem Solving Techniques

Literature on ill-defined problem solving offers some excellent general purpose techniques that

have been used in various professions, especially management and design. These techniques

essentially help in analysis of complex ill-defined problems. Some of these techniques are given

in Table 4.9.
Table 4.9: Some techniques for solving complex ill-defined problems

1. Flow charts (understanding how a process works)
2. Concept mapping
3. Systems diagrams (understanding the way factors affect one-another)
4. SWOT (Strength, Weakness, Opportunity, and Threat) analysis
5. Appreciation (extracting maximum information from facts by repeatedly asking ‘so what?’)
6. 5 Why’s (asking "Why?" five times, successively, to understand the ultimate root cause),
7. Cause and effect diagram (identifying possible causes of problems)
8. Affinity diagrams (organizing ideas into common themes)
9. Appreciative inquiry – 4D approach (solving problems by looking at what's going right in four

phases of problem solving: Discovery, Dream, Design, and Deliver)

Many of these techniques, especially, flow chart, system diagram, 5 why’s, and cause and effect

diagram are already being used by many software developers in the industry. Flow chart and

systems diagrams are already being used in some computing courses. Various kinds of

conceptual modeling diagrams, especially UML diagrams are used by software designers.

Metzger [157] recommends the usage of Nassi-Shneiderman diagram and Warnier-Orr diagrams

for program design conception stage. Most of the other techniques in above list can also be very

effectively used by all software developers for various activities of software development.

Hence, computing students should be well exposed to these techniques through their curriculum.

Integration of these and some other similar techniques in software development education is on

our future agenda. Active engagement in our proposed framework of pedagogic engagements

incorporates using these techniques in various problem solving activities (ref: Table 8.5).

Further, they should also need to learn to adapt existing techniques, and if required, also develop

new techniques especially diagrammatic techniques.

Further, with reference to software development, analyzing and solving complex ill-defined

problems usually requires approaching problems and solution from a systems-level perspective.

The details of systems-level perspective are discussed in Section 6.3. Evolutionary nature of

software development also makes it necessary to continuous reflect upon the problem and iterate

www.manaraa.com

123

over the solutions. Hence, in the context of software development, reflective thinking, discussed

in Section 5.2 is also very important for complex ill-defined problem solving.

Section 4.6: Chapter Conclusion
In this chapter we discussed that the basic competence for software developers includes skill,

rules, and knowledge related to various technical activities of software development, application

domains, communication (mainly in terms of understanding user needs and knowledge sharing

with different stakeholders), computational thinking, and general purpose complex ill-defined

problem solving.

Repeated practice with similar problems enhances skill. Variety, richness, and complexity of

problem cases actively examined, solved, and/or critiqued by learners expand their ‘rule base’

and ‘actionable knowledge base,’ and hence, their competence. The implicit rules, their

limitations, and exceptions are learned and refined by reflective practice. Problem cases with

subtle differences can result in rule failure to solve problems. Such situations create conditions

for the learner to recognize the limitations and exceptions to their rules and further refine them.

Hence, during software developers’ education, a large variety and number of such experiences

are necessary for them to build a sophisticated, rich, and actionable mental repository of implicit

rules. No single method of teaching and learning can help the learner to build such a repository.

Only a proper integration of active, integrative, reflective, and collaborative engagements with

theoretical, as well as practical, problem cases can help to create a large number of such varied

opportunities.

As per our studies discussed in this chapter, student-centric pedagogical activities, especially

projects have been found to be most effective for development of all basic competencies,

discussed in this chapter. Well designed projects, if administered properly can engage the

students in a variety of learning oriented tasks. We further discuss this issue in seventh, eighth,

and ninth chapters.

www.manaraa.com

124

Rule or rule-base refinement is a knowledge-based activity that requires revising the mental

model of the problem, knowledge domain, and/or the mapping between the two. This exercise is

driven by the mental faculties of attentions, critical analysis, reflection, and also creativity and

innovation. Hence, we call these mental faculties the competency driver-habits of mind. In the

next chapter, we carry out a detailed discussion about these faculties as we see them in the

context of software development education.

www.manaraa.com

125

CHAPTER 5: SOFTWARE DEVELOPERS’ EDUCATION FOR

DEVELOPMENT OF

COMPETENCY DRIVER-HABITS OF MIND

As discussed in Section 4.5, Costa and Kallick [203] suggested sixteen habits of mind of

intelligent people to solve unfamiliar problems (Annexure AN6). Good professionals develop

powerful habits of mind to use their intelligent thinking behavior for solving problems within

their professional settings. These thinking habits distinguish them from the novices. Thinking is

the creation of a mental representation of what is not in the immediate environment [209].

Thinking continuum spans from one extreme of automatic thinking to another extreme of

controlled thinking. Pure association is the simplest form of automatic thinking. Automatic

thinking occurs in situations where repetition encourages decision making based on previously

learned responses. In controlled thought, in contrast, we deliberately hypothesize a class of

objects and experiences, and then view our experiences in the light of these hypothetical

possibilities. Formal thinking, visual imagination, scenario building, creation are forms of

controlled thinking. According to Piaget, in formal thinking, the reality is viewed as secondary to

possibilities.

Software development is more of a cognitive activity rather than a construction activity. With

specific reference to debugging, which is one of the key challenging activities of software

development, Metzger puts forward a systematic approach by integrating the thinking

perspectives of six approaches: detective, mathematician, safety expert, psychologist, computer

scientist, and engineer [157]. With respect to the multifaceted activities of software development,

following the following three mental habits have been identified as the most important for

software developers:

i. Attention to details

ii. Critical and reflective thinking

iii. Creativity and innovation

www.manaraa.com

126

Those with a history of successful thinking efforts of some kind are much more willing to make

more thinking effort of that kind. They know from past that they can productively engage in such

thinking. Hence, it is imperative for software development education to nurture these habits

among the students.

Section 5.1: Software Developers’ Education for Development of Attention

to Details
Thoroughness and concern for different perspectives and aspects, including very small or routine

matters, are very important for all software developers. They need to carefully examine the

objects/ideas under consideration in terms of form, function, relationship, and perspective.

Programming requires habit of long attention spans typically lasting several hours and often for

several days on a single problem. Software designers need to work at varying levels of

abstraction, and ensure consistency in terms of interpretation and implementation across these

levels of abstraction. This requires a keen attention to details, and the ability to correlate them

across the various levels of abstractions encountered.

Importance of attention to details for software development work

Further, given the inconspicuous nature of software, its visibility limited to the side-effects

affected in the system's environment, it is imperative that the limited visibility is accurate and

consistent with the desired objectives and behavior. This requires careful planning and execution,

with particular attention to exacting details. Expert programmers have the habit of paying

attention to minor details [194].

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘attention to detail’ an average rating of 3.3 on a scale of 0-4. An

overwhelming majority of 90% of these respondents recommended it to be a critical or very

important competency with respect to the requirements of software developers' multi-faceted

professional activities.

www.manaraa.com

127

With reference to Appendices A2 and A3, ‘attention to detail’ of software developers also relates

to the following:

1 Good grasping power and attention to detail: breadth, depth, clarity, accuracy, preciseness,

specificity, relevance, significance, completeness, consistency

2 Listening skill

3 Quality consciousness

Boehm quotes Winston Royce from his classical paper on the waterfall model written in 1970

[210], “In order to procure a $5 million hardware device, I would expect a 30-page specification

would provide adequate detail to control the procurement. In order to procure $5 million worth

of software, a 1500 page specification is about right in order to achieve comparable control.”

Over the last four decades, the behavior richness of software has exceeded the data or control

richness. Agile software development methods recognize the limitations of the human mind in its

capacity to see and freeze the details in advance. They view detailed acceptance tests not just as

testing artifacts but also as executable requirements. They differ from the traditional waterfall

model essentially by continuously evolving and detailing the specifications iteratively and

incrementally creating just enough documentation for the situation at hand in a just-in-time

manner. Empirical methods have become very popular in software engineering, hence, ability to

gather data and its systematic analysis have become very important for software developers.

After spending enough energy exactly detailing the specifications and/or acceptance tests, the

algorithm/computation design process becomes a much simpler task.

Further, software developers need to follow and comply with policies, procedures, checklists,

safety and security measures, and standards. In their thinking and expressions, software

developers need to show attentive considerations for context, scope, boundaries, interfaces,

assumptions, scalability, and constraints. Often serious oversights occur during the systems

analysis phase, resulting in wrong, inconsistent, or incomplete requirements, poor usability, and

poor test planning. Software bugs, often requiring costly rework, are also usually caused due to

oversight over seemingly minor details.

Metzger has catalogued various types of skill based errors in software that occur either because

of ‘inattention’ or ‘over-attention’ by the developers [157]. As per Metzger, the inattention

www.manaraa.com

128

failures category includes psychological error subcategories of ‘interrupt sequence, start another

sequence,’ ‘interrupt sequence, omit step,’ ‘interrupt sequence, repeat step,’ ‘sequence

interrupted, loss of control,’ ‘multiple matches, incorrect choice,’ ‘multiple sequence active, step

mixed,’ and ‘sensory input interferes with active sequence.’

The over-attention failures arise because of human memory failure and manifest themselves as

omission, repetition, and reversal. The errors in this category include psychological error

subcategories of ‘forgetting the goal,’ ‘order memory error,’ ‘spacing memory error,’

‘coordination memory error,’ ‘remembering incorrectly,’ and ‘not remembering.’

Further, Metzger recommends that like a detective, debugging requires the developers to focus

on facts, pay attention to unusual details, gather facts before hypothesizing, use a system for

organizing facts, state facts to someone else, start by observing, avoid guessing and following

emotionally comfortable hypotheses, keep a log of observations, assumptions, hypothesis, and

experiments, and follow look-once-and-look-well strategy.

Good software needs to have mechanisms for ensuring data consistency, fault tolerance, and

graceful handling of exceptions.

Code analysis, performance tuning, quality assurance, standard and regulatory compliance,

program comprehension, code archaeology, large teamwork, geographical distribution, legacy

systems, contractual constraints, risk engineering, data or technology migration, and disaster

recovery require very careful attention to minute details. Procedures of version control,

configuration management, requirement tracing, defect tracing, and document tracing also

require an attentive eye for details. Hence, software developers need to have the habit of repeated

verification and careful monitoring. For ensuring traceability, they need to regularly organize

and maintain records of their work. They need to develop the habit of seeking and bringing

clarity, precision, accuracy, completeness, and consistency in work, its documentation as well as

record.

www.manaraa.com

129

Some Theoretical Perspectives on Attention

Cognitive psychologists have been studying the phenomenon of attention for several decades.

Galotti gives an excellent account of their findings on this aspect [196]. We give a brief

summary in Annexure AN6. In the 1980’s, Anne Treisman showed that perceiving individual

features takes little effort or attention, whereas gluing features together into a coherent object

requires more. Software development is basically about gluing a large number of abstractions

related to application domain as well as programming environment into a coherent system.

Hence, it requires a significantly higher level of attention.

As per classical Indian philosophy, the Raja Yoga system deals with attention and concentration.

Yogi Ramacharaka (real name William Walker Atkinson) wrote a commentary on this system

[211]. In this commentary, he wrote that the word ‘attention’ is derived from the Latin words "ad

tendere," meaning "to stretch toward." It involves focusing of mind’s entire energy upon the

object, observing every detail, dissecting, analyzing, and drawing every possible bit of

information about the object. Attention is a prerequisite of good memory, and it also affords the

powers of association. It enables one to combine, associate, classify, etc., and thus create new

knowledge and expressions. It sharpens all other mental faculties.

According to Raja Yoga [211], after voluntary attention is firmly fixed, and held upon an object,

the mind will "do the rest." Voluntary attention is a very good substitute for genius, and unlike

genius, it can be sharpened through practice and perseverance. Attention requires thinking of,

and doing, one thing at a time. This habit is learnt through practice. In order to excel, one has to

“immerse oneself" in the work. In order to discover more details about an object, one needs to

engage in several iterations of (re)examinations and evolutionary expressions. Critique of the

work products of earlier iterations in the light of the re-examination of the object (problems),

progressively reveals newer details and affords new opportunities for richer descriptions and

other expressions.

Given the knowledge intensive nature of software development, and software development being

viewed as a continuous learning task [120] [148], it is no surprise that the evolutionary methods

of software development are manifestations of this approach.

www.manaraa.com

130

Pedagogic Perspective

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (ii) , Appendix A10), a large fraction of 71% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their attention to details. This was followed by research literature survey and mentoring

juniors (37% each), laboratory work (35%), laboratory work, and industrial training (33%).

Discussions with others and traditional knowledge transmission oriented lectures were found to

be least effective in this regard by the respondents.

In our proposed framework of pedagogies of engagements in software development education,

active (critique) as well as reflective engagements in Sections 8.3.1 and 8.3.3 respectively

contribute to the development of this competence.

Section 5.2: Software Developers’ Education for Development of

Critical and Reflective Thinking
What is Critical Thinking?

John Dewey (1909), considered by many as the father of modern critical thinking, posited that

critical thinking involves active, persistent, and careful consideration of a belief or supposed

form of knowledge in the light of the grounds which support it and the further conclusion to

which it tends.

Tama [212] saw it as “a way of reasoning that demands adequate support for one's beliefs and

an unwillingness to be persuaded unless support is forthcoming.”

American Philosophical Association posited that critical thinking is purposeful, self-regulatory

judgment that results in interpretation, analysis, evaluation, and inference, as well as

explanation of the evidential, conceptual, methodological, criteriological, or contextual

considerations upon which that judgment is based [213].

What is Reflective Thinking?

Kottkamp [219] defined reflection as “a cycle of paying deliberate attention to one’s own action

in relation to intention… for purpose of expanding one’s opinion and making decisions about

improved ways of acting in the future, or in the midst of the action itself.”

www.manaraa.com

131

Importance of Critical and Reflective Thinking for Software Development

In a study [191], almost unanimously, i.e., 99.3% of 1023 experts rated ‘abstract thinking and

reasoning’ as an important element of human intelligence. In our 2009 survey on required

competencies for software developers, twenty software professionals assigned critical and

reflective thinking an average rating of 2.6 on a scale of 0-4. A majority of 55% of these

respondents recommended it to be a critical or very important competency with respect to the

requirements of software developers' multi-faceted professional activities.

With reference to Appendices A2 and A3, ‘critical and reflective thinking’ of software

developers relates to the following competencies:

1 Reasoning: quantitative and verbal, and critical thinking: ability to question,

validate, and correct the purpose, problem, assumptions, perspectives, methods,

evidence, inference, reliability, relevance, criteria, and consequences

2 Analytical skills

3 Listening skills

4 Quality consciousness and pursuit of excellence

5 Constructive criticism

6 Research skills: methods of mathematical research, engineering research, design

research, and social science research

7 Reflection and transition between ladders of reflection. Meta-cognition

8 Self-acceptance, self-regulation, self-awareness, self-improvement: strength to

resist instant gratification in order to achieve better results tomorrow. Being honest

and forthright about one’s own limitations of competence. Tendency to avoid false,

speculative, vacuous, deceptive, misleading, or doubtful claims. Faith in reason and

review, inclination for verification and validation, respect for facts and data.

Awareness and regulation of automatic thoughts

9 Sensitivity towards global, societal, environmental, moral, and ethical issues, and

sustainability

10 Entrepreneurship, sense of mission, perseverance, commitment, self motivation,

dedication. Adaptability, flexibility, open-mindedness, and ability to multi-task

www.manaraa.com

132

Like all professionals, software developers also examine and interpret situations as per some

established paradigms of their profession. Software development is well recognized as a

knowledge-based activity. Hence, the behavior and performance is controlled by conscious

logical and analytical reasoning [157]. Such reasoning is invoked by beginners who start

performing a task, or by experienced persons who face a novel situation. In either case, working

at this level, we make two kinds of errors either because of resource limitation of the conscious

mind, or because of incomplete/incorrect knowledge. These errors are dominated by extrinsic

factors, and are difficult to detect and correct.

With specific reference to software debugging, Metzger cites research based findings regarding

errors in logical and analytical reasoning. Table 5.1 gives a summary of this collation. This table

is included to support our proposed framework of pedagogical engagements (Table 8.5).

Table 5.1: Some common errors in logical and analytical reasoning

1 Misdirected focus – tendency to focus on interesting rather than logically important aspects of the problem.
2 Storage limitation - storage capacity of conscious mind is extremely limited; hence, the presentation of problem

can have a great impact on the ability to store all the relevant information as conscious mind reasons through a
problem.

3 Information availability - people give too much weight to facts that readily come to their mind, and have a
tendency to ignore information that is not readily accessible.

4 Hypothesis persistence - preliminary hypothesis formed on the basis of incomplete data early, in the problem
solving process are retained in the face of additional, more complete data available later.

5 Selective support - people are often overconfident of their information. They justify their plans by focusing on
their information and often ignore information that does not support their plan.

6 Limited reviewing – people do not consider all the aspects during review. Even when they do, they fail to see
the aspects as an integrated whole.

7 Inadequate data – people are very likely to draw conclusions from inadequate data.
8 Multiple variables – people tend to predict extreme values for partially related variables.
9 Misplaced causality – people are likely to judge causality based on their perception of the similarity between a

potential cause and its effect.
10 Dealing with complexity – people have trouble thinking about complex processes that occur over time, and

prefer to deal with a single moment. They also have difficulty in dealing with nonlinearity and multiple side
effects.

11 Decision and probability – people don’t make good decisions in circumstances that require assessing
probabilities.

Only critical thinking can help in controlling such errors in logical and analytical reasoning at

various stages of software development. Further, Metzger recommends that like a detective,

debugging requires the developers to reason based on facts, validate assumptions, eliminate

www.manaraa.com

133

alternative hypotheses, reason inductively as well as deductively, and consider all

interpretations of the fact that seem to be relevant.

Hazzan and Tomakyo [124] highlight the importance of ability of reflection for software

developers. Evolutionary software development approaches including agile methods draw their

strength from the possibility of continuous reflection. Reflection helps in building new

perspective. The highest level of SEI's Capability Maturity Model (CMM) level 5 (Optimized

level) is characterized by focus is on continually improving process performance through both

incremental and innovative technological changes/improvements. Such improvements can only

be facilitated by reflective thinking. Similarly, the highest (5th) level of People CMM (P-CMM

optimizing level) also focuses on continuous improvement of workforce competence through

reflection on the quantitative management activities established at maturity levels 4.

Some Theoretical Perspectives on Critical Thinking

Minger’s Framework for Critical Thinking

In 2000, Minger [216] proposed a framework for critical thinking with special reference to

management education. Because there are many subjective aspects related to software

development, we find it relevant for the purpose of software developers as well. The four levels

of this framework are as follows:

i. Critique of rhetoric: argument analysis by checking for logical fallacy, soundness, and

validity.

ii. Critique of tradition: critical attitude towards actions in organizations, cultures, traditions,

and assumptions that underpin these beliefs.

iii. Critique of authority: being skeptical of one dominant view.

iv. Critique of objectivity: being skeptical of information and knowledge, recognition that

information and knowledge is never value free, and are continuously reshaped by the

structures of power within a situation. Implies the meta-cognitive process in critical

thinking.

These levels are included in proposed framework of pedagogical engagements in software

development education (Table 8.5).

www.manaraa.com

134

Paul’s Model of Critical Thinking

Paul sees it as a mode of thinking - about any subject, content, or problem - in which the thinker

improves the quality of his/her thinking by skillfully analyzing, assessing, and reconstructing it.

Paul proposed a taxonomy of Socratic questioning to facilitate critical thinking [214]. It included

six categories of questions: (i) questions of clarification, (ii) questions that probe assumptions,

(iii) questions that probe reasons and evidence, (iv) questions about viewpoints or perspectives,

(v) questions that probe implications and consequences, and (vi) questions about the question.

This model has been extended and also applied to engineering reasoning [215].

As per this model, the elements for critical thinking are: purpose, question at issue/problem to be

solved, concepts, information, assumptions, inferences, interpretations, points of view,

implications, and consequences. We also add the elements of context, criteria, and method to this

list. This model also lists some standards for critical examination of the elements. These include

clarity, specificity, relevance, logical, significance, consistence, breadth, depth, accuracy,

precision, fairness, and completeness. Critical thinking involves the processes of identifying,

analyzing, synthesizing, evaluating, reviewing, and considering the elements in the light of the

abovementioned standards. As per Paul, repeated engagements in these processes result in the

development of the intellectual traits required for critical thinking.

Paul’s extended model is included in our proposed framework of pedagogical engagements in

software development education as a checklist for guiding critical thinking during various stages

of software development (Section 8.3.1).

Some Theoretical Perspectives on Reflective Thinking

Critical thinking about ideas, object and world is not sufficient for creating meaningful systems.

In his classic book, Barnett [217] describes his notion of ‘critical being’ as including thinking,

self-reflection and action: “critical persons are more than just critical thinkers. They are able

critically to engage with the world and with themselves as well as with knowledge.” He

identified three domains of criticality: knowledge and ideas (critical reason), the experience of

self (critical reflection) and the action in the world (critical action).

www.manaraa.com

135

Moon [216] cites Ford (2005) who differentiated between the levels of pre-criticality, criticality

with the agenda of others without much challenge to the given frameworks, and criticality to

one’s own agenda. This calls for reflective thinking. As per the multiple intelligence theory of

Gardner, reflection is associated with the intra-personal intelligence. Costa and Kallick [203]

also emphasized on the ability to reflect to evaluate the productiveness of our own thinking.

In 1979, Bateson proposed a model of logical categories of learning. He viewed that

progressively deeper levels of learning require change of action, assumptions, or context and

commitment. The first level of learning is about making minor fixes or adjustments in action.

The second level of learning requires reflection to challenge one’s beliefs and assumptions. This

facilitates new insights for changing the rules and making major changes. The third level of

learning requires even deeper reflection to bring about a shift in understanding our context,

values, point of view, and commitments.

Schön [218] defined reflective practice as the practice by which professionals become aware of

their implicit knowledge base and learn from their experience. He introduced the following three

notions:

1. Reflection in action: reflect on behavior as it happens, so as to optimize the immediately

following action.

2. Reflection on action: reflecting after the event, to review, analyze, and evaluate the situation,

so as to gain insight for improved practice in future.

3. Ladders of reflections: action, and reflection on action make a ladder. Every action is

followed by reflection and every reflection is followed by action in a recursive manner. In

this ladder, the products of reflections also become the objects for further reflections. This is

included in our proposed framework of pedagogical engagements in software development

education (Table 8.9).

Further, Schön [220] posited that the mental habit of reflection and ability to move across the

ladders of reflections is central to professionals’ approach to their work. He saw ‘design’ as

‘reflection in action’ in which changing a given situation takes precedence over the interest of

understanding it. He also observed that for a designer, the phenomena/situation continues to

www.manaraa.com

136

change during their work. Table 5.2 summarizes some of the key observation of Schön, in this

regard.
Table 5.2: Some key aspects of Schön’s perspectives on ‘design’ as ‘reflective action’

Designers begin with situations that are at least partially uncertain, ill-defined, complex, and incoherent.
Designers construct and impose a coherence of their own. Subsequently they discover consequences and
implications of their constructions – some unintended – which they appreciate and evaluate, sometimes leading
to reconstruction of initial coherence – a reflective conversation with material of a situation. They spin out a
web of moves, consequences, implications, appreciations, and further moves. Each move is a local experiment
that contributes to the global experiment of reframing the problem. Moves create new problems to be described
and solved. Moves have expected/or unexpected consequences in many design domains and implication
bindings on later moves. In this process, designer reflect in three dimensions:
1. The domains of languages in which the designers describe and appreciate the consequences of their

moves, e.g., use, technology, form, cost, scale, character, representations, quality, standards….
2. The implications they discover and follow. Designers evaluate their moves in terms of:

a. Desirability of their consequences.
b. Conformity to/violation of implications of earlier moves.
c. Their appreciation of new problems or potentials they have created.

3. Their changing stance towards the situation with which they converse: Can/might, should/must, what if,
unit/total, moves/appreciation of outcomes, and tentative adaption of strategy/commitment.

Relating software engineering to Schön’s work on reflective thinking and professions (1987),

Hazzan and Tomakyo [124] posit that mental habit of reflection and ability to move across the

ladders of reflections are closely associated with software engineering processes. They also give

examples of such ladders of reflection for soft engineering tasks. Further, one of the key

principle in the agile manifesto is, “at regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly.”

Proposing a model for reflective design, Phoebe Sengers et al [221] recommend that designers

should use reflection to uncover and alter the limitations of design practice, to re-understand

their own role in the technology design process, and to support users in reflecting on their work

and lives. Stones [222], Ginsburg [223], and Lasley [224] have identified the following elements

of reflection: (i) practical experience, (ii) meaningful knowledge base of subject, context, and

users, (iii) interaction with others, (iv) philosophical awareness and understanding of what

constitutes good practice, and (v) strong problem solving skills. These elements are embedded in

various dimensions of our proposed framework of pedagogical engagements in software

development education (Section 8.3).

www.manaraa.com

137

Reflection is not an automatic activity. It requires controlled thinking. Students do not usually

automatically reflect well upon their actions and tasks in various assignments. This limits not

only the quality of their assignments, but their overall learning as well. A small post-assignment,

reflective activity can amplify their learning from the same assignments.

Borton [225] proposed a three-level model for reflection through three stem questions: what?, so

what?, and now what? Many other later frameworks by Gibbs (1988), John (1994), Smyth

(1989), and Kim (1999) are manifestations of this framework. Borton’s model is included in our

proposed framework of pedagogical engagements in software development education (Section

8.3.3).

Pedagogic Perspective

Many studies have showed that multi-paradigm disciplines like humanities, social sciences, and

psychology had a positive influence on students’ self reported growth in critical thinking skills.

However, Li et al [226] have found that self perceived gains of students’ critical thinking skills

most significantly depended upon the degree of their integration into the academic and social

community of the university rather than their discipline of study The other significant influencing

factors were found to be the quality of lower division courses. Gender and quality of advising

were found to be insignificant factors in this regard. The quality of teaching was found to be a

very significant factor for influencing their academic integration. The quality of curriculum was

found to be the most significant factor for influencing their social integration.

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (ii) , Appendix A10), half of them felt that as compared to all

other kind of academic engagements, their student projects did much better to develop their

critical and reflective thinking. Critical and reflective thinking was also felt to improve through

engagements of thinking oriented lectures (48%), discussions with faculty and other students

(44% each), and research literature survey (42%).

Engagements in homework, knowledge transmission oriented lectures, written examinations, and

industrial training were felt to be least effective with respect to development of critical and

www.manaraa.com

138

reflective thinking. Adding an element of reflection after all their engagements can enhance the

perceived effectiveness of many low rated engagements as well. In our proposed framework of

pedagogical engagement, reflective engagements seek to achieve this goal. We have also

discussed some such instructional interventions discussed in Section 9.1.3.

Section 5.3: Software Developers’ Education for Development of Creativity

and Innovation
What is creativity?

In a study [191], a large fraction of 59.6% among 1023 experts rated ‘creativity’ as an important

element of human intelligence. It was rated much above some other elements like ‘goal

directedness’ or ‘achievement orientation.’ Costa and Kallick [203] have included ‘Creating,

Imagining, and Innovating,’ as one of sixteen mental habits that characterizes intelligent people

when they are confronted with problems, the resolution to which are not immediately apparent.

As per Sternberg’s theory of tri-archic intelligence, creative ability along with practical and

analytical abilities together define human intelligence. He explained creativity as the ability to

apply problem solving processes to novel and unfamiliar problems.

Divergent thinking, i.e., the ability to generate new ideas is at the core of creative ability.

Creativity is generating new thoughts, invention is transforming the creative thoughts into novel

tangible ideas, and innovation is the first novel application of those ideas in a specific context.

Osche [227] sees creativity as bringing something into being that is original (new, novel,

unusual, unexpected) and valuable. She posited that the most important criterion was the

willingness of creative people to work hard and put in the extra time necessary to turn out a

quality product in a given domain. Albert Rothenberg associated creativity with, ‘Janusian

thinking,’ i.e., the ability to conceive and hold two or more contradictory or opposite thoughts

simultaneously. He also posited that the creative process is a matter of continually separating and

bringing together, bringing together and separating, in many dimensions: affective, conceptual,

perceptual, volitional, and physical.

www.manaraa.com

139

While, mystical view of creativity attributes it to divine inspirations, pragmatic view believes

that some techniques can stimulate creativity. Psycho-dynamic perspective posits that it arises

from the tension between conscious reality and unconscious drives. Social-personality attributes

creativity to personality variables, motivational variables, and the socio-cultural environment.

Evolutionary approaches suggest that like the process of evolution, blind generation of a large

number of ideas should be followed by selective retention. Confluence approach seeks to

integrate various perspectives.

Importance of Creativity for Software Development

In our survey of fifty-seven software professionals (Table 4.2), 66% respondents included

‘innovation and research’ as one of the most important activities that must be included in the

main goals for new curriculum for the future generation of software developers. In another

survey conducted by us in 2009 on required competencies for software developers, twenty

software professionals assigned creativity and innovation an average rating of 3.0 on a scale of 0-

4. A large majority of 80% of these respondents recommended ‘creativity and innovation’ to be a

critical or very important competency with respect to the requirements of software developers'

multi-faceted professional activities.

With reference to Appendices A2 and A3, creativity and innovation of software developers also

relates to the following:

1 Design skills

2 Imagination: storyboarding, extrapolation, visualization, cognitive flexibly:

ability to transfer and models of solutions of one situation/field to another, multi-

perspective thinking, lateral thinking, inductive thinking, out-of-box thinking,

unstructured thinking

3 Complex problem solving

4 Research skills: use and integrate methods of mathematical research, engineering

research, design research, and social science research

5 Experimentation skills

6 Entrepreneurship

www.manaraa.com

140

Usually, software design projects require more than a synthesis of previously learned knowledge.

Design is primarily an inductive process. This process of reasoning is non-deductive: there is no

closed pattern of reasoning to connect the needs, requirements, and intentions with a form of

software. To succeed as software designers, computing students need to be well trained in

inductive reasoning.

Software has grown much beyond the simple interfaces to information. Much of software is

increasingly becoming concerned about user’s experience.

In the last two decades, there has been an increasing attention on user interface design with a

focus on user experience. Software companies need creative people in order to do the high-level

design of new innovative software products. They need creative minds to design the new

procedures and tools that make the development of new, ever-more-complicated software

applications easier. A reductionist and linear thinking give evolutionary incremental

advancements; revolutionary advancements come from non-linear and holistic thinking, and

intuition. Software companies require both kinds of mindset. Non-linear thinking is necessary for

generating the ideas to break current boundaries. However, linear mindset is necessary for

executing these ideas.

With reference to the complex problem solving discussed in section 4.5, the aspects of problem

solving or decision making process in which creativity can be applied are the following: (i)

restructuring the problem/decision task, (ii) generating alternatives, and (iii) selecting decision

criteria and strategy, and evaluating alternatives [230]. These three are included in our proposed

framework of pedagogic engagement (Table 8.5).

Restructuring the problem/decision task requires holistic perception of problem/issue and

involves several iterations of redefining the problem and/or goals. Hence, systems thinking

discussed in Section 6.3 and reflective thinking discussed in Section 5.2 play a very crucial role

in finding creative solutions. One of the software engineers, we interacted with, commented, “a

problem is not a problem until it is revised again and again.” Another expressed that “problem

www.manaraa.com

141

definition is a thing which people generally don’t take interest in. People start running for the

different solutions without even having a mere idea of the problem.” An entrepreneur reflected,

“problem formulation does not end, at least till a solution is achieved, and sometimes it just goes

on and on by improving upon the found solution.”

Sternberg’s propulsion theory of creativity

As per Sternberg’s propulsion theory of creativity [229], creative contributions are attempts to

propel a field from wherever it is to wherever the creator believes the field should go. He

proposed following four-level taxonomy of creative contributions.

1. The lowest level consists of paradigm preserving contributions that leave the field

where it is through replication.

2. The next creative level is of paradigm forwarding contributions that move the field

forward in the direction it already is going. This movement may be forward

incrementation or advance forward incrementation.

3. A higher level of creative contributions is paradigm rejecting. Such creations move

the field in a new direction from an existing or preexisting point. It involves

redirection or reconstruction.

4. The highest levels of creative contributions are also paradigm rejecting. This

rejection is not to redirect the field from an existing old point, but to restart the field

in a new place, and move in a new direction from there. It requires re-initiation

and/or integration. Inter-disciplinary approaches stimulate such thinking.

These levels are included in our proposed framework of pedagogical engagements in software

development education (Table 8.5).

Pedagogic Perspective

Several techniques have been developed for stimulating the mind for generating alternative

ideas. These include Osborne’s checklist, SCAMPER (Substitute, Combine, Adapt, Modify or

Magnify, Put-to-another-use, Eliminate, Rearrange or Reverse), and Edward de Bono’s concept

of lateral thinking and ‘po’ (provocative operation) emphasizing on suppose, possible,

hypothesize, and poetry, etc., [231]. Brainstorming also helps a great deal creative thinking.

www.manaraa.com

142

Altshuller [232] studied hundreds of thousands of patents, and proposed a powerful Theory of

Inventive Problem Solving (TRIZ/TIPS). This theory identified 40 recurring principles that were

repeatedly being applied by the inventors in different fields. Table 5.3 gives a brief list of these

40 principles. Subsequently, this technique has become very popular among a large number of

researchers. Since 1996, ‘The TRIZ journal’ is being published every month at triz-journal.com.

TRIZ principles have also been found to be metaphorically manifested in software design [233-

234]. Researchers have also attempted to extend these principles by adding some more principles

that are especially relevant for software, especially because of its material-less nature [235].

Some of these additional principles include metaphor, scope, evolution, privacy, usability,

synchrony, etc.

Table 5.3: Principles of Theory of Inventive Problem Solving (TRIZ/TIPS)

1. Segmentation
2. Taking out
3. Local quality
4. Asymmetry
5. Merging
6. Universality
7. Nested doll
8. Anti-weight
9. Preliminary anti-

action
10. Preliminary action

11. Prior cushioning
12. Equi-potentiality
13. The other way round
14. Spheroidality or

curvature
15. Dynamics
16. Abundance
17. Another dimension
18. Mechanical vibration
19. Periodic action
20. Continuity of useful

action

21. Rushing through
22. Blessing in disguise
23. Feedback
24. Intermediary
25. Self-service
26. Copying
27. Cheap short-lived objects
28. Mechanics substitution
29. Pneumatics and

hydraulics
30. Flexible shells and thin

films

31. Porous materials

32. Colour change
33. Homogeneity
34. Discarding and

recovering
35. Parameter change
36. Phase transition
37. Thermal expansion
38. Strong oxidants
39. Inert atmosphere
40. Composite materials

Kowalick identified seventeen secrets of inventing new products [236]. Some of these are (i) the

real problem to be solved is rarely the same as the problem initially posed, (ii) technical systems

often have many functions, some of which are useful, and others that are useless or even

harmful, (iii) pruning a technical system is one of the highest forms of creativity, and (iv) solving

technical design conflicts by making tradeoffs is not as useful as stating the objective in the form

of a ‘contradiction,’ and meeting the contradictory requirements by design.

Metaphors and Analogies

Altshuller [232] also made the following observations: (i) problems and solutions were repeated

across industries and sciences, (ii) patterns of technical evolution were repeated across industries

and sciences, and (iii) innovations used scientific effects outside the field where they were

developed. Moreover, since software serves multiple industry verticals, there is ample scope for

www.manaraa.com

143

cross-pollination of ideas and best practices. Cross-industry and multi-domain exposure fosters

creative thinking, if one has an open mind. Using metaphors helps designers and developers to

think around user goals and assumptions. Understanding customer expectations in terms of

another common device or appliance that everyone uses may help them to design a better

product interface that improves user adoption and reduces training time. However, metaphors

and analogies need to be used with care as they come from a specific context, and hence, can

sometime lead to serious misunderstandings in changed circumstances. The education program

must encourage the development of metaphorical thinking. Arts and Literature related courses

can make a huge contribution in developing such thinking.

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (ii), Appendix A10), a large fraction of 82% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their creativity and innovation. This was followed by thinking oriented lectures (53%),

research literature survey and discussion with other students (45% each), laboratory work and

discussion with faculty (39% each), and mentoring juniors (31% each). Written examinations,

knowledge transmission oriented lectures, and homework were found to be least effective in this

regard by the respondents.

Amoussou et al [237] have identified and collated the following activities for enhancing

creativity and design in computing courses: (i) reflections on sources of inspiration including

brainstorming techniques, (ii) reflections on bias that may affect creativity and design, (iii)

identify and define the steps of the design process and provide design examples, (iv) identify and

define criteria and constraints, (v) practice methods of evaluating options, (vi) reflect on norms

of communication, and (vii) discuss ethics within the context of design.

Lassig [238] has proposed to adapt a balanced view about six environmental conditions to

inculcate computing students’ creativity. These are: (i) a supportive and nurturing environment

that also provides obstacles and challenges, (ii) some constraints are helpful for

novel/unfamiliar tasks that are to be performed with limited knowledge/skills, (iii) evaluation

generally inhibits creativity, when it must be done, the criteria should be clear, self evaluation

www.manaraa.com

144

can also facilitate creativity, (iv) if the task is not too difficult, competition can stimulate a

person who is initially not very motivated, however, if the task is difficult or the person is

already motivated, competition can create anxiety and inhibit creativity, (v) enthusiastic

cooperation does not automatically lead to more creative ideas, and (vi) role models are helpful

for enhancing creativity, only when they encourage independent thinking.

We have included theories and techniques on creativity and innovative thinking in the course

content of two undergraduate elective courses: (i) human aspects for information technology and

(ii) software arteology. Many students have reported that it helped them to expand their creative

thinking for their software projects. Later in Section 8.3.1., we support our proposed framework

of pedagogical engagements in software development education with techniques of SCAMPER,

lateral thinking, 40 TRIZ/TIPS principles and further extensions, as well as the activities collated

by Aoussou et al and the environmental conditions suggested by Lassig, as discussed above.

Section 5.4: Chapter Conclusion
In this chapter we argued that the multifaceted basic competence for software developers can

only be used and refined with the help of habits of mind that drive competence. These habits

include attention to detail, critical and reflective thinking, and creativity and innovation. As per

our studies discussed in this chapter, student-centric pedagogical activities, especially projects

have been found to be most effective for development of these habits. The only way to inculcate

these habits is by engaging them in such tasks that require them to use these habits. Only through

repeated usage can these be enhanced. Development of these habits has to be put as a core

learning outcome of all courses. We further discuss this issue in the seventh, eighth, and ninth

chapters. In the next chapter, we discuss competency conditioning attitudes and perspectives that

help in enhancements and meaningful application of these habits.

www.manaraa.com

145

CHAPTER 6: SOFTWARE DEVELOPERS’ EDUCATION FOR

DEVELOPMENT OF COMPETENCY CONDITIONING

ATTITUDES AND PERSPECTIVES

Senge, an eminent thinker on system thinking posited that true learning should be transformation

of spirit and mind, not merely an accumulation of information or knowledge. According to

Bigg’s 3P model (involving three stages of Presage, Process, and Product) [239], students’

perceptions of their learning environment, in light of their motivations and expectations,

determine how situational factors influence their approaches to learning and learning outcomes.

Research indicates that students’ learning strategies, academic performance, understanding, and

academic integration, are linked to their attitude and epistemological perspectives. These attitude

and perspectives may either enhance or constrain the scope and nature of their learning [240-

241]. These vary according to age, past performance, and contextual factors like home

environment, pre-college schooling experience, college experiences, and educational level.

Attitudes and perspectives also affect a professional’s motivation and ability to practice. Hence,

it is most important to make efforts to help students to form enabling attitudes and perspectives.

The following list enumerates the recommended attitudes and perspectives especially with

reference to the requirements of the profession of software development:

1. Curiosity

2. Decision making perspective

3. Systems-level perspective

4. Intrinsic motivation to create/improve artifacts

In the following sections we discuss the rationale as well as explore theoretical and empirical

grounds of these traits in multiple disciplines.

www.manaraa.com

146

Section 6.1: Software Developers’ Education for Development of Curiosity
Importance of Curiosity for Software Developers

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘curiosity’ an average rating of 3.15 on a scale of 0-4. An overwhelming

majority of 90% of these respondents recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities.

With reference to Appendices A2 and A3, curiosity of software developers also relates to the

following:

1 Interest in ‘how things work’ and ‘how to create things that work,’ interest in the

power of technology,

2 Ability to see things as they are, observation skills

3 Broader understanding and interests

4 Respect for the classic authors of the great books

5 Openness to constructive criticism

6 Value and readiness for lifelong learning.

7 Active listening skills

8 Ability to develop a very good understanding of domain specific vocabulary, its

semantics, and established thinking patterns

9 Experimentation skills

10 Knowledge of contemporary issues and business practices

11 Knowledge of physical and natural world. Intercultural knowledge

12 Mentoring

13 Research skills

14 Self-awareness

15 Inclination for verification and validation, respect for facts and data

Curiosity is a highly important trait for software developers, and they need to proactively remain

ready and engaged in lifelong learning because of following reasons:

www.manaraa.com

147

1 The applications domains are highly diverse and continuously evolving,

consequently software developers have to continuously learn more about these

domains, mostly through self-learning, and work experience often without any

long term formal education in the concerned domains

2 Various technological innovations and changing social trends are continuously

and rapidly reshaping user expectations, understanding these continuously

evolving expectations is very crucial for software developers

3 The development technology and platforms keep changing constantly often

without proper documentation and examples, hence, the developers need to

explore the useful enhancements and changes themselves again usually without

much formal training

4 The developers usually have to understand other developers’ work in order to

extend, debug, maintain, integrate and/or re-engineer it

5 Creation of “simple and idiot-proof system interfaces” requires them to be

curious about how an average person approaches technology, and

6 There can be unintended consequences and risks of creating software

inappropriate or at odds to its real purposes.

Metzger recommends exercising curiosity during the debugging process to locate other defects of

the same root cause, and also defects of other kind [157].

In olden days the software developers main focus was on learning how computing systems work

so that they can be efficiently utilized for meeting well known and understood computing needs.

Fast and reliable internet access, multimedia rich client, and mobile computing have opened new

possibilities for exploring hitherto unknown computing needs. Hence, today’s software

developers need to be deeply interested in learning not only about the power of information and

software technology, but also needs and even possibilities of human beings.

Expanding user expectations, changing user processes, evolving domain knowledge and

understanding of users’ needs, growing power of information technology, and rapid

transformation of development platforms make software development a highly iterative and

www.manaraa.com

148

evolutionary process. In order to properly respond to these factors, the developers need to have

open mindedness. Their work needs good observation skills and strong ability to see things as

they are. Hence, software developers also need to have broader understanding and interests.

Only highly curious software developers are able to develop very good understanding of domain

specific vocabulary, its semantics, procedures, and established thinking patterns.

Active listening is crucial for requirement analysis and all other form of knowledge sharing with

various stakeholders in the process of software development. Only a curious mind can be an

active listener.

Some Theoretical Perspectives on Curiosity

What is Curiosity?

David Hume explained curiosity in his Treatise of Human Nature as “that love of truth, which is

the source of all our enquiries.” Brand interpreted Hume’s work on curiosity [242]. Benedict

[243] viewed curiosity as a sign of the rejection of the known as inadequate. Further, she posits

that curious people seek and manifest new realities and reshape their own identities and their

products. Reio and Callahan view curiosity as a state of emotional arousal, induced by a

conceptual conflict or uncertainty that induces information seeking or exploratory behaviors to

relieve the uncertainty. It results in the restructuring of knowledge structures or learning [244].

Annexure AN8 gives some more important theoretical perspectives on curiosity: Arnone [245]

and Peterson et al [246].

While curiosity is a state commonly experienced by all people, it is also a trait which is much

more typical of some people than others [247]. With reference to the importance of curiosity,

Einstein said, “I have no special talents. I am only passionately curious.” Curiosity increases

learners’ attention. Curious people can challenge their views of self, others, and the world with

an inevitable stretching of information, knowledge, and skills. Curiosity is closely associated

with love for learning which is necessary for systematically mastering new skills and bodies of

knowledge through formal education or self-learning.

www.manaraa.com

149

Curiosity is a fundamental motivational component for all openness facets including openness to

experiences and open mindedness. Open mindedness involves multi-perspective thinking and

suspension of judgment. Only in the state of open-mindedness one is able to recognize one’s

misconceptions and the limitations of one’s knowledge. Curiosity gives one the ability to weight

all evidence with fairness, and if required, change one’s mind in the light of new evidence. It is

recognized as a source of critical thinking and also creativity.

Curiosity stimulates an inquiry within the existing framework that leads to acquisition of more

information. A higher level of curiosity can also stimulate an inquiry about the framework itself,

and results in evolution of perspective. At such level, a curious mind can get engaged in evolving

a larger meaning in life beyond the immediate and short term interests of the self. Research

suggests that curiosity is an important process for psychological well-being [248].

Diversity of Curiosity

A reinterpretation of Anderson and Krathwohl’s taxonomy of knowledge types [134], Carson’s

taxonomy of knowledge types [249], and also Gardner’s theory of ‘multiple intelligence’ [155]

help us to understand the variations of the curiosity of different persons. Depending upon their

interest and abilities, persons may have their strengths or weaknesses with respect to the

categories of all these classification systems. From the perspective of Anderson and Krathwohl’s

taxonomy of knowledge types, persons may differ with respect to their (i) factual curiosity:

inquisitiveness about factual knowledge, (ii) conceptual curiosity: inquisitiveness about

conceptual knowledge, (iii) procedural curiosity: inquisitiveness about procedural knowledge

(mental and psychomotor), and also (iv) meta-cognitive curiosity: inquisitiveness about meta-

cognitive knowledge. Software developers need to have curiosity of all these types. In addition,

in order to develop useful software, they also need to have a high level of contextual curiosity:

inquisitiveness about the evolving context and expanding context of software technology.

Using Carson’s taxonomy [249] as the lens to differentiate between different types of curiosities,

we can see the categories of (i) empirical curiosity: inquisitiveness about the environment and

experiences, (ii) rational curiosity: inquisitiveness about abstractions, relations, and quantities,

(iii) conventional curiosity: inquisitiveness about manmade conventions e.g. language, notation,

www.manaraa.com

150

protocol, rule, law, standard, guidelines, procedures, etc., (iv) conceptual curiosity:

inquisitiveness about concepts, theories, patterns, design, (v) cognitive curiosity: inquisitiveness

about mental procedures, algorithms, heuristics, (vi) psychomotor curiosity: inquisitiveness

about body control, (vii) affective curiosity: inquisitives about emotional and aesthetic aspects,

(viii) narrative curiosity: inquisitiveness about understanding human condition with human

perspective, and (ix) spiritual curiosity: inquisitiveness about the spiritual (not to be confused as

religious) side of human experience and life. All these curiosities, except the last one, are

beyond any doubt highly relevant to software developers’ work. It can also be argued that

spiritual curiosity helps in overall growth of any person and helps them to understand larger

purpose and meaning of life, which helps them to deal with work related dilemmas and issues of

responsibility.

Levels of Curiosity

Epistemological beliefs of the learner about ‘what is knowledge’ and ‘what are the roles of a

learner, teacher, and peers in the learning process’ influence their curiosity as well as learning

process. In 1970’s, Perry [250] proposed a nine stage model of cognitive and moral

development. The initial five stages are purely cognitive, whereas ethical aspects also get

integrated in the later four stages. These nine micro level stages are also broadly grouped into

four macro level stages. At the level of ‘dualism,’ people believe things are right or wrong and

have faith and commitment to truth and knowledge as stated by genuine authorities. At the

second macro level stage of ‘multiplicity,’ the diversity in thinking is recognized, but the person

does not feel the need to commit to any specific belief or mode of thinking. The third macro-

stage is ‘relativism.’ At this stage, the person sees the context sensitivity of knowledge. The final

macro-stage is ‘commitment,’ at which the learners feel the need to take positions and commit to

them.

As per Perry’s model, the movement through this stage is not automatic and progressive. One

can undergo a long term pause at some position, or escape the progression by developing

competence in some specific field, or even regress to lower position without one’s awareness.

Felder and Breta [251], as well as West [252], provide a comparison between Perry’s model and

www.manaraa.com

151

some other similar models proposed by Belenky et al in 1986, Baxtor Magolada in 1992, and

King and Kitchener in 1994.

We have re-interpreted Perry’s model of intellectual and ethical development as a nine stage

model of development of curiosity. Our re-interpretation is given in Table 6.1.

Table 6.1: Re-interpreting Perry’s nine stage model of intellectual development as

nine stage model of curiosity development

Dualism
1. Basic Dualism: Persons at this cognitive level believe that right solutions (knowledge and also values) to all

problems are already known to ‘genuine’ authorities. Their curiosity is limited to learning right and specific
solutions (facts and formulas) from authorities.

2. Full Dualism: Persons believe that solutions to all problems are already known to authorities, but some
‘genuine’ authorities may differ. Their curiosity is even more strongly focused on learning only the right and
specific solutions from authorities by ignoring all other perspectives.

Multiplicity
3. Early Multiplicity: Persons believe that all problems are solvable. Further they think that even if ‘genuine’

authorities do not know the solutions to all problems, they know the right ways to find the correct solutions.
Their curiosity expands to learn the right concepts and specific procedures, and ways of finding the correct
solutions from authorities.

4. Late Multiplicity: Persons believe that some problems are unsolvable. Their curiosity is expanded to know
what different experts say about such problem. However, they believe that one can choose any solutions for
such problems as per one’s choice because there are no non-arbitrary bases to determine what is right.

Relativism
5. Contextual Relativism: Persons believe that all solutions must be evaluated in context and relative to their

support by real evidence and logic. Their curiosity expands to learn to differentiate between weak and strong
evidence, and to learn the analytic methods to evaluate solutions in the light of context, logic, and evidence.

6. Pre-Commitment: Persons start to see the need of integrating intellect with ethics for finding solutions in a
contextual relativistic world. Their curiosity expands to learn to explore alternatives in open-ended problem
solving, to make judgments based on personal and articulated standards, and be open to changing
circumstances. However, persons at this level do not yet well consider or feel committed to their standards.

Commitment
7. Initial Commitment: Person makes actual commitments in personal directions and values as standards for

open-ended problem solving and decision making.
8. Challenge to commitment: Persons experience the implications of their chosen commitments and standards,

and also explore the issues of responsibility. Their curiosity expands to learn to evaluate the consequences and
implications of their commitments, and to resolve conflicts.

9. Developing commitments: Persons develop a sense of self in both commitments and style and realize that
commitment is an evolving activity. Their curiosity expands to learn to evolve and unfold their commitments
in an ongoing manner.

Does Education Arouse Curiosity?

Interpreting Hume’s view on curiosity, Brand concludes [242] that education is not so much

about imparting the content of an inquiry, but has more to do with inquiry, process, activity, and

finally a sense of pride that comes from ownership. He also observed that unlike content,

www.manaraa.com

152

curiosity is elicited rather than imparted. He quotes Hume, ‘‘What is easy and obvious is never

valued; and even what is in itself difficult, if we come to the knowledge of it without difficulty,

and without any stretch of thought or judgment, is but little regarded.”

Commenting on the inadequacy of modern education methods to promote curiosity, Einstein

said, “It is, in fact, nothing short of a miracle that the modern methods of instruction have not

entirely strangled the holy curiosity of inquiry.” Studies show that most under-graduates enter

college at a Perry level 3, and graduate at a level 4 showing an average advancement only by 1/3

of a unit on a nine-point scale in four years [253]. Longitudinal studies have also shown that in

the first three years, there is not much forward movement in the engineering students’ level as

per Perry’s nine stage mode [254-255]. To understand the reasons of this phenomenon, in 2005,

we carried out an empirical study through a detailed questionnaire on nature of questioning in

the class. Twenty-nine undergraduate students of computer science and engineering and

information technology gave their responses. A summary of their responses is given in Appendix

A9.

Appendix A9 suggests that usually the classroom teaching is not oriented towards arousing or

raising the level of curiosity. Consequently, we posit that higher education must motivate

students to raise the levels of their curiosity on this hierarchy. Hence, Perry’s model (Table 6.1)

is included in our proposed framework of pedagogical engagements in software development

education (ref: Section 6.5 and Table 8.2, second column).

Enabling and Inhibiting Factors

Peterson et al [246] give an overview of the research on enabling and inhibiting factors that

influence curiosity. Novelty, complexity, uncertainly, and conflict may work both ways

depending upon the person’s appetite. Arnone [245] identified six instructional elements that can

arouse curiosity: incongruity, contradictions, novelty, surprise, complexity, and uncertainty.

Arnone [245] also suggested some instructional strategies for fostering curiosity among students.

Peterson et al posited that perceived probability that the knowledge is attainable, and perceived

probability that personal resources can be expanded by integrating new knowledge, determine

www.manaraa.com

153

the level of curiosity. The fueling factors also include increased knowledge and awareness of

knowledge gaps in areas that are personally meaningful and engaging [246]. Impediments

include anxiety, overconfidence, excessive self focused attention, dogmatism, low cognitive

resources, internal pressures like guilt and fear, external pressures like threat, punishment, and

tangible rewards or pathological conditions. These suggestions are embedded in our proposed

framework (Section 8.2.1).

Pedagogical Implications

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (iii), Appendix A10), a large fraction of 66% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their ‘curiosity.’ This was followed by research literature survey (62%), thinking

oriented lectures (42%), laboratory work (38%), discussions with faculty, discussion with peers,

and industrial training (36% each), and mentoring juniors (32%). Written examinations and

discussion with others were found to be least effective in this regard by these respondents.

Given the nature of the problems, software developers need to solve, computing students need to

be repeatedly engaged in asking questions like: (i) What (else) can be technology enabled? (ii)

(ii) How can we do this using available and forth coming technology? (iv) What resources are

needed? (v) Is this approach efficient, effective, and/or appropriate? (vi) What is the scalability

and sustainability of this approach? (vi) What are unintended consequences and risks? Further,

negatively phrased question (why not?...) are also equally important.

Hence, in order to arouse curiosity of various kinds and at various levels, the education process

has to be necessarily made student-centric where they learn to ask variety of questions as per

Anderson and Krathwohl’s taxonomy, Carson’s taxonomy, and also Perry’s levels. Repeated and

continued engagement in challenging questions, open-ended problem solving and projects,

collaboration, community work, mentoring, etc., offer such opportunities. Finally, in order to

continuous develop and evolve students’ intellect, and develop their zeal for excellence and

elegance, their curiosity in great works of literature and arts should also be developed.

www.manaraa.com

154

Section 6.2: Software Developers’ Education for Development of Decision

Making Perspective
Importance of Decision Making

Decision making is about choosing intelligently among less than perfect possibilities.

Professional decisions are broadly classified in three categories according to their scope: (i)

strategic decisions concern general direction, long term goals, philosophies, and values; least

structured and most imaginative; most risky and with most uncertain outcome, (ii) tactical

decisions support strategic decisions; tend to have medium range, medium significance, with

moderate consequences, (iii) operational decisions support tactical decisions; are structured and

often made with little thought; impact is immediate, short term, short range, and usually low

cost; can be preprogrammed, pre-made, or set out clearly in policy manuals.

With respect to software development, the developers broadly need to take decisions on two

issues:

(i) What is to be (to visualize the product) and

(ii) How to deliver what is certain to be in the product.

These can be viewed as product decisions, project decision, and process decisions. In this

context, it is very important that operational decisions in all these categories are consistent with

tactical and strategic decisions.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned decision making skills an average rating of 2.85 on a scale of 0-4. A large

majority of 75% of these respondents recommended decision making to be a critical or very

important competency with respect to the requirements of software developers' multi-faceted

professional activities. Recently, we also concluded a poll among software professionals that

was conducted for over one year. The respondents were asked to identify the weakest area

addressed by engineering education in computing related disciplines. The offered choices were

conceptual knowledge, decision making ability, learning ability, procedural knowledge, and

thinking ability.

www.manaraa.com

155

With reference to Appendices A2 and A3, decision making competence of software developers

also relates to the following:

1 Perseverance and commitment

2 Integrity and authenticity

3 Accountability and responsibility

4 Project planning and management, project scoping, estimation, process planning and

management

5 Entrepreneurship

6 Persuasion and negotiation skill

7 Sense of urgency and stress management

Fifty-eight professional responded to our poll. Around 30% of the respondents’ age was above

35 years, and around 50% were in the age group of 25 to 34. 65% of the respondents worked

for large or enterprise size organizations and remaining worked for small or medium size

organizations. Responsibility allocation among the respondents varies as 64% in engineering,

12% in consulting, 8% in academics, and 4% each in creative, marketing, and operations. The

distribution of their choices is as follows:

Decision making ability 41%

Thinking ability 24%

Procedural knowledge 15%

Conceptual Knowledge 15%

Learning ability 3%

A very large fraction of the responding software professionals consider that the weakest

contribution of engineering education in computing related disciplines is in the area of

developing students’ decision making ability.

Decision making requires a decision making perspective which is complementary but

independent of intrinsic motivation to create/improve artifacts, curiosity, and systems level

perspective. It is done in the light of one’s personal as well as organization’s values, and is

highly affected by one’s sensitivity and awareness of socio-economic and other broader

concerns. Decision making perspective requires taking decisions based on information and

www.manaraa.com

156

evaluation of alternatives against objectives. In order to strengthen students’ decision making

ability, software development education has to sensitize its students to multi-dimensional aspects

and also some well known techniques of decision making.

The decision making process requires software teams to blend short term as well as long term

perspectives. Long term perspective focuses on sustainability that includes concerns for stability,

efficiency, and scalability. Often senior management is found expressing their concern about

new software developers’ tendency to rush the problem by making a solution that addresses the

operational problems of the customer without looking for strategic solutions.

Decision Deficiencies

Salas and Klein [256] have identified five forms of decision deficiencies: (i) aim deficiency

occurs when a decision fails to meet a decision makers explicitly stated aim, (ii) need deficiency

occurs when a decision maker fails to meet the actual need(s) in a given situation, (iii) aggregate

outcome deficiency occurs when, collectively, all the outcomes of a decision (even beyond aim

and need) leave the decision maker worse off than some effective reference, (iv) competitor

deficiency occurs when, in aggregate, a decision is inferior to some competing alternative, and

(v) process cost deficiency occurs when the cost of arriving at a decision is very high. This model

is included in proposed framework of engagements (Table 8.6b).

Some Theoretical Models about Decision Making

Elaborating upon the social and creative dimension of decision making, Allwood and Selart

[257] have emphasized on the importance of restructuring the decision task through many

iterations of problem redefinition as well as goals, and also reformulating the problem space,

seeing the broader context. Their suggestion about iteration is integrated in our proposed

framework (Table 8.5). They also recommend viewing decision making as a synthesis rather

than analysis activity, and insist on building a more holistic relational mental model. To

generate alternatives, they recommend generating a large pool of alternatives by focusing

attention on more unusual aspects of problem situation. As per them the alternatives need to be

evaluated by integrating intuition and insight with logic and analysis.

www.manaraa.com

157

Ullman posits that in real-life there are no right decisions but only satisfactory decisions.

Decision making is about finding the best possible satisfactory decisions [258]. He posits that it

is not an event or an action, but a process of repeatedly finding out what-to-do next. He has

defined robust decision as the best possible choice, one found by eliminating all the uncertainty

possible within available resources, and then choosing with known and acceptable levels of

satisfaction and risk. He also posits that decision management is determining what-to-do-next

with the available information in order to make most robust decision as part of standard work

processes, and documenting the results for distribution and reuse. He has attributed information

uncertainty to factors like knowledge limitations, incompleteness, approximations, viewpoint

differences, terminology imprecision, inconsistency, and information’s evolving nature. He

suggests that decision making requires effort for uncertainty management to make the best

possible use of the uncertainty that cannot be eliminated.

Further, he has identified some decision making challenges. These are conflicting

interpretations, conflicting priorities, incomplete understanding of the criteria of evaluation and

risks of each alternative, and absence of good decision making strategy. In order to develop

decision making competence, students need to be given practice in decision making through such

challenging situations. Hence, we include these challenges in our framework of pedagogical

engagements (Table 8.6b).

Seyedjavadein and Fahimi have recommended the use of TRIZ principles, cited in section 5.3, to

generate alternatives during decision making [259]. As operational level decisions focus is on

simplification and efficiency, the decision maker should seek the most positive alternatives

which would add to the value of the system. For strategic level decision making, they

recommend seeking positive alternatives which would add to the value of the system, while

avoiding the threats to the system. For safety level decisions, seeking potentially negative

alternatives which would damage the system is important in order to prevent them. For security

level decisions, one needs to seek the most negative alternatives which would damage the system

seriously in order to prevent them at any cost.

www.manaraa.com

158

Taxonomy of decision making

Rowe and Boulgarides [260] have designed a two dimensional taxonomy of decision making

styles with respect to management education. They have identified four different styles of

decision making. The four styles differ from each other mainly in two dimensions: (i) need for

high structured-ness vs tolerance for ambiguity, and (ii) focus on technical aspects vs focus on

people and their needs. The summary of these four styles is given in Table 6.2. With reference to

decision making in software development, we posit that the software developers need to integrate

these styles. This perspective is included in our proposed framework of pedagogical

engagements in software development education (Ref: Section 6.5 and Table 8.5).

Table 6.2: Four decision styles proposed by Rowe and Boulgarides

i. Directive style: This style is characterized by a low tolerance for ambiguity and rational way of thinking. It

uses limited data and considers limited alternatives. This style is good for such technical issues that require
lower cognitive complexity and have short range impact. It is especially suitable for implementing
operational objectives by using rules and procedures in a systematic, efficient, and satisfactory way. It is
more suitable for seeking acceptance and avoiding conflicts.

ii. Behavioral style: This style is characterized by a low tolerance for ambiguity and intuitional way of thinking.
Like directive style, it also uses limited data and considers limited alternatives. This style is good for such
people related issues that require lower cognitive complexity and have short range impact.

iii. Analytic style: This style is characterized by a high tolerance for ambiguity and rational way of thinking. It
involves consideration of large amount of data from multiple sources, and evaluation of multiple
alternatives. This style is suitable for such challenging technical issues that require focus on long range, and
creativity. Analytics decision making is particularly useful for situations that require significant effort of
analysis, planning, and forecasting.

iv. Conceptual style: This style is characterized by a high tolerance for ambiguity and intuitional way of thinking.
Like analytic decision style, it also involves consideration of large amount of data from multiple sources,
and evaluation of multiple alternatives. This style is suitable for such challenging people related issues that
require focus on long range, and creativity. Conceptual decision making is particularly useful for situations
that require exploring new options, initiating new ideas, forming new strategies, being creative, taking risks,
people oriented-ness, and ethical considerations.

Becker and Connor [261] have found that immediate gratification values are significantly related

to the tendency to use a directive decision-making style. Delayed gratification values are related

to a preference for a conceptual style. Competence values are related to a directive style, while

conscience values are related to a behavioral decision-making style. Self-constriction values

(self-controlled, responsible, logical, and obedience) are related to a behavioral style, while self-

expansion values (broad-minded, cheerful, and imaginative) are related to a conceptual decision-

making style.

www.manaraa.com

159

In a laboratory experiment, software project managers with directed and analytics decision

making style were found to respond better to performance measure criteria of time to complete

project plan, completeness of initial project plan, and variances in a project plan, and scope

change in a project plan [262]. Behavioral style decision making responded better to change of

end date in a project plan.

The traditional engineering education model strengthens directed and analytics styles which are

apt for taking decision regarding how to deliver what is certain to be in a product. However, with

respect to taking decisions regarding visualizing and defining the product to be, conceptual style

has to be strengthened. The evolutionary approaches to software development share many

similarities like people orientation, openness, trust, and shared goals with conceptual style of

decision making.

With reference to decision making in software development, we posit that the software

developers need to be able to integrate the four decision making styles identified by Rowe and

Boulgarides, Table 6.2. Hence, we include this in our proposed framework of engagements

(Table 8.5)

PrOACT and PROACTIVE approaches

Hammond et al have created a framework for effective decision making, PrOACT (Problem,

Objectives, Alternatives, Consequences, and Trade-offs) [263]. As per PrOACT, decision making

consists of eight elements – formulating the problem in terms of its context and essential

elements, clarifying key objectives with priority to serve as decision criteria, creating

alternatives using creative thinking, identifying consequences with accuracy and completeness,

clarifying trade-offs, uncertainty, risk tolerance, and linked decisions. The last three elements are

not necessarily involved in all situations, but help clarify the decisions in volatile and evolving

situations. Since, software development is a highly evolving situation, these aspects become

very important for software developers’ decision making. Hammond et al view decision making

as a multidimensional task with analytical, psychological, social, cultural, and intuitive

processes.

www.manaraa.com

160

Hunink has extended PrOACT model for medical decision making in the face of uncertainty and

resource constraints [264]. As per this extension, PROACTIVE approach includes: defining the

Problem, Reframing the problem from multiple perspectives, focusing on the Objectives,

expanding the Alternatives, considering the Consequences and associated chances for each

alternatives, identifying the Trade-offs involved, Integrating the evidence and values, optimizing

the Value of interest, and Exploring uncertainty. We consider it propose that it can be helpful

software development related decision making. We strengthen our proposed framework of

pedagogical engagements with this model (Ref: Table 8.6b).

Decision Oriented Model of Software Processes

Toffolon and Dakhi [265] have proposed a decision oriented model of software processes. As

per this model, the software development decision making is taking decisions with respect to

four subspaces related to software projects: (i) problem space, (ii) solution space, (iii)

construction space, and (iv) operation space. The decisions in these four spaces are driven by

two broad categories of purposes:

(i) decisions to manage complexity and risk, the two essential characteristics of software,

and

(ii) decisions to reduce the negative impacts of two kinds of accidental characteristics of

software, i.e., uncertainty and complications.

This model is included in proposed framework of engagements (Table 8.6b).

Decision Making for Risk Management in Software Projects

Risk has been viewed as the probability of suffering losses while pursuing goals due to factors

that are unpredictable or beyond [266]. Risks can be internal or external. Internal risks arise

because of inadequacies in process capability (including core and support functions), and

organizational structure. External risks are caused by uncertainties in external conditions. Risk

management requires a systematic approach of reducing the harms due to risks, making the

project less vulnerable and product more robust. It is very important aspect of decision making.

Boehm [267], one of the pioneers of software risk management field described it as comprising

of two functions (i) risk assessment: identification, analysis, and prioritization; (ii) risk control:

www.manaraa.com

161

management planning, resolution, and monitoring. SEI’s has also identified six elements of

software risk management: identify, analyze, plan, mitigate, track and communicate.

Importance of Risk Management in Software Development Education

In one of our recently concluded survey among software professionals, fifty-seven

professionals responded. The respondents professional experience distribution is as follows: (i)

around 15% with more than 15 year experience, around 10% with between ten to fifteen years of

experience, around 40% have five to ten years of experience, and the remaining with less than

five years experience. A good fraction of 36% respondents recommended that risk planning and

mitigation must be included in the main goals for new curriculum for the future generation of

software developers.

Software Risk Categorization Schemes

Boehm identified the top ten risks items. The top four in this list were personnel shortfall,

unrealistic schedule and budget, wrong function and properties, and wrong user interface.

According to Brian A Will, the top most risks include creeping software requirements,

requirement gold plating, low quality of released software, and unachievable schedule.

Keil et al provided categorization framework for software project risks [268]. They categorized

these risks into four quadrants. The first quadrant risks relate to customers and users. These

risks have a high level of perceived importance but a low level of control possibility. Hence,

mitigation is essentially done by increasing users’ participation and commitment to the software

project. The second quadrant risks relate to ambiguities and uncertainties about scope and

requirements. These risks have high perceived importance as well as a high level of control

potential for project managers. The third quadrant risks relate to execution that has moderate

perceived importance but high level of control is possible. The last quadrant risks relate to

environment and have moderate perceived importance as well as low control possibility for

project managers.

Wallace and Keil have further classified fifty software risks into these four categories [269].

They also analyzed the effect of these risks on process and product outcome. They have

www.manaraa.com

162

concluded that for project managers, minimizing and managing the execution, scope and

requirement related risks are critical from both perspectives. Further, they observed that in

situations where product outcomes are more important than time and budget, the risks related to

users and customers also become very critical.

SEI has proposed two taxonomies. First, they catalogued and classified one hundred and ninety-

four risks into the three broad level categories [270] of product engineering, development

environment, and program constraints Later, SEI proposed another taxonomy for software

development risks for high-performance computing scientific/engineering applications. This

taxonomy classifies the sources of software development risks into the three broad categories of

development cycle risks, development environment risks, and programmatic risks.

Pandian has given a distribution of software development risks. As per his analysis, 70% risks

are internal and only 30% are external. Project risks account for 30%, product risks for 30%, and

process risks for 40%. In the process risks, the most vulnerable areas are related to human

resource and requirement issues, and least vulnerability is found to exist in coding and testing

[266]. Georgieva et al have provided a survey of software risk assessment methods [272].

We include risk assessment for identifying, analyzing, and prioritizing project, product, and

process risks in our proposed framework (Table 8.6a). We also recommend the use of SEI

taxonomies as checklists.

Ethical Decision Making

Professional decision making ability is not only related to technical competence only. Instead of

just technical competence, intelligence, or creativity, it is related to professional wisdom.

Sternberg [229] has defined wisdom as the application of tacit as well as explicit knowledge, as

mediated by values, towards the achievement of a common good through a balance among (a)

intrapersonal, (b) interpersonal, and (c) extra-personal interests over the (a) short term and (b)

long term to achieve a balance among (a) adaptation to existing environments, (b) shaping of

existing environments, and (c) selection of new environments.

www.manaraa.com

163

Boyle [273] has proposed a six-stage process of ethical decision-making for computing

professionals. The first stage is about moral perception and personal knowledge of the moral

good, which depends upon the ability to recognize that an ethical problem exists and that a

person has some personal responsibility to respond. The second stage is of the moral

discernment and personal ability to think logically, which enables a person to state the ethical

problem clearly. The third stage is of moral resolution and personal ability to analyze

complexities of the stated problem, in order to arrive at an individual position which is justifiable

to one’s self conscience. The fourth stage is of moral assessment and personal ability to assess

one’s freedom. According to Boyle, computing professionals must be aware of new

developments, particularly in the context of the history of technology in the computing field, in

order to handle the new freedoms properly. The fifth stage deals with moral decision and

personal knowledge of one’s duties. The last stage is of moral action and personal willingness to

follow one’s intellect.

IEEE-ACM code of ethics for software engineers provides directions and guidelines for all these

stages, except the second and last stage. The second and third stage depends upon the critical

thinking ability, and the last stage depends upon one’s value system. Boyle sees the entire

process as circular, such that the moral actions of one cycle shape the moral perception for next

cycle. We strengthen our proposed framework of pedagogical engagements with this model

(Table 8.6b).

Pedagogical Perspective

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (iii), Appendix A10), a large fraction of 77% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their decision making skills. This was followed by laboratory work (38%), mentoring

juniors and industrial training (35% each), thinking oriented lectures (31%), and discussions with

other students (31%). Traditional knowledge delivery oriented lectures and written examinations

were found to be least effective in this regard by the respondents. Further, 90% and 71%

respondents respectively felt that as compared all other engagements, student projects and

industrial training did much better to enhance their project planning and management skills.

www.manaraa.com

164

All other engagements were felt to be ineffective in this regard. We can conclude traditional

form of engineering education, misses the opportunity to develop students decision making

thinking and perspective.

Students need to learn to take decisions related to product, process, and project. Such ability can

be developed by developing their decision thinking perspective. Development of such

perspective requires exposure to wider contexts, and also reflection on senior professionals’

decisions taken in tricky situations.

In addition, the education programs must also engage students in professional decision making in

real-life like situations. Typical academic engagements like traditional lectures, short

assignments, written examinations, and textbook oriented exercises do not create such

engagement. Student-centric learning engagements like semester long group projects offer a

great potential to give them opportunities to take and improvise their decisions.

Decision thinking is not automatic, but controlled thinking [274]. Students’ decision making

ability can only be developed by developing their decision making perspective. In this section we

have discussed some important models and tools that can help in developing their decision

perspective. The decision oriented models suggested by (i) Toffolon and Dakhi as well as (ii)

Boyle (with respect to IEEE-ACM code of ethics) are can be very useful for students. Students

should to be exposed to the decision deficiencies identified by Salas and Klein and decision

challenges identified by Ullman. As suggested by Allwood and Selart, they must be required to

iterate over the decision tasks. The student engagements should require them to integrate the

four decision styles suggested by Row and Boulgerides. They must also be engaged in risk

management of product, project, and process risks. SEI taxonomies can be used as checklists.

We include these in our proposed framework of pedagogical engagements (Tables 8.5 and 8.6b).

Further, literature on decision making offers some excellent general purpose techniques that

have been used in various professions. Some of these are: Pareto analysis, paired comparison,

T-Chart, decision matrix, grid analysis, PMI (Plus, Minus, and Interesting), decision Tree, six

thinking hats, star-bursting, step-ladder, and Delphi. All these techniques are essentially

www.manaraa.com

165

manifestations of the core idea of decision making as a process of making choices. These involve

generation of alternatives and evaluating their consequences. These and other such techniques

can also be very effectively used by software developers for taking effective decisions during

various activities of software development. Hence, computing students should be well exposed to

these techniques through their curriculum. These techniques are used to supports our proposed

framework of pedagogic engagements/ software development education is on our future agenda

(Ref: Table 8.6b).

Finally, as per our exploratory study of students’ software projects, we have found that normally

student projects do not expose them with many typical risks in software projects. The most

common risks in student projects are due to lack of their proficiency with development tools

and/or open source, and unrealistic estimates. They do not get exposed to other typical software

project risks discussed above. We hypothesize that the student projects also need to be viewed

and administered from an additional perspective of exposing them to common real-life software

project risks. Typical projects designed in protected academic setting often do not achieve this

goal. In future extension of our work, we plan to carry forward this idea and propose an

appropriate model of administering and designing student projects.

Section 6.3: Software Developers’ Education for Development of
Systems-level Perspective

Merriam Webster's Collegiate Dictionary, tenth edition, defines ‘system’ as “a regularly

interacting or interdependent group of items forming a unified whole.” This, however, is only a

partial view of systems. Thinkers of various disciplines like engineering, management, science,

economics, sociology, political science, etc., have contributed significantly to understanding

systems as well as systems thinking. According to Meadows, a system is more than the sum of its

parts, its part are simultaneously interconnected in multiple directions, it has a purpose, it

produces its own behavior over time and its response to external triggers and/or forces is a

characteristic of itself. In real-life these responses are usually very complex [275]. Checkland

[275a] identifies the four classes of systems: natural systems, designed physical systems,

designed abstract systems, and human activity systems.

www.manaraa.com

166

“Systems thinking” is seeing wholeness, seeing interrelationships rather than individual things.

Isolated knowledge by a group of specialists generated in a narrow field has no value in itself,

only its synthesis with the rest of the existing knowledge gives it a meaning [277]. Solovey

[279] found the eleven laws of system thinking proposed by Senge [277] to be applicable to

software development. Annexure AN9 gives these laws.

Importance of Systems Thinking for Software Development

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘systems-level perspective’ an average rating of 2.95 on a scale of 0-4. A

large majority of 85% of these respondents recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities.

Usually software programs are complex systems. They are executed on computing environments

that are examples of complex systems. Software is usually a critical subsystem of a larger

technical and/or organizational/social system. Further, the development life cycle of software is

another example of a very complex social system. In the context of software development,

holistic understanding of the problem and solution paves the way for a robust implementation.

Metzger recommends the inclusion of gestalt understanding for debugging tasks [157]. As

software-based systems have grown larger, more complex, and need inter-disciplinary inputs, the

capacity of systems thinking has become crucial for software developers. Concerns like user-

centeredness, reuse, integration with existing subsystems, legacy systems, quality, cost, security,

availability, and maintainability make it imperative to develop systems thinking.

With reference to Appendices A2 and A3, systems-level perspective of software developers also

relates to the following:

1 Ability to accommodate himself to others, empathy, “be the customer” mentality - genuine

interest in understanding what other people are trying to accomplish and based on this

understanding think about creating technical solutions to help them reach their goals.

Genuine interest in understanding “why to create software” and the broader context of

www.manaraa.com

167

software systems. Cognitive task analysis. Appreciation of unstated requirement and ability

to identify these. Listening skills, approachable, and respect for people. Ability to work in

homogeneous, multi-disciplinary, multi-locational and multicultural teams. Ability to work

under supervision and constraints, Understanding of the impact of personal character and

behaviors on others.

2 Ability to see the self as bound to all humans with ties of recognition and concern. Seek help

from other, Ability to help and assist others, mentoring, commitment to others’ success.

Sensitivity towards global, societal, environmental, moral, ethical and professional issues,

and sustainability. Respect for the intellectual property of others. Work ethics.

3 Organizational skills.

4 Quality, cost, and security consciousness, pursuit of excellence, intellectual accountability

and responsibility, intellectual integrity, intellectual courage, strength of conviction: assertive

without being aggressive. Commitment to systematic documentation of the work. Recognize

and act upon the need to consult other experts, especially in matters outside their area of

competence and experience. Commitment to the fulfillment of needs of all users and persons

who get affected by the technological solutions. Eagerness and inclination to understand the

unintended consequences of creating software inappropriate or at odds to its real purposes.

Commitment to health, safety, dignity, and welfare of the users and also the people who will

be affected by their systems. Sensitivity towards constraints like economic disadvantage and

physical disabilities that may limit software accessibility.

5 Self-acceptance, self-regulation, self-awareness, self-improvement: strength to resist instant

gratification in order to achieve better results tomorrow. Being honest and forthright about

one’s own limitations of competence. Tendency to avoid false, speculative, vacuous,

deceptive, misleading, or doubtful claims. Faith in reason and review, inclination for

verification and validation, respect for facts and data. Awareness and regulation of automatic

thoughts.

6 ‘Big picture’ view, holistic and multi-perspective thinking, knowledge integration,

consideration for multilateral viewpoint, and user-centeredness. Process and rule-oriented

mindset. Tolerance to ambiguity and risk. Ability to understand and also build upon other’s

work. Ability to work such that others can easily understand and build upon.

7 Perseverance and commitment.

www.manaraa.com

168

8 Complex problem solving skills

9 Analytical thinking

10 Design skills

Systems Engineering Perspective

Frank and Waks [280] have given a multifunctional comprehensive definition and explanation of

engineering systems thinking. Further they have also given the characteristics of engineers who

are able to demonstrate such thinking. This definition links multiple options of seven facets. The

definition is given in Table 6.3. We use this to strengthen our framework of pedagogical

engagements (Table 8.6a).
Table 6.3: Multifaceted definition of engineering systems thinking by (Frank and Waks, 2001)

The engineering systems thinking of a/an [facet A – specialization field] engineer who deals with a system of a
[facet B- complexity level] level of complexity involves the ability to understand [facet C – systems aspects and
implications] and the [facet D - interrelationship] [facet E- interconnections] and to [facet F – functional
domain] without [facet G – constraints].
Options for [facet A – specialization field]: (i) electrical, (ii) electronics, (iii) computers, (iv) software, and (v)
others
Options for [facet B- complexity level]: (i) very low, (ii) low, (iii) intermediate, (iv) high, and (v) very high
Options for [facet C – systems aspects and implications]: (i) understanding the whole system, (ii) understanding
the synergy of the system, (iii) understanding the contribution of components of the system, (iv) understanding
the system from multiple perspectives, (v) understanding the implications of modification to the system, and (vi)
understanding a new system immediately upon presentation
Options for [facet D - interrelationship]: (i) interaction between, (ii) hierarchy of
Options for [facet E- interconnections]: (i) internal subsystems, (ii) external neighboring systems
Options for [facet F – functional domain]: (i) locate system failures, (ii) outline failure solution, (iii)
analyze/dismantle system to individual components, and (iv) synthesize/design subsystems linkages to a whole
Options for [facet G – constraints]: (i) need to understand details for understanding the whole, (ii) refraining
from multitasking, and (iii) “getting lost” when dealing with system issues or acting in a non-familiar professional
environment

Levels of systems thinking

Sanford observed that our upbringing, and particularly our education, has trained our thought

patterns to follow a segmented and reductionist path. The new capability to see and to think in

terms of systems thinking also starts with being able to “envision” relationships and structural

components of nested whole ways of thinking. There are five levels of systems thinking: closed,

cybernetic, complex adaptive, developmental, and evolutionary [281]. We use the lower levels of

Boulding’s levels (Annexure AN9, Table AN9.4) to extend this hierarchy as depicted in Table

6.4. We also merge the levels of closed and cybernetic systems into a single category. This

www.manaraa.com

169

modified ladder is integrated in our proposed framework of pedagogical engagements in

software development education (Table 8.2, fourth column).

Table 6.4: Levels of systems thinking (derived from Boulding and Sanford)

1 Pre-structural thinking: seeks to understand, analyze, build, evaluate, and maintain the components
2 Structural thinking: seeks to understand, analyze, build, evaluate, and maintain static structures and

frameworks involving various components.
3 Clockworks thinking: seeks to understand, analyze, build, evaluate, and maintain predetermined motion.
4 Closed systems thinking: seeks to understand, analyze, build, evaluate, and maintain mechanisms, seek

stabilization within tolerance and standards by allowing limited access and exchange with systems outside
their boundaries in spite of richer interactions through a feedback based control.

5 Complex adaptive systems thinking seeks to understand, analyze, build, evaluate, and maintain effectiveness
of open systems in the context of a continuously dynamic and evolving environment.

6 Developmental systems thinking: seeks improvement by uncovering the full potential and expression of the
unique essence of any entity or system, including the greater system of which we are a part. It involves re-
conceptualization of the values by exploring the core value, core process, and core purpose interactively
looking beyond themselves.

7 Evolutionary systems thinking: this is generative field of evolving systems, it requires looking at the entire
value chain and context and beyond what they serve.

Shifting the Focus for Systems Thinking

Capra [282] had proposed five criteria for systems thinking in natural sciences, as given in Table

6.5. The first two criteria refer to our view of nature’s complexity. In addition, the next three

criteria refer to our epistemological beliefs and uncertainty.

Table 6.5: Shifting the focus for systems thinking (Capra’s criteria)

1 Shift the focus from parts to whole, the properties of the parts can be understood only from the dynamics of
the whole; part is merely a pattern in an inseparable web of relationships

2 Shift the focus from structures to process; every structure is a manifestation of an underlying process, the
entire web of relationships is dynamic.

3 Shift from the objective science to epistemic science, the understanding of the process of knowledge has to be
included explicitly in the description of natural phenomena.

4 Shift from building to network as metaphor of knowledge, there the material universe is seen as a dynamic
web of interrelated events, there are no fundamental entities whatsoever: constants, laws, or equations, none
of the properties of any part of this web is fundamental, they all follow from the properties of the other parts,
and the overall consistency of their interrelations determines the structure of the entire web.

5 Shift from truth to approximations, all scientific concepts and theories are limited and approximate, scientists
do not deal with truth but with limited and approximate description of reality.

Blaauw’s Principles of System Architecture

Blaauw [282a] has identified eight principles of good architecture. These include consistency,

orthogonality, propriety, parsimony, transparency, open ended-ness, generality, and

completeness. Deliberate usage of these principles for evaluation of software architectures can

www.manaraa.com

170

help a great deal to improve them. These are included to support our framework of pedagogic

engagements (Table 8.6b).

Soft Systems Methodology for Solving Soft Problems

The famous waterfall model of Structured Systems Analysis and Design Method (SSADM), is

based on Checkland’s [284] Soft Systems Methodology (SSM) that was developed in late 1980’s

for solving soft problems. Soft problems are such problems that have multiple stakeholders with

divergent values, beliefs, philosophies, interests, and also views about what the problem is. This

iterative approach consists of seven distinct stages given in Table 6.6. Recently, Jacobs [285]

proposed an approach to applying systems thinking. This is also included in Table 6.6.

Table 6.6: Systems thinking approaches by Checkland and Jacobs

Checkland’s Stages of Soft Systems Methodology

for Solving Soft Problems
Jacobs’ approach for applying systems thinking

1 Define and understand the problem situation (i.e.,
nature of the process, key stakeholders, etc.),

2 Express the problem situation through rich
pictures,

3 Select how to view the situation from various
perspectives and produce root definitions,

4 Build conceptual models of the system
requirements to adequately address each of the root
definitions,

5 Compare the conceptual models to the real world
expression,

6 Identify feasible and desirable changes to improve
the situation, and

7 Develop recommendations for taking action to
improve the problem situation.

1 Explore the event/problem from multiple
perspectives without jumping to solutions,

2 Track the situation over a period of time and
identify patterns and trends of behavior that go
below the surface,

3 Look for systemic structures such as
interrelationships in the patterns and trends,
balancing and reinforcing feedback, and delays,
also understand the mental models that are driving
these patterns, and

4 Create new mental models to introduce change into
the system, track and evaluate the effects of the
changes, and identify unintended consequences
and decide what needs modification.

Software as Socio-technical Systems

The criteria identified by Capra and characteristics proposed by Sweeney and Meadows are

highly relevant for software developers. In his system theory, Senge [286] argues that we often

complicate the nature of the problem, because we tend to treat problems as if we are outsiders,

rather than treating the problems and ourselves as one. He further posits that systems thinking

also aims at integrating one’s insights into the inner systems and visions of the outer systems,

and we need to transform the technical mode of working into the spiritual pursuit of work ethics.

As many software systems are socio-technical systems and the software development systems are

www.manaraa.com

171

essentially social systems, Senge’s perspective is even more relevant in the context of software

development.

In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘accommodate oneself to others’ an average rating of 3.1 on a scale of 0-

4. A large majority of 80% of these respondents recommended it to be a critical or very

important competency with respect to the requirements of software developers' multi-faceted

professional activities. In order to do cognitive task analyses, software developers need to have

a genuine interest in understanding what other people are trying to accomplish, and based on this

understanding think about creating technical solutions to help them reach their goals. In order to

identify unstated requirements, they need to have a genuine interest in understanding ‘why to

create software’ and also the broader context of software systems. Development of this kind of

genuine interest requires the virtue of empathy as manifested in ‘be the customer/user mentality’

and tolerance to ambiguity. Often, software developers have to work in large teams of developers

that are temporally and often geographically distributed and even culturally diverse. This

requires the developers to have the ability to understand and also build upon other’s work and

also the ability to work such that others can easily understand and build upon.

In another survey conducted us of fifty-seven software professionals (Table 4.1), 65% of our

respondents included ‘group work, people management, and leadership’ as one of the most

important activities that must be included in the main goals for new curriculum for the future

generation of software developers. This ability also requires an attitude and ability to

‘accommodate oneself to others.’ Such ability also makes one more approachable.

Ethical Aspects of Systems Thinking

Hoffman saw empathy as the key to moral motivation [287]. In our 2009 survey on required

competencies for software developers, twenty software professionals assigned ‘see the self as

bound to all humans with ties of recognition and concern’ an average rating of 2.65 on a scale

of 0-4. A majority of 60% of these respondents recommended it to be a critical or very important

competency with respect to the requirements of software developers' multi-faceted professional

activities.

www.manaraa.com

172

Commitment to the fulfillment of needs of all users avoiding unintended consequences on safety,

dignity, health, and welfare of the users and also the people who will be affected by their systems

requires them to have empathy and a commitment for accountability and responsibility. Deeper

sense of responsibility comes from attitude and ability to ‘see the self as bound to all humans

with ties of recognition and concern.’ This ability requires sensitivity towards global, societal,

environmental, moral, ethical and professional issues and sustainability, as well as, respect for

work ethics and intellectual property of others. The concern for sustainability requires sensitivity

towards constraints like economic disadvantage and physical disabilities that may limit software

accessibility. Sternberg’s definition of wisdom, discussed under the theme of ethical decision

making in section 6.2, is very relevant in this context.

Such well grounded sense of responsibility can facilitate self regulation to resist instant

gratification (in order to achieve better results) and also avoid false, speculative, vacuous,

deceptive, misleading, or doubtful claims about their competence, products, and services. It

strengthens intellectual integrity, intellectual courage, and gives a strength of conviction. This

ability to see the self as bound to all humans when combined with the ability to accommodate

oneself with other strengthen one’s ability to seek and provide help, participate as

mentors/mentees/supervisor/supervise, have commitment to others’ success, and be assertive

without being aggressive. All these are very important for successful group work.

Cultivating systems thinking

Senge [278] developed a toolbox for cultivating systems thinking. This are given in table 6.7.

Table 6.7: Senge’s toolbox for cultivating systems thinking

1 Learning how to draw systems maps, including
a. the interaction between cause and effect,
b. dynamic loop,
c. system feedback perspectives,
d. systems problems,

2 Learning how to describe reinforcing loops,
3 Learning how to describe balancing loops, and
4 Learning how to describe delays.

www.manaraa.com

173

Software systems analysis and design techniques

Several semi-formal and formal techniques have been developed for software systems analysis

and design. They offer powerful representation tools for data and behavior of software systems.

Data representation techniques include conceptual data modeling techniques, knowledge

representation techniques, ontologies, etc. Behavior representation techniques include FSM,

State-chart, State Nets, Petri Nets, etc. We strongly recommend the frequent and repeated use of

many of these semi-formal techniques in computing courses. We include these techniques to

support our proposed framework (Table 8.6b).

Meta-Framework for Systems Engineering

Haskin [288] has proposed a meta-framework for systems engineering. The 6C’s in her

framework are: Comprehension, Communication, Coordination, Cooperation, Collaboration,

and Continuity.

Comprehension needs listening, empathy and broader general knowledge. She posits that these

six C’s sit in the context of Code of ethics. Hence, we see that systems thinking require a higher

maturity level of not only cognitive development, but also emotional and moral development.

Kohlberg [289] proposed a six stage model of human development based on their moral

reasoning. Table 6.8 gives a summary of this model. This is part of our proposed framework of

pedagogical engagements in software development education (Section 6.5 and Table 8.2, fifth

column).
Table 6.8: Kohlberg’s six stage model of human development

A. Pre-conventional level (Egocentric) (Self-centered)

1. Obedience and punishment: the moral reasoning is motivated by avoiding anticipated punishment.
2. Individualism and Reciprocity: the moral reasoning is motivated by self interest.

B. Conventional Level (Socio-centric) (Conservative)
3. Interpersonal conformity: the moral reasoning is motivated by avoiding anticipated disapproval of others

by ‘looking’ nice to them.
4. Social systems and “Law and order”: the moral reasoning is motivated by avoiding anticipated dishonor

or institutionalized blame and desire for maintaining social order.
C. Post-conventional (Onto-centric) (Progressive)

5. Social Contract: the moral reasoning is motivated by concern of self-disrespect and broader social
welfare.

6. Universal ethical principles: the moral reasoning is motivated by maintaining respect and dignity of all
by emphasizing human values and rights.

www.manaraa.com

174

Moral development of a person is closely linked with the person’s value orientation. Spini [290]

refers to Schwartz [291] who saw people’s values as their motivational constructs for deciding

their actions. Schwartz value categories are discussed in Annexure AN9. Our exploratory survey

of undergraduate computing students showed that, by and large, the responding students felt that

most of their peers lacked the values of self-direction, benevolence, and universalism. However,

a more systematic study is required on this aspect. Nevertheless, development of benevolence

and universalism is crucial for developing the abilities to ‘accommodate oneself to others’ and

‘see the self as bound to all humans with ties of recognition and concern.’ Both these abilities are

identified as key aspects of systems thinking. Further, development of self-direction is very

important for arousing the intrinsic motivation to create/improve artifacts (discussed in the next

section). Hence, the development of these values has to be addressed by software development

education.

Pedagogical Perspecive

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (iii) , Appendix A10), a large fraction of 68% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their ‘systems-level perspective.’ This was followed by research literature survey (46%),

laboratory work (34%), and industrial training (32%). Written examinations were found to be

least effective in this regard by these respondents.

In this survey (Table A10.2 (iii), Appendix A10), a large fraction of 64% felt that as compared to

all other kind of academic engagements, their student projects did much better to develop their

‘accommodate oneself to others.’ This was followed by mentoring juniors (56%), discussions

with other students (46%) and industrial training (38%). Written examinations and lectures were

found to be least effective in this regard by these respondents.

Further, in the same survey (Table A10.2 (iii), Appendix A10), a large fraction of 51% felt that

as compared to all other kind of academic engagements, their student projects did much better to

develop their attitude to ‘see the self as bound to all humans with ties of recognition and

concern.’ This was followed by mentoring juniors (45%), industrial training (41%) and

www.manaraa.com

175

discussions with faculty, students, and others (33%, 31%, and 29% respectively). Written

examinations and traditional form of knowledge delivery oriented lectures were found to be least

effective in this regard by these respondents.

In this section, we discussed several models and tools that can be used to develop systems-level

perspective of computing students. We derived a new ladder of systems thinking based on

Boulding and Sanford ladders. Capra’s suggestion for shifting the focus is very helpful in

developing the mindset for systems thinking. Blaauw’s principles for systems Architecture are

excellent guidelines for systems analysts and designers. Systems thinking approaches by

Checkland and Jacobs, and Senge toolbox are also very helpful for inculcating the habit of

systems thinking. Kohlberg’s six stages can act as ladders of moral development to take care of

the moral aspects of systems thinking. Finally, as discussed in the previous section, use of the

risk assessment techniques is also very helpful for developing systems thinking perspective. We

include all these models and tools in our proposed framework of pedagogical engagements

(Table 8.6).

Section 6.4: Software Developers’ Education for

Development of Intrinsic Motivation to Create/Improve Artifacts
In our 2009 survey on required competencies for software developers, twenty software

professionals assigned ‘intrinsic motivation to create/improve things’ an average rating of 2.9

on a scale of 0-4. A majority of 65% of these respondents recommended it to be a critical or very

important competency with respect to the requirements of software developers' multi-faceted

professional activities.

With reference to Appendices A2 and A3, ‘intrinsic motivation to create/improve artifacts’ of

software developers also relates to the following:

1 Design skills

2 Creativity and idea initiation

3 Complex problem solving

4 Entrepreneurship, initiative taking, enjoys challenges, sense of mission, perseverance, result

orientation, commitment, self motivation, dedication. Adaptability, flexibility, open-

mindedness, and ability to multi-task

www.manaraa.com

176

5 Research skills

6 Experimentation skills

7 Readiness for lifelong learning

Intrinsic Motivation

According to Webster's Dictionary, motivation is "the psychological feature that arouses an

organism to action;" and "the reason for the action." Psychologists have carried out extensive

research on various aspects of motivation. Motives influence one’s perception, cognition,

emotion, and behavior [292]. Annexure AN10 summarizes the perspective of Aristotle,

Descartes, James and McDougall, and Murray on this issue.

In 1943, Maslow proposed his famous theory of hierarchy of human needs [141a]. After later

extension, his theory classifies human needs in a hierarchical structure of levels given in Table

6.9. He viewed that a person attempts to satisfy basic needs before directing behavior toward

satisfying upper-level needs. According to him, people have a need to grow to move up the

hierarchy of needs. The satisfied needs cease to motivate and unsatisfied needs can cause

frustration, conflict, and stress. We view that higher education must motivate students to raise the

levels of their needs on this hierarchy. This hierarchy is part of our proposed framework of

pedagogical engagements in software development education (Ref: Section 6.5 and Table 8.2,

third column).
Table 6.9: Maslow’s Hierarchy of Human Needs

1. Biological and physiological needs,
2. Safety needs,
3. Belongingness and love needs,
4. Esteem needs,
5. Cognitive needs,
6. Aesthetic needs,
7. Self actualization needs,
8. Transcendence needs

Annexure AN10 includes some later perspectives by several researchers like Herzberg, Vroom,

Alderfer (ERG theory), and Reis [294].

Ryff and Singer [245] have identified six factors for psychological wellbeing: self acceptance,

positive relations with others, autonomy, environmental mastery, purpose in life, and personal

www.manaraa.com

177

growth. Hence, satisfaction of higher level needs as per Maslow’s model, motivator factors as

per Herzberg’s theory, or growth needs as per ERG theory is necessary for wholesome

experience and happiness in life. Enrichment and advancement of needs from low-level to

higher level is not automatic. Satisfaction of lower level needs does not automatically facilitate

upward movement of motivation factors. In 1980’s, Deci and Ryan proposed ‘self

determination theory’ to suggest that humans have three innate psychological needs: autonomy,

competence, and relatedness [296-298].

Motivation for Creativity

As per Sternberg, motivation behind creativity is to go beyond what is known. Sternberg [299]

saw motivation at the centre of the processes that result in the development of expertise such that

it affects meta-cognitive as well as knowledge acquisition activities. It also evolves as a result of

learning and thinking. Ambile [300] proposed that the intrinsically motivated state is conducive

to creativity, whereas the extrinsically motivated state is detrimental. Creativity research has

found that personal autonomy is a core characteristic of creative people. Autonomous people

consider their behavior as emerging from themselves, and may stay more deeply and creatively

engaged in what they are doing. Self determined people may be more open to possible analogies

or intuitions that are relevant to the problem with which they are concerned. They may also

devote more conscious attention to problems that genuinely interest them [301].

Cognitive orientation theory [302] sees motivation for creativity as a function of beliefs of four

types (about goals, norms, oneself, and general beliefs about others and reality) concerning

themes identified as relevant for creativity. Their findings have shown that there are attitudes

and personality tendencies that promote creativity. As per this study, the high and low creativity

architecture students showed significant differences in the following themes:

i. feeling it is incumbent upon them to activate and use their talents and unique abilities

ii. interest and no discomfort in regard to views which differ or contradict their own

iii. daydreaming a lot

iv. demanding a lot from themselves

v. not in need of firm framework or strict regulations

vi. tendency to do original things

www.manaraa.com

178

vii. tendency to delve deeply into what one deals with and examine it from all points of view

viii. thinking about things in one’s own way, and not necessarily as one has been taught

ix. thinking and doing one’s own thing even with no support from others

x. concern with the functionality of what one does

xi. ability and tendency to invest a lot of effort

Advancing this work, Caskin and Kreitle [303] have concluded that the belief system of highly

creative students of architecture and engineering disciplines put a lot of emphasis on self - its

uniqueness, development, and expression. The second major factor is maintaining openness to

the environment without endangering inner directedness. They found that self beliefs as well as

goal beliefs supporting creativity are higher in students of architecture and there are no

significant differences with respect to their general and norm related beliefs. Architectural

students scored higher than engineering students in the following groupings:

i. Self-development: investing in one-self and developing oneself; taking advantage of

opportunities for promotion and learning; developing skills; not satisfied with any

achievement but seeking more.

ii. Emphasis on the inner world: more interested in what takes place within oneself than in

what occurs outside and in others; making efforts to learn about him/herself; feeling

contradictions within the inner world; emphasizing the importance of fantasy

iii. Inner-directedness: making efforts to succeed in circumstances in which others tend to

fail; lack of support from others does not affect self-confidence or self-esteem; clarity

about one’s goals.

iv. Emphasizing one’s uniqueness: experiencing one’s uniqueness; feeling that he/she has

unique talents; developing and highlighting one’s uniqueness; understanding things in

his/her own way; being different from others; seeing things differently from others;

making original things.

v. Functioning under conditions of uncertainty: liking ambiguity and uncertainty; liking to

take risks; liking jobs in which not everything is clear; functioning even if he/she cannot

control every detail of the process.

www.manaraa.com

179

vi. Self-expression: expressing emotions outwardly; creating something personal; expressing

thoughts, views, and skills; externalizing feelings; being loyal to own feelings and ideas;

speaking with others about oneself.

vii. Non-functionality: able to work even if sees no immediate benefit; does not believe that

every idea can be implemented in practice; compromising in regard to practicality and

functionality; readiness to act even if functionality is not clearly stated, or not clearly

requested from the start.

On the other hand, engineering students had higher scores in the following groupings:

i. Freedom in functioning: does not need a rigid framework of rules defining the situation

and the conditions; unable to function according to the instructions of others; functions

by intuition; need of freedom in thinking and acting; acting because he/she wishes and

not because he/she ought to.

ii. Being receptive to the environment: extracts something from the environment even if it

offers only a few stimuli (openness to the environment); absorbing from the environment

as much as possible, not selectively; curious to learn a lot about every domain.

iii. Demanding from oneself: does not withdraw in the face of difficulties; striving for

perfection, getting to the level of excellence one determines for oneself; high demands

from oneself; Investing without limits; able to renounce comfort and pleasure.

Both the groups showed similar results with respect to their beliefs about contribution to the

society: make something important and significant, even if it does not contribute to self-

promotion; feeling that one can promote the general welfare; devoting time and effort to society;

readiness to invest a lot to help people.

Pedagogical Perspective

In our recently concluded survey, “Software developers - (How) Did your college help you in

your development?” (Table A10.2 (iii), , Appendix A10), a large fraction of 74% felt that as

compared to all other kind of academic engagements, their student projects did much better to

develop their ‘urge to create/improve things’ and open mindedness. This was followed by

research literature survey (58%), thinking oriented lectures (54%), discussions with students and

faculty (50% each), mentoring juniors (44%), and laboratory work (42%). Written examinations,

www.manaraa.com

180

traditional knowledge delivery oriented lectures, and homework were found to be least effective

in this regard by the respondents. One of the main purposes of education is to sensitize and help

its beneficiaries to enrich and nourish their intrinsic motivation towards growth oriented needs of

cognition, aesthetics, self actualization, and transcendence needs.

Further, software development work requires significant design effort. In order to create

interesting software, the developers need to first become intrinsically motivated interesting

persons. Due to their nature, design problems cannot be solved by retrieving already existing

solutions or by applying a routine process. Consequently, it is very important that software

development education programs create such conditions that ignite intrinsic motivation among

its students for creating/improving things.

Love for challenges, habit of perseverance, concentration, and initiative taking depend upon

intrinsic motivation. Computing students also deserve to be self motivated to enjoy the pleasure

of creative tasks for its own sake rather than for the associated extrinsic rewards. However, the

above study clearly exposes a strong weakness of traditional engineering education in this aspect.

It does not help the students much to evolve their attitudes and belief in support of creativity.

Hence, if computing students’ intrinsic motivation for creativity needs to be enhanced for

creating conditions for self actualization through creation, their education process needs to be

significantly enriched, perhaps even by borrowing elements from architecture or design

education that relatively more strongly encourages their students for seeking self-development,

uniqueness and self-expression.

Intrinsic motivation for creativity is very difficult to develop through educational interventions.

Repeated engagements in self reflection, collaboration, and a creativity supporting educational

environment, as discussed in Section 5.3 is likely to help. Over-emphasis on external rewards

like grades is detrimental to inculcating the intrinsic motivation. We have not been able to

suggest any concrete pedagogical models in this regard. There is a need for more research to

find suitable solutions for this goal.

www.manaraa.com

181

Section 6.5: Chapter Conclusion
In this chapter, we have discussed the rationale of three traits that are classified as the most

critical attitudes, perceptions, and values for software developers: motivation to create/improve

things, curiosity, and systems perspective. We have examined some philosophies, models,

theories, suggested procedures, and empirical results from multiple disciplines to understand the

deeper meaning of these traits. In addition to the opening up the possibilities of upward

movement along the professional development ladder proposed in Table 4.7, we also propose

that development of the required attitudes, perceptions, and values for software developers must

be kept on the top of the agenda of software development education programs. In order to

achieve this goal, software development education programs must first aim to facilitate students’

movement to the higher levels of each of the following dimensions:

1. Cognitive development: Perry’s model, and others, discussed in this chapter suggest the

levels of development along this dimension (Table 6.1).

2. Personal need perception development: Maslow’s model, and others, discussed in this

chapter can be used as reference for understanding the levels of development along this

dimension (Table 6.9).

3. Levels of Systems Thinking: Derived from Boulding and Sanford (Table 6.4).

4. Moral development: Kohlberg’s model opens up the possibilities of understanding the

levels of development along this dimension (Table 6.8).

Table 8.2 juxtaposes these models. Further, with reference to decision making in software

development, we posit that the software developers need to integrate the four decision making

styles identified by Rowe and Boulgarides (Ref: Table 6.2 and Table 8.5).

www.manaraa.com

182

CHAPTER 7: THE PHENOMENON OF ‘LEARNING’

In the traditional form of engineering education [16], based on teacher-centeric one-to-many

learning, the teacher is seen as the source of information. Success in learning is often seen as the

reproduction or direct application of what the teacher has taught. Such instruction, in which

abstraction precedes the instantiation and concretization, helps students in developing skills in

deductive reasoning and succeeds in creating a knowledge-base as an inventory of concepts. It

also trains students in linear thinking. However, Projects like SUCCEED [304] have encouraged

the participant campuses to move away from straight lecturing and individual homework, and to

adopt more learner-centered instructional methods.

In second chapter, we discussed about a benchmark study focusing on the analysis of successful

practices in engineering education in ten leading European and U.S. universities, ‘Successful

Practices in International Engineering Education’ (SPINE) [78a] (Annexure AN11). The SPINE

report indicates that engineering graduates, even from these leading universities, have not rated

the effectiveness of lectures and pedagogical and didactic skills of the teaching staff at a very

high level. There are significant differences in assessment of these parameters by faculty and

engineers. Faculty’s assessment of these parameters is found to be inflated.

Section 7.1: Empirical Investigations for Assessing Effectiveness of

Educational Methods with Respect to the Requirements of Software

Development
In this section, we discuss some quantitative and qualitative surveys conducted by us among

computing students, software professionals, and engineering faculty.

Section 7.1.1: Empirical Studies on Effectiveness of Teaching Methods and Educational

Experiences of Computing Students and Software Developers

Effective Teaching Methods: SPINE like Survey of Software Professionals (2004-05)

In 2004-05, we administered a SPINE (Annexure AN11) like survey (Appendix A1) among

Indian engineers and managers working in Indian and multinational IT companies to obtain their

www.manaraa.com

183

perceptions on the importance of forty-nine parameters of engineering education. Eight teaching

methods (group projects, homework/out-of-class assignment, industrial training/internship,

lecture, projects, practical training, seminars, and written projects/studies) assessed by the

SPINE were used for evaluation by Indian respondents. As can be seen in Table 7.1, group

project, projects, and practical training have been rated as more effective teaching methods than

lectures.
Table 7.1: Importance of teaching methods as rated by Indian engineers and managers working in Indian and

multi-national IT companies

No Teaching Method Category
1 Group Projects Pivotal
2 Project Pivotal
3 Practical Training Pivotal
4 Industrial Training /Internship Obligatory
5 Lecture Obligatory
6 Seminars Obligatory
7 Written projects/studies Obligatory
8 Homework/Out-of-class assignment Complementary

It is hypothesized that the low importance assigned to lecture as a teaching method can be

attributed to perceived lack of contribution of conventional lectures in the development of most

important engineering competencies and professional skills. Engineering faculty is strongly

encouraged to use pedagogies of engagement in their lectures in order to lay the foundations of

deep learning through their lectures.

The respondents from the Indian IT industry have rated the importance of group work at a much

higher level than the respondents of SPINE. This relatively higher importance of ‘group project’

as a teaching method for the IT industry as compared to the larger engineering industry is

because of the special nature of the software development activity. The homework/out-of-class

assignments have been rated at a much lower level by Indian respondents. Possibly low quality

routine home assignments and unchecked plagiarism are responsible for this response.

Effectiveness of Teaching Methods: Survey of Software Developers (2009)

In 2009, this study was further extended and refined by refining and adding a few more teaching

methods. Through the online global community LinkedIn.com, and online surveying tool

surveymonkey.com, we conducted a survey, “Software developers - (How) Did your college

www.manaraa.com

184

help you in your development?” among working software professionals. We asked them to rate

various educational experiences of college studies with respect to their direct/indirect

contribution for respondent’s later technical/professional/academic activities in terms of skill,

knowledge, problem solving methodology, mindset, thinking, habits, values, etc. The details of

this survey are discussed in Appendix A10 (Table A10.1).

Usually, the traditional educational systems and approach over-emphasize three educational

methods: (i) knowledge transmission oriented lectures, (ii) homework and tutorials, and (iii)

written examination and required preparation. Very interestingly, as shown in Table A10.1,

(Appendix A10), these methods were found to be the least valuable by our respondents for

contributing to the development of their skill, knowledge, problem solving methodology,

mindset, thinking, habits, values, etc., for their later technical/professional/academic activities.

These were the only three methods that were found to have an average rating of less than 2 on a

scale of 0 to 4. That means that a good number of our respondents found only some or none of

these methods to be helpful in their multidimensional development.

Project work, laboratory work, discussions with other students, thinking and work oriented

lectures, and teaching peers/juniors were rated as the most valuable educational experiences.

All these experiences are learner-centric, whereas the least rated three experiences are essentially

teacher-centric. These findings further validated our earlier SPINE-like study discussed above.

Effectiveness of Teaching Methods-II: Effect on Desired Competencies

In this survey, we had also asked them to rate the effectiveness of these pedagogical

engagements for developing specific competencies, as discussed in Chapter 3. The details of this

survey are discussed in Appendix A10. The results of this survey have also been discussed in

twelve competency specific sections of Chapters 4 to 6. Table 7.2 provides the summary of the

results of this part of this survey. The details are given Appendix A10, part A1.

www.manaraa.com

185

Table 7.2: Perceived effectiveness of pedagogical engagements with respect to enhance of competencies:
perceptions of software professionals

“Software developers - (How) Did your college help you in your development?” Summary of Table A10.2,
(Appendix A10)

S.N
o

Competency
(Table 8.1)

Ranked list of most effective
pedagogical engagements (selected
by half or more respondents)

Least effective pedagogical engagements
(selected by less than 25% respondents)

1 Technical competence
(including analytical,
design, implementation,
debugging)

Projects (84%) and Laboratory work
(65%)

Discussion with others (9%), Written exams
(16%), Knowledge transmission oriented
lectures (18%), and Discussion with faculty
(19%)

2 Communication
competence

Discussions with other students
(84%), Mentoring juniors (71%),
Discussions with faculty (69%), and
Discussion with others (51%)

Home work (8%), Research literature survey
(8%), Laboratory work (8%), Written
examinations (12%), Knowledge transmission
oriented lectures (12%), Thinking oriented
lectures (20%), and Project (22%)

3 Domain competence

Projects (61%), Research literature
survey (51%), and Knowledge
transmission oriented lectures (51%)

Discussions with others (18%)

4 Complex problem
solving competence

Projects (79%), Laboratory work
(59%), and Thinking oriented lectures
(51%)

Discussions with others (6%) and Knowledge
transmission oriented lectures (18%)

5 Computational
thinking competence
(including abstract and
algorithmic thinking)

Projects (64%) and Thinking oriented
lectures (49%)

Discussions with others (5%), Discussions with
other students (20%), Written exam (20%),
Discussions with faculty (21%), Mentoring
juniors (22%), industrial training (22%), and
Knowledge transmission oriented lectures
(24%)

6 Attention to details

Projects (71%) Discussions with others (6%), Knowledge
transmission oriented lectures (18%),
Discussions with faculty (22%), Thinking
oriented lectures (22%), and Discussions with
other students (24%)

7 Critical and reflective
thinking

Projects (50%) Homework (10%), Knowledge transmission
oriented lectures (14%), Written examinations
(14%), Industrial training (18%), Discussions
with others (22%), and Laboratory work (24%)

8 Creativity and
innovation

Projects (82%) and Thinking oriented
lectures (53%)

Written examinations (4%), Knowledge
transmission oriented lectures (8%), Homework
(18%), and Discussion with other (22%)

9 Intrinsic motivation to
create/improve artifacts

Projects (74%), Research literature
survey (58%), Thinking oriented
lectures (54%), Discussions with
students (50%), and Discussions with
faculty (50%).

Written examinations (6%), Knowledge
transmission oriented lectures (14%),
Homework (16%), and Discussion with other
(24%)

10 Curiosity Projects (66%) and Research literature
survey (62%)

Written examinations (12%) and Discussion
with other (14%)

11 Decision making
perspective (including
project planning, and
management skills)

Projects (90%), Industrial training
(71%)

Knowledge transmission oriented lectures
(13%), Written examinations (13%), discussion
with others (13%), and Home work (15%)

12 Systems-level
perspective (including
ability to see himself as
bound to others, and also
ability to accommodate
himself to others)

Projects (58%) and Mentoring other
students (51%)

Written examinations (10%, Knowledge
transmission oriented lectures (10%),
Homework (15%), Thinking oriented lectures
(17%), Research literature survey (19%), and
Discussion with others (24%)

www.manaraa.com

186

Effectiveness of Teaching Methods: Survey of Students (2009)
The findings of Table 7.1 were also further validated through an almost similar survey among the

final year (seventh semester) computing students at Jaypee Institute of Information Technology.

Our earlier two surveys showed that projects were the most valuable educational experience

with reference to later professional activities. Hence, we asked the students to rate the

effectiveness of their earlier educational experiences with respect to its contribution on their final

year project.

We asked them to rate the following educational experiences of the last 3+ years with respect to

their direct/indirect contribution for this project in terms of skill, knowledge, problem solving

methodology, mindset, thinking, habits, etc. There was a slight modification in the list of the

educational experiences. Since, as a department, we have been using all the methods listed in

Table 7.3, we dropped the last option of ‘rarely/never experienced during college studies’ in this

survey. The respondents, who did not respond to some option, were treated as ‘no comments’ for

that educational experience with a numeric value of zero. The first five options were used for

this survey. We received a total of 210 responses. Table 7.3 shows the summary results of this

survey. The details are discussed in Appendix A10, part B.

Table 7.3: Effectiveness of educational experiences for competency enhancement of computing students

Teaching Methods Rating Average

(0-4)
1. Minor project-I/Minor project-II of 3rd year 2.8
2. Mini projects as part of specific courses 2.8
3. Laboratory work (during laboratory classes) 2.7
4. Industrial Training 2.5
5. Developmental work (for laboratory classes) 2.5
6. Discussions with faculty 2.4
7. Literature survey oriented assignments 2.2
8. Discussions with peers/seniors 2.1
9. Lectures 1.9
10. Tutorial 1.8
11. Written examination and required preparation 1.6
12. Mentoring juniors 1.5

Broadly speaking, the result of this survey also reconfirms the supremacy of projects and

laboratory work as the best educational experiences with reference to their contribution for final

www.manaraa.com

187

year project in terms of skill, knowledge, problem solving methodology, mindset, thinking,

habits, etc. In the same context, it also reconfirms the inadequacy of lecture, tutorial

(homework), and written examination and required preparation. All these are teacher-centric

activities. It is very interesting to note that the students find discussions with faculty as very

useful for their project, where their response for lecture is very poor.

This result in Table 7.3 has one significant variation with respect to the result of Table A10.1,

(Appendix A10). The lowest rating of mentoring juniors is attributed to the fact that a good

number of the respondents gave no comments for this experience. Mentoring juniors is a student-

centric activity for the senior students. The details of this scheme are discussed in Section

9.2.3.2. A large fraction of 58% of the students found that their experiences in mentoring of

juniors were either extremely useful, mostly useful, or many were useful with reference to their

project work. The effect of ‘mentoring the juniors/peers’ experiences on enhancement of specific

competencies as perceived by working professionals has been discussed in the fourth, fifth, and

sixth chapters. As per the report of the faculty, nearly 50% of the final year students very

seriously participate in the mentoring program. We can interpret that most of those who had

enthusiastically participated in the mentoring program, found that experience useful even for

their final year project.

These three surveys show that teacher-centric educational activities like lecture, written exam,

homework, tutorial, etc., do not significantly contribute to the development of students’ skill,

knowledge, problem solving methodology, mindset, thinking, habits, etc. The development of

these virtues is attributed by our respondents to student-centric activities like projects,

laboratory work, discussions, literature survey, teaching (mentoring), etc.

Section 7.1.2: Empirical Examination of Software Development Education Through

Bloom’s Taxonomy

Several authors have given a summary and commentary on Bloom’s taxonomy [133] [305-306].

This taxonomy continues to be extensively used for course and assessment design by several

computer sciences education researchers. For example, on December 20th, 2009, ACM Digital

www.manaraa.com

188

library showed 407 papers referring to Bloom’s taxonomy out of which 214 papers were

published 2007 onwards.

The simplest level, ‘Knowledge,’ exhibits previously learned material by recalling facts, terms,

basic concepts, and answers. The ‘Comprehension’ level demonstrates understanding of facts

and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating the

main ideas. ‘Application’ is about solving problems by applying acquired knowledge, facts,

techniques and rules in a different way. ‘Analysis’ represents the act of examining and breaking

information into parts by identifying motives or causes, making inferences and finding evidence

to support generalizations. ‘Synthesis’ aims at compiling information in different ways by

combining elements in new patterns or proposing alternative solutions. ‘Evaluation’ is about

presenting and defending opinions by making judgments about information, validity of ideas, or

quality of work based on a set of criteria. These upper three levels are considered to represent

higher-level cognitive activities that require and develop mental faculties of problem solving.

Anderson and Krathwohl modified Bloom’s taxonomy by adding another dimension of

knowledge types: factual, conceptual, procedural, and metacognitive. They renamed the earlier

hierarchy of levels from nouns to verbs [134]. They also swapped the position of the uppermost

two levels. However, the highest level of evaluation involves designing of criteria and also

considerations of larger context, human values, and ethics. Hence, it is appropriate to keep it at

the highest level. However, in the absence of either of these two aspects in evaluation, it reduces

to a higher level of analysis only. The summary of Bloom’s revised taxonomy of cognitive

processes for our purpose is as follows: (i) remember, (ii) understand, (iii) apply, (iv) analyze,

(v) create, and (vi) evaluate.

The main aim of this study conducted by us in 2003 [11-12], was to empirically understand the

degree to which the formal components of the traditional teaching-learning-evaluation process in

engineering education succeed in creating opportunities for enhancing various competencies.

Appendix A11 gives the further details of this study.

www.manaraa.com

189

Table 7.4 (copy of Table A11.3, Appendix A11) tabulates the numeric ratings for six Bloom

levels where large values indicate high ranks by most of the respondents.

Table 7.4: Comparison of Bloom level-specific normalized consolidated ratings

Bloom’s
Cognitive levels

What students
think they get

What students
get in

examinations

What students think
works well for

them

What professional
engineers

recommend
Remember 0.24 0.36 0.04 0.09
Understand 0.24 0.16 0.11 0.10
Apply 0.22 0.40 0.13 0.10
Analyze 0.14 0.04 0.15 0.19
Create 0.14 0.05 0.46 0.38
Evaluate 0.02 0.00 0.11 0.15

Table 7.5 (copy of Table A11.4, Appendix A11) gives the correlation coefficients between these

three ratings (each can be viewed as an arrays of 6 elements).

Table 7.5: Correlation between different consolidated ratings

 What students

think they get

What students get
in examinations

What students
think works well

for them

What professional
engineers recommend

What students get
in examinations
L’Ri-Exam

0.77

-0.25

-0.57

What students
think works well
for them
L’Ri-student-II

-0.22

-0.25

0.96

What professional
engineers
recommend
L’Ri-professional

-0.38

-0.57

0.96

Correlation

In Table 7.5, a high correlation of 0.77 is observed between the perception of fifty 2nd year

computing students, and the data collected from the fifteen question papers that were

administered to around 1200 students of different seniority in electronics, computing, and

biotech disciplines.

www.manaraa.com

190

These results imply that in spite of the differences in disciplines, subjects, and seniority, there is

not much difference in the cognitive level of activities that engineering students are engaged in.

The professional engineers place a high emphasis (combined rating of 0.71) on engaging the

students in activities to analyse, create, or evaluate that require higher-order cognition as

compared to the emphasis (combined rating of 0.29) on simpler activities to remember,

understand, and apply requiring lower level cognition. Interestingly, most of the engineering

students experience more effective learning (combined rating of 0.72) when they are engaged in

activities that require higher-order cognition as compared to the much lower perceived

effectiveness (combined rating of 0.28) of the learning that occurs as a result of their

engagement in activities requiring lower order cognition.

This demonstrates that most of the engineering students’ preferred learning style is in alignment,

and having a very high correlation of 0.96, with the recommendations of the professional

engineers. However, the prevailing practice among the majority of engineering educators

demonstrates an opposite preference leading to negative correlation of -0.22 and -0.25 with the

preferred learning style of their students, and -0.38 and -0.57 with professional engineers’

recommendations respectively.

Can Language Change Thinking?

Obviously, the higher education system needs to make a deliberate and committed effort to put

students into activities that will encourage, motivate, and force them to apply genuinely higher

level cognitive skills. The kind of activities that a typical engineering student is generally

engaged in does not help in enhancing ill-defined problem solving. It is clear that most of the

activities that students get formally engaged in as part of the teaching learning-evaluation

process promote rote-learning and conformity. If the structure of language offers a key to the

structure of thought, we will know the educational ethos has changed when we see a

predominant use of different verbs by faculty. Further, it may well be that a deliberate shift in the

verbs used in teaching (and consequently a rethinking of the assignments being given) could be

an important step in fostering ill-defined problem-solving among engineering students.

www.manaraa.com

191

This study also partially explains the findings of our first three study in this section about

effective teaching methods and educational experiences, where the software professionals as

well as computing student respondents, rated teacher-centric activities like lecture, written

examinations, and tutorial etc., as the least effective teaching methods.

Section 7.1.3: Qualitative Study of Effective Lectures

The following qualitative study examines the issue of effective teaching methods in the limited

context of lecture classrooms by collecting, documenting, and analysing the anecdotes about the

most effective lectures as recalled by engineering students at different levels, and also by faculty

members.

Section 7.1.3.1: Perceptions of Computing Students at Senior and Junior Levels

Some anecdotes about the most effective lectures as recalled by undergraduate engineering

students specializing in computing disciplines students, at two different levels of seniority, were

collected and documented. In all, 110 anecdotes about the most effective lectures have been

collected. The first collection of 28 anecdotes was elicited from students who had completed four

to six semesters of study work, and also a month long industrial training. Table A12.1 (Appendix

A12) gives excerpts of some selected samples from this collection. The second set of 82

anecdotes was collected from students at the beginning of their 3rd semester. Table A12.2

(Appendix A12) lists excerpts of some of these anecdotes.

A closer look at these two tables reveals interesting patterns in the learning preferences of these

two categories of respondents. Out of twenty-eight anecdotes from senior students, an

overwhelming majority of twenty-five anecdotes associate most effective lectures with at least

one form of active or collaborative activity like problem solving, group work, discussions,

critique, and so on. This preference also confirms the earlier finding [11-12] even in the limited

context of a lecture classroom. On the other hand, out of eighty-two anecdotes from junior

students, nearly half, i.e., thirty-eight did not make a special mention to any form of the active or

collaborative activity in the most effective lecture as recalled by them.

www.manaraa.com

192

This difference can be explained in the light of difference in the degree of their exposure to

different lecturing techniques. The senior group of students were exposed to more forms of

lecture formats as they did courses with a larger number of faculty members. Through some

courses, senior students were already exposed to classroom engagement in problem solving,

group work, and other forms of active learning. On the other hand, the junior students were not

so much exposed to such lecture classes. They were possibly mainly trained through the

conventional method of teacher-centric knowledge transmission oriented lectures. This

difference in the responses of two groups suggests that unless students get exposed to intense

active and collaborative learning, they remain satisfied with teacher-centric conventional lectures

with occasional interaction in the form of seeking clarification. Their learning preferences

undergo a major change after they get exposed to some techniques of active and collaborative

learning during lectures.

Section 7.1.3.2: Perceptions of Faculty Members in Engineering Institutes

Anecdotes about the most effective lectures as recalled by the faculty members were collected,

documented, and analysed. The faculty members recalled and contributed anecdotes from their

experience both as student and also as teachers. In all, 142 anecdotes of such best lectures have

been collected. The first set of 99 anecdotes was collected from engineering faculty’s recalled

experiences from their student life. Table A12.3 (Appendix A12) shows some of these anecdotes.

Many of these faculty members also contributed the fourth group of 43 anecdotes about their

most effective lectures as teachers. Some of these anecdotes are listed in Table A12.4 (Appendix

A12).

The anecdotes of teachers’ most favourite lectures from their student life, tabulated in Table

A12.3, shows a pattern which is skewed in favour of active and collaborative classrooms.

Approximately 80% of the anecdotes have a specific mention of some such classroom

engagements. Further, an overwhelming majoring of the faculty members (94%) considered

those lectures as their best in which they are able to put the students into one or the other kind of

activities like problem solving, seeking clarifications, design, group work, and so on.

There is a great structural similarity between the favourite lectures mentioned in the anecdotes

offering most effective learning in all four tables of Appendix A12. The best practices as

www.manaraa.com

193

narrated by different groups have a common pattern which is skewed towards usage of ‘action

and interaction’ in lecture classrooms. However, in spite of similar perceptions about the

structure of most effective lectures, use of such effective practices is far from common. This gap

can be attributed to one or more of following factors:

1. Lack of sufficient exposure to best practices during the faculty’s student life.

2. Lack of training in using best practices after joining the profession.

3. Lack of belief in the necessity of best practices.

4. Lack of confidence in the sustainability and success of best practices.

It hypothesized that lack of sufficient exposure during their student days and subsequent lack of

training after joining the teaching profession are the basic reasons for this gap. Most of the

lectures attended by faculty members during their student life were possibly devoid of practices

of action and interaction. Occasional experiences with some of these practices, though result in

positive memory of such lectures, such experiences are possibly not frequent or strong enough to

make the necessity of such practices as part of their belief system about the teaching-learning

system. On joining the profession, no training is provided to them to help them to fill up this gap.

They never formally learn about teaching-learning principles, models, or practices and they don’t

get the opportunity to strengthen their confidence in the sustainability and success of such

practices.

Section 7.1.4: Quantitative Study of Effective Lectures

The following quantitative analysis among senior undergraduate and postgraduate engineering

students, attempts to more closely understand and identify the attributes of this gap among

common and effective practices from their perspective. In this process it also attempts to validate

the first part of the proposed hypothesis about the lack of faculty’s exposure to effective

practices of action and interaction in the lecture classes during their student life through an

understanding of experiences of current students, some of whom will grow as faculty in future.

The second part of the hypothesis about lack of training for faculty is examined and discussed in

the next section.

www.manaraa.com

194

Section 7.1.4.1: Perspective of Computing Students

Based 252 anecdotes from students and faculty (Appendix A12), a list of fourteen non-exclusive

lecture properties was prepared as possible attributes of different lecture formats. These were

used for a quantitative survey among students. This survey is discussed in Appendix A13. These

attributes have been used to propose typology of learning environments as follows:

1. Passively engaged student: The student only listens and does not add any content to the

discourse.

2. Reactively engaged student: The student reacts and asks for some clarifications without

adding any other type of content to the discourse.

3. Actively engaged student: The student gets individually engaged in some kind of problem

solving activity, and adds some content to the discourse.

4. Collaboratively engaged student: The student proactively collaborates with others to

solve problems and adds content to the discourse in the lecture classroom.

Table 7.6 (copied from Table A13.3, Appendix A13) shows the summary of results of this

survey.

Table 7.6: Attribute category-wise consolidated ratings by computing students

Lecture format attribute category

Most
effective for

learning
(A)

Least
effective for

learning
(B)

Most often
used

(C)

Least often used

(D)
1 Passively engaged student 0.48 1.61 1.68 0.43
2 Reactively engaged student 0.48 0.39 0.48 0.30
3 Actively engaged student 4.39 0.77 0.66 3.57
4 Collaboratively engaged student 5.00 0.57 0.27 4.82

The last two columns of Table 7.6 confirm the first part of hypothesis made in the last section

that during student life, there is lack of exposure to usage of action and interaction in the lecture

classrooms. The mismatches between corresponding values in columns A and B on one hand,

and columns C and D on the other hand, are very significant. This is further consolidated in

Table 7.7 that shows the correlation coefficients between A, B, C, and D columns of Table 7.6.

www.manaraa.com

195

Table 7.7: Correlation matrix between attributes of different lecture formats based on computing students responses

 Most effective for
learning

(A)

Least effective for
learning

(B)

Most often used lecture
format

(C)
Least effective for learning (B) -0.79
Most often used lecture format (C) -0.69 0.99
Least often used lecture format (D) 0.50 -0.75 -0.78

Table 7.7 shows that there is a very high negative correlation of -0.79 between the attributes of

the most effective and the least effective lecture formats. This implies that attributes of the most

effective and the least effective lectures have great dissimilarities. Also, there is a very high

negative correlation of -0.78 between the attributes of the most often used and the least often

used lecture formats. This signifies that there is a very significant contrast in the attributes of the

least often used and the most often used lecture formats. This suggests that there are great

dissimilarities in the lecture formats, and also the attributes of the lecture format have an impact

on learning. There is a positive correlation of 0.50 between attributes of the most effective and

the least often used lecture formats. This implies that attributes that make a lecture format most

effective are used least often.

Most disturbing is the very high positive correlation of 0.99 between the attributes of least

effective and most often used lecture formats signifying that the attributes that make lectures

least effective are most often used by faculty members. This observation is further strengthened

by the very high negative correlation of -0.75 between the attributes of the least effective

attributes and the least often used lecture formats indicating that the attributes that make lectures

least effective are most used by teachers. Similarly, there is a negative correlation of -0.69

between the most effective attributes and the most often used lecture formats. This means that

the attributes that make lectures most effective are not most often used by teachers. This suggests

that senior undergraduate students report better learning in active and collaborative lectures that

offer opportunities for creative thinking, problem solving, group work, analysis, design, and so

on.

Hence, in order to increase the effectiveness of lectures in courses for computing students, there

is a need to increase a teacher's awareness about the students’ preferred learning styles.

www.manaraa.com

196

Further, the role of the lecture needs to expand from the traditional teacher-centric content

delivery to a student-centric content exploration, discovery, and creation.

A detailed analysis of Table A13.2 (Appendix A13) shows the following:

1. A very high majority (80% to 90%) of respondents feel that the most often used lecture

format has the following attributes:

i. During the lecture, the main purpose of a teacher’s presentation is to explain the

textbook.

ii. Lecture classroom is primarily a place for careful listening to a teacher’s

presentation and prepare class notes.

It can be noted that both of these attribute belong to the first category of attributes, and

promote passivity in students’ in-class behavior.

2. Only a very small minority of 11% of the respondents identified ‘explaining and

interpreting textbook’ as a attribute of the most effective lecture formats. On the other

hand, a large majority of 91% respondents felt that the lectures that focus on ‘explaining

and interpreting textbook’ are least effective.

3. Only a very small minority of 36% of the respondents identified ‘careful listening and

preparing notes’ as a attribute of the most effective lecture formats. On the other hand, a

large majority of 70% respondents felt that the lectures that focus on this attribute are

least effective.

4. A majority (approximately 50% to 77%) of the respondents felt that the lecture format

that they found to be the most effective in terms of its impact on learning outcomes has

the following distinguishing attributes:

i. It encourages and demands students to do on-the-spot creative thinking (75%).

ii. It encourages and demands students to do in-class-group-work (64%).

iii. It encourages and demands students to engage in on-the-spot discovery (63%).

iv. It encourages and demands you to in-class create conceptual designs (59%).

v. It encourages and demands students to in-class analyze presented information

(59%).

vi. It encourages and demands students to get on-the-spot practice of problem solving

as an individual (57%).

www.manaraa.com

197

vii. It encourages and demands students to on-the-spot communicate their creations to

the entire class (50%).

Interestingly, all these lecture attributes belong to the category of active and collaborative

engagements.

From this study, we can deduce that much to the dislike the students, they are a passive (could be

very careful) recipient of information in the engineering lecture classroom. Interaction, if any, in

the lecture classrooms is also passive in nature. It remains limited to seeking clarifications in a

teacher’s presentation. Students are rarely engaged in activities that give them the opportunity of

actively and collaboratively expressing their ideas. These lectures do not contribute to effective

learning. Respondents report most effective learning when they are engaged in activities that

give them the opportunity of ‘individual action and collaboration.’

In the light of this study, we can also provide an explanation of working engineers’ perception of

low importance of lecture as a teaching method. In their experience also, the most often used

lecture format may have been least effective for their learning, as is the case with current

students. Hence, low importance attached to lecture by them can be attributed to lack of action

and active interaction in lecture classrooms.

Section 7.2: Reflections About the Phenomenon of ‘Learning’
The mechanism of learning has been attracting the attention of thinkers in philosophy,

psychology, education, and also computer science. Annexure AN12 briefly summarizes some

important theoretical perspectives [206] [307-332] about the phenomenon of learning.

Behaviorists see learning as a relatively permanent change in behavior due to experience, and

concentrate on control of the external environment.

Cognitive psychologists perceive it as a relatively permanent change in mental associations due

to experience, and believe that humans are capable of insight, perception, and attributing

meaning.

Social psychologists view it as a social enterprise, depending upon interaction between learner

and his/her socio-cultural environment.

www.manaraa.com

198

Humanists emphasize the development of the whole person, and place emphasis on the affective

domain.

Constructivism stresses that all knowledge is context bound, and that individuals make personal

meaning of their learning experiences through internal construction of reality.

Neuroscience ascribes ‘learning’ to the brain’s ability to change its structure. Though learning is

natural, it is not automatic. It is driven by voluntary and/or involuntary efforts made in response

to stimulating experiences. Such stimulating experiences create ‘cognitive dissonance’ [327] and

‘learning contexts’ by inducing recognition of inadequacy of existing meanings. These contexts

catalyze the activation of operating learning processes. Learning is a natural multi-faceted

process that helically progresses through making and rendition of meaning at progressively

deepening levels. Meaning making and rendition processes unfold in a multi-dimensional space

of physical world, community, culture, psycho-motor, cognition, emotion, attitude, and values.

Humans continuously make meanings about the external world, inner self, and the relationship of

the two. Experiences are interpreted as mental objects by the human mind to create an

individual’s meanings. Mental objects include thoughts, ideas, concepts, impressions, percepts,

rules, images, notions, scripts, schemas, and so on. The combined strength of deductive,

inductive, convergent, divergent, linear, nonlinear, critical, and creative thinking processes, as

well as intuition, drive this interpretation. Symbols, notations, language, diagrams, and concept-

maps are used to represent and create these objects.

We create meaning at different levels in different contexts. These levels range from superficial

symbolic levels to deeper conceptual and revelational levels. A disjoint ensemble of inflexible

and incoherent superficial meanings results in surface learning. Deep learning requires the

learners to create integrated, coherent, and trans-contextually transferable meaning at deeper

conceptual and revelational levels. Ability to apply, blend, and regulate thinking processes

governs coherence, accuracy, richness, interconnectedness, and representations of mental

objects, and hence, the level of meanings. Deeper meanings are characterized by richer

representations. At the deepest levels of learning, meanings related to self, get well integrated

www.manaraa.com

199

with the meanings related to the external world. Prior meanings may expedite, impede, or even

block the progress of an individual’s meaning making processes.

We render our meanings in abstract forms like models and theories, and concrete forms like

artifacts, e.g., software and processes at varied levels of sophistication. Meaningful and creative

renderings manifest learners’ deeper integrated meanings and refined rendering skills. Meaning

making continues during rendition, and rendering skills themselves are refined through practice

and newer meanings. The level of meaning, and also the form and sophistication of rendering,

depend upon the richness of context and strength of operating processes of learning as well as

learners’ nature, nurturing, and intrinsic motivation.

An individual’s value orientation and interests shape his need perception. Many of our efforts

made for fulfilling our needs and other experiences create ‘learning contexts’ [333] by inducing

recognition of inadequacy of existing meanings. An individual’s value orientation, perceived

needs, intrinsic motivation, and flow of emotions trigger, drive, and direct their meaning making

process and efforts. Community and culture significantly influence value orientation, perceived

needs, intrinsic motivation, and flow of emotions. Further, community and culture also provide

the ground for creating shared meaning.

Repeatedly reinforced meanings, cultural norms, and social expectations affect the meanings

about the inner self. Meanings related to inner self have strong influence on personal values,

interest, attitude, intrinsic motivation, goals, and even perspective. Changes of self-related

meanings affect individual’s efforts, and also their meanings about external world. Consequently,

a practice of critical self-reflection on self-related meanings strengthens self-regulation of

meaning making, and increases the efficacy of learning processes.

Wisdom is an outcome of trans-contextual meaning integration, self-awareness, openness based

on awareness of competency limitations, and a concern for collective and sustainable well-being.

Section 7.3: Implications for Software Development Education
Formal education and training programs are man-made interventions to foster human

development through synthetic learning contexts. Consequently the efficacy of education and

www.manaraa.com

200

training programs primarily depends upon the richness of the synthetic learning context and

efficiency of the activated learning processes. Learners’ nature, nurturing, and intrinsic

motivation also affect the efficiency and efficacy of their learning processes.

Training is usually concerned with skill development. Education on the other hand has wider

goals of also nurturing the mind in higher levels of cognitive as well as affective domains.

Training programs mainly aim to channelize students’ efforts and ‘ability to learn’ to develop

their ‘competencies.’ Educational programs on the other hand aim to enhance self-awareness,

expand the perspective, intuition, and intellect. They are also expected to contribute in making

students ‘learn to make efforts’ and ‘learn to learn.’ Educational programs have a wider goal of

cultivating ‘valuable competencies’ to develop wise and competent citizens.

Though education and training have a seemingly different focus, they share a symbiotic relation.

Training programs can offer a fertile ground for creating educational contexts, that in turn

contribute back to enhance the efficiency and efficacy of training programs. Both, high

competence and wisdom require deep learning.

As learning facilitators, teachers are essentially students’ experience and engagement designers.

Societal and institutional environment and expectations, as well as teachers’ skill, knowledge,

experience, personal perspective, and even value system guides them in this design process. All

institutes and teachers have their explicit or implicit educational philosophy. This philosophy

plays no lesser important role than the subject expertise in student engagement.

In Chickering and Gamson’s classic paper [334], seven principles of good practice in

undergraduate education were elaborated. These are: (i) encourage contact between students

and faculty, (ii) develop reciprocity and cooperation among students, (iii) encourages active

learning, (iv) gives prompt feedback, (v) emphasize time on task, (vi) communicate high

expectations, and (vii) respect diverse talents and ways of learning.

During the process of undergraduate education, the students grow from late adolescents to early

adults. This growth is characterized by considerable transformation and evolution of self-

awareness and value orientation. These transformations automatically influence perceived

www.manaraa.com

201

interests, needs, attitude, and intrinsic motivation. Sometimes these transformations can be very

swift, and cause the students to experience short-term loss of emotional well-being and self-

regulation. All these changes affect their meanings and also meaning making process. Training

and educational programs ought to offer a spectrum and stream of stimulating learning contexts.

Researchers used Perry’s nine stage model to measure the intellectual development of

engineering students. They found that there was not any significant change in Perry position for

them in their first three years; however, a growth of approximately one Perry position was

observed between the 3rd and 4th years [255]. The authors attributed this change to increased

opportunity of real-life industrial exposure, group activity, and project work in the last year.

In order to stimulate deep learning, education programs need to create and offer such learning

contexts that induce forwarding levels of meaning-deficits, enabling flow of emotions, rich set of

mental objects and representations, enhanced self-awareness, multifarious perspectives, and

persistent practice of meaning integration. Disciplines of educational psychology, adult

development, curriculum design, and instructional design offer a very rich set of theories and

models on these aspects.

Section 7.4: Student Engagements for Facilitating Deep Learning through

Higher Education
The National Survey of Students Engagement (NSSE) is a very large scale study encompassing

hundreds of thousands of students, and thousands of faculty members, of hundreds of institutes

in various disciplines conducted over several years in USA. Table 7.8 catalogues the NSSE

recommended pedagogic engagements for deep learning under the categories of higher-order,

integrative, and reflective learning. The NSSE study [335] showed that, as compared to most

other disciplines, engineering students experience relatively higher involvement in higher-order

learning. It also showed that engineering, physical sciences, as well as business students report

much lesser engagement in integrative and reflective learning. Integrative learning requires

students to relate the content of one subject with another. As per the findings of the NSSE

survey, social sciences, arts and humanities, and some other professional disciplines like

medicine and architecture, create a much higher level of students’ engagement in integrative as

well as reflective learning.

www.manaraa.com

202

Table 7.8: Selected catalogue of learning engagements for deep learning from the NSSE study

Higher-order learning engagements:
1. Applying theories or concepts to practical problems, or in new situations.
2. Analyzing the basic elements of an idea, experience, or theory, such as examining a particular case or situation

in depth, and considering its components.
3. Synthesizing and organizing ideas, information, or experiences into new, more complex interpretations and

relationships.
4. Making judgments about the value of information, arguments, or methods, such as examining how others

gathered and interpreted data, and assessing the soundness of their conclusions.
Integrative learning engagements:
5. Working on a paper or project that required integrating ideas or information from various sources.
6. Including diverse perspectives in class discussions or writing assignments.
7. Putting together ideas or concepts from different courses when completing assignments, or during class

discussions.
8. Discussing ideas from your readings or classes with faculty members outside of class.
9. Discussing ideas from your readings or classes with others outside of class (students, family members, co-

workers, etc.).
Reflective learning engagements:
10. Learning something from discussing questions that have no clear answers.
11. Examining the strengths and weaknesses of your own views on a topic or issue.
12. Trying to better understand someone else's views by imagining how an issue looks from his or her perspective.
13. Learning something that changed the way you understand an issue or concept.
14. Applying what you learned in a course to your personal life or work.
15. Enjoying completing a task that required a lot of thinking and mental effort.

Section 7.4.1: Curriculum Integration

According to Ausubel’s ‘assimilation learning theory,’ meaningful learning occurs through the

process of linking or integrating new ideas or concepts with previous knowledge [340-341].

Curriculum needs to be viewed like a living organism, with most of the important subsystems

functioning even at a very early stage of its development. Most of the subsystems get developed

very rapidly very early in living organisms. For example, in case of a human embryo, the heart

start beating in the fifth week of pregnancy, and primordial forms of liver, pancreas, lungs, and

stomach are evident in the sixth week. By the eight week the hind brain, elbows, and

testes/ovaries are visible. After very rapid development of all necessary systems, living

organisms grow by acquiring sophistication to existing systems, rather than acquiring new

systems during further developmental stage of its life. The living organisms simultaneously grow

in multiple dimensions in a continuously integrated manner.

Computing is a continuously evolving field, there is always a pressure to introduce courses to

address contemporary trends. However, the traditional computing curricula take computing

www.manaraa.com

203

more like a vertical discipline, rather than like an integrated network of ideas, concepts,

technologies, processes, and methods. The foundation courses do not make an attempt to

include the basic exposure to contemporary aspects in an integrated manner. In traditional

computing curricula, students are usually exposed to these contemporary aspects only in

advanced level courses, sometimes only through electives. This creates the possibility of a large

number of computing students to complete their undergraduate program without learning

anything about one or more of contemporary aspects. Such an approach also fails to correlate the

real experiences of students with the curriculum. For example, the current generation of students

grows using software that is rich in graphics and multimedia and also web and mobile-enabled.

They are also aware of the security risks of software systems.

Drake [345] cites many studies on integrated curriculum with various reported benefits:

increased learning, greater personal growth, increased ability to apply concepts, better

understanding, increased student motivation, increased student cooperation, enhanced

confidence, enhanced sense of responsibility, increased use of higher thinking skills, and

improved quality of work. The computing curricula, however, take an unnatural route for

educating the students by ignoring this aspect of continuous integration. Repeated exposures to

integration are necessary for developing an integrated perspective of the curriculum. Hence,

most students do not get sufficient opportunity to view the curriculum as a closely integrated

system. Even the curriculum recommendations of several professional and academic bodies like

ACM and IEEE treat computing curricula as fragmented or loosely coupled systems and

elaborate a list and sequence of courses, topics and also minimum hours for each topic. These

recommendations do not elaborate any specific micro-level integration goals or strategies.

Brown and Nolan [342] developed a continuum for curriculum integration: integration through

correlation between subjects, integration through common themes and ideas, integration through

the practical resolution of issues and problems, and integration through student-centered inquiry.

Beane [343] identified three dimensions of curriculum integration: integration of experience,

social integration, and integration of knowledge (and skills). Fogarty [344] identified ten models

of curriculum integration that fall into three general categories: integration within single

disciplines, integration across several disciplines, and integration within and across learners.

www.manaraa.com

204

Building upon various earlier works on curriculum integration with more specific focus on

school education, Harden [346] proposed a taxonomy of curriculum integration with reference to

the specific context of medical education. We find it very suitable for designing integrated

computing curriculum as well. Harden has structured this taxonomy as an eleven stage ladder

given in Table 7.9. We use selected elements of Harden’s taxonomy in our proposed framework

of pedagogic engagements (Table 8.8).

Table 7.9: Harden’s taxonomy of curriculum integration

Subject based teaching
1. Isolation: Integration is not explicitly facilitated and is left to students themselves.
2. Awareness: Teachers avoid duplication across subjects. Integration is left to students themselves.
3. Harmonization: Teacher may make some explicit connections within the subject area to other subject areas.
4. Nesting: Content from different subjects may be infused to enrich the teaching of one subject.
Higher levels of integration
5. Temporal co-ordination: Related topics in different subjects are taught concurrently but separately.
6. Sharing: Overlapping concepts of different subjects are used as organizing elements for joint teaching of

shared concepts in complementary subjects.
7. Correlation: An integrated teaching session, course, project, assignment is introduced in addition to the

subject-based teaching to bring together related topics.
8. Complementary program: The integrated sessions now represent a major feature of the curriculum. Running

alongside the integrated teaching are scheduled opportunities for subject-based teaching.
9. Multi-disciplinary: New courses are developed around integrating themes, problems, or issues. The courses

may include a structured body of knowledge but which transcends subject boundaries. The theme or problem
is the focus for the learning, and the subjects demonstrate how they contribute to the students’ understanding
of the theme or problem. The subjects give up a large measure of their own autonomy.

10. Inter-disciplinary: Content of many subjects, is combined into a new course. There may be no reference to
individual disciplines or subjects, and hence a loss of the subject or discipline specific perspectives.

11. Trans-disciplinary: The curriculum transcends the individual disciplines. The focus with trans-disciplinary
integration for learning, however, is not a theme or topic selected for this purpose, but the field of knowledge
as exemplified in the real world.

Contemporary technologies like Web, Mobile, Multimedia, and Security and professional

practices like Estimation, Systems Design, Open Source Usage, and Debugging are highly

pervasive in software development. In Section 9.2.1, we propose a model for enriching the

existing courses through multi-level infusion of these selected elements of contemporary

technologies and professional practices. This infusion can be incrementally carried out across

most of the existing core courses. Consequently, even before studying the dedicated courses on

these topics, the students are fairly well exposed to all these areas in their junior level courses,

either as an extension, development tool, process, or application domain. In principle, this is

similar to the fourth stage of ‘nesting’ in Harden’s eleven stage curriculum integration ladder. In

www.manaraa.com

205

addition to increasing cognitive flexibility [206], multi-level infusion of selected topics enhances

open-mindedness and integrative thinking. It also nurtures the habit of reflection.

While multi-level infusion helps to integrate the computing curriculum, some integrative

capstone courses can further strengthen the unification of some important computing concepts,

and also integrate the computing concepts with other disciplines. Integrative capstone courses

help in strengthening nonlinear, integrative and systems thinking, and flexible learning. They

also have the potential to integrate, and hence, consolidate the already learnt material, and also

provide a stronger foundation for further studies. They also have the potential to integrate, and

hence, consolidate the already learnt material, and also provide a stronger foundation for further

studies. In Section 9.2.2, we discuss some integrative capstone courses, visualized and

administered by us.

Section 7.4.2: SOLO Taxonomy

Biggs and Collis [329] proposed a five-level Structure of the Observed Learning Outcome

(SOLO) Taxonomy in terms of increasing complexity. As per this taxonomy, the lower three

levels: ‘pre-structural,’ ‘uni-structural,’ and ‘multi-structural’ are about quantitative increase in

details of the response. The upper two levels: ‘relational’ and ‘extended abstraction’ are about

its qualitative transformation through integration, extension, and abstraction. The first level

indicates complete lack of comprehension and understanding.

Brabrand and Dahl [347] examined intended learning objectives of more than six hundred

science courses (including computer science) at two Danish Universities, and found that the

average SOLO level of intended learning objectives varied from 2.8 to 3.4 for undergraduate

students, and between 2.9 to 3.8 for postgraduate students. Aggregating all the disciplines,

nearly 70% of courses’ intended learning objectives aimed to achieve only third SOLO level. For

some disciplines, this was as high as 80%. Overall, only a little more than 10% intended learning

objectives targeted for fifth SOLO level, and for some disciplines this was even lesser than 5%.

The realized objectives would perhaps be even lesser than the intended ones.

www.manaraa.com

206

Hence, we can conclude that students’ most common engagement in higher education is not only

at the lower levels of Bloom’s taxonomy [9][10], it is also at the lower levels of the SOLO

taxonomies. In the last four years, few papers in the ACM SIGCSE, and very few in IEEE

conferences have made some reference to the SOLO taxonomy. Further, very few papers at the

ACM SIGCSE and IEEE educational conference and transactions refer to any theoretical

framework on curriculum integration. We include SOLO taxonomy in our proposed framework

of pedagogic engagements (Table 8.8)

Section 7.4.3: Collaborative Learning

A serious shortcoming of the typical undergraduate engineering education process is neglecting

to train students to work with other programmers. Usually in a four-year engineering course,

collaborative effort and teamwork is done only in the later years, i.e., in the third and fourth year.

Even then, the collaboration is driven more by division of labor due to size rather than

complexity. Its core purpose is not about engaging them in collaboration.

In 2009, the first semester class of the M.Tech. (CSE) students at Jaypee Institute of Information

Technology, coming from various colleges of various Indian universities, indicated that they had

not experienced much of group work during their undergraduate computing studies, except for

their final year projects. In our empirical study of anecdotes about the best lectures as

recollected by senior students and faculty members, both groups recollected that their best

lectures involved activities like group work, discussions, critique, and so on [348]. A majority of

senior undergraduate computing students felt that the classes that engaged them in some form of

group work were most effective for their learning, whereas nearly half of them also felt that

group work is the least often used pedagogical approach in classes. Many a times, the assignment

or project is designed after forming the groups in the classroom, when the teacher knows the

strength of a particular group. Such approaches do not necessarily develop teamwork skills.

Researchers have felt the need for a way to facilitate students to work together with clearly

defined boundaries [349].

Group work has a very wide range of possible forms, ranging from simple task division between

two members, to intense community collaborations. At the simplest level, it may be in the form

www.manaraa.com

207

of coordination between members for handling simple situations with clear task boundaries

requiring minimum intra-group communication. Alternatively, it may take the form of

cooperation for handling complicated situations with well-defined, but marginally overlapping

subtask boundaries, and mild intra-group communication. Group work in its most sophisticated

form requires collaboration for handling complex situations with evolving subtask boundaries

and intense intra-group communication. The group size, distance, and professional as well as

cultural diversity are other important aspects that bring further variations of these three forms of

group work. Interestingly, software development involves all these forms of group work.

However, sometimes the word collaboration is used to mean all these forms of group activities.

‘Interpersonal intelligence,’ one of the eight forms of multiple forms of intelligences identified

by Gardner [155], is essential for developing the ability to work effectively with others.

Discussions, and collaborative activities like projects, have been found to be effective for

developing this form of intelligence.

Interestingly, social psychologists view the act of learning as a social enterprise, depending upon

interaction between learner and his/her socio-cultural environment. Collaborative learning

focuses on the role of peer work for educational success. Vygotsky in his seminal social

development theory proposed that social interaction plays a fundamental role in the process of

cognitive development [350]. One of key assumptions of Bruner’s model of constructivist

learning is a social enterprise [351-351a]. Pask’s Conversation Theory [320] is founded on the

idea that learning occurs through conversations with instructors or peers [352]. As per the Social

Learning Theory of Bandura, gaining insights into others’ practices can be a valuable experience

[320].

Bextor Magolda’s ‘epistemological reflection model’ [353] elaborates upon the evolutionary

stages of learners’ perceptions of peer’s role in learning. At the first stage of ‘absolute knowing,’

it is limited to sharing material, and explaining what they have learnt to each other. The next

stage of ‘transition knowing’ is characterized by periodic active exchanges among peers. At the

third stage, ‘independent knowing,’ peers share views, and serve as source of knowledge. The

learners at the final stage of ‘contextual knowing’ enhance learning via quality contributions.

www.manaraa.com

208

Other models of intellectual development like Perry’s nine stage model [250] also highlight a

similar evolution in learners’ perception of peer’s role in learning.

Lave and Wenger proposed Situated Learning Theory, with the central idea that learning

involves a process of engagement in a ‘community of practice.’ From the perspective of this

theory, learning is not seen as the acquisition of knowledge by individuals, but as a process of

social participation [354]. Collaborative Problem Solving [156] has been found effective for

developing content knowledge in complex domains, problem-solving and critical thinking skills,

and collaboration skills.

Learning in a collaborative environment is a process that could be subject of two different

perspectives: individual effort and social sharing of knowledge [355-356]. However, this sharing

of knowledge is useful only if students are engaged in collaborative activities. Engagement in

collaborative activities causes individuals to master something that they could not do before the

collaboration [356]. Salmons [357] proposed six levels of collaborative e-learning, as given in

Table 7.10.
Table 7.10: Salmon’s levels of collaborative e-learning

1. Solo: no collaboration
2. Dialogue: simple exchange of information
3. Peer review: reviewing others’ work
4. Parallel Collaboration: dividing the task in the beginning, and finally integrating individuals’ work
5. Sequential Collaboration: building upon each other work
6. Synergistic Collaboration: doing it together in a synergistic manner

We include this model in our proposed framework of pedagogic engagements (Table 8.10).

Preston [381] summarizes that collaborative learning research has already established two things:

(1) the effectiveness of having students work together, and (2) the critical attributes common to

successful collaborative learning approaches. It is important to design exercises in such a way

that the solution requires co-authoring.

Dillenbourg [355] elaborated on collaborative learning as follows: “… a situation in which

particular forms of interaction among people are expected to occur, which would trigger

learning mechanisms, but there is no guarantee that the expected interactions will actually

www.manaraa.com

209

occur. Hence, a general concern is to develop ways to increase the probability that some types of

interaction occur.” According to Dillenbourg [355], in order to maximize the likelihood of the

specific forms of interaction as he had mentioned in his definition of collaborative learning, there

are four conditions to accurately set a collaborative context. These are given in Table 7.11.

These conditions can be very helpful in designing effective instructional interventions for

pedagogical engagement in computing courses.

Table 7.11: Dillenbourg’s four conditions for collaborative learning

1. Set up the initial conditions: This involves taking decisions about group formation. It is difficult to set up initial
conditions that guarantee effective collaborative work. At this stage the faculty is required to take decision about
the size, heterogeneity, geographical, and temporal placement of peers, i.e., face-to-face co-location, side-by-side
co-location, geographically dispersed locations, collaboration technology (if any), selecting peers, etc.
2. Over-specify the collaboration contract with a scenario based on roles: The collaboration contract can be
specified by setting up differences among learners either by triggering conflictual interactions, or assigning
complementary roles, or limiting their access to different parts of information.
3. Scaffold productive interactions by encompassing interaction in the medium: This encompasses specifying
interaction rules in face-to-face or technology enabled collaboration.
4. Monitor and regulate the interactions: The teacher may decide to directly facilitate, monitor, and regulate the
face-to-face or technology supported collaboration among learners. Alternatively, a mechanism or a tool may be
developed for self-regulation by peer learners.

We include Dillenbourg’s four conditions in our proposed framework of pedagogic engagements

(Section 8.3.4).

Section 7.4.3.1: Pair Programming

The most common and widely used form of collaborative programming is pair programming.

Pair programming is a situation in which two programmers work side-by-side, designing and

coding, while working on the same algorithm. As Chaparro [372] paraphrases Cockburn &

William [373] and Williams & Kessler [374] a relevant aspect of pair programming is that it

transforms what used to be an individual activity into a cooperative effort. Typically there are

two roles in pair programming: the driver who controls both the computer keyboard and the

mouse, and the navigator who examines the driver’s work, offering advice, suggestions and

corrections to both design and code.

It was originally designed for production rather than the educational environment. Research

shows that that a pair or a group working together in solving a programming exercise minimizes

www.manaraa.com

210

the cognitive load [378]. Agile methods like eXtreme Programming include it as a common

practice. It has also been used in educational settings, with the reported benefits [379-380] of

program quality, programming speed, learners’ enjoyment, etc. Pair programming exposes code

to constant review and reduces defect rate. Pair programming also enhances technical skills,

improves team work, and considered to be more enjoyable for the participants [349] [375] [383-

384]. Nagappan et al [381] reported an improvement in pairs’ grades on examinations over

students who programmed individually. Researchers have used various methods of group

formation [349] [378-379] [381-382].

Domino et al [385] reported better performance and satisfaction outcomes using face-to-face pair

programming, as compared to its virtual setting. They also found that limiting the extent of

collaboration can be effective, especially when programmers are more experienced. Sfetsos et al

[386] have shown better performance and collaboration-viability for pairs with heterogeneous

personalities and temperaments. Brereton et al [387] report the results of a systematic literature

review of ten empirical studies. They conclude that pair programming may improve

undergraduate students’ pass and retention rates on programming modules, and is likely to

improve their confidence in their work and their attitude towards programming. Lui and Chen

[388] reported a software process fusion (SPF) process in a real software production situation by

alternating between pair as well as solo programming. They found that the longer team members

work alone, the more code patterns they develop for reuse later in pairs.

Many practitioners have also felt that pair programming was not sustainable, and they had to take

breaks from pairing. Some have also reported a loss of self-confidence and the development of a

reluctance to program alone [147]. These are very serious deterrents for introducing it in the

educational setting.

The pair programming method, as defined and practiced in available literature, has a few other

limitations and weaknesses with respect to the educational context. In pair programming, the pair

sits on the same computer all the time and takes turns to write the code. This technique has a

major disadvantage when one of the students in a pair is dominant or faster compared to the

other student. Pair programming, as reported so far in the literarure, does not completely satisfy

www.manaraa.com

211

Dillenbourg’s four conditions (Table 7.11). In many cases the collaboration was not monitored,

and lead to a major disadvantage where students complained that it was difficult for them to be

free at the same time. In VanDeGrift’s [375] experiment, nearly half of the students felt that it

was extremely difficult to schedule time for meetings. At times, students have also complained

of unreliable partners [390], and the possibility of being paired with a parasite [349], suggesting

that pair programming does not provide a scenario based on well-defined roles.

We have refined the approach to pair programming. Our intervention is discussed in Section

9.2.3.1.

Section 7.4.4: Cross-level Peer Mentoring

The code of ethics of all engineering and computing societies put highest emphasis on social

welfare. As per ‘adult learning theory’ [320], adults are motivated to learn by six factors. In

addition to external expectation, personal advancements, and cognitive interest, these factors also

include building social relationships, engaging in social welfare, and stimulation, i.e., contrast

from routine work. Service learning, when integrated in the regular curriculum, satisfies all

these factors. Hence, it has become a well accepted approach of experiential education that

combines curriculum with meaningful service. Many educators see it as a way to enhance

professional and interpersonal skills of students. It is found to be particularly useful for

enhancing their sense of civic responsibility, and preparing a ground for lifelong civic

engagement. Penn State University has even started a peer reviewed International Journal for

Service Learning in Engineering (IJSLE) that can be accessed at http://www.engr.psu.edu/IJSLE.

With increasing demand of higher education in general, and software development education in

particular, the class size has become larger, and it continues to increase. Universities find it

increasing difficult to build enough capacity to provide a teacher’s long term individual attention

to all students. This seriously affects the quality of the laboratory work and hands-on practice in

computing courses. Few highly motivated students are able to overcome this limitation by

building their own network among working professionals and/or senior students. However, the

majority finds it difficult to cope up with the challenging laboratory work without support from

more experienced persons.

www.manaraa.com

212

Based on his studies, Bloom argued that about 90% of the tutored students achieved the level

reached by the highest 20% of the students of a conventional class of 30 students. Further, with

respect to higher mental processes: problem solving, application of principles, analytical

thinking, and creative thinking, the average tutored student was above 98% of the students of the

later group [393]. Because faculty cannot simultaneously guide so many students, they also

develop a reluctance to increase the amount and complexity of the laboratory work. Hence, in

real practice, at many institutes, the students do not get enough challenge and practice in

software development.

The concept of mentoring the juniors, during and after qualification, is a well established practice

in many professions like medicine, nursing, law, chartered accountant, social work, school

teaching, etc. Mentoring has been defined as a process for the informal transmission of

knowledge, social capital, and psychosocial support perceived by the recipient as relevant to

work, career, or professional development; mentoring entails informal communication, usually

face-to-face and during a sustained period of time, between a person who is perceived to have

greater relevant knowledge, wisdom, or experience (the mentor) and a person who is perceived

to have less (the protégé) [394].

Organizations use it for widening of skills base and competencies in line with their strategic

goals, and find it a cost effective form of personal development. It also improves teamwork and

cooperation in organizations. Mentees get benefitted by mentor’s support in many ways: analysis

and reflection, problem solving, self-confidence and ability to take risks, acceptance of criticism,

as well as broadened horizons and maturity.

Teaching has been well recognized as one of the most effective engagements to learn. Learners

create deeper understanding for themselves by teaching others. Mentors also draw several

benefits: improved awareness of own learning gaps, ability to give and take criticism, leadership,

organizational and communication skills, ability to challenge, stimulate and reflect, and

stimulation [395].

www.manaraa.com

213

Since the 1970s, University of Missouri-Kansas City has been spearheading an academic

assistance program, Supplemental Instruction (SI) that utilizes peer-assisted study informal

sessions. The sessions are facilitated by ‘SI leaders,’ students who have previously done well in

the course, and who attend all class lectures, take notes, and act as model students [396].

Researchers have reported that 75.8% of medical schools in USA had near-peer tutoring

programs [397]. Lockspeiser et al have studied several of the earlier studies on the practice of

near-peer teaching in medical schools, and also documented experiences of students and their

seniors who worked as near-peer-teachers at University of California, San Francisco [398].

Reported benefits in earlier studies and in their documentation include: reduction in the dropout

rates, improved academic performance, alternate explanations, and enhanced confidence of

junior students.

Topping and Ehly argue that peer assisted learning works well for the tutees because it offers

them easy access (quantity and immediacy), and it can also enhance their motivation and

confidence while tutors develop a sense of pride and responsibility [399]. Peer tutors engage in

explaining, answering questions, correcting tutee errors, manipulating different representations,

etc. This provides them opportunities not just for rehearsing their knowledge but also for

reflective knowledge building by recognizing and repairing their own knowledge gaps and

misconceptions, integrating new and prior knowledge, and also generating new ideas [400].

Since 2005-06, University of Calgary, Canada has been running a college-wide inter-disciplinary

three credit course ‘Collaborative Learning and Peer Mentoring’ for fourth year undergraduate

students [401]. This course includes weekly discussion sessions of 2.5 hours, and 40 hours of

practical experience of ‘curricular peer mentoring.’ The students of this course collaborate with a

‘host instructor’ to serve as cross-level peer mentor for a ‘host course,’ which they have already

taken. Peer mentoring activities include a combination of in-class and out-of-class activities in

the host course. Enthusiastic students are offered a second opportunity to mentor through

another course ‘Advanced Peer Mentoring.’ These students are also engaged in mentoring the

new peer mentors.

www.manaraa.com

214

Section 7.4.4.1: Possibility of Cross-level Peer Mentoring in Software Development

Education

In 2009, a feedback was collected from working professionals’ online community LinkedIn.

They were asked the question “How did you benefit from your first experience as a

mentor/coach/guide” and also requested to critique the idea of making mentoring compulsory for

all final year students. Twenty-seven professionals (excluding our own alumni) belonging to

diverse countries and age group responded, and also commented on the idea. An overwhelming

majority of these respondents very enthusiastically supported the idea and also identified many

very significant learning outcomes from their own first mentoring experience. Some of the

identified learning outcomes from their personal experiences are given in Table 7.12.

Table 7.12: Software professionals’ reflections about advantages of first mentoring experience

1. … it was the best two years of my time at IBM. Every day I went to work and came home with a smile on

my face ...
2. … I learned how valuable diversity was to the success …
3. … we get multiple perceptions…
4. … Are you able to explain which is the best idea? and which is not? Can you explain concepts that initially

are beyond the other person? These are crucial skills and mentoring helps to develop and sharpen them.
5. …keep on learning by inventing new ideas… .
6. …I learnt more about myself, decision making process, individual differences, and of course communication

skills…
7. … my learning grows exponentially by coaching or guiding someone
8. … great sense of satisfaction … fresh perspective to your own outlook ... learn how to manage interactions

and figure out how to deal with people
9. "Help" is a fundamental button for homo-sapiens …
10. I found that I was required to look within myself and develop patience and empathy…
11. … by sharing what they know, it forces them to think about things critically so that they can explain it to

someone else. I have found personally that mentoring forces me to grow, and usually benefits me more
intellectually than the recipient

Hence, we include mentoring in our proposed framework of pedagogical engagements (Table

8.5). We discuss the details of our intervention in Section 9.2.3.2.

www.manaraa.com

215

Section 7.5: Chapter Summary

In this chapter, we discussed some surveys conducted by us among software developers,

students, and also faculty. We also collected and analyzed a large number of anecdotes of

effecting learning experiences. We established that teacher-centric educational experiences like

lecture, written examination, and homework are least effective for developing required

competencies. We also found that student-centric educational experiences like projects,

laboratory work, and discussions, active and collaborative engagements in lecture classes,

teaching, and mentoring juniors/peers give much deeper learning experiences to computing

students. We concluded that students experience deeper learning in active and collaborative

environments.

In the light of our own empirical studies, and various existing theoretical perspectives, we

presented our reflections on the phenomenon of learning. Finally, we also discussed several

studies about designing student engagements for facilitating deeper learning.

In this backdrop, we propose a novel unified framework of pedagogic engagements in software

development education in the next chapter. We have chosen and integrated some very useful

theories and models in this unified novel framework. This framework can be used for designing

interventions for instructional reform in computing courses for developing students’ multi-

dimensional competencies with respect to the requirements of software development. In the ninth

chapter, we shall discuss some such interventions designed and tested by us.

www.manaraa.com

216

CHAPTER 8: A FRAMEWORK OF

PEDAGOGIC ENGAGEMENTS IN

SOFTWARE DEVELOPMENT EDUCATION

In this chapter, we propose a unified framework of pedagogic engagements in software

development education. This framework can be used for designing interventions for instructional

reform in computing courses, for developing students’ multi-dimensional competencies with respect

to the requirements of software development. To summarize the objectives for our framework, we

first consolidate the key findings discussed in the earlier chapters. In the third chapter, we

concluded that in addition to solving ill-defined problems, it is imperative to develop diverse

types of thinking skills, comprising whole-brain activity, among software professionals.

In the Table 3.2, we designed a three-tier taxonomy of core competencies for software

developers. In order to provide a ready reference, this is reproduced as Table 8.1.

Table 8.1: Three-tier taxonomy of core competencies for software developers (Ref: Table 3.1)

Basic Competencies

Competency Driver-Habits of
Mind

Competency Conditioning
Attitudes and Perspectives

1. Technical competence
2. Computational thinking

competence
3. Domain competence
4. Communication competence
5. Complex problem solving

competence

6. Attention to details
7. Critical and reflective thinking
8. Creativity and innovation

9. Curiosity
10. Decision making perspective
11. Systems-level perspective
12. Intrinsic motivation to

create/improve artifacts

Appropriate proficiency in these competencies is required to carry out the activities identified in

Table 4.1. We have already discussed the meaning of these competencies with the help of several

multi-disciplinary findings and recommendations in the context of software development in the

fourth, fifth, and sixth chapters. Development of these competencies is intertwined with multi-

dimensional professional and human development of software developers. In the earlier

www.manaraa.com

217

chapters, we have identified and argued in favor of five complementary perspectives for this

multi-dimensional development.

In Table 4.7, we unified the ladders of professional competence proposed by the Gordon

Institute, Dreyfus brothers, and Denning. The professional development to the highest two levels

in this ladder is completely beyond the scope of formal educational. Hence, we drop these two

levels from educational agenda. Though the professional development at 6th and 7th levels in this

ladder also primarily depends upon the professional experiences of the concerned person, the

formal educational can help in laying the right foundations for achieving these levels.

Further, in Section 6.5, we concluded that software development education programs should also

aim to facilitate students’ movement to higher levels in the ladders of cognitive development,

motivation (need-perception) development, levels of systems thinking (Table 6.4), and moral

reasoning development (Table 6.8). The highest three levels in the Perry’s Model of cognitive

development (Table 6.1), and the highest level in the Maslow’s model of motivation (Table 6.9)

are difficult to achieve through formal college education. However, college education must

nurture the mental habits as well as the attitudes and perceptions to facilitate later development

to these stages. All these five ladders of professional and human development are juxtaposed in

Table 8.2.

www.manaraa.com

218

Table 8.2: Five-dimensional ladder of professional and human development

Levels of
development of

professional
competence

(Gordon Institute,
Dreyfus and
Dreyfus, and

Denning)
(ref: Table 4.7)

Levels of cognitive
development

(Perry)
(ref: Table 6.1)

Levels of
motivation (need-

perception)
development

(Maslow)
(ref: Table 6.9)

Levels of systems
thinking

(derived from
Boulding and

Sanford)
(ref: Table 6.4)

Levels of
development of
moral reasoning

(Kohlberg)
(ref: Table 6.8)

1. Unconscious
incompetence

2. Conscious
incompetence

3. Novice (beginner)
4. Advanced

beginner
5. Entry-level

Professional
(competent)

6. Proficient
professional

7. Expert

1. Dualism
2. Multiplicity
3. Contextual

relativism
4. Pre-

commitment

5. Initial
Commitment

6. Challenge to
commitment

7. Developing
commitments

1. Biological and
physiological
needs

2. Safety needs
3. Belongingness

and love needs
4. Esteem needs
5. Cognitive needs
6. Aesthetic needs
7. Self-

actualization
needs

8. Transcendence
needs

1 Pre-structural
thinking

2 Structural thinking
3 Clockworks

thinking
4 Closed systems

thinking
5 Complex adaptive

systems thinking
6 Developmental

systems thinking
7 Evolutionary

systems thinking

1 Obedience and
punishment

2 Individualism
and reciprocity

3 Interpersonal
conformity

4 Social systems
and ‘law and
order’

5 Social contract
6 Universal

ethical
principles

Comprehensive professional development needs an upward movement on these five ladders.

Hence, we term it as a five-dimensional ladder of professional and human development. Deep

learning is necessary for development of twelve competencies and five-dimensional professional

and human development.

Section 8.1: Three-dimensional Knowledge Domain for Designing Computing

Courses
In Table 4.1, we identified and ranked the most important professional activities that must be

included in the main goals for a new curriculum for the future generation of software developers.

These activities are rank-listed in first column of Table 8.3.

In the absence of a comprehensive model for knowledge categorization, course designers over-

emphasize some kind of theoretical knowledge, and do not give sufficient attention to contextual,

meta-cognitive, and empirical aspects. We propose a novel three-dimensional model for the

knowledge domain for designing computing courses.

www.manaraa.com

219

Anderson and Krathwohl categorized knowledge domain for any subject into four types:

factual, conceptual, procedural, and meta-cognitive [134]. These categories have been used by

many educators to design their courses. The curriculum and course designers do not give

sufficient attention to meta-cognitive aspects. While this classification may be acceptable for

designing courses for school education, with reference to higher education, especially

professional software development education, we find this to be inadequate. It does not explicitly

address the knowledge related the context and empirical world.

The context of a subject has to be understood in terms of application domain of the subject

knowledge, knowledge about the likely consequences of such application, and also the

professional responsibilities. Often these consequences are multi-dimensional, sometimes even

transcending the initial imagination of technology as well the domain specialists. Ropohl [336]

also highlighted the importance of contextual knowledge in technology. In the context of

software, it is even more important. We extend the knowledge domain categories proposed by

Anderson and Krathwohl to make it more suitable for designing the computing courses, by

adding the fifth category of contextual knowledge and also have further sub-categories of

theoretical and empirical knowledge for each of these five categories.

Routio [337] sees the world of knowledge in two broad categories of theory and empiria. We

leverage this conceptualization to refine these five knowledge categories. This gives us a total of

ten types in the knowledge categories for designing the course content for any subject in software

development education.

The course-designers need to view the details of the activities listed in the first column of Table

8.3 from the perspective of these ten categories and enrich the courses. Table 8.3 gives a

schematic representation of this model, which offers a rich spectrum of knowledge types for

designing the content of computing courses. Table 8.3 should be used as checklist for designing

the curricula and also the course content of computing courses in software development

education.

www.manaraa.com

220

Table 8.3: A novel three-dimensional taxonomy of knowledge domain for designing computing courses

Dimension 1
(important software development activities,

ref: Table 4.1)

Dimension 2
(extension of knowledge

domains listed by Anderson
and Krathwohl)

Dimension 3
(Routio’s categories of

knowledge)

1. Algorithm/Computational
Procedure/Component and Interface
Design

2. Application/Product/System
Design/Prototyping

3. Product/Requirement Definition and
Specification/Requirement
Engineering/Visualization/Consulting

4. Code Analysis, Program
Comprehension, Re-documentation

5. Innovation and research
6. Application, Component

Development/System Integration
7. Group work, people management, and

leadership
8. Estimation and Costing, Project

Scheduling
9. Product/Process Quality Assurance and

Control
10. Validation and Verification (Testing)
11. Technical Documentation, Presenting

Ideas and Insights
12. Test Design
13. User Interface Design
14. User Acceptance, End-user

Documentation, Deployment and Roll-
out, Customer Support

15. Security Architecture Design,
Architecting, Component Selection

16. Project Monitoring and Control
17. Tools and Technology Selection and

Evaluation
18. Usability/Value/Impact Analysis
19. Resource Planning and Management,

Staffing and Team Development
20. Risk Planning and Mitigation
21. Build and Release, Configuration

Management

1. Factual Knowledge –
Specifics: terms, details,
and elements

2. Conceptual Knowledge –
classifications and
categories, principles and
generalizations, theories,
models and structures
(structural rules)

3. Procedural Knowledge –
cognitive and
psychomotor, skills and
algorithms, techniques and
methods, criteria for using
these, implicit technical
knowhow, explicit
functional rules (what to do
to achieve a certain result
in a given situation)

4. Contextual Knowledge –
application domain, risks,
uncertainties,
consequence-centric,
professional
responsibilities

5. Meta-cognitive Knowledge
– strategic (general
strategies for learning and
thinking), cognitive tasks
(including contextual and
conditional), self-
knowledge

1. Theoretical knowledge
domain –

 Concepts, models, theories,
principles, laws,
frameworks, theorems and
lemmas, methods,
taxonomies, templates,
patterns, formal languages,
guidelines, rules, checklists,
standards, code of ethics, etc.

2. Empirical knowledge

domain –
 Existing artifacts and

systems, stakeholder and
other people’s needs,
perceptions and aspirations,
and tools.

Further, as discussed in third chapter and also in Section 4.1, many characteristics like significant

work in new development in every project, discrete abstractions, complex interactions among a

very large of components, inherent invisibility, large groups of developers, continuous evolution,

etc., make software highly vulnerable to errors. Because of lack of attention and/or

misconceptions, errors (bugs) creep in during various stages of software development. Hence,

there is a need to place special emphasis on debugging activity at various stages.

www.manaraa.com

221

Section 8.2: Two Core Principles Related to Learning

We ground our framework of pedagogic engagements in two core principles associated with

learning – cognitive dissonance and cognitive flexibility.

Section 8.2.1: Cognitive Dissonance

Curiosity is the most fundamental requirement for ‘learning.’ As discussed in Section 6.1,

incongruity, contradictions, novelty, surprise, complexity, and uncertainty can arouse curiosity

[245-246]. Further, the fueling factors also include increased knowledge and awareness of

knowledge gaps in areas that are personally meaningful and engaging. The impediments to

curiosity include anxiety, overconfidence, excessive self focused attention, dogmatism, low

cognitive resources, internal pressures like guilt and fear, external pressures like threat,

punishment, and tangible rewards or pathological conditions [246].

Cognitive Dissonance Theory [327] postulates the following:

a. Humans are sensitive to inconsistencies between actions and beliefs.

b. Recognition of an inconsistency results in cognitive dissonance, and motivates an individual

to resolve the dissonance.

c. Dissonance can be resolved in one of three ways: change in beliefs, change actions, or

change perception of actions.

Based on the cognitive dissonance theory, it has been shown by Structured Design for Attitudinal

Instructions [321] that instruction can be designed to create short term dissonance. This

dissonance facilitates the learners to first recognize the need to change attitude, and then they

should be guided through progressive changes to resolve the dissonance.

In a similar approach, Kort et al [326] view learning as a spiral process of construction and de-

construction (of misconceptions) phases through positive as well as negative emotions.

Recognition of mis-conception is preceded by moderate negative emotions.

Non-threatening levels of perceived meaning-deficits generate manageable cognitive load [338]

an enabling flow of emotions, and positive incongruence [339]. When the positive incongruence

www.manaraa.com

222

is within an individual’s ‘threshold’, it supports learners to sustain their motivation, enjoyment,

and efforts.

However, perceived inadequacy or overloads of meaning-deficit can create long-term negative

emotions such as anxiety, fear, boredom, frustration, humiliation, dejection, and so on.

Continued long term continuation of such sustained negative emotions slow down learners’

efforts, and may also lead to completely withdrawal. Stronger negative emotions are felt when

the perceived meaning deficit relates more closely to self. This ‘threshold’ depends upon the

learner, learning context, culture, and community. Hence, in order to help the learners to

develop their ability to learn, and also the ability to solve ill-defined unfamiliar problems, the

prime aim of higher education has to be to increase this threshold.

The traditional teacher-centric lectures do not create much or any dissonance among learners.

This thesis proposes to transform software development education by creating gradually

increasing levels of dissonance for short periods, and then the teacher should guide the students

to progressively resolve the dissonance to higher levels of learning.

Section 8.2.2: Cognitive Flexibility

The ability to ‘transfer’ what learners have learned in a context, to different, even unique

situations is referred to as ‘cognitive flexibility’ [206]. Cognitive flexibility is closely associated

with complex problem solving competence, as well as creativity and innovation. As per the

Cognitive Flexibility Theory, the way learners are taught has a significant influence on how

flexible the learners will be when they need to use the acquired knowledge.

Cognitive Flexibility Theory posits that the traditional linear teaching may be ineffective for ill-

structured knowledge domains. Aptitude-Treatment Interaction [319] posits that highly

structured treatment is good for low-ability students but hinders high-ability students. Spiro and

Jehng recommended that in order to enhance cognitive flexibility, the information must be

presented in a variety of ways. They suggested encouraging the flexibility by allowing learners

to develop their own knowledge representations to adapt knowledge for future use in different

types of situations. With reference to ill-structured learning domains, they also strongly

www.manaraa.com

223

advocated for presenting multiple representations and different thematic perspectives on the

same information. Further, they also recommended that in advanced knowledge domains,

interconnectedness of ideas must be emphasized.

Section 8.3: Four-dimensional Taxonomy of Pedagogic Engagements in

Software Development Education
The course content of computing courses can be designed with the help of the above proposed

novel three-dimensional taxonomy of knowledge domain in Table 8.3. However, deeper learning

resulting in enhancement of competencies through professional and human development is a

consequence of various kinds of engagement with the chosen content.

In fourth to seventh chapters, we discussed the results of our survey, “Software developers -

(How) Did your college help you in your development?” (Appendix A10, Summary in Table

7.2). In this survey we had examined the perceptions of software professionals about the

effectiveness of various pedagogical engagements on specific competencies listed in Table 8.2.

These examined pedagogical engagements included – lecture (knowledge transmission oriented/

thinking oriented), tutorial, home work, written exam, projects, laboratory work, research

literature review, industrial training, discussion with faculty, discussions with peers, and

mentoring/teaching other students. Table 8.4 gives a further summary of this survey.

www.manaraa.com

224

Table 8.4: Perceived effectiveness of pedagogical engagements with respect to enhance of competencies:
perceptions of software professionals

“Software developers - (How) Did your college help you in your development?” Summary of Table 7.2

SNo Competency
(Table 8.1)

Ranked list of most effective pedagogical engagements (selected by half
or more respondents)

1 Technical competence Projects (84%) and Laboratory work (65%)
2 Communication competence

Discussions with other students (84%), Mentoring juniors (71%),
Discussions with faculty (69%), and Discussion with others (51%)

3 Domain competence

Projects (61%), Research literature survey (51%), and Knowledge
transmission oriented lectures (51%)

4 Complex problem solving
competence

Projects (79%), Laboratory work (59%), and Thinking oriented lectures
(51%)

5 Computational thinking competence Projects (64%) and Thinking oriented lectures (49%)

6 Attention to details Projects (71%)

7 Critical and reflective thinking Projects (50%)

8 Creativity and innovation Projects (82%) and Thinking oriented lectures (53%)

9 Intrinsic motivation to create/improve
artifacts

Projects (74%), Research literature survey (58%), Thinking oriented lectures
(54%), Discussions with students (50%), and Discussions with faculty (50%).

10 Curiosity Projects (66%) and Research literature survey (62%)

11 Decision making perspective Projects (90%), Industrial training (71%)

12 Systems-level perspective Projects (58%) and Mentoring other students (51%)

Further, in the seventh chapter, we established that teacher-centric educational experiences like

lecture, written examination, and homework are least effective for developing these

competencies (Table 8.1) to professionally and confidently participate in activities associated

with software development (Table 8.3, 1st column). We also found that student-centric

educational experiences like projects, laboratory work, and discussions, active and collaborative

engagements in lecture classes, teaching, and mentoring juniors/peers give much deeper

learning experiences to computing students. We concluded that students experience deeper

learning in active and collaborative environments.

In these studies, integrative as well reflective engagements, were subsumed within the larger

category of active engagements.

However, NSSE Survey [335] separated these as – higher order, integrative, and reflective. As

per NSSE recommendations, the collaborative engagements are subsumed within integrative

engagements. In section 8.1, we argued that a comprehensive taxonomy of knowledge domain

with well distinguished categories is expected to help the course designers to enrich their

www.manaraa.com

225

courses. In the similar manner, a comprehensive taxonomy of pedagogical engagements can

help the educators to design a rich variety of interesting and meaningful engagements to create

learning contexts for their students.

Hence, in our framework of pedagogic engagements, we propose four dimensions of

engagements – active, integrative, reflective, and collaborative. Figure 8.1 gives an overview of

this model.

 Active Engagements

 Integrative Engagements

 Collaborative Engagements

 Reflective Engagements

 Figure 8.1: A schematic view of four-dimensional taxonomy of pedagogic engagements

Active engagements

The student gets individually engaged in some kind of problem solving activity and proactively

adds content to the discourse of learning. As in Section 4.5 we discussed that software problems

are complex ill defined problems. In the same section, we also discussed that and performance

in well defined problem solving is not correlated with performance in solving ill defined

problems solving. Hence, active engagements in software development education have to

provide good experience in solving complex ill defined problems. Further, given the high

importance of systems-level perspective as discussed in Section 6.3, the students need to analysis

and solve these problems in the light of systems-level perspective.

The problem situation creates cognitive dissonance for students. Students take appropriate

actions to resolve their dissonance. It requires them to actively seek information and apply their

knowledge to analyze, create, critique, or decide in following types of tasks (Table 7.8, higher

order learning engagements):

1. Applying theories or concepts to practical problems, or in new situations.
2. Analyzing the basic elements of an idea, experience, or theory, such as examining

a particular case or situation in depth, and considering its components.

www.manaraa.com

226

3. Synthesizing and organizing ideas, information, or experiences into new, more
complex interpretations and relationships.

4. Making judgments about the value of information, arguments, or methods, such as
examining how others gathered and interpreted data, and assessing the soundness
of their conclusions.

Complex ill-defined problems create higher levels of cognitive dissonance in a larger variety of

knowledge areas. Hence, active engagements to solve such problems create even higher levels of

cognitive flexibility and deeper learning.

Integrative engagements

Solving complex ill-defined problems usually requires inclusion and integration of various ideas

and diverse perspectives. Such engagements cause higher levels of cognitive dissonance and

help in developing systems-level perspective and creativity. Typically, the student is required to

perform following types of tasks (Table 7.8, integrative learning engagements):

1. Working on a paper or project that required integrating ideas or information from
various sources.

2. Including diverse perspectives in class discussions or writing assignments.
3. Putting together ideas or concepts from different courses when completing

assignments, or during class discussions.
4. Discussing ideas from your readings or classes with faculty members outside of

class.
5. Discussing ideas from your readings or classes with others outside of class

(students, family members, co-workers, etc.).

Reflective engagements

Evolution of beliefs, attitudes, values, perspectives, assumptions, and mental habits are essential

desired learning outcomes. Kottkamp [219] defined reflection as “a cycle of paying deliberate

attention to one’s own action in relation to intention… for purpose of expanding one’s opinion

and making decisions about improved ways of acting in the future, or in the midst of the action

itself.” Reflective engagements require students to think deeply to evaluate and refine/transform

their own approach and views. Such engagements cause highest levels of cognitive dissonance

and result in deepest learning. Typically, the student is required to perform following types of

tasks (Table 7.8, reflective learning engagements):

1. Learning something from discussing questions that have no clear answers.
2. Examining the strengths and weaknesses of your own views on a topic or issue.

www.manaraa.com

227

3. Trying to better understand someone else's views by imagining how an issue looks from
his or her perspective.

4. Learning something that changed the way you understand an issue or concept.
5. Applying what you learned in a course to your personal life or work.
6. Enjoying completing a task that required a lot of thinking and mental effort.

Collaboratively engagements

The student proactively collaborates with others to solve problems. All the above mentioned

tasks under active, integrative, and reflective engagements can be performed collaboratively.

Main Theoretical Foundations for the Four Dimensions of Engagements

Bloom’s taxonomy, discussed in Sections 2.10 and 7.1.2, can be used as a basic hierarchy of

active engagements. Harden’s taxonomy of curriculum integration (Table 7.9) and SOLO

taxonomy (Section 7.4.2) provide the base for designing a ladder of integrative engagements.

Schön’s model of ladders of reflections and Borton’s model of reflective thinking, both discussed

in Section 5.2, provide vital axis for reflective engagements. Salmon’s levels of collaboration

(Table 7.10) and Dillenbourg’s four conditions for collaborating (Table 7.11) provide us the

foundations for designing our ladders for collaborative engagements.

In our framework of pedagogic engagements, we integrate these forms of engagement into a

four-dimensional taxonomy of pedagogic engagement. We use Bloom’s revised taxonomy,

SOLO taxonomy, Schön’s model of ladders of reflections, and Salmons’ taxonomy of

collaborative e-learning as the main axes of the four dimensions of this novel unified taxonomy

of students’ engagements. Further, all these dimensions are further enriched and extended,

restructured, or enriched with the help of some other very important conceptualizations related to

learning. In order to facilitate deep learning among students, we need to regularly engage them at

higher levels of all the four dimensions of our taxonomy.

Section 8.3.1: Dimension 1 - Levels of Active Engagements
(Extension of Bloom’s Taxonomy)

Bloom’s Revised Taxonomy

We have created a ladder of active engagements by integrating Bloom’s revised taxonomy,

Sternberg’s propulsion theory of creativity, Minger’s framework of critical thinking, and Rowe

www.manaraa.com

228

and Boulgarides taxonomy of decision styles, in a novel manners. Table 8.5 gives an overview of

these levels. We strongly recommend the need for incorporating iterations at the higher levels in

this ladder.

Anderson and Krathwohl renamed the Bloom levels from nouns to verbs [134]. They also

swapped the position of the uppermost two levels. However, since highest level of evaluation

involves designing of criteria/standards and may also requires considerations of larger context,

human values and ethics. Hence, it is appropriate to keep it at the highest level. In fact, some

create activities may require lower cognitive effort than evaluate, whereas some of them will be

based upon serious evaluation. Hence, in order to avoid simplistic classification, we propose to

keep create and evaluate at the same level.

Adding a new level: Mentoring

The effectiveness of students’ active engagements as mentors has been discussed in fourth, fifth,

sixth, and seventh chapters. Further, a large number of fresh software engineers within first two

years of starting their professional career, start getting the responsibilities to lead new engineers.

Consequently, it becomes very important for the education programs to develop the ability to

mentor. With reference to Table A3.2 (Appendix A3), mentoring has been identified as

desirable ability fresh software developers. Hence, with respect to designing active engagements

in software development education, we extend Bloom’s taxonomy by including the tasks to

‘mentor’ the junior students. For the purpose of senior students’ engagements as mentors, we

propose two sub-levels of mentoring: (i) coaching for specific skills, and (ii) mentoring the

projects. These are included in Table 8.5. Students with positive experiences as mentees are

found to be more enthusiastic and serious with mentoring activities. Hence, in the junior levels, it

is necessary to give them positive experiences as mentees. We discuss our experiments with

cross-level peer mentoring in Section 9.2.3.2.

 The summary of our adaption and extension of Bloom’s taxonomy for our purpose is as follows:

1. Remember: recognizing, recalling

2. Understand: interpreting, exemplifying, classifying, summarizing, inferring, comparing,

and explaining

www.manaraa.com

229

3. Apply: executing, implementing

4. Analyze: differentiating, organizing, attributing, checking, critiquing using existing

criteria

5A.Create: generate, plan, and produce

5B.Evaluate: Critiquing based on self-designed criteria, Deciding in the light of larger

context, human values and ethics

6. Mentor: coaching juniors for skills and providing guidance in their projects

Table 8.5: Levels of active engagements (first of four dimensions of our taxonomy of pedagogic engagements)
(derived from Bloom’s revised taxonomy, Sternberg’s propulsion theory of creativity, Minger’s framework of

critical thinking, and Rowe and Boulgarides taxonomy of decision style.)

1. Remember
2. Understand
3. Apply

Several iteration of analysis/create/evaluate are recommended in student assignments
4. Analyze: Iterative

4.1. Analyze data
4.2. Analyze problems
4.3. Analyze complex ill defined problems
4.4. Analyze systems

5. Create and Evaluate: Iterative

5A. Create 5B. Evaluate
5A.1. Paradigm preserving:
 replication,
 adaption
5A.2. Paradigm forwarding:
 forward incrementation,
 advance forward

incrementation
5A.3. Paradigm rejecting:

5A.3A.
Paradigm
redirection,
Paradigm
reconstruction

5A.3B.
Paradigm
 re-
initiation

5BA. Critique 5BB. Decide
5BA.1. Critique of Rhetoric
5BA.2. Critique of Tradition
5BA.3. Critique of Authority
5BA.4. Critique of Objectivity

5BB.1 Directive decision
5BB.2 Behavioral decision
5BB.3 Analytic decisions
5BB.4 Conceptual decisions

6. Mentor

6.1 Coach for skill development
6.2 Project mentor

www.manaraa.com

230

Enrichment of ‘Analyze,’ ‘Create,’ and ‘Evaluate’ Levels

Using Bloom’s taxonomy in its original or revised form for deciding the learning objectives of

school education is perfectly fine. Recently, a lot of engineering or software development

education research also has been based on these models. Given the nature of the work of

software developers, we take a position that a much higher emphasis has to be placed on

‘analyze,’ ‘create’ and ‘evaluate’ levels.

In Section 7.1.2 we discussed our findings. Our respondents from software industry

recommended that more than 70% pedagogic engagements of computing students should be at

these three levels. Our findings in Section 7.1.2 also showed that these levels are not sufficiently

addressed in engineering/software development education. Hence, in order to fill this gap, there

is a need to further refine these levels in order to enhance educators’ understanding of the

pedagogic possibilities. We postulate that such an expansion of these levels into sub-ladders will

help the computing educators design appropriate learning objectives and instructional

interventions for their courses. We also suggest that an evolutionary approach is necessary in

this process. Hence, we also recommend the use of several iterations in such engagements.

Reflective engagements of our third dimension of this taxonomy of engagements will further

enhance the value of such iterations.

Further, we also include various models to support student engagement at upper levels of this

extension of Bloom’s taxonomy. These are depicted in Table 8.6.

Enrichment of ‘Analyze’

Sub-levels

The analysis phase is the most important phase in software development. The purpose of analysis

in software development is for solving complex ill-defined problems that usually require system

analysis. Systems analysis is very important requirement for software developers. The analytical

habits of software developers have to be necessarily inclined towards using systems thinking for

complex ill-defined problem solving. Consequently, we propose to create sub levels of ‘analyze.’

We differentiate between the analysis of data, problems, complex ill defined problems, and that

of systems. Through this differentiation, we propose to enhance the emphasis on engaging

www.manaraa.com

231

students in systems analysis for ill-defined problem solving. We also propose to enhance

engagements in puzzle solving and qualitative data analysis.

Approaches

Table 8.6a gives the overview of our proposed approach for supporting ‘analyze’ level

engagements. For this level of student engagements, we strongly encourage the practice with

various kinds of data analysis techniques (quantitative and qualitative), puzzle solving techniques

(discussed in Section 4.5 and Annexure AN6), mathematical modeling for diverse application

domains, and reasoning: deductive, inductive, and analogical. We also strongly recommend the

use of various complex ill-defined problems solving techniques (Table 4.9). With reference

strengthening analytical skills for debugging, we include the Root-cause analysis techniques, as

suggested by Metzger [157], and discussed in mentioned in Section 4.1.

Table 8.6a: Some selected models for supporting student engagements at Analyze level

4. Analyze: Iterative These techniques are also to be used for subsequent create/evaluate levels as well

Data
Analysis

Problem Solving Complex Ill-defined
Problem Solving

Techniques

Systems Thinking

Quantitative

data
analysis

Qualitative

data
analysis

Puzzle Solving:
Generate and test,
Means-end analysis,
Working

backwards,
Backtracking
Analogical

reasoning

Mathematical
modeling:

Reasoning:
Deductive,
Inductive,
Analogical

Flow charts
Concept mapping
Systems diagrams
SWOT analysis
Appreciation
5 Why’s
Cause and effect diagram
Affinity diagrams
Appreciative inquiry –

4D approach

Root-cause analysis

techniques:
Cause and event charting
Faulty tree analysis.

Definition of system engineering by Frank
and Waks

Sternberg’s definition of Wisdom
Senge’s toolbox
Systems thinking approaches:
 (i) Checkland (ii) Jacobs
Capra’s criteria for systems thinking
Software systems analysis and design
techniques:
Data representation techniques:

conceptual data modeling techniques,
knowledge representation techniques,
ontologies, etc.

Behavior representation techniques: FSM,
State-chart, State Nets, Petri Nets, etc.

Risk assessment:
 Identification, analysis and prioritization

of process, product, & project risks
 Checklists: SEI taxonomies of software

risks

With respect to enhancing systems-level perspective, we include the Systems engineering

definition by Frank and Waks (Table 6.3), Sternberg’s definition of wisdom (Section 6.2, under

the theme of Ethical decision making), Senge’s toolbox (Table 6.7), systems thinking approaches

www.manaraa.com

232

(suggested by Checkland as well as Jacobs) (Table 6.6) and Capra’s criteria for systems thinking

(Table 6.5). We emphasize the use of various software systems analysis techniques to represent

data (conceptual data modeling techniques, knowledge representation techniques, ontologies,

etc.) and behavior (FSM, State-chart, State Nets, Petri Nets, etc.). Finally, in this context, we

also include risk assessment (identification, analysis and prioritization) of process, product, &

project risks. Risk taxonomies prepared by SEI can be very useful checklists in this process.

Enrichment of ‘Create’

Sub-levels

With reference to the expansion of the level of ‘create’ from a single level into a sub-ladder, we

find Sternberg’s taxonomy of creative contributions as a useful source that can be used by

educators. This has not yet been used by software development education researchers.

Sternberg’s taxonomy of creative contributions [229], discussed in section 5.3, includes four

levels. We have included these four levels as sub-levels of create in Table 8.5.

Approaches

Table 8.6b gives the overview of our proposed approach for supporting ‘create’ level

engagements. Through their varied educational experiences, computing students’ engagements at

the level of ‘create,’ should produce both artifacts as well as theoretical constructs. In such

creative engagements, they should be encouraged to forward and also challenge/reject the

paradigms rather than remain limited to creating the artifacts and theoretical constructs within

the existing paradigms. Mere teaching of existing paradigms in traditional style will not help us

achieve this objective. They have to learn to forward and challenge/reject existing paradigms.

The discipline of architecture, design, and arts, etc., place a higher emphasis on such

engagements, some such practices can be used to enrich the culture of software development

education.

As discussed in Section 5.3, problem solving or decision-making tasks, offer maximum creative

possibilities during the phases of problem restructuring, alternative generation, criteria definition,

and alternative evaluation. Hence, these phases need to be given more attention for designing

student engagements. In the same section, we discussed some techniques, e.g., SCAMPER,

www.manaraa.com

233

lateral thinking and ‘po’, 40 TRIZ/TIPS principles (Table 5.3) and extensions, etc. These can be

very helpful for stimulating creative thinking. Further, as discussed in Section 6.4, creative

persons place higher emphasis on self – its uniqueness, development, and expression, as well as

on openness to the environment. Development of these traits is essential for developing intrinsic

motivation for creating/improving artifacts and/or systems. These are included in Table 8.6.

Many complex ill-defined problem solving techniques as well as systems thinking tools

mentioned under ‘analyze,’ continue to be useful for design engagements at this level.

Further, as discussed in Section 5.3, the activities collated by Aoussou et al [237] and the

environmental conditions suggested by Lassig [238] can be can be used for designing students’

creative engagements. The engagement in other three dimensions – integrative, reflective, and

collaborative, are particularly helpful for finding creative solutions.

Enrichment of ‘Evaluate’

Similarly, we also expand both the sub-levels of ‘evaluate,’ using some established theoretical

models in a different context. Table 8.6b gives the overview of our proposed approach for

supporting ‘evaluate’ level engagements.

www.manaraa.com

234

Table 8.6b: Some selected models for supporting student engagements at Create and Evaluate levels

The techniques listed for analysis are also to be used for these levels as well

4. Create and/or Evaluate: Iterative
5A. Create 5B. Evaluate

Main opportunities

of creativity
Restructuring the

problem/decision
task

Generating
alternatives
Selecting decision

criteria and
strategy, and

Evaluating
alternatives

Cognitive tools for

creative and
inventive thinking

SCAMPER
Lateral thinking,

and ‘po’
40 TRIZ/TIPS

Principles and
extensions

Emphasis on self –
its uniqueness,
development, and
expression

Emphasis on
openness

5BA. Critique 5BB. Decide

Common errors of logical and
analytical reasoning (Table 5.1)
Misdirected focus
Storage limitation
Information availability
Hypothesis persistence
Limited reviewing
Inadequate data
Multiple variables
Misplaced causality
Dealing with complexity

Paul’s Extended Checklist for

Critique
Elements for

Critical Thinking
Standards for

Critical
Thinking

Purpose,
Problem to be

solved or question
at issue,

Concepts,
 Information,
Assumptions,
Inferences &

interpretation,
Points of view,
Implications &

consequences
Context
Criteria
Method

Clarity
Specificity
Relevance
Logical
Significance
Consistence
Breadth
Depth
Accuracy
Precision
Fairness
Completeness

Blaauw’s principles of system

architecture
Consistence
Orthogonality
Propriety
Parsimony
Transparency
Open endedness
Generality
Completeness

Decision deficiencies
Aim deficiency
Need deficiency
Aggregate outcome deficiency
Competitor deficiency
Process cost deficiency

Decision challenges
Conflicting interpretations,
Conflicting priorities,
Incomplete understanding of the

criteria of evaluation and risks of
each alternative,

Absence of good decision making
strategy

Decision oriented model of software
processes
Subspaces
Problem
Solution
Construction
Operation

Purposes
Manage complexity

and risk
Reduce negative

impacts of
uncertainty and
complications

Decision making approaches
PROACTIVE approach
Boyle’s Ethical decision making

process (wrt ACM-IEEE code of
ethics for Software Engineers)

Techniques
Pareto analysis,
Paired comparison
T-Chart
Decision matrix
Grid analysis
PMI (Plus, Minus and Interesting),
Decision Tree
Star-bursting
Step-ladder
Group technique: Six thinking hats,
and Delphi.

www.manaraa.com

235

Sub-levels of ‘Critique’

In section 5.2, we discussed skill based in software occur either because of ‘inattention’ or ‘over-

attention’ by the developers [157]. We also discussed that voluntary attention is a very good

substitute for genius, and unlike genius, it can be sharpened through practice and perseverance.

We also discussed that in order to discover more details about an object, one needs to engage in

several iterations of (re)examinations and evolutionary expressions. Critique of the work

products of earlier iterations in the light of the re-examination of the object progressively reveals

newer details and affords new opportunities for richer descriptions and refinement.

The sublevel of ‘critique,’ is expanded into four levels using Minger’s framework proposed for

critical thinking with reference to management education [216], discussed in section 5.2. We find

it relevant for the purpose of software developers as well. The four levels of this framework are

included in our framework to expand the critique engagements.

Approaches for Critique

Paul’s extended model of creative thinking, discussed in Section 5.2, is powerful instrument for

carrying out the critique at all these levels. Hence, this model is also incorporated as a checklist

for critical thinking in our framework. Further, in the same section, we also discussed Metzger’s

collation of research based findings regarding errors in logical and analytical reasoning (Table

5.1). This list is also included to guide critical thinking in our proposed framework of

pedagogical engagements (Table 8.6b).

Paul’s extended model does not bring some of the important elements that are necessary for

critique of systems. Hence, we also include Blaauw’s principles of systems architecture,

discussed in Section 6.3, as criteria for critique of systems.

Enrichment of ‘Decide’

The sub-level of ‘decide,’ is expanded into four levels using the taxonomy of decision styles

proposed be Rowe and Boulgarides, discussed [260]. They identified four kinds of decision

styles that are suitable for different kinds of problems. These styles are directive, behavioral,

www.manaraa.com

236

analytic, and conceptual (Table 6.2). We posit that the software developers need to integrate the

four decision making styles

Two decision making frameworks discussed in Section 5.2, PROACTIVE [264] and Boyle’s six

stage process of ethical decision making for computing professionals [273] are powerful

instrument for carrying out the critique at all these levels. In order to take meaningful decisions,

students need to be exposed to various types of software risks, as briefly suggested in Section

6.2.

Engineering/computing students do not get sufficient experience in ‘critique’ and also in

‘decision making,’ especially in analytic and conceptual style decisions, that require decision

making in ambiguous situations that require collection of large amounts of data and evaluation

of a large number of alternatives. Such decision making can be facilitated by the use of decision

making techniques discussed in Section 6.2. The last two of these techniques, six thinking hats

and Delphi require a collaborative approach.

A Richer Hierarchy of Active Engagements

None of these abovementioned three main models (Sternberg [229], Minger [216], or Rowe and

Boulgarides [260]) used for expanding the sub-levels of ‘create,’ ‘critique,’ and ‘decide,’ have

so far been used by software development education researchers. In February 2010, a search of

the ACM SIGCSE digital library and also the IEEE digital library, did not a show even a single

paper referring to these models. With this integration, Table 8.5 gives a richer hierarchy of

possible active engagements. In order to enhance opportunities of deeper learning among

students, the educational programs must ensure repeated engagements at upper levels in this

hierarchy.

These higher levels of engagements need to be applied with reference to the three-dimensional

knowledge domain (Table 8.3). The objects of study and deliverables of engagements for these

levels must include a good variety of knowledge categories. Both the theoretical as well

empirical worlds need to studied and also inflected through students engagements.

Consequently, these engagements must also ensure a good mix of convergent, assimilative,

www.manaraa.com

237

divergent, and accommodative activities as per Kolb’s model (Table 4.3). All the core

competencies, identified by us, can be nurtured through such diversified higher-level active

engagement. The three competency driver–habits of mind, as well as competency conditioning

attitudes and perspectives, will be especially strengthened through such engagements.

Section 8.3.2: Dimension 2- Levels of Integrative Engagements

(Extension of SOLO Taxonomy)

In Section 7.4.2, we discussed a five-level Structure of the Observed Learning Outcome (SOLO)

taxonomy [329]. As per this taxonomy, the lower three levels: ‘pre-structural,’ ‘uni-structural,’

‘multi-structural’ are about quantitative increase in details of the response. The upper two levels:

‘relational’ and ‘extended abstraction’ are about its qualitative transformation through

integration, extension, and abstraction. The first level indicates complete lack of comprehension

and understanding. As we are not using SOLO taxonomy as a standalone hierarchy, we drop its

first and fifth level in our adaption of integrative engagements. The fifth level of the SOLO

taxonomy is addressed by combining the relational level of the SOLO taxonomy with the

‘create’ level of our first dimension.

Orbits of Integration

In Table 7.9, we outlined Harden’s taxonomy of curriculum integration with reference to the

specific context of medical education. We find it very suitable for designing integrated

computing curriculum as well.

Further, in Section 4.3, we discussed about Biglan’s classification of academic disciplines (Table

4.2) that classifies the disciplines with the help of three bi-level axes: (i) soft vs hard, (ii) pure vs

applied, and (iii) life vs non-life [170-173a]. Each of these three axes classifies the larger cube

containing all the disciplines, into two cuboids. Any two of these axes, create four quadrants of

disciplines, and all three categorize the disciplines into eight octants. Engineering and computer

science belong to the octant of non-life, hard, and applied disciplines. The difficulty of

integrating two or more disciplines depends upon the degree of similarity between those

disciplines, as per Biglan’s classification.

www.manaraa.com

238

We propose a novel approach of refining all the levels of curriculum integration, proposed by

Harden (ref: Table 7.9), further into four sub-levels of first, second, third, and fourth orbit

integration. We explain these four sub-levels in Table 8.7.

Table 8.7: Discipline integration sub-levels based on Biglan’s classification of disciplines

1. First orbit integration: The integrating disciplines share the same category along all the three bi-level axes,

as identified in Biglan’s classification. With reference to computer science, first orbit integration implies that
all other involved disciplines also belong to non-life, hard, and applied category, e.g., civil engineering,
telecommunication engineering, mechanical engineering, chemical engineering, electrical engineering, etc.

2. Second orbit integration: The integrating disciplines share the same category along any two of the three bi-
level axes. At this level of integration, at least one of the concerned disciplines must belong to the other
different category along any one of the three axes. With reference to computer science, second orbit
integration implies that at least one of the other involved discipline belongs to (i) life, hard, and applied
category, e.g., agriculture, psychiatry, medicine, pharmacy, dentistry, horticulture, etc., or (ii) non-life, soft,
and applied category, e.g., finance, accounting, banking, marketing, journalism, library and archival science,
law, architecture, interior design, crafts, arts, dance, music, etc., or (iii) non-life, hard, and pure category, e.g.,
mathematics, physics, chemistry, geology, astronomy, oceanography, etc.

3. Third orbit integration: The integrating disciplines share the same category along only one of the three bi-
level axes. At this level of integration, the concerned disciplines must belong to the other categories along any
two of the three axes. With reference to computer science, third orbit integration implies that at least one of
the other involved discipline belongs to (i) life, hard, and pure, e.g., biology, biochemistry, genetics,
physiology, etc., (ii) life, soft, and applied category, e.g., recreation, arts, education, nursing, conservation,
counseling, HR management, etc., or (iii) non-life, soft, and pure category, e.g., linguistics, literature,
communications, creative writing, economics, philosophy, archaeology, history, geography, etc.

4. Fourth orbit integration: The integrating disciplines do not share the same category along any of the three
bi-level axes. At this level of integration, the concerned disciplines must belong to the other categories along
all the three axes. With reference to computer science, fourth orbit integration implies that at least one of the
other involved disciplines belongs to life, soft, and pure category, e.g., psychology, sociology, anthropology,
political science, area study, etc.

Since the application domains of software developers belong to all kinds of disciplines, software

developers must develop their ability of integrating their disciplinary knowledge of computing

with the disciplinary knowledge of any other discipline. The task of integration between those

disciplines that are quite divergent from each other as per Biglan’s classification is far more

challenging and much more creative, as compared to the inter-disciplinary integration between

closer disciplines.

Sub-levels of Relational Level of SOLO Taxonomy

We feel that the ‘relational’ level of SOLO taxonomy, ‘relational,’ can be interpreted by

educators at various levels. Without the relational approach and multi-disciplinary and inter-

disciplinary integration, complex real-life problems and systems cannot be analyzed, designed,

or evaluated effectively. Hence, we refine the ‘relational’ level of the SOLO taxonomy into a

www.manaraa.com

239

ladder with the help of the chosen elements from Harden’s taxonomy (Table 7.9). We further

refine the multi-disciplinary, inter-disciplinary, and trans-disciplinary levels in this ladder, into

four sub-levels each using our novel four-level ladder of the first orbit, second orbit, third orbit,

fourth orbit integration, proposed above.

Through this arrangement, we propose a new hierarchy of levels of integrative engagements for

designing instructional interventions in computing courses. Table 8.8 gives this hierarchy.

Table 8.8: Levels of integrative engagements

(second of four dimensions of our taxonomy of pedagogic engagements)
(derived from SOLO taxonomy, Harden’s taxonomy of curriculum integration, and Biglan’s classification of

disciplines)

1. Uni-structural: One or a few aspects of the same topic are picked up.
2. Multi-structural: Several aspects of the same topic are treated as if they were separate, different ideas not

integrated coherently.
3. Relational: different ideas (from a topic, subject, discipline, many disciplines, and many disciplines with

real-life context) are integrated coherently.
i. Intra-topic relational
ii. Intra-subject relational
iii. Multi-subject intra-disciplinary relational
iv. Inter-subject intra-disciplinary relational
v. Multi-disciplinary relational: perspectives of individual disciplines are retained, and disciplines use

a black-box interface oriented approach for applying other discipline’s material and perspective.
– Four sub-levels from first to fourth orbit (Table 8.7) multi-disciplinary relational

vi. Inter-disciplinary relational: discipline-specific perspectives are given-up to create an open synergy.
The material of different disciplines is approached and integrated in an open manner, rather than
with a black-box interface oriented approach.

– Four sub-levels from first to fourth orbit (Table 8.7) inter-disciplinary relational
vii. Trans-disciplinary relational: the focus is on real-world problems transcending disciplinary

boundaries.
– Four sub-levels from first to fourth orbit (Table 8.7) trans-disciplinary relational

Cognitive flexibility [206], and hence, complex problem solving competence, domain

competence, and creativity and innovation are especially nurtured as a result of such higher

level integrative engagements. Further, they also help in enhancing systems-level perspective.

Computing educators need to design engagements and instructional interventions to facilitate

this. Currently, this is a serious weakness of engineering education as found by the NSSE survey

discussed earlier in Section 7.4.

With reference to course design, we advocate for following three approaches of integration in

courses:

www.manaraa.com

240

1. Multi-level Infusion (interventions discussed in Section 9.2)

2. Intra-disciplinary Integrative Capstone courses (interventions discussed in Section 9.2.2)

3. Interdisciplinary Integrative Capstone courses (interventions discussed in Section 9.2.2)

Section 8.3.3: Dimension 3 - Levels of Reflective Engagements

In Section 5.2, we discussed about reflective thinking. Bateson’s model of logical categories of

learning [328], discussed in Section 5.2, suggests that deepening levels of learning require

change of action, assumptions, or context and commitment. The first level of learning is about

making minor fixes or adjustments in action. The second level of learning requires reflection to

challenge one’s beliefs and assumptions. This facilitates new insights for changing the rules for

making major changes. The third level of learning requires even deeper reflection to bring about

a shift in understanding our context, values, point of view, and commitments. Further, Schön in

his work on reflective thinking and professions [125] [220], discussed in Section 5.2, posited that

the mental habit of reflection and ability to move across the ladders of reflections is central to

professionals’ approach to their work. These habits are also closely associated with software

development work. Agile methods like eXtreme Programming draw their strength from the

possibility of continuous improvement through reflection.

Based on these two models, we propose the levels of reflective engagements for computing

students. These engagements will require the students to review and rethink about the products,

processes, assumptions, and value of all their engagements at different levels of all the other

dimensions of our four-dimensional taxonomy of pedagogical engagements. These reflections

should encourage them to reflect about the reflections as well, i.e., creating ladders of reflections.

Borton’s three-stage model [225] of deliberately thinking about ‘what,’ ‘so what,’ and ‘now

what,’ discussed in Section 5.2, has to be used in some form at each such stage and ladder of

reflection. This reflection will show new insights to them. The reflection process will help them

to improve their work, practices, habits, and perhaps even revise their value systems. In fact,

there is no better way to help them to revise their value system with reference to the professional

responsibilities they need to handle in accordance with the suggested codes of professional

conduct, practice, and ethics. In Table 8.9, we propose a new model for representing these levels

of reflective engagements.

www.manaraa.com

241

Table 8.9: Levels of reflective engagements
(third of four dimensions of taxonomy of pedagogic engagements)

(derived from Bateson’s logical categories of learning and Schön’s ladders of reflection)

Pre-reflection: No reflection
1st order Reflection: Product Reflection- creating ladders of reflections around the results and products of their
other engagements
2nd order Reflection: Process Reflection- creating ladders of reflections around the processes in their other
engagements
3rd order Reflection: Assumption Reflection- creating ladders of reflections around the assumptions behind the
products and/or processes in their other engagements
4th order Reflection: Value Reflection- creating ladders of reflections around their self-beliefs and value system
that influences their assumptions, goals, and role in their other engagements

Borton’s model of reflection for all levels
What? So what? Now what?

Reflective engagements help in sharpening critical and reflective thinking which, in turn, has a

cascading effect on all the other core competencies. Reflection is not an automatic activity. It

requires deliberate engagement. Currently, lack of reflective engagements is a serious weakness

of engineering education as found by the NSSE survey discussed in Section 7.4. In order to

inculcate the ability to learn, we strongly recommend that small reflective exercises must follow

most of students’ assignments. Computing educators need to design reflective engagements and

instructional interventions to inculcate the habit of reflection. Reflection is embedded in our

intervention of project centric evolutionary teaching, discussed in Section 9.1.2. In section 9.1.3,

we discuss some reflective engagements visualized and administered by us. Further, in Section

9.3, we also discuss, our experiment with conducting reflective workshop on pedagogy for

engineering faculty

Section 8.3.4: Dimension 4 - Levels of Collaborative Engagements

The group methodology promises to facilitate collaboration, promote mentorship, and enhance

collective ownership of code. We assert that whenever group work engages the learners to

evaluate, adapt, transform, extend, and integrate their individual ideas to co-generate newer

collective ideas, it creates stimulating conditions for learning at higher levels of the other three

dimensions. We also postulate that such group work also enhances attention to details, critical

and reflective thinking, and also creativity and innovation. Further, it also stimulates students to

reflect and evolve their perception of peer’s role in learning. Hence, properly designed group

www.manaraa.com

242

work offers the potential to contribute in students’ cognitive development as per Perry’s, and

also Bextor Magolda’s, intellectual progression models in more than one way.

In Section 7.4.3, we discussed about various theoretical perspectives about collaborative

learning. In Table 7.10, we outlined Salmon’s proposed levels of collaborative e-learning [357].

These levels are used in Table 8.10, as proposed levels of collaborative engagements for our

framework of pedagogic engagements. The collaborating units can be individuals or groups.

Individuals may collaborate in small or large groups at different levels as per Salmon’s ladder.

Similarly small sub-groups may also collaborate with other sub-groups at different levels. For

example, in a particular situation, the intra-subgroup collaboration may be carried out at

synergistic levels, whereas the inter-group collaboration may take place in dialogue, peer review,

parallel, or sequential mode. Hence, we add sub-levels of intra-group and inter-group

collaboration of all levels except the first and last in Salmon’s levels.

At all these levels, Dillenbourg’s four conditions of collaborative learning (Table 7.11) need to

be satisfied to draw learning benefits from these collaborative engagements. In Section 9.2.3.1,

we discuss our approach of collaborative pair and quadruple programming, which combines all

the features of this model. Cross-level peer mentoring, discussed in 9.2.3.2, also gives the

mentors an opportunity to engage in cross peer review. Collaboration is also embedded in all

forms of problem centric teaching discussed by us in Section 9.
Table 8.10: Levels of collaborative engagements

(last of the four dimensions of taxonomy of pedagogic engagements)
(Derived from Salmon’s levels of collaborative e-learning and Dillenboug’s four condition)

1 Solo: no collaboration
2 Dialogue: simple exchange of information

Intra-group, Intergroup
3 Peer review: reviewing others’ work

Intra-group, Intergroup
4 Parallel Collaboration: dividing the task in the beginning, and finally integrating individuals’ work

Intra-group, Intergroup
5 Sequential Collaboration: building upon each other work

Intra-group, Intergroup
6 Synergistic Collaboration: doing it together in a synergistic manner

Dillenboug’s four condition (Table 7.11)
1. Set up the initial conditions
2. Over-specify the collaboration contract with a scenario based on roles
3. Scaffold productive interactions by encompassing interaction in the medium
4. Monitor and regulate the interactions

www.manaraa.com

243

We suggest that these levels must also be integrated with the levels of the other three dimensions

of our four-dimensional taxonomy of pedagogic engagements. The current practice is that in the

name of the collaborative work, the students are usually not engaged in the highest two level of

collaborative engagement as per salmon’s levels. Further, they also do not normally experience

inter-group collaborations. We strongly suggest that in performing their engagements discussed

so far, the students must also be engaged at the higher levels of collaborative engagement as

given in Table 8.10. Higher level collaborative engagements will enhance cognitive flexibility

[206] and systems-level perspective.

Section 8.4: Chapter Summary
Students need to carry out and reflect upon multi-subject, multi-disciplinary, inter-disciplinary

relational analysis, creation, and evaluation. On few occasions, they should also preferably get

engaged in some form of trans-disciplinary relational analysis, creation, and evaluation, and

subsequent reflection. It must also be ensured by the faculty that the students get many

opportunities to integrate computing knowledge with a large variety of disciplines, especially

those that belong to divergent categories as per Biglan’s classification. In order to further deepen

their ‘learning,’ reflective engagements, especially at higher levels of Table 8.9, are also

necessary. Finally, in all these engagements, there should be enough opportunities for higher-

level collaborative engagements (Table 8.10). We strongly recommend that small reflective

exercises must follow most of their assignments.

Our proposed framework of pedagogic engagements in software development education is

grounded in (a) core activities of software development, and (b) distinguishing characteristics of

software development profession. It includes –

1 three-tier taxonomy of twelve core competencies,

2 five-dimensional ladder of professional and human development,

3 three-dimensional perspective of the knowledge domain of software development,

4 two core principles (cognitive dissonance and cognitive flexibility) for facilitating learning,

and

www.manaraa.com

244

5 a four-dimensional taxonomy of pedagogic engagements (active, integrative, reflective, and

collaborative) over ‘3’ for developing ‘1’ and ‘2.’

We postulate that higher level engagements in the first three dimensions will create the necessary

learning conditions by creating ‘cognitive dissonance.’ Higher level engagements in integrative

and collaborative dimensions will create cognitive flexibility.

The core competencies in our three-tier taxonomy are likely to be sufficiently addressed by

higher level pedagogic engagements in all these four dimensions. It is neither sufficient, nor

recommended to only use these dimensions in an isolated manner. Through their undergraduate

education, students must be repeatedly required to carry out such comprehensive tasks that

engage them at the higher levels of multiple dimensions, sequentially, or even better,

simultaneously. In the next chapter, we discuss some interventions developed by us manifesting

some aspects of this framework. The development of the framework and these interventions has

been an intertwined and highly spiral process.

www.manaraa.com

245

CHAPTER 9: SOME INTERVENTIONS FOR

ENHANCING THE QUALITY OF

SOFTWARE DEVELOPMENT EDUCATION

In the previous chapter, we developed a framework of pedagogic engagements. This framework

can be used for designing a large variety of instructional interventions to immerse students in a

four-dimensional hierarchy of active, integrative, reflective, and collaborative pedagogical

engagements. In this framework, we included two core principles for facilitating deep learning:

cognitive dissonance [327] and cognitive flexibility [206]. Cognitive dissonance is about the

conditions that are necessary for learning and cognitive flexibility is about the mastery of some

subject matter. Instructional interventions designed with the help of this framework can help the

faculty to create conditions of cognitive dissonance and flexible learning of the subject. In this

chapter, we discuss some such interventions developed by us. As stated in the previous chapter,

development of the theoretical framework and these empirical interventions has been an

intertwined process.

Learning primarily happens because of learners’ engagement in various activities relevant to the

content, rather than mainly depending upon content’s transmission from external sources.

Student-centric active learning offers the freedom of different kind of activities for different

students. Depending upon their prior experience and interests, students can choose or even define

their activities. The author has applied some in-class active learning techniques such as think-

pair-share, share your experiences with the project and assignments, design a small algorithm,

and so on and also advocated a strategy of activity based flexible credit definition as one

component of learner-centric education [358].

Baumgartner [359] has proposed a framework for viewing teaching as a designed activity, and

has observed that teachers employ a diverse range of coaching and mentoring strategies like

‘teacher as guide, ‘teacher as project manager,’ and ‘teacher as troubleshooter’ in open-ended

learner-centric classrooms to support students during their design process. It has been suggested

www.manaraa.com

246

that an open-ended approach encourages a diversity of views and perspectives, and also makes a

critical reflection on observations and experiences possible.

Section 9.1: Increasing Cognitive Dissonance through Problem-centric

Approach in Software Development Education
The most natural way to create dissonance (Section 8.2.1) would be to lead learners through a

problem-centric approach. We elaborate upon three types interventions based on problem-

centric approach: Inquiry Teaching, Project- inclusive Teaching, and Reflective

Teaching/Assignments. In all these interventions, we try to engage the students at higher levels of

all the four-dimensions of our framework of pedagogical engagements: active, integrative,

reflective, and collaborative (Section 8.3).

Section 9.1.1: Inquiry Teaching in Software Development Education

The lecture format in which abstraction precedes the instantiation and concretisation, helps

students in developing skills in linear thinking and deductive reasoning, and also succeeds in

creating a knowledge-base as an inventory of unutilised concepts. It however fails miserably to

give direct and guided practice in inductive reasoning and lateral thinking. Bruner and other

constructivists [30-31] recommend that instruction should allow the learner to discover

principles for themselves through active dialogue. Instead of aiming to teach some general rules

and theories, inquiry teaching aims to teach how to discover the general rules and theories.

Inquiry teaching is particularly effective in exposing learners’ misconceptions. It is particularly

suited for developing curiosity, self-learning, analytical skills, humbleness, inductive and lateral

thinking skills, and hence, in facilitating deep learning.

Inquiry teaching revolves around questions. This will require the teachers, and also the students,

to ask many more questions in their classes. We have developed a new model, SERO, for

designing inquiry teaching oriented lectures. This mode has been tried out in some courses, viz.,

Data Structures, Computer Graphics, Orientation to Engineering, etc.

www.manaraa.com

247

Section 9.1.1.1: SERO Model for Inquiry Teaching in Software Development Education

The discourse in the lecture classroom can be viewed as a story telling artifact. The objective of

this artifact is to create a meaningful learning experience and knowledge structures for every

learner. The discourse in a large number of lectures is designed as a closed artifact that primarily

sees the students as consumers. A fundamental challenge for designers in the new millennium is

to design open systems and artifacts by inventing and designing a culture in which humans can

express themselves and engage in personally meaningful activities [317]. Open systems and

artifacts must evolve, they cannot be completely designed prior to use. They must evolve at the

hands of the users, and they must be designed for evolution. The dichotomy of designer and user

has to be eschewed. Seeding, Evolutionary growth, and Reseeding (SER) has been proposed as a

conceptual framework for designing sustainable, open, and evolutionary systems [318] [360].

A seed is the initial state of a system that is intended to evolve. The evolutionary growth phase

is one of unplanned evolution as the seed is used by the members of a community to do work.

Reseeding is a deliberate effort to organize, formalize, and generalize knowledge created during

the evolutionary growth phase. Courses as seeds have been proposed as a promising model to

evolve and enrich courses by allowing students to act as active contributors, and not just as

passive consumers [361].

The genesis of any story experience is Emotional Movement [362]. Users crave emotional

engagement and stimulation. Situated inside the context of lecture classroom, every learner

(user) is the author of his own personal meaning. Meaning is the product of interaction between

the observer and the system, the content of which is in a state of flux, of endless change and

transformation [363]. In Poetics, Aristotle suggested that a well constructed plot must be a

whole having beginning, middle, and end [364]. Movement Oriented Design (MOD) views a

story as an ensemble of ‘story units’ in which a ‘story unit’ has three parts, the Begin, Middle,

and the End (BME) [365]. Begin lays the groundwork, hooks the user, imploring to find out

more. Middle carries the main story message, conveys the core meaning. End terminates the

story, concludes the current story, and/or links to the next.

www.manaraa.com

248

As per the SERO model, every lecture is delivered as a series of SER blocks, and concluded with

a learning Outcome. Seed is the fresh idea or question from a teacher which is generally not an

obvious derivative of an earlier idea. Evolution has been used to label the active learning phase

in the class involving individual thinking, group work, discussions (among student groups of

varying size, and also between the students and teacher), and solving problems that require

thinking in terms of analysis, synthesis, and/or evaluation. Reseed is being used to label the

phase of formalizing the informal ideas generated during the evolution stage, and deriving

another seed as a derivative of this evolution.

Students usually have greater motivation to learn in the context of solving a problem, than if the

content is delivered out of context [366]. The seeding phase in SERO based lectures offers good

opportunity to create context. Situated in this context, the content is developed during the

evolution phase through problem solving activities.

The teacher makes a deliberate attempt not to deliver generalized content without the context or

before problem solving. Instead, the generalisations are presented as a natural fallout of the

theorising process through solution-unification during the reseeding phase to conclude the

evolution phase. In this model, the teacher has to support the students during evolution phase

individually or in smaller groups and only some time the entire class.

The teacher needs to be the centre of attention of the entire class only during the limited period

of seed and reseed stages, and occasionally during the evolution stage, as and when the need

arises. Sometimes the evolution phase may also become teacher-centric, as the teacher may

occasionally decide to demonstrate the problem solving process with some specific case(s),

rather than engaging the students in problem solving because of the lack of sufficient background

with the students or time constraints. However, the problem solving characteristic of the

evolution phase remains unchanged. At the end, the learning outcomes are summarized and an

assignment is announced. This assignment forms the reseed for the next class.

Usually there are not many seeds in a lecture, only reseeds. Most of the time is used in evolution

and active learning. This model has been tried out successfully in many courses, even with a

www.manaraa.com

249

large number of students. Figure 9.1 shows pictures of one such class during the evolutionary

growth of a concept through group exercise. Appendix A14 gives a summary of two such

lectures, one each in computer graphics and data structures.

Figure 9.1: Group exercise during the evolutionary phase of SERO style lecture

Experience

SERO style lecture classes were found to be highly engaging and useful by motivated

undergraduate students. However, many other students, who were mainly motivated by

examination oriented study, did not find these classes very useful for them.

Challenges for Inquiry Teaching in Software Development Education
The success of Inquiry Teaching mainly depends upon students’ active participation in the

inquiry process. It requires, and also furthers, the transformation of students’ perception about

their own role in the process of learning from an information receiver to an active contributor to

meaning making. However, for many students, their old habits formed through prior experiences

with exposition based teaching, can hinder their enthusiastic participation as an active learner in

the classroom, especially in large and unresponsive classes. Such students find inquiry teaching

to be unsatisfactory, and miss the opportunity of not only deep but also surface learning.

Therefore, it is most important to sensitize students to this method of learning in their early

courses. For maximizing the benefits of inquiry teaching, students need to ‘learn to learn’

through this method.

www.manaraa.com

250

Developing Habit for Inquiry Learning in Software Development Education through

Puzzle Solving

Solving a puzzle is another example of inquiry learning. Puzzle solving activity demands that the

teachers start their sessions with problems rather than concept. Many software companies

include puzzle solving in their selection criteria of new software developers. Puzzle solving

sharpens critical thinking and problem solving ability, and offers a higher potential to develop

many of the multifaceted thinking skills. Therefore, we redesigned the delivery strategy of the

first computing course by starting it with puzzle solving activity, even before the introduction of

the basic syntax of any programming language. In this course, at two different campuses of JIIT,

over eight hundred first year engineering students were distributed in six lecture sections and

twenty tutorial sections. More than twenty faculty members were involved in delivering lectures

and running weekly tutorial classes. All the concerned faculty members (Prakash Kumar, Alok

Agarwal, Vikas Saxena, Shikha Mehta, Anshul Gakhar, and Chetna Debas) agreed to the

proposal that instead of teaching programming or computer basics, we should start solving

puzzles. For over a month, various kinds of puzzles were discussed in the lecture and tutorial

classes. The puzzles were collected and chosen by the concerned faculty members. As per the

feedback from the faculty, these classes were highly active and collaborative. Even in the post-

lunch sessions, students very enthusiastically came to these classes.

Faculty members felt that puzzle solving activity improved students’ logical thinking ability,

which is at the core for designing computer programs. A large number of students have reported

multi-dimensional benefits in terms of enhancements in logical, creative, multi-perspective, and

out-of-box thinking, attention, focus, concentration, patience, comprehension, urge for creation,

etc.

The faculty members expressed that these were the most active and collaborative classes they

had ever attended or conducted. It showed them the benefits of active and collaborative inquiry

oriented classes. Encouraged by the positive results of this trial, we have now infused puzzled

solving in two more courses in the current semester. In ‘data structures’ (2nd semester) and

‘fundamentals of algorithms’ (4th semester) courses, all teachers have happily dedicated the first

www.manaraa.com

251

one to two weeks solely to puzzle solving. A more structured research in needed on infusing

puzzle solving in software development education.

Section 9.1.2: Project- inclusive Teaching in Software Development Education

According to various surveys discussed in chapters four to seven, we found that projects were the

most effective teaching methods with respect to enhancing various competencies relevant to

software development. Semester-long project experience helps in developing multidimensional

competencies in all the dimensions. Hence, semester-long projects have the potential to facilitate

deeper learning in many significant ways. However, projects are usually conceived as a

culmination activity of learning something. It is assumed that only after completion of

conceptual learning and acquiring practical skills, some project can be attempted. Usually in

Indian universities, semester-long project work is not included as part of the regular computing

courses. This limits the effect of the courses in terms of developing their competencies.

Project-Inclusive Regular Courses

The constructivist paradigm of project-inclusive teaching challenges this assumption. Rather

than viewing a project as the culmination activity, it is viewed as the instrument of creating

richer context for learning the subject matter. It also opens many new challenges for the faculty.

They have to guide the students in formulating and completing their projects. Simultaneously,

they also have to manage the learning process. Hence, project-inclusive teaching also offers a

higher level of creative opportunity for the faculty as well.

However, as the traditional textbooks are normally not written with this objective in mind, the

project- inclusive course teaching requires a change in delivery strategy. We have tried to

enhance the quality of several undergraduate computing courses by project inclusion. This

attempt has given us the confidence that that it is usually possible to plan and deliver the courses

with a central focus on the semester-long project work of the students. Two different models,

viz., project-centric evolutionary instruction and project-oriented instruction, have been

proposed for achieving this goal.

www.manaraa.com

252

Project-centric Evolutionary Teaching in Software Development Education

Project centric evolutionary teaching offers active, integrative, reflective as well as collaborative

engagements as per our frame work discussed in Section 8.3.

During the course of this research, project-centric evolutionary teaching was evolved for

Enterprise Application Development [367]. Recently, it has been further expanded to many other

courses like object oriented programming, database management, web application engineering,

software engineering, and information systems.

In project-centric teaching, we reverse the traditional teaching methodology in which conceptual

learning is followed by practice assignments, and only sometimes project work. In our scheme,

at the beginning of the course, the teachers first help and guide the students to formulate the

initial project problem. Examples and templates are used to complete this task. Since it is not

possible for the teacher to discuss every project in the large class, the instructor then selects some

of these projects to forward the subsequent classroom discussions. They try to define the initial

and simplistic project scoping and specification for one or two projects through classroom

discussion. The students follow a similar process to complete these tasks for their projects.

Teacher guide the students to incrementally enhance their project scope later in the semester,

essentially to create the context for the forthcoming concepts and topics of the subject matter.

They refine the project scope before introducing any new topic.

The teacher has to bring in the concepts after setting the context. Conceptually, this model has

some similarity to zero inventory manufacturing practice. The learners are not given a large

inventory of unused concepts. The concepts are introduced only after creating the need for its use

with reference to students’ semester-long project.

We have developed the conceptual schema for defining the main characteristics of student

projects’ evolution in project-centric evolutionary teaching of object-oriented programming,

software engineering, database management systems, web application engineering, enterprise

software development and information systems. All these schemas have also been tried in real

courses by concerned faculty members. Appendix A15 gives the stages of evolution of the

defining characteristics of student projects in different computing courses.

www.manaraa.com

253

Progressive evolution of the subject matter in the evolving context of a project is the hallmark of

this approach. Appropriate concepts, theories, technologies, procedures, and tools are introduced

as per the needs of each stage of project evolution. These stages are flexible enough to

accommodate new concepts, theories, technologies, procedures, and tools at each stage.

Metaphorically, it looks at content delivery as a natural process of a small but complete bud

blossoming into a complete flower, rather than like the traditional but unnatural

compartmentalized additive advancement. As per this model, most of the projects have high

similarity with respect to technological issues. The application domain becomes the main

differentiating factor for different student projects. Hence, observation and review of other

students’ projects also gives an opportunity to expose the students to a variety of application

domains.

This model is very suitable when the student projects can be planned to use most of the concepts

of the subject matter. This model is not suitable if the objective is to have the students to carry

out their projects in different areas of the subject matter, and the projects are required to be

differentiated based on their technological aspects, rather than application domains.

Project-Oriented Teaching

While engagement in semester-long projects is highly beneficial for ensuring deep learning in

courses, project-centred teaching has its own difficulties as well as limitations. In many courses,

it is very difficult, and perhaps not even desirable, to plan technically similar semester-long

student projects encompassing most of the topics of the particular subject matter. In such cases,

it is better to plan projects on different topics. In order to leverage the advantage of peer learning,

care has to be taken to evenly distribute the students’ projects over all the main topics. However,

this scheme imposes some challenges regarding synchronising the project activity with the

content delivery in the class. Either most students are not able to start their projects early in the

semester or they have to start the project without any instructional support on the project topic.

In order to partially overcome this limitation, a two-level content delivery scheme has been tried

out in some computing courses like Microprocessors and Microcontrollers, Operating Systems,

Computer Networks, and Complier Design.

www.manaraa.com

254

As per this scheme, the entire course is delivered in two phases. In the first phase, lasting

approximately two to three weeks, an extended introduction of the course gives a comprehensive

macroscopic view of the entire subject matter. During this phase, the major issues, relevance, and

typical project possibilities with respect to all topics are presented to the students. The objective

of this phase is to help students broadly understand the subject matter, see the inter-connections

between different topics, and also identify their project topics as well as formulate their project

problems. Thereafter, the students start working on their projects.

In the second phase, the topics are sequentially picked up for in-depth classroom discussion.

If students’ projects are evenly distributed over all the main topics, topic related projects can be

easily leveraged to provide the context and enrichment for detailed discussion on the topic, and

also give a partial flavour of project-centric teaching for every topic.

Section 9.1.3: Creating Conditions for Reflective Engagements in Software Development

Education

Reflection is not an automatic activity. Students do not usually automatically reflect well upon

their actions and tasks in various assignments. This limits not only the quality of their

assignments, but their overall learning as well. A small post-assignment, reflective activity can

amplify their learning from the same assignments. Borton’s frame-work for reflective thinking

[325] discussed in Section 5.2 and Section 8.3.3, includes three questions: ‘what, so what, and

now what?’

We have successfully deployed this framework to enhance the learning value of many

assignments. For example, for the past three years, we have been asking the students to maintain

a log (PSP style), of their time and programming errors in software laboratories. More details

about infusion of PSP (time estimation as well as bug) are discussed in Sections 9.2.1. Many

students were finding it to be a wasteful activity. We realized that because they never referred to

their logs, they saw no benefit of creating such logs. Hence, recently we introduced an element

of mid-semester reflective exercise, where a group of few students jointly review their logs and

www.manaraa.com

255

write a reflective report using Borton’s framework. This exercise helped the students to draw and

see the benefits of maintaining a log. They saw what kind of errors they were commonly making,

and how they compared with other peers. This helped them in improving their programming

skills.

For the last several years, we have been asking the final-year students to submit a reflection

report on their final year project. After completing the project, they are required to give an

additional report answering the questions given in Table A16.1 (Appendix A16). Further, in the

main project report, we have added elements that require reflective thinking. These include

project specific reflective review of quality assurance procedures, debugging, risk recovery, and

error and exception handling techniques.

In 2009-10, we have specifically tried to inculcate reflective thinking through reflective

engagements in several courses. For example, in three elective courses for the 8th semester

undergraduate students, ‘software documentation,’ ‘software construction,’ and ‘software risk

engineering,’ delivered at a fast pace in three weeks, reflection has been used very strongly. In

each of these three courses, the students were required to write a report, reflecting on their 7th

semester project in the light of subject knowledge of the respective courses. They were required

to suggest strategies to improve their project’s specific aspects that were related to the subject

matter of these specific subjects. Table A16.2 (Appendix A16), gives the problem statement of

the assignment (25% credit) in these three courses. Further, even in the final exam, question(s)

were asked to make them reflect upon this work. These were finally designed by the concerned

faculty members in consultation with the author of this thesis. In future, we plan to create more

templates for infusion of critical thinking and reflection in many computing courses.

In an ongoing elective course, ‘software arteology,’ reflection is being infused in all assignments.

The assignments require them to essentially reflect upon published literature, professional’s

experiences, peer’s experiences, or their own experience. Further, at the end of every assignment,

they are also required to write a small report specifically addressing the issues as per 2nd and 3rd

questions in Borton’s model. Table A16.3 gives two sample assignments in this course. The

students are required to submit their assignments, only after a peer review. This also brings some

www.manaraa.com

256

elements of collaboration and reflection on others’ work. The second-last and last sub-questions

in each assignment are based on the 2nd and 3rd question respectively as per Borton’s framework.

The responses of the last sub-question, in each assignment are particularly very interesting,

where students are expressing what they learnt by doing the specific assignment, and what they

plan to change in future. Table A16.4 (Appendix A16) gives a few sample responses.

We conclude that reflective engagements are highly effective for creating deeper learning. More

work is required to reflective assignments in all courses and tasks.

Section 9.2: Increasing Cognitive Flexibility through a Multifaceted

Integrated Approach in Software Development Education

In order to engage the students at higher levels of integrative engagements, the second dimension

of our four-dimensional engagement taxonomy discussed in Section 8.3, and to impart cognitive

flexibility with special reference to software development, an integrated approach to software

development education is necessary. In order to achieve this objective, we have visualized and

administered three types of interventions for instructional reform, viz., Multilevel Infusion of key

technologies (web, multimedia, mobile, and security) and professional practices (systems design,

estimation, open source, and debugging), Integrative Courses and Group and Community

Learning.

Section 9.2.1: Multilevel Infusion for Continuous Integration in Software Development

Education

As mentioned in Section 7.4.1, the details of multi-level infusion of various technologies and

professional practices are discussed below. This kind of ‘multi-level infusion’ offers ‘Inter-

subject intra-disciplinary relational’ engagement to the students as per Table 8.8. In the

following discussion, we also refer to the feedback received from mentors (Appendix A17). The

details of our intervention to engage senior level students as cross-level mentors are discussed

later in section 9.2.3.2. It may be noted that every mentor was mentoring only one host course.

www.manaraa.com

257

Multi-level Infusion of Web Technology

Web technology is integrated in several introductory courses. The first programming laboratory

courses, introduces HTML, before any practice with programming. In the data structures course,

they do some programming assignments around HTML files. JDBC is introduced in database

course. Some web search and page ranking algorithms are included in the fundamental of

algorithms course. Information systems course focuses on building web-enabled information

systems. Computer network courses starts from the topmost layer of the protocol stack,

leveraging students’ familiarity with the web, and goes deeper to lower layers. Table A17.1

(Appendix A17) gives a summary of the feedback received from the mentors regarding infusion

of web technology in different junior level courses.

Multi-level Infusion of Multimedia Technology

Multimedia technologies are infused in many introductory courses. In the first programming

course, students learn to use basic graphics and sound functions. In the data structures course,

deep practice of recursion is given with the help of several examples of graphical fractals. They

also learn some basic data structures for simple geometric objects. The data structures for

building simple games like snake-and-ladders, and ludo, etc., are also discussed. Database

systems course insists on creating databases with multimedia objects. Graphics API’s are used in

object-oriented programming as well. In the algorithms course, students are required to write

programs for algorithms visualization and also implement simple games, using decision trees. In

the web application engineering course, hypermedia design patterns are introduced. Table A17.2

(Appendix A17) gives a summary of the feedback received from the mentors regarding infusion

of the multimedia technology in different junior level courses.

Multi-level Infusion of Mobile Technology

Aspects of mobile computing have also been infused in some introductory courses. For example,

in the operating systems course, an overview of mobile operating systems is given. J2ME is

included in database systems and web application engineering. The course on information

systems includes Android. The courses on computer organization, microprocessors, and

computer architecture also bring some discussion about mobile platforms. Table A17.3

www.manaraa.com

258

(Appendix A17) gives a summary of the feedback received from the mentors regarding infusion

of the mobile technology in different junior level courses.

Multi-level Infusion of Security Aspects
Recently, some attempts [368-370] have been made to incorporate security aspects in computing

courses. We give an elaborate model of infusing security related aspects in every semester of the

first three years. We have chosen traditional computing courses for infusing the selected security

aspects without overloading the students or compromising on the main topics of the core course.

Appendix A18 gives the details of this model [370a]. Some of the topics indicated for each

course, can be easily integrated by interested faculty.

Some features of this model have already been tested in our courses. Infusion of security aspects

in our courses, including some laboratory assignments has been highly appreciated by final year

students who are mentoring the laboratories of first three year courses. Table A17.4 (Appendix

A17) gives a summary of the feedback received from the mentors regarding infusion of security

aspects in different junior level courses.

Multi-level Infusion of Systems Design Aspects

In order to lay an emphasis on systems design, some improvisations like necessity of design

diagramming, evolutionary project scoping (in many courses), and necessity of following design

guidelines and standards (in some courses), have been visualized and administered. For helping

design diagramming habits for analysis and design of systems, a new graphic notation, Concept

Map, for representing software systems has been developed and administered in some courses.

The details of this graphic notation are given in Appendix A19.

Faculty and students have found this concept mapping technique to be very useful. It has been

used several times in the data Structures course. Recently, it has also been deployed in some

other advanced level courses to compliment the standard notation of UML. Table A17.5

(Appendix A17) gives a summary of the feedback received from the mentors regarding infusion

of the some of the system design related aspects in many aspects in different junior level courses.

www.manaraa.com

259

Multi-level Infusion of Estimation Tools

In order to develop estimation skills, the programming process related data, as adapted from the

Personal Software Process (PSP) [371], has been administered in many computing laboratory

courses of the first to third year. Initially, the students show a lot of unwillingness to record the

PSP logs of their progress. It is perceived as an unnecessary burden that has nothing to do with

their programming tasks. However, a reflection after some practice makes many of them self-

realize the benefits of using it with respect to their programming practice. In April 2009, the

students were asked to write their comments on the use of the PSP in their computing laboratory.

This was an open-ended feedback. A majority of the students have reported benefits in terms of

programming efficiency enhancement, defect rate reduction, activity record, and reflection.

Many of them have also reported benefits in terms of improvement in estimation and planning

skills. Table 9.1 gives a summary of the feedback received from students regarding the perceived

benefits of maintaining PSP logs in their computing laboratory courses.

Table 9.1: Benefits of PSP as perceived by Students

Benefits of PSP perceived by
Students

2nd Semester
students,

109 responses

4th Semester
students,

91 responses

6th Semester students,
75 responses

Programming Efficiency
Enhancement

57% 59% 76%

Defect Rate Reduction 37% 37% 59%
Activity Record and Reflection 32% 39% 59%
Estimations and Planning 25% 27% 31%

Based on this feedback, we realized that Humphrey’s format of PSP logs is not good enough for

enhancing the estimation skills of undergraduate students. Hence, we have modified it for

achieving higher gains in estimation as well. In our new PSP format, students are required to

write their estimated time for completing their programming assignments. Students are also

required to revise their estimates after every stage of the software development: analysis, design,

and implementation. Finally, they also record the actual time for completing their assignments.

With this continuous engagement with estimation, they become sensitive to its importance.

Further, every revision in estimates makes them more careful while making future estimates.

Table A17.6 (Appendix A17) gives a summary of the feedback received from the mentors

regarding infusion of the estimation related tools and techniques in different junior level courses.

www.manaraa.com

260

Multi-level Infusion of Open Source

Open source has been infused in many ways. Students are encouraged to search, select, and

include/modify open source code in their projects: mini projects in all courses, minor projects,

and final year project. Since 2008, all final year students are required to give an additional report

on how they used and/or modified the open source code in their project. Open source is regarded

as published literature, and all literature survey oriented assignments allow and often insist on

inclusion of open source survey, e.g., in advanced data structure (M.Tech. course), all students

were required to survey open source in their chosen application domain, and catalogue the data

structures used in chosen code. In the first programming course, the 1st semester undergraduate

students start their programming laboratories with introductory Python, even before they use C.

Core Java is taught in the object-oriented programming course. MySql and JDBC are used in the

database course. Linux is used in the Unix laboratory course. The web application engineering

course includes PHP, Java Script, XML, J2ME, etc. Linux is used in Operating systems course.

In 2008, for their 5 credit minor project-I, all 5th semester computing students were required to

enhance an open source project in the area of software engineering (any phase). In 2009, all 5th

semester computing students built database driven websites using open source add-ons like

crawlers, security API, J2ME, etc. Since 2007, program comprehension and re-engineering have

been included in the 5th semester software engineering course. In 2008, all 6th semester B.Tech

(IT) students used Wonderland for creating database integrated virtual worlds in their second

minor project. J2EE, Android SDK, XMS API, Ajax, Open XLS, and Drupal are being used in

the information systems course. NS2 simulator is used in the computer networks lab. The

elective course, computer graphics, emphasized the use and/or extension of open source game

engine, e.g., Box2D, Box3D, J-monkey, Ogre-M, etc. Table A17.7 (Appendix A17) gives a

summary of the feedback received from the mentors regarding infusion of the open source in

different junior level courses.

Multi-level Infusion of Debugging

Debugging is generally thought of as an implicit activity for software development. Students are

expected to detect and fix their buggy code. Due to this expectation, students typically have

limited experience in bug detection. Not only this, the debugging experience they get is purely

www.manaraa.com

261

by chance and not by design. As part of assignments, students can be asked to identify and

correct code section containing buggy code. The computing curriculum recommendations by

professional societies [1] [50] [52] [113] also include debugging. To address this issue,

assignments for bug detection and removal should be given. However, we feel that the typical

delivery of computing courses does not enforce students to have debugging experience in a

systematic manner. To bridge this gap between suggested curriculum and its actual

implementation, we propose some guidelines for assignments. Bug detection with and without

use of debugging tools should be inculcated among students.

In order to infuse debugging experience, we have prepared a taxonomy of software bugs with an

objective of designing debugging related assignments in various computing course. This

taxonomy has been summarized in Appendix A6. We take a view that software bugs are results

of misconceptions about specific topics in specific courses. Debugging assignments can be given

during delivery of courses based on topics included in our taxonomy of bugs. The taxonomy can

be used as an input for generating these assignments. Bugs related to a particular course, as

mentioned in our taxonomy, should be experienced by students during the course delivery. This

can be done through assignments such as bug detection, bug generation, comparative study of

debugging tools, and program comprehension of existing debugging tools, creating simple

debugging tools for specific bugs and enhancing existing debugging tools. Additionally, students

can be asked to maintain a bug log for every programming assignment as prescribed by

Humphrey [371].

The log format suggested by Humphrey has the following parameters: (i) date of bug detection,

(ii) sequential numbering of bug, (iii) bug category, (iv) phase of SDLC in which the bug was

injected, (v) phase of SDLC in which the bug was removed, (vi) time spent in finding and fixing

the current bug, (vii) bug number for the bug whose fix resulted in current bug, (viii) brief

description of the bug, mentioning its reason. We propose that following parameters should also

be incorporated in the bug log: (i) behavioural manifestation: the symptoms of running system

that helped in finding bug, and (ii) techniques and tools that helped in fixing bug.

www.manaraa.com

262

Reflecting on the data from the bugs log will help the students in systematizing their art of

debugging. In our experience of introducing this log in laboratory work of various computing

courses like introduction to programming, data structures, object-oriented programming,

database management systems, algorithm, software engineering, information systems, and

compiler design has been encouraging. A large number of student have felt that it helps them to

improving their programming and debugging skills. However, a good number of students,

especially at the first year level have found this to be too time consuming. While a two-third

majority of second and third year students appreciated the benefit of maintaining this log, only

one-third of the first year students found it to be useful. Table 9.1 summarizes the benefits,

perceived by the students. Table A17.8 (Appendix A17) provides a summary of mentors’

feedback on PSP logs in some computing laboratories. Appendix A20 gives some more

proposed interventions in this regard.

Some more aspects being considered for multi-level infusion in software development

education

In collaboration with various faculty members, we continue to strengthen the infusion of the

abovementioned eight elements: web technology, multimedia technology, mobile technology,

security aspects, design aspects, estimation aspects, open source, and debugging in various

introductory computing courses. Now, we have also started working towards designing

appropriate models for infusion of selected elements of the following important issues related to

software development:

1. Software documentation

2. Software quality

3. Software risks managements

4. Advanced level programming techniques

5. Formal methods in software engineering

Some elements of these have already been infused in the final year project deliverables. More

work is needed to offer courses using the approach of ‘multi-level inter-disciplinary infusion.’

www.manaraa.com

263

Section 9.2.2: Integrative Capstone Courses in Software Development Education

As discussed in Section 7.4.1, integrative capstone courses can help in strengthening nonlinear,

integrative and systems thinking, and flexible learning.

Courses for Intra-disciplinary Integration of Diversified Computing Topics

We have made some attempts to design some advanced level computing courses like ‘multi-

dimensional data structures,’ ‘systems programming,’ and ‘graph algorithms and applications’ to

bring integration of otherwise widely spread computing concepts. These integrative courses offer

‘Inter-subject intra-disciplinary relational’ engagement level as per Table 8.8.

Data structures design is a pervasive computing concept, and design of application specific data

structures is a crucial software development activity. The basic course on data structures helps in

creating a general purpose foundation for most of the later computing courses. In this basic

course, usually some common linear and non-linear data structures are introduced in multiple

application contexts. Later, the courses on algorithms try to further build up this generic

understanding. Many of the specialized computing courses can be modeled as data structures,

algorithms, and methods. Limited space in the curriculum does not give the opportunity to take

many such specialized courses. An integrative course on ‘has been created to deepen problem

solving ability with a special focus on various domains involving n-dimensional, multimedia,

and spatio-temporal data. This course leverages the advantages of basic foundation data

structures course and multilevel infusion. It offers students an opportunity to learn about some

important computation issues related to various areas of computing, e.g., computer graphics,

image processing, multimedia, GIS, robotics, data mining, mobile computing, bio-informatics,

VLSI Layout, etc., in a single course. More importantly, they also understand and explore the

reusability of many multi-dimensional data structures across application domains. This approach

enables flexible learning.

Similarly, the course on ‘graph algorithms and applications,’ attempts to contextualize the graph

based algorithms in a variety of application area. The course on ‘systems programming’

leverages the learning in microprocessors, operating systems, compiler design and computer

networks.

www.manaraa.com

264

Courses for Inter-disciplinary Integration with Selected Elements of Human Sciences

Over the years disciplines have evolved such that they have been separated not only in terms of

underlying factual, conceptual, and procedural knowledge, in theoretical as well as empirical

space, but also in terms of research questions, perspectives, meta-cognition, and methodologies.

In modern times, most of the interesting developments are taking place at the edges of the

disciplines. The disciplines are getting integrated not only in terms of content but also

perspectives and methodologies. A trans-disciplinary approach is required for solving most large

real-life problems. Hence, the integration of seemingly disconnected disciplines of human

knowledge offers very exciting learning opportunities. Here we elaborate upon some experiences

in designing and delivering some courses that try to contextualize and integrate computing with

selected elements of human sciences. These human science concepts have been carefully chosen

based on their relevance and importance for enhancing some core competencies. We have made

an attempt to create a fourth orbit inter-disciplinary integration (Table 8.8) with some traces of

trans-disciplinarity in these courses.

Theory of Knowledge, Learning, and Research

 As discussed in Section 3.7, Armour [120] [148] viewed software development as a learning

activity rather than a production activity, and advocated that software developers need more

training in learning, and knowledge structuring mechanisms, rather than in software itself. The

course of ‘theory of knowledge, learning, and research’ attempts to addresses this requirement.

The students are exposed to a spectrum of theories related to human learning and thinking. All

these theories are also used for reflecting about learning in general, and also with specific

reference to software development. It enhances the understanding of their own learning process,

and also helps them identify their misconception about learning. These theories and models help

sharpen students’ questioning skill, critical thinking, and reflective thinking. It helps the students

to become better learners. Understanding of the diversity of learning styles also prepares them

with enhanced ability of self-regulation, ability to accommodate themselves to others and also

makes better prepared for understanding of domains’ thinking processes. They are motivated to

view software development as a learning and critical thinking activity.

www.manaraa.com

265

Human Aspects for Information Technology

 Another multi-disciplinary integrative course is ‘human aspects for information technology.’ It

aims to explore the humanistic grounds for information technology and software development.

Students analyze the required competencies for specific activities of software development. The

students evaluate the information technology, and also the activity of software development with

respect to multi-dimensional aspects of social welfare and professional decision making. Various

activities of this course help the students to understand the meaning and importance of

professional responsibility. They are engaged in collecting and analyzing professional dilemmas

of practicing software developers in the light of theories of moral reasoning and human

development. They learn about technological disasters and failures of software systems.

Various codes of professional ethics for engineers are also analyzed in this course. All these

experiences help the students to understand the meaning and importance of professional

responsibility. In this backdrop, the models of critical thinking are used for analyzing the ethical

issues with respect to ongoing developments in information technology.

Finally, a module on creative thinking and inventive problem solving is integrated with this

background (as per Table 8.6b). Selected models of creative thinking and inventive problem

solving are used for designing ethically sensitive technological solutions and services. Further,

there is strong tradition of formally teaching ‘Research Methodology’ in many non engineering

disciplines. Such content is not usually offered in engineering disciplines. However, some

programs of information systems offer such courses. The research in the field of software

development combines the research methods of engineering as well as social sciences. In this

course, various qualitative as well as quantitative research methods are discussed with the help of

illustrative examples from the published research literature in software development. It also

helps in enhancing the critical and integrative thinking, analytical skills, and also self-learning.

Section 9.2.3: Group and Community Oriented Engagements in Software Development

Education

In the following two sub-sections, we report our experiments with two different models of group

and community learning. Collaborative pair and quadruple programming prepare the students

www.manaraa.com

266

for teamwork and benevolence, while cross-level peer mentoring is aimed for preparing them for

larger organizational concerns, universalism, and responsible citizenship of larger communities.

The students reported several benefits of collaborative pair programming like enhancement of

problem solving skills, efficiency, quality, trust, and teamwork skills. Further, it provides

experience in reading and understanding foreign code, writing code for others’ understanding,

and integrating one’s code with foreign code. Both forms of group and community oriented

engagements help in enhancing students’ sense of accountability and responsibility, ability to

accommodate themselves to others, to see themselves as bound to all humans with ties of

recognition and concern, as well as multi-perspective and creative thinking.

Section 9.2.3.1: Collaborative Pair and Quadruple Programming

Using our framework, we have transformed the popular concept of pair programming, to make

sure that both the students in a pair necessarily collaborate, build upon each other’s work, and

also do an equal amount of similar work. Our adapted implementation of ‘collaborative pair

programming’ is based on facilitating higher levels of collaboration using Dillenbourg’s four

conditions of collaborative learning as discussed earlier (Table 8.10). Table 9.2 shows

Dillenbourg's four requirements for maximizing collaborative learning, and how we

implemented each in our study.
Table 9.2: Application of Dillenbourg's principles

Dillenbourg's requirement Our implementation
1. Set up the initial conditions.

Pairs of students without any programming experience were
formed by faculty in the beginning of the semester.

2. Over-specify the collaboration
contract with a scenario based on
roles.

In each laboratory session, the members of each pair were first
required to individually complete two different programming tasks.
On completion of both their individual tasks, they worked together
to solve a more complex problem that was designed as an extension
of both their individual problems (ref: Table A21.1, Appendix
A21).

3. Scaffold productive interactions
by encompassing interaction in the
medium.

The pair members were not allowed to interact for completing their
individual tasks. However, if one of the pair member completed
his/her task much in advance, and the other member felt the need of
peer’s support even for completing his/her individual task, the
laboratory instructor allowed them to do so by assigning a small
penalty of marks to the second member.

4. Monitor and regulate the
interactions.

For every group of thirty students, at least two faculty members
and one teaching assistant were available for clearance of doubts
and monitoring.

www.manaraa.com

267

Each exercise fulfilled the purpose of making the students work both individually and in a team.

Table A21.1 (Appendix A21) shows a few sample exercises [389]. The concerned teaching

faculty validated these assignments before administering the same to students. Appendix A21

gives some more details about the setting up of experiment.

For all the laboratory instructors and teaching assistants, the most common observations were to

find paired programmers brainstorming far more than individual programmers, suggesting

alternate implementations during evaluations, approaching instructors for doubts lesser than

individual programmers, and having more details like null checks and memory checks in their

programs. It led the students to check their thinking and reason their decisions, they examined

and discussed their ideas with others, and evaluated other’s statements and solutions. They

modified their own programs to fit in their code in the new but similar situation presented by the

combined task question, and at the same time also acted as evaluators for their partner’s

programs. We believe that this experience trained them for reading and building upon others’

code in future. The instructors also felt that student pairing also helped in improving the

effectiveness of teacher student interaction in the labs.

Based on the results and the feedback from the students and instructors, some of the evident

advantages of collaborative programming that we could bring out effectively in our course were:

efficiency, trust and teamwork, problem solving skills, and quality. By the end of the semester,

inexperienced-paired programmers reduced the relative performance gap from 40% to 10%, and

performed at the same level as the experienced-solo programmers during the final examinations.

In 2009, we administered this form of collaborative programming in the laboratories of the

object-oriented programming course for more than 350 students of the third semester of B.Tech.

(CSE/IT). These students have already had two semesters of programming experience, but had

not experienced pair programming in their earlier courses. Based on the same model, the

assignments were designed by five colleagues teaching this course. In the laboratories of this

course, we also had approximately thirty final year students as regular visitors, who act like

mentors of third semester students. The details of mentoring program are discussed in the next

www.manaraa.com

268

sub-section. Approximately 70% of these mentors have felt this form of collaborative

programming to be extremely valuable for students’ long term as well as short term gains.

Another 20% have also found it to be valuable, and also felt that this instructional intervention is

worth the extra effort by students. These mentors have felt that it exposes students to observe

different ways of programming, improve their style, and also encourages weak programmers to

learn to program.

Collaborative Quadruple Programming

Our approach combines all the levels of collaboration proposed by Salmon (Table 8.10). The

regular two-stage fixed-partner pair programming model has been further enriched by occasional

extension into a three-stage semi-fixed partner quadruple programming model. For the purpose

of occasional extension into a three-stage model, the laboratory class of thirty students is divided

into four categories A, B, C, and D. Like the collaborative pair programming mode, the students

first complete their different individual tasks. One student of category A and one student of

category B then make pairs, and collaborate to modify, adapt, and integrate their individual work

to complete a larger and more complicated task AB. Students of categories C and D also pair to

complete another larger and complicated task CD. On completion of their individual tasks, the

pair partners test each other’s work. If needed, the faster students can also help their partners

after completing their own individual tasks. The members of these pairs are fixed for the entire

semester, and they are advised to progressively evolve and follow their own coding guidelines

through the semester. Finally, in each laboratory session, one AB pair collaborates with a CD

pair to complete the final complex task that requires adaptation, modification, reuse, and

integration of the work done for their individual and/or pair tasks. These partnerships between

pairs are not fixed for the semester. On completion of their combined AB task, the fastest AB

pair partners with the fastest CD pair after they have also completed theirs. Gradually, other

pairs are also grouped into quadruples. The pairs that are not able to complete their pair tasks are

not allowed to carry out the next level of quadruple task. Appendix A22 gives one such

assignment for ‘J2EE,’ based on this model.

Our approach of collaborative pair programming has resulted in benefits like enhancement of

problem solving skills, efficiency, quality, trust, and teamwork skills. Further, it provides

www.manaraa.com

269

experience in reading and understanding foreign code, writing code for others’ understanding,

and integrating one’s code with foreign code. We have also observed that paired laboratory

experience is especially advantageous to inexperienced programmers. Another advantage that

was evident from the students’ responses to the feedback sessions was that paired programmers

were motivated to work collaboratively even outside the class, although this was not demanded

or suggested by us. Consequently, we conclude that this form of collaborative pair programming

positively influences all the dimensions of our competency taxonomy, and also does not suffer

from the disadvantage of developing reluctance developed for solo programming, as was

reported by some practitioners of regular form of pair programming.

Section 9.2.3.2: Cross-level Peer Mentoring in Software Development Education

As per our framework, Table 8.5, mentoring experiences gives the highest levels of active

engagement. It also gives an opportunity to the mentors to review the work of others, giving

experience of third level of collaborative engagement (Table 8.10). Further, it also creates

conditions for integration (Table 8.8) and reflective engagements (Table 8.9) for mentors.

Hence, in our view, mentoring offers a wholesome learning opportunity to the mentors.

During 2005 to 2008, a total of one hundred and sixty-four final year undergraduate students

were engaged in mentoring their junior students’ laboratories as part of their formal assignment

in ‘learning sciences’ or ‘theory of knowledge, learning, and research.’ They also correlated

their real mentoring experience with various learning theories and proposed designs for e-

learning systems for specific modules of host courses. In 2008, through the facilitation of

software engineering course, a total of two hundred and five third-year students were engaged as

project mentors for junior students’ mini projects.

In 2007-08, selected forty students of another fourth year elective course, software engineering

management, were engaged to mentor juniors’ second year combined project in object-oriented

programming and database management systems as part of their own activity: project

management practice. In 2008-09, all two hundred students of this course group-mentored the

third-year five credit minor projects. These final-year students mentored the juniors’ projects to

build tools in diverse areas of software engineering. They submitted weekly mentoring reports.

www.manaraa.com

270

As per the feedback received from the faculty of these courses, nearly 65-70% mentors provided

good help to mentees. The three faculty members of the facilitating course software engineering

management felt that mentoring assignment provided their students a better understanding of the

role of human factors in software engineering, improved their project management, team

management, leadership skills and also helped them to improve their problem understanding and

problem solving abilities.

Based on our earlier positive experiences, very encouraging feedback from industry, and

consultation with faculty members of the Department of CSE and IT, in 2009, more than three-

hundred final year B.Tech (CSE) and B.Tech (IT) students were compulsorily engaged to mentor

approximately fourteen hundred juniors’ laboratories and projects at any of the three lower

years. Mentoring was considered as an integral part of their day-to-day work for mentors’ own

year-long final year capstone project that is assigned more than 10% credit of the entire B.Tech.

program. Nearly forty faculty members, who are also the project supervisors of these final year

projects, agreed to keep 10 marks (out of the supervisor’s quota of 35 marks) earmarked for day-

to-day work of the first semester of the final year.

Multiple Benefits of Cross-level Peer Mentoring

The feedback received from host faculty, facilitating faculty, mentee students, and mentor

students during different stages of this scheme’s implementation has been positive. In 2007, a

survey was conducted among the CSE and IT department’s faculty members. Twenty-six faculty

members responded. More than 40% faculty members felt that this model of cross-level

curricular peer mentoring significantly helped many students. Another 26% felt that it

marginally helped many students, and the remaining were of the view that it was marginally

helpful for few students. Most of them felt that it provided benefits to mentees as well as

mentors.

In their opinion, mentees got benefits like increased level of instructional and doubt clearing

help, increased opportunities for one-to-one out of the class help, improved programming skills,

improvement in problem solving approach, and increased comfort level. The other benefits in

their view included healthier cross-level relationships between cross-level students, and also

www.manaraa.com

271

increased confidence of the mentors. Few faculty members also expressed their concern about

the risk of increased spoon feeding of the juniors and discipline. Except for one, all other faculty

members expressed their desire to continue the scheme.

In 2007, a feedback survey was jointly conducted through facilitating and host faculty among the

second year students of a host course. Two hundred and seventeen students gave an average

rating of 3.3 to more than forty final-year mentors based on the extent of help provided by them

on a scale of 0 to 4. While the juniors felt the benefit of more easily accessible and friendly

guidance, their mentors also reported several learning outcomes from this engagement:

increased pride, and hence, enhanced motivation for more challenging work in their final year

project, insights for leadership and project management issues, exposure to people related

aspects in software engineering, handling quality and late delivery, and enhanced interpersonal

skills.

As the seniors guide the juniors, and also help them in debugging their work, it gives them the

practice of reading and comprehending foreign code. It gives the opportunity to refresh their

basics, and also enhances their knowledge, by asking more questions related to ‘how,’ ‘why,’

and ‘why not.’ It helps to visualize the same concepts from another perspective. This deepens

and consolidates their learning, and helps appreciate the interrelationship of advanced level

courses with junior level courses. Mentors have reported several other benefits for themselves:

experiencing joy and satisfaction, enhanced confidence, improved understanding of self and

others, appreciation of diversity, development of patience, empathy, multi-perspective and out of

box thinking, improvement of analytical and debugging skills, as well as enhancement of

communication, collaboration, leadership and decision making skills. In the second semesters of

2007-08 and 2008-09, when the mentoring facilitating courses were not operational, many

students of the final year, and also the third year, volunteered to mentor the juniors’ laboratories

without any credit.

Mentors provide support in various ways. The mentors of “Introduction to Computer

Programming” have reported to help their mentees in removal of syntactical errors, problem

understanding, programming logic development, mapping it to programming language

www.manaraa.com

272

constructs, debugging, providing study resources, helping, project formulation, etc. Some of

them have attempted to work at a deeper level by trying to help their mentees to develop a better

approach towards programming problems. More than 70% of these mentors have claim that in

order to mentor, they have revised the old content of the host subject, and also learnt the new

content that has been added for the juniors through self study. For example, nearly all mentors

of the introduction to programming course revised their C language skills, and also learnt Python

that has been recently introduced in this course. Every week, before meeting the mentees in the

scheduled laboratory time, they prepare themselves well with mentee’s specific programming

assignments. More than 70% responding mentors claimed to provide regular support to few of

their mentees even outside the scheduled contact time. Some motivated mentors have taken some

special initiatives like creating online communities of their mentees, regularly holding discussion

with their mentees after the scheduled hours. Mentors are also discussing their mentee’s

problems with other mentors. Some of their comments regarding their own learning gains

through mentoring of juniors are given in Appendix A24.

Some of these students have felt that mentoring does well to productively engage their mind

better than many other conventional education experiences like lectures, tutorials, and even

written examinations. In their view, mentoring is specifically effective for engaging their mind

in the following types of thinking:

Thinking required paying attention to minute details.

1. Thinking required learning application of some theory, concept, model, tool, procedure, or

method.

2. Thinking required critiquing something, and also designing the criteria for the same.

3. Reflection upon personal and others’ experience/work/ideas to evaluate/improve it or to

identify some pattern/model.

Reflections of Former Cross-level Mentors (Alumni)

To understand the learning gains of mentoring experience, the alumni of Jaypee Institute of

Information Technology has been approached to give their feedback on their mentoring

experiences of juniors’ laboratories and projects. This survey conducted by us 2009, is discussed

in Appendix A22. The results of their feedback show that, in terms of its effect on all

www.manaraa.com

273

competencies in our taxonomy, an overwhelming majority of responding alumni members who

had got involved in mentoring during their undergraduate program perceived mentoring to be

more/most effective as compared to other academic experiences. Many of them found that in

comparison all other academic experiences, it was the most effective experience in terms of its

effect on development of several competencies. The respondents felt its most significant effect

on development of competencies like: accountability and responsibility, communication skills,

and ability to accommodate self to others. Its positive effect on several other competencies is

also significantly higher than several other academic experiences. These competencies include:

curiosity with humility, attention to details, critical and reflective thinking, decision making

skills, problem solving, creativity and innovation, and analytical/design/debugging skills. More

than half of these respondents also mentioned that they are still in touch with their own erstwhile

mentors.

Reflections of Final year Cross-level Mentors

In another survey, conducted in 2009, among the more than three hundred final year mentors,

an overwhelming majority of nearly 95% respondents have felt that mentoring juniors is

resulting in their own multi-dimensional learning of various kinds that will be useful for their

future career. Only 15% mentors did not find their mentoring experience to be useful with

respect to their final year project. Around 70% of them considered mentoring experiences to be

extremely, mostly, or many times useful in terms of its direct or indirect contribution of

knowledge, skill, mindset, thinking, habits, problem solving methodology, etc., for their final

year project. The mentors of second and third year level host courses considered it to be directly

useful for their final year project. They have reported learning benefits like revision of the

subject, sharpening of skills, and improvement of project planning and people related skills like

understanding of multiple perspectives, listening skills, group work, leadership, etc. They also

feel that it has increased their patience, empathy, sense of responsibility, etc. Some felt that this

experience will help them in competitive examinations, placement interviews, or getting teaching

assistantship during higher studies. Interestingly, some of them are very excited to discover their

hidden teaching talent and interest.

www.manaraa.com

274

Why Does Cross-level Mentoring Benefit the Mentors?

As per the cognitive flexibility theory [206] revisiting a subject with different issue questions

makes the learnt matter more easily transferrable to unfamiliar problem situations. Mentoring

gives senior students an opportunity to revisit an earlier course from a different objective, higher

level of maturity, and richer background of various other related courses. Mentoring juniors for

their laboratories and projects gives a wholesome experience to the mentors. It engages them in

rehearsal as well as elaboration of the host subject’s concepts, technical skills, and applications.

The act of explaining the subject to juniors requires the mentors to create novel examples,

analogies, and expressions. In additional to advising their mentees on doing their assigned

problems, many motivated mentors often also design additional problems for them. The act of

guiding them in project formulation, scoping, and design helps them to validate their own project

experience in various courses. Mentors also often help the juniors in debugging, and some time

marginally even in implementation. Many of them have felt that in terms of SOLO taxonomy,

earlier they had usually approached the subject from a quantitative perspective with limited focus

on inter-linkages between different concepts. The mentoring experience facilitated them to

review the same subject from a qualitative perspective at relational level focusing on integrating

varied concepts.

Mentoring very frequently creates cognitive dissonances [327] for the mentors. In the process of

resolving these dissonances, mentors get engaged in reflection about the subject matter and also

about their own thinking habits, attitudes, beliefs, and even values. This reflection created

opportunities for deeper learning and transformation. Many mentors have reported that

mentoring became their turning point. Mentors have reported several other benefits for

themselves: experience of joy and satisfaction, enhanced confidence, improved understanding of

self and others, appreciation of diversity, development of patience, empathy, multi-perspective

and out of box thinking, improvement of analytical and debugging skills, as well as

enhancement of communication, collaboration, and also leadership and decision making skills.

Some faculty members have observed that sometimes even those students, who had not

performed well in their course as regular students, in the later semester, take their mentoring task

in the same course very seriously and do an excellent job.

www.manaraa.com

275

Hence, we conclude that cross-level curricular peer mentoring has multi-dimensional effect on

mentees as well as mentors. Instead of viewing it as a strategy to partially overcome faculty

shortage for junior level courses, it should be viewed as a necessary educational experience for

seniors that help them in enhancing several of their own competencies.

Section 9.3: Reflective Workshop on Pedagogy for Engineering Faculty
The author has also conducted some workshops for engineering faculty on effective teaching

process. The experiences of one such workshop, ‘effective lecture,’ are briefly discussed here. It

was conducted in 2004, for the faculty members of three engineering institutes. The session was

attended by faculty members of varied experience, and diverse departments of science,

engineering, and humanities. At the beginning the workshop, the faculty members were asked to

fill up a form to rate the importance (most important/important/not important) of 16 attributes of

a lecture. After this few anecdotes collected earlier were shared with them. Then, they were

requested to recall and briefly write their own anecdotes about the two most effective formal

lecture classes attended by them a student. Then they were also required to recall their own most

effective lecture classes as faculty members. They were required to mutually share their

anecdotes within pairs. Subsequently, they were required to publically share some of these

anecdotes. Faculty members showed a great enthusiasm to share their anecdotes. Finally, they

were required to re-rate the same sixteen attributes. Fifty-four faculty members coming from

different institutes, departments, qualification level and experience level exercised their option to

give their responses to the author. Table 9.3 summarizes these responses.

www.manaraa.com

276

Table 9.3: Comparison of pre- and post-workshop consolidated ratings by faculty

Lecture Format attribute Fraction of respondents
who rated the attribute

as most important at the
beginning of the

workshop
(A)

Fraction of respondents
who rated the attribute as
most important towards
the end of the workshop

(B)

a. careful listening 20.37% 15.09%
b. explain textbook 1.85% 3.77%
c. seek on-the-spot clarifications 42.59% 60.38%
d. seek clarifications 18.52% 18.87%
e. problem solving 38.89% 60.38%
f. creative thinking 66.67% 83.02%
g. in-class-group-work 22.22% 60.38%
h. create conceptual designs 31.48% 69.81%
i. analyze presented information 64.81% 67.92%
j. communicate your creations to neighbor students 14.81% 30.19%
k. communicate your creations to the entire class 29.63% 41.51%
l. critique 12.96% 24.53%
m. evaluate 33.33% 39.62%
n. discover 57.41% 66.04%
o. real-life example 72.22% 73.58%
p. contemporary issues 31.48% 41.51%

The difference in the two ratings, collected at the beginning and end of this 90 minute session,

are very significant. While at the beginning of the session, only 22% respondents considered in-

class-group-work as the most important attribute of lectures, 60% respondents rated this attribute

as most important towards the end of workshop. Similarly, the fraction of the respondents who

rated in-class conceptual design as one of the most important attributes also increased from 31%

to 70%. Significant enhancement in favor of other attributes of problem solving, creative

thinking, on-the-spot seeking the clarifications, communicate with the neighbor, communicate to

entire class, critique, discover, and contemporary issues can also be seen. No theories of

education, pedagogy, or communication were discussed in this very short duration workshop of

90 minutes. With the help of this reflective workshop, a significant change in faculty’s thinking

was measured. This experiment shows that properly designed reflective engagements can be

highly effective for changing the attitude, beliefs, and/or values.

www.manaraa.com

277

Section 9.4: Chapter Summary
In this chapter, we have discussed several instructional interventions tried by us. All these

interventions were administered in a chosen set of existing computing courses. Some new

courses have also been developed in the process. Inquiry teaching has been tried out in some

core courses. It was found that many students are not able to change their earlier learning habits,

and hence, could not experience the advantages of deeper learning using this technique. Hence,

in order to develop inquiry learning habit, puzzle solving has been integrated as the first

component of the introductory programming course. Initial results are very encouraging. Future

research is required for its impact analysis, and also to investigate the applicability of inquiry

teaching in the context of different computing courses. Both forms of project-inclusive teaching

have been adapted in many computing courses. More systematic studies are required to validate

the effectiveness of the model in the context of specific computing courses.

A new graphic notation for modeling the software problems has been developed and infused in

some courses. In order to develop estimation skills, the process data as adapted from PSP has

been infused in many laboratory courses. In order to infuse debugging experience, taxonomy of

software bugs has been prepared with an objective of designing debugging related assignments

in various computing courses. In collaboration with various faculty members, we continue to

strengthen the infusion of eight elements: web technology, multimedia technology, mobile

technology, security aspects, systems design aspects, estimation aspects, open source, and

debugging in various introductory core computing courses. This is bringing deeper integrated

learning, higher levels of enthusiasm, and challenge in the courses.

Further, some new courses have been designed to strengthen the integrative thinking. Some of

these courses make an attempt to integrate several computing areas, while some other make an

attempt to integrate computing content with human sciences. A new form of collaborative

learning have been proposed and tried out. A novel approach of collaborative pair and quadruple

programming has been proposed. A novel form of collaborative learning, cross-level peer

mentoring, has been evolved, tested, and scaled up. The results of sample tests were found to

very encouraging.

www.manaraa.com

278

We discussed our experience in conducting reflective workshops on pedagogy for engineering

faculty. A significant shift in faculty’s beliefs about the active and collaborative learning was

noticed. More work needs to done in designing teachers’ training programs on pedagogy. We

intend to use our framework to design many such workshops to motivate the teachers to use

aspects of our framework in their teaching.

We also discussed the impact of many of these interventions in terms of feedback from students

and alumni, and our experience in conducting a faculty development program. All these

interventions are manifestations of some aspect(s) of the framework proposed by us in previous

chapter. It may be noted that most of these instructional interventions were developed, refined,

and administered during the course of this study before the development of the final framework

proposed in the previous chapter. Our experiences with all these interventions have helped a

great deal in formulating the thought process for development of the framework.

www.manaraa.com

279

CHAPTER 10: SUMMARY AND FUTURE SCOPE OF WORK

Summary

In this study, we have proposed a three-tier taxonomy of twelve competencies for software

development education. It includes five basic competencies, three ‘competency driver-habits of

mind,’ and four ‘competency conditioning attitudes and perspectives.’ The five basic

competencies are: (i) technical competence, (ii) communication competence, (iii) domain

competence, (iv) complex problem solving competence, and (v) computational thinking

competence. The three ‘competency driver-habits of mind’ are: (i) attention to details, (ii) critical

and reflective thinking, and (iii) creativity and innovation. The ‘competency conditioning

attitudes and perspectives’ include: (i) intrinsic motivation to create/improve artifacts, (ii)

curiosity, (iii) decision making perspective, and (iv) systems-level perspective.

We have reviewed the educational research literature to examine its applicability for developing

these competencies through appropriate interventions for instructional reform. We have done

many empirical (qualitative and quantitative) studies among students, faculty, and professionals,

to find out the preferred approaches of learning and effective pedagogical techniques. Our

empirical studies suggest that didactic approaches of teaching are ineffective. Students

experience much deeper learning in active, integrative, reflective, and collaborative constructive

environment.

Hence, we have proposed a comprehensive unified framework of pedagogic engagements. Our

proposed framework of pedagogic engagements in software development education is grounded

in (a) core activities of software development, and (b) distinguishing characteristics of software

development profession. It includes - (i) three-tier taxonomy of twelve core competencies, (ii)

five-dimensional ladder of professional and human development, (iii) three-dimensional

perspective of the knowledge domain of software development, (iv) two core principles

(cognitive dissonance and cognitive flexibility) for facilitating deep learning, and (v) a four-

dimensional taxonomy of pedagogic engagements (active, integrative, reflective, and

collaborative) over (iii) for developing (i) and (ii).

www.manaraa.com

280

We have also discussed some instructional interventions developed by us, manifesting some

aspects of our framework. These interventions were administered in a chosen set of existing

computing courses. Some new courses have also been developed in the process. The

development of the framework of pedagogic engagement, and these interventions for

instructional reform of software development education, has been an intertwined and highly

spiral process. Large classes offer a huge challenge. There is a need to explore the possibility of

a complete revamp of the software development education and curriculum through our

framework. While some interventions have been successfully tested with large classes, others

were not as successful for large numbers. For example, the use of inquiry teaching in lecture

classes offers huge benefits to learning oriented students, it has not been found to be as attractive

to exam oriented students.

Future Scope of Work

We have discussed our experience in conducting reflective workshops on pedagogy for

engineering faculty. More work needs to done in designing teachers’ training programs on

pedagogy. We intend to use our framework to design many such workshops to motivate the

teachers to use aspects of our framework in their teaching [402].

We hope that our proposed framework of pedagogic engagement in software development

education will help the community of software development educators and researchers to create

a variety of interventions that will help in extending the ‘Software Engineering Body of

Knowledge’ (SWEBOK) to ‘Software Development Education Body of Knowledge’

(SDEBOK).

The curriculum, syllabus, and textbooks often ignore many professional as well as pedagogical

aspects. Our proposed framework of pedagogic engagements of software development education,

offers the potential to redesign the instructional material for all computing courses. Systematic

projects can be initiated in this direction.

www.manaraa.com

281

Reflection has been found to be a highly effective pedagogical engagement. However, its use in

computing courses is not very popular. Future work is required to systematically incorporate this

aspect in student assignments in all computing courses and projects.

Systems-level perspective is one of most important competencies for software developers. The

development of system-level perspective depends upon students’ engagement with a curriculum

and courses that are themselves designed with this perspective. The curriculum as well all

courses need be redesigned as systems, where not only the computing course, but also the other

courses, offered by other departments for computing students, will also be well integrated into a

single whole. Our approach of multi-level infusion offers a way out. This will also help in

increasing domain sensitivity and expertise of computing students.

Project centric evolutionary teaching offers active, integrative, reflective, as well as

collaborative engagements as per our frame work. Future work is required for using this

approach in different computing courses.

A novel approach of collaborative pair and quadruple programming has been proposed. The

results of sample tests were found to very encouraging. Further work is required to examine the

impact, and investigate ways of pervasively integrating it into all computing courses. More

research is required to create different types of collaboration models in the context of different

computing courses and projects.

Multi-level infusion opens a new way of transforming the computing courses. In collaboration

with various faculty members, we continue to strengthen the infusion of eight elements: web

technology, multimedia technology, mobile technology, security aspects, systems design aspects,

estimation aspects, open source, and debugging in various introductory core computing courses.

This is bringing deeper integrated learning, higher levels of enthusiasm, and challenge in the

courses. We have also started working towards designing appropriate models for multi-level

infusion of selected elements of software documentation, software quality, software risks

managements, advanced level programming techniques, and formal methods of software

www.manaraa.com

282

engineering. More work is required to develop detailed instructional material using this

approach.

Cross-level mentoring has been found to highly effective wholesome engagement for senior

students. More work is required to integrate this approach within the educational systems. Many

new ways of forging collaborations between senior and junior level students need to be invented

to create a collaborative community of co-learners.

We also believe that the proposed framework and our research approach are fairly

comprehensive, reusable, and robust. Designers of educational programs for other professions

can also adapt this framework and methodology.

More research is needed in developing new models and exemplars for offering multi-

dimensional engagement to the users of online education and e-learning programs [403-408].

Our framework of pedagogic engagements can be suitably adapted to create a framework of

pedagogic engagements in e-learning and online environments.

www.manaraa.com

283

REFERENCES

[1].The Joint Task Force on Computing Curricula, IEEE Computer Society and ACM, Characteristics of CS

graduates, Computing curricula, 2001, retrieved from
 http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/cc2001.pdf, last accessed on

October 15, 2005.
[2]. Jalote P., The success of the SPI efforts in India, Software Quality Professional, Vol 3, No. 2, March 2001,

retrieved from http://www.cse.iitk.ac.in/users/jalote/papers/IndiaSPI.pdf, last accessed on October 15, 2005.

[3] Task Force on Meeting the Human Resource Challenge for IT and IT enabled Services, Report and
recommendations, Ministry of Communication and Information Technology, Government of India, pp 15, 2003,

[4] The Times of India, Learn to work, Editorial, India, June 23, 2005.

[5] NASSCOM-KPMG, Strengthening of HR for the IT services and ITES sector, p. 38, 2003.

[6] Wilkinson J., Re-engineering competency-based education through the use of a multimedia CD-ROM: A matter
of life or death, Industry and Higher Education, IP Publishing Ltd., Volume 16, Number 4, pp. 261-265,
August 1, 2002, retrieved from

 http://www.ingentaconnect.com/content/ip/ihe/2002/00000016/00000004/art00008, last accessed on October
15, 2005.

[7] Stephen, W. D., National and Global Imperatives in Engineering Education, Australasian Journal of Engineering
Education, Vol. 7, No. 1, , 1996, retrieved from http://elecpress.monash.edu.au/ajee/vol7no1/director.htm, last
accessed on Jan 5, 2006.

[8] Bullen F., Waters D., Bullen M. and de la Barra B. L., Incorporating and developing graduate attributes via
program design, 15th Annual AAEE Conference, pp 29-39, 2004.

[9] Felder R. M., Does engineering education have anything to do with either one: Toward a systems approach to
training engineers. R.J. Reynolds Industries Award Distinguished Lecture Series, North Carolina State
University, 1982, retrieved from http://www.ncsu.edu/felder-public/Papers/RJR%20Monograph.pdf, pp 6, last
accessed on October 16, 2005.

[10] Brown A. and Rudolph H., Educating engineers for the 21st century, Proceedings of 15th Annual AAEE
Conference, pp 106-113, 2004.

[11] Sanjay Goel, What is high about higher education: Examining engineering education through Bloom’s
taxonomy, The National Teaching & Learning Forum, Vol. 13, pp 1-5, Number 4, 2004.

[12] Sanjay Goel and Nalin Sharda, What do engineers want? Examining engineering education through Bloom’s
taxonomy, Proceedings of 15th Annual AAEE Conference, pp173-185, 2004.

[13] R. M. Felder & R. Brent, The intellectual development of science and engineering students Part 1: Models and
challenges, Journal of Engineering Education, USA, 93 (4), pp 269-277, 2004.

[14] Rapaport W. J., William Perry's scheme of intellectual and ethical development, 2004, retrieved from
http://www.cse.buffalo.edu/~rapaport/perry.positions.HTML, last accessed on October 27, 2005.

[15] National Academy of Engineers, Educating the engineer of 2020: Adapting engineering education to the new
century The National Academies Press, 2005, retrieved from http://books.nap.edu/catalog/11338.HTML, last
accessed on October 18, 2005.

[16] Paulsen M.B., Peseau B.A. A practical guide to Zero Based Curriculum Review, Innovative Higher Education,
Vol. 16, No. 3, Human Science Press, Inc., pp 211- 221.

[17] Woods D.R., Felder R.M., Rugarcia A. & Stice J.E., The Future of engineering education. III. Developing
Critical Skills, Chem. Engr. Education, 34(2), pp 108-117, , 2000retrieved from http://www.ncsu.edu/felder-
public/Papers/Quartet3.pdf, last accessed on October 16, 2005.

www.manaraa.com

284

[18] The Steering Committee of the National Engineering Education Research Colloquies, “The national
engineering education research colloquies,” Journal of Engineering Education, Vol 95, No 4, 257-261, Oct.
2006.

[19] Michael C.Mulder, A Recommended Curriculum in Computer Science and Engineering, Computer. IEEE
Computer Society, pp 72-75, December 1977.

[20] O. E. Dunn, Information technology a management problem, DAC '66: Proceedings of the SHARE design
automation project, ACM, January 1966.

[21] ACM Curriculum Committee on Computer Science, An Undergraduate Program in Computer Science –
Preliminary Recommendations, Communications of the ACM, pp 543-552, September 1965.

[22] ACM Curriculum Committee on Computer Science, Curriculum 68, Communications of the ACM, pp 151-197,
March 1968.

[23] COSINE Committee of the Commission on Engineering Education, Computer science in electrical engineering,
IEEE Spectrum, pp 96-103, March 1968.

[24] Michael C.Mulder Model Curricula for Four-Year Computer Science and Engineering Programs: Bridging the
Tar Pit, Computer, IEEE Computer Society, pp 28-33, December 1975.

[25] M.E. Sloan, Evaluation of the Model Curriculum in Computer Science and Engineering, ComputerIEEE
Computer society, pp 114-120, December 1977,.

[26] Engel, Gerald L, A Comparison of the ACM-C3S and the IEEE/CSE Model Curriculum Subcommittee
Recommendations, Computer, IEEE Computer society, pp 121-123, December 1977.

[27] Daniel Teichroew, Education related to the use of computers in organizations, Communications of the ACM,
pp 573-588, September 1971.

[28] R.L. Ashenhurst, A Report of the ACM Curriculum Committee on Computer Education for Management,
Communications of the ACM, pp 363-398, May 1972.

[29] F.W. McFarlan and R.L. Nolan, M. Shaw (Ed), Curriculum Recommendations for Graduate Professional
Programs in Information Systems: Recommended Addendum on Information Systems Administration,
Communications of the ACM, pp 439-441, July 1973.

[30] K.A.Duncan, R.H. Austing, S. Katz, R.E. Pengov, R.E. Pogue, and A.I. Wasserman, Health Computing:
Curriculum for an emerging profession, Proceedings of the 1978 annual conference, pp 277-288, December
1978.

[31] Kenneth I. Magel, Richard H. Austing, Alfs Berztiss, Gerald L. Engel, John W. Hamblen, A. A.J. Hoffmann,
Robert Mathis, Recommendations for master's level programs in computer science: A Report of the ACM
Curriculum Committee on Computer Science, Communications of the ACM, pp 115-123, March 1981.

[32] Jay F. Nunamaker, Educational Programs in Information Systems: a report of the ACM Curriculum Committee
on Information Systms, Communications of the ACM, pp 124-133 March 1981.

[33] Jay F. Nunamaker, J. Daniel Couger, and Gordon B. Davis, Information systems Curriculum Recommendations
for the 80s: Undergraduate and Graduate Programs: a report of the ACM Curriculum Committee on Information
Systms, Communications of the ACM, pp 781-805. , November 1982

[34] Normal E. Gibbs and Allen B. Tucker, A Model Curriculum for a Liberal Arts Degree in Computer Science,
Communications of the ACM, pp 202-210, March 1986.

 [35] Henry M. Walker and G. Michael Schneider, A Revised Model Curriculum for a Liberal Arts Degree in
Computer Science, Communications of the ACM, pp 85-95, December 1996.

 [36] Liberal Arts Computer Science Consortium, A 2007 Model Curriculum for a Liberal Arts Degree in
Computer Science, Journal on Educational Resources in Computing (JERIC), ACM, pp 1-34, June 2007.

www.manaraa.com

285

[37] Association for Computing Machinery (ACM), Association for Information Systems (AIS), and The Computer
Society (IEEE-CS), Computing Curricula 2005, retrieved from

 http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf, last accessed on February 28, 2010.

[38] Anthony Ralston and Mary Shaw, Curriculum ’78 – Is Computer Science Really that Unmathematical?,
Communications of the ACM, pp 67-70, February 1980.

[39] Mary Shaw (ed.), The Carnegie-Mellon Curriculum for Undergraduate Computer Science, Springer-Verlag,
New York, 1985.

[40] Alfs Berztiss, A Mathematically Focused Curriculum for Computer Science, Communications of the ACM, pp
356-265, May 1987.

 [41] Anthony Ralston, The First Course in Computer Science Needs a Mathematical Corequisite, Communications
of the ACM, pp 1002-1005, October 1984.

[42] Allen B. Tucker, Charles F. Kelemen and Kim B. Bruce, Our Curriculum Has Become Math-Phobic!, ACM
SIGCSE Bulletin, pp 243-247, March 2001.

[43] Sukhen Dey and Lawrence R. Mand, Current Trends in Computer Science Curriculum: A Survey of Four-Year
Program, Technical Symposium on Computer Science Education, Proceedings of the twenty-third SIGCSE
technical symposium on Computer science education, Kansas City, Missouri, United States, ACM, pp 9-14,
1992.

 [44] All India Council for Technical Education, Model Curriculum for Undergraduate Programme B.E./ B. Tech. in
COMPUTER SCIENCE & ENGINEERING, 2000, retrieved from

 http://www.aicte.ernet.in/download/OnlineBooks/compsciandEngg.pdf.

[45] All India Council for Technical Education, Model Curriculum for Undergraduate Programme B.E./ B. Tech. in
INFORMATION TECHNOLOGY, 2000, retrieved from

 http://www.aicte.ernet.in/download/OnlineBooks/it.pdf.

[46] Timothy C. Lethbridge, The relevance of software education: A survey and some recommendations, Annals of
Software Engineering, Springer Netherlands, pp 91-110, March, 1998.

[47] Timothy C. Lethbridge, A survey of the relevance of computer science and software engineering education, .
Proceedings of 11th Conference on Software Engineering Education, IEEE, pp 56-66, 1998.

[48] Timothy C. Lethbridge, What knowledge is important to a software professional?, Computer, IEEE, pp 44-50,
2000.

 [49] The Joint Task Force on Computing Curricula, Computing Curricula 2001, IEEE Computer Society and ACM,
2001, retrieved from http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/cc2001.pdf,
last accessed on October 15, 2005.

[50] Interim Review Task Force, Computer Science Curriculum 2008: An Interim Revision of CS 2001 Report,
December 2008, Association for Computing Machinery and IEEE Computer Society.

 [51] The Joint Task Force on Computing Curricula, Computing Curricula 2005: The Overview Report, Association
for Computing Machinery, Association for Information Systems, and IEEE Computer Society, September
2005.

 [52] The Joint Task Force on Computing Curricula, IEEE Computer Society and ACM, Software Engineering
2004: Curriculum guidelines for undergraduate degree programs in software engineering, 2004, retrieved from
http://sites.computer.org/ccse/SE2004Volume.pdf, last accessed on October 15, 2005.

[53] Karl M. Fant, Computer Science Reconsidered: The invocation models of process expression, John Wiley &
Sons, USA, pp 1-10, 2007.

[54] Richard H. Austing, Bruce H. Bernes, Della T. Bonnette, Gerald L. Engel, Gordon Stokes, Curriculum’78:
Recommendations for the Undergraduate Program in Computer Science, Communications of the ACMpp 147-
166, March 1979,.

[55] UNESCO-IFIP, A Model Curriculum in Computer Science, UNESCO, 1994.

www.manaraa.com

286

[56] Richard H. Austing, Bruce H. Bernes, and Gerald L. Engel, A Survey of the Literature in Computer Science
Education Since Curriculum’68, Communications of the ACM, pp 13-21, January, 1977.

[57] Michael Goldweber, John Impagliazzo, Iouri A. Bogoiavlenski, A. G. Clear, Gordon Davies, Hans Flack, J.
Paul Myers, Richard Rasala, Historical perspectives on the computing curriculum (report of the ITiCSE '97
working group on historical perspectives in computing education, Annual Joint Conference Integrating
Technology into Computer Science Education, The supplemental proceedings of the conference on Integrating
technology into computer science education: working group reports and supplemental proceedings, Uppsala,
Sweden, ACM, pp 94-111, 1997.

[58] Mingrui Zhang, Eugene Lundak, Chi-Cheng Lin, Tim Gegg Harrison, Joan Francioni, Interdisciplinary
Application Track in an Undergraduate Computer Science Curriculum, SIGCSE’07, ACM, pp 425-429, March
2007.

[59] Michael C. Mulder and John Dalphin, Computer Science Program Requirements and Accreditation,
Communications of the ACM, pp 330-335, April 1984.

[60] J.T. Cain, Professional Accreditation for the Computing Sciences, Computer, IEEE, pp 91-96, Januray 1986.

[61] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and Paul
R. Young, Computing as a discipline, Communications of the ACM, pp 9-23, January 1989.

[62] A. Joe Turner, A Summary of the ACM/IEEE-CS Joint Curriculum task Force Report: Computing Curricula
1991, Communication of the ACM, pp 69-84, July 1991.

[63] Anthony I. Wasserman and Peter Freeman, Software Engineering Concpets and Computer Science Curricula,
Computer, IEEE, pp 85-91, June 1977.

[64] E.W. Dijkastra, David L. Parnas, W.L. Sherlis, M.H. van Emden, Jacques Cohen, R.W. Hamming, Richard M.
Karp, and Terry Winnograd, Peter J. Denning (ed.), A Debate On Teaching Computing Science,
Communications of the ACM, pp 1397-1414, December 1989.

[65] D.E. Conway, S.C. Dunn, and G.S. Hooper, BCS and IEE accreditation of software engineering courses,
Software Engineering Journal, IEE, pp 245-248, July 1989.

[66] Gary Ford. The SEI Undergraduate Curriculum in Software Engineering, ACM SIGCSE Bulletin, March 1991,
pp 375-385

[66a] Gary Ford, The Progress of Undergraduate Software Engineering Education, ACM SIGCSE Bulletin, pp51-
58, December 1994.

[67] Thomas B. Hilburn, Iraj Hirmanpour, Soheil Khajenoori, Richard Turner, Abir Qasem, A Software Engineering
Body of Knowledge Version 1.0, SEI, CMU, April 1999.

[68] Alain Abran, James W. Moore, Guide to the Software Engineering Body of Knowledge, IEEE, 2004.

[69] Tony Clear, Coupling and Cohesion Among Disciplines: Some Curriculum Paradigms, ACM SIGCSE
Bulletinpp 14-16, December 1997,.

[70] Derek Cheung and Pun-Hon Ng, Science Teachers’ Beliefs about Curriculum Design, Research in Science
Education, , Springer Netherlands, pp 357-375, December 2000.

[71] Greg Scragg, Doug Baldwin, and Hans Koomen, Computer Science Needs an Insight-Based Curriculum, ACM
SIGCSE Bulletin, pp 150-154, March 1994.

 [72] Judith L. Gersting and Frank H. Young, Content + Experience = Curriculum, SIGCSE, ACM, pp 325-329,
March 1997.

[73] Robert N. Carson, Why Science Education Alone is Not Enough, Interchange, Kluwer Academic Publishers,
Netherlands, pp 109-120, April 1997.

[74] Faith Clarke, Han Reichgelt: The importance of explicitly stating educational objectives in computer science
curricula. ACM SIGCSE Bulletin, 47-50, December 2003.

www.manaraa.com

287

[75] Vaidyeswaran Rajaraman, Undergraduate Computer Science and Engineering Curriculum in India, IEEE
Transactions on Education, pp 172-177, February, 1993.

[76] Aning, A. O., Lohani, V.K., Griffin H. Kampe, J.C. M., Aref, H., An Interdisciplinary Graduate Program in
Engineering Education, iCEER, 2005, http://www.iaalab.ncku.edu.tw/iceer2005/Form/PaperFile/08-0016.pdf.

[77] Holmboe, C. et al , Research Agenda for Computer Science Education, In Proc. PPIG 13, G. Kadoda (Ed).
Bournemouth UK, 2001, pp 207-223, , October, 2006, retrieved from http://www.ppig.org/papers/13th-
holmboe.pdf.

[78] Passow Honor J., What Competencies Should Undergraduate Engineering Programs Emphasize? A Dilemma of
Curricular Design that Practitioners’ Opinions Can Inform, PhD Thesis, University of Michigan, 2008,
retrieved from http://deepblue.lib.umich.edu/bitstream/2027.42/60691/1/hpassow_1.pdf, last accessed on
December 25, 2008.

 [78a] C. Bodmer, A. Leu, L. Mira & H. Rütter, SPINE: Successful practices in international engineering education,
pp 92-102, 2002, retrieved from http://www.ingch.ch/pdfs/spinereport.pdf, last accessed on October 14, 2005.

[79] Bordogna J., Making Connections: The role of engineers and engineering education, The Bridge, Volume 27,
Number 1 - spring 1997, retrieved from http://www.nae.edu/nae/bridgecom.nsf/weblinks/NAEW-
4NHMPY?OpenDocument, last accessed on October 15, 2005.

[80] Dodridge M., Convergence of engineering higher education - Bologna and Beyond, Proceedings of the Ibero-
American Summit on Engineering Education, 2003, retrieved from
http://www.univap.br/iasee/anais/trabalhos/Dodridge-
Convergence%20of%20Engineering%20Higher%20Education1.pdf, last accessed on October 14, 2005.

[81] Mason G., Engineering skills formation in Britain: Cyclical and structural issues, 1999, pp 9, retrieved from
http://www.etechb.co.uk/reslib/Engineering%20Skills%20Formation%20in%20Britain%20-
%20Cyclicale%20and%20Structural%20Issues.doc, last accessed on October 15, 2005.

[82] Hoscette J., Leading causes of failures in engineers - Career development, 2002,
http://www.hi.is/~joner/eaps/es_1023f.htm, last accessed on October 15, 2005.

[83] Erlendsson J., Engineering graduates: Desirable characteristics, 2001, retrieved from
http://www.hi.is/~joner/eaps/ds_chare.htm, last accessed on October 15, 2005.

[84] Sanjay Goel, Investigations on required core competencies for engineering graduates with reference to Indian
IT industry, European Journal of Engineering Education, Taylor & Francis, UK, pp 607-617, October, 2006.

 [85] Bailey, J. L. and Stefaniak, G., Preparing the information technology workforce for the new millennium, ACM
SIGCPR Computer Personnel, Volume 20 , Issue 4, pp 4-15, 2002.

 [86] Domelen, D. V., Problem-Solving Strategies: Mapping and Prescriptive Methods, Thesis, 1996, retrieved from
http://www.physics.ohio-state.edu/~dvandom/Edu/thesis.HTML, last accessed on Jan 4, 2005.

[87] Gary, Krahn, “Inter-disciplinary Culture - a Result not a Goal”, Proceedings of the Inter-disciplinary Workshop
on Core Mathematics: Considering Change in the First Two Years of Undergraduate Mathematics, West Point,
NY, 1999, Retrieved from http://www.dean.usma.edu/math/activities/ilap/workshops/1999/files/krahn.pdf.

[88] Bruner, J., The Culture of Education, Harvard University Press, Cambridge, MA, 1996.

[89] NASSCOM-KPMG, Task Force on Meeting the Human Resource Challenge for IT and IT enabled Services,
2003.

[90] ABET (Accreditation Board for Engineering and Technology), Criteria for accrediting engineering programs:
Effective for evaluations during the 2005–2006 accreditation cycle, pp 2 & 3, 2004, retrieved from
http://www.abet.org/Linked Documents-UPDATE/Criteria and PP/05-06-EAC Criteria.pdf.

[91] ABET (Accreditation Board for Engineering and Technology), Criteria for Accrediting Engineering
Technology Programs: Effective for Evaluations during the 2005-2006 Accreditation Cycle, pp 5-7, 2004,
retrieved from http://www.abet.org/Linked Documents-UPDATE/Criteria and PP/05-06-TAC Criteria.pdf, last
accessed on October 31, 2005.

www.manaraa.com

288

[92] ABET (Accreditation Board for Engineering and Technology), Criteria for Accrediting Computing Programs:
Effective for Evaluations during the 2005-2006 Accreditation Cycle, pp 20, 2004, retrieved from
http://www.abet.org/Linked Documents-UPDATE/Criteria and PP/05-06-CAC Criteria.pdf, last accessed on
October 31, 2005.

[93] Engineering Council UK , UK Standard for Professional Engineering Competence, Chartered Engineer and
Incorporated Engineer Standard, pp 5-11, 2003, retrieved from
http://www.engc.org.uk/publications/pdf/ukspec_CE_IE_Standard.pdf, last accessed on Jan 5, 2006.

[94] Institution of Engineers, Singapore (IES), Engineering Accreditation Board: Accreditation Manual, pp 13-
142004, retrieved from http://www.ies.org.sg/eab/accr_man.pdf, last accessed on Jan 5, 2006.

[95] Engineers Australia Accreditation Board, Engineers Australia policy on accreditation of professional
engineering programs, pp 3-5, 2005, retrieved from
http://www.ieaust.org.au/membership/res/downloads/P020%20Engineers%20Australia%20Policy%20on%20A
ccreditation%20of%20Professional%20Engineering%20Programs.pdf, last accessed on October 14, 2005.

[96] JABEE (Japan Accreditation Board for Engineering Education), Criteria for accrediting Japanese engineering,
pp 1-15, , 2004, retrieved from http://www.jabee.org/english/OpenHomePage/e_criteria2004-2005(2).pdf, last
accessed on October 15, 2005.

[97] Bell, T. E., Proven skills: the new yardstick for schools, IEEE Spectrum, September 2000, pp 63-67

[97a] Felder, R. M. and Brent R., Designing and Teaching Courses to Satisfy the ABET Engineering Criteria,
Journal of Engineering Education, pp 7-25, January, 2003.

[98] Turner C. D. & Li W. Martinez A., Developing sustainable engineering across a college of engineering,
Proceedings of American Society for Engineering Education Annual Conference & Exposition, 2001, retrieved
from www.utep.edu/green/papers/asee2001.pdf, last accessed on October 11, 2005.

[99] Bigio D. & Schmidt J., A workshop of faculty development based on the underlying pedagogical issues of
ABET EC 2000, 29th ASEE/IEEE Frontiers in Education Conference, pp 12a1:5-9, , 1999, retrieved from
http://fie.engrng.pitt.edu/fie99/papers/1039.pdf, last accessed on October 14, 2005.

[100] Campbell D., Bunker J., Hoffman K. & Iyer R M., Processes in distilling course capability profiles, 15th
Annual AAEE Conference, pp 57-67, , 2004.

[100a] Senini S. & Nouwens F., A design framework for developing technical competence professional skills and
identity, 15th Annual AAEE Conference, 15th Annual AAEE Conference, 2004, pp 47-56, , September 2004.

[101] The Times of India, 9 Indians adorn MIT's top 100 innovators list, November 8, 2004, retrieved from
http://timesofindia.indiatimes.com/articleshow/msid-916533,curpg-2,fright-0,right-0.cms, last accessed on
October 11, 2005.

[102] Arya S. P., email posting, JIIT-placement e-group, 2005, retrieved from
http://groups.yahoo.com/group/placement-jiit/message/957, last accessed on October 15, 2005.

[103] ValueNotes, R&D Outsourcing – The India edge: Key insights and success factors, Aug 2004, retrieved from
http://www.researchandmarkets.com/reportinfo.asp?report_id=224141&t=e&cat_id=2, last accessed on October
15, 2005). This paradox needs some deeper analysis.

[104] National Board of Accreditation (NBA), AICTE, Accreditation parameter: Criteria and Weightages, pp 6-7,
2000, retrieved from http://www.nba-aicte.ernet.in/nba-aicte/accre/acc_8.pdf, last accessed on Jan 6, 2006.

[105] The Engineering Professors Council, The EPC engineering graduate output standards, EPC Occasional Paper,
pp 7-8, Number 10, 2000.

[106] National Academy of Engineers, The engineer of 2020: Visions of engineering in the new century, The
National Academies Press, pp 53-572005, retrieved from http://books.nap.edu/catalog/10999.HTML, last
accessed on October 19, 2005.

[107] Rugarcia A., Felder R.M.,Woods D.R. & Stice J.E, The future of engineering education-I: A vision for a new
century. Chem. Engr. Education, 34(1), pp 16-25, , 2000, retrieved from http://www.ncsu.edu/felder-
public/Papers/Quartet1.pdf, last accessed on October 16, 2005.

www.manaraa.com

289

[108] Cabrera A. F., Colbeck C. L., Terenzini P. T. Developing performance indicators for assessing classroom
teaching practices and student learning: The case of Engineering, Research in Higher Education, Vol. 42, No. 3,
Springer, pp 327-352, 2001.

[110] Stark, J. S., Lowther, M. A., & Hagerty, B. M. K., Faculty perceptions of professional preparation
environments: Testing a conceptual framework, The Journal of Higher Education, 58(5), pp 530-561, 1987.

[111] The Joint Task Force on Computing Curricula, IEEE Computer Society and ACM, Curriculum guidelines for
undergraduate degree programs in computer engineering, final report, pp 7, 2004, retrieved from
http://www.acm.org/education/CE-Final Report.pdf, last accessed on October 15, 2005.

[112] The Joint Task Force on Computing Curricula, IEEE Computer Society and ACM, Characteristics of IT
graduates, computing curricula: Information Technology Volume, Draft, pp 38-40, April 2005, retrieved from
http://www.acm.org/education/IT_2005.pdf, last accessed on October 15, 2005.

[113] Association for Computing Machinery (ACM), Association for Information Systems (AIS), and Association
of Information Technology Professionals (AITP), Model Curriculum and Guidelines for Undergraduate Degree
Programs in Information Systems, , pp 14, 2004retrieved from http://www.acm.org/education/is2002.pdf, last
accessed on Jan 6, 2006.

[114] Task Force on Meeting the Human Resource Challenge for IT and IT enabled Services, Report and
Recommendations, Ministry of Communication and Information Technology, Government of India, 2003.

[115] Patrao M., Testing tenacity of IT students, DH Education, April 28, 2005, retrieved from
http://www.deccanherald.com/deccanherald/apr282005/dheducation2022552005426.asp, last accessed on
October 15, 2005.

 [116] Chang I. F., Challenges to engineering education in the 21st century, 1998,
http://www.hi.is/~joner/eaps/wh_enedx.htm, last accessed on October 15, 2005.

[117] Erlendsson J. Systemic engineering education reform, 2005, retrieved from
http://www.hi.is/~joner/eaps/wh_enedx.htm, last accessed on October 29, 2005.

 [118] Kelley R. and Caplan J., How Bell Labs creates star performers. Harvard Business Reviewpp 128-139, July-
August 1993,.

[119] Turley Richard T. and Bieman James M., Competencies of Exceptional and Non-Exceptional Software
Engineers, Journal of Systems and Software, 28(1):19-38, January 1995, Retrieved from
http://www.cs.colostate.edu/~bieman/Pubs/turleyBiemanJSS95.pdf, last accessed on December 29, 2008.

[120] Philip G. Armour, The case for a new Business Model: Is software a product or a medium, Communications
of ACM, USA, August, Vol. 43 No.8, pp 19-22, 2000.

[121] Connor H., Dench S. & Bates P., Skills dialogue: An assessment of skill needs in engineering, Department
for Education and Employment, UK, 2002 retrieved from

 http://66.102.7.104/search?q=cache:IY7X0iPjfXIJ:www.qub.ac.uk/nierc/documents/Rwp60b.pdf+%22skill+def
iciency%22+Engineering+Skills+Formation+in+Britain&hl=en, last accessed on October 15, 2005.

 [122] Extreme Programming Explained, Ken Beck and Cynthia Andres, Addison Wesley, 2004.

[123] James Shore and Shane Warden, The Art of Agile Development O’Reilly Media Inc, Shroff Publishers and
Distributors Pvt. Ltd., pp 354, 2008.

[124] Hazzan, O. and Tomayko, J., Reflection and abstraction processes in the learning of the human aspects of
Software Engineering, IEEE Computer, pp. 39-45, June 2005.

[125] Schön Donald A., Educating the Reflective Practitioner: Toward a new Design for Teaching and Learning in
the Professions, Jossey Bass Publisher. 1987.

 [126] Sodiya A.s., Longe H.O.D., Onashoga S.A., and Awodele O., An improved assessment of personality traits in
Software Engineering, Inter-disciplinary Journal of Information, Knowledge, and Management, Vol 2,
Informing Science Institute, USA, pp 163-177, 2007.

www.manaraa.com

290

[127] Bass Len, Clement Paul, Kazman Rick, and Klein Mark, Models for Evaluating and Improving Architecture
Competence, Technical Report – CMU/SEI-2008-TR-006, Software Engineering Institute, Carnegie Mellon
University, 2008.

[128] John Henry Newman, The Idea of a University Defined and Illustrated, Regnery Publishing, USA, 1999.

 [129] Marrice Kogan and Stephen Hanney, Reforming Higher Education, Jessica Kinglsey Publishers Limited, UK,
2000.

[130] Martha Nussbaum, Education for Citizenship in an era of Global Connection, Journal of Studies in Philosophy
and Education, Springer Netherlands, pp 289-303, July 2002.

[131] The National Leadership Council for Liberal Education & America’s Promise, College Learning for the New
Global Century, American Association of College and University, 2007, retrieved from
http://www.aacu.org/leap/documents/GlobalCentury_final.pdf.

[132] Adela García-Aracil and Rolf Van der Velden, Competencies for young European higher education
graduates: labor market mismatches and their payoffs, Journal of Higher Education, Springer Netherlands, pp
219-239, February 2008.

[133] Bloom Benjamin S. and David R. Krathwohl, Taxonomy of Educational Objectives: The Classification of
Educational Goals, by a committee of college and university examiners. Handbook I: Cognitive Domain, New
York, Longmans, 1956.

[134] Anderson, L., & Krathwohl, D. E., A Taxonomy for learning teaching and assessing: A revision of Bloom's
taxonomy of educational objectives [Abridged]. New York: Addison Wesley Longman, Inc., 2001.

 [135] A.L. Costa, Developing Mind: A resource book for teaching thinking, Association for Supervision &
Curriculum Development; 3rd edition, December 2001.

 [136] Kennedy, M. M., Inexact sciences: Professional education and the development of expertise. Review of
Educational Research, Vol. 14, pp 133-167, 1987.

 [137] Stark, Joan and Malcolm A. Lowther. Exploring Common Ground in Liberal and Professional Education,
Armount, R. A. and B. S. Fuhrmann (eds.) Integrating Liberal Learning and Professional Education. New
Directions for Teaching and Learning, No. 40, Winter. San Francisco: Jossey-Bass, pp 7-20, 1989.

 [138] Marzano R. J., Pickering D. & McTighe J. Introduction, assessing student outcomes: Performance assessment
using the dimensions of learning model, Association for Supervision and Curriculum Development (ASCD),
1993, retrieved from
http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.b71d101a2f7c208cdeb3ffdb62108a0c/?chapter
MgmtId=a740a2948ecaff00VgnVCM1000003d01a8c0RCRD, last accessed on Oct 26, 2005.

[139] Sanjay Goel, Competency Focused Engineering Education with Reference to IT Related Disciplines: Is
Indian System Ready for Transformation? Journal of Information Technology Education, Vol. 5, Informing
Science Institute, USA, pp 27-52, 2006.

[140] Marzano, R. J., Designing a new taxonomy of educational objectives, Thousand Oaks, CA: Corwin Press,
2000.

[141] Kelly Coate, Curriculum, In Tight Malcolm, Ka Ho Mok, Jeroen Huisman, Christopher C. Morphew (Ed.),
The Rutledge International Handbook of Higher Education, Routledge, USA, , pp 77-90, 2009.

[141a] A.H. Maslow, A Theory of Human Motivation, Psychological Review 50(4), pp 370-396, 1943, retrieved
from http://www.salesjobs.ie/artman/uploads/theory_of_human_motivation_001.pdf.

[142] Philip G. Armour, Twenty Percent, Planning to fail on software projects, Communications of the ACM, pp 21-
23, June 2007.

[142a] The Institute of Electrical and Electronics Engineers Inc., IEEE Standard Classification for Software
Anomalies. New York, USA: IEEE Computer Society. 1993.

www.manaraa.com

291

[143] James Miller, Triangulation as a basis got knowledge discovery in software engineering, Journal of Empirical
Software Engineering, Springer, pp 223-228, February 2008.

[144] Whitehead Jim, Collaboration in Software Engineering: A Roadmap, Future of Software Engineering,
(FOSE’07), IEEE Computer Society, pp 214-225, May 2007.

[145] Tiago Maurao Teixeria, Web collaboration for software engineering, MSc. Thesis, Universidade do Porto,
Portugal, 2009.

[146] Whitworth Elizabeth and Biddle Robert, The Social Nature of Agile Teams, Agile 2007, IEEE Computer
Society, pp 26-36, August 2007.

 [147] Sharp Helen and Robinson Hugh, Some Social Factors of Software Engineering: the maverick, community
and technical practices, Proceedings of the 2005 workshop on Human and social factors of software
engineering, International Conference on Software Engineering, ACM, pp 1-6, 2005.

[148] Philip G. Armour , The Five orders of Ignorance: Viewing software development as knowledge acquisition
and ignorance reduction, Communications of ACM, USA, Vol. 43 No.10, pp 19-20, October 2000.

[149] Timothy C. Lethbridge, Susan Elliott Sim and Janice Singer, Studying Software Engineers: Data Collection
Techniques for Software Field Studies, Empirical Software Engineering, Volume 10, Number 3, Springer
Netherlands, pp 311-341, July, 2005.

[150] Per Runeson and Martin Höst, Guidelines for conducting and reporting case study research in software
engineering, Journal of Empirical Software EngineeringSpringer Netherlands, pp 131-164, April 2009,.

[151] Charles P. Snow, The Two Cultures, Cambridge University Press, UK, 1998.

[152] Kolb, David, Experiential learning: Experience as the source of learning and development, Englewood Cliffs,
NJ: Prentice-Hall, 1984.

[153] Robert J. Sternberg, Beyond IQ: a triarchic theory of human intelligence, Cambrdige Univesrity Press, 1985.

[154] Ned Herrmann, The Whole Brain Business Book, McGrawHill, 1996.

 [155] Gardner, Howard. "Frames of Mind: The Theory of Multiple Intelligences." New York, Basic Books, 1983.

[156] Aaron Fried, Karen Zannini, Don Wheeler, Yongjin Lee, and Jose Cortez, Instructional Design Theory
Database Project, Syracuse University, 2005, retrieved from
http://web.cortland.edu/frieda/ID/IDdatabase.HTML.

[157] Metzger, R.C., Debugging by Thinking: A multi-disciplinary approach, Hewlett Packard Development
Company and Elsevier Digital Press, 2004.

[158] Paul T. Ward and Stephen J. Mellor, Structured Development for Real-Time Systems, Prentice Hall
Professional Technical Reference, 1991.

[159] Interim Review Task Force, Computer Science Curriculum 2008: An Interim Revision of CS 2001 Report
Association for Computing Machinery and IEEE Computer Society, December 2008

[159a] Vikas Kumar and Sanjay Goel, Software Bug Taxonomy for Effective Programming, Unpublished, 2009.

[160] Braintrack.com, Application Software Engineer Job Description, http://www.braintrack.com/colleges-by-
career#computing-and-mathematics.

[161] Yang Xiaohu, Xu Bin, He Zhijun, Extreme Programming in global software development, CCECE 2004-
CCGEl2004, IEEE, Niagara Falls, pp 1845-1848, May 2004.

[162] Thomas Chau, Frank Maurer, Grigori Melnik, Knowledge Sharing: Agile Methods vs. Tayloristic Methods.

 [163] Alistair Cockburn, Learning From Agile Software Development – Part One, CROSSTALK - The Journal of
Defense Software Engineering, Software Technology Support Center, Department of Defense, U.S.
Government, pp 10-14, October 2002.

[164] Henrik Munkebo Christiansen, Meeting the Challenge of Communication in Offshore Software Development,
Software Engineering Approaches for Offshore and Outsourced Development, First International Conference,

www.manaraa.com

292

SEAFOOD 2007, Zurich, Switzerland, February 5-6, 2007. Revised Papers, Lecture Notes in Computer
Science, Springer, Berlin, pp-19-26.

[165] Jack D. Becker, Robert G. Insley, Megan L. Endres, Communication skills of technical professionals: a report
for schools of business administration, ACM SIGCPR Computer Personnel , Volume 18, Issue 2, USA, pp 3-
19, April 1997.

[166] Guihua Li, Shawna Long, and Mary Ellen Simpson, Self perceived gains in critical thinking and
communication skills: Are there disciplinary differences, Research in Higher Education, Vol. 40, No. 1,
Springer, pp 43-60, February 1999.

[167] Henry A. Etlinger, A Framework In Which To Teach (Technical) Communication to Computer Science
Majors, ACM SIGCSE, Houston, Texas, USA, pp 122-126, March 1-5, 2006.

[168] Alberto Sillitti, Martina Ceschi, Barbara Russo, Giancarlo Succi, Managing Uncertainty in Requirements: a
Survey in Documentation-driven and Agile Companies, 11th IEEE International Software Metrics Symposium
(METRICS), IEEE, USA, pp 10-17,September 2005.

[169] Shirley Booth, Learning to program: A phenomenographic perspective, University of Gothenburg, Sweden,
1992.

[170] Ruth Neumann, Disciplinarity, In Tight Malcolm, Ka Ho Mok, Jeroen Huisman, Christopher C. Morphew
(Ed.), The Rutledge International Handbook of Higher Education, Routledge, USA, pp 487-500, 2009.

[171] Yonghong Jade Xu, Faculty Turnover: Discipline-Specific Attention is Warranted, Res earsch in High Educ
ation. Springer, Vol. 49, pp 40–61, Feb 2008.

[172] Matthew Kwok, Disciplinary Differences in the Development of Employability Skills of Recent University
Graduates in Manitoba: Some Initial Findings. Higher Education Perspectives, volume 1, issue 1, pp.60-77,
2004.

[173] Biglan, A., The characteristics of subject matter in academic areas, Journal of Applied Psychology, 57, 195–
203, 1973.

[173a] Malaney, G. D., Differentiation in graduate education, Research in Higher Education, 25(1), pp 82–96, 1986.

[174] Michael B. Paulsen and Charles T. Wells, Domain differences in the epistemological beliefs of college
students, Research in Higher Education, Vol. 39, No. 4, Springer, pp 365-394, August 1998.

[175] Kolb Alice Y. and Kolb David A., The Kolb Learning Style - Inventory version 3.1: 2005 Technical
Specifications, Experienced based learning Systems, 2005.

 [176] Charles L. Isbell, Lynn Andrea Stein, Robb Cutler, Jeffrey Forbes, Linda Fraser, John Impagliazzo, Viera
Proulx, Steve Russ, Richard Thomas, and Yan Xu, (Re)Defining Computing Curricula by (Re)Defining
Computing, Inroad SIGCSE Bulletin, Vol. 41, Number 4, pp 195-207, December 2009.

[177] Sanjay Goel, Om Vikas, Mukul Sinha, Guidelines for Masters in Archaeo-heritage Informatics, Indo US S&T
Workshop on Digital Archeology, Musoorie, India, Invited paper, Nov 11-13, 2005.

[178] Gerald Weinberg, Rethinking systems analysis and design, Dorset House Pub. Co., USA, 1988.

[179] Winslow, Programming Pedagogy -- A Psychological Overview SIGCSE BULLETIN Vol. 28 No. 3, ACM,
USA, pp 17-25, Sept. 1996.

[180] Robert Kowalski, Algorithm = Logic + Control, Communications of the ACM, Volume 22, Issue 7, ACM, pp
424 – 436, July 1979.

[181] Muller and Haberman, A course dedicated to developing Algorithmic Problem Solving Skills – Design and
Experiment, 21st Annual Psychology of Programming Interest Group Workshop (PPIG 2009), University of
Limerick, Ireleand, June 24-26, 2009, http://www.ppig.org/papers/21st-muller.pdf.

[182] Charles L. Isbell, Lynn Andrea Stein, Robb Cutler, Jeffrey Forbes, Linda Fraser, John Impagliazzo, Viera
Proulx, Steve Russ, Richard Thomas, and Yan Xu, (Re)Defining Computing Curricula by (Re)Defining
Computing, Inroad SIGCSE Bulletin, Vol. 41, Number 4, pp 195-207, December 2009.

www.manaraa.com

293

[183] J.M. Wing, Computational Thinking, Communications of the ACM, pp 33-35, March 2006.

[184] Michael Weigend, To Have or to Be? Possessing Data Versus Being in a State – Two Different Intuitive
Concepts Used in Informatics, R.T. Mittermeir and M.M. Sysło (Eds.), Informatics Education - Supporting
Computational Thinking, Third International Conference on Informatics in Secondary Schools - Evolution and
Perspectives, ISSEP 2008 Torun Poland, Proceedings, Lecture Notes in Computer Science, Springer-Verlag
Berlin Heidelberg, pp. 151–160, July 1-4, 2008.

[185] Corrado Priami, Computational Thinking in Biology, In C. Priami (Ed.), Transactions on Computational
System Biology VIII, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, pp. 63–76, 2007.

[186] Chris Thornton, Quantitative Abstraction Theory, Artifical Intelligence and Simulation of Behavior Journal
1(3), SSAISB, 2003, retrieved from http://www.cogs.susx.ac.uk/users/christ/papers/q-abstraction-theory.pdf,
last accessed Dec. 18, 2009.

[187] J. Kramer, Is Abstract the key to computing?, Communications of the ACM, April 2007, pp 37- 42.

[188] Keiron Nicholson, Judith Good, Katy Howland, Concrete Thoughts on Abstraction, 21st Annual Psychology
of Programming Interest Group Workshop (PPIG 2009), University of Limerick, Ireland, June 24-26, 2009,
http://www.ppig.org/papers/21st-nicholson.pdf.

[189] Miller, G. A., "The magical number seven, plus or minus two: Some limits on our capacity for processing
information". Psychological Review 63 (2), pp 81-97, 1956 retrieved from http://psychclassics.yorku.ca/Miller/.

[190] Anabela Gomes and António José Mendes, Problem solving in programming, 19th Annual Workshop of
Psychology of Programming Interest Group, PPIG'07, Joensuu, Finland, July 2-6, 2007,

[191] Jerome M. Sattler, Assessment of Children: Cognitive Applications, Jerome M. Sattler Publisher, USA, 2001.

 [192] Fred Nickols, Solution Engineering: Choosing the Right Problem Solving Approach, 2004, retrieved on
January 30th 2010 from http://home.att.net/~nickols/makesdif.htm.

[193] David H. Jonassen, Toward a design theory of problem solving, Educational Technology Research and
Development, Volume 48, Number 4, Springer Boston, pp 63-85, December, 2000.

[194] Gregory D. Sterling, Thomas M. Brinthaupt, Faculty and Industry Conceptions of Successful Computer
Programmers, Journal of Information Systems Education, Vol. 14(4), 2003.

[195] G. Polya, How to solve it, Princeton University Press, 1945.

[196] Katgleen M. Galotti, Cognitive Psychology: In and out of Laboratory, Thomson Wadsworth, pp 359-381,
2004.

[197] Katya G. Stoycheva and Todd I. Lubart, The nature of creative decision making, In Carl Martin Allwood,
Marcus Selart (Ed.), Decision making: social and creative dimensions, Kluwer Academic Publisher,
Netherlands, pp 15-33, 2001.

[198] Fred Nickols, Four Tips for “Beefing Up” Your Problem Solving Tool Box – Part One, April 2009, retrieved
on January 30th, 2010 from http://blog.smartdraw.com/archive/2009/04/21/four-tips-for-beefing-up-your-
problem-solving-tool-box-part-one.aspx.

[199] Fred Nickols, Four Tips for “Beefing Up” Your Problem Solving Tool Box – Part Two, April 2009, retrieved
on January 30th, 2010 from http://blog.smartdraw.com/archive/2009/04/27/four-tips-for-beefing-up-your-
problem-solving-tool-box-part-two.aspx.

[200] Nonaka, I., A Dynamic Theory of Organizational Knowledge Creation, Organization Science, pp 14-37,
February 1994.

[201] Leon E. Winslow, Programming Pedagogy - A Psychological Overview, ACM SIGCSE Bulletin, Vol. 28, No.
3, Sept 1996.

[202] P.J. Denning, The profession of IT: Career Redux, Communications of the ACM, pp 21-26, September 2002.

[203] A.L.Costa and B. Kallick, Discovering and Exploring Habits of Mind, Association for Supervision and
Curriculum Development (ASCD), 2000.

www.manaraa.com

294

[204] Vikki Fix, Susan Wiedenback, Jean Scholtz, Mental Representations of Programs by Novice and Experts,
INTERCHI ’93, ACM, pp 74-79, 1993.

[205] Rebecca Mancy, Norman Reid, Aspects of Cognitive Style and Programming, 16th Workshop of the
Psychology of Programming Interest Group. Carlow, Ireland, April 2004.

[206] Spiro, R. J. & Jehng, J., Cognitive flexibility and hypertext: Theory and technology for the non-linear and
multidimensional traversal of complex subject matter. In D. Nix & R. Spiro (eds.), Cognition, Education, and
Multimedia. Hillsdale, NJ: Erlbaum, pp 163-205, 1990.

[207] Linda S. Gottfredson, Dissecting practical intelligence theory: Its claims and evidence Intelligence Volume
31, Issue 4, Elsevier,July-August 2003 , 2003.

[209] R. Hastie and R.M. Dawes, Rational choice in an uncertain world: The psychology of judgment and decision
making, 2nd edition, Sage Publications, USA, 2010.

[210] Barry Boehm, A view of 20th and 21st Century Software Engineering, Proceedings of the 28th international
conference on Software engineering, Shanghai, China , ACM, pp 12-29, 2006.

[211] Yogi Ramacharaka (William Walker Atkinson), Raja Yoga or Mental Development, The Yogi Publication
Society, 1934, pp 97-122, retrieved from http://www.sacred-texts.com/eso/ryo/ryo07.htm on 18 December
2009.

 [212] Huitt, W., Critical thinking: An overview. Educational Psychology Interactive, Valdosta, GA: Valdosta State
University, 1998.

[213] Peter A. Facione, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational
Assessment and Instruction, The California Academic Press, 1990.

[214] Richard Paul, Critical Thinking: How to prepare students for a rapidly changing world, Sonoma State
University: California. 1993.

[215] Richard Paul, Robert Niewoehner, Linda Elder, The thinker's guide to engineering reasoning , The foundation
for critical thinking, 2006.

 [216] Jennifer Moon, Critical thinking: an exploration of theory and practice, Routledge, pp 49-51, 2007

 [217] Ron Barnett, Higher Education: A Critical Business, Open University Press /SRHE, 1997

[218] Schön D., The reflective practitioner, Basic Books: New York, 1983.

[219] Kottamp, R., Means of facilitating reflection, Education and Urban Society, 22.2, pp. 182-203, 1990.

[220] Schön D., Educating the Reflective Practitioner. Jossey-Bass: San Francisco, 1987.

[221] Phoebe Sengers, Kirsten Boehner, Shay David and Joseph ‘Jofish’ Kaye, Reflective Design, Proceedings of
the 4th decennial conference on Critical computing: between sense and sensibility, Denmark, ACM, pp 49-58,
2005.

 [222] Stones E., Reform in teacher education: The power and the pedagogy. Journal of Teacher Education, Vol. 45,
Sage, pp 310-318, 1994.

[223] Ginsburg, M. B., Contradictions in teacher education and society: A critical analysis. New York: Falmer,
1988.

 [224] Lasley, T.. Editorial. Journal of Teacher Education, SAGE, March - April 1998.

[225] Borton T., Reach, Teach and Touch. Mc Graw Hill, London, 1970.

[226] Guihua Li, Shawna Long, and Mary Ellen Simpson, Self perceived gains in critical thinking and
communication skills: Are there disciplinary differences, Research in Higher Education, Vol. 40, No. 1,
Springer, pp 43-60, February 1999.

[227] Osche, R., Before the gates of excellence: The determinants of creative genius. Cambridge, MA: Cambridge
University Press, 1990.

www.manaraa.com

295

[228] Robert W. Weisberg, Creativity: Understanding innovation in problem solving, science, inventions and the
arts, John Wiley and sons, USA, pp 205-207, 2006.

[229] Robert J. Sternberg, Wisdom, intelligence, and creativity synthesized, Cambridge University Press, UK, pp
124-146, 2003.

[230] Katya G. Stoycheva and Todd I. Lubart, The nature of creative decision making, In Carl Martin Allwood,
Marcus Selart (Ed.), Decision making: social and creative dimensions, Kluwer Academic Publisher,
Netherlands, pp 15-33, 2001.

[231] Edward De Bono, Lateral thinking: creativity step by step , Harper & Row, USA, 1970.

[232] Kalevi Rantanen and Ellen Domb, Simplified TRIZ: new problem solving applications for engineers &
manufacturing professionals, CRC Press, pp 129-210, 2002.

[233] Rea, K.C., TRIZ and Software - 40 Principles Analogies, Part 1, The TRIZ Journal. Sep, 2001, retrieved from
http://www.triz-journal.com/archives/2001/09/e/index.htm.

[234] Rea, K.C., TRIZ and Software - 40 Principles Analogies, Part 2, The TRIZ Journal, Nov, 2001, retrieved
from http://www.triz-journal.com/archives/2001/11/e/.

 [235] Ron Fulbright, Teaching critical thinking skills in IT using PINE-TRIZ, Proceedings of the 5th conference on
Information technology education, ACM pp 38-42, October 2004.

[236] James Kowalick, 17 Secreted of an inventive mind: How to conceive world class products rapidly using TRIZ
and other leading edge creative tools, The TRIZ Journal, Nov, 1996, retrieved from http://www.triz-
journal.com/archives/1996/11/b/index.htm.

[237] Guy-Alain Amoussou, Eileen Cashman, Steve Steinberg, Ways to Learn and Teach Creativity and Design in
Computing Science, Proceedings of Science of Design Symposium, Humboldt State University, ACM, pp 12-
13, March 2007.

 [238] Carly J. Lassig, Promoting creativity in education -- from policy to practice: an Australian perspective,
Proceeding of the seventh ACM conference on Creativity and cognition, ACM, USA, pp-229-238, October
2009.

[239] Biggs, J., Student approaches to learning and studying. Melbourne, Australia: Australian Council for
Educational Research, pp 9, 1987.

 [240] Michael B. Paulsen and Charles T. Wells, Domain differences in the epistemological beliefs of college
students, Research in Higher Education, Vol. 39, No. 4, Springer, pp 365-394, August 1998.

[241] Marlene Schommer-Aikins, Orpha K. Duell, and Sue Barker, Epistemological beliefs across domain using
Biglan’s classified of academic disciplines, Research in Higher Education, Vol. 44, No. 3, Springer 347-366,
June 2003.

[242] Walter Brand, Hume’s Account of Curiosity and Motivation, The Journal of Value Inquiry, Volume 43
Number 1, Springer, pp 83–96, March 2009.

[243] Barbara M. Benedict, Curiosity: a cultural history of early modern inquiry , University of Chicago Press, pp 1-
8, 2001.

[244] Thomas G. Reio, Jr. and Jamie L. Callahan, Affest, Curiosity, and socialization related learning: A path
analysis of antecedents to job performance, Journal of Business and Psychology, Vol. 19, No. 1, Springer, pp 3-
20, Fall 2004.

[245] Marilyn P. Arnone, Using Instructional Design Strategies to Foster Curiosity, 2003

[246] Christopher Peterson, Martin E. P. Seligman, Character strengths and virtues: A handbook and classification,
Oxford University Press, USA, pp 125-141, 2004.

[247] David Beswick, An Introduction to the Study of Curiosity, Centre for Applied Educational Research,
University of Melbourne, 10 May 2000, retrieved from http://www.beswick.info/psychres/curiosityintro.htm on
Dec 27th. 2009.

www.manaraa.com

296

[248] Todd B. Kashdan, Michael F. Steger, Curiosity and pathways to well-being and meaning in life: Traits, states,
and everyday behaviors, Motivation and Emotion, Volume 31, Number 3 /, Springer, 159-173, September,
2007.

[249] Robert N. Carson, A Taxonomy of Knowledge Types for Use in Curriculum Design, Interchange, Vol. 35/1,
Kluwer Academic Publishers, pp 59-79, March 2004.

[250] Perry, W. G., Forms of intellectual and ethical development in the college years. New York: Holt, Rinehart
and Winston, 1970.

[251] Richard M. Felder and Rebecca Brent, The intellectual development of science and engineering students Part
1, Models and challenges, Journal of Engineering Education, ASEE, USA, pp 269–277, October 2004.

[252] Elise J. West, Perry’s Legacy: Models of Epistemological Development, Journal of Adult Development, Vol.
11, No. 2, Springer, pp 61-70, April 2004.

 [253] Center for Teaching and Learning, Helping our Students to Achieve Better Thinking, Nutshell Notes,
Newsletter for Teaching Excellence, November, Idaho State University, 2005 retrived from
http://www.isu.edu/ctl/nutshells/nutshell13-7.HTML.

 [254] Michael J. Pavelich, Helping students develop high level thinking: Use of the Perry model, Procedings of
Frontiers in Education (FIE), 1996, IEEE, pp 163-167, 2001.

[255] John Wise, Sang Ha Lee, Thomas A. Litzinger, Rose M. Marra, betsy Palmer, Measuring Cognitive growth
in Engineering undergraduates: a longitudinal study, Proceedings of the American Society for Engineering
Education Annual Conference and Exposition, ASEE, USA, 2001.

[256] Salas E. and Klein G.A., Linking expertise and naturalistic decision making, Lawrence Erlbaum Associates
Inc, USA, pp 19-20, 2001.

[257] Carl Martin Allwood, Marcus Selart, Decision making: social and creative dimensions, Kluwer Academic
Publisher, Netherlands, pp 18-20, 2001.

[258] David G. Ullman, Making Robust Decisions: Decision management for technical, business, and service teams,
Trafford Publishing, Canada, 2006.

[259] S.R. Seyedjavadein, Amir Hossein Fahimi, Introduction of TRIZ to the Process and Levels of Decision
Making, The TRIZ Journal, December 2005, http://www.triz-journal.com/archives/2005/12/08.pdf.

[260] A. Rowe and J. Boulgarides, Managerial Decision Making: A Guide to Successful Business Decisions,
Macmillan, New York, 1992.

[261] Becker, Boris W. and Connor, Patrick E, Personal value systems and decision-making styles of public
managers, Public Personnel Management; Spring2003, Vol. 32 Issue 1, pp 155-181, March 2003,
http://goliath.ecnext.com/coms2/gi_0198-393074/Personal-value-systems-and-decision.HTML.

[262] Terry L. Fox, J. Wayne Spence, The effect of decision style on the use of a project management tool: an
empirical laboratory study, The database for advances in information systems, Volume 360 Issue 2, ACM, pp
28-42, June 2005.

[263] Hammond JS, Keeney RL, Raiffa H. Smart choices: a practical guide to making better decisions Boston,
Mass: Harvard Business School Press, 1999.

[264] M. G. Myriam Hunink, Decision Making in the Face of Uncertainty and Resource Constraints: Examples from
Trauma Imaging, Radiology, Volume 235 Number 2, Radiological Society of North America Inc., pp 375-
383, May 2005.

[265] Claudine Toffolon, Salem Dakhli, A decision oriented model of software engineering processes, Proceedings
European and Mediterranean Conference on Information Systems 2007 (EMCIS2007), Polytechnic University
of Valencia, June 24-26 2007, http://www.iseing.org/emcis/EMCIS2007/emcis07cd/EMCIS07-PDFs/702.pdf.

www.manaraa.com

297

 [266] C. Ravindranath Pandian, Applied software risk management: A guide for software project managers,
Auerbach Publications, USA, 2007.

[267] Boehm, B.: Software Risk Management: Principles and Practices. IEEE Software, pp 32-41, January 1991.

[268] Mark Keil, Paul E. Cule, Kalle Lyytinen, and Roy C. Schmidt, A Framework for Identifying, Software
Project Risk, Communication of the ACM/Vol. 41, No. 11, pp 76-83, November 1998.

[269] Linda Wallace and Mark Keil, Software project risks and their effect on outcomes, Communication of the
ACM /Vol. 47, No. 4, pp 69 –73, April 2004.

[270] Marvin J. Carr, Suresh L. Konda, Ira Monarch, F. Carol Ulrich, Taxonomy-Based Risk Identification,
Technical Report CMU/SEI-93-TR-6, ESC-TR-93-183, Software Engineering Institute, Carnegie Mellon
University, USA, June 1993.

[271] Richard P. Kendall, Douglass E. Post, Jeffrey C. Carver, Dale B. Henderson, David A. Fisher, A Proposed
Taxonomy for Software Development Risks for High-Performance Computing (HPC) Scientific/Engineering
Applications, Technical Note, CMU/SEI-2006-TN-039, Software Engineering Institute, Carnegie Mellon
University, USA, January 2007.

[272] Konstantina Georgieva, Ayaz Farooq, and Reiner R. Dumke, Analysis of the Risk Assessment Methods – A
Survey, A. Abran et al. (Eds.): IWSM/Mensura 2009, LNCS 5891, Springer-Verlag Berlin Heidelberg pp. 76–
86. 2009.

[273] Edward J. O’Boyle, An ethical decision-making process for computing professionals, Ethics and Information,
, Springer Netherlands, pp 267–277, December 2002.

[274] R. Hastie and R.M. Dawes, Rational choice in an uncertain world: The psychology of judgment and decision
making, 2nd edition, Sage Publications, USA, 2010.

[275] Donella H. Meadows , Thinking in Systems: A primer, Chelsea Green Publishing Company, USA, 2008.

[275a] Checkland Peter, Systems Thinking, Systems Practice, John Wiley & Sons, 1999.

[276] Boulding Kenneth, General systems theory - the skeleton of science, Management Science, 197-208, April
1956.

[277] Lars Skyttner, The Future of Systems Thinking, Systemic Practice and Action Research, Vol. 11, No. 2,
pp193-205, April 1998.

[278] Senge, P., The Fifth Discipline: The Art and Practice of the Learning Organization, Currency Doubleday, New
York, 1990.

[279] Andriy Solovey, 11 Laws of The System Thinking in Software Development, Software creation mystery, Jul
26th, 2007, retrieved from http://softwarecreation.org/2007/11-laws-of-the-system-thinking-in-software-
development/.

[280] Moti Frank, and Shlomo Waks, Engineering Systems Thinking: A Multifunctional Definition, Journal of
Systemic Practice and Action Research, Vol. 14, No. 3, Springer Netherlands, pp 361-371, June 2001.

[281] Carol Sanford , A Theory and Practice System of “Systems Thinking”: With an Executive’s Story of the
Power of “Developmental” and “Evolutionary” Systems Thinking, 3rd International Conference on Systems
Thinking in Management (ICSTM 2004), University of Pennsylvania, May 19 - 21, 2004, retrieved from
www.interoctave.com/pdf/InterOctave_SystemsThinking_WhitePaper.pdf.

[282] F. Capra, Criteria of systems thinking, Futures, Volume 17, Issue 5, Elsevier, pp 475-478, October 1985.

[282a] George J. Klir and Doug Elias, Architecture of Systems Problem solving, Springer, 2003.

[283] Linda Booth Sweeney and Dennis Meadows, The Systems Thinking Playbook, Sustainability Institute, 2008.

[284] Checkland, P.B., Soft Systems Methodology, in J. Rosenhead and J. Mingers (eds), Rational Analysis for a
Problematic World Revisited. Chichester: Wiley, 2001.

 [285] Marty Jacobs, Systems Thinking: The Fifth Discipline of Learning Organizations, 2008, Systems In Sync.

www.manaraa.com

298

[286] Mingfen Li, Fostering Design Culture Through Cultivating the User-Designers' Design Thinking and Systems
Thinking, Journal of Systemic Practice and Action Research, Volume 15, Number 5, Springer Netherlands, pp
385-410, October, 2002.

[287] Martin Hoffman, The contribution of empathy to justice and moral development, In Nancy Eisenberg and
Janet Strayer (Ed.), Empathy and its development, Cambridge University Press, pp 47-80, 1990.

[288] Cecilia Haskins, Using systems engineering to address socio-technical global challenges, Sixth Annual
Conference on Systsems Engineering Research (CSER’08), LA, USA, April 2008, retrieved from
http://cser.lboro.ac.uk/CSER08/pdfs/Paper%20111.pdf.

 [289] L. Kohlberg, The psychology of moral development: the nature and validity of moral stages, Harper & Row
1984.

[290] Dario Spini, Measurement equivalence of 10 value types from the Schwartz value survey across 21
countries, Journal of cross-cultural psychology, Vol. 34 No. 1, SAGE Publications, USA, , pp 3-23, January
2003.

[291] Schwartz, S. H., Universals in the content and structure of values: Theoretical advances and empirical tests in
20 countries, In M. P. Zanna (Ed.), Advances in experimental social psychology, (Vol. 25, pp. 1-65). San
Diego, CA: Academic Press, 1992.

[292] Steven Reiss, Multifaceted Nature of Intrinsic Motivation: The Theory of 16 Basic Desires, Review of
General Psychology, Educational Publishing Foundation, Vol. 8, No. 3, 179–193, 2004.

[294] Steven Reis, Who Am I?: The 16 Basic Desires That Motivate Our Behavior and Define Our Personality,
Tarcher, 2000.

[295] Carol D. Ryff and Burton H. Singer, Know thyself and become what you are: a Eudaimonic approach to
psychological well-being, Journal of Happiness Studies, Jan 2006, Springer Netherlands, pp 13-39.

[296] Richard M. Ryan, Veronika Huta and Edward L. Deci, Living well: a self-determination theory perspective on
eudaimonia, Journal of Happiness Studies, Volume 9, Number 1, Springer Netherlands, pp 139-170, January,
2008.

[297] Edward L. Deci and Richard M. Ryan, Hedonia, eudaimonia, and well-being: an introduction, Volume 9,
Number 1, Springer Netherlands, pp 1-11 January, 2008.

[298] Deci, E. L., & Ryan, R. M. Intrinsic motivation and self-determination in human behavior, 1985, New York:
Plenum.

[299] R.J. Sternberg, Intelligence as developing expertise, J. of Contemporary Educational Psychology, Elsevier, pp
359-375, October 1999.

[300] M.A. Collins, and T.M. Ambile, Motivation and Creativity, In Robert J. Sternberg (Ed.),, Handbook of
Creativity, Cambridge University Press, UK, pp 297-312, 1999.

[301] Kennon M. Sheldon, Creativity and Self-Determination in Personality, Creativity Research Journal Vol. 8, No.
1, Lawrence Erlbaum Associates, pp 25-36, 1995.

[302] Hernan Casakin and Shulamith Kreitler, Motivational aspects of creativity in students and architects:
implications for education, International conference on engineering and product design education, 4 -5,
Universitat Politechnica de Catalunya, Barcelona, Spain, September 2008.

[303] Hernan Casakin and Shulamith Kreitler, Motivation for creativity in architectural design and engineering
design students: implications for design education, International Journal Technol Desing Education, , Springer,
Online published on Dec 1st, 2009.

[304] Brawner, catherine et al., A survey of faculty teaching practices and involvement in faculty development
activities, http://www.ncsu.edu/felder-public/papers/survey_teaching-practices.pdf.

[305] Krumme Gunter, Major Categories in the Taxonomy of Educational Objectives, (Bloom 1956), 2002,
Retrieved from http://faculty.washington.edu/krumme/guides/bloom.HTML.

www.manaraa.com

299

[306] TALS (Effective Teaching in Agriculture and Life Sciences), Bloom’s taxonomy: Lessons, 1998, Retrieved
from http://www.ais.msstate.edu/TALS/unit1/1moduleB.HTML,

 http://www.ais.msstate.edu/TALS/unit1/1moduleC.HTML.

[307] Ostrow Jim, Service-learning for depth in a fluid world, Tomorrow’s Professor, 2005, Retrieved from
http://ctl.stanford.edu/Tomprof/postings/622.HTML.

[308] Honan, William H., The College Lecture, Long Derided, May Be Fading, Newyork Times, August 14,
2002.

[309] Fagen, Adam Paul, “Assessing and Enhancing the Introductory Science Course in Physics and Biology: Peer
Instruction, Classroom Demonstrations, and Genetics Vocabulary”, Ph.D. Thesis, Harvard University, 2003,
http://mazur-www.harvard.edu/publications/Pub_405.pdf.

[310] Northwood M.D. and Northwood O..D., Problem-Based Learning (PBL): From the Health Sciences to
Engineering to Value-Added in the Workplace, Global Journal of Engineering Education, Vol.7, No.2, pp 157-
164, 2003. http://www.eng.monash.edu.au/uicee/gjee/vol7no2/Northwood.pdf.

[311] Woods, D.R., Problem-Based Learning: How to Gain the Most from PBL. Waterdown: Donald R. Woods
Publisher, 1994.

 [312] Merrill, M. D, Instructional strategies that teach. CBT Solutions, 1997,
http://www.id2.usu.edu/Papers/Consistency.PDF.

 [313] Fennimore, T.F. and Tinzmann , M.B. “What Is a Thinking Curriculum?”, NCREL, Oak Brook, 1990,
http://www.ncrel.org/sdrs/areas/rpl_esys/thinking.htm.

[314] Kearsley Greg & Shneiderman Ben, “Engagement Theory: A framework for technology-based teaching and
learning”, 1999, http://home.sprynet.com/~gkearsley/engage.htm.

[315] Ladyshewsky Richard K. and Ryan John, Reciprocal peer coaching as a strategy for the development of
leadership and management competency, Teaching and Learning Forum, Edith Cowan University, Australia,
2002, retrieved from http://www.ecu.edu.au/conferences/tlf/2002/pub/docs/Ladyshewsky.pdf.

 [316] Schank, Roger C. and Cleary Chip, Engines for Education, LEA Publishers, pp 27-31, 1995.

[317] Arias, E.G., Eden, H., Fischer, G., & Schraff, E. “Transcending the Individual Human Mind – Creating Shared
Understanding through Collaborative Design”, ACM Transactions on Computer Human-Interaction, 7(1), pp.
84-113, March 2000.

[318] Fischer, Gerhard, Meta-design: Beyond User Centered and Participatory Design, Proceedings of HCI
International, Crete, Greece., 22-27 June, 2003 retrieved from

 http://www.cs.colorado.edu/~gerhard/papers/hci2003-meta-design.pdf.

[319] Aaron Fried, Karen Zannini, Don Wheeler, Yongjin Lee, and Jose Cortez, Instructional Design Theory
database Project, Syracuse University, http://web.cortland.edu/frieda/ID/IDdatabase.html.

[320] Greg Kearsley, Explorations in Learning & Instruction: The Theory Into Practice Database,
http://tip.psychology.org/index.html.

 [321] Charles M. Reigeluth (ed.), Instruction Design Theories and Models: A New paradigm for Instruction Design,
Routledge, 1999.

 [322] Jonassen, D. H., Myers, J. M. & McKillop, A. M., From constructivism to constructionism: Learning with
hypermedia/multimedia rather than from it, In B. G. Wilson (Ed.), constructivist learning environments: Case
studies in instructional design. Englewood Cliffs, NJ: Educational Technology Publications, pp. 93-106, 1996.

 [323] John Bransford, John D. Bransford, Barry S. Stein, The ideal problem solver: a guide for improving thinking,
learning, and ... , W.H. Freeman, 1993.

 [324] David Byrne, Charles C. Ragin, The SAGE Handbook of Case-Based Methods , SAGE Publications, UK,
2009.

 [325] Merrill, M. D, Instructional Design Theory. Englewood Cliffs: Educational Technology Publications, 1994.

www.manaraa.com

300

 [326] Barry Kort and Rob Reilly, Theories for Deep Change in Affect sensitive Cognitive Machines: A
Constructivist Model, Journal of Educational Technology & Society, Vol. 5 Issue 4, International Forum of
Educational Technology & Society, USA, pp 56-63, 2002.

 [327] L. Festinger, A theory of cognitive dissonance, Stanford University Press, Stanford, USA, 1957.

[328] Gregory Bateson, Steps to an ecology of mind, University of Chicago Press, USA, 2000.

[329] BIGGS J and COLLIS K, Evaluating the Quality of Learning: the SOLO taxonomy New York: Academic
Press, 1982.

[330] Knowles Malcolm, “The Modern Practice of Adult Education: Andragogy versus Pedagogy”, Association
Press, New York, 1970.

[331] The Teacher’s Guide, University of Tasmania,
http://www.artschool.utas.edu.au/pigvision/packteachersguide.HTML.

[332] Managing Active Classrooms, UNICEF, 2000 http://www.unicef.org/teachers/teacher/manage.htm.

[333] M. Rauterberg, Framework for Information and Information Processing of Learning Systems, Echakrd
falkenberg, Wolfganf Hesse, and Antoni Olive, Information System Concepts: Towards Consolidation of views,
Proceedings of the IFIP international working group on Information Systems Concepts, Chapman and Hall, UK,
pp 54-69, 1995.

[334] Chickering, A., & Gamson, Z., Seven principles of good practice in undergraduate education. AAHE Bulletin,
pp 3-7, March 1987.

[335] George D. Kuh, et al, Exploring Different Dimensions of Student Engagement 2005 Annual Survey Results,
National Survey Of Student Engagement, Indiana University, USA, 2005.

[336] Ropohl, G., Knowledge types in technology. International Journal of Technology and Design. Education,
Springer Netherlands, pp 65 -72, January 1997.

[337] Routio, Pentti, Arteology: the science of artifacts, University of Art and Design, Helsinki, Finlad,
http://www.uiah.fi/projects/metodi/154.htm.

[338] Sweller, J., Cognitive load during problem solving: Effects on learning, Cognitive Science, 12, 257-285, 1988.

[339] Csikszentmihalyi, M., Flow: The Psychology of Optimal Experience, Harper and Row, 1990.

[340] David Ausubel. Educational psychology; a cognitive view. Holt, Rinehart and Winston, New York, New
York, 1968.

[341] Joseph Donald Novak, “Learning, Creating, and Using Knowledge: Concept maps as Facilitative Tools in
Schools and Corporations”, Lawrence Erlbaum Associates, pp 49-56, 1998.

[342] Brown, M.T. & Nolan, C.J.P., Getting it Together: Explorations in Curriculum Integration, Out of Class
Activities and Computer Applications. Massey University, Palmerston North, 1989.

 [343] Beane, J., Curriculum integration. Designing the core of democratic education, New York and London:
Teachers College Press, Columbia University, 1997.

[344] Fogarty, R., Ten ways to integrate curriculum. Educational Leadership. 49(2), pp 61-65, 1991.

[345] Drake, S. M., Creating integrated curriculum: Proven ways to increase student learning. Thousand Oaks, CA,
Corwin, 1998.

[346] Ronald M Harden, The integration ladder: a tool for curriculum planning and evaluation, MEDICAL
EDUCATION, Vol. 34, Blackwell Science Ltd, pp 551-557, July 2000

[347] Claus Brabrand and Bettina Dahl, J. , Using the SOLO taxonomy to analyze competence progression of
university science curricula, Journal of of Higher Education, 58, Springer, pp 531–549, February 2009.

[348] Sanjay Goel, Do Engineering Faculty Know What's Broken?, The National Teaching & Learning Forum,
James Rhem & Associates, USA, Vol. 15, pp 1-10, Number 2, 2006.

www.manaraa.com

301

[349] Cliburn, D.C., Experiences with Pair Programming at a Small College, Journal of Computing Sciences in
Colleges, Pages: 20 - 29 Volume 19, Issue 1, October 2003.

[350] Goldfarb, Mary Ellen, The Educational Theory of Lev Semenovich Vygotsky (1896 - 1934), Edward G.
Rozycki & M. F. Goldfarb and Associates, 2001, retrieved from

 http://www.newfoundations.com/GALLERY/Vygotsky.HTML.

[351] Bruner, J. S., Towards a theory of instruction. Cambridge Massachusetts: Belknap Press, 1966.

[351a] Driscoll, Marcy P., Psychology of learning for instruction, Allyn & Bacon, pp 227-245, 2004.

[352] Kutay Cat, Implementation patterns for supporting learning and group interactions, PhD thesis, University of
New Soth Wales, Page, 19, 2005, retrieved from http://www.library.unsw.edu.au/~thesis/adt-
NUN/uploads/approved/adt-NUN20060823.125823/public/02whole.pdf.

[353] Baxter Magolda, M., Knowing and reasoning in college: Gender-related patterns in students’ intellectual
development. San Francisco: Jossey-Bass, 1992.

[354] Smith, M. K., Learning theory, The encyclopedia of informal education, Infed, 2007, retrieved from
http://www.infed.org/biblio/b-learn.htm#cite.

[355] Dillenbourg P., What do you mean by collaborative learning? In P. Dillenbourg (Ed) Collaborative-learning:
Cognitive and Computational Approaches. Pergamon Oxford: Elsevier, pp.1-19, 1999.

 [356] Lipponen, L. Exploring foundations for computer-supported collaborative learning, In G. Stahl (Ed.),
Computer Support for Collaborative Learning: Foundations for a CSCL community. Proceedings of the
Computer-supported Collaborative Learning Conference, Hillsdale, NJ: Erlbaum, pp. 72-81, 2002 .

[357] Janet Salmons, Expect Originality! using taxonomies to structure assignments that support original work, In T.
S. Roberts (Ed.), Student plagiarism in an online world: problems and Solutions, Information Science
Reference, IGI Global, USA, pp 216 – 217, 2008.

[358] Sanjay Goel, Activity based flexible credit definition, Tomorrow’s Professor, 2003,
http://ctl.stanford.edu/Tomprof/postings/513.HTML.

 [359] Baumgartner, E. Designing inquiry: Contextualizing teaching strategies in inquiry-based classrooms. Annual
Meeting of the American Educational Research Association, Montréal, 1999.
http://www.designbasedresearch.org/reppubs/baum-AERA.pdf.

[360] Fischer, G., Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and Evolving Knowledge
in Domain-Oriented Design Environments, Journal of Automated Software Engineering, Springer Netherlands,
pp 447 – 464, October 1998.

[361] Fischer, G. dePaula, R., Ostwald, J., "Courses as Seeds: Expectations and Realities", Proceedings of The
European Conference on Computer-Supported Collaborative Learning (Euro-CSCL 2001), Maastricht, The
Netherlands, March 22-24, pp 494-501, 2001. [http://www.cs.colorado.edu/~gerhard/papers/ecscl2001.pdf.

[362] Sharda, Nalin, Combining the Art, Science and Technology of Multimedia with The Multimedia Creation
Circles Paradigm, Preprint, 2004, http://sci.vu.edu.au/~nalin/MultimediaCreationCirclesPreprintSharda.pdf.

[363] Ascott, R., Is there Love in the Telematic Embrace? Art Journal: New York: College Arts Association of
America. 49:3, pp. 241-7, 1990, retrieved from http://x.i-dat.org/~mp/DIGF/LM/PDF/TelematicEmbrace.pdf.

[364] Aristotle, “Poetics”, 350 BC.

[365] Sharda, Nalin, Combining the Art, Science and Technology of Multimedia with The Multimedia Creation
Circles Paradigm, Preprint, http://sci.vu.edu.au/~nalin/MultimediaCreationCirclesPreprintSharda.pdf, 2004.

[366] Miliszewska Iwona et al, “Transnational Education through Engagement: Students’ Perspective”, Informing
Science, pp 165-173, June 2003, retrieved from

 http://ecommerce.lebow.drexel.edu/eli/2003Proceedings/docs/031Milis.pdf.

[367] Ritu Arora, Sanjay Goel, "Software Engineering Approach for Teaching Development of Scalable Enterprise
Applications,", 22nd IEEE-CS Conference on Software Engineering Education and Training CSEET, , pp.105-
112, February 2009.

www.manaraa.com

302

[368] Linda Null, Integrating Security Across the Computer Science Curriculum, CCSC-Northern Eastern
Conference,19, 5, pp 170-178, May 2004

[369] Blair Taylor, Shiva Azadegan: Moving Beyond Security Tracks: Integrating Security in CS0 and CS1,
SIGCSE Bulletin Volume 40 , Issue 1, ACM, pp 320-324 March 2008.

[370] James Walden, Charles E. Frank: Secure Software Engineering Teaching Modules, InfoSecCD Conference,
pp. 19-23, 2006.

[370a] Jolly Shah, Sangeeta Mittal, Sanjay Goel, An Approach for Infusing Security Aspects in Computing

Curriculum, In progress,, 2009.
 [371] Watt S. Humphrey, PSP: A self improvement process for software engineers, Addison-Wesley Professional,

USA, 2005.

[372] Chaparro E. A., An Intelligent Cognitive Tool To Foster Collaboration In Distributed Pair Programming, 8th
Human Centred Technology Postgraduate Workshop, University of Sussex, 2005. Retrieved from
http://hct.fcs.sussex.ac.uk/Submissions/22.pdf.

 [373] CockBurn, A. and Williams L., The cost and benefits of pair programming, Extreme Programming Examined,
Page 223-243, ed. G. Succi and M. Marchesi, Addison-Wesley Longman Publishing Co., 2001. Retrieved from
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF.

[374] Williams, L., Kessler, R., Pair Programming Illustrated, Boston, Massachusetts: Addison Wesley, 2003.

[375] VanDeGrift T., Coupling Pair Programming and Writing: Learning About Students’ Perceptions and
Processes, Proceedings of the Thirty-Fifth Technical Symposium on Computer Science Education (SIGCSE
2004), ACM Press, pp 2-6, 2004.

 [376] Brusilovsky P., Kouchnirenko A., Miller P. and Tomek I. Teaching programming to novices: A review of
approaches and tools. In T.Ottman, I.Tomek (eds.) Proc.of ED-MEDIA'94 - World conference on educational
multimedia and hypermedia. Vancouver, Canada, pp 103-110, June 1994.

[377] Gogoulou A, Gouli E, Grigoriadou M, Samarakou M, Exploratory + Collaborative Learning in Programming:
A Framework for the Design of Learning Activities, Proceedings of the 3rd IEEE International Conference on
Advanced Learning Technologies, pp 350-351, 2003, retrieved from
http://ieeexplore.ieee.org/iel5/8621/27318/01215118.pdf.

[378] Williams L.,Wiebe E., Yang K., Ferzli M., Miller C., In Support of Pair programming in the Introductory
Computer Science courses. Computer Science Education, Volume 12, Issue 3, Swets & Zeitlinger, pp 197-212
September 2003.

[379] McDowell, C., Werner, L., Bullock, H., and Fernald, J., The Effects of Pair Programming on Performance in
an Introductory Programming Course, Proceedings of the Thirty-Third Technical Symposium on Computer
Science Education (SIGCSE 2002) , ACM Press, pp 38-42, 2002.

[380] Williams L. and Kessler R., Experimenting with Industry' s 'Pair programming' Model in the Computer
Science Classroom, Journal on SW Engineering Education, December. 2000, Retrieved from
http://collaboration.csc.ncsu.edu/laurie/Papers/CSED.pdf.

[381] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S., Improving the CS1
Experience with Pair Programming, Proceedings of the Thirty-Fourth Technical Symposium on Computer
Science Education (SIGCSE 2003), pp 259-362, ACM Press, 2003.

[382] Thomas, L., Ratcliffe, M., Robertson, A., Code Warriors and Code-a-Phobes: A Study in Attitude and Pair
Programming, Proceedings of the Thirty-Fourth Technical Symposium on Computer Science Education
(SIGCSE 2003), pp 363-367, ACM Press, 2003.

[383] Williams L. and Kessler R. All I Really Need to Know About Pair Programming I Learned in Kindergarten.
Communications of the ACM, Volume 43, Issue 5, pp 108– 114, May 2000.

www.manaraa.com

303

[384] Williams L. and Kessler R., Experimenting with Industry' s 'Pair programming' Model in the Computer
Science Classroom, Journal on SW Engineering Education, Dec. 2000, Retrieved from
http://collaboration.csc.ncsu.edu/laurie/Papers/CSED.pdf.

[385] Domino Madeline Ann, Collins Rosann Webb, Hevner Alan R. Controlled experimentation on adaptations of
pair programming, Information Technology and Management, Springer, Volume 8, Number 4, pp 297-312
December, 2007.

[386] Sfetsos Panagiotis, Stamelos Ioannis, Angelis Lefteris, Deligiannis Ignatios, An experimental investigation of
personality types impact on pair effectiveness in pair programming, Empirical Software Engineering, Volume
14, Number 2, Springer, pp 187–226, April 2009,.

[387] Brereton Pearl, Turner Mark, Kaur Rumjit, Pair programming as a teaching tool: a student review of empirical
studies, Proceedings of 22nd Conference on Software Engineering Education and Training, IEEE, pp, 240-247,
February 2009.

[388] Lui Kim Man and Chan Keith C.C., Software Process Fusion: Uniting Pair Programming and Solo
Programming Processes, Q. In Wang et al. (Eds.): Proceedings of SPW/ProSim 2006, LNCS 3966, Springer-
Verlag Berlin Heidelberg, pp. 115–123, 2006

[389] Sanjay Goel and Vanshi Kathuria A Novel approach for pair programming, Journal of Information
Technology Education, USA, Accepted with revision, Revised copy submitted, 2009.

[390] Bevan, J., Werner, L., McDowell, C., Guidelines for the Use of Pair Programming in a Freshman
Programming Class, Conference on Software Engineering Education and Training, Kentucky, IEEE Computer
Society, pp 100-107, 2002.

 [391] Williams, L., Kessler, R.R., Cunningham, W, Jeffries, R., Strengthening the case for pair programming,
Software, Volume 17, Issue 4, IEEE, pp 19-25, Jul/Aug 2000.

[392] Jason A., Technical and Human Perspectives on Pair Programming, ACM SIGSOFT Software Engineering
Notes Vol. 25, Number 5, pp 1-14, September 2004.

[393] Bloom Benjamin S., The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-
to-One Tutoring, Educational Researcher 13 (6), pp 4–16, May 1984.

[395] Judy McKimm, Carol Jollie and Mark Hatter, Mentoring: Theory and Practice, 2007, retrieved from
http://www.faculty.londondeanery.ac.uk/e-learning/feedback/files/Mentoring_Theory_and_Practice.pdf.

[396] University of Missouri-Kansas City, The international center for Supplemental Instruction website, Retrieved
on September 23, 2009 from http://web2.umkc.edu/cad/SI.

 [397] Moore-West, M., Hennessy, S. A., Meilman, P. W., & O’Donnell, J. F., The presence of student-based peer
advising, peer tutoring, and performance evaluation programs among U.S. medical schools. Academic
Medicine, vol. 65, pp 660–661, October 1990,.

 [398] Tai M., Patricia O’Sullivan, Arianne Teherani, Jessica Muller, Understanding the experience of being taught
by peers: the value of social and cognitive congruence, Adv in Health Sci Educ , Volume 13, Number 3, ,
Springer, pp 361–372, August, 2008.

[399] Topping, K., & Ehly, S. (eds). Peer-assisted learning. Mahwah, NJ: Lawrence Erlbaum Associates, 1998.

[400] Rod D. Roscoe and Michelene T. H. Chi, Tutor learning: the role of explaining and responding to questions,
Instructional Science, Volume 36, Number 4, pp 321-350, July, 2008.

[401] Tania Smith, Integrating Undergraduate Peer Mentors into Liberal Arts Courses: A Pilot Study, Innovative
Higher Education, volume 33 number 1, pp 49-63, Jun 2008,.

[402] Sanjay Goel, A proposal for a tutorial on enriching the culture of software engineering education through
theories of knowledge and learning, Proceedings, 22nd IEEE-CS Conference on Software Engineering
Education and Training, CSEET, , pp.279-282, February 2009.

[403] Sanjay Goel, Multimedia for Cultural learning, International workshop on Computer Applications in
Archaeology, H.B. Bahuguna University, Sri Nagar, India, Invited paper, 2002.

www.manaraa.com

304

[404] Siddharth Batra and Sanjay Goel, Digislim: A learning tool for logic level digital electronics, Computers in
Education Journal, Vol XVIIII No 3, American Society of Engineering Education, USA, pp 17-27, July, 2009,

[405] Sanjay Goel and Mukul K. Sinha, Virtual Archaeolo-Heritage Exploratorium: A model design for School
students, Indo-US S&T Forum Workshop on Digital Arcahaeology: A New Paradigm for Visualizing Past
through Computing and Information Technology, India, Invited paper, Nov. 2005.

 [406] Sanjay Goel, Anshul Jain, Priyank Singh, Saaransh Bagga, and Siddhartha Batra, Computer Vision aided
Classification and Reconstruction of Indian Potteries, Indo-US S&T Forum Workshop on Digital Archaeology:
A New Paradigm for Visualizing Past through Computing and Information Technology, India, Invited paper,
Nov. 2005

[407] Sanjay Goel, A Model Design for Computer based Cognition Support Systems, International Conference on
Multimedia in Humanities, IGNCA, 1998.

[408] Sanjay Goel, Design of Interactive Systems: Looking Beyond Cognitive domain, INCITE’07, EU-India co-
operation in IT research Workshop, New Delhi, Invited talk, 2007.

www.manaraa.com

305

APPENDIX

APPENDIX A1: SPINE-like Survey on Importance of Competencies

We administered a survey among Indian engineers and managers working in Indian and

multinational IT companies to obtain their perceptions on the importance of forty-nine

parameters of engineering education. Twenty-three engineering and general professional

competencies were included in this list. Other parameters on teaching methods, quality of

education, and aspects of reputation of institutes were the same as in the SPINE survey

(Annexure AN11). Respondents were requested to assign numeric ratings to these parameters on

a scale of 0 to 10, with 10 being the highest importance in terms of the parameter’s criticality and

potential contribution in preparing students for a successful professional career.

Fifty-four experts working in fifteen companies like ST Microelectronics, Infosys, HCL

Technologies, Adobe Systems India Pvt. Ltd, Cadence, Tata Infotech, Syncata Ltd., and

Computer Associates responded. The responding experts had industrial experience ranging from

1.5 years to 35 years with an average experience of 7.5 years, which is inferred to be slightly

higher than the industry average, given the average age of employees in the Indian IT industry is

only 27-30 years [5]. The Collection of these responses was spread over a period of

approximately one year. The trends in the data were found to be quite stable in the present

context of the Indian IT industry. Hardly any variation among the computed ranks was

observed after the sample size exceeded thirty-five. Hence, the findings of this study can be

considered as sufficiently reliable. Table A1.1 provides a statistical summary of the responses.

Further, the Indian IT industry is heavily export driven, and generally the respondents work on

projects for overseas clients. Consequently, the findings of this study have a global relevance,

especially for those developing countries that are trying to boost up their export in software, and

other IT services.

Engineering and General Professional Competencies

The respondents’ response for some of the twenty-three competencies has been much more

enthusiastic than many others. While the maximum response for all competencies was found to

www.manaraa.com

306

be in the range of 9-10, the minimum response was more wide spread from 0 to 5. Table A1.1

reveals that the average ratings for these competencies vary from 4.7 to 8.2 with standard

deviation varying from 1.5 to 2.3. It was seen that the maximum value for the importance of all

competencies was 10 or 9, and minimum value for seventeen competencies varied from 0 to 2,

with only six competencies getting the minimum importance rating of 3 or 4. It means that all

competencies were considered to be most important by a few respondents, and absolutely

unimportant by some others. Further, the standard deviation among the values of average ratings

(Avg_Rj) was found to be only 1.02. Consequently, Avg_Rj alone could not be used as a good

criterion for ranking the importance of different competencies. The opinion of respondents on

the importance of some competencies was more uniform than others. Hence, a new figure of

merit (FOMj) has been defined in order to stretch out the distribution and classify the

competencies in a reliable way. It is based on the three variables of average (Avg_Rj), standard

deviation (Stdev_Rj), and average of the least N responses (Avg_Min_Rj), as in eq. (1).

Computations of figure of merit were performed with different values of N. The best distribution

of FOM values with highest standard deviation was at N equal to 7. Hence, N equal to 7 was

used for computation of Avg_Min_Rj.

www.manaraa.com

307

Table A1.1: Importance of twenty-three core engineering and general professional competencies, as rated by
Indian engineers and managers working in Indian and multi-national IT companies

No
(j)

Engineering Competency
Average

importance
(Max. = 10)

Avg_Rj

Standard
deviation in

the rated
importance

Stdev_Rj

Average
importance of

the least 7
responses

(Max. = 10)

Avg_Min_Rj

Normalised
Figure of

Merit
(Max. = 10)

NFOM_Rj

Category

1 Problem solving 8.2 1.5 5.6 10.0 Pivotal

2 Analysis/Methodological skills 8.0 1.6 5.0 8.8 Critical

3 Basic engineering proficiency 7.7 1.6 5.1 8.5 Critical

4 Development know-how 7.1 1.5 4.4 8.2 Critical
5 Teamwork skills 8.0 1.7 4.7 8.2 Critical

6 English language skills 7.6 1.7 4.6 7.6 Critical
7 Presentation skills 7.6 1.7 4.3 7.5 Critical
8 Practical engineering experience 7.1 1.7 4.3 7.3 Critical

9 Leadership skills 7.3 1.7 4.6 7.3 Critical
10 Communication skills 8.0 1.8 4.3 7.2 Critical
11 Ability to develop own

engineering expertise
7.0 1.8 3.9 6.5 Obligatory

12 Research know-how 6.5 1.7 3.4 6.2 Obligatory
13 Ability to develop a broad

general education
6.4 1.7 3.0 5.9 Obligatory

14 Awareness of environmental
issues

6.3 1.8 3.3 5.7 Obligatory

15 Social skills 6.5 1.9 2.9 5.3 Obligatory

16 Specialized engineering
proficiency

6.3 1.9 2.7 5.1 Obligatory

17 Project management skills 6.7 2.1 2.7 4.9 Desirable

18 Management of business
processes and administration
skills

6.5 2.1 2.6 4.6 Desirable

19 Sensitivity towards socio-
economic aspects for sustainable
technological development

6.0 2.0 2.0 4.2 Desirable

20 Finance 5.2 2.0 1.7 3.8 Complementary
21 Marketing 5.5 2.3 1.4 3.2 Complementary
22 Law 4.7 2.2 0.7 2.6 Complementary
23 Other language skills 4.8 2.3 0.4 2.4 Complementary

The overall average, Avg_Rj, represents the collective opinion of all respondents. A high value

indicates the necessity of the competency. The average of the least seven responses,

Avg_Min_Rj, represents a favorable rating by those seven respondents who were the least

enthusiastic for jth competency. Hence, even a moderate value of four for Avg_Min_Rj is an

www.manaraa.com

308

indicator of jth competency’s indispensability. A high standard deviation, Stdev_Rj, represents

highly divided opinion of the respondents. The proposed figure of merit (FOM_Rj) is inversely

proportional to Stdev_Rj, and is directly proportional to Avg_Rj as well as Avg_Min_Rj. Figure

of merit (FOM_Rj) is then normalised with respect to the maximum value and the normalised

figure of merit (NFOM_Rj) is computed using eq. (2).

 FOM_Rj = (Avg_Rj+Avg_Min_Rj)/Stdev_Rj (1)

 NFOM_Rj = 10*FOM_Rj/Max {FOM_Rj: j = 1 to 23} (2)

A high NFOM_Rj is possible only if Avg_Rj as well as Avg_Min_Rj are high, and Stdev_Rj is

low. On the other hand, a low computed value NFOM_Rj can be either be a result of low

Avg_Rj, low Avg_Min_Rj, or a high Stdev_Rj. NFOM_Rj improved the contrast among the

ratings of the twenty-three competencies. The Normalised Figure of Merit (NFOM_Rj) varies

from 2.2 to 10. This is a good distribution with a standard deviation of 2.1, which is much higher

than the standard deviation among the values of Avg_Rj. Table A1.1 enumerates these

competencies in descending order of their normalised figure of merit (NFOM_Rj). The

competencies are then classified into the following five vertical categories depending on their

normalised figure of merit (NFOM_Rj):

i. Pivotal: nine or more.

ii. Critical: between seven and nine.

iii. Obligatory: between five and seven.

iv. Desirable: between four and five.

v. Complementary: less than four.

Teaching Methods

Eight teaching methods (group projects, homework/out-of-class assignment, industrial

training/internship, lecture, projects, practical training, seminars, and written projects/studies)

assessed by the SPINE study (Annexure AN11) were retained for evaluation by Indian

respondents. Respondents were requested to assign numeric ratings (0-10) to these parameters in

terms of their criticality, and potential contribution in preparing students for a successful

professional career.

www.manaraa.com

309

Table A1.2 enumerates these teaching methods in descending order of their normalised figure of

merit (NFOM_Rj). The teaching methods are also classified into the following five vertical

categories, as explained above.

All teaching methods were considered to be most important by a few respondents. As can be

seen in Table A1.2, group project, projects, and practical training have been rated as more

effective teaching methods than lectures.

Table A1.2: Importance of teaching methods as rated by Indian engineers and managers working in Indian and

multi-national IT companies

No
(j)

Teaching Method
Average

importance
(Max. = 10)

Avg_Rj

Standard
deviation in the

rated
importance

Stdev_Rj

Average
importance of

least 7 responses
(Max. = 10)
Avg_Min_Rj

Normalised
Figure of Merit

(Max. = 10)

NFOM_Rj

Category

1 Group Projects

8.0 1.3 5.6 10.0 Pivotal

2 Project 8.2 1.4 5.6 9.8 Pivotal

3 Practical Training 8.3 1.5 5.6 9.2 Pivotal

4 Industrial Training
/Internship

7.6 1.8 4.3 6.5 Obligatory

5 Lecture 7.2 1.7 4.1 6.5 Obligatory

6 Seminars 7.0 1.7 3.9 6.3 Obligatory
7 Written projects/studies 6.8 1.7 4.0 6.2 Obligatory
8 Homework/Out-of-class

assignment
6.1 2.1 2.3 3.8 Complementary

A closer examination of the data showed that approximately 20% of the respondents rated

lecture’s importance below or equal to 5, while the same fraction gave the rating of equal to or

more than 9 on a scale of 10. It is interesting to note that the last three methods in the ranked list

(Table A1.1) also have the largest variation. This low average importance rating, and also large

variation in the ratings, of these teaching methods can be attributed to the nature of respondents’

personal experiences during their student life. Most respondents may not have had a very

positive experience with these methods, and only a few of them may have had the good fortune

of attending good quality lectures and/or doing high quality written projects/studies or homework

during their student life.

www.manaraa.com

310

Appendix A2: A Comprehensive Distilled View on Desired Competencies

Summary of various recommendations about desired competencies of software developers
(alphabetically ordered)

1. Ability to accommodate himself to others, empathy, “be the customer” mentality - genuine interest in

understanding what other people are trying to accomplish and based on this understanding think about creating
technical solutions to help them reach their goals. Genuine interest in understanding “why to create software”
and the broader context of software systems. Cognitive task analysis. Appreciation of unstated requirement
and ability to identify these. Listening skills, approachable, and respect for people. Ability to work in
homogeneous, multi-disciplinary, multi-locational and multicultural teams. Ability to work under supervision
and constraints, Understanding of the impact of personal character and behaviors on others.

2. Ability to apply knowledge, ability to integrate the application of knowledge, skills, and sense of
responsibilities to new settings and complex problems.

3. Ability to see the self as bound to all humans with ties of recognition and concern. Seek help from other, Ability
to help and assist others, mentoring, commitment to others’ success. Sensitivity towards global, societal,
environmental, moral, ethical and professional issues, and sustainability. Respect for the intellectual property of
others. Work ethics.

4. Abstraction and transition between levels of abstraction, representation skills spatial and temporal modeling
skills, structuring skills, and theorizing.

5. Algorithmic and structured thinking. Logic, pattern matching, logical what-if analysis, problem decomposition
and synthesis, etc.

6. Analytical skills.
7. Communication skills.
8. Constructive criticism.
9. Curiosity, interest in ‘how things work’ and ‘how to create things that work,’ interest in the power of

technology, humility, observation skills, ability to see things as they are, broader understanding and interests,
respect for the classic authors of the great books, openness to constructive criticism, value and readiness for
lifelong learning. Active listening skills. Ability to develop a very good understanding of domain specific
vocabulary, its semantics, and established thinking patterns.

10. Decision making skills.
11. Design skills.
12. Domain competence.
13. Entrepreneurship, intrinsic motivation to create something, desire to improve things, initiative taking, enjoy

challenges, sense of mission, perseverance, concentration, result orientation, commitment, self motivation,
dedication, and hard work. Adaptability, flexibility, open-mindedness, and ability to multi-task. Sense of
urgency and stress management.

14. Experimentation skills.
15. Good grasping power and attention to detail: breadth, depth, clarity, accuracy, preciseness, specificity,

relevance, significance, completeness, consistency.
16. Imagination: storyboarding, extrapolation, visualization, cognitive flexibly: ability to transfer and models of

solutions of one situation/field to another, multi-perspective thinking, lateral thinking, inductive thinking, out-
of-box thinking, unstructured thinking, creativity and idea initiation, and innovation.

17. Knowledge of contemporary issues and business practices.
18. Knowledge of physical and natural world. Intercultural knowledge.
19. Mentoring, coaching, and training skills.
20. Organizational skills.
21. Persuasion, negotiation, consensus building, and conflict resolution skills.
22. Problem orientation, problem definition and formulation, generations of alternatives. Ability to convert ill-

defined problematic situations into software solvable problem. Ability of infusing different thinking patterns
developed through their experience in other domains. Inclination for reuse and synthesis by integration.
Emphasis on elegant and simple solutions.

23. Problem solving skills: solution implementation and verification.

www.manaraa.com

311

24. Project planning and management, project scoping, estimation, process planning and management,
25. Quality, cost, and security consciousness, pursuit of excellence, intellectual accountability and responsibility,

intellectual integrity, intellectual courage, strength of conviction: assertive without being aggressive.
Commitment to systematic documentation of the work. Recognize and act upon the need to consult other
experts, especially in matters outside their area of competence and experience. Commitment to the
fulfillment of needs of all users and persons who get affected by the technological solutions. Eagerness and
inclination to understand the unintended consequences of creating software inappropriate or at odds to its real
purposes. Commitment to health, safety, dignity, and welfare of the users and also the people who will be
affected by their systems. Sensitivity towards constraints like economic disadvantage and physical
disabilities that may limit software accessibility.

26. Reasoning: quantitative and verbal, and critical thinking: ability to question, validate, and correct the
purpose, problem, assumptions, perspectives, methods, evidence, inference, reliability, relevance, criteria,
and consequences. Numerical ability.

27. Reflection and transition between ladders of reflection. Meta-cognition.
28. Research skills: methods of mathematical research, engineering research, design research, and social science

research.
29. Self-acceptance, self-regulation, self-awareness, self-improvement: strength to resist instant gratification in

order to achieve better results tomorrow. Being honest and forthright about one’s own limitations of
competence. Tendency to avoid false, speculative, vacuous, deceptive, misleading, or doubtful claims. Faith
in reason and review, inclination for verification and validation, respect for facts and data. Awareness and
regulation of automatic thoughts.

30. Systems-level perspective, ‘big picture’ view, holistic and multi-perspective thinking, knowledge integration,
consideration for multilateral viewpoint, and user-centeredness. Process and rule-oriented mindset. Tolerance
to ambiguity and risk. Ability to understand and also build upon other’s work. Ability to work such that
others can easily understand and build upon.

31. Technical competence to solve the software solvable problems using tools and techniques, Use of open
source software. Knowledge of industry’s best practices and standards, appreciation of what is technically
feasible. Identify the risk level of each piece of work.

32. Wealth creation skills.
33. Work load management.

www.manaraa.com

312

Appendix A3: Revised Survey on Required Competencies, 2007

In 2007, we significantly revised and expanded the list of surveyed competencies from twenty-

three (Table A1.1, Appendix A1) to thirty-five. Table A3.1 maps these two set of competencies.
Table A3.1: Comparison of competencies examined in SPINE-based and revised study

Old Competencies
(SPINE based study 2004-05) (Table A1.1)

Revised Competencies
(Revised study, 2007) (S.No. as per Table A3.2)

S.No.

1 Problem solving Problem solving skills (8)
2 Analysis/Methodological skills Analytical skills (5)

Attention to detail (10)
Experimentation skills (25)
Numerical ability (26)

3,4, 8,
and 16

Basic engineering proficiency
Development know-how
Practical engineering experience Specialized

engineering proficiency

Ability to apply knowledge (3)
Technical competence (7)
 Design skills (15)

5 Teamwork skills Ability to work in teams (2)
6, 7, 10,
and
15

English Language skills
Presentation skills
Communication skills
Social skills

Listening skills (9)
Communication skills (16)
Constructive criticism skills (27)
Persuasion skills (28)

9 and 18 Leadership skills
Management of business process and

administration skills

Decision making skills (21)
Organizational skills (23)
Mentoring skills (24)
Ability to assist others through mentoring and

philanthropic donations (30)
Entrepreneurship (35)

11 Ability to develop own engineering expertise Readiness for lifelong learning (14)
12 Research know-how Research skills (17)
13 Ability to develop a broad general education Knowledge of contemporary issues (32)
14, 19,
and 22

Awareness of environmental issues
Sensitivity towards socio-economic aspects for

sustainable technological development
Law

Sensitivity towards global, societal environmental,
moral, and ethical issues and sustainability (34)

17 Project management skills Project planning and management (11)
20 and
21

Finance
Marketing

Wealth creation skills (31)
Cost consciousness (33)

23 Other language skills dropped from further investigation
 Perseverance, commitment, and hard work (1)

Integrity and authenticity (4)
Accountability and responsibility (6)
Quality consciousness and pursuit of excellence (12)
Critical thinking (13)
Adaptability and ability to multi-task (18)
“Be the customer” mentality (19)
Systems-level perspective (20)
Creativity and idea initiation (22)
Sense of urgency and stress management (29)

www.manaraa.com

313

Seventy-one experts working in thirteen companies with additions like Accenture, Borland

Software, SUN, and TCS responded to our new survey. The responding experts had industrial

experience ranging from 1 year to 22 years, with an average experience of 5.6 years. Data was

analyzed in a similar manner to our earlier SPINE-based study (Appendix A1). For classification

of competencies we added another category at the top to distinguish the topmost

recommendation and termed it as ‘Existential.’ The normalized figure of merit (NFOM_Rj) for

these competencies was ten or very close to ten. Table A3.2 provides the summary of the 2007

results in descending order of the normalized figure of merit.
Table A3.2: Importance of thirty-five competencies as rated by Indian engineers and managers working in Indian

and multi-national software companies (Revised Study 2007)

Category S.No. Competency (SNo as per Appendix A2)
Existential 1 Perseverance, commitment, and hard work (13)

2 Ability to work in teams (1)
Pivotal 3 Ability to apply knowledge (2)

4 Integrity and authenticity (25)
5 Analytical skills (6)
6 Accountability and responsibility (25)
7 Technical competence (31)
8 Problem solving skills (22 and 23)

Critical 9 Listening skills (1)
10 Attention to detail (15)
11 Project planning and management (24)
12 Quality consciousness and pursuit of excellence (25)
13 Critical thinking (26)
14 Readiness for lifelong learning (9)
15 Design skills (11)

Obligatory 16 Communication skills (7)
17 Research skills (28)
18 Adaptability and ability to multi-task (13)
19 “Be the customer” mentality (1)
20 Systems-level perspective (30)
21 Decision making skills (10)
22 Creativity and idea initiation (16)

Desirable 23 Organizational skills (20)
24 Mentoring skills (19)
25 Experimentation skills (14)
26 Numerical ability (26)
27 Constructive criticism skills (8)
28 Persuasion skills (21)
29 Sense of urgency and stress management (13)
30 Ability to assist others through mentoring and philanthropic donations (3)
31 Wealth creation skills (32)
32 Knowledge of contemporary issues (17)
33 Cost consciousness (25)

Complimentary 34 Sensitivity towards global, societal, environmental, moral, and ethical issues
and sustainability (3)

35 Entrepreneurship (13)

www.manaraa.com

314

Appendix A4: Mapping of Thirty-five Competencies (Appendix A3) with

Final Set of Twelve Core Competencies
The following tables give the mapping of thirty-five competencies of Table A3.2 (Appendix A3)

with our finally reduced set of twelve competencies given in Table 3.1.
Table A4.1a: Mapping of thirty-five competencies with the Final set of twelve core competencies, part –I

S.No. Core Competencies identified in 2007

(Table 2.6)
Subsuming Twelve Core Competencies
(Table 3.1) (S.No as per Table 3.1)

1 Perseverance, commitment, and hard work Reflective thinking (7)
Decision making perspective (10)
Systems-level perspective (11)

2 Ability to work in teams Communication competence (4)
Systems-level perspective (11)

3 Ability to apply knowledge Technical competence (1)
4 Integrity and authenticity Decision making perspective (10)
5 Analytical skills Domain Competence (3)

Computational thinking (2)
Critical thinking (7)
Systems-level perspective (11)

6 Accountability and responsibility Decision making perspective (10)
Systems-level perspective (11)

7 Technical competence Technical competence (1)
8 Problem solving skills Complex problem solving competence (5)

Computational thinking (2)
Domain Competence (3)
Intrinsic motivation to create/improve artifacts (12)
Creativity and Innovation (8)
Systems-level perspective (11)

9 Listening skills Communication competence (4)
Attention to detail (6)
Critical thinking (7)
Systems-level perspective (11)

10 Attention to detail Attention to details (6)
Computational thinking (2)

11 Project planning and management Domain Competence (3)
Decision making perspective (10)
Complex problem solving competence (5)

12 Quality consciousness and pursuit of excellence Attention to detail (6)
Critical and reflective thinking (7)
Systems-level perspective (11)

13 Critical thinking Critical thinking (7)
Computational thinking (2)

14 Readiness for lifelong learning Curiosity (9)
Intrinsic motivation to create/improve artifacts (12)

15 Design skills Technical competence (1)
Domain competence (3)
Computational thinking (2)
Intrinsic motivation to create/improve artifacts (12)
Creativity and Innovation (8)
Reflective thinking (7)
Systems-level perspective (11)

www.manaraa.com

315

Table A4.1b: Mapping of thirty-five competencies with the Final set of twelve core competencies, part-II

S.No Core Competencies identified in 2007
(Table 2.6)

Subsuming Twelve Core Competencies
(Table 3.1) (S.No as per Table 3.1)

16 Communication skills Communication competence (4)
17 Research skills Curiosity (9)

Intrinsic motivation to create/improve artifacts (12)
Critical and reflective thinking (7)
Creativity and Innovation (8)

18 Adaptability and ability to multi-task Systems-level perspective (11)
19 “Be the customer” mentality Attention to detail (6)

Curiosity (7)
Domain competence (3)
Communication competence (4)
Systems-level perspective (11)

20 Systems-level perspective Systems-level perspective (11)
21 Decision making skills Decision making perspective (10)
22 Creativity and idea initiation Intrinsic motivation to create/improve artifacts (12)

Creativity and Innovation (8)
Computational thinking (2)
Domain Competence (3)

23 Organizational skills Systems-level perspective (11)
Communication competence (4)

24 Mentoring skills Communication competence (4)
Curiosity (9)
Critical and reflective thinking (7)

25 Experimentation skills Attention to detail (6)
Curiosity (9)
Critical and reflective thinking (7)
Intrinsic motivation to create/improve artifacts (12)

26 Numerical ability Technical competence (1)
27 Constructive criticism skills Critical and reflective thinking (7)

Systems-level perspective (11)
28 Persuasion skills Communication competence (4)

Decision making perspective (10)
29 Sense of urgency and stress management Complex problem solving competence (5)

Decision making perspective (10)
Systems-level perspective (11)

30 Ability to assist others through
mentoring and philanthropic donations

Systems-level perspective (11)
Reflective thinking (7)

31 Wealth creation skills Dropped
32 Knowledge of contemporary issues Curiosity (9)
33 Cost consciousness Critical thinking (7)

Systems-level perspective (11)
34 Sensitivity towards global, societal,

environmental, moral, and ethical issues and
sustainability

Systems-level perspective (11)
Reflective thinking (7)

35 Entrepreneurship Decision making perspective (10)
Intrinsic motivation to create/improve artifacts (11)
Creativity and Innovation (8)
Reflective thinking (7)

www.manaraa.com

316

Appendix A5: Catalogue of Technical and Technically Oriented Activities
Related to Software Development

1. Overarching Activities:
Technology Entrepreneurship
Program Management
Infrastructure Management and Maintenance
(Operations Management)
Contract Management
Partnership/Outsourcing/Vendor Development
Procurement
Process Quality Assurance and Control

2. Ubiquitous Activities:
Measurement
Technical Documentation and Presentation
Innovation
Research
Presenting Ideas and Insights
Configuration Management
Product Quality Assurance and Control
Knowledge Management
Training and Talent Development
Group Work, People Management, and Leadership
Idea Convergence

3. Client Interface:
Technical Marketing
Consulting
Feasibility Study
Work flow/Process Study and
Modeling
Visualization
Knowledge Elicitation
Requirement Engineering
Migration Assessment
Test assessment
Product/Requirement Definition
and Specification
Business Technology
Alignments
Deployment and roll out
User Acceptance and Usability
Analysis
User interface Design
End User Documentation
Customer Support
Infrastructure planning

4. Design:
Prototyping
Component and interface Design
Component Selection
Algorithm/Computational
Procedure Design
Architecting
Application Design
Service Design
Product Design
System Design
Network Design
Process Design
Infrastructure Design
Security Architecture Design
Process Tailoring
Test Design
Content Design
Standardization
Restructuring
Intellectual Property Management

5. Realization:
Application Customization
Application Development
Component Development
Product Development
Service Development
System Integration
Infrastructure Setup
Process Implementation and Change
Management
Code Analysis
Build and Release Management
Validation and Verification (Testing)
Maintenance, Enhancement, Up-
gradation, Porting
Data Migration
Technology Migration
Performance Tuning
System Administration
Database administration
Network administration
Security administration
Service Management
Standards and regulatory Compliance
Program Comprehension and re-
documentation
Reconstruction
Code Archaeology
Disaster Recovery
Production Support

6. Planning:
Time to Market Planning
Estimation and Costing
Resource Planning and Management
Project Scheduling
Risk Planning and Mitigation
Staffing and Team Development
Project Monitoring and Control

7. Evaluation:
Application Audit
Process Audit
Technology Audit
Tools and Technology Selection and Evaluation
Architecture Evaluation
Impact Analysis
Value Analysis
Usability Analysis

www.manaraa.com

317

Appendix A6: Taxonomy of Common Software Bugs

Programming Fundamentals related bugs
Data loss bugs, data overflow bugs, operator precedence related bugs, string handling bugs, multi-way branch
related bugs, logical operators related bugs, arithmetical function or operator related bugs, function-like macro
bugs, not checking return value for success or failure, etc.
Operating system related bugs
b1. Memory related Bugs:
b1.1. Stack Corruption: local buffer overrun, returning a pointer to a automatic variable that has gone out of
scope, declaring local storage which exceeds the size of stack of the process, function arguments passed are too
large to be accommodated on the stack, etc.
b1.2. Heap Corruption: dynamically allocated buffer over-run, freeing already freed memory, freeing memory
not allocated dynamically, etc.
b1.3. Invalid Memory Access: NULL pointer access, uninitialized memory access, dereferencing pointer to
freed memory, etc.
b1.4. Memory Leaks: Memory allocated but not freed in all legs of error handling, allocated memory handle
changed, freeing array of pointer holding dynamically allocated memory, etc.
b2. Synchronization related bugs: lack of or inconsistent synchronization, lock acquired but not released in all
scenarios, taking recursive lock which is not supported by OS, taking recursive lock which is supported by OS
but not unlocking correspondingly, blocking call from ISRs etc.
b3. Inter-process or inter-thread related bugs: shared file or socket closed by one thread and being accessed by
other threads or parent process, and heap memory corrupted by one thread result in malfunctioning of some other
thread, priority inversion, etc.
Compiler related bugs
c1. Data Structure padding related bugs: access structure members as raw memory, and structures used for
message communication on different machine, etc.
c2. Source code optimization related bugs: accessing shared memory through pointer, and accessing memory
mapped input/output ports of device, etc.
c3. Object-oriented Language Support related bugs: default constructor construction, default copy constructor for
class with pointer member, constructor for class with compiler generated internal members, erroneous reference
counting due to named return value optimization, initializing a class member with another class member using
member initialization list, lack of virtual destructor in base class, incorrect usage of delete for deleting array of
class objects, throwing exception without proper cleanup, deleting array of derived class objects with base class
pointer, lifetime of compiler generated temporary objects, and throwing an exception from destructor, etc.
Software architecture related bugs
Lack of validation of input parameters, error handling, deadlock, live-lock, reentrant function, concurrency,
parallelism, memory fragmentation, etc.

www.manaraa.com

318

Appendix A7: Proposed Curriculum for

 Masters in Archaeo-heritage Informatics

In 2005, we also proposed the design of a two year master’s program in Archaeo-heritage

Informatics [177]. We viewed information technology as an enabler to enhance productivity,

quality, efficacy, creativity, and also to facilitate integration of innovative ideas in the

archaeological activities of survey, testing, research, conservation, restoration, dissemination,

and management. The courses included three streams: (a) art, archaeology, anthropology, and

heritage studies, (b) computing and multimedia, and (c) communication and management. In

the specific context of Indian universities, we proposed the scheme given below”

Ist semester: (i) basic computing tools, (ii) digital media, (iii) oriental philosophy and

linguistics, (iv) art, architectural aesthetics, and design, (iv) anthropology, and (vi) learning

methods.

2nd semester: (i) web-enabled content creation, (ii) computer based visualization, (iii) computer

aided qualitative and quantitative analysis, (iv) archaeo-heritage documentation methods, (v)

archaeo-heritage conservation methods, (vi) group project.

3rd semester: we proposed to include (i) GIS and digital field methods for archaeology, (ii)

digital library, (iii) knowledge management, (iv) entrepreneurship, (v) archaeo-heritage research

methods, and (vi) group project.

4th semester: (i) quality and creativity management, (ii) design methods, and (iii) dissertation.

www.manaraa.com

319

Appendix A8: Some Suggestions for Breadth Courses
Within the context of many knowledge disciplines in sciences, mathematics, engineering,

management, social sciences, and humanities, a body of knowledge has already been created

around systems and systems thinking. In this context, operations research and mathematical

theory of systems are well developed areas in mathematics. Control systems, system engineering,

and modeling and simulation can be engineering departments’ contribution for this purpose.

Biological subjects are traditionally organized in terms of various systems, and over the last few

years, the area of computational modeling of biological systems has also been well developed.

Topics on statistical physics, complex system physics and nonlinear physics can be considered

for exposing students to think in terms of large complex systems. With reference to social

sciences, humanities, and management, courses on the history of ideas, diversity of human

languages, comparative economic systems, world cultures, world epics, socio-cultural systems

analysis, operations management systems, business process modeling, etc., offer huge potential

to engage students in systems thinking. Richness and diversity of such exposure will reinforce

systems thinking and help in developing the ability to learn new domains.

www.manaraa.com

320

Appendix A9: Inadequate Development of Curiosity in
Software Development Education

In 2005, we carried out an empirical study through a detailed questionnaire on nature of

questioning in the class. Twenty-nine undergraduate students of computer science and

engineering and information technology gave their responses. A summary of their responses is

given in Table A9.1.

Table A9.1: A summary of students’ responses on ‘questioning in the class’

1. Learning is a consequence of thinking, and knowing facts is only small part of it.
2. Most students like to depend more on self study than on lecture classes and they attend classes of most

teachers mostly to meet the attendance requirements.
3. Only a few teachers ask sufficient number of questions during lecture classes. Most teachers do not normally

ask more than three questions in a one hour lecture class. However, some teachers may ask even up to eight
questions during the same duration.

4. Only some teachers give sufficient wait-time (at least few seconds) before calling a student to answer their
questions during their lectures.

5. Only a few teachers ask questions that helped them to think and learn. Most questions asked by most teachers
are related to facts, syntax, formula, procedure or recall that do not require deep thinking. They ask questions
to check if students are attentive and are following them, to keep the class interactive, to revise, to create
interest, to boost the morale of students. When most teachers ask questions during their lectures, they usually
have a “right” answer in mind, and they do not want to hear what students think; they just want to hear that
answer only. Very few actually ask questions to provoke the students’ mind to think beyond the point where
the teacher stops in the class.

6. Very few teacher questions enhance creative/analytical thinking, or promote teamwork.
7. Only a few teachers typically wait for at least few seconds before speaking after a student has answered their

questions during their class. Further, only a few teachers typically explain and critique students’ answers.
8. When students give an incorrect answer to a question, only a very few teachers try to find out why students

answered as they did.
9. Very few teachers help students to expand their initial answers through more probing conversations or help

them through cues and clues.
10. Only some students take initiative to ask questions when confused or curious, and very few asked questions

that required thinking and contribute to classroom discussions.

Software developers’ views

Responding to the state of curiosity development in undergraduate computing education, a

software project manager from Romania made the observation, “…neither undergraduate nor

graduate computing education are doing enough for enhancing this curiosity. In order to find

answers, it is best to always have with you a set of questions. The real problem is if he can

generate an interesting set of questions…” A senior software engineer (educated in India,

working in USA) commented, “Curiosity is what you have as your nature. …college education

can absolutely not help you here on it's own. This is a human nature and college is of no help

here...”

www.manaraa.com

321

Appendix A10: Survey: “Software developers - (How) Did your college help

you in your development?”

A. Effectiveness of Teaching Methods: Survey of Software Developers (2009)

In 2009, our study on teaching methods (Appendix A1) was further extended and refined by

refining and adding a few more teaching methods. Through the online global community

LinkedIn.com, and online surveying tool surveymonkey.com, we conducted a survey, “Software

developers - (How) Did your college help you in your development?” among working software

professionals.

We asked them to rate various educational experiences of college studies with respect to their

direct/indirect contribution for respondent’s later technical/professional/academic activities in

terms of skill, knowledge, problem solving methodology, mindset, thinking, habits, values, etc.

We received 67 responses out of which 49 also revealed their identity and affiliations. These

respondents are working in many companies and have varied experience levels. Some of them

have more than twenty years of experience. We offered them a list of twelve types of educational

experiences. We asked them to associate each of these experiences with six choices: (i)

extremely useful, (ii) mostly were useful, (iii) many were useful, (iv) some were useful, (v) not

useful, and (vi) rarely/never experienced during college studies. We assigned a decreasing

numeric value ranging from 4-0 to first five of these options, and a zero to the last option. Table

A10.1 shows the results of this survey in the descending order of average rating.

www.manaraa.com

322

Table A10.1: Effectiveness of educational experiences for competency enhancement of software developers
 “Software developers - (How) Did your college help you in your development?”

Extremely
useful (4)

Mostly
were

useful
(3)

Many
were

useful
(2)

Some
were

useful
(1)

Not
useful

(0)

Rarely/never
experienced

during
college
studies

(0)

Rating
Avg

(0-4)

1. Projects 61.2%
(41)

23.9%
(16)

9.0%
(6)

6.0%
(4)

0.0%
(0)

0.0%
(0) 3.40

2. Laboratory work 38.8%
(26)

35.8%
(24)

10.4%
(7)

9.0%
(6)

3.0%
(2)

3.0%
(2) 2.99

3. Discussions with other
students

35.8%
(24)

35.8%
(24)

16.4%
(11)

9.0%
(6)

1.5%
(1)

1.5%
(1) 2.96

4. Teaching peers/juniors 32.8%
(22)

31.3%
(21)

16.4%
(11)

7.5%
(5)

3.0%
(2)

9.0%
(6) 2.84

5. Thinking and work oriented
Lectures

32.8%
(22)

25.4%
(17)

23.9%
(16)

11.9%
(8)

1.5%
(1)

4.5%
(3) 2.76

6. Discussions with Faculty 31.3%
(21)

28.4%
(19)

14.9%
(10)

11.9%
(8)

4.5%
(3)

9.0%
(6) 2.70

7. Industrial Training. 31.3%
(21)

23.9%
(16)

14.9%
(10)

11.9%
(8)

7.5%
(5)

10.4%
(7) 2.60

8. Research Literature survey
oriented assignments

20.9%
(14)

32.8%
(22)

20.9%
(14)

13.4%
(9)

3.0%
(2)

9.0%
(6) 2.55

9. Discussions with others 16.4%
(11)

31.3%
(21)

19.4%
(13)

22.4%
(15)

1.5%
(1)

9.0%
(6) 2.39

10. Homework and Tutorial 13.4%
(9)

20.9%
(14)

26.9%
(18)

20.9%
(14)

14.9%
(10)

3.0%
(2) 1.97

11. Knowledge transmission
oriented Lectures (explain and
follow the textbooks)

10.4%
(7)

14.9%
(10)

29.9%
(20)

35.8%
(24)

4.5%
(3)

4.5%
(3) 1.91

12. Written examinations and
required preparation

10.4%
(7)

14.9%
(10)

28.4%
(19)

32.8%
(22)

9.0%
(6)

4.5%
(3) 1.85

Usually, the traditional educational systems and approach over-emphasize three educational

methods: (i) knowledge transmission oriented lectures, (ii) homework and tutorials, and (iii)

written examination and required preparation. Very interestingly, as shown in Table A10.1,

these most valued methods were found to be the least valuable by our respondents for

contributing to the development of their skill, knowledge, problem solving methodology, mindset,

thinking, habits, values, etc., for their later technical/professional/academic activities. These

were the only three methods that were found to have an average rating of less than 2 on a scale of

0 to 4. That means that a good number of our respondents found only some or none of these

www.manaraa.com

323

methods to be helpful in their multidimensional development. Project work, laboratory work,

discussions with other students, thinking and work oriented lectures, and teaching peers/juniors

were rated as the most valuable educational experiences. All these experiences are learner-

centric, whereas the least rated three experiences are essentially teacher-centric. These findings

further validated our earlier SPINE-like study discussed above.

A1. Effectiveness of Teaching Methods-II: Effect on Desired Competencies

In this survey, we had also asked them to rate the effectiveness of these pedagogical

engagements for developing specific competencies, as discussed in Chapter 3. The results of this

survey have been discussed in twelve competency specific sections of Chapters 4 to 6. Table

A10.2 provides the results of this part of this survey. In the first part of this table, Table A10.2

(i) part–I and part-II, we summarize the responses about the basic eleven competencies,

identified at the time of this survey. These eleven competencies were later revised into five basic

competencies, listed in Table 3.2. In the second part of this table, Table A10.2 (ii), we

summarize the responses about the basic three competency driver-habits of mind, identified at

the time of this survey. The competencies are also listed in Table 3.2. In the last part of this

Table, Table A10.2 (iii), we summarize the responses about the six competency conditioning

attitudes and values, identified at the time of this survey. These were later revised into four

competency conditioning attitudes and perspectives, as listed in Table 3.2.

www.manaraa.com

324

Table A10.2 (i) part-I: Perceived effectiveness of pedagogical engagements with respect to enhance of specific
competencies – basic competencies: perceptions of software professionals

“Software developers - (How) Did your college help you in your development?”

Competencies – basic competencies:
1. Technical Competence (1st competency in Table 3.2)
1A. Analytical skills (included in 1st competency in Table 3.2)
1B. Design skills (included in 1st competency in Table 3.2)
1C. Implementation skills (included in 1st competency in Table 3.2)
1D. Debugging skills (included in 1st competency in Table 3.2)
Pedagogical Engagements 1 1A 1B 1C 1D

Total Number of Responses 50 48 49 49 49
Knowledge transmission oriented Lectures (explain
and follow the textbooks)

54.0%
(27)

8.3%
(4)

18.4%
(9)

8.2%
(4)

6.1%
(3)

Thinking and work oriented Lectures 40.0%
(20)

54.2%
(26)

46.9%
(23)

6.1%
(3)

6.1%
(3)

Home work and Tutorials 48.0%
(24)

41.7%
(20)

20.4%
(10)

24.5%
(12)

20.4%
(10)

Written examinations and required preparation 36.0%
(18)

25.0%
(12)

8.2%
(4)

16.3%
(8)

4.1%
(2)

Research Literature survey oriented assignments 32.0%
(16)

58.3%
(28)

28.6%
(14)

20.4%
(10)

10.2%
(5)

Laboratory work 70.0%
(35)

62.5%
(30)

61.2%
(30)

83.7%
(41)

85.7%
(42)

Projects 76.0%
(38)

75.0%
(36)

91.8%
(45)

89.8%
(44)

83.7%
(41)

Industrial Training 36.0%
(18)

33.3%
(16)

49.0%
(24)

49.0%
(24)

34.7%
(17)

Teaching peers/juniors 32.0%
(16)

20.8%
(10)

22.4%
(11)

20.4%
(10)

30.6%
(15)

Discussions with other students 38.0%
(19)

37.5%
(18)

26.5%
(13)

24.5%
(12)

24.5%
(12)

Discussions with Faculty 36.0%
(18)

14.6%
(7)

28.6%
(14)

12.2%
(6)

8.2%
(4)

Discussions with others 10.0%
(5)

8.3%
(4)

14.3%
(7)

4.1%
(2)

4.1%
(2)

www.manaraa.com

325

Table A10.2 (i) part-II: Perceived effectiveness of pedagogical engagements with respect to enhance of specific
competencies – basic competencies: perceptions of software professionals

“Software developers - (How) Did your college help you in your development?”

Competencies – basic competencies:
2. Communication skills (4th competency in Table 3.2)
3. Domain Competence (3rd competency in Table 3.2)
4A. Abstraction and transition between levels of abstraction (included in 2nd competency,

Computational thinking, in Table 3.2)
4B. Algorithmic and structured thinking (included in 2nd competency in Table 3.2)
5. Problem solving: ability to synthesize other competencies in the context of new settings and

complex problems. Ability to convert ill-defined problematic situations into software
solvable problem. Project scoping and estimation (included in 5th competency in Table 3.2)

Pedagogical Engagements 2 3 4A 4B 5

Total Number of Responses 49 49 47 50 51
Knowledge transmission oriented Lectures
(explain and follow the textbooks)

12.2%
(6)

51.0%
(25)

12.8%
(6)

36.0%
(18)

17.6%
(9)

Thinking and work oriented Lectures 20.4%
(10)

28.6%
(14)

38.3%
(18)

60.0%
(30)

51.0%
(26)

Home work and Tutorials 8.2%
(4)

34.7%
(17)

21.3%
(10)

36.0%
(18)

37.3%
(19)

Written examinations and required
preparation

12.2%
(6)

30.6%
(15)

12.8%
(6)

28.0%
(14)

23.5%
(12)

Research Literature survey oriented
assignments

8.2%
(4)

51.0%
(25)

40.4%
(19)

40.0%
(20)

35.3%
(18)

Laboratory work 8.2%
(4)

38.8%
(19)

31.9%
(15)

58.0%
(29)

58.8%
(30)

Projects 22.4%
(11)

61.2%
(30)

57.4%
(27)

72.0%
(36)

78.4%
(40)

Industrial Training 44.9%
(22)

26.5%
(13)

19.1%
(9)

26.0%
(13)

33.3%
(17)

Teaching peers/juniors 71.4%
(35)

30.6%
(15)

21.3%
(10)

24.0%
(12)

25.5%
(13)

Discussions with other students 83.7%
(41)

26.5%
(13)

19.1%
(9)

22.0%
(11)

49.0%
(25)

Discussions with Faculty 69.4%
(34)

28.6%
(14)

21.3%
(10)

22.0%
(11)

31.4%
(16)

Discussions with others 51.0%
(25)

18.4%
(9)

4.3%
(2)

6.0%
(3)

5.9%
(3)

www.manaraa.com

326

Table A10.2 (ii): Perceived effectiveness of pedagogical engagements with respect to enhance of specific

competencies – habits of mind: perceptions of software professionals
“Software developers - (How) Did your college help you in your development?”

Competencies – habits of mind:
6. Attention to details (6th competency in Table 3.2)
7. Critical and reflective thinking(7th competency in Table 3.2)
8. Creativity and innovation (8th competency in Table 3.2)
Pedagogical Engagements 6 7 8

Total Number of Responses 51 50 51
Knowledge transmission oriented Lectures
(explain and follow the textbooks)

17.6% (9) 14.0% (7) 7.8% (4)

Thinking and work oriented Lectures 21.6% (11) 48.0% (24) 52.9% (27)

Home work and Tutorials 27.5% (14) 10.0% (5) 17.6% (9)

Written examinations and required
preparation

27.5% (14) 14.0% (7) 3.9% (2)

Research Literature survey oriented
assignments

37.3% (19) 42.0% (21) 45.1% (23)

Laboratory work 35.3% (18) 24.0% (12) 39.2% (20)

Projects 70.6% (36) 50.0% (25) 82.4% (42)

Industrial Training 33.3% (17) 18.0% (9) 29.4% (15)

Teaching peers/juniors 37.3% (19) 30.0% (15) 31.4% (16)

Discussions with other students 23.5% (12) 44.0% (22) 45.1% (23)

Discussions with Faculty 21.6% (11) 44.0% (22) 39.2% (20)

Discussions with others 5.9% (3) 22.0% (11) 21.6% (11)

www.manaraa.com

327

Table A10.2 (iii): Perceived effectiveness of pedagogical engagements with respect to enhance of specific
competencies – attitudes and values: perceptions of software professionals

“Software developers - (How) Did your college help you in your development?”

Competencies - attitudes and values:
9: Curiosity with humility: self-learning, ability to develop good understanding of domains’ vocabulary,

semantics, and thinking processes, faith in reason, and review. (9th competency in Table 3.2)
10: Decision making. (10th competency in Table 3.2)
10A. Project planning and management (included in 10th competency in Table 3.2)
11: Systems-level perspective: Inclination for reuse and synthesis by integration, to build upon others' work.

(11th competency in Table 3.2)
11A: Ability to accommodate himself to others. Ability to work such that others can easily understand and build

upon. (included in 11th competency in Table 3.2)
11B: Accountability and responsibility: Ability to see the self as bound to other (all) humans with ties of

concern, sensitivity towards global, societal, environmental, moral, ethical, professional issues, and
sustainability. Strength of conviction & self-regulation. (included in 11th competency in Table 3.2)

12: Urge to create/ improve things and open-mindedness. (12th competency in Table 3.2)
Pedagogical Engagements 9 10 10A 11 11A 11B 12

Total Number of Responses 50 48 48 50 50 49 50
Knowledge transmission oriented
Lectures (explain and follow the
textbooks)

26.0%
(13)

6.3%
(3)

12.5%
(6)

10.0%
(5)

6.0%
(3)

14.3%
(7)

14.0%
(7)

Thinking and work oriented Lectures 42.0%
(21)

31.3%
(15)

14.6%
(7)

24.0%
(12)

8.0%
(4)

26.5%
(13)

54.0%
(27)

Home work and Tutorials 26.0%
(13)

20.8%
(10)

12.5%
(6)

22.0%
(11)

12.0%
(6)

20.4%
(10)

16.0%
(8)

Written examinations and required
preparation

12.0%
(6)

8.3%
(4)

6.3%
(3)

4.0%
(2)

4.0%
(2)

16.3%
(8)

6.0%
(3)

Research Literature survey oriented
assignments

62.0%
(31)

29.2%
(14)

16.7%
(8)

46.0%
(23)

14.0%
(7)

24.5%
(12)

58.0%
(29)

Laboratory work 38.0%
(19)

37.5%
(18)

27.1%
(13)

34.0%
(17)

24.0%
(12)

30.6%
(15)

42.0%
(21)

Projects 66.0%
(33)

77.1%
(37)

89.6%
(43)

68.0%
(34)

64.0%
(32)

51.0%
(25)

74.0%
(37)

Industrial Training 36.0%
(18)

35.4%
(17)

70.8%
(34)

32.0%
(16)

38.0%
(19)

40.8%
(20)

30.0%
(15)

Teaching peers/juniors 32.0%
(16)

35.4%
(17)

29.2%
(14)

26.0%
(13)

56.0%
(28)

44.9%
(22)

44.0%
(22)

Discussions with other students 36.0%
(18)

31.3%
(15)

16.7%
(8)

28.0%
(14)

46.0%
(23)

30.6%
(15)

50.0%
(25)

Discussions with Faculty 36.0%
(18)

29.2%
(14)

12.5%
(6)

18.0%
(9)

22.0%
(11)

32.7%
(16)

50.0%
(25)

Discussions with others 14.0%
(7)

18.8%
(9)

12.5%
(6)

8.0%
(4)

20.0%
(10)

28.6%
(14)

24.0%
(12)

www.manaraa.com

328

B. Effectiveness of Teaching Methods: Survey of Students (2009)

The finding of Table A10.1 were also further validated through an almost similar survey among

the final year (seventh semester) computing students at Jaypee Institute of Information

Technology. Both SPINE-like studies showed that projects were the most valuable educational

experience with reference to later professional activities. Hence, we asked the students to rate the

effectiveness of their earlier educational experiences with respect to its contribution on their final

year project. We asked them to rate the following educational experiences of the last 3+ years

with respect to their direct/indirect contribution for this project in terms of skill, knowledge,

problem solving methodology, mindset, thinking, habits, etc. There was a slight modification in

the list of the educational experiences. Since, as a department, we have been using all the

methods listed in Table A10.3, we dropped the last option of ‘rarely/never experienced during

college studies’ in this survey. The respondents, who did not respond to some option, were

treated as ‘no comments’ for that educational experience with a numeric value of zero. The first

five options were used for this survey. We received a total of 210 responses. Table A10.3 shows

the results of this survey.

www.manaraa.com

329

Table A10.3: Effectiveness of educational experiences for competency enhancement of computing students

Extremely
useful (4)

Mostly
were
useful
(3)

Many
were
useful
(2)

Some
were
useful
(1)

Not
useful
(0)

No
comments

(0)

Rating
Average

(0-4)

13. Minor project-I/Minor project-
II of 3rd year

39% (80) 31%
(65)

13%
(27)

13%
(27)

4%
(8)

3 2.8

14. Mini projects as part of
specific courses

31% (65) 37%
(77)

18%
(38)

11%
(22)

3%
(7)

1 2.8

15. Laboratory work (during
laboratory classes)

28% (58) 32%
(67)

25%
(53)

11%
(24)

4%
(8)

- 2.7

16. Industrial Training 33% (68) 25%
(52)

14%
(30)

15%
(32)

13%
(27)

1 2.5

17. Developmental work (for
laboratory classes)

24% (49) 29%
(49)

25%
(52)

19%
(40)

3%
(6)

4 2.5

18. Discussions with faculty 30% (53) 35%
(62)

22%
(40)

12%
(21)

1%
(2)

32 2.4

19. Literature survey oriented
assignments

15% (31) 21%
(43)

40%
(84)

20%
(41)

5%
(10)

1 2.2

20. Discussions with peers/seniors 23% (41) 28%
(50)

25%
(45)

18%
(33)

6%
(10)

31 2.1

21. Lectures 7% (14) 21%
(44)

31%
(54)

35%
(74)

6%
(13)

1 1.9

22. Tutorial 10% (21) 21%
(43)

24%
(50)

28%
(58)

18%
(37)

1 1.8

23. Written examination and
required preparation

8% (17) 17%
(36)

24%
(49)

33%
(68)

18%
(37)

3 1.6

24. Mentoring juniors 10% (17) 16%
(29)

32%
(57)

29%
(51)

13%
(24)

32 1.5

Broadly speaking, the result of this survey also reconfirms the supremacy of projects and

laboratory work as the best educational experiences with reference to their contribution for final

year project in terms of skill, knowledge, problem solving methodology, mindset, thinking,

habits, etc. In the same context, it also reconfirms the inadequacy of lecture, tutorial

(homework), and written examination and required preparation. All these are teacher-centric

activities. It is very interesting to note that the students find discussions with faculty as very

useful for their project, where their response for lecture is very poor. This result in Table A10.3

has one significant variation with respect to the result of Table A10.1. The lowest rating of

mentoring juniors is attributed to the fact that a good number of the respondents gave no

www.manaraa.com

330

comments for this experience. Mentoring juniors is a student-centric activity for the senior

students. The details of this scheme are discussed in Section 9.2.3.2. A large fraction of 58% of

the students found that their experiences in mentoring of juniors were either extremely useful,

mostly useful, or many were useful with reference to their project work. The effect of ‘mentoring

the juniors/peers’ experiences on enhancement of specific competencies as perceived by working

professionals has been discussed in the fourth, fifth, and sixth chapters. As per the report of the

faculty, nearly 50% of the final year students very seriously participate in the mentoring

program. We can interpret that most of those who had enthusiastically participated in the

mentoring program, found that experience useful even for their final year project.

www.manaraa.com

331

Appendix A11: Empirical Examination of Software Development Education Through

Bloom’s Taxonomy

The main aim of this study conducted by us in 2003 [11-12], was to empirically understand the

degree to which the formal components of the traditional teaching-learning-evaluation process in

engineering education succeed in creating opportunities for enhancing various competencies in

terms of Bloom’s taxonomy.

Activity Verbs for Bloom’s Cognitive Levels

Several authors, e.g., Bloom [133], Krumme [305], and TALS [306] have reported mappings of

activity verbs to different Bloom levels. Existing Bloom-level-to-activity-verb-lists mappings

were extended to include the verbs that were not found in the current literature. Table A11.1

gives the list of verbs used for this study.

Table A11.1: List of verbs used for assessing engineering education wrt Bloom’s taxonomy

Level 1 - Remember: acquire, cite, define (studied definitions), derive, fill in the blanks, identify, label, list,
name, obtain, prove (studied theorem, studied method), recall, recite, recognize, reproduce, show (studied fact,
studied method), and state.
Level 2 - Understand: arrange, associate, categorize, change, clarify, classify, compare, convert, describe,
discuss, distinguish, draw, exemplify, explain, illustrate, interpret, match, outline, rephrase, represent, restructure,
rewrite, sort, summarize, tell, and translate.
Level 3 - Apply: apply, calculate, compute, demonstrate, determine, estimate, evaluate (computation),
experiment, find, practice, show (understanding fact in the direct context of studied material), solve, and
transform.
Level 4 - Analyze: analyze, conclude, contrast, debug, deduce, detect, differentiate, discriminate, examine,
extend, extrapolate, generalize, infer, justify, point out, predict, rearrange, select, specify, test, and verify.
Level 5 - Create: build, combine, comment, compose, constitute, construct, correlate, create, define (new things),
design, develop, devise, document, formulate, implement, integrate, modify, organize, plan, prepare, present,
produce, propose, prove (unstudied things), reorganize, report, revise, schedule, sketch, and synthesize.
Level 6 - Evaluate: appraise, argue, assess, decide, evaluate (the options), judge, question, review, revisit,
standardize, validate, value, and weigh.

A survey was conducted among two groups of engineering students and professional engineers.

These three groups were requested to respond to three different but complimentary questions

around a unified and alphabetically sorted list of activity verbs. The first group of about fifty 2nd

year Computer Science and Information Technology students was asked to select and

individually rank the identified verbs based on the frequency of their use in the teaching-

learning-evaluation process. A second group of sixteen students was asked to rank the verbs

www.manaraa.com

332

according the learning effectiveness of the verbs. Thirteen professional engineers were requested

to select and rank 10-15 verbs, that if used more often by the faculty, will help in better preparing

the students for professional life.

Their responses were collated into three different groups, and a group rating was calculated for

every verb. A combined rating of group perception about a verb was statistically extracted from

individual ranks: where a large numerical value of the combined rating by the first group of

students would imply a perception of high usage of that verb, and a smaller numerical value

would imply infrequent or zero usage. A high numerical value for the combined rating assigned

by the second group of students would imply that most of them learn more when that verb is

used to communicate the activity for evaluative or non-evaluative tasks, and a small numerical

value would imply that few or none of them experience effective learning when that verb is used.

Similarly, a high numerical value for the combined rating assigned by professional engineers’

would imply that most of them want the verb to be used often, and a small numerical value

would imply that few or none of them recommend it to become or continue as a commonly used

verb in administering evaluative or non-evaluative tasks.

Respondents assigned contiguous natural numbers starting from 1 without any specified upper

limit as ranks to the verbs of their choice. Some chose to give a unique rank to every verb

thereby assigning ranks in the range of 1 to around 50. Many chose to give a common rank to

many verbs in the range of 1 to around 10. They had the freedom of not assigning any rank to

some verbs. A lower numerical value implies higher ranking, 1 being the highest rank.

Verb-specific group ratings, VRj-student-I, VRj-student-II, and VRj-professional, are defined as follows:

VRj-student-I is the sum of the multiplicative inverse of valid ranks for the jth verb by the first group

of students, i.e.:

VRj-student-I = Σk=1 to 50 (1/Rankkj) Where Rankkj ≠ 0, and represents the perceived usage rank

given by the kth student to the jth verb. There were 50

student respondents.

www.manaraa.com

333

VRj-student-II is the sum of the multiplicative inverse of valid ranks for the jth verb by second group

of students, i.e.:

 VRj-student-II = Σk=1 to 16 (1/Rank’kj) Where Rank’kj ≠ 0, and represents the perceived learning

effectiveness rank given by the kth student to the jth verb.

There were 16 student respondents.

VRj-professional is the sum of the multiplicative inverse of valid ranks for the jth verb by

professional engineers, i.e.:

VRj-Professional = Σk=1 to 13 (1/Rank’’kj) Where Rank’’kj ≠ 0, and represents the recommended

usage rank given by the kth professional engineer to the jth

verb. There were 13 professional respondents.

Verb-specific group ratings, VRj-student-I, VRj-student-II, and VRj-professional were then normalized with respect

to the maximum values of VRj-student-I, VRj-student-II, and VRj-professional respectively, to

calculate activity verb-specific normalised group ratings as follows:

V’Rj-student-I = VRj-student-I /maxj {VRj-student-I }

V’Rj-student-II = VRj-student-II /maxj {VRj-student-II }

V’Rj-professional = VRj- professional /maxj {VRj- professional }

Hence, V’Rj-student-I, V’Rj-student-II, and V’Rj-professional all have a value between 0 to 1. Values close to

1 indicate that most respondents from the specific category have assigned a high rank to the jth

verb, whereas low values indicate low ranks by most of the respondents. Table A11.2 gives

ordered lists of activity verbs as per their usage rating by students, learning effectiveness by

students, and professional engineers’ recommendations. These lists are in descending order V’Rj-

student-I, V’Rj-student-II , and V’Rj-professional respectively. The first list in Table A11.2 indicates that

most faculty members assigned activities directly asking students to calculate, explain, prove

(studied theorem, studied method), define (studied definitions), write, solve, compute, show

(studied fact, studied method), evaluate (computation), or derive. The second list in Table

A11.2 indicates that most students experience maximum learning when asked to design, analyse,

understand, build, apply, adapt, implement, create, develop, or demonstrate. The third list in

Table A11.2 indicates that professional engineers recommended that the faculty should

repeatedly direct or ask students to analyse, design, develop, implement, evaluate (the options),

www.manaraa.com

334

integrate, build, conclude, define (new things) or acquire (knowledge). There is a significant

similarity between the second and the third list. This demonstrates that the preferred learning

style of most of the students is in alignment with the demands of the post university professional

life. However, there is a very serious difference between the first and other two lists, so much so

that none of the top ten verbs of the first list also appears in one of top ten slots of either of the

other two lists. While universities focus on regularly updating their curriculum, the differences in

these lists demonstrate the need for transforming the teaching-learning-evaluation processes from

a content-based curriculum to a process-based curriculum.

Table A11.2: Ordered lists of activity verbs

Ordered list of activity verbs as per their usage rating:
calculate, explain, prove (studied theorem, studied method), define (studied definitions), write, solve, compute,
show (studied fact, studied method), evaluate (computation), derive, state, describe, determine, find, analyse,
justify, comment, distinguish, consider, illustrate, compare, apply, classify, identify, fill in the blanks, differentiate,
conclude, examine, discuss, develop, implement, name, create, deduce, obtain, exemplify, construct, specify,
design, categorize, estimate, propose, draw, generalize, demonstrate, recall, cite, summarize, convert, predict,
formulate, argue, prepare, list, tell, point out, combine, sort, modify, represent, rearrange, devise, clarify,
transform, compose, change, present, outline, rewrite, match, show (unstudied fact in the direct context of studied
material), contrast, evaluate (the options), interpret, validate, organize, translate, label, build, decide, discriminate,
produce, relate, recognise, synthesize, standardise, integrate, extend, plan, assess, recite, associate, document,
reproduce, select, detect, arrange, infer, and judge.
Ordered list of activity verbs as per their learning effectiveness:
design, analyse, understand, build, apply, adapt, implement, create, develop, demonstrate, validate, define (new
things), show (unstudied fact in the direct context of studied material), illustrate, compare, enjoy, correlate, argue,
research, evaluate (the options), compile, propose, derive, summarize, evaluate (computation), find, discover,
explain, suggest, submit (deadline), show (studied fact, studied method), question, present, modify, devise,
compute, construct, debate, solve, incorporate, focus, critique, improve, justify, examine, differentiate, prove
(unstudied theorem), change, contrast, organize, associate, experiment, utilise, study, integrate, express, challenge,
act, survey, transform, establish, interpret, grade, collaborate, administer, describe, progress, produce, duplicate,
discuss, decide, contribute, conclude, teach, support, determine, prove (studied theorem, studied method),
calculate, perform, accept, use, quote, negotiate, deduce, formulate, consider, categorize, simulate, relate, expand,
chart, view, test, standardise, judge, document, combine, clarify, assemble, arrange, trace, rewrite, generalize,
experiment, sketch, plan, perceive, exemplify, define (studied definitions), write, structure, restructure, memorise,
convince, classify, anticipate, state, revise, reconstruct, restate, invent, simplify, convert, communicate, and reason.
Ordered list of activity verbs as per professional engineers’ recommendations:
analyse, design, develop, implement, evaluate (the options), integrate, build, conclude, define (new things),
acquire, demonstrate, justify, assess, organize, formulate, estimate, summarize, categorize, validate, document,
standardise, identify, appraise, calculate, manage, represent, review, reproduce, devise, apply, comment,
generalize, specify, explain, extend, state, schedule, compare, present, classify, compute, consider, constitute,
debug, decide, define (studied definitions), distinguish, examine, extrapolate, interpret, modify, name, point out,
prove (unstudied theorem), recognise, reorganise, rephrase, report, revise, revisit, solve, synthesize, test, transform,
transmit, weigh, create, prove (studied theorem, studied method), show (unstudied fact in the direct context of
studied material), change, illustrate, practice, verify, question, clarify, discuss, propose, restructure, compose,
recall, differentiate, and find.

www.manaraa.com

335

These three lists were further distilled using Bloom’s level to verb list mapping. All the verbs

belonging to one Bloom level were grouped into one unit and Bloom level-specific consolidated

ratings LR-student-I , LR-student-II and LR-professional were computed as follows:

LR-student-I and LR-student-II are the sum of VRj-student-I and VRj-student-II respectively, for all the verbs

belonging to the ith Bloom level, i.e.:

 LRi-student-I = Σj VRj-student-I Where the jth verb belongs to the ith Bloom Level

 LRi-student-II = Σj VRj-student-II Where the jth verb belongs to the ith Bloom Level

LRi-professional is the sum of VR-professional for all the verbs belonging to the ith Bloom level, i.e.:

LRi-Professional = Σj VRj-Professioanl Where the jth verb belongs to the ith Bloom Level

Bloom level-specific consolidated ratings LR-student-I, LR-student-II, and LRi-professional are then

normalized as follows:

 SR-student-I = Σi = 1 to 6 LRi-student-I

 SR-student-II = Σi = 1 to 6 LRi-student-II

 SR-professional = Σi = 1 to 6 LRi-professional

 L’Ri-student-I = LRi-student-I /SR-student-I

 L’Ri-student-II = LRi-student-II /SR-student-II

 L’Ri-professional = LRi-professional /SR-professional

The next stage of this research investigated verb usage in question papers. The sample comprised

fifteen question papers of different subjects, given to around 1200 engineering students of the 1st,

2nd and 3rd year Electronics, Computer Science (CS), and Information Technology (IT) and

Biotechnology disciplines. Bloom level-specific consolidated ratings, LRi-Examination were

computed from this data as follows:

L’Ri-Examination is the fraction of the ith Bloom level questions across all question papers, where:

www.manaraa.com

336

LRi-Examination = Number of questions belonging to the ith Bloom level

SR-Examination = Σi = 1 to 6 LRi-Exam

L’Ri-Examination = LRi-Examination /SR-Examination

Table A11.3 tabulates L’Ri-student-I, L’Ri-student-II, L’Ri-professional, and L’Ri-Examination where large values

indicate high ranks by most of the respondents.

Table A11.3: Comparison of Bloom level-specific normalized consolidated ratings

Bloom’s
Cognitive levels
(i)

What students
think they get

L’Ri-student-I

What students
get in

examinations
L’Ri-Exam

What students think
works well for

them
L’Ri-student-II

What professional
engineers

recommend
L’Ri-professional

Remember 0.24 0.36 0.04 0.09
Understand 0.24 0.16 0.11 0.10
Apply 0.22 0.40 0.13 0.10
Analyze 0.14 0.04 0.15 0.19
Create 0.14 0.05 0.46 0.38
Evaluate 0.02 0.00 0.11 0.15

Table A11.4 gives the correlation coefficients between these three ratings (each can be viewed as

an arrays of 6 elements).

Table A11.4: Correlation between different consolidated ratings

 What students

think they get
L’Ri-student-I

What students get
in examinations

L’Ri-Exam

What students
think works well

for them
L’Ri-student-II

What professional
engineers recommend

L’Ri-professional

What students get
in examinations
L’Ri-Exam

0.77

-0.25

-0.57

What students
think works well
for them
L’Ri-student-II

-0.22

-0.25

0.96

What professional
engineers
recommend
L’Ri-professional

-0.38

-0.57

0.96

www.manaraa.com

337

Appendix A12: Anecdotes of Most Effective Learning Experiences/Lectures

Table A12.1: Anecdotes about the best lectures offering most effective learning experience,
 as recalled by senior computing students

S.No. Anecdote
1 Good presentation using nice illustrations for algorithm visualization, followed by good student

responses to teacher’s questions.
… ……
3 One-sided, the teacher did all the talking saying only that which was important. The flow was linear and

progressive and no sudden jumps from one topic to another.
… ……
5 30 min almost non-interactive talk, followed by 20 min of discussion in the form of teacher using real-

life examples, taking views of students, 6-7 students responded. He analyzed all the views. He again
asked for responses while consolidating and converging the response to draw conclusions.

… …..
11 In one or two lectures classes (2.5-3 hrs.), we had large groups working as teams for a long duration (1-

1.5 hrs.)--- a great way to learn things real fast. In fact any large class where you have a large number
of students involved in an open discussion even for 15 min. is great from a learning perspective.

… …..
13 15-20 min. of one-sided presentation. The teacher asked “Is it clear?” “No,” replied students. “Where is

the problem?” asked the teacher. No response from the students. The teacher started asking questions
related to the topic and continued to ask 5-6 questions. Critiqued studens’ responses and finally told the
correct answer. This took around 20 min. This question-answer session clarified the concept. The
teacher continued with his presentation, while I continued to reflect upon the prior presentation and
subsequent conversation. This class was great because of the central 20 min.

… ……
19 The teacher talked non-interactively (20 min). The teacher gave a problem. We worked on it. Discussed

it with the neighbor and then with the teacher (10+ min). The teacher re-explained the same concept (10
min). Gave another problem and asked us to work (5+ min). Introduced another concept. Asked for
doubts and clarified (15 min).

… …
22 Teacher gave us a design problem and asked us to work on it in a group. (15-20 min). Many groups

were asked to explain their solutions (10+ min). Teacher consolidated the solutions. Restated the
problem in a more comprehensive and formal manner and gave us home assignments (20+ min).

… …..
26 Teacher’s presentation (15 min), students were asking questions, and teacher was answering. Teacher

gave a problem, we worked on it (5 min). Teacher showed the correct solution, and asked us to verify
our solution. This presentation-problem-solution cycle happened 3-4 times.

…. ….
28 Students made presentation on their projects on the same topic. The presentations were critiqued by all.

www.manaraa.com

338

Table A12.2: Anecdotes about the best lectures offering most effective learning experience,
 as recalled by sophomore computing students at the beginning of their 3rd semester

S.No. Anecdote
1 We were given just 5 min. to think about a particular topic and then we had to give a presentation on that

topic. It was like a brainstorming session in which we could show our creative analytical and linguistic
skills.

… …..
4 The teacher made the topic so easy that there was no need to go through the book. I made notes and

understood concepts.
… …..
7 Teacher used to ask us everyday what we learnt on the previous day. And used to explain every concept

very clearly. It was an interactive class. We used to listen to her very attentively.
… …..
14 He used real-life examples to describe. I attentively attended the class.
… …..
16 I learnt to apply the concept in the real world. Also, I cleared my previous doubts. I attended and listened

to it very carefully.
17 Teacher discussed problems at the end of each and every topic he discussed. I was able to ask my doubts

simultaneously as the lecture proceeded.
… …..
24 It went very slowly. I recalled my earlier exposure to the subject material.
… …..
30 All the unclear concepts were clarified on the spot and mapped to real-life examples. I carefully listened

to the teacher’s presentation.
… …..
41 It was pin-drop silence, and the subject was very clear to us. I tried to understand what was being taught.
… …..
49 I concentrated, listened, and wrote notes properly.
… …..
57 Teacher presented it very well. I tried to listen.
… …..
68 Teacher did not merely explain the topic. He gave real-life examples that enabled the matter to be firmly

stored in mind. No notes were taken. There was no necessity. We just sat and listened.
… …..
76 Very interactive class. Involved myself in interaction.
… …..
82 Topic was practically relevant. Teacher asked us to think and ponder about different theoretical concepts

and helped us visualize them in reality and asked us to think about them.

www.manaraa.com

339

Table A12.3: Anecdotes about the best lectures offering most effective learning experience,
 as recalled by faculty members of engineering institutes from their student life

S.No. Anecdote
1 No especially memorable very effective class. However some were interesting when the teachers brought

in real-life applications.
… …..
6 Teacher started with a basic point. And everything was built from that. Mostly one way communication

with very few queries.
… …..
8 20 students, 3 hr class with a break. We were given a reading assignment on the previous day (7-8 pages

on the concept and a case). He asked “What have you gathered about the concept?” Everybody
responded, and the key points were all put up on the board without any value addition from him (20 min).
He asked, “What have you gathered about the case?” Everybody responded, and the key points were all
put up on the board without any value addition from him (20 min). He related the two, added value, went
into a conversation mode and summarised.

… …..
11 When it was not bound within the subject and the topic. The analogies came from a very wide spectrum of

domains. Asked questions, and sometimes students also asked questions.
…. ……
18 Teacher used to give good homework, and then related the results of the problem given to the everyday

incidence. He taught electrical machines. He forced us to explain, analyse, and relate our classroom
learning with real-life occurrences.

…. ……
24 …started most of the lectures with questions and answers. Explained basic concepts and asked questions.

Gave case studies in group and we had discussion. Explained concepts using diagrams and real-life
examples. Gave problems to solve in the class so as to make the concept clearer.

…. ……
28 Very energetic. Raise a very simple topic. Asked students to respond. Almost everybody answered. Wrote

all responses on board and discussed with students. Last 30 min, Introduce the topic in relation to the
responses. Humour element in the discussion. No presentation, no slide, No book.

…. ……
33 Teacher started with an example and started asking us questions about our interpretation. It forced us to

think and apply more brain. … I was satisfied because I had contributed something.
…. ……
44 20 students, 6 hrs. Brief explanation of subject matter. Problem definition. We were distributed in groups.

We developed the solutions, and in due course learnt how the solutions exist.
…. ……
65 We were given an exercise that was discussed in pairs, then the related theory was revealed by the teacher

along with the current example.
…. ……
72 Problem introduction (15 min). Basic concept (15 min). Problem solving (20 min). Future aspect (10

min).
… …..
84 Delivered lecture in systematic manner, and explained each and every thing very clearly. Very organized,

systematic and prepared for the topic.
…. ……
95 20 min of interactive lecture, highly informative, interesting 10 m in of discussion, 15 min of introduction

a new concept. Discussion and problem solving for 15 min.
…. ……
99 Presentation. Asked a number of questions from the students. The teacher evaluated various answers.

Each student equally participated, more interactive, develop designing ability; I developed the analysis
process to find efficient solutions.

www.manaraa.com

340

Table A12.4: Anecdotes about the best lectures delivered by the faculty members
of engineering institutes, as recalled by them

S.No. Anecdote
1 Throughout the course, a variety of queries came during presentations, I reformatted and redirected them

back to students and tried to find out the solution themselves and responded well.
…. ……
5 An extra class, attendance not compulsory. 110-120 students were present. Took 2 hr. I was not teaching

the topic, I was discussing the topic. Gave 20 min of basic concept. Opened up a problem for their
discussion. 20 min discussion. 25-30 students stood and said something in this conversation. I summarized
and evaluated different solutions. This way we covered 3-4 topic in the same style of (lets call it
presentation-conversation-summation).

…. ……
11 Introduced the topic for 20 min and asked them to relate the new topic with their existing knowledge by

comparing the syntax with earlier syntax. Asked them to apply the topic in their way. Walked around for
10 min seeing them work out their solutions. Selected 3 solutions for 5 min each. Introduced next topic
with the help of a case study.

…. ……
13 I asked a series of questions that led them to the rediscovery of tunnel diode and its characteristics.
…. ……
18 30 min presentation. No response. Switched to daily life, asked them to form groups. Gave them an

opportunity to design. The groups discussed with me. No consolidation.
…. ……
25 Checked student’s background knowledge by asking questions for 5 min. Explained the concept with the

help of an analogy from a daily life experience (20 min). This was followed by 20-25 min of questions
from students and my answers.

…. ……
28 Explained the concept (15-20 min). Gave an example (5 min). Came questions from students. (5 min).

Another example (5 min). Came more Questions. (5 min). Wound it up all. Asked them a few Questions.
…. ……
30 …started with a Q, and a lot of responses came. No value addition from my side (30 min).

I introduced the concept with my slides and related it to earlier responses. This was also interactive (by
invitation and interruption).

…. ……
32 Part I do part they do, I check.
…. ……
41 Started with asking questions on the topic and subtopic. Gave my non-interactive presentation for 10 min.

ask them if they understood or not. Gave them a problem to solve. Walked through the class and checked
randomly. Solved their problem. Gave another problem. Analyzed the concept and went to another
subtopic.

…. ……
43 I was able to link some of theoretical aspects with real-life examples. Students were satisfied and happy

with the approach

www.manaraa.com

341

Appendix A13: Quantitative Study of Computing Students’ Perspective of
Effective Lectures

Based 252 anecdotes from students and faculty (Appendix A12), a list of fourteen non-exclusive

lecture properties was prepared as possible attributes of different lecture formats. These are listed

in Table A13.1.

Table A13.1: Attributes to characterize variety of lecture format in engineering/software development education

a. Lecture classroom is primarily a place for careful listening to teacher’s presentation and prepare class notes.
b. During the lecture classroom, the main purpose of this presentation is to explain a textbook.
c. Lecture format encourages and allows many students to on-the-spot seek clarifications about unclear

concepts in a teacher’s presentation.
d. Lecture format encourages and allows you to seek clarifications about home and laboratory work.
e. Lecture format encourages and demands you to get on-the-spot practice of problem solving as an individual.
f. Lecture format encourages and demands you to do on-the-spot creative thinking.
g. Lecture format encourages and demands you to do in-class-group-work.
h. Lecture format encourages and demands you to in-class create conceptual designs.
i. Lecture format encourages and demands you to in-class analyze presented information.
j. Lecture format encourages and demands you to on-the-spot communicate your creations to neighbor

students.
k. Lecture format encourages and demands you to on-the-spot communicate your creations to the entire class.
l. Lecture format encourages and demands you to on-the-spot critique other student’s work.
m. Lecture format encourages and demands you to on-the-spot evaluate several creations and options.
n. Lecture format encourages and demands you to on-the-spot discover conceptual knowledge through thinking

and work rather than mere listening to teacher’s presentation.

With respect to a given student’s activities in the lecture classrooms, we classify these

attributes into the following four categories:

5. Passively engaged student: The student only listens and does not add any content to the

discourse (attributes a and b).

6. Reactively engaged student: The student reacts and asks for some clarifications without

adding any other type of content to the discourse (attribute c).

7. Actively engaged student: The student gets individually engaged in some kind of problem

solving activity, and adds some content to the discourse (attributes d, e, f, h, i, l, m, and

n).

8. Collaboratively engaged student: The student proactively collaborates with others to

solve problems and adds content to the discourse in the lecture classroom (attributes f, g,

h, i, j, k, l, m, and n).

www.manaraa.com

342

These categories together form a typology of learning environments based on learner’s

conditioning. It may be noted that some of the attributes (f, h, i, j, k, l, m, and n) belong to the

3rd as well as 4th group. Different subsets of these attributes can characterize different lecture

styles being used by engineering faculty. This work attempts to separately identify the perceived

effectiveness of the listed attributes. In order to have the perceptions of more experienced

learners, who might have experienced a larger range of the abovementioned lecture attributes as

part their formal education, a survey was conducted among senior undergraduate and

postgraduate engineering students.

Respondents were requested to identify different ‘lecture format categories’ on the basis of

distinguishable attribute combinations. They were then asked to assign ‘usage rank’ and

‘learning effectiveness rank’ to lecture format categories, identified by them. In all, 36

responses were received. Their responses for ‘most effective lecture format,’ ‘least effective

lecture format,’ ‘often used lecture format,’ and ‘least often used lecture format’ are collated in

Table A13.2. The first column of Table A13.2 represents the lecture attributes as per Table

A13.1. Column A gives the attribute-wise fraction of respondents who felt that the lecture

category with a given attribute is most effective for their learning. Column B shows the fraction

of the respondents who felt that the lecture category with a given attribute is least effective for

their learning. Column C gives the fraction of the respondents who felt that the lecture category

having given attribute is most often used by teachers. Column D shows the fraction of the

respondents who felt that the lecture category with a given attribute is least often used by

teachers. For example, 75% respondents felt that lectures that encourage and demand them to do

on-the-spot creative thinking (attribute f), are the most effective for them, whereas only 5%

found such lectures to be least effective. Only 9% students thought that this is one of the attribute

of the most often used format, whereas 45% thought that this is one of the attributes of the least

used lecture format.

www.manaraa.com

343

Table A13.2: Comparison of computing students’ perception of effectiveness and usage rate of lecture format
attributes

Lecture Format property Most

Effective for
learning

(A)

Least
Effective for

learning
(B)

Most Often
used

(C)

Least Often
used

(D)

a. careful listening and preparing notes 36.36% 70.45% 79.55% 27.27%
b. explain textbook 11.36% 90.91% 88.64% 15.91%
c. on-the-spot seek clarifications 47.73% 38.64% 47.73% 29.55%
d. seek clarifications 34.09% 27.27% 25.00% 18.18%
e. problem solving 56.82% 15.91% 18.18% 31.82%
f. creative thinking 75.00% 4.55% 9.09% 45.45%
g. in-class-group-work 63.64% 4.55% 2.27% 47.73%
h. create conceptual designs 59.09% 2.27% 2.27% 45.45%
i. analyze presented information 59.09% 11.36% 6.82% 43.18%
j. communicate your creations to neighbor students 38.64% 11.36% 2.27% 63.64%
k. communicate your creations to the entire class 50.00% 6.82% 0.00% 63.64%
l. critique 43.18% 9.09% 2.27% 47.73%
m. evaluate 47.73% 4.55% 2.27% 61.36%
n. discover 63.64% 2.27% 0.00% 63.64%

This data in Table A13.2 was consolidated for the four categories of the lecture format attributes.

The consolidated fractional ratings under each category of attributes were summed up. Table

A13.3 shows the result of this summing up.

Table A13.3: Attribute category-wise consolidated ratings by computing students

Lecture format attribute category

(engagements no in Table 7.13)

Most
effective for

learning
(A)

Least
effective for

learning
(B)

Most often
used

(C)

Least often used

(D)
6 Passively engaged student (a and b) 0.48 1.61 1.68 0.43
7 Reactively engaged student (c) 0.48 0.39 0.48 0.30
8 Actively engaged student (d, e, f, h, i, l,

m, and n)
4.39 0.77 0.66 3.57

9 Collaboratively engaged student (f, g,
h, i, j, k, l, m, and n)

5.00 0.57 0.27 4.82

www.manaraa.com

344

Appendix A14: Summary of SERO Style Lectures in Two Courses

Summary of SERO lecture in a Computer Graphics course (2004)
1. Seed 1.1.1: CG has picture description as input and picture as output.
2. Seed 1.1.2: Required inputs = fn (desired output).
3. Evolution 1.1: Output picture taxonomy for CG

static vs dynamic picture (degree of dynamism)
colour vs B&W (colouredness in the whole spectrum from binary to true color)
interactive vs non-interactive (degree of interactivity)
realistic vs symbolic (degree of realism)
objects vs abstract (degree of abstraction)
geometric objects vs natural objects

4. Reseed 1.1 (Homework): Refine the taxonomy.
5. Seed 1.2: Demonstration of a simple working graphics program and its code, with a focus on initialisation and

closing of graphics mode, and some introduction to other functions.
6. Reseed 1.2(Homework): Practice using the graphics library.
7. Reseed 1.3: Identify some static and b&w picture and describe it in a machine readable format.
8. Evolution 1.2: Get your description critiqued by your partner, and rewrite your description.
9. Reseed 1.4: Develop a description scheme for encoding a description of a tree in machine readable format in a

text file.
10. Evolution 1.3: Three solutions proposed by students:

(i) Row major 1/0 (ii) List of points for which colour is 1. (assumption: all others are 0)
(ii) Vectorised information

11.Reseed 1.5 (HW): Develop a description scheme for encoding a tree description in machine readable format in a
text file. Create this file. Write a program to read this file, and create a tree on the screen.

12. Evolution 1.4 (HW): Design and programming work over the week involving 2 hrs. of batch-wise practical
session with laboratory instructors in batches of 30 students, and group-wise discussions with the teacher with
some groups on their initiative.

Learning Outcome #1: Students got an insight into the working of a simple graphics program already created by
one of their peer student. They also succeeded in conceiving and evolving the taxonomy of graphics and data
structures for static graphics.
Summary of SERO lecture in a Data Structures course (2005)
1. Vivek’s non-recursive solution for list traversal without using a large number of temporary variables, or changing

the structure of the list from singly-linked to doubl- linked. Estimated number of nodes to be traversed is O(n2).
2. Tanu’s recursive solutions for linked list traversal: forward traversal, backward traversal.
3. Count the number of nodes traversed in the recursive solutions.
4. Tabular Analysis of control flow, lifetime of variables, and visibility of variable in recursive algorithms.

i. Number all executable statements in the source code (including the last ‘},’ indicating the return or end
of function, of the functions and also of the main function).

ii. Each call of the recursive function as expected to be made at run-time, is numbered as i, ii, iii, and so on.
iii. Hence, each run time statement is numbered as i.1, i.2, …, ii.1, ii.2 , ..., and so on.
iv. Key variables (parameters and local variables declared within recursive function) such as varname1 are

also labeled as i.varname1, ii.varname1, and so on.
v. Create a control flow analysis table:

v.i. The first column has the estimated run-time statement number of the current statement, e.g., i.1,i.2,
simulating the logic of control flow.

v.ii. The second column has list of live variables, e.g., i.varname1, ii.varname1, and their respective
expected values, after executing the current statement. Underline the variables visible in this
activation of the recursive function. On return from the jth call of the the function, all variables
labeled as j.varnamex go out of scope, and are no more available in the memory.

v.iii. Third column has the run time estimated statement number of next statement to be executed
after execution of the current statement.

5. Assignment: Analyze all recursive programs so far written by you with the help of this tabular analysis
technique as discussed in the class.

www.manaraa.com

345

Appendix A15: Evolutionary Stages of Student Projects

Object-oriented Programming: (developed with S.K Singh, T.K. Tewari, M. K Thakur, and Manisha Rathi)
1. Single application: single class, single function
2. Single application: single class, multiple functions
3. Single application: multiple classes, multiple functions, simple relation
4. Single application: multiple classes, multiple functions, complex relation (association)
5. Single application: multiple classes, multiple functions, complex relation (aggregation, composition)
6. Single application: multiple classes, multiple functions, complex relation (inheritance)
7. Single application: multiple classes, multiple functions, complex relation (polymorphism)
8. Secure single application: multiple classes, Multiple functions, complex relations
9. Robust (exception handling) and secure single application: multiple class, multiple function, complex relation
10. Robust and secure multiple applications: multiple classes, multiple functions, complex relations
Database Management Systems: (developed with Indu Chawla)
1. Simple database applications : Single-user, Multi-user, Multiple type multi-user
2. Web-enabled database applications
3. Robust Web-enabled database applications
4. Robust Web-enabled database applications with a large no. of concurrent users
5. Secure Robust Web-enabled database applications with a large no. of concurrent users
6. Secured Robust Web-enabled database applications with multimedia user interface and database
7. Mobile accessible Secure Robust Web-enabled database applications
Web Application Engineering: (developed with Jolly Shah)
1. Single Thin Client Web Application
2. Single Thick Client Web Application
3. Multiple Thick Client Web Application
4. Multiple Rich Client Web Application
5. Multiple Rich Client Web Application with automated database population
6. Secure Multiple Rich Client Web Application with automated database population
7. Mobile enabled Secure Multiple Rich Client Web Application with automated database population
Enterprise Application Development: (developed with Ritu Arora) [367]
1. Single Thin Client Web Application
2. Multiple Thin Client Web Application
3. Multiple Thick Client Web Application
4. Multiple Rich Client Web Application
5. Modular Multiple Rich Client Web Application
6. Modular Multiple Rich Client Web Application with multiple GUI support
7. Secure Modular Multiple Rich Client Web Application with multiple GUI support
8. Secure Modular Multiple Rich Client Web Application with distributed access
9. Mobile enabled Secure Modular Multiple Rich Client Web Application with distributed access
Software Engineering: (developed with Manisha Rathi)
1. Initial, direct, independent and well-defined requirements
2. Initial, direct, independent and ill-defined requirements
3. Initial, direct, inter-dependent and ill-defined requirements
4. Initial, derived, inter-dependent and ill-defined requirements
5. Evolutionary, derived, inter-dependent and ill-defined requirements
Information Systems (IS): (developed with Jolly Shah)
1. Building IS using Single Thin Client
2. Building IS using Multiple Thin Client
3. Building IS using Multiple Rich Client
4. Building IS using Modular Multiple Rich Client
5. Building IS using Modular Multiple Rich Client with Multiple GUI Support
6. Building IS using Secure Modular Multiple Rich client with Multiple GUI Support
7. Building IS using Secure Modular Multiple Rich Client Web Application With Distributed Access
8. Building mobile based IS

www.manaraa.com

346

Appendix A16: Reflective Engagements

Table A16.1: Format for reflective report on final year project

Reflecting upon your final year project, answer the following questions:
1. What is the problem you have tried to solve? Why is this work important?
2. Does your project open new ways of thinking? How?
3. What was the division of the task among group members?
4. What were the main challenges? How did you address these challenges?
5. What is your approach or solution?
6. Why is it better/different than other existing approaches or solutions?
7. What personal, technical, and other professional competencies have you been able to strengthen due to your

engagement in this project? How?
5. What new things did you learn?
9. What mistakes did you make with respect to your project?
10. If you were to start again, how would you approach the project?
11. Can your project act like a seed for some future projects? If yes, how? List the problem statements for future

projects as a natural extension of your project.
12. Has your project been used by persons outside your group? Have you done anything to solicit (potential)

user's feedback?
13. Did you collaborate with any other project group? How?
14. What kind of new inter-project collaboration possibilities can you now propose with any of the other ongoing

projects?

Table A16.2: Reflective assignments in three final year elective course

Software Documentation
(designed in collaboration with Bharat
Gupta, Parmeet Kaur, and Hema N.)

Software Risk Engineering
(designed in collaboration with
Sangeeta Mittal, Vivek Mishra, and
Anuja Arora)

Software Construction
(designed in collaboration
with Shikha Mehta, Sandeep
K. Singh, Maneesha
Srivastava, and Alok
Agarwal)

Using the documentation templates,
from the study material of the software
documentation course, re-document
your 7th semester project work paying
special attention to the following:
1. Coding guidelines, best practices,

checklist, user/client documentation
2. Requirement engineering

documentation (as per IEEE 830
standard)

3. SEI Architecture Design
Documentation

4. Software and System Test
Documentation
(as per IEEE 829 standard)

5. Details of the working of the
Documentation Tool that can be used
for the project

1. Individually reflect upon your 7th
semester project experience, and
retrospectively identify the main
risks. Use the SEI software risk
taxonomy and checklist for
identifying software project risks
about requirement, specifications,
design, coding, testing, integration,
product, system, maintainability,
and intra-team communication and
compatibility.

2. Based on individual activity, each
group of two will identify the top six
risks.

3. Each member will develop a
detailed plan for managing three of
these top risks for the 8th semester
project work. Submit your report as
per the prescribed format and
templates.

Write a report about your 7th
semester project addressing
the following aspects:
1. Assertions
2. Exceptional Handling
3. Error Handling
4. Generics/Templates
5. Code Optimization
6. Debugging
7. Source Code Organization

www.manaraa.com

347

Table A16.3: Two sample assignments in ‘software arteology,’ emphasizing on reflection

Assignment #3: Review any ten published research based papers already studied by you in any
project/assignment so far, and submit your report in the following format.
2. Name of peer-reviewer of your work
3. Classify each of your chosen ten papers as per the nature of the goals of reported inquiry. (Exploratory

Informative/Descriptive Informative/Explanatory Informative/Normative.)
4. For each paper, identify the central research question.
5. For each paper, identify the theoretical constructs used in the research.
6. For each paper, identify the theoretical constructs modified/created by the research.
7. For each paper, identify the empirical constructs used in the research.
8. For each paper, identify the empirical constructs modified/created by the research.
9. What is the big picture? What do these specific cases mean/signify on the whole? Generic discussions/common

pattern/differences etc. What are the possible reasons?
10. Now what? What does it imply for the future? What are your own learning outcomes from this assignment?

What kind of personal practices do you intend to change, if any?
Assignment #5: Interact with some creative professionals, in any profession, about their creative experiences
during problem definition, alternative generation of solution approaches, and evaluation criteria design.
Submit your report in the following format.
1. Name of peer-reviewer of your work
2. Give a brief description of the professional's profile from whom you got inputs for this assignment
3. Description of specific cases of creativity in ‘problem definition.’ Separately narrate each case. How many

iterations, stimulants, process, duration?
4. Description of specific cases of creativity in ‘generating alternatives’ before deciding the final solution approach.

Separately narrate each case. How many alternatives, iterations, stimulants, process, duration?
5. Description of specific cases of creativity in defining the ‘criteria for selection’ out of alternate solutions

approaches. Separately narrate each case. How many options, iterations, stimulants, process, duration?
6. So what is the big picture? What do these specific cases mean/signify on the whole? Generic

discussions/common pattern/differences etc. What are the possible reasons?
7. Now what? What does it imply for the future? What are your own learning outcomes from this assignment?

What kind of personal practices do you intend to change, if any?

Table A16.4: Some sample responses to last sub-question (now what?) of some assignments (Table A16.5)

• My personal learning is that if you want to do a task well, you have to ask the right questions, and for that you

need to get into the shoes of the customer and think like him, i.e., have background knowledge of the domain.
• This assignment has brought to light the importance of questions. I realize that question formation is more

important and difficult than answers, because it involves creativity. I will give more stress to bombarding my
mind with questions.

• I have always thought that we do a lot of theories and less of implementation. That perspective has changed to a
greater extent.

• Two problems have plagued me throughout most of the activities undertaken. Firstly, I was unable to
differentiate problems from symptoms, and secondly, even on being able to filter out the problem, I was unable
to answer it in an appropriate manner. I now seem to have understood what the appropriate answer for a question
ought to be.

• It implies that every project or research needs both empirical and theoretical constructs. In the future, I would
concentrate on theory, and then will try to bring that theory in a modified form into the emperia.

• … it had brought changes in me. The first thing is that we should not rush into seeking a solution without
knowing the purpose. We should first do iterations in our minds and play with the problem statement again and
again, and then come to a definite track.

• In the future instead of jumping onto a problem for solution, I would rather define the problem with a better
understanding and look, for all possible existing solutions, and very clearly list down the criteria to choose the
best possible solution. I will keep in mind the need to carry out many iterations to improve upon the problem
statement, possible solutions, and the criteria for selection, and reflect after an iteration in one of these areas over
the other areas too.

www.manaraa.com

348

Appendix A17: Feedback from the Cross-level Mentors on Infusion of Some
Pervasive Topics in Foundation Courses

Table A17.1: Mentor feedback on infusion of web technology

Host course Sem Mentors’ perspective on course specific infusion of web technology (number

of mentors in each view category)
Avg
rating

(0-3)

Extremely
valuable for
immediate
foundation and
long term
benefits, worth
the extra work
(3)

Valuable for their
foundation/long
term benefits, worth
the extra work

(2)

Valuable for their
foundation/long
term benefits, but
not worth so much
extra work at this
stage

(1)

Only
marginally
useful, not
worth the
extra work at
all now

(0)

Introduction to
Computers and
Programming

1 12 28 25 10 1.56

Object-oriented
Programming

3 16 7 0 0 2.7

Database
Systems

3 12 8 1 0 2.52

Table A17.2: Mentor feedback on infusion of multimedia technology

Host course Sem Mentors’ perspective on course specific infusion of multimedia technology

(number of mentors in each view category)
Avg.
rating

(0-3)

Extremely
valuable for
immediate
foundation and
long term
benefits, worth
the extra work
(3)

Valuable for their
foundation/long
term benefits, worth
the extra work

(2)

Valuable for their
foundation/long
term benefits, but
not worth so much
extra work at this
stage

(1)

Only
marginally
useful, not
worth the
extra work at
all now

(0)

Introduction to
Computers and
Programming

1 25 30 13 6 2

Object-oriented
Programming

3 9 11 2 1 2.22

Database
Systems

3 4 9 7 1 1.76

Web
Application
Engineering

5 5 7 6 0 1.94

www.manaraa.com

349

Table A17.3: Mentor feedback on infusion of mobile technology

Host course Sem Mentors’ perspective on course specific infusion of mobile technology (number

of mentors in each view category)
Avg.
rating

(0-3)

Extremely
valuable for
immediate
foundation and
long term
benefits, worth
the extra work
(3)

Valuable for their
foundation/long
term benefits, worth
the extra work

(2)

Valuable for their
foundation/long
term benefits, but
not worth so much
extra work at this
stage

(1)

Only
marginally
useful, not
worth the
extra work at
all now

(0)

Database
Systems

3 5 6 9 1 1.71

Web
Application
Engineering

5 5 4 6 2 1.71

Table A17.4: Mentor feedback on infusion of security aspects

Host course Sem Mentors’ perspective on course specific infusion of security aspects (number

of mentors in each view category)
Avg.
rating

(0-3)

Extremely
valuable for
immediate
foundation and
long term
benefits, worth
the extra work
(3)

Valuable for their
foundation/long
term benefits, worth
the extra work

(2)

Valuable for their
foundation/long
term benefits, but
not worth so much
extra work at this
stage

(1)

Only
marginally
useful, not
worth the
extra work at
all now

(0)

Object-oriented
Programming

3 9 8 6 0 2.13

Database
Systems

3 9 8 4 0 2.24

Software
Engineering

5 11 8 0 0 2.58

Web
Application
Engineering –
Instantaneous
client and
server-side data
validation

5 7 11 0 0 2.39

Web
Application
Engineering –
other security
aspects

5 6 8 3 1 2.06

www.manaraa.com

350

Table A17.5: Mentor feedback on infusion of systems design aspects

Host course Sem Mentors’ perspective on course specific infusion of design diagramming

(number of mentors in each view category)
Avg.
rating

(0-3)

Extremely
valuable for
immediate

foundation and
long term

benefits, worth
the extra work

(3)

Valuable for their
foundation/long

term benefits, worth
the extra work

(2)

Valuable for their
foundation/long

term benefits, but
not worth so

much extra work
at this stage

(1)

Only
marginally
useful, not
worth the

extra work
at all now

(0)

Introduction to
Computers and
Programming –
Necessity of
flowcharting

1 46 20 3 4 2.48

Object-oriented
Programming – Basic
UML

3 12 7 4 0 2.35

Object-oriented
Programming – Concept
map

3 5 11 5 1 1.91

Object-oriented
Programming –
Evolutionary project
scoping

3 3 15 4 0 1.95

Database Systems – ER
and EER

3 13 7 0 0 2.65

Software Engineering –
Concept map

5 6 8 4 1 2

Software Engineering –
Evolutionary project
scoping

5 3 9 5 1 1.78

Web Application
Engineering–
Evolutionary project
scoping

5 1 12 5 0 1.78

www.manaraa.com

351

Table A17.6: Mentor feedback on infusion of PSP (time logs)

Host course Sem Mentors’ perspective on course specific infusion of estimation tools (number of

mentors in each view category)
Avg

rating

(0-3)

Extremely
valuable for
immediate

foundation and
long term

benefits, worth
the extra work

(3)

Valuable for their
foundation/long

term benefits, worth
the extra work

(2)

Valuable for their
foundation/long

term benefits, but
not worth so much
extra work at this

stage

(1)

Only
marginally
useful, not
worth the

extra work at
all now

(0)

Introduction to
Computers and
Programming –
PSP (time log)

1 14 30 15 16 1.56

Object-oriented
Programming–
PSP (time log)

3 1 5 11 6 1.04

Database
Systems– PSP
(time log)

3 0 4 9 8 0.81

Software
Engineering–
PSP (time log)

5 4 5 7 3 1.53

Software
Engineering–
Estimation and
other metrics

5 3 11 5 0 1.89

Web
Application
Engineering–
PSP (time log)

5 3 6 6 3 1.5

www.manaraa.com

352

Table A17.7: Mentor feedback on infusion of open source

Host course Sem Mentors’ perspective on course specific infusion of open source

(number of mentors in each view category)
Avg

rating

(0-3)

Extremely
valuable for
immediate

foundation and
long term

benefits, worth
the extra work

(3)

Valuable for their
foundation/long

term benefits, worth
the extra work

(2)

Valuable for their
foundation/long

term benefits, but
not worth so much
extra work at this

stage

(1)

Only
marginally
useful, not
worth the

extra work at
all now

(0)

Introduction to
Programming –
Initial
laboratory work
in Python

1 13 27 27 7 1.62

Object-oriented
Programming –
Mini project

3 8 9 5 1 2.04

Database
Systems – Mini
project

3 9 5 7 0 2.1

Software
Engineering –
Mini project

5 10 8 0 1 2.42

Software
Engineering –
Program
Comprehension
and reverse
engineering

5 5 9 4 1 1.95

Web
Application
Engineering

5 8 7 3 0 2.28

www.manaraa.com

353

Table A17.8: Mentor feedback on infusion of PSP (Bug log)

Host course Sem Mentors’ perspective on course specific infusion of PSP (Bug log) (number

of mentors in each view category)
Avg.
rating

(0-3)

Extremely
valuable for
immediate

foundation and
long term

benefits, worth
the extra work

(3)

Valuable for their
foundation/long

term benefits, worth
the extra work

(2)

Valuable for their
foundation/long

term benefits, but
not worth so much
extra work at this

stage

(1)

Only
marginally
useful, not
worth the

extra work at
all now

(0)

Introduction to
Computers and
Programming

1 18 27 13 17 1.61

Object-oriented
Programming

3 0 8 10 5 1.13

Database
Systems

3 1 4 10 5 1.05

Software
Engineering

5 5 4 8 1 1.72

Web
Application
Engineering

5 3 5 7 3 1.44

www.manaraa.com

354

Appendix A18: Multi-level Infusion of Security Related Aspects
(Developed in Collaboration with Jolly Shah)

Sem. Course Security Aspect
I

Introduction to
Computers and
Programming

Signed/unsigned problems, poor standard C library functions, overflow (buffer, heap
stack, format string errors, pointer issues, file system security issues

II Data Structure Overflow/underflow issues in stack, queue, and array data structure, hash-table security
issues (like DOS), linked list security issues, heap exploitation techniques and solutions,
invalid B-tree node size can lead to data loss

III Object-
oriented
Programming
(C++/Java)

Limiting the accessibility of classes, methods, interfaces, fields, preventing the un-
authorized construction of sensitive class, preventing constructors from calling methods
that can be overridden, duplicating the security manager checks enforced in a class during
serialization and de-serialization, Guarding sensitive data during serialization
safely invoking standard APIs, defining wrapper methods around modifiable internal
state, defining wrappers around native methods, Purging sensitive information from
exceptions, defending against partially initialized instances of non-final classes

Database
System

DBMS buffer overflow, confidentiality, integrity and accuracy of data, secure sharing of
databases, database threats (private threats, privilege activity threat, malicious software
threats, remote access threats, distributed database configuration threat, inference,
aggregation), SQL injection

IV Fundamentals
of Algorithms

Comparison analysis of symmetric and asymmetric cryptography algorithm, message
digest algorithms, e.g., SHA, MD5, digital signature algorithms: DSA, fault tolerance
algorithm, forward and backward recovery algorithm

V Operating
System

logon security, digital certificate security, file and folder security, shared resource
security, security policies, remote access security, disaster recovery

Software
Engineering

Secure software development lifecycle, threat model, threat tree pattern, secure UML

Web
Application
Engineering

Security of web application, attacks on web application- phishing, cross-site scripting
vulnerabilities, SQL injection, denial-of-service attack on web server, unvalidated
parameters, broken access control, broken account and session management, cross-site
scripting flow, buffer overflow, common injection flaw, error handling problems,
insecure use of API, remote administration flaw, web and application server mis-
configuration, guidelines for securing web application, seven habits for writing secure
PHP applications

VI Computer
Network

LAN Security, firewall, VPN, internet security protocol, network vulnerabilities, wireless
Security, internet vulnerabilities (phishing, farming, DOS, cross-site Scripting)

Compiler
Design

Compiler based Protection (securing stack data, potentially vulnerable heap data, adding
run time checks, adding protection mode), countering code-injection attacks with
instruction-set randomization, enforcing compiler security checks

www.manaraa.com

355

Appendix A19: Description of the Notation for Concept Mapping

This concept map provides a bird’s-eye view of a collection of interacting and collaborating data tanks and data
items. Do not mix or confuse this concept mapping technique with any other diagramming technique like DFD
or ER diagram and so on. There may be some similarities with some, but it is different.

1. Look at each collection of homogeneous (similarly structured) data items as a Data tank. These individual

data items could be atomic or compound.
2. Identify the nouns and verbs of the systems description. Some nouns will become data tanks in Concept

Map (CM). The nouns could be singular as well as plural. Verbs will represent the processing box in CM.
3. This Concept map is a diagram of inter-connected data tanks via processing units with boxes and arrows,

marked labeled. It gives an indication of what, when, and how some data moves or changes in any data
tank.

4. Write the properties and functional behavior for each data tank by giving a clear description of the content,
and also permitted legal operations on each data tank and data item. This collection may or may not require
some inter-data item organizational constraints.

5. Use double line boxes for data tanks containing several homogeneous data items, and single line boxes for
single data item/packets, if any.

a. Input data: Add incoming arrow head on left side of data box.
b. Output data: Add outgoing arrow on right side of data box.
c. I/O data: Add arrowheads on both the left and right side.
d. Processing data: no arrowhead.

6. Name your data tanks as a set of … (e.g. set of trains, set of passengers, set of books, set of users, and so
on) that contains many homogeneous items only.

7. Put the name of the data that flows in/out of data tanks.
8. Data copy transfer: directed links between data boxes.
9. Use elliptical boxes to show processing of chosen data items. Name your processing units as verbs, only

representing the process.
10. Put a small circle on the top right corner of data tank boxes, if it represents dynamic data, i.e., the data

can change as a result of valid operations.
11. Put a circle on the top left corner, if the data population size can change during processing because of

insertions and deletions. This dynamic data (at 16 and 17) is not to be confused with dynamic data structure,
as this higher-level of dynamism can be implemented with dynamic or static data structures at lower layer.

12. Draw four dotted horizontal lines and divide data tank into five sub-boxes.
13. Put the name of data tanks in the top (first) sub-box and give some examples of representative data items

in the same sub-box.
14. Write the attributes (fields) in the second sub-box. First put, and also underline, the attribute(s) that are

required to have unique values, e.g., ID No., etc.
15. Identify all the operations that are required to be performed on this data tank during the lifetime of a given

application. Write these operations in the third sub-box.
16. If the data tank has limited life during processing, write the scope of the data tank in the fourth sub-box.

Mention the event(s) that brings this tank to existence, or remove it from the systems using created on and
destroyed on clauses.

17. If your data tank is compound, i.e., you need some additional ancillary and smaller data tanks (e.g.,
indices, and so on) to support efficient searching of appropriate data items in the principal data tank, include
the names of these ancillary data tanks in the first sub-box of the principal data tank itself by dividing the
first box into two units by a vertical line, and list the names of ancillary tanks in the right half of first
sub-box.

www.manaraa.com

356

18. Later on, expand this compound data tank into a principal data tank inter-connected with ancillary data

tanks in a different diagram.
19. Name your ancillary data tanks using the name of the principal data tank, followed by an underscore, and

then by another plural noun, e.g., the ancillary data tanks for data tank ‘trains’ could be named as ‘set of
trains_train-nos,’ ‘set of trains_destinations,’ and so on.

20. Vertically divide the fifth box into two parts.
21. See if the data tank is required to maintain some order on the elements or not. If no order is required, leave

the fifth left and fifth right sub-boxes empty.
22. Check the type of order - Is it ordered chronologically, i.e., based on the time of insertion of records or

ordered on attribute(s)/value(s). Also check if you need ascending or descending order. If ordered on
value, identify the attribute(s) that control the order of records.

23. If ordered on time, then put ‘T’ in the top left corner of the fifth left sub-box, if the tank is ordered on time.
Put an upward arrow for ascending order; put a downward arrow for descending order. If ordered on value,
put ‘V’ and the attribute followed by appropriate arrow.

24. If the data tank is an ordered collection of X, see how the relative position of a specific data item is defined
with respect to other similar data items. Indicate it in the fifth left sub-box. Some possible arrangements are
as follows.
a. X
b.
 X

 c.
 X

 d.
 X

25. Relative position could be in terms of order of insertion or relative value of some data item.
26. Examine relative positional eligibility for accessing: All/only some strategic relative positions.
27. Examine relative positional eligibility for updation: All/None/only some strategic relative positions.
28. Examine relative positional eligibility for insertion: Any empty slot/only some strategic relative positions.
29. Examine relative positional eligibility for deletion: All/None/only some strategic positions.
30. If access, updation, insertion, and deletion are dependent on some well-defined strategic relative position

within the data tank, observe, identify and define these positions. Indicate these positions in the fifth right
sub-box. Some examples of strategic relative positions can be as follows:
a. Based on order of insertion: earliest, latest, after the latest insertion, before the earliest insertion, 3rd

earliest, 4th latest, next relative to the current position as per insertion order, previous relative to the
current position as per insertion order, and so on.

b. Based on the value: minimum, maximum, 3rd minimum in between a given range of values, in between
an appropriate range of values, and so on

31. Your concept map should be hierarchical, i.e., it should gradually show more details in different diagrams
rather than showing all the details in one diagram. Initially focus on the most critical aspects.

32. All the data tanks that have same abstractions of operations, ordering, strategic positions, pre-conditions,
and post-conditions belong to same Abstract Data Type, e.g., stacks, queue, all binary tree, graph, table,
data cube, octree, etc. (can be extended to the notion of ‘Class’).

www.manaraa.com

357

Appendix A20: Some Proposed Instructional Interventions for Infusing

Debugging in Computing Laboratories

Bug generation

Students can be given assignment to produce bugs of various types relevant to their course. The

activity of intentionally writing code to generate a bug will entrench the bug, its cause, and

symptoms in student’s mind. Hence, a student will be better equipped to relate any subsequent

encounter of a previously experienced bug to its actual cause, thereby facilitating quicker and

efficient debugging.

Comparative study of debugging tools

Assignments to do comparative study of debugging tools will help in developing facility with

debugging tools. Also, cost benefit ratio of using the various tools can be understood by doing a

comparative study of debugging tools for a particular class of bugs. This assignment will help

student in identifying the correct tool for debugging a particular scenario. Students can be asked

to prepare a tool evaluation matrix (Figure A20.1) to show the strength and weaknesses of

different tools with respect to their support for different types of bugs.

 Bugs
Tools

Bug 1 Bug 2 Bug 3 …

Tool 1

Tool 2

Tool 3

…

 Figure A20.1: Debugging tool evaluation matrix

Program Comprehension of existing debugging tools

Program comprehension of the source code of existing debugging tools will enable students to

have an in-depth knowledge of implementation of these tools. Through the study of

implementation of tools, student will understand the underlying rules being used by tools for bug

www.manaraa.com

358

detection. Consequently, learner will identify the premise on which the tool works, thereby

deciphering the basis of bug detection. As part of the deliverables, a student can be asked to

prepare reports about the working and internals of a chosen debugging tool. In this report, the

working principle of a tool under study can be clearly indentified. Further, major data structures

and algorithms used in the implementation of tools, supporting the identified working principle

can be incorporated in the report. Open source debugging tools such as Valgrind, Dmalloc,

Splint, ftnchek, GDB, etc., can be used for this assignment.

Creation of simple debugging tools and enhancement of existing debugging tools

Assignments for creating simple debugging tool can be given to students. These tools should be

capable of detecting simple specific bugs, and need not be generic for a class of bugs. Students

should be encouraged to take up an activity of enhancing existing debugging tools as a capstone

project. This will benefit students in gaining a deeper insight about debugging as well as prepare

them with the ability to do enhancement to existing tools to meet their own unique requirements,

or come up with an optimal tool for their development environment

www.manaraa.com

359

Appendix A21: Collaborative Pair Programming

There were a total of one hundred and seventy-eight students enrolled in this course, and they

were divided into three batches for laboratory classes. The students were divided into two

categories. The first category consisted of 66 students having a prior programming experience

during their K-12 education. This set of students was asked to work independently all throughout

the semester. The other group consisted of 112 students who had no experience in programming.

These students were asked to work in pairs.

Experienced programmers were required to solo-program the combined task directly.

Inexperienced students working in pairs had to solve the two problems in the first part

individually, and separately. Each student had to provide the solution for his or her sub-problem.

Thereafter, they had to collaboratively solve the combined task in the second part by combining

the concepts they applied in their independent work.

Table A21.1: Sample laboratory assignment for introduction to programming

Individual task 1 Individual task 2 Combined task
Write a program to make an
n*n square using the “$”
symbol. Get the value of n
from the user. Use an
incrementing loop (i=0, i<n;
i++).

Write a program to make an
n*n square using the “$”
symbol. Get the value of n
from the user. Use a
decrementing loop (i=n;i>0;i-
-).

Combine the programs in such a way that
exactly half the design is made by
incrementing the counter value ‘i,’ while the
other half design is made by decrementing the
counter ‘i’.

Write a program to enter ten
names and roll numbers and
print them.

Write a program to enter ten
names and ages and print
them.

Write a program combining the two codes
such that the output shows the name, roll
number, and age for all the common names.

Write a program to input two
words and print the number
of occurrences of each letter
in each word.

Write a program to input two
words and print all the
common letters in both. Note
that a letter will be considered
common in both words if
number of occurrences of that
letter is the same in both
words.

Write a program that inputs two strings of any
length and checks whether they are anagrams
or not. Anagram is a word or phrase made
from another by rearranging its letters (Ex.:
now won, dread adder, riot trio).
Also, if they are not anagrams, report the
number of letters that are not same.

Write a function (char_count)
to count the number of
characters in a given string.
The string will be the input
argument for the function.
Answer has to be printed in
the main function.

Write a function
(word_count) to count the
number of words in a given
string. The string will be the
input argument for the
function. Answer has to be
printed in the main function.

Write a program such that for a given input
string the main function calls the word_count
function first and as soon as a word is
identified it calls the char_count function with
this word as input. In this way calculate the
number of words and total number of
characters in the given sentence.

www.manaraa.com

360

Table A21.2: Comments of students on their experience with collaborative peer programming

1. “I agree that when two people with no programming background work together they learning more easily.”
2. “Working with a partner helped me. We could identify different ways of solving the same problem when we

combined individual tasks.”
3. “This new method made us think deeply, and shaped our views towards a good approach to problem solving.

Both partners had a feeling that they had the support of each other, and this added to the motivation level.”
4. “Working with a partner really helped me. I had no programming background, but I could ask my partner all

doubts without any hesitation. Combining individual programs made us come across more mistakes.”
5. “The new method was a life saver for students with no programming background. They were able to grasp much

more. Two of my friends secured an ‘A’ even though they had no programming background.”

www.manaraa.com

361

Appendix A22: Sample Collaborative Quadruple Programming Assignments
For J2EE

Laboratory assignment on servlets (without session-tracking) (Designed with Ritu Arora)
Generic Problem: To create a login page that may be used with any application. Choose an appropriate data
structure to store the login names and password as key-value pairs in the program.
Specific Problem: To create a login page, in which the user would be authenticated based on the username and
password entered. The username and password would be validated against the data stored in a hash-table. If the
user is a valid user, he/she would be displayed a welcome page, or else an error is generated, and the user is asked
to re-enter the information.
Background Studies and Practice:
1. Learn to configure and start-up the Tomcat Server. 2. Practice the “Hello World” example servlet.

Solo Task Generic Description Specific Example

Task A Create a HTML page consisting of input text
box and submit button. On submission, servlet
should be invoked.

Learn to create an HTML page that
would display to the user an input text
box. The page should also consist of a
submit button, clicking on which
would invoke the desired servlet.

Task B Create a servlet to display the names and values
of incoming request headers.

Learn to create a servlet that would
display the names and values of all
the field of the request header.

Task C Create a servlet to facilitate navigation through
various HTML pages/servlets.

Learn to create a servlet that would
navigate to different HTML
pages/servlets, depending on the
value of a particular variable.

Task D Create a servlet that would create a data
structure to store key-value pairs, and iterate
through it.

Learn to create a servlet that creates a
hash-table. Iterate through the hash-
table and display its contents.

Pair Task
Task AB Create a HTML page to take user input and, on

submission, display the values entered by the
user on the console.

Create a HTML page that displays
two input text boxes, one for entering
username and other for password
(with “*” being displayed for each
character). On clicking the submit
button, the input parameter values
should be read by the servlet, and
displayed on the console.

Task CD Create a servlet that would perform searching
through the chosen data structure, and navigate
to the HTML page/servlet depending on the
results of search operation.

Create a servlet that would search
through a hash-table for the existence
of a value, given the key. If the key
itself does not exist, it should navigate
to a welcome/error page.

Quadruple Task
Task ABCD To create a login page that may be used with

any application. Choose an appropriate data
structure to store the login names and password
as key-value pairs in the program.

Create a Login Page, in which the
user would be authenticated based on
the username and the password
entered.. The user name and password
would be validated against the data
stored in a hash-table. If the user is a
valid user, he/she would be displayed
a welcome page, or else an error is
generated and the user is asked to re-
enter the information.

www.manaraa.com

362

Appendix A23: Alumni’s Feedback on Learning Gains through Cross-level
Mentoring

In 2009, we conducted a survey amongst our alumni members. All these respondents had

mentored their juniors during their final year. These alumni members were requested to rate the

effect of mentoring experience on sixteen competencies by comparing the same with the effect of

several other academic experiences at undergraduate level. They were given following five

options for each of these sixteen competencies:

1. Least effective as compared to all other academic experiences (-2)

2. Less effective as compared to several other academic experiences (-1)

3. Comparable to several other academic experiences (0)

4. More effective as compared to several other academic experiences (1)

5. Most effective as compared to all other academic experiences (2)

Thirty-six alumni members of all batches graduating from 2005 to 2009 have rated sixteen

competencies on these five levels. Many of these students were among the toppers and the best

programmers during their college days. Several of them have completed (or are pursuing) higher

studies at top ranking universities like Stanford, Cornell, Columbia, Utah, and University of

Southern California, etc. Some of them are working with top ranking organizations like

Microsoft, Intel, Adobe, etc., while many others are working in well known software consulting

companies like Accenture, Wipro, Infosys, etc. The composite rating of the effectiveness of the

mentoring experience in term of a comprehensive effect on all sixteen competencies is 0.8 on a

scale of -2 to 2. The distribution of all their votes casted for these five levels is as follows:

1. Least effective as compared to all other academic experiences: 2 votes (0%)

2. Less effective as compared to several other academic experiences: 44 votes (8%)

3. Comparable to several other academic experiences: 164 votes (28%)

4. More effective as compared to several other academic experiences: 239 votes (41%)

5. Most effective as compared to all other academic experiences: 130 votes (22%)

Table A23.1 gives the details of the perceived effect of the mentoring experience on different

competencies.

www.manaraa.com

363

Table A23.1: Alumni reflections on the effect of mentoring on mentors’ competencies

S.No Competency Votes comparing the effectiveness of

mentoring with other academic
experiences
A. Least effective (-2)
B. Less effective (-1)
C. Comparable (0)
D. More effective (1)
E. Most effective (2)

Avg.
rating

(-2 to 2)

A (-2) B (-1) C (0) D (1) E (2)
1 Intrinsic motivation to create, improve things and

open-mindedness.
1 5 8 14 9 0.7

2 Systems-level perspective, inclination for reuse
and synthesis by integration, ability to understand
and also build upon other’s work.

0 6 9 18 4 0.5

3 Accountability and responsibility, strength of
conviction, and self-regulation, ability to see
the self as bound to all humans with ties of
recognition and concern, sensitivity towards
global, societal, environmental, moral, ethical
and professional issues, and sustainability

0 1 9 15 12 1

4 Curiosity with humility, self-learning, ability
to develop good understanding of domains’
vocabulary, semantics, and thinking processes,
faith in reason, and review.

0 4 6 19 8 0.8

5 Ability to accommodate self to others, ability
to work such that others can easily understand
and build upon.

0 3 8 15 11 0.9

6 Problem solving, ability to convert ill-defined
problematic situations into software solvable
problem, project scoping , estimation

0 3 13 8 13 0.8

7 Attention to details. 0 1 11 18 7 0.8
8 Abstraction, transition between levels of

abstraction.
0 5 14 12 5 0.5

9 Algorithmic and structured thinking, 0 2 18 12 5 0.5
10 Critical and reflective thinking, 0 3 11 11 12 0.9
11 Creativity and innovation, 0 3 12 12 10 0.8
12 Technical, domain competence. 0 3 9 19 5 0.7
13 Communication skills. 0 1 7 21 7 1
14 Analytical, design, debugging skills. 0 3 11 12 11 0.8
15 Decision making skills. 0 0 10 23 4 0.8
16 Project planning, management. 1 1 8 20 7 0.8
 Total 2 44 164 239 130
 Average 0.1 2.8 10.3 14.9 8.1 0.8

In terms of recalling the significant advantages of mentoring, in the context of their later

academic/professional activities, some comments of these 37, and other 9 alumni respondents,

are given in Table A23.2.

www.manaraa.com

364

Table A23.2: Advantages of mentoring as identified by alumni

1. Properly defining problem
2. … best thing I learnt was to look at the other side of the coin …
3. …ability to move from macro to micro details and vice versa, patience and openness to critically analyze

alternative approaches…
4. … working with unknown person or a team …
5. … Working in such large team and coordinating with multiple project …
6. Things which I thought I understood were actually understood while I was making someone else understand.

… It helps the mentor grow in almost every dimension … subject matter is strengthened and he gains clarity
… one gets to hear his own thoughts … It’s one of the best ways to discover ourselves and our creativity.

7. Makes you feel like a bigger person. Makes you believe in yourself more when others believe in you …
8. … instilled a sense of an extra added responsibility…
9. … I had to explain them in a simple manner…
10. … improved my ability to present the same topic from different angles …
11. … my confidence increased as I matured with classes, my tolerating power increased … my ability to think

out of the box and also trying to think more than students and also commenting on their performance
increased my critical analysis ability...

12. Having to explain one's thinking to someone else seems to help get it straight in one's own mind …
13. … one is able to find out gaps in knowledge and determine understanding of the subject …
14. … I realized that every problem could be solved through different techniques … Mentoring helps thinking

out of the box … the joy you get when they come out with flying colors is incomparable
15. You tend to bring out the best in you
16. Questions thrown up by the mentee sometimes made me look deeper for some concepts to which I had never

paid much attention earlier …
17. I was able to better revise my subjects …
18. … communicate effectively, use and upgrade his own skills
19. … I also noticed a change in the way I started explaining things to other people …
20. … It gave me the chance to continuously improve myself …
21. Mentoring provide inner satisfaction. … makes you a better person …you have to critically analyze the

drawbacks and tradeoffs and justify your advisee, which makes things clearer to you … you learn how to
read and understand someone else's code … more responsible, more disciplined … It motivates you to
become better at your own work

22. It helped me shape my personality and enhanced my leadership and interpersonal skills. … my tolerating
power and patience had surely increased … I was able to communicate much better to different people and
could express my ideas in a more effective manner.

23. …Self-confidence level increased … got to know varied and completely out of the box concepts … patience
level increased. I had to give a logical explanation as to why this idea will/will not work… understood that
teaching is not an easy job…

24. The decision making and project management skills that got polished during the mentoring really helped me
in long term

www.manaraa.com

365

Appendix A24: Advantages of Mentoring as Identified by Final Year Students
Involved in Cross-level Mentoring of Juniors, 2009

1. good revision of all fundamentals and some good genuine doubts solutions
2. … deal with my subordinates
3. … unique addition to my ability
4. give my hundred percent knowledge and also act like a team leader
5. … into every problems in different ways and helps us to find various solutions.
6. Patience and listening
7. Enhancing my teaching skills
8. … think more and think in line with the people working with me and in my surroundings
9. helpful to me for some higher examinations
10. deeper understanding
11. I am gaining on mentoring skills and ways to communicate a problem to different people. Also it is helping

me understand the mind of different coders.
12. … now that we are going to sit for placements, it’s very important
13. Communication skill in explaining ourselves to others
14. I am much more expressive now and can explain and present things better
15. boosts my confidence and helps me in the process of self-learning
16. understand the responsibilities and duties of being a supervisor
17. Building rapport with different kinds of students, understanding others; code, Taking responsibility
18. I have found a teacher inside me.
19. would definitely aid me in applying for Teaching Assistantship
20. built my leadership quality a lot
21. I want to become a lecturer so it’s helping me understand the student mind
22. Improved leadership skills, multiple perspectives
23. I can now understand the problems which a new comer faces
24. Keeps me update
25. I am strengthening my concepts of programming
26. be more receptive to the problems of others
27. quality of working as a team leader and resolving the problems faced by the people
28. inculcating qualities of a project manager
29. will definitely help me in campus selection
30. I have clarified my concepts on requirement engineering which has helped me in my final year project

report
31. software quality and testing concepts along with designing
32. how to approach towards a given problem
33. learning some new technologies
34. It helps me to understand how a problem is perceived differently by different people and hence helps me to

understand the common error which a coder can do and in future I’ll try to remove those technical snags
which usually don't come to mind

35. Broadened our mental skills

www.manaraa.com

366

Annexure AN1: Important Theories about Human Learning, Intelligence, and
Thinking

During the course of this study, we have studied a large number of theories of education,

‘learning’, intelligence, human development, curriculum design, and thinking. Tables A’1.1a and

A’1.1b list some of these important theories and modes.

Table AN1.1a: A chronological list of some important theories about human learning, intelligence, and thinking

(pre 1990)

1. Connectionism (Thorndike, 1913)
2. Genetic epistemology (Piaget, 1915)
3. Theory of Curriculum (Bobbit, 1918)
4. Social development theory (Vygotsky, 1920s)
5. Gestalt theory (Wertheimer, 1924).
6. Theory of cognitive development (Piaget, 1930s

onwards)
7. Contiguity theory (Guthrie, 1938)
8. Fluid and crystallized intelligence (Cattell, 1941)
9. A theory of human motivation (Maslow, 1943)
10. Theory of inventive problem solving

(TRIZ/TIPS) (Altshuller, 1946)
11. Phenomenology (Rogers, 1951),
12. Information processing theory (Miller, 1956)
13. Taxonomy of educational objectives (Bloom,

1956)
14. Cognitive dissonance theory (Festinger, 1957)
15. Motivation to work (Herzber, 1959)
16. Two cultures (Snow, 1959)
17. Originality (Maltzman, 1960)
18. Conditions of learning (Gagne, 1962)
19. Systems thinking (Emery and Trist, 1965)
20. Constructivist theory (Bruner, 1966)
21. Structure of intellect (Guilford, 1967)
22. Lateral thinking (Edward de Bono, 1967)
23. Experiential learning (Rogers, 1960s)
24. Sub-sumption theory (Ausubel, 1960s)
25. The stage theory (Atkinson and Shiffrin 1968)
26. ERG theory (Alderfer, 1969)
27. Intellectual and ethical development (Perry,

1970)
28. Androgogy (Knowles, 1970)
29. Levels of processing (Craik and Lockart, 1970s)
30. Framework of reflective activities (Borton,

1970)
31. Conscious competence theory (Gordon Institute,

early 1970s)
32. Classification of disciplines (Biglan, 1973)
33. Attribution theory (Weiner, 1974)
34. Conversation theory (Pask, 1976)
35. Double loop learning (Chris Argyris, 1976)

36. Approaches to learning (Marton and Saljo, 1976)
37. Social learning theory (Bandura, 1977)
38. Theory of tri-archic intelligence (Sternberg, 1977)
39. Script theory (Schank, 1970s and 80s)
40. Modes of learning (Norman and Rumelhart, 1978)
41. Logical categories of learning (Bateson, 1979)
42. Flow theory of motivation (Csikszentmihalyi 1979)
43. Four quadrant model of the brain (Herrmann’s 1979)
44. Repair theory (Brown and VanLehn, 1980)
45. Self determination theory (Deci and Ryan, 1980

onwards)
46. Adult learning theory (Cross, 1981)
47. Structure of the Observed Learning Outcomes

(SOLO) Taxonomy (Biggs and Collis, 1982)
48. Multiple intelligence theory (Gardner, 1983)
49. Component display theory (Merrill, 1983)
50. Tri-archaic theory of intelligence (Sternberg, 1970s

and 80s)
51. Learning style and experiential learning theory

(Kolb, 1984)
52. Concept mapping and Vee mapping (Novak and

Gowin, 1984)
53. Nature of moral stages (Kohlberg, 1984)
54. Mathematical problem solving (Schoenfeld, 1985)
55. Intellectual functioning in three levels (Costa, 1985)
56. Levels of professional expertise (Dreyfus brothers,

1985)
57. Women’s 5 ways of knowing (Belenky et al, 1986)
58. Cognitive load theory (Sweller, 1988)
59. Cognitive apprenticeship (Collins et al, 1987)
60. Four perspectives on professional expertise

(Kennedy, 1987)
61. Knowing in action (Schön, 1987)
62. 3P model (Biggs, 1987-99)
63. Dimensions of learning (Marzano, 1988)
64. Mental self-government learning theory (Sternberg,

1988)
65. Style of learning and teaching (Entwistle, 1988)
66. Framework for reflection (Gibbs, 1988)
67. Cognitive load theory (J. Sweller, 1988)
68. Framework for reflection on action (Smyth, 1989)

www.manaraa.com

367

Table AN1.1b: A chronological list of some important theories about human learning, intelligence, and thinking
(1990 onwards)

69. Minimalism (Carrol, 1990)
70. Situated learning (Lave and Wenger, 1991)
71. Investment theory of creativity (Sternberg, 1991)
72. Curriculum integration (Fogarty, 1991)
73. Cognitive flexibility theory (Spiro et al, 1992)
74. Capability (Stephenson, 1992)
75. Model of critical thinking (APA, 1992-2006)
76. Epistemological reflection model (Baxter-Magolda,

1992)
77. Value inventory (Schwartz, 1992)
78. Learner managed learning (Graves, 1993)
79. Reflective judgment model (King and Kitchener,

1994)
80. Learning by design (Kolodner et al, 1995-2004)
81. Model of critical thinking (Paul, 1996)
82. Work-based learning (Gattegno, 1996; Hase, 1998).
83. CHC theory (McGrew 1997, Flanagan 1998)
84. Intelligence as developing expertise (Sternberg,

1997)
85. Framework of learning style (Vermunt, 1998)
86. Socialisation, Externalisation, Combination, and

Internatisation (SECI) (Noanaka &Takeuchi, 1998)
87. Action learning (Kemmis & McTaggart, 1998)
88. Propulsion theory of creativity (Sternberg, 1999)
89. Ergonagy (Tanaka and Evers, 1999)

90. Constructivist alignment (Biggs, 1999)
91. Phases in critical reflective inquiry (Kim,1999)
92. Collaborative learning (Dillenbourg, 1999)
93. Heutagogy (Hase and Kenyon, 2000)
94. Taxonomy of learning (Marzano, 2000)
95. Framework of critical thinking (Minger, 2000)
96. Taxonomy of Curriculum Integration (Harden 2000)
97. Learning Style (Entwistle, 2001)
98. Bloom’s revised taxonomy (Anderson &

Krathwohl, 2001)
99. Story centered curriculum (Schank, 2002)
100. Models of interplay between emotions and learning

(Kort, 2001)
101. Balance theory of wisdom (Sternberg, 2003)
102. Community of practice ellipse (Medeni, 2004)
103. Spiral of experience based action learning (SEAL)

(Medeni, 2004)
104. Taxonomy of knowledge Types (Carson, 2004)
105. Theory of successful intelligence, (Sternberg, 2005)
106. Framework for information and information

processing of learning systems (Rauterberg, 2005)
107. Six factors of psychological well-being (Ryff &

Singer, 2006)
108. Teaching for wisdom, intelligence, creativity, and

success (Sternberg et al, 2009)

www.manaraa.com

368

Annexure AN2: Competency Recommendations by Accreditation Boards of
Some Countries

The EC2000 criteria defined by Engineering Accreditation Commission (EAC) of
Accreditation Board for Engineering and Technology (ABET), United States [90],
recommends that engineering graduates must attain:

a. An ability to apply knowledge of math, science, and engineering,
b. An ability to design and conduct experiments, as well as analyze and interpret data,
c. An ability to design a system, component or process to meet desired needs,
d. An ability to function in multi-disciplinary team,
e. An ability to identify, formulate and solve engineering problems,
f. An understanding professional and ethical responsibilities,
g. An ability to communicate effectively,
h. An understanding the impact of engineering solutions in a global and societal context,
i. A recognition of need and ability to engage in life-long learning,
j. A knowledge of contemporary issues, and
k. An ability to use the techniques, skills and modern engineering tools necessary for

engineering practice.

The Technology Accreditation Commission (TAC) of ABET prescribes the following abilities

for the graduates of an engineering technology program [91]:
a. An appropriate mastery of the knowledge, techniques, skills and modern tools of their

disciplines,
b. An ability to apply current knowledge and adapt to emerging applications of mathematics,

science, engineering and technology,
c. An ability to conduct, analyze and interpret experiments and apply experimental results to

improve processes,
d. An ability to apply creativity in the design of systems, components or processes appropriate

to program objectives,
e. An ability to function effectively on teams,
f. An ability to identify, analyze and solve technical problems,
g. An ability to communicate effectively,
h. A recognition of the need for, and an ability to engage in lifelong learning,
i. An ability to understand professional, ethical, and social responsibilities,
j. A respect for diversity and a knowledge of contemporary professional, societal and global

issues, and
k. A commitment to quality, timeliness, and continuous improvement.

The Computing Accreditation Commission (CAC) of ABET [92] has proposed that the

program outcomes for information technology and similarly named computing programs
should minimally include the following abilities:

a. Use and apply current technical concepts and practices in the core information technologies;
b. The ability to analyze, identify and define the requirements that must be satisfied to address

problems or opportunities faced by organizations or individuals,
c. Design effective and usable it-based solutions and integrate them into the user environment,
d. Assist in the creation of an effective project plan,

www.manaraa.com

369

e. Identify and evaluate current and emerging technologies and assess their applicability to
address the users’ needs,

f. Analyze the impact of technology on individuals, organizations and society, including
ethical, legal, security, and global policy issues,

g. Demonstrate an understanding of best practices and standards and their application,
h. Demonstrate independent critical thinking and problem solving skills,
i. Collaborate in teams to accomplish a common goal by integrating personal initiative and

group cooperation,
j. Communicate effectively and efficiently with clients, users and peers, both verbally and in

writing, using appropriate terminology, and
k. Recognize the need for continued learning throughout their career.

The United Kingdom Standards for Professional Engineering Competence (UK-SPEC) [93]

has prescribed that an Incorporated Engineer must be able to:
a. Use a combination of general and specialist engineering knowledge and understanding to

apply existing and emerging technology,
b. Apply appropriate theoretical and practical methods to design, develop, manufacture,

construct, commission, operate and maintain engineering products, processes, systems, and
services,

c. Provide technical and commercial management,
d. Demonstrate effective interpersonal skills, and
e. Demonstrate a personal commitment to professional standards, recognizing obligations to

society, the profession and the environment.

The UK-SPEC further refines the first two of these competencies for Chartered Engineers.

A Chartered Engineer must be able to:
a. Use a combination of general and specialist engineering knowledge and understanding to

optimize the application of existing and emerging technology, and
b. Apply appropriate theoretical and practical methods to the analysis and solution of

engineering problems.

The Institution of Engineers, Singapore (IES) [94] defines the following competencies as part

of its accreditation criteria of engineering programs:
a. Apply knowledge of mathematics, science and engineering,
b. Design and conduct experiments, analyze, interpret data and synthesize valid conclusions,
c. Design a system, component, or process, and synthesize solutions to achieve desired needs,
d. Identify, formulate, research through relevant literature review, and solve engineering

problems reaching substantiated conclusions,
e. Use the techniques, skills, and modern engineering tools necessary for engineering practice,

with appropriate considerations for public health and safety, cultural, societal, and
environmental constraints,

f. Communicate effectively,
g. Recognize the need for, and have the ability to engage in life-long learning,
h. Understand the impact of engineering solutions in a societal context and to be able to respond

effectively to the needs for sustainable development,

www.manaraa.com

370

i. Function effectively within multi-disciplinary teams and understand the fundamental
precepts of effective project management, and

j. Understand professional, ethical and moral responsibility.

The Engineers Australia Accreditation Board [95] has identified similar generic attributes that

are as follows:
a. Ability to apply knowledge of basic science and engineering fundamentals,
b. Ability to communicate effectively, not only with engineers but also with the community at

large,
c. In depth technical competence in at least one engineering discipline,
d. Ability to undertake problem identification, formulation, and solution,
e. Ability to utilize a systems approach to design and operational performance,
f. Ability to function effectively as an individual and in multi-disciplinary and multi-cultural

teams, with the capacity to be a leader or manager as well as an effective team member,
g. Understanding of social, cultural, global and environmental responsibilities of the

professional engineers and the need of sustainable development,
h. Understanding of the principles of sustainable design and development,
i. Understanding of professional and ethical responsibilities and commitment to them, and
j. Expectation of the need to undertake lifelong learning, and capacity to do so.

The Japan Accreditation Board for Engineering Education (JABEE) [96] emphasizes the

following competency set:
a. The ability and intellectual foundation for considering issues from a global and multi-lateral

viewpoint,
b. Understanding of the effects and impact of technology on society and nature, and of

engineers’ social responsibilities (engineering ethics),
c. Knowledge of mathematics, natural sciences and information technology, and the ability to

apply such knowledge,
d. Specialized engineering knowledge in each applicable field, and the ability to apply such

knowledge to provide solutions to actual problems,
e. Design abilities to organize comprehensive solutions to societal needs by exploiting various

disciplines of science, engineering and information,
f. Japanese-language communications skills including methodical writing, verbal presentation

and debate abilities, as well as basic skills for international communications,
g. The ability to carry on learning on an independent and sustainable basis, and
h. The ability to implement and organize works systematically under given constraints.

www.manaraa.com

371

Accreditation criteria defined by NBA, India

Table AN1.1: Accreditation Criteria and Weights defined by NBA, India
for Diploma (Dip.), Undergraduate (UG), and Postgraduate (PG) Engineering Programs

 No Parameters Max. Marks

Dip. UG PG
1 Organization and governance

Planning and Monitoring, Recruitment Procedure & its
Effectiveness, Promotional Policies/Procedure, Leadership,
Motivational Initiatives, Transparency, Decentralization and
Delegation & participation of faculty, and Constitution of General
council and bodies.

30 80 50

2 Financial resources, allocation, and utilization
Budget allocated to the Institution and Utilization.
Budget allocated to the Department and Utilization.

70 70 50

3 Physical resources (central facilities)
Students’ Hostel, Power back up, Reprographic facilities, Bank, Post
Office, Counseling and Guidance, Language Lab., Medical Facility,
Internet Facility, Canteen, and Transport.

50 50 50

4 Human resources: faculty and staff
Faculty
Numbers, Student Faculty Ratio, Cadre ratio, Average experience,
faculty retention, Turnover, Qualifications, Participation of faculty
in Institutional development/Departmental development/Academic
matters/Students, Development/Self growth, Implementation and
Impact of Faculty Development initiatives, Analysis and Follow-up
of Performance appraisal, Service rules, pay package, and
incentives.
Support Staff (Technical/Administrative)
Numbers, Qualification/skills, and Skill up-gradation.

200 200 200

5 Human resources: students
Student admissions, Academic results, Performance in competitive
examinations, and Placement.

100 100 100

6 Teaching-learning processes
Delivery of syllabus, contents, Contents beyond the syllabus,
Academic calendar, Continuous evaluation procedure, Utilization of
Laboratories, Information access facilities, Student-centric learning
initiatives, Students feedback.

450 350 250

7 Supplementary processes
Extra & co-curricular activities, Personality Development initiatives,
Professional society activities, Entrepreneurship Development,
Alumni Interaction, Ethics, and Students Publications/Awards.

50 50 50

8 Research & development and interaction effort
Budget for in-house R&D activities and its utilization,
Academic/Sponsored/Industrial research and development,
Publications and Patents, Industry participation in developmental
and student related activities, Continuing Education, Consultancy
and Testing, Students’ Project Work.

50 100 250

www.manaraa.com

372

Annexure AN3: Some Models for Classification of Competencies

Bloom

In 1956, Benjamin Bloom [133] arranged the educational objectives into six major levels in a

hierarchical order. Beginning with the simplest level and increasing in complexity, these levels

are: Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation.

Anderson and Krathwohl

Anderson and Krathwohl modified Bloom’s taxonomy by adding another dimension of

knowledge types: Factual, Conceptual, Procedural, and Meta-cognitive. They renamed the

levels of earlier dimension from nouns to verbs [134]. They also interchanged the positions of

the uppermost two levels.

Costa’s model of intellectual functioning

In 1985, based on this taxonomy, Costa [135] proposed his model of intellectual functioning with

the following three levels:

ii. Recalling information

b. Remember: repeat, match, …

c. Show understanding: paraphrase, give example, locate, summarize, …

iii. Making sense of gathered information

d. Use understanding: operate, apply, demonstrate, infer, relate, …

e. Examine: compare, diagram, categorize, point out, question, outline, …

f. Create: compose, design, prepare, modify, formulate, plan, compile, …

iv. Applying or evaluating information

g. Decide: judge, predict, estimate, select, conclude, rate, evaluate, …

h. Supportive evidence: prove/support your answer, why or why not? ...

Kennedy’s perspectives on professional expertise

Kennedy [136] proposed four alternative perspectives on professional expertise: technical skills,

application of theory or general principles, critical analysis, and deliberate action. If we view

these perspectives as manifestations of different types of emphasized competencies, these can

www.manaraa.com

373

also be used as a classification of competencies. Kennedy observed that different perspectives

were dominant in different professions and engineering education shifted its emphasis from the

first to the second perspective after the 1950s. Passow [78] has called for an appropriate balance

of all these four perspectives for designing engineering educational programs.

Categories of competencies expected of college graduates (Stark et al)

Stark et al [137] advocated to blend the professional and liberal education, and also classified

the competencies expected of college graduates into three broad categories: traditional

professional competencies, liberal professional competencies, and attitude. As per their

classification, traditional professional competencies comprised of conceptual, technical, and

integrative competencies as well as career marketability. The second category of liberal

professional competencies included interpersonal (communication), contextual, and adaptive

competencies as well as critical thinking and leadership capacity. The third category of attitudes

integrated professional identity, professional ethics, scholarly concern for improvement,

motivation for continued learning, and aesthetic sensibility.

Marzano’s Revised Taxonomy

In 2000, Marzano [140] proposed his modifications as a two dimensional taxonomy: (i)

knowledge domain comprising of information, mental procedures, and psychomotor procedures,

and (ii) processing in cognitive, meta-cognitive and self-system providing the following

hierarchical levels of processing:

1. Cognitive system: processes all the necessary information, and

a. Retrieval

b. Comprehension

c. Analysis

d. Knowledge utilization

2. Meta-cognitive systems: sets goals and keeps track of how well they are being achieved

3. Self-system: decides whether to continue the current behavior or engage in the new

activity

www.manaraa.com

374

Various Competency Classification Schemes Cited by García-Aracil and Van der Velden

García-Aracil and Van der Velden [132] have studied the required competencies of graduates

with reference to the requirements of the new situation in the European labor market. They have

cited the following earlier competency classification schemes proposed in the last twenty years:

1 Becker: general and firm specific,

2 Nordhaug: firm specific, task specific, and industry specific,

3 Heijke: acquired at school and of direct use in later work, acquired at school which

facilitate acquisition of new competencies after school, and those that are acquired

mainly in work context,

4 Bunk: specialized, methodological, participative, and socio-individual, and

5 Kellerman: general academic, scientific operative, personal professional, socio-reflexive,

physiological handicraft.

Coate’s schema for curriculum design

Kelly Coate [141] developed a schema for curriculum design. It included three overlapping

domains of ‘knowing,’ ‘acting,’ and ‘being.’ She suggested that the crucial aspect of this schema

is the domain of ‘being.’ Though all these models have been used by several education

researchers, they have not yet attracted any noticeable attention of computer sciences education

researchers.

www.manaraa.com

375

Annexure AN4: Metzger’s Observations about Debugging

Design errors

Metzger observes that design errors may occur because of errors in data-structure, algorithm, or

interface specifications related to user-interface, software-interface, or hardware-interface

[157].

He has also enumerated some common conception stage errors in software development. The

data structure related errors are: missing/incorrect/unclear/contradictory/out-of-order data

definition, missing/incorrect/out-of-order shared-data access control, capacity limitation,

inappropriate representation resulting in data loss, ignored input or intermediate data storage

requirement, and slow access to data. Algorithm related errors include: invalid assumptions

about input/program state, omission of logical possibilities, high time-complexity, and

missing/superfluous/incorrect/out-of-order logic-sequence/input-check/output-definition/special

condition handler. Conception errors about interface include: invalid assumptions about users,

collateral software, or hardware, missing/superfluous/incorrect/unclear/out-of-order specification

item with reference to user interface, software-interface, or hardware-interface.

Coding errors

Metzger posits that coding errors include initialization errors, finalization errors, binding errors,

reference errors, static/dynamic data structure errors, memory problems, missing operations,

extra operations, control flow problems, value precision errors, invalid expressions, incorrect

usage of or defect in compiler/tools/system library/third-party library/operating system.

Errors because of rule-based reasoning
Metzger catalogues the software errors because of rule-based reasoning into two broad

categories: (i) misapplication of good rules occur when a time-tested rule is applied by

overlooking the additional conditions that warrant another rule, (ii) application of a bad rule

occurs when conditions are wrongly represented, or ineffective/inefficient action is chosen. The

first category includes errors in the sub-categories of ‘general rule, exception condition,’

‘conflicting signals,’ and ‘excess information, multiple rule match.’ Humans make rigidity errors

www.manaraa.com

376

because they have a strong bias to apply techniques that worked in the past, even though the

current circumstances are no longer the same. In the second category of applying bad rules,

Metzger includes the subcategories of ‘incorrect rule conditions,’ ‘incorrect rule actions,’

‘frequently ineffective rules,’ ‘formerly effective rules,’ and ‘occasional effective rule.’

Debugging as a search problem

Metzger has viewed debugging as a search problem like mathematical problem solving that is

solved using a variety of search strategies like binary search, greedy search, depth-first search,

and breadth-first search.

Heuristics for solving debugging problems

 (i) stabilize the problem, (ii) create a standalone test case, (iii) categorize the problem with

reverence to correctness, completion, robustness, and efficiency, (iv) describe the problem

according to a standard methodology, (v) explain the problem to someone else, (vi) recalling a

similar problem, (vii) drawing diagrams like control flow graph, data flow graph, and complex

data structures with pointers, and (viii) choosing a hypothesis from historical data.

He has also suggested some strategies like program slice strategy, deductive reasoning strategy,

and inductive reasoning strategy for debugging.

www.manaraa.com

377

Annexure AN5: Lethbridge’s Study on Most Important and Influential Topics

in Software Development Education
Lethbridge [46-48] surveyed approximately 200 practicing software engineers and managers.

The respondents had degrees in computer science, computer engineering, electrical engineering,

information systems, software engineering, and other engineering disciplines. They represented a

broad cross-section of the industry, and developed software for management information

systems, data processing, consumer or mass market software, real-time systems, and other

application software. They were asked to rate educational topics on the basis of four criteria:

(Q1) how much they had learned about it in their formal education, (Q2) how much they know

now about it, (Q3) how important the topic has been in their career, and (Q4) how much

influence the topic had on their overall thinking.

Lethbridge included a total of seventy-five topics from thirteen subject categories in the survey.

The ten topics identified by them as most important in terms of career related utility of details of

topic and also overall influence on thinking were: specific programming languages, data

structures, software design and patterns, software architecture, requirements gathering and

analysis, HCI/user interfaces, object-oriented concepts and technology, ethics and

professionalism, and analysis and design methods.

In terms of the perceived gap between Q3 and Q4 compared to Q1, out of the thirteen subject

categories, the respondents felt most serious deficiencies in the three categories of software

engineering process, humanities and skills, and software design core.

Their report shows that five out of the thirteen subject categories did not contribute even a single

topic to the list of twenty-five most important and influential topics, while these categories were

felt by the respondents to be over emphasized in the curriculum. These subject categories are

theoretical computer science, mathematical topics in computer science, other hardware topics,

general mathematics, and basic science.

www.manaraa.com

378

Annexure AN6: Some Important Models on Problem Solving
Jonassen’s Taxonomy of Problems

Jonassen [193] has proposed a taxonomy of problems based on variations in problem types and

representations. The problem types vary in a three dimensional continuous space of three factors:

structured-ness, complexity, and degree of domain specificity. The first among these is

structured-ness, varying from extremely well-structured to absolutely ill-structured in a

continuum, as discussed above. The second factor is complexity that depends upon a number of

issues, functions, variables, and also interactions and degree of uncertainty of behavior of these.

The third factor is degree of domain specificity.

Based on the cognitive task analysis of various kinds of problems, Jonassen has identified eleven

different kinds of problems – (i) logical problems, (ii) algorithmic problems, (iii) story problems,

(iv) rule using problems, (v) decision making problems, (vi) troubleshooting problems, (vii)

diagnostic-solution problems, (viii) strategic-tactical performance, (ix) situated case problems,

(x) design problems, and (xi) dilemmas. It may be noted that as per his classification, algorithmic

problems deal with direct application of known algorithms.

Polya’s Model on Mathematical Problem Solving

Polya [195] listed four phases of problem solving: (i) understand the problem, (ii) plan the

solution, (iii) execute the plan, and (iv) review the results. Table AN6.1 gives further details for

each of these phases.
Table AN6.1: Polya’s recommended cognitive engagement of mathematical problem solving

1. Understand the mathematical problems: (i) what is unknown, (ii) what is data, (iii) what is the condition, (iv)

is the condition sufficient/insufficient/redundant/contradictory to determining unknown, (v) draw a figure,
introduce suitable notation, and (vi) separate the various parts of the condition.

2. Plan for solution finding: (i) is the problem familiar, (ii) identify related problems, (ii) identify related
theorem(s), (iii) identify a similar problem that has been solved before for similar unknown, (iv) is the
solution plan of such problem reusable in terms of results and/or method (with some auxiliary elements, if
needed), (vii) restate the problem in different manners, (viii) go back to the definitions, (ix) if the problem
can’t be solved, solve some related problem that may be more general, more specific, more special, or
analogous, solve some part of the problem, (x) how far can the unknown be determined by dropping or
varying part of the condition, and can something useful be derived from this data? (xi) think of other data
appropriate to determine the unknown, (xii) can data and unknown be changed, and/or brought nearer to each
other? and (xiii) have all the data, condition, essential notions being considered?

3. Plan execution: Polya recommended engagements like –(i) carry out the plan and check each step, (ii) can
you see clearly that the step is correct? and (iii) can you prove that it is correct?

4. Review stage: (i) check the result, (ii) check the argument, (iii) can you derive the result differently? (iv) can
you see it at a glance? and (v) can the result or the method be used for solving some other problem?

www.manaraa.com

379

Galotti’s Collation of Some Techniques for Solving Puzzle-like Problems

Galotti collates some general domain independent techniques for puzzle-like problems [196].

1. Generate and Test involves generating possible solutions and then testing them. It is useful

when there are only a few possibilities to track, and loses its effectiveness rapidly when there

are many possibilities, and when there is no particular guidance for the generation process.

2. Means-Ends Analysis consists of comparing the goals with the starting point, thinking of

possible ways of overcoming the gap, and choosing the best. If required, the sub-goals are

created to break down the task into manageable steps. It does not necessarily ensure the best

solution.

3. Working backward also reduces the gap between current state and the goal state by

determining the last step need to achieve the goal, then for next to last step, and so on. It is

very effective when the backward path is unique.

4. Backtracking involves making provisional choices, and unmaking the wrong choices if they

turn out to be wrong so that one can back up to a certain point of choice and start over again

by making newer choices.

5. Reasoning by analogy works when the problem solver is able to form an abstract schema of

the presented stories, and apply the same to new analogous problem. Research has shown

that not many persons are able to form such schema and see the analogy unless told to do so.

Nickols’ typology of problem solving approaches

Nickols proposed a typology of problem solving approaches [198]. A repair approach is required

to put things back the way they were, improvement approach is required to improve upon

existing arrangements, and engineering approach is suitable for creating new, far superior

arrangements. The repair approach starts from symptoms and focuses on causes/corrective

measures through fault isolation. The improvement approach starts from existing

systems/arrangements and focuses on constraints/modifications through structural analysis. The

engineering approach starts from the required results and focuses on required design through

structural design.

www.manaraa.com

380

16 Habits of Mind, Costa and Kallick

Costa and Kallick [203] have identified the following sixteen characteristics of what intelligent

people do when they are confronted with problems, the resolution to which is not immediately

apparent - (i) persisting, (ii) managing impulsivity, (iii) listening to others with understanding

and empathy, (iv) thinking flexibly, (v) thinking about our thinking (meta-cognition), (vi)

striving for accuracy and precision, (vii) questioning and posing problems, (viii) applying past

knowledge to new situations (ix) thinking and communicating with clarity and precision, (x)

gathering data through all senses, (xi) creating, imagining, and innovating, (xii) responding with

wonderment and awe, (xiii) taking responsible risks, (xiv) finding humor, (xv) thinking

interdependently, and (xvi) learning continuously.

www.manaraa.com

381

Annexure AN7: Some Theories on Attention
Galotti gives an excellent account of their findings on this aspect [196]. We give a brief

summary in Annexure AN6. The term ‘selective attention’ means that we usually focus our

attention on one or a few tasks or events rather than on many. In 1958, Broadbent proposed his

‘filter theory’ which specified that we could only attend to one stimulus at a time. In the 1960’s,

Anne Treisman proposed her ‘attenuation theory’ as a modification to the filter theory. She

suggested that rather than being fully blocked and discarded, unattended signals are weakened

and some information is retained for future use.

In the 1960’s, Deutsche and Deutsch, and also Norman, proposed their ‘late selection theory,’

taking a position that all messages are routinely processed for at least some aspects of meaning –

the selection of message for response happens later. At low level of alertness, only very

important messages captured attention, whereas at higher level of alertness, less important

messages can be processed. In 1978, Johnston and Heinz proposed a broader model in the form

of ‘multimode theory,’ which viewed attention as a flexible system that allows selection of a

message over others at several different points. Later selection requires more processing,

capacity, and effort.

In 1973, Kahneman presented his model of attention viewing that the availability of mental

resources is affected by overall level of arousal, or state of alertness. In the 1980’s, Anne

Treisman showed that perceiving individual features takes little effort or attention, whereas

gluing features together into a coherent object requires more. As per the ‘capacity theory of

comprehension’ proposed in 1991, differences in working memory capacity of individuals can

account for qualitative and quantitative differences in comprehension. In 2001, Conway et al

showed that lower capacity of working memory results in lesser ability to focus. Research has

shown that practice plays an enormous role in performance on simultaneous dual tasks but there

are serious limitations on the number of things we can do simultaneously. Complex individual

tasks make it even more difficult.

www.manaraa.com

382

Annexure AN8: Some Important Perspectives on Curiosity
Arnone [245] cites Daniel Berlyne, who in 1960’s had identified two form of curiosity -

diversive (e.g., novelty seeking) and specific (e.g., uncertainty, conceptual conflict, information

seeking). Arnone also refers to Loewenstein’s information gap theory of specific epistemic

curiosity, according to which a feeling of deprivation occurs when an individual becomes aware

of a difference between “what one knows and what one wants to know.”

Peterson et al [246] view curiosity as one of the core cognitive virtues for all humans. According

to their meta-analysis of various philosophical perspectives and research findings curiosity

includes interest, novelty seeking, and openness to experience. It implies taking an interest in

ongoing experience for its own sake, finding topics and subjects fascinating, as well as

tendencies for exploring and discovering.

Peterson et al have given an excellent account of research on curiosity [246]. Cognitive process

theory of curiosity results from two traits of openness to novel stimuli and a concern for

orderliness. According to this theory curiosity is a function of assimilating and accommodating

novel stimulus into one’s cognitive map. Personal growth facilitation model of curiosity suggests

a four step process – (i) allocation of attention and energy for recognizing and pursuing cues of

novelty and challenge, (ii) cognitive evaluation and behavioral exploration of challenging

activities, (iii) deep absorption of these activities, and (iv) integration of curiosity experience

through assimilation and accommodation. In seemingly boring situations, highly curious people

are more oriented towards finding novelty and also sensitive to cues that can increase interest in

meaningful and unavoidable activities. Peterson et al cite research that has shown that in college,

students with a high curiosity trait asked five times more questions than students with a low

curiosity trait.

www.manaraa.com

383

Annexure AN9: Some Important Perspectives on System Thinking
Senge’s Laws for Systems Thinking

Senge emphasizes on purpose, observing repeated events, and patterns of change [278]. He

developed eleven laws of systems thinking as detailed in Table AN9.1. Solovey has found these

laws to be applicable to software development [279].
Table AN9.1: Senge’s laws of systems thinking

1 Today’s problems come from yesterday’s solutions,
2 The harder you push, the harder the system pushes back,
3 Behavior grows better before it grows worse,
4 The easy way out usually leads back in,
5 The cure can be worse than the disease,
6 Faster is slower,
7 Cause and effect are not closely related in time and space,
8 Small changes can produce big results, but the areas of highest leverage are often the least obvious,
9 You can have your cake and eat it too, but not at once,
10 Dividing an elephant in half does not produce two small elephants, and
11 There is no blame.

Characteristics of Systems Thinkers

The highest rated characteristics of engineering systems thinkers found from their empirical

study as well as proposed by Sweeney and Meadows [283] are given in Table AN9.2.
Table AN9.2: Characteristics of systems thinkers

Characteristics of engineering systems thinkers

(Frank and Waks, 2001)
Characteristics of systems thinkers

(Sweeney and Meadows, 2008)
1. Ability to solve system failures
2. Ability to understand complex systems
3. Ability to anticipate the implications of a system
4. Ability to understand the synergy of a given

system
5. Ability to see the whole or to perceive how the

component functions as a part
6. Multi-disciplinary knowledge in addition to

specialization in one
7. Ability to understand generally a new system on

his first encounter with it

1 See the whole picture,
2 Change perspectives to see new leverage points in

complex systems,
3 Look for interdependencies,
4 Consider how mental models create our futures,
5 pay attention and gives voice to the long-term,
6 ‘go wide’ (uses peripheral vision) to see complex

cause and effect relationships,
7 Find where unanticipated consequences emerge,
8 Lower the ‘water line’ to focus on structure, not

blame, and
9 Hold the tension of paradox and controversy without

trying to resolve it quickly.

Meadows’ Perspectives on Systems Thinking

Meadows [275] posits that systems thinking allows us to (i) reclaim our intuition about whole

systems, (ii) hone our ability to understand the parts, (iii) see interconnections, (iv) ask “what if”

questions about possible future behaviors, (v) be creative and courageous about system redesign.

www.manaraa.com

384

Meadows made the following important observations about systems’ structure and behavior. A

system’s behavior may be adaptive, dynamic, goal seeking, self-preserving, and even

evolutionary. Among the elements, interconnections, and purpose of a system, its purpose is the

most crucial determinant of a system’s behavior followed by the interconnections. The elements

are usually easily replaceable without changing a system’s behavior.

In order to understand the complex behavior of systems, one needs to concentrate on dynamics

(behavior over time) of stock and flows in the systems. Stocks generally change slowly and also

act as buffers, delays, or shock absorbers, or source of momentum in a system. They also allow

the inflows and outflows to be independent and also temporarily out of balance. System thinkers

see the world as a collection of “feedback processes” for regulating the levels in the stocks by

manipulating flows. Balancing feedback loops are equilibrating or goal seeking structures in

systems and are both sources of stability and sources of resistance to change. Reinforcement

feedback loops exist in situations where the stocks have the capacity to reinforce or reproduce

itself. Such loops may lead to exponential growth or to runaway collapse over time.

Levels of Systems Thinking

Dennis Meadows proposed seven levels of systems thinking expertise as given in Table AN9.3.
Table AN9.3: Levels of systems thinking expertise (Dennis Meadows)

1 Understand the system,
2 Carry out specific decisions,
3 Implement a recommended policy,
4 Modify a mature model,
5 Construct a new model,
6 Teach others to build new models, and
7 Guide organizational change.

Boulding’s nine-level hierarchy of real world complexity

Boulding [276] proposed the following nine-level hierarchy of real world complexity, as shown

in Table AN9.4. Software developers need to deal with complexity levels upto third level in this

hierarchy. Many applications require them to understand and analyze socio-cultural systems.

Hence, depending upon their application domain, they may also be required to understand and

analyze complexity levels upto 8th level in this hierarchy.

www.manaraa.com

385

Table AN9.4: Boulding’s hierarchy of real world complexity

1 Structures and frameworks exhibit static behavior,
2 Clockworks exhibit predetermined motion,
3 Control mechanisms exhibit closed-loop control,
4 Open systems exhibit structural self-maintenance,
5 Lower organisms which have functional parts, exhibit blue-printed growth and reproduction,
6 Animals which have a brain to guide behavior, are capable of learning,
7 People who possess self-consciousness, know that they know, employ symbolic language,
8 Socio-cultural systems which are typified by the existence of roles, communications and the transmission

of values, and
9 Transcendental systems, the home of ‘inescapable un-knowables,’ and which no scientific discipline can

capture.

Schwartz Value Categories

Schwartz identified ten distinguishable values. Table AN9.5 gives a summary of these value

categories.
Table AN9.5: Schwartz Value Categories

1. Self-Direction. Independent thought and action; choosing, creating, exploring;
2. Stimulation. Excitement, novelty, and challenge in life;
3. Hedonism. Pleasure and sensuous gratification for oneself;
4. Achievement. Personal success through demonstrating competence according to social standards;
5. Power. Social status and prestige, control or dominance over people and resources;
6. Security. Safety, harmony, and stability of society, of relationships, and of self;
7. Conformity. Restraint of actions, inclinations, and impulses likely to upset or harm others and violate social

expectations or norms;
8. Tradition. Respect, commitment, and acceptance of the customs and ideas that traditional culture or religion

provide the self;
9. Benevolence. Preserving and enhancing the welfare of those with whom one is in frequent personal contact

(the ‘in-group’);
10. Universalism. Understanding, appreciation, tolerance, and protection for the welfare of all people and for

nature.

www.manaraa.com

386

Annexure AN10: Some Important Perspectives on Intrinsic Motivation

Aristotle identified twelve end motives: confidence, pleasure, saving, magnificence, honor,

ambition, patience, sincerity, conversation, social contact, modesty, and righteousness.

Descartes listed six intrinsic motives: wonder, love, hatred, desire, joy, and sadness.

James and McDougall, famous psychologists had identified thirteen basic desires: saving,

construction, curiosity, exhibition, family, hunting, order, play, sex, (avoid) shame, (avoid) pain,

herd, and vengeance. Construction is a related desire to build and achieve.

In 1938, Murray suggested 27 psychogenic need: abasement (to surrender and accept

punishment), achievement, acquisition, affiliation, aggression, autonomy, blame avoidance,

construction, contrariance (to be unique), counteraction (defend honor), defendance (justify

actions), deference (to follow/serve), dominance, exhibition, exposition (provide

information/teach), harm avoidance, infavoidance (to avoid failure/shame), nurturance (protect

the helpless), order, play, recognition, rejection (to exclude another), sentience (enjoy sensuous

impressions), sex, similance (to empathise), succorance (seek sympathy), and understanding.

In 1959, Herzberg modified Maslow’s model and suggested that man has two sets of needs:

hygiene (or maintenance) and motivator. The satisfaction of hygiene factors does not motivate,

but absence of these results in dissatisfaction. The motivator factors include achievement,

recognition, responsibility, personal growth, advancement, and work itself.

In 1964, Vroom proposed his expectancy theory. As per this theory, strength of tendency to act

in a certain way depends on the strength of the valence (attractiveness of the outcome to the

individual), and strength of expectation that the act will be followed by the given outcome.

In 1969, Alderfer’s proposed his ERG Theory. This theory viewed needs as a three level

hierarchy: existence, relatedness, and growth. The growth needs are satisfied by an individual by

making creative or productive contributions. He also postulated that if a person is continually

www.manaraa.com

387

frustrated in attempts to satisfy growth needs, relatedness needs reemerge as a major motivating

force.

Reis [294] identified 16 basic needs - power, curiosity, independence, status, social contact,

vengeance, honor, idealism, physical exercise, romance, family, order, eating, acceptance,

tranquility, and saving.

www.manaraa.com

388

Annexure AN11: Successful Practices in International Engineering Education

(SPINE) Study

Successful Practices in International Engineering Education (SPINE) is a benchmark study [78a]

focusing on the analysis of successful practices in engineering education in ten leading European

and U.S. universities including MIT, CMU, and ETH, Zurich. In the SPINE project, 543

professors of these universities, 1372 engineers and 145 managers of European and US

companies were questioned. The study attempted to measure the perceived importance and

assessment of fifty-one parameters on quality of education, teaching methods, engineering

competencies, general professional skills, and aspects of reputation of institute through a

quantitative analysis.

Engineering and General Professional Competencies

The SPINE study identified and assessed the importance of twenty-one engineering and general

professional competencies. The subset of engineering competencies included ability to develop

own engineering expertise, analysis/methodological skills, basic engineering proficiency,

development know-how, practical engineering experience, problem solving, research know-how,

and specialized engineering proficiency. The general professional competencies included ability

to develop a broad general education, communication skills, English language skills, finance,

law, leadership skills, management of business process and administration skills, marketing,

other language skills, presentation skills, project management skills, social skills, and teamwork

skills.

In the SPINE report [78a], the following observations have been made about respondents’

perception of various engineering and general professional competencies:

i. The highest rated engineering competencies, both by professors and engineers were

analysis/methodological skills, basic engineering proficiency, and problem solving skills.

Engineers and Professors also agree on the lowest rated competencies: development

know-how and practical engineering experience.

ii. Engineers rated specialized engineering proficiency and research know-how as lesser

important engineering competencies.

www.manaraa.com

389

iii. General professional competencies that were considered very important are:

communication skills, English language skills, teamwork abilities, presentation skills,

and leadership skills.

iv. General professional competencies that were assigned medium importance are: social

skills, ability to maintain and develop a broad general education, and management of

business processes and administration.

v. General professional competencies of marketing, finance, and other language skills were

rated as lesser important.

vi. All three groups regarded law as least important general professional competency.

Teaching Methods

The respondents of SPINE study also rated the effectiveness of nine teaching methods of group

projects, homework/out-of-class assignment, industrial training/internship, lecture, projects,

practical training, seminars, computer based training, and written projects/studies. In the

SPINE report, the following observations have been made about respondents’ perception about

teaching methods and learning environment:

1 The best teaching method in the opinion of professors is diploma/final projects and

lectures.

2 The engineers gave highest rating to diploma/final projects, but assessed lectures as

inferior to written project/studies and practical training.

3 Engineers assessed practical experience in industry internship, seminars, group projects

and homework/out-of-class assignments at the same level as lectures, whereas professors

had rated the lectures as a superior teaching method (page 77-78 of [78a]).

4 Responding engineers regarded support and counseling for students, and pedagogical and

didactic skills of teaching staff, as inadequate and provided the lowest rating to these two

parameters out of eight parameters of learning environment. On the other hand, the

professors gave a much higher rating to both these parameters (page 80-81 of [78a]).

5 The quality of professors/teaching staff is not high enough in view of the importance of

this item (page 74 of [78a]).

www.manaraa.com

390

Annexure AN12: Some Theoretical Perspectives about Learning and

Teaching
Ostrow [307] refers to Dewey’ observation “when knowledge is framed as something one

receives, holds, and then releases, the message to students is that all knowledge is preexisting.

The world needing to be known is as it is, and no more. We thereby train a populace that could

not be more ill-equipped for an active responsiveness to a fluid, constantly changing world.”

Winston Churchill opined “I am always ready to learn although I do not always like to be

taught.” Honan [308] narrated a speech by Hamilton Holt, president of Rollins College, “…

Holt declared that Yale and Columbia, which he had attended in his youth, taught him virtually

nothing. … learning takes place most profoundly when students are led to make personal

discoveries, often with other students, rather than when inundated with facts and called upon to

remember them in examinations.”

While traditional lectures may be an effective pedagogy for some students in some classes, it is

probably not the most effective way to teach most classes [309]. Northwood et al [310] have

paraphrased Woods’ [311] comparison of traditional teaching with Problem Based Learning:

“In a traditional program, students embark on learning by being told what they need to know,

learning it, and then being given a problem to illustrate how to use what they have learned.

This is a linear, teacher-centered process. Conversely, in PBL, the learning begins with a

problem, students identify what they need to know, they learn it, they apply it to the solution of

the problem and, most likely, they generate more problems and more learning needs in this

cyclical process.”

Merrill [312] has suggested that ‘Information is not Instruction.’ A major characteristic of

learning is that it is active and interactive [313]. In their work, the authors stress that learning is a

social activity, and have suggested that teachers must assume new roles of facilitating and

mediating learning rather than merely imparting information, as is done in orthodox classrooms.

The authors further stress students’ interacting and learning with and from others. Each student

can make unique contributions to his/her own learning, and the learning of others because of

his/her experiences, knowledge, and cultural background. Engagement theory, proposed by

Shneiderman et al [314], is based upon the idea of creating successful collaborative teams that

www.manaraa.com

391

work on ambitious projects, and all student activities involve active cognitive processes such as

creating, problem-solving, reasoning, decision-making, and evaluation. Incorporating social

learning theory into their experiment, authors report that peer coaching provided the learners

the benefits of enhanced knowledge, cognition, and meta-cognition [315].

Schank [316] opines that much of human reasoning is case-based rather than rule-based, and to

be really valuable, generalization has to be constructed by learners themselves. Having a broad,

well-indexed set of cases is what differentiates the expert from the textbook-trained novices.

According to him, generalizations that are told, have no place to sit in memory, and no cases to

tie together, are quickly forgotten from lack of use. Arias et al [317] and Fischer [318] have

studied various design domains, and have concluded that the knowledge to understand, frame,

and solve problems evolves during the problem solving process.

Instructional design theory database project [319] and the ‘Theory Into Practice Database’ (TIP)

[320] provide excellent explanation of several theories related to instructional design theories

and learning. Instructional Transaction Theory [321], Open Learning Environments [321],

Constructivist Learning Environment [322], Anchored Instruction [323], Case Study Method of

Instruction [324], First Principles of Instruction [325], Collaborative Problem solving [321], and

Problem-based Instruction encourage an open-ended learning environment with emphasis on

self-learning to promote critical thinking, and heuristic based learning in ill-defined domains.

Cognitive Apprenticeship and Learning by doing [321] recommend that in order to develop real-

life problem solving ability, classroom content should have a real-life context and learners

should be engaged in performing and reviewing the tasks. Elaboration Theory recommends

teaching of broader concepts before narrower concepts, and teaching of procedural and heuristic

tasks should follow an expert’s way of thinking. Four Component Instruction Design Model

recommends that complex cognitive skills can be developed by engaging the learners in concrete

whole process tasks.

Cognitive Flexibility Theory [206] posits that the traditional linear teaching may be ineffective

for ill-structured knowledge domains. Aptitude-Treatment Interaction posits that highly

structured treatment is good for low-ability students, but hinders high-ability students. Random

www.manaraa.com

392

Access Instruction also stresses upon the need to spontaneously restructure one’s knowledge in

order to respond to a varied and changing situational demands. These theories recommend that

for developing this flexibility, especially for ill-structured domains, rather than using over-

simplification, compartmentalisation, and transmission of knowledge, instruction should support

its context dependence, multiple representations, construction, and interconnectedness.

Many of the attitudes, perceptions, and values considered to be important for software

development activities cannot be assumed to naturally develop as a natural result of traditional

computing education. Change of attitude, perceptions, and values necessarily requires

deconstruction of some of the existing beliefs. Kort and Reilly [326] view learning as a spiral

process of construction and de-construction (of misconceptions) phases through positive as well

as negative emotions. As per Cognitive Dissonance Theory [327] and also the Structured Design

for Attitudinal Instructions instruction can be designed to create short-term dissonance such that

it facilitates the learners to first recognize the need to change attitude. Collaborative Problem

Solving, Situated Learning and Caring Community of Learners leverage cooperative learning for

fostering social and ethical knowledge along with conceptual and procedural skills.

Levels of Processing recommends deep processing for facilitating durable learning of the

material. Landamatics [321] recommends the usage of guided discovery and expository teaching

to develop higher-order thinking skills. Bateson proposed four categories of learning [328] that

result into change of action, underlying assumptions, or the motivating factors depending upon

the levels of reflection. Deepening levels of reflections open up newer solution spaces for

problem solving. Biggs and Collis [329] proposed five-level taxonomy, Structure of the

Observed Learning Outcome (SOLO) in terms of increasing structural complexity and

abstraction.

Andragogy, initially defined as “the art and science of helping adults learn,” has taken on a

broader meaning since Knowles’ first edition [330]. The term currently defines an alternative to

pedagogy, and refers to learner-focused education for people of all ages [314]. It postulated that

as learners mature, their motivation as well as perspective shift from external to internal and

from postponed application of knowledge to immediacy of application respectively. The

www.manaraa.com

393

andragogic model asserts that five issues be considered and addressed in formal learning. They

include:

4. Learners need to know why they need to learn something.

5. Adults need to learn experientially.

6. Adults approach learning as problem-solving.

7. Adults learn best when the topic is of immediate value.

In the teacher’s guide [331], the authors discourage teachers to occupy the role of expert and

suggest not to impose solutions and their view. As an alternative, they recommend posing

questions, raising contradictions and co-learning as effective approaches to use in classroom. A

proper balance among self-directed learning, peer mentoring, group work, and direct instruction,

helps learner along many pathways. UNICEF has identified planning, gathering resources,

connecting learners to activities, connecting learners to each other, guiding and observing and a

focus on equitable participation as key items for increasing the level of active learning in

classrooms [332].

www.manaraa.com

394

List of Author’s Publications
(Extracted from the list of references. [Ref No] indicates the S.No in the reference list)

1. [11] Sanjay Goel, What is high about higher education: Examining engineering education through Bloom’s
taxonomy, The National Teaching & Learning Forum, Vol. 13, pp 1-5, Number 4, 2004.

2. [12] Sanjay Goel and Nalin Sharda, What do engineers want? Examining engineering education through Bloom’s
taxonomy, Proceedings of 15th Annual AAEE Conference, pp173-185, 2004.

3. [84] Sanjay Goel, Investigations on required core competencies for engineering graduates with reference to Indian
IT industry, European Journal of Engineering Education, Taylor & Francis, UK, pp 607-617, October, 2006.

4. [139] Sanjay Goel, Competency Focused Engineering Education with Reference to IT Related Disciplines: Is
Indian System Ready for Transformation? Journal of Information Technology Education, Vol. 5, Informing
Science Institute, USA, pp 27-52, 2006.

5. [177] Sanjay Goel, Om Vikas, Mukul Sinha, Guidelines for Masters in Archaeo-heritage Informatics, Indo US
S&T Workshop on Digital Archeology, Musoorie, India, Invited paper, Nov 11-13, 2005.

6. [348] Sanjay Goel, Do Engineering Faculty Know What's Broken?, The National Teaching & Learning Forum,
James Rhem & Associates, USA, Vol. 15, pp 1-10, Number 2, 2006.

7. [358] Sanjay Goel, Activity based flexible credit definition, Tomorrow’s Professor, Stanford University, 2003,
http://ctl.stanford.edu/Tomprof/postings/513.HTML.

8. [367] Ritu Arora, Sanjay Goel, "Software Engineering Approach for Teaching Development of Scalable
Enterprise Applications,", 22nd IEEE-CS Conference on Software Engineering Education and Training CSEET,
, pp.105-112, February 2009.

9. [389] Sanjay Goel and Vanshi Kathuria A Novel approach for pair programming, Journal of Information
Technology Education, USA, Accepted with revision, Revised copy submitted, 2009.

10. [402] Sanjay Goel, A proposal for a tutorial on enriching the culture of software engineering education through
theories of knowledge and learning, Proceedings, 22nd IEEE-CS Conference on Software Engineering
Education and Training, CSEET, , pp.279-282, February 2009.

11. [403] Sanjay Goel, Multimedia for Cultural learning, International workshop on Computer Applications in
Archaeology, H.B. Bahuguna University, Sri Nagar, India, Invited paper, 2002.

12. [404] Siddharth Batra and Sanjay Goel, Digislim: A learning tool for logic level digital electronics, Computers
in Education Journal, Vol XVIIII No 3, American Society of Engineering Education, USA, pp 17-27, July,
2009,

13. [405] Sanjay Goel and Mukul K. Sinha, Virtual Archaeolo-Heritage Exploratorium: A model design for School
students, Indo-US S&T Forum Workshop on Digital Arcahaeology: A New Paradigm for Visualizing Past
through Computing and Information Technology, India, Invited paper, Nov. 2005.

14. [406] Sanjay Goel, Anshul Jain, Priyank Singh, Saaransh Bagga, and Siddhartha Batra, Computer Vision aided
Classification and Reconstruction of Indian Potteries, Indo-US S&T Forum Workshop on Digital Archaeology:
A New Paradigm for Visualizing Past through Computing and Information Technology, India, Invited paper,
Nov. 2005.

15. [407] Sanjay Goel, A Model Design for Computer based Cognition Support Systems, International Conference
on Multimedia in Humanities, IGNCA, 1998.

16. [408] Sanjay Goel, Design of Interactive Systems: Looking Beyond Cognitive domain, INCITE’07, EU-India
co-operation in IT research Workshop, New Delhi, Invited talk, 2007.

