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Figure 46. Schematic diagram showing working mechanism of particle manipulation
using phase-shift of SAW: (a) no phase-shift, (b) 90 phase-shift, (c) -90 phase-shift.

As seen in Figure 46(a), a pressure node is located initially in the center of
microfluidic channel with no phase-shift (reference position in x-direction). If the phase
shift of 90° is applied by changing the phase of one of the SAWs (red solid line in Figure

46), the pressure node is moved in the positive x-direction, and the particle moves toward
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the new pressure node location (Figure 46(b)). If the phase shift of -90° is applied, the
pressure node moves along negative x-direction, and the particle is manipulated to the
new pressure node location (Figure 46(c)). By modulating the relative phase difference
between two IDTs, the position of pressure node of the SAW in the microfluidic channel
changes linearly, resulting in the manipulation of a particle trapped to the pressure node.
There is a theoretical linear relation between the displacement of particle manipulated

and the phase-shift [202]:

X —' M (22)

where AX, A, k, and A are displacement of particle, phase-shift, wave number, and
wavelength, respectively.

The single-electrode-type IDTs were fabricated by deposition of chrome layer
with 100 nm thick on a 128° Y-rotated, X-propagating lithium niobate (LiNbO3)
piezoelectric substrate using photolithography procedures. The width and period of the
IDT finger were 75 um and 300 um, respectively, resulting in a wavelength of 300 um
and an operating frequency of 13.3 MHz. PDMS microfluidic channel was fabricated
using soft lithography replica molding technique. The width and depth of the fabricated
PDMS microfluidic channel were 150 um and 100 pm, respectively. The detailed
fabrication process of the SAW-based microfluidic devices used in this study can be
found in Chapter 4.2.3. For investigation of particle manipulation using phase-shift of
SAW, a solution of fluorescent polystyrene particles with 5 um diameter (Bangs
Laboratories, Fishers, IN) was injected to the PDMS microfluidic channel by the
microliter syringe (Hamilton, Reno, Nevada) and the syringe pump (KD Scientific,
Holliston, MA). The concentration of the particles in the sample solution was 1% by
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volume. The phase-shift was induced by the arbitrary function generator (AFG3022B,
Tektronix), whose phase and amplitude can be controlled independently, is connected to
the IDTs for generating SAW. The trajectories of the particles streams manipulated by
phase-shift were obtained continuously using a fluorescence microscope (1X-51,
Olympus), a CCD camera (XM-10, Olympus), and an image acquisition software

(cellSens, Olympus).

7.3. Results and Discussion

The composited trajectories of 5 um fluorescent polystyrene particles streams at
five different phase-shift applied (-180°, -90°, 0°, 90°, 180°) were shown in Figure 47.
Initially, the particles were aligned at the center of the microfluidic channel where the
pressure node was located in the first SAW field. Note that this center position of the
pressure node induced by first IDT pair was fixed during experiments, and therefore is
referred as reference position. To demonstrate particle manipulation using the phase-
shifting, the phase of one of second IDT pair was modulated, resulting in applying phase-
shift of -180°, -90°, 0°, 90°, and 180°. The particles were manipulated with different
lateral displacement by changing the pressure node position due to each phase-shift.
Without phase-shift, the particles were continuously flowing at the center of the channel.
When positive phase-shifts (90°, 180°) were applied, the pressure node moved along
positive x-direction in the microfluidic channel and the particles were directed to the
below center of the microfluidic channel. On the other hand, when negative phase-shifts
(-90°, -180°) were applied, the pressure node was re-located along negative x-direction

and the particle were manipulated to the above center of the microfluidic channel. The
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lateral displacements of the particles from -72.5 um to 73.1 um along the x-direction
were accomplished by varying phase-shift with a range of -180° to 180° at the second

SAW field.

Figure 47. A composite fluorescent image showing the trajectories of 5 um PS particle
streams induced by five different phase-shifts of SAW. A constant operating frequency of
13.3 MHz, an input power of 1 W, and a flow rate of 1 pl/min were applied during the
experiments.

Figure 48 shows the experimental particle displacement data as a function of
phase-shift applied and the theoretical variation of particle position calculated from
Equation (22) over a range of -180° to 180°. It can be observed that the relationship
between the particle displacement and the phase-shift was almost linear experimentally,

and the experimental data had good agreement with the theoretical prediction of the

displacement. Since this technique can precisely define and transport the pressure node of
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8.2. Future Work

The future efforts could be aimed at using this sheathless acoustic-based separator
to detect and sort of rare cells for cell biology and biomedical applications. The detection
and analysis of circulating tumor cells (CTCs), is important for fundamental
understanding of the process of metastasis, disease staging, predicting prognosis,
monitoring patients during therapy, and improving therapy design. CTCs are not easily
detected because a quantity of these cells in whole blood is very small [203]. However,
the isolation of CTCs from whole blood can be performed based on cell size because
CTCs commonly are larger than blood components such as plasma, red blood cells
(erythrocyte), white blood cells (leukocytes), and platelets. The separation of neural stem
cells is of critical importance to understanding the specific and unique functions. These
cells play a significant role in the central nervous system (CNS), and potential
applications in cell replacement therapy in many neurodegenerative disorders (such as
Parkinson’s, Alzheimer’s, or Multiple sclerosis) and cancer [204, 205]. The separation of
neural stem cells from progenitor cells can be accomplished based on the size of these
cells. This sheathless acoustic-based separator can greatly reduce the amount of time
required for cell purification and preparation for transplantation compared to the use of
typical method, fluorescence-activated cell sorting (FACS), for the purification of
hematopoietic stem cells which can take 1-17 hours [206]. This acoustic-based
separation method does not require the specific labeling of cells, and therefore offers the
possibility of cell purification of mixtures of cells where distinct cell surface markers for
the different types of cells in the population are not available, or when cell labeling with

antibodies or other cell markers is not desired.
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To date, a large number of experimental demonstrations and investigations of
particle separation using acoustic radiation force have been studied. However, there are
very few theoretical or numerical demonstrations of acoustic-based particle separation.
Thus, the acoustic finite element and theoretical models coupled with the microfluidic
channel, the medium fluid, the fluid-structure interface, and the absorbing boundary are
required to investigate how acoustic waves interact with particles or cells in the
microfluidic channel and to optimize IDT design with the propagation characteristics of
surface acoustic waves. In addition, the development of computational techniques to
analyze the non-linear acoustic streaming in microfluidic channel is also needed to
improve understanding of the acoustic-based mixing phenomena.

The current acoustic-based microfluidic platform design has limited the
manipulation of sub-micron objects such as single DNA or protein molecules due to
insufficient acoustic force acting on the object. For instance, if the diameter of the
particle is less than about 0.3 um, the acoustic forces acting on the particle are smaller
than the viscous forces as shown in Figure 13. Thus, the comprehensive study for
generating a stronger acoustic force on nano-objects should be introduced to overcome
this limitation, such as the effects of increasing operation frequency and the investigation

of different design IDT including the focused IDT, chirped IDT, and slanted-finger IDT.
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Figure D. The permission for use of the previously published Figure 1 and 2.
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Figure E. The permission for use of the previously published Figure 3.
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Seismic Waves and the Slinky Teacher’'s Guide Page 1 of 40

| Seismic Waves

.M...w.f:w"_]"lﬁ:ﬂ-ﬁm and the Slinky:

A Guide for
Teachers

Prof. Lawrence W.
Department of Braileg
LoRErs

Sciences Atmospheric Sciences
Purdue University
West Lafayette, IN 47907-
PURDUE 2051
UNIVERSITY braile/@purdue.edu
web.ics.purdue.edu/~braile

Objectives: This teaching guide is designed to introduce the concepts of waves and seismic waves
that propagate within the Earth, and to provide ideas and suggestions for how to teach about seismic
waves. The guide provides information on the types and properties of seismic waves and instructions
for using some simple materials — especially the slinky — to effectively demonstrate characteristics of
seismic waves and wave propagation. Most of the activities described in the guide are useful both as
demonstrations for the teacher and as exploratory activities for students. With several regular metal
slinkys, and the modified slinky demonstrations described in this teaching guide, one can imvolve an
entire class in observation of the demonstrations and experimenting with the slinkys in small groups.
For activities that involve several people, such as the 5-slinky and human wave demonstrations, it is
convenient to repeat the demonstrations with different groups of students so that each person will
have the opportunity to observe the demonstration and to participate in it.

This tutorial is available for viewing with a browser (html file) and for downloading as an MS Word
document or PDF file at the following locations:
http://web.ics. purdue.edu/~braile/edumod/slinkv/slinkv.htm
http://web.ics.purdue.edu/~braile/edumod/slinky/slimky.doc
http://web.ics.purdue.edu/~braile/edumod/slink v/slinky.pdf
A related PowerPoint presentation for seismic waves and the slinky is available for download at:
http://web.ics.purdue.edu/~braile new/SeismicWaves. ppt

xplorations in

Earth Science Last modified February 24, 2010
The web page for this document is:
http://web.ics. purdue.edu/~braile/edumod/slinky/slinky. hti
Partial funding for this development provided by the National Science Foundation.
® Copyright 2006-10. L. Braile. Permission granted for reproduction for non-commercial uses.

Figure H. The permission for use of the previously published Figure 6.
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