
www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 598

A Study of Mining Software Engineering Data and
Software Testing

T.Murali Krishna1, Devara Vasumathi2

1. Lecturer, Department of Computer Science, College of Engineering & Technology, Jimma University, Jimma, Ethiopia

2. Associate. Professor, Department of Computer Science &Engineering, College of Engineering & Technology,
Jawaharlal Nehru Technological University, Hyderabad, India.

{murali2007tel@yahoo.com1, vasukumar_devara@yahoo.co.in2 }

ABSTRACT

The primary goal of software development is to deliver Optimal Software, i.e., software produced at low cost, high
quality & productivity and scheduled with in time. In order to achieve this optimal software, programmers generally
reuse the existing libraries, rather than developing similar code products right from the scratch. While reusing the
libraries, programmers are facing several changes such as many existing libraries are not properly documented and
many libraries contain large number of program interfaces (PIs) through which libraries expose their functionality.
These challenges lead to certain problems that affect in producing optimal software. The problems such as reuse of
existing libraries consumes more time, lack of knowledge on reusage of program interfaces and we can’t generate
effective test inputs during white box testing. The first two problems reduce the software productivity where as last
one affect on software testing.
To resolve these problems, we propose a general framework called Netminer. Netminer contains a code search
engine. With the help of code search engine, we can search the available open source code over the internet. In the
analysis phase, Netminer automatically compares the specifications of program interfaces with relevant code
examples that are available in the internet. In the next phase, Netminer applies data mining techniques on code
examples that are collected and identify common patterns. The common patterns represent exact usage of program
interfaces.
We propose some more approaches based on Netminer. Some approaches help programmers in effectively reusing
program interfaces provided by existing libraries. Some approaches identify defects under analysis from the mined
specifications and some approaches help in generating test inputs by the use of static and dynamic test generation.
Our research study shows that Netminer framework can be effectively used in software engineering for achieving
optimal software.

Keywords: Software Engineering, Data Mining, Program Interface, Netminer, Algorithms.

1. INTRODUCTION

 What affects software productivity and how do we
improve it? This is a concern near and dear to those who
are responsible for researching and developing large
software system. The main aim of software development
is to produce optimal software efficiently and effectively.
In order to attain the optimal software, programmers reuse
the existing libraries, rather than developing similar code
from the scratch. These libraries include open source
libraries such as Eclipse or C#. From 1995 onwards, there
is a rapid growth in not only open source libraries but also
in reuse of these open source libraries.

 It is observed from earlier researches, that more
than 40% of source files among the projects under analysis
include the code from open source libraries. A new

programming methodology by reusing libraries is called
Opportunistic Software Systems Development (OSSD).
Using OSSD, programmers develop systems from
readymade components by combining each other. Rather
than developing similar code right from the beginning,
OSSD reuses the existing libraries. Reuse of existing
libraries helps in reducing effort during software
maintenance and also increased software productivity.

 For the reuse of libraries, we considered Object
Oriented libraries where inheritance plays a vital role.
The functionality of Object Oriented Libraries handled
through an interface called Program Interface (PI). In
object oriented languages PI is used to represent a set of
classes and methods provided by libraries. For effective
reusing of existing libraries, programmers need the
knowledge of how to use PIs. The following two

mailto:%7Bmurali2007tel@yahoo.com�
mailto:vasukumar_devara@yahoo.co.in2�
mailto:vasukumar_devara@yahoo.co.in2�

www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 599

challenges are faced by programmers in understanding the
usage of PIs.

 First, large number of existing libraries contains
many PIs. For e.g., C# library provides around 9000 PI
classes. These classes provide different functionalities
such as Stack, Queue, and Linked List etc. Out of all
these PIs some are important and some are more important
compared to others. Programmers should have proper
knowledge about libraries. Otherwise they will face
problems such as from where and how to start using
library.

 Second, many existing libraries are outdated and or
not properly documented. For example, programmer
reusing Eclipse library. Programming task is to write code
and convert into parse code in an editor.

e.g. IEditorPart obj1 = …….

 IEditorInput obj2 = obj1.getEditorInput ();

IWorkingCopyManager wcm = JavaUI.
GetWorkingCopyManager ();

ICompilationUnit cu = wcm.getWorkingCopy (obj2);

 A programmer unfamiliar to Eclipse may take long
time in reusing the existing libraries.

2. PROBLEM STATEMENT

 Because of the above two factors , while in reusing
the existing libraries programmers face three major
problems that affect in producing optimal software.

 While using PIs, programmers introduce defects
due to lack of knowledge on how to reuse PIs. The main
reason for such defects is programmers to follow implicit
programming rules. For e.g., both next and has next
methods form implicit programming in Java utility
package.

 Proper documentation and sufficient examples play
a vital role in understanding PIs. If programmers spend
more time in understanding PIs, software productivity will
be reduced which in turn affects producing optimal
software.

 While reusing libraries, programmers face
challenges in generating test inputs for the client code
during white box generation technique. Test inputs need
method sequences and exercise the code under test. These
sequences go for branch testing that covers True or False.
In general existing libraries contain sequences, which
include multiple classes. Hence it’s a challenging practice
to programmers to automatically generate method
sequences with multiple classes.

3.

3. TECHNIQUES FOR SOLVING THE

PROBLEM

 In order to solve above problems and to produce
optimal software, we propose a general frame work called
Netminer. This Netminer contain new techniques such as
information retrieval, program analysis, and software
testing. Netminer helps programmer by giving open
source code on the internet in reusing existing PIs. This is
done in analysis phase. Netminer then applies data mining
techniques on the relevant code examples that are
collected known as “Mining Software Engineering Data”
(MSED).

Fig. 1: Phase 1 of Netminer

Fig. 2: Phase 2 of Netminer

 With the help of light weight analysis we can
handle large number of code examples.

Fig. 3: Phase 3 of Netminer

Program Interface

Collects Code

Examples

Code Search

Engine

Analysis

Collect code

examples

Light weight heuristic

based program analysis

Analyzed code examples

Analyzed code

examples

Pattern candidates

Data Mining

Techniques

Common Patterns

www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 600

 These common patterns represent likely uses of PIs
among all pattern candidates. In the last phase, Netminer
uses mined PI specifications for getting optimal software.
Netminer helps programmer in understanding how to use
PIs by suggesting related PI specifications.

 In order to develop optimal software, Netminer
uses the approaches such as PARSE web, spot web, static
verification and dynamic test generation.

Fig. 4: FOUR PHASES OF NETMINER FRAMEWORK

3.1 APPROACHES FOR BETTER PRODUCTIVITY

 To help programmers in effectively reusing existing
libraries, we developed two approaches, called PARSEWeb
and SpotWeb based on NetMiner framework. These two
approaches will help us to increase programmer’s
productivity.

 PARSEWeb: It accepts queries in the form of
“sourcedestination” and mines frequent method sequences
that accept an object of source type and produce an object of
destination type. While programmers are writing code using
existing libraries, the above two method sequences are
helpful to them.

 Eg Consider a programmer, who uses open source
implementation of Java Message Service PI1.1 specification.
Programmer has an object of type
QueueConnectionFactory and does not know how to write
code to get a QueueSender object, which required for
sending messages. PARSEWeb approach helps the
programmer in the following manner. The programmer first
translates the problem into a “QueueConnectionFactory 
QueueSender”.

Methods Sequences suggested by PARSEWeb

01:FileName: O_UserBean.java MethodName: ingest

02:QueueConnectionFactory,createQueueConnection()
Returntype: QueueConnection

03:QueueConnection,createQueueSession(Boolean,Sess
ion.AUTO_ACKNOWLEDGE) Returntype:
QueueSession

04:QueueSession,CreateSender(Queue)
Returntype:QueueSender

Equivalent Java code for method sequence suggested
by PARSEWeb

01:QueueConnectionFactory objqcf;

02:QueueConnection objqucon =
objqcf.createQueueConnection();

03:QueueSession objqs =
objqucon.createQueueSession(true,Session,AUTO_AC
KNOWLEDGE);

04:QueueSender objqusen = objqs.createSender(new
Queue());

Fig. 5: OVERVIEW OF PARSEWeb Approach

query
Code

Downloader

Code

Search

Engine

Open

Source

reposit

programmer
Local source

code

repository

Analyze

Phase

Method

sequence

s

Final

Method

Sequences

Clustered

Method

sequences

Query

Splitter
Mine

Phase

SE task

Generate

candidates

Collect SE

data

Develop

mining

algorithm

Apply mining

results

Code

search

engine

www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 601

SpotWeb: It helps programmers in reusing PI classes and
methods of an existing library by detecting coldspots and
hotspots of the library. Coldspots are PI classes and
methods that are very rarely used. Hotspots are PI classes
and methods that are frequently reused. They are also used
as starting points for programmers in reusing and
understanding the library.

 In general, users reuse certain areas of libraries which are
flexible. For effective reuse of libraries, programmers must
be aware of these flexible areas, which are known as
hotspots. Hotspots are built upon Open-Closed principle.
The “Open” parts(also known as hooks) represent areas that
are variant and flexible. The “Closed” parts (known as
templates) represent areas that are immutable in the given
library. A hotspot is a combination of both templates and
hooks.

Fig. 6: OVERVIEW OF SPOTWEB

 Both these approaches are based on NetMiner framework
that collects code examples on demand. These two
approaches are independent of any specific set of libraries.

3.2 APPROACHES FOR BETTER QUALITY THROUGH
STATIC VERIFICATION

 To mine PI patterns and detect defects in client code from
mined patterns, we use two approaches called Alattin and
CAR-Miner. Alattin focuses on reducing false positives
among detected violations, where as CAR-Miner focuses on
reducing false negatives by detecting new defects. False
positives indicate those violations that do not represent real
defects. False negatives represent the defects that exist in
applications under analysis.

Fig. 7: EXAMPLE OF CAR-MINER APPROACH

 CAR-Miner accepts an application under analysis
and mines exception-handling rules for all function
calls. CAR-Miner next detects violations of the mined
exception-handling rules.

3.3 APPROACHES FOR BETTER QUALITY THROUGH
DYNAMIC TEST GENERATION

 To assure high quality of developed software, we
adopt unit testing, which helps to detect defects at an
early stage. For effective generation of test inputs that
achieve high structural coverage of the code under test,
we use two approaches called MSeqGen and DyGen
that mine static and dynamic traces respectively.
MSeqGen statically extracts method sequences from
existing code bases and assists random & dynamic
symbolic execution. DyGen automatically generates
regression tests from dynamic traces.

Fig. 8: OVERVIEW OF MSEQGEN APPROACH

www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 602

Fig. 9: HIGH-LEVEL OVERVIEW OF DYGEN

 4. FUTURE WORK

 In our research work we used the general frame
work Netminer that combines code searching and mining
to achieve Software Engineering problems such as
detecting defects under analysis.

 We focused on mining source code which is in the
form of Structured SE data. With in the internet, there
may be other form of SE data which is in Natural
Language (e.g. BCEL and other technical blogs) called
Unstructured SE data. Hence in future, we plan to develop
new frame work Netminer ++, that can influence both
structured and unstructured SE information available on
the internet. Netminer ++ includes additional techniques
and approaches based on Natural Language Processing
(NLP)

 In future, we mainly concentrate on various aspects
such as what kind of unstructured SE data are available on
the internet, the analyzation & understanding the
unstructured SE data, Indexing the analyzed data and
search for relevant data in unstructured SE data.

 The present research mainly focuses on mining
source code syntactically. In future, we can extend from
syntactic code analysis to semantic analysis.

 For getting optimal software, we used static
verification and dynamic test generation in the present
research. In future, even we can integrate both
methodologies for better results.

5. CONCLUSION

 Mining software engineering data (MSED) mainly
applies data mining techniques on SE artifacts. In this
research work, we advanced by expanding the data scope
to large amount of source code available on the internet,
using Netminer. The effectiveness of Netminer explained
by various approaches such as PARSE web, spot web,
MSeqGen, Dygen etc. Some can helpful in developing
optimal software where as some assist in test generation.

ACKNOWLEDGEMENT

 We thank Dr. Balaji Dhanasekaran for giving
valuable suggestions and comments. We also thank
Dr.Senthil and Mr. Niraj Kumar Rai, IISC, Banglore for
interesting discussions. We also thank Jimma University
for providing us not only financial support but also for
providing all the reference publications, manuals and
journals.

REFERENCES

[1] Mithun Acharya. Mining API Specifications from Source
Code for Software Reliability. PhD thesis, North Carolina
State University, 2009.

[2] Eclipse, 2010. http://www.eclipse.org/.

[3]Eclipse developer forum, 2010.
http://www.eclipse.org/forums/

[4] J. Hammond. What developers think, 2010.
http://www.drdobbs.com/architect/222301141/

[5] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and
Henrik Schwarz. An empirical study of software reuse vs.
defect-density and stability. In Proceedings of the 26th

International Conference on Software Engineering (ICSE),
pages 282-292, 2004.

[6] Cornelius Ncube, Patricia Oberndorf, and Anatol W.
Kark. Opportunistic software systems development: Making
systems from what’s available. Software, IEEE, 25(6):38–
41, Nov. 2008.

[7] Martin P. Robillard. What makes APIs hard to learn?
Answers from developers. IEEE Software, 26(6):26–34,
2009.

[8] Westley Weimer and George Necula. Mining temporal
specifications for error detection. In Proceedings of 11th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages
461–476, 2005.

 [9] Principles of Data Mining - D.J.Hand, Heikki Mannila,
Padhraic Smyth

[10] J.D. Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and
P. McCarthy. The Java Developer’s Guide to Eclipse.
Addison-Wesley Professional, 2004.

[11] Google Code Search Engine, 2006.
http://www.google.com/codesearch.

[12] Viljamaa Jukka. Reverse engineering framework reuse
interfaces. In Proceedings of the 9th European Software
Engineering Conference held jointly with 11th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 217–226, 2003.

[13] JUnit, 2001. http://www.junit.org.

http://www.eclipse.org/�
http://www.eclipse.org/forums/�
http://www.drdobbs.com/architect/222301141/�
http://www.google.com/codesearch�
http://www.junit.org/�

www.manaraa.com

 VOL. 2, NO. 11, October 2011 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
 ©2009-2011 CIS Journal. All rights reserved.

http://www.cisjournal.org

 603

[14] Timothy C. Lethbridge, Janice Singer, and Andrew
Forward. How software engineers use documentation: The
state of the practice. In IEEE Software, pages 35–39, 2003.

[15] Wolfgang Pree. Meta patterns - a means for capturing
the essentials of reusable object oriented design. In
Proceedings of the 8th European Conference on Object-
Oriented Programming (ECOOP), pages 150–162, 1994.

[16] Naiyana Sahavechaphan and Kajal Claypool. XSnippet:
Mining for sample code. In ACM SIGPLAN symposium on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 413–430,

[17] Nikolai Tillmann and Jonathan de Halleux. Pex white
box test generation for .NET. In Proceedings of the 2nd
International Conference on Tests and Proofs (TAP), pages

134–153, 2008.2006.

[18] Jianyong Wang and Jiawei Han. BIDE: Efficient
mining of frequent closed sequences. In Proceedings of 20th
International Conference on Data Engineering (ICDE),
pages 79 – 88, 2004.

[19] http://java.sun.com/products/jms

http://java.sun.com/products/jms�

