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Figure 46. Schematic diagram showing working mechanism of particle manipulation 

using phase-shift of SAW: (a) no phase-shift, (b) 90
°
 phase-shift, (c) -90

° 
phase-shift. 

 

 As seen in Figure 46(a), a pressure node is located initially in the center of 

microfluidic channel with no phase-shift (reference position in x-direction). If the phase 

shift of 90° is applied by changing the phase of one of the SAWs (red solid line in Figure 

46), the pressure node is moved in the positive x-direction, and the particle moves toward 
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the new pressure node location (Figure 46(b)). If the phase shift of -90° is applied, the 

pressure node moves along negative x-direction, and the particle is manipulated to the 

new pressure node location (Figure 46(c)). By modulating the relative phase difference 

between two IDTs, the position of pressure node of the SAW in the microfluidic channel 

changes linearly, resulting in the manipulation of a particle trapped to the pressure node. 

There is a theoretical linear relation between the displacement of particle manipulated 

and the phase-shift [202]: 

1

2 720
x

k
�O

� M � M�' � �' � �'                                                (22) 

where Δx, Δφ, k, and λ are displacement of particle, phase-shift, wave number, and 

wavelength, respectively.  

 The single-electrode-type IDTs were fabricated by deposition of chrome layer 

with 100 nm thick on a 128° Y-rotated, X-propagating lithium niobate (LiNbO3) 

piezoelectric substrate using photolithography procedures. The width and period of the 

IDT finger were 75 μm and 300 μm, respectively, resulting in a wavelength of 300 μm 

and an operating frequency of 13.3 MHz. PDMS microfluidic channel was fabricated 

using soft lithography replica molding technique. The width and depth of the fabricated 

PDMS microfluidic channel were 150 μm and 100 μm, respectively. The detailed 

fabrication process of the SAW-based microfluidic devices used in this study can be 

found in Chapter 4.2.3. For investigation of particle manipulation using phase-shift of 

SAW, a solution of fluorescent polystyrene particles with 5 μm diameter (Bangs 

Laboratories, Fishers, IN) was injected to the PDMS microfluidic channel by the 

microliter syringe (Hamilton, Reno, Nevada) and the syringe pump (KD Scientific, 

Holliston, MA). The concentration of the particles in the sample solution was 1% by 
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volume. The phase-shift was induced by the arbitrary function generator (AFG3022B, 

Tektronix), whose phase and amplitude can be controlled independently, is connected to 

the IDTs for generating SAW. The trajectories of the particles streams manipulated by 

phase-shift were obtained continuously using a fluorescence microscope (IX-51, 

Olympus), a CCD camera (XM-10, Olympus), and an image acquisition software 

(cellSens, Olympus). 

 

7.3. Results and Discussion 

The composited trajectories of 5 μm fluorescent polystyrene particles streams at 

five different phase-shift applied (-180°, -90°, 0°, 90°, 180°) were shown in Figure 47. 

Initially, the particles were aligned at the center of the microfluidic channel where the 

pressure node was located in the first SAW field. Note that this center position of the 

pressure node induced by first IDT pair was fixed during experiments, and therefore is 

referred as reference position. To demonstrate particle manipulation using the phase-

shifting, the phase of one of second IDT pair was modulated, resulting in applying phase-

shift of   -180°, -90°, 0°, 90°, and 180°. The particles were manipulated with different 

lateral displacement by changing the pressure node position due to each phase-shift. 

Without phase-shift, the particles were continuously flowing at the center of the channel. 

When positive phase-shifts (90°, 180°) were applied, the pressure node moved along 

positive x-direction in the microfluidic channel and the particles were directed to the 

below center of the microfluidic channel. On the other hand, when negative phase-shifts 

(-90°, -180°) were applied, the pressure node was re-located along negative x-direction 

and the particle were manipulated to the above center of the microfluidic channel. The 
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lateral displacements of the particles from -72.5 μm to 73.1 μm along the x-direction 

were accomplished by varying phase-shift with a range of -180° to 180° at the second 

SAW field. 

 

 

Figure 47. A composite fluorescent image showing the trajectories of 5 μm PS particle 

streams induced by five different phase-shifts of SAW. A constant operating frequency of 

13.3 MHz, an input power of 1 W, and a flow rate of 1 μl/min were applied during the 

experiments. 

  

 Figure 48 shows the experimental particle displacement data as a function of 

phase-shift applied and the theoretical variation of particle position calculated from 

Equation (22) over a range of -180° to 180°. It can be observed that the relationship 

between the particle displacement and the phase-shift was almost linear experimentally, 

and the experimental data had good agreement with the theoretical prediction of the 

displacement. Since this technique can precisely define and transport the pressure node of 
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8.2. Future Work 

 The future efforts could be aimed at using this sheathless acoustic-based separator 

to detect and sort of rare cells for cell biology and biomedical applications. The detection 

and analysis of circulating tumor cells (CTCs), is important for fundamental 

understanding of the process of metastasis, disease staging, predicting prognosis, 

monitoring patients during therapy, and improving therapy design. CTCs are not easily 

detected because a quantity of these cells in whole blood is very small [203]. However, 

the isolation of CTCs from whole blood can be performed based on cell size because 

CTCs commonly are larger than blood components such as plasma, red blood cells 

(erythrocyte), white blood cells (leukocytes), and platelets. The separation of neural stem 

cells is of critical importance to understanding the specific and unique functions.  These 

cells play a significant role in the central nervous system (CNS), and potential 

applications in cell replacement therapy in many neurodegenerative disorders (such as 

Parkinson’s, Alzheimer’s, or Multiple sclerosis) and cancer [204, 205].  The separation of 

neural stem cells from progenitor cells can be accomplished based on the size of these 

cells. This sheathless acoustic-based separator can greatly reduce the amount of time 

required for cell purification and preparation for transplantation compared to the use of 

typical method, fluorescence-activated cell sorting (FACS), for the purification of 

hematopoietic stem cells which can take 1–17 hours [206]. This acoustic-based 

separation method does not require the specific labeling of cells, and therefore offers the 

possibility of cell purification of mixtures of cells where distinct cell surface markers for 

the different types of cells in the population are not available, or when cell labeling with 

antibodies or other cell markers is not desired.  
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 To date, a large number of experimental demonstrations and investigations of 

particle separation using acoustic radiation force have been studied. However, there are 

very few theoretical or numerical demonstrations of acoustic-based particle separation. 

Thus, the acoustic finite element and theoretical models coupled with the microfluidic 

channel, the medium fluid, the fluid-structure interface, and the absorbing boundary are 

required to investigate how acoustic waves interact with particles or cells in the 

microfluidic channel and to optimize IDT design with the propagation characteristics of 

surface acoustic waves. In addition, the development of computational techniques to 

analyze the non-linear acoustic streaming in microfluidic channel is also needed to 

improve understanding of the acoustic-based mixing phenomena.  

 The current acoustic-based microfluidic platform design has limited the 

manipulation of sub-micron objects such as single DNA or protein molecules due to 

insufficient acoustic force acting on the object. For instance, if the diameter of the 

particle is less than about 0.3 μm, the acoustic forces acting on the particle are smaller 

than the viscous forces as shown in Figure 13. Thus, the comprehensive study for 

generating a stronger acoustic force on nano-objects should be introduced to overcome 

this limitation, such as the effects of increasing operation frequency and the investigation 

of different design IDT including the focused IDT, chirped IDT, and slanted-finger IDT.  
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Appendix A (continued) 

 

Figure B. The permission for reuse of author’s own manuscript [103] for Chapter 4 from 

Sensors and Actuators A: Physical journal.  
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Appendix A (continued) 

 

Figure C. The permission for reuse of author’s own manuscript [146] for Chapter 5 from 

Sensors and Actuators A: Physical journal. 
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Appendix A (continued) 

 

 

           Figure D. The permission for use of the previously published Figure 1 and 2.  
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Appendix A (continued) 

 

             Figure E. The permission for use of the previously published Figure 3. 
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Appendix A (continued) 

 

            Figure F. The permission for use of the previously published Figure 4. 
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Appendix A (continued) 

 

                Figure G. The permission for use of the previously published Figure 5. 
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Appendix A (continued) 

 

                Figure H. The permission for use of the previously published Figure 6. 
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