
www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

AI in Software Engineering at Facebook

Johannes Bader, Sonia Kim, Frank Luan, Satish Chandra, Erik Meijer
Facebook, Inc.

December 2020

Abstract

We address the question: How can AI help software engineers bet-
ter do their jobs and advance the state of the practice? Our perspective
comes from building and integrating AI-based techniques in Facebook’s
developer infrastructure over the past two years.

In this article, we describe three productivity tools that we have built
that learn patterns from software artifacts: code search using natural lan-
guage, code recommendation, and automatic bug fixing. We also present
a broader picture of how machine learning can bring insights to virtually
all stages of the software lifecycle.

1 Introduction

AI, and more specifically the machine learning sub-area of AI, has had a trans-
formative impact on almost every major industry today, ranging from retail,
to pharmaceuticals, to finance. Not surprisingly, it is beginning to transform
the software development industry as well, though significant potential remains
untapped.

The underlying basis for the transformative impact of ML is the vast amount
of data that is available to be analyzed, mined, and from which clever ML
algorithms can extract patterns and insights. In software engineering, one of
the most easily accessible data is source code itself. For example, GitHub hosts
millions of projects, which together add up to billions of lines of code; most
companies have large proprietary code repositories as well. Other examples of
sources of data include:

• Incremental changes between repository versions of code;

• Large number of tests and their outcomes during continuous integration;

• Online forums, such as Stack Overflow, in which developers interact with
each other.

What are some of the useful insights to be extracted from this data? And
how can we use ML to extract those insights? Since software engineering is

1

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

a lot about developer productivity, in the rest of this introduction, we give
several examples of scenarios in which we have used ML to help developers
work more efficiently; in the later sections, we will give technical details of how
these tools work. Towards the end of the article we will present a broader picture
of additional ways in which ML-based insights can help in software engineering.

Code search using natural language Consider the life of a developer who
has to implement a function, for example, for hiding the Android soft keyboard
programmatically. One way to tackle this problem is to study Android APIs and
then implement the function. But APIs may take a long time to comprehend.
It would be much more efficient to derive inspiration from existing code that
serves a related purpose. One way to find a relevant code snippet is with a quick
search on Stack Overflow. However, if the question is not already answered on
Stack Overflow, posting a new question and waiting for a response has a long
latency.

On the other hand, copious amounts of relevant Android code are available
on GitHub. The problem is that it is hard to find such relevant snippets directly
from a collection of repositories. We have created a technique that can help
retrieve pertinent code snippet directly from source code, starting with just
rough keywords. While the search does not come with the explanation that a
Stack Overflow post has, it retrieves potentially useful information in real time.

Code recommendation Even when one does have a start on which APIs
to use for a certain task at hand, the task is not done. When writing code,
developers are curious how other programmers have written similar code, to
get reassured, or to discover considerations they might have missed. If they
directly search on a large code corpus for an API name, they might get tens of
thousands of results. What they instead want is a small set of sample usages
from the repository that gives them some additional information.

Consider an example usage of an Android API method decodeStream:

Bitmap bitmap = BitmapFactory.decodeStream(input);

But if one were to look at related code elsewhere in the repository, one
variation is to make sure the app does not crash on an exception:

try {

Bitmap bitmap = BitmapFactory.decodeStream(input);

...

} catch (IOException e) { ... }

This is a different search scenario that we call code recommendation. The in-
put is a code snippet, and the output is a small list of related code fragments that
show only a few representative variations of information that occurs commonly
enough. We will discuss our approach to build such a code recommendation
engine in section 3.

2

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

Automatically fixing routine bugs Code evolves constantly. At Facebook,
the Android app repository alone sees thousands of commits per week. Since
many of these commits are fixes to various issues, we can use ML to figure out
the patterns to these fixes and automatically suggest an appropriate fix.

More specifically, we have found that fixes to static analysis warnings often
come from a large palette of code patterns. The following shows an example fix
(inserted code in green) of Infer’s warning on potential NullPointerException
(null dereferences) in Java:

if (this.lazyProvider == null || shouldSkip) {

return false;

}

Provider p = this.lazyProvider.get();

The notable point is that developers have a strong preference for a certain
way to fix a warning, even though there might exist alternate, semantically
equivalent ways. A tool that recommends fixes must suggest the one that the
developer finds natural in a given context. We will talk about a tool that
discovers and learns bug-fixing patterns from data.

Takeaways These are just some of the many initiatives we have started and
incorporated into practice at Facebook. Additional work includes: predictive
regression test selection [1], triaging for crashes [2], and code auto-completion.
[3] demonstrates how these tools are integrated into the Facebook development
environment.

Our thesis is that even simple ML methods can help remove a lot of ineffi-
ciencies in the day-to-day life of a developer. No longer should they spend a lot
of time looking for information over a repository. No longer should they spend
a lot of time finding relevant information from hundreds of code fragments. No
longer should they have to fix simple, predictable bugs manually.

In the next part of the article, we describe technical details for the three
topics we introduced above.

2 Code Search

Background The ability to search over large code corpora can be a powerful
productivity booster. Therefore, we have explored ways to search directly over
the provided code corpora, using basic natural language processing and infor-
mation retrieval techniques. There have been previous works in code search,
such as CoCaBu [4] (a code search tool that augments natural language queries
by adding correlated code vocabulary from Internet forums), and Sourcerer [5]
(a code search framework that searches over open-source projects available on
the Internet). However, these tools are not applicable for internal use since
most of our developers work with proprietary APIs and frameworks which are
rarely discussed on the Internet. Thus, we came up with an approach to directly

3

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

fastText
training

Training
Corpus

Source
Code

Word Embeddings

a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . .
a3,1 a3,2 a3,3

. . .

. . .

Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Search Corpus

Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Candidate code snippets:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Query:
“How do I iterate through a hashmap”

TFIDF Weights

w1
w2
w3. . .

Document Embeddings

d1,1 d1,2 d1,3 . . .
d2,1 d2,2 d2,3 . . .
d3,1 d3,2 d3,3

. . .

. . .

tf-idf
weighted
average

offline compute

apply code
embedding

Query Embedding

q1,1 q1,2 q1,3 . . .

sort by cosine
similarity score

Top Search
Results

Source
Code

online compute

apply code
embedding

Figure 1: NCS model training and search retrieval. NCS extracts information
from the source code, builds word embeddings, and uses TF-IDF weighting to
get a document embedding for each code snippet. The query is mapped to the
shared vector space, and the most relevant code snippets are ranked with cosine
similarity.

search over the given corpus. Our tool, called Neural Code Search (NCS) [6],
aims to find relevant code snippet examples given a query in natural language.

How does it work? NCS is built using the idea of embeddings, which are
vector representations of code that aim to capture the intent of a piece of code
in a form suitable for machine learning. Our hypothesis is that the tokens in
source code are generally meaningful, and embeddings derived from these tokens
can capture the intent of the code snippet well enough for code search. NCS
creates embeddings at the granularity of a method body.

As shown in Figure 1, NCS works in the following steps:
Extract information. NCS first extracts relevant tokens from source code

to create a “natural language” document. The information NCS extracts are:
method names, comments, class names, and string literals.

Build word embeddings. NCS then builds word embeddings using
FastText [7] which gives vector representations for each word in the corpus.
Similar to Word2Vec [8], FastText performs unsupervised training such that
words appearing in similar contexts have similar vector representations. For
example, the embedding of button is the closest with the embeddings of click,
popup, dismissible, when trained on an Android code corpus.

Build document embeddings. Finally, to create a document embedding
for each method body in the corpus, NCS computes a weighted average from its
tokenized words and its respective word embeddings, as shown in Equation 1
(d is a set of words in a document; C is the corpus containing all documents;
u is a normalizing function). This document embedding serves to capture the
overall semantic meaning of the method body. NCS weights the words using

4

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

TF-IDF (Equation 2), a well-known weighting technique in IR. The top portion
of Figure 1 shows the NCS model training part.

vd = u

(∑
w∈d

u(vw) · tfidf(w, d,C)

)
(1)

tfidf(w, d,C) =
1 + log tf(w, d))

log |C| · df(w,C)
(2)

Search retrieval. Upon receiving a search query, NCS tokenizes the query
and uses the same trained word embeddings to represent it as a vector. It is
important to note that the tokenization will turn the natural language query to
a series of main keywords that captures the essence of the query. For example,
the query “How to get the ActionBar height” will be tokenized to “get action
bar height.” NCS then compares this vector to the document embeddings as
discussed above. NCS ranks the document embeddings by cosine similarity
using FAISS [9], a standard similarity search algorithm that operates on high-
dimensional data, and returns the top results. The bottom portion of Figure 1
shows the search retrieval part.

Evaluation We evaluated the effectiveness of NCS on a set of Stack Overflow
questions, with the post title as the query and a code snippet from the accepted
answer as the desired code answer. Given a query, we measured whether NCS
was able to retrieve a correct answer from a large search corpus (GitHub repos-
itories). Out of 287 questions, NCS correctly answered 98 questions in the top
10 results. This evaluation dataset, along with the search corpus, is publicly
available at [10].

Some examples of Stack Overflow questions that NCS answers well are:

• “How to delete a whole folder and content?”

• “How to convert a image into Base64 string?”

• “How to get the ActionBar height?”

• “How to find MAC address of an Android device programmatically?”

Sachdev et al. [6] includes more details on the training and evaluation of
NCS. We further investigated whether deep-learning models lead to better code
search results [11].

Developer feedback The usage of NCS at Facebook was somewhat differ-
ent from the way we had envisioned it. Developers did not often write Stack
Overflow-style questions; instead, they mostly searched with keyword queries,
such as “contract number amount”. Although the raw query types were differ-
ent, with the tokenization step where we break down both code snippets and
the queries into keywords, we were able to deploy NCS with no adaptations to
the model at Facebook. At Facebook, NCS is integrated into main code search

5

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

tools (e.g. website and IDE), as a complement to the existing exact-match code
search capabilities. Initially, the NCS results and the exact-match (grep-like)
results were shown together. Sometimes though, developers were looking only
for exact matches and got confused by the interleaving of results. Consequently,
exact-match results (from the raw queries) were shown separately from the NCS
results (from the tokenized queries).

3 Code Recommendation

Background NCS answers the first question that every developer has—how
do I do something—by enabling natural language search directly over a large
code corpus. Using NCS, a developer can find this API for writing code to load
a bitmap image:

Bitmap bitmap = BitmapFactory.decodeStream(input);

But real-world coding does not end here. This line of code, if written and
deployed, can run on millions of devices in a variety of different environments.
The developer needs to make sure that the code will not crash on people’s
phones. Often this would mean adding additional code for safety check, error
handling, and etc. In other words, the developer has a new question: Is there
anything else to add?

Since there are millions of open-source repositories available, it is highly
likely that given a particular task, some code already exists somewhere doing
it. The challenge is: given a query code snippet and a large code corpus, how
to find similar code and offer concise, idiomatic coding patterns to developers.

There exist many coding assistant tools that differ in their design and model:
API recommenders suggest APIs to given a coding context, but do not provide
usage examples to help with integration. API documentation tools provide
helpful usage templates, but are limited to API queries, rather than arbitrary
code snippets. Code-to-code search engines return exhaustive code matches,
whereas our goal is to provide concise recommendations by clustering together
similar results. Aroma is able to overcome all of these shortcomings.

How does Aroma work? Aroma indexes the code corpus by creating sparse
vector representations of each method body. To do so, Aroma first parses the
source code to get a simplified parse tree. Aroma uses this representation be-
cause it allows the rest of the algorithm to be language-agnostic.

Aroma then extracts features (presented in Figure 2) from the parse tree
to capture the code structure and semantics. Aroma creates the feature set of
a code snippet by aggregating the features of all tokens in that code snippet.
After obtaining the vocabulary of all features, Aroma assigns a unique index to
each feature, then converts the feature set to a sparse vector.

Given a query code snippet, Aroma runs the following phases to create
recommendations:

6

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

Figure 2: Features extracted by Aroma from a parse tree. The leaf nodes rep-
resent code tokens, which are extracted as token features; the internal nodes
represent syntactic structures, and are concatenated with leaf nodes as syntac-
tic features. The different colors represent different features extracted for the
bottom-most node view. Refer to [12] for more details.

Feature-based Search. Aroma takes the query code snippet and creates
a vector representation using the same steps in indexing. It then computes
a list of top (e.g. 1000) candidate methods that have the most overlap with
the query. This computation is very efficient by utilizing parallel sparse matrix
multiplication.

Clustering. Aroma then clusters together similar-looking method bodies.
Instead of showing similar or duplicate code, we want to create a single, id-
iomatic code recommendations from them. Aroma performs a fine-grained anal-
ysis on the candidate methods, and finds clusters based on similarities among
the method bodies.

Intersecting. The final step is to create one code recommendation for each
cluster of method bodies. The intersecting algorithm works by taking the first
code snippet as the “base” code and then iteratively pruning it with respect
to every other method in the cluster. Its goal is to return only the common
coding idiom among the cluster, by removing extraneous lines that may be
just situational in a specific method. Refer to our paper [12] for full algorithm
details.

As a concrete example, suppose the following two code snippets are in one
cluster, and that the first one is the “base” code snippet:

// Base snippet

InputStream is = ...;

final BitmapFactory.Options options = new BitmapFactory.Options();

options.inSampleSize = 2;

Bitmap bmp = BitmapFactory.decodeStream(is, null, options);

7

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

ImageView imageView = ...;

// 2nd snippet

BitmapFactory.Options options = new BitmapFactory.Options();

while (...) {

options.inSampleSize = 2;

options.inJustDecodeBounds = ...

bitmap = BitmapFactory.decodeStream(in, null, options);

}

Both snippets contain a few lines of similar code, but also different lines spe-
cific to themselves. Aroma’s intersection algorithm compares the base snippet
with the second snippet, only keeping the lines that are common in both. It
then compares these lines with the next method body. The remaining lines are
returned as a code recommendation:

// A code recommendation

final BitmapFactory.Options options = new BitmapFactory.Options();

options.inSampleSize = 2;

Bitmap bmp = BitmapFactory.decodeStream(is, null, options);

Other code recommendations are created from other clusters in the same
way. Aroma’s algorithm ensures that these recommendations are substantially
different from one another, so developers can learn a diverse range of coding
patterns.

Results We instantiated Aroma on a large code corpus of Android GitHub
repositories, and performed Aroma searches with code snippets chosen from
the 500 most popular Stack Overflow questions with the Android tag. We
observed that Aroma provided useful recommendations for a majority of these
snippets. Moreover, when we used half of the snippet as the query, Aroma
exactly recommended the second half of the code snippet in 37 out of 50 cases.

Developer feedback At Facebook, Aroma is integrated into the VS Code
IDE. The developer selects a portion of code to be used as a query, and in re-
sponse, Aroma presents a set of code recommendations. From Aroma’s feedback
workgroups, this integration received mixed feedback: developers were unsure
about the use case. Is it a “teacher” to show better code? Is it warning about
potential code duplication? In the end, developers were most interested in see-
ing examples of API usage. We have since developed a new tool for generating
code examples [13] to address this need.

4 Bug Fixing

Background Large code repositories also come with a long history of com-
mits (i.e. code changes), recording how the code base evolved into its current

8

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

state. If we can find repetitive patterns using machine learning among these
changes, then we can automate the routine work that engineers repetitively do.
At Facebook, we have found that one common class of repetitive changes are
bug fixes. Therefore we have built a tool called Getafix, that learns bug fixing
patterns and automatically offers fix suggestions.

Getafix has goals similar to those of existing automated program repair
techniques, but fills a previously unoccupied spot in the design space: single/few
shot prediction of natural looking fixes, but for specific kinds of bugs. In contrast
to generate-and-validate approaches [14] we focus on learning patterns from past
fixes for specific bug types and leverage information known about bug instances
(e.g. blamed variable). Getafix does not attempt to find generic solutions from
any sort of ingredient space, or by generically mutating the code. Getafix tends
to produce actual, human-like fixes by construction, as it takes nothing but past
human fixes as inspiration.

How does it work? For clarity, we will focus on a specific type of bug that
can crash Android apps: Java NullPointerExceptions (“NPE”). The following
code snippet shows an example of a NPE and a possible fix:

public int getWidth() {

@Nullable View v = this.getView();

return v.getWidth(); // Bug: NPE if v is null

return v != null ? v.getWidth() : 0;

}

At Facebook we use the Infer [15] static analyzer to detect and warn about
potential NPEs (line highlighted in red). From the Infer records, we identify
commits that fix the potential NPE (line highlighted in green). We scrape
hundreds of such bug fixing commits from the version history, and use them as
training data for Getafix.

Edit extraction. In order to find repetitive patterns of bug fixes (“fix pat-
terns”) from this training data, Getafix splits commits into fine grained abstract
syntax tree (AST) edits. Getafix first parses each file touched by a commit into
a pair of ASTs: one for the source code prior to the changes made, and another
for after the change. Getafix then applies a tree differencing algorithm similar
to GumTree [16] to each pair of ASTs in order to predict the edits (insertions,
deletions, moves, updates) that likely represent the difference. For the example
fix above, Getafix will extract the following edit: v.getWidth() −→ v

!= null ? v.getWidth() : 0.
Clustering. Getafix takes a data-driven approach, called anti-unification,

by clustering the set of AST edits yielded by the previous step by similarity:
It merges the most similar pair of edits in the set into a new edit pattern,
abstracting away details only where necessary. Example:
Edit A: v.getWidth() −→ v != null ? v.getWidth() : 0

Edit B: lst.size() −→ lst != null ? lst.size() : 0

Anti-unification: α.β() −→ α != null ? α.β() : 0

9

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

Anti-unification has the desirable property that it merges edit patterns in
the most information-preserving way possible. Getafix repeats this step as often
as possible, putting the resulting edit pattern back into the set in place of its
constituents, hence reducing the size of the set and allowing edit patterns to
be merged and abstracted even further. This process results in a hierarchy of
edit patterns, with the original edits as leaf nodes and increasingly abstract edit
patterns closer to the roots.

Fix prediction. With such a hierarchy of fix patterns for NPE warnings,
Getafix can automatically fix future warnings: When Infer produces a new, pre-
viously unseen, NPE warning, Getafix retrieves all patterns that are applicable
from our hierarchy of fix patterns. Getafix then applies those candidate patterns
to the code, generating candidate fixes, which are ranked statistically using a
metric comparable to TF-IDF. To limit computational cost, one or at most a
few of the top ranked candidate patterns are then validated (e.g. by running
Infer and making sure the warning disappeared). The best passing candidate
fix is offered to the engineer as a suggestion they can accept or reject at the
click of a button. Getafix suggests only one fix to limit the cognitive load and
provide a straight forward user experience. We do require a final human confir-
mation since Getafix uses statistical learning and ranking techniques, so there
is no formal guarantee of correctness despite certain forms of validation. For
more details about Getfix, refer to [17].

Results Of the Infer NPE warnings fixed by Facebook engineers since Getafix
service has rolled out, 42% were fixed by accepting our fix suggestion, and in
9% of the cases, engineers wrote a semantically identical fix (which goes to show
developers are very particular about the fix suggestions they accept).

Note that our pattern learning phase takes any set of changes as input, so a
different scenario we have successfully started automating is the discovery and
application of “lint” rules. Changes made in response to code review are often
fixes to common anti-patterns that were pointed out by a reviewer, and finding
and fixing these anti-patterns can be baked into a lint rule.

Developer feedback We show fix suggestions for warnings during code re-
view, and in the IDE wherever possible. We found that warnings that came with
a fix suggestion were more actionable and addressed (whether via accepting the
suggested fix or hand-writing one) more often than plain warnings. Individual
reactions ranged from ignoring our suggestions to expressing excitement about
their level of sophistication in internal feedback groups.

We found that semantic equivalence is insufficient to our engineers and that
syntactic differences do matter to them: For instance, we sometimes predict
using a ternary conditional and in several cases observed developers adopt this
fix, but negating the condition and swapping the “then” and “else” expression.
At this point, the “accept with one click” experience we provide is ineffective,
so we strive to suggest natural looking fixes exactly as our engineer expect, so
syntax and even details like idiomatic white-space must be human-like. Our

10

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

ML-based approach learns patterns that look natural by construction (learnt
from real fixes) and also learns how to rank among them in a principled way,
which would be strenuous to replicate manually.

5 The Big Picture

Figure 3: Common workflows in software development.

We now take a step back to discuss how these ML-based techniques fit in the
broader picture of the software development process. In fact, these techniques
have the potential of influencing not just writing or fixing code, but almost all
stages of the software lifecycle.

Figure 3 shows a way to think about modern software development, as orga-
nized in three stages, recurring in a cycle (not depicted.) The workflow begins
with an individual developer’s work, which involves editing the code to imple-
ment new functionality, or in response to an issue, and making sure the code
compiles and passes at least some lightweight quality control (e.g. linters, unit
tests). Next is the team stage: once the developer is satisfied with a code change
they are making, they send it in for code review, and perhaps simultaneously,
more extensive testing and verification is kicked off. Either of these can require
the jumping back into the individual workflow. Once code gets released and
enters production, new issues can arise that were not caught by previous stages.
The process must account for how such issues are tracked. The production stage
would typically also include some telemetry that helps with bug isolation. Feed-
back from production kicks off a new cycle, starting again from the individual
stage.

The previous sections talked about ideas that are primarily applicable in the
code edit phase of the individual workflow. In addition to those ideas, the most
visible developer-facing use of ML in code edit phase is auto-complete, which
has been widely studied and deployed. More ambitiously, ML techniques can
also help developers complete code via program synthesis.

11

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

Significant opportunities exist in the other states – for example, we had
previously mentioned our own work on predictive regression test selection [1]
and triaging crashes [2] — but a detailed discussion of these is outside the scope
of this brief article. Here are, in our view, some of the most promising but
relatively untapped opportunities for using ML pertinent to aspects of the team
and production states.

• Code Review. Code reviewing, while widely regarded as essential for
maintaining software quality, is also a significant time commitment for
software engineers. ML techniques can help automate routine code reviews
(such as formatting, best coding practices). More ambitiously, perhaps
ML can also automatically resolve a routine code review comment.

• Assessing the risk of a code change. In principle, any code change
increases the riskiness of an application. Arguably, the entire testing and
verification pipeline exists essentially to reduce this risk. Can we design
ML-based techniques that provide an quantitative assessment of the risk of
a code change, complementing the usual testing and verification pipeline?
Advanced here will impact both testing (by prioritizing tests related to
riskier changes) and release management (by carrying out additional qual-
ity control for riskier code releases.). By comparison, techniques for as-
sessing impact of a change (e.g. [18]) take a binary view of affected-ness,
and due to limitations of static analysis, often would be overly pessimistic
in their assessment.

• Troubleshooting. For widely deployed applications, customers send
their feedback implicitly (telemetry, crashes) and sometimes explicitly by
sending comments. The volume of this feedback can be huge. This is
another area where ML can help in multiple ways: not only in triaging
these reports, but clustering them to identify common issues, finding im-
portant clues from telemetry logs, and finding code changes that could be
connected to the issue at hand.

With renewed interest in ML, and emerging uniformity of software devel-
opment processes (common repositories, continuous integration and release),
industry is ripe for absorbing these ideas in the mainstream. At Facebook,
we certainly are transforming our development process to be as data-driven as
possible.

References

[1] Mateusz Machalica et al. “Predictive Test Selection”. In: Proceedings of
the 41st International Conference on Software Engineering: Software En-
gineering in Practice. ICSE-SEIP ’19. Montreal, Quebec, Canada: IEEE
Press, 2019, pp. 91–100. doi: 10.1109/ICSE-SEIP.2019.00018. url:
https://doi.org/10.1109/ICSE-SEIP.2019.00018.

12

https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2019.00018

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

[2] Rebecca Qian et al. Debugging Crashes using Continuous Contrast Set
Mining. 2019. eprint: arXiv:1911.04768.

[3] Johannes Bader et al. F8: Using Machine Learning for Developer Produc-
tivity. 2019. url: https://developers.facebook.com/videos/2019/
using-machine-learning-for-developer-productivity/.

[4] Raphael Sirres et al. “Augmenting and Structuring User Queries to Sup-
port Efficient Free-Form Code Search”. In: Proceedings of the 40th Inter-
national Conference on Software Engineering. ICSE ’18. Gothenburg, Swe-
den: Association for Computing Machinery, 2018, p. 945. isbn: 9781450356381.
doi: 10.1145/3180155.3182513. url: https://doi.org/10.1145/
3180155.3182513.

[5] Hitesh Sajnani et al. “SourcererCC: Scaling Code Clone Detection to Big-
code”. In: Proceedings of the 38th International Conference on Software
Engineering. ICSE ’16. Austin, Texas: ACM, 2016, pp. 1157–1168. isbn:
978-1-4503-3900-1. doi: 10.1145/2884781.2884877. url: http://doi.
acm.org/10.1145/2884781.2884877.

[6] Saksham Sachdev et al. “Retrieval on source code: a neural code search”.
In: Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. ACM. 2018, pp. 31–41.

[7] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Informa-
tion”. In: CoRR abs/1607.04606 (2016). arXiv: 1607.04606. url: http:
//arxiv.org/abs/1607.04606.

[8] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and their Compositionality”. In: CoRR abs/1310.4546 (2013). arXiv: 1310.
4546.

[9] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity
search with GPUs”. In: arXiv preprint arXiv:1702.08734 (2017).

[10] Hongyu Li, Seohyun Kim, and Satish Chandra. Neural Code Search Eval-
uation Dataset. 2019. arXiv: 1908.09804 [cs.SE].

[11] Jose Cambronero et al. “When Deep Learning Met Code Search”. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2019. Tallinn, Estonia: ACM, 2019, pp. 964–974.
isbn: 978-1-4503-5572-8. doi: 10.1145/3338906.3340458. url: http:
//doi.acm.org/10.1145/3338906.3340458.

[12] Sifei Luan et al. “Aroma: Code Recommendation via Structural Code
Search”. In: Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019), 152:1–
152:28. issn: 2475-1421. doi: 10.1145/3360578. url: http://doi.acm.
org/10.1145/3360578.

[13] Celeste Barnaby et al. “Exempla Gratis (E.G.): Code Examples for Free”.
In: New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1353–1364. isbn: 9781450370431. url: https://doi.org/10.1145/
3368089.3417052.

13

arXiv:1911.04768
https://developers.facebook.com/videos/2019/using-machine-learning-for-developer-productivity/
https://developers.facebook.com/videos/2019/using-machine-learning-for-developer-productivity/
https://doi.org/10.1145/3180155.3182513
https://doi.org/10.1145/3180155.3182513
https://doi.org/10.1145/3180155.3182513
https://doi.org/10.1145/2884781.2884877
http://doi.acm.org/10.1145/2884781.2884877
http://doi.acm.org/10.1145/2884781.2884877
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1908.09804
https://doi.org/10.1145/3338906.3340458
http://doi.acm.org/10.1145/3338906.3340458
http://doi.acm.org/10.1145/3338906.3340458
https://doi.org/10.1145/3360578
http://doi.acm.org/10.1145/3360578
http://doi.acm.org/10.1145/3360578
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1145/3368089.3417052

www.manaraa.com
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3061664, IEEE Software

[14] X. B. D. Le, D. Lo, and C. Le Goues. “History Driven Program Repair”.
In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER). Vol. 1. 2016, pp. 213–224.

[15] C. Calcagno et al. “Moving Fast with Software Verification”. In: NASA
Formal Method Symposium. 2015.

[16] Jean-Rémy Falleri et al. “Fine-grained and accurate source code differ-
encing”. In: ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. 2014,
pp. 313–324. doi: 10.1145/2642937.2642982. url: http://doi.acm.
org/10.1145/2642937.2642982.

[17] Johannes Bader et al. “Getafix: Learning to Fix Bugs Automatically”. In:
Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). issn: 2475-1421.

[18] X. Ren et al. “Chianti: A tool for change impact analysis of java pro-
grams”. In: ACM SIGPLAN Notices 39 (Oct. 2004), pp. 432–448. doi:
10.1145/1035292.1029012.

14

https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1145/1035292.1029012

